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Chapter 1

Introduction

Consider a (possibly infinite) collection of objects. Among these objects, some may be
more desirable that others. It might also happen that two objects are not comparable,
that is, neither of them is more desirable than the other. For a particular object x of
the collection, let us consider all the objects that are not more desirable than x. This
includes objects that are less desirable than x, but also those that are not comparable
with it. A central theme in this thesis, for various collections of objects and notions of
desirability, is the study of these objects that are not more desirable than x. How do
they look like? What is their structure? What are their properties?

The objects that we consider in this thesis are graphs and the desirability concept
is expressed by several orderings of graphs: subgraphs, induced subgraphs, minors,
topological minors, induced minors, immersions, etc., that most often express that a
graph contained as a substructure of an other. One of the first theorems that established
the properties of a class of graphs defined as above is the characterization of planar
graphs by Kuratowski (see Figure 1.1 for a picture of the mentioned graphs).

Theorem 1.1 (Kuratowski’s Theorem, 1930 [Kur30]1). A graph is planar2 iff it does
not contain a subgraph that is a subdivision of K5 or K3,3.

Figure 1.1: Kuratowski’s graphs K5 and K3,3 (from left to right).

A feature that made this result famous is that it describes a topological property,
being planar, in purely combinatorial terms: the absence of a substructure in the graph.
Often cited as a precursor of modern Graph Theory, Kuratowski’s Theorem has been
followed by a long line of results on classes defined by excluding a given substructure.
One of them is Turán’s Theorem, which gives a an upper-bound on the number of edges
of a graph not containing a large complete subgraph.

1According to [Bur78], this result has be independently obtained by Pontryagin, but never published.
2We say that a graph is planar if it can be drawn on the plane without crossing edges.
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Theorem 1.2 (Turán’s Theorem, 1941 [Tur41]). Let p ≥ 2 be an integer, and let G be
a graph that does not contain a complete subgraph on p vertices. If G has n vertices,
then its number of edges is at most:

p− 2

2(p− 1)
· n2.

In the long and fruitful series of papers Graph Minors, Robertson and Seymour gave a
general depiction of the graphs not containing a large complete graph as a minor [RS03].
This result, known as the Graph Minor Structure Theorem, provides a structural de-
scription of these graphs: what they look like and how they can be decomposed. We do
not give the statement of this theorem here as it would require to introduce many more
definitions. Let us mention that in addition to its combinatorial value, this result is a
cornerstone of the proof of the Graph Minor Theorem [RS04] that we will meet again
in a few paragraphs.

The three theorems stated above yielded different conclusions about the considered
classes: the first one provides us with topological information, the second one upper-
bounds an invariant for all graphs in this class, and with the third one we learn about
the structure of the graphs. Our purposes in introducing these theorems are to present
possible outcomes of results on classes defined by excluded substructures, and to high-
light the ones we consider in this thesis, that are bounds on invariants and structural
decomposition of graphs.

This thesis is centered around exclusion theorems. We now present two connected
topics that will receive attention in this thesis: well-quasi-orderings and the Erdős-Pósa
property.

Well-quasi-ordering

Let us go back to our initial example of a collection of objects, some of which are more
desirable than others. Imagine now that we are asked to choose one object in this collec-
tion. What properties ensure that such a choice is always easy? If the collection contains
several desirable objects that are pairwise not comparable, we can choose among them
by rolling a dice. However this is not possible when these non comparable objects are
infinitely many, assuming that we want a fair choice. An other situation that may occur
is when the collection contains an infinite sequence of objects that are ever more desir-
able: in this case we cannot find a most desirable object among them (see Figure 1.2).

This leads us to consider collections where these two behaviors are forbidden. This is
more or less the definition of well-quasi-orders. Formally, a well-quasi-order is a quasi-
order (that is, a reflexive and transitive relation) that contains neither infinite collections
of incomparable elements, not infinite decreasing sequences3. This concept is an exten-
sion of that of a well-order, usually defined for total orders (see [Mos06, Chapter 7] for

3While this definition slightly differs from the example we give above where infinite increasing
sequences are forbidden, it is quite the same if we consider the dual order where x is at least y iff y is
at least x in the original order.
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. . .

Infinitely many incomparable objects.

. . .

An infinite increasing sequence.

Figure 1.2: Two situation where the choice is hard. Dashed edges connect non-
comparable elements and arrows point towards larger elements.

an introduction to well-ordering), to the setting of partial orders, where two elements
are not always comparable. In a well-order, only infinite decreasing sequences are for-
bidden, as there is no collection of incomparable elements. The popularity of well-orders
in mathematics is partly due to the fact that they are used (often implicitly) in several
widely-spread proof techniques such as induction, proofs by minimal counterexample,
and the related infinite descent technique. Well-orders can also be used to ensure pro-
gram termination (or similarly, the termination of a rewriting system): if every state of
the program execution is lower than its anterior step for some carefully chosen well-order,
then the program will eventually terminate. This is facilitated by the use of recursively
defined data types (as lists and trees), which are often well-ordered [MP67,Bur69].

In Graph Theory, one often deals with classes that are closed with respect to some
ordering, i.e. every object that is lower than an object of the class also belongs to it.
For instance, acyclic graphs are closed with respect to the subgraph relation, because
no subgraph of an acyclic graph contains a cycle. The importance of well-quasi-orders
in Graph Theory and Algorithms is due to the following fact: in a well-quasi-order, the
complementary of a closed class has finitely many minimal elements. This follows from
the definition, as these elements, being minimal, are incomparable. Therefore, in order
to decide if an object x belongs to a closed subclass of a well-quasi-order, one simply
needs to check that x is not greater than y, for finitely many objects y (the minimal
elements of the complementary).

One of the most considerable results on well-quasi-ordering in Graph Theory is ar-
guably the already mentioned Graph Minor Theorem of Robertson and Seymour.

Theorem 1.3 (Graph Minor Theorem, [RS04]). Finite graphs are well-quasi-ordered by
the minor relation.

This result had a strong impact, in Combinatorics and Graph Theory, but also in
related fields as Algorithms and their connections to Logic and Computational Com-
plexity. For the aforementioned reasons, a consequence of the Graph Minor Theorem
is that every class of graphs that is closed with respect to the minor relation has a
characterization in terms of finitely many excluded minors. In some sense, this theorem
provides a Kuratowski type exclusion result for every class that is closed with respect
to minors. It should be noted that the finite list of excluded minors is not given by the
theorem, which only provides its existence. Together with an algorithm that decides if
a fixed graph is a minor of the input graph in polynomial time (also originating from
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the Graph Minors series [RS95]), the Graph Minor Theorem also implies (again, purely
existentially) that decision problems associated to classes closed with respect to minors
can be solved in polynomial time. The reader is refered to [Lov06,Joh87] for an account
on Minor Theory and its algorithmic consequences.

Other natural orderings of graphs are not so generous; they usually do not well-
quasi-order all graphs. An illustration of this fact is given in Figure 1.3: no cycle is a
subgraph of a larger cycle. This raises the question of identifying the subclasses that

. . .

Figure 1.3: Cycles form an infinite set of graphs that are pairwise not comparable for
the subgraph ordering.

are well-quasi-ordered.
In this manuscript we provide a partial answer to this question for several orderings

on graphs, complementing existing results. Essential parts of our proofs are decompo-
sition theorems, which provide structural information about graphs excluding a certain
substructure. Indeed, graphs in these classes often have a specific shape or structure,
that can be used to dissect them into simpler objects, and eventually order them.

The Erdős–Pósa property

We now move to a seemingly unrelated topic and show how it is connected to exclusion
theorems. Let us start with a concrete example, which is a mathematical puzzle for
children (popularized by [Mod], see also [GOB06]). We consider a grid that represents a
garden. Imagine that this garden is invaded by rats, which are represented by identical
shapes of adjacent cells with a fixed orientation. The goal of the game is to defend the
garden by disposing traps (that cover one cell each) so that any rat in the garden would
meet a trap. A rat and a trap are depicted in Figure 1.4.

A rat A trap

Figure 1.4: Rats and traps.

Naturally, we could place one on every cell, but we aim at using as few traps as
possible. Figure 1.5 depicts five rats in the garden (can we have more?) and an arrange-
ment of traps that defend the garden (can we use less?). Observe that this puzzle has
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Rats invading the garden Traps defending the garden

Figure 1.5: Hunting rats.

an infinity of variants: each choice of a garden (which could be a larger grid, or a more
convoluted shape) and of a rat gives rise to a new problem.

This example allows us to define two numbers: the first one is the maximum number
p of rats that fit in the garden without sharing a cell, and the second one is the minimum
number c of traps required to defend the garden. Observe that c is always at least p.
Indeed, if p rats are present in the garden, then for every rat, we need to place a trap
on some of the cells it occupies. However, in some situations we may need more than p
traps. This raises the following questions.

(1) What is the relation between c and p? In particular, can we bound c from above by
a function of p?

(2) Can we easily compute the values of p and c?

It is easy to see that, if we consider p rats in the garden, placing a trap on each cell they
occupy is enough to defend the garden. As a rat fills three cells, we get c ≤ 3p. Can
we do better? An variant of this puzzle is to protect the garden against several animals
species with different shapes, for instance rats and snakes, defined as 3 consecutive
cells. The problem then becomes different: as Figure 1.6 suggests, a trap arrangement
protecting against rats may be inefficient against snakes. Also, the maximum number
of rats or snakes that fit in the garden can potentially be larger than p.

Coming back to the setting of graphs, we can define similar invariants. Given a graph
G and a class H, the packing number of H in G is the maximum number of graphs in H
(with repetitions allowed) that can be found in G without overlapping. Here, G plays
the role of the garden, and H that of the list of potential pests. Similarly, the covering
number of H in G is the minimum size of set of vertices (corresponding to traps) that
meet every occurrence of a graph of H in G. Packing and covering numbers mirror the
numbers p and c, respectively. The same questions as above can be asked in this setting.
An example of a classic theorem answering question (1) is Kőnig’s Theorem.

Theorem 1.4 (Kőnig’s Theorem, 1931 [Kőn31]). In a bipartite graph, the maximum
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A snake A snake avoiding traps

Figure 1.6: A solution for rats is not always a solution for snakes.

number of pairwise vertex-disjoint edges is equal to the minimum number of vertices that
meet all edges.

This theorem can be restated as follows: the packing and covering numbers of {K2}
are equal in bipartite graphs. For some class H of graphs, it may happen that these
numbers are not equal, but that the covering number of H is bounded from above by a
function of its packing number. In this case, H is said to have the Erdős–Pósa property.
This name originates from the next result.

Theorem 1.5 (Erdős–Pósa Theorem, 1965 [EP65]). There is a function f : N → N
such that for every graph G and every positive integer k, either G has k pairwise vertex-
disjoint cycles, or there is a set of f(k) vertices, the removal of which yields an acyclic
graph.

In other words, this theorem states that the class of cycles have the Erdős–Pósa
property. However, there are classes of graphs that do not have the Erdős–Pósa property.
One of them is the class of cycles of odd length, as stated below.

Theorem 1.6 ([DL88,Ree99]). There is a family {Gi}i∈N such that for every i ∈ N, the
packing number of odd cycles in Gi is one and the covering number is at least i.

An illustration of a graph in this family is provided by Figure 1.7. It has been proved
that this graph does not contain two vertex-disjoint odd cycles. However one can easily
check that removing any three vertices keeps some odd cycle intact.

Erdős–Pósa type results are interesting as they link together invariants related to
apparently orthogonal problems. Let us also briefly mention that they have been used
in algorithm design (see e.g. [FLMS12a, Corollary 2] for a simple proof using the Erdős–
Pósa Theorem) and in bioinformatics [ARS16,ADG04,Ara08]. Therefore, considerable
effort has been put in identifying classes that have the Erdős–Pósa property, i.e. answer-
ing question (1). It appears that in several situations, a proof of (1) can be obtained by
considering two cases:

13



Figure 1.7: An Escher wall of height 4.

1. the considered graph has a large packing number; or

2. some structural invariant of the graph (most often the treewidth) is bounded.

From the first case we can directly conclude, whereas the bound provided by the second
case usually yields structural information on the graph that indicates how to construct
a small cover. However, to apply this proof scheme, we first need to ensure that at least
one of these two cases is true for the considered graphs. Such a dichotomy is provided
by exclusion theorems of the type of Turán’s Theorem: in the case where a substructure
is absent from the graph, they provide a bound on some parameter.

Question (2) can be asked in the setting of graphs as well. However, it appears that
for several graph classes, computing packing an covering numbers is an NP-hard prob-
lem [GJ79]. The two natural options to attack them are thus parameterized algorithms
and approximation (see e.g. [FLMS12a,FLM+16]).

In this thesis we continue the long line of research on the Erdős–Pósa property
by answering (1) for several classes of graphs. We also consider the problems of (2),
for which we design an approximation algorithm on certain classes of graphs. These
algorithms rely on exclusion theorems, but also on the fact that the considered classes
have the Erdős–Pósa property.

Overview of the results and organization of the thesis

Most of the definitions and notions used in this thesis are defined on Chapter 2.

Well-quasi-orderings. Chapter 3 is devoted to questions related to well-quasi-orderings.
In this chapter, we present general tools to prove well-quasi-ordering results (Sec-
tion 3.2). We then use these techniques together with antichains introduced in Sec-
tion 3.4 to show three results on well-quasi-ordering:

14



1. a characterization of the classes of simple graphs defined by one forbidden induced
minor that are well-quasi-ordered with respect to this relation, in Section 3.5;

2. a similar characterization for the relation of contraction, in Section 3.6; and

3. a characterization of the closed classes of multigraphs that are well-quasi-ordered
by the multigraph contraction relation.

These results complement the similar characterizations known for most of the usual
orderings of graphs that are not well-quasi-orders in general. They are obtained using
decomposition theorems for graphs excluding a substructure.

Exclusion theorems. Chapter 4 is concerned with exclusion theorems that upper-
bounds a parameter of the graphs excluding a substructure. We obtain:

1. bounds on a girth-like parameter of graphs excluding large complete graphs as a
minor, in Section 4.1;

2. bounds on the degree of graphs that exclude a large collection of multiedges as a
minor, in Section 4.2;

3. (low) bounds on the treewidth of graphs excluding various planar graphs, in Sec-
tion 4.3 as a minor; and

4. bounds on the tree-cut width of graphs excluding a planar subcubic graph as an
immersion, in Section 4.4.

Most of these results are used in the following chapters.

The Erdős–Pósa property. Chapter 5 deals with connections between invariants of
packing and covering. It is split into three parts:

1. general techniques for proving Erdős–Pósa type results, either from tree-like de-
compositions of graphs, or using invariants as the girth, in Section 5.2;

2. an application of these techniques to several classes of graphs in Section 5.3, most
often using exclusion results proved in Chapter 4;

3. a summary of positive and negative results on the Erdős–Pósa property, in Sec-
tion 5.4.

Algorithmic applications. We conclude this thesis by presenting in Chapter 6 an
approximation algorithm for packing and covering numbers of certain classes of graphs,
relying on exclusion theorems proved Section 4.1 and on the properties of the consid-
ered classes. The proof is using a notion of equivalence of graphs with respect to the
considered problem which allows us to reduce the graph when some structure appears.
Using a result of Section 4.1, we can then either reduce further the graph, or use the
arguments presented in Section 5.2 to conclude.

15



Chapter 2

Definitions

2.1 Preliminaries

In this thesis, logarithms are binary. If S is a set of sets, then ∪∪∪∪∪∪∪∪∪S =
⋃
S∈S S. For

every integers i and j, the notation Ji, jK stands for the interval of integers {i, . . . , j}.
For every positive integer k, we denote by N≥k the set N \ J0, k − 1K. We denote by
P(S) the power set of a set S and by P<ω(S) the set of all its finite subsets. Given
a function φ : A → B and a subset C ⊆ A, we define φ(C) = {φ(x) | x ∈ C}. Let
t = (x1, . . . , xl) ∈ Nl and χ, ψ : N → N. We say that χ(n) = Ot(ψ(n)) if there exists a
computable function φ : Nl → N such that χ(n) = O(φ(t) ·ψ(n)). We set N+ = N \ {0}.

By polylog(t) we denote some function that is a polynomial in the logarithm of t.
More formally, we write f(t) = O(polylog t) if there are constants t0, A, α such that
∀t > t0, f(t) ≤ A logα(t).

If H is a set of set, we define ∪∪∪∪∪∪∪∪∪H =
⋃
H∈HH.

2.2 Orders

In this section we introduce basic definitions that are related to order theory.

Sequences. A sequence of elements of a set A is an ordered countable collection of
elements of A. Unless otherwise stated, sequences are finite. The sequence of elements
s1, . . . , sk ∈ A in this order is denoted by 〈s1, . . . , sk〉 . We use the notation A? for the
class of all finite sequences over A (including the empty sequence). The length of a finite
sequence s ∈ A? is denoted by |s|.

Ordered sets. A quasi-order (qoset for short) is a pair (A,�) where A is a set and
� is a binary relation on A that is reflexive and transitive.

Two elements x and y of a qoset (A,�) are said to be non-comparable if none of
x� y and y�x holds. In a qoset, an antichain is a sequence of pairwise non-comparable
elements. In a sequence 〈xi〉i∈I⊆N of a qoset (A,�), a pair (xi, xj), i, j ∈ I is a good pair
if xi�xj and i < j. A qoset (A,�) is a well-quasi-order (wqo for short), and A is said to
be well-quasi-ordered by �, if every infinite sequence has a good pair, or equivalently, if

16



(A,�) has neither an infinite decreasing sequence, nor an infinite antichain. An infinite
sequence containing no good pair is called an bad sequence.

Union and product. If (A,�A) and (B,�B) are two qosets, then

• their union (A∪B,�A ∪�B) is the qoset defined as follows: for every x, y ∈ A∪B,
we have x�A ∪�B y if

(x, y ∈ A and x�A y), or (x, y ∈ B and x�B y);

• their Cartesian product (A×B,�A×�B) is the qoset defined by:

∀(a, b), (a′, b′) ∈ A×B, (a, b)�A×�B(a′, b′) if a�A a′ and b�B b′.

Ordering sequences. For any qoset (A,�), we define the relation�? on A? as follows:
for every r = 〈r1, . . . , rp〉 and s = 〈s1, . . . , sq〉 of A?, we have r�? s if there is a increasing
function ϕ : J1, pK → J1, qK such that for every i ∈ J1, pK we have ri� sϕ(i). Observe
that =? is then the subsequence relation. This order relation is extended to the class
P<ω(A) of finite subsets of A as follows, generalizing the subset relation: for every
B,C ∈ P<ω(A), we write B�P C if there is an injection ϕ : B → C such that ∀x ∈
B, x�ϕ(x). Observe that =P is the subset relation.

In order to stress that domain and codomain of a function are qosets, we sometimes
use, in order to denote a function ϕ from a qoset (A,�A) to a qoset (B,�B), the following
notation: ϕ : (A,�A)→ (B,�B).

Monotonicity. A function ϕ : (A,�A)→ (B,�B) is said to be monotone if it satisfies
the following property:

∀x, y ∈ A, x�A y ⇒ f(x)�B f(y).

Informally, a monotone function preserves the order. A function ϕ : (A,�A) →
(B,�B) is a qoset epimorphism (epi for short) if it is surjective and monotone.

Closed sets. Let (A,�) be a qoset. A subset B ⊆ A is said to be downward �-closed
(sometimes shortened as �-closed) if for every x, y ∈ A such that x� y and y ∈ B we
have x ∈ B. Symmetrically, we say that B is upward �-closed if for every x, y ∈ A such
that x� y and x ∈ B we have y ∈ B.

Incl and Excl. Let (A,�) be a qoset. For every x ∈ A, we define

Excl�(x) = {y ∈ A, x 6 � y} and

Incl�(x) = {y ∈ A, y�x}.
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Informally, Excl�(x) is the class of elements excluding x (with respect to�), and Incl�(x)
the class of elements included in x. We extend these definitions to any subset B ⊆ A as
follows:

Excl�(B) = {y ∈ A, ∀x ∈ B, x 6 � y} and

Incl�(B) = {y ∈ A, ∃x ∈ B, y�x}.

The set Incl�(B) contains all the elements of B and all the elements that are smaller
than some element of B. It is sometimes referred to as the closure of B with respect to
the relation �. Observe both Incl�(B) and Excl�(B) are downward �-closed sets. A
subset B ⊆ A is said to be uniquely defined if B = Excl�(x) for some x ∈ A. A part
of Chapter 3 is devoted to the study of well-quasi-ordered subsets of qosets on graphs
that are uniquely defined.

Canonical antichains. An antichain A of a qoset (S,�) is said to be canonical if it
is such that every contraction-closed subclass J of S has an infinite antichain iff J ∩A is
infinite. If Incl(A) has no infinite antichains, then A is a fundamental antichain. Note
that canonical antichains can be used to characterize the �-closed subsets of (S,�) and
also to describe the variety of its antichains. Canonical antichains have been introduced
by Ding in [Din09] and then studied for several graph orderings. We will meet them
again in Chapter 3.

2.3 Graphs

2.3.1 Basics

A graph G is a pair (V,E), where V is a set referred to as the set of vertices of G and E
is a multiset, the underlying set of which is a subset of

(
V
2

)
, that we call the set of edges

of G (even if it is a multiset). In this thesis, we do not consider graphs with loops, i.e.
edges connecting a vertex to itself. This definition corresponds to what is sometimes
called a “loopless multigraph”. The order of a G is its number of vertices, that we
denote by n(G), whereas we use m(G) for its number of edges (counting multiplicities).
We denote by multG({u, v}) the function that gives the multiplicity in G of a given edge
(which might be zero if {u, v} does not belong to E). We drop the subscript when it is
clear from the context. To refer to a particular edge of a multiedge {u, v}, we use the
subscript {u, v}i, where i ∈ J1,multG({u, v})K.

We also deal with simple graphs, which are graphs where every edge has multiplicity
one. We use the notations V (G) and E(G) for the vertex and edge sets of a graph,
respectively. The underlying simple graph of a graph G is the graph G′ such that
V (G′) = V (G) and E(G′) is the underlying set of E(G). We sometimes use the notation
|G| = |V (G)| and ‖G‖ = |E(G)| (counting multiplicities). All the graphs we consider
in this thesis are finite, i.e. both V (G) and the values taken by multG are finite. For H
and G graphs, we write H+G for the disjoint union of H and G. Also, for every k ∈ N,
k ·G is the disjoint union of k copies of G. The Cartesian product H ×G of H and G
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is the graph on vertex set V (H) × V (G) and where, given two vertices (u, v), (u′, v′) ∈
V (H) × V (G), either u = u′ and multH×G({(u, v), (u′, v′)}) = multG({v, v′}), or v = v′

and multH×G({(u, v), (u′, v′)}) = multH({u, u′}).
For every X ⊆ V (G), the graph induced by X, that we write G[X], is the subgraph

with vertex set X and edge set {e ∈ E(G), e ⊆ X}. We denote by G \X the subgraph
of G induced by V (G)\X. If X ⊆ E(G), then G\X is the subgraph (V (G), E(G)\X).
The complement of a simple graph G, denoted G is the graph obtained by replacing
every edge by a non-edge and vice-versa in G. Given a graph class C and a graph G, we
call C-subgraph of G any subgraph of G that is isomorphic to some graph in C. If the
class of C-subgraphs of G is empty, then we say that G is C-free.

Neighbors and degree. Two vertices u, v ∈ V (G) are said to be adjacent if mult({u, v}) ≥
1. An edge e ∈ E(G) is incident to a vertex v ∈ V (G) if v ∈ e. Two edges are incident
if they share some endpoint. The neighborhood of a vertex v ∈ V (G), denoted NG(v),
is the set of all vertices of G that are adjacent to v. For every subset S ⊆ V (G), we
set NG(S) =

⋃
v∈S NG(v) \ S (all vertices of V (G) \ S that have a neighbor in S). We

extent the definition of multG as follows, for every subsets X, Y ⊆ V (G):

multG(X, Y ) =
∑

(x,y)∈X×Y

multG({x, y}).

If multG(X, Y ) ≥ 1, we say that X and Y are adjacent in G.
The degree deg(v) of a vertex v ∈ V (G) is the cardinality of NG(v), i.e. the number

of vertices of G that are adjacent to v. On the other hand, the multidegree mdegG(v)
of v is defined as the cardinality of multG({v}, NG(v)), i.e. the number of edges incident
with v. Observe that these values are equal in simple graphs. The minimum degree over
all vertices of a graph G is denoted by δ(G), and the maximum degree by ∆(G).

Distances. For a given graph G and two vertices u, v ∈ V (G), distG(u, v) denotes
the distance between u and v, which is the number of edges on a shortest path between
u and v, and diam(G) denotes max{distG(u, v) | u, v ∈ V (G)}. For a set S ⊆ V (G)
and a vertex w ∈ V , distG(S,w) denotes min{distG(v, w) | v ∈ S}. Also, for a given
vertex u ∈ V (G), eccG(u) denotes the eccentricity of vertex v, that is, max{distG(u, v) |
v ∈ V (G)}. The girth of a graph G, denoted girth(G), is the length of a shortest cycle
in G if G is not a forest, and ∞ otherwise.

Connectivity and separations. A graph G is connected if, for every x, y ∈ V (G),
there is a path starting in x and ending in y. A pair (A,B) of subsets of V (G) is a
called a separation of order k in G if k = |A ∩B|, none of A,B is a subset of the other,
and there is no edge of G between A \B and B \ A.

For every k ∈ N, k ≥ 2, we say that G is k-connected if there is no separation
of order less than k in G. A connected component of a graph is a maximal connected
subgraph. We denote by cc(G) the number of connected component of a graph G. We
say that a subgraph is a 2-connected component is a maximal 2-connected subgraph. A
2-connected component is also called a block. A cut C = (X, Y ) of G is a partition of
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V (G) into two subsets X and Y . The cut-set of C is E(X, Y ) and the width of the cut
is |E(X, Y )|.

Trees, paths, and cycles. A tree is a connected acyclic simple graph. Given a tree
T we denote by L(T ) the set of its leaves, that are the vertices of degree one.

For every two vertices u, v ∈ V (T ), there is exactly one path in T between u and v,
that we denote by uTv. Also, given that uTv has at least 2 vertices, we denote by ůT v
(resp. uT v̊) the path uTv with the vertex u (resp. v) deleted. Let C be a cycle on which
we fixed some orientation. Then, there is exactly one path following this orientation
between any two vertices u, v ∈ V (C). Similarly, we denote this path by uCv and we
define ůCv and uCv̊ as we did for the tree. Two paths in a graph are internally disjoint
if they do not share any internal vertex. In a rooted tree T with root r, the least common
ancestor of two vertices u and v, written lcaT (u, v), is the first common vertex of the
paths uTr and vTr.

2.3.2 Special graphs and graph classes

In this section we define specific graphs that will appear all along this thesis. Let n be
a positive integer. We denote by:

• Kn the complete graph on n vertices;

• Pn the path on n vertices;

• Cn the cycle on n vertices (when n ≥ 2);

• θn the graph obtained by connecting two vertices with an edge of multiplicity n
(see Subsection 2.3.2 for a picture of θ5).

Figure 2.1: The graph θ5.

We call prism the Cartesian product of K3 and K2. A cograph is a graph not con-
taining the path on four vertices as induced subgraph. A linear forest is a disjoint union
of paths. A graph is subcubic its maximum degree is upper-bounded by 3.

Grids and Walls. Let k and r be positive integers where k, r ≥ 2. The (k×r)-grid Γk,r
is the Cartesian product of two paths of lengths k− 1 and r− 1 respectively. We denote
by Γk the (k×k)-grid. The k-wall Wk is the graph obtained from a ((k+1)× (2 ·k+2))-
grid with vertices (x, y), x ∈ {1, . . . , k+ 1}, y ∈ {1, . . . , 2k+ 2}, after the removal of the
“vertical” edges {(x, y), (x, y+ 1)} for odd x+ y, and then the removal of all vertices of
degree 1. The graphs Γ4 and W4 are depicted on Figure 2.2.
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Let Wk be a wall. We denote by P
(v)
j the shortest path connecting vertices (1, 2j)

and (k+1, 2j), j ∈ [k] and call these paths the vertical paths of Wk, with the assumption

that P
(v)
j contains only vertices (x, y) with y = 2j, 2j − 1. Note that these paths are

vertex-disjoint. Similarly, for every i ∈ [k + 1] we denote by P
(h)
i the shortest path

connecting vertices (i, 1) and (i, 2k + 2) (or (i, 2k + 1) if (i, 2k + 2) has been removed)
and call these paths the horizontal paths of Wk.

Figure 2.2: The (4× 4)-grid (left) and the 4-wall (right).

Wheels. For every positive integer n, a n-wheel, also called wheel of order n, is a
simple graph obtained by connecting a (new) vertex to n distinct vertices of an induced
cycle C. This cycle is said to be the cycle of the n-wheel, whereas the new vertex is
its center. A double wheel of order n is obtained from a cycle of order by adding two
non-adjacent, each connected to n vertices of the cycle.

Yurts. For every integer n > 0, the yurt graph of order n the graph Yn of the form

V (Yn) = {x1, . . . , xn, y1, . . . , yn, o}
E(Yn) =

{
{xi, xi+1}i∈J1,n−1K

}
∪
{
{yi, yi+1}i∈J1,n−1K

}
∪ {{xi, yi}}i∈J1,nK

∪ {{yi, o}}i∈J1,nK

(see Figure 2.3 for an example).

Figure 2.3: The yurt graph of order 5.

2.3.3 Annotating graphs

Labeled graphs. As detailed in Chapter 3, labeling the vertices of graphs may sim-
plify well-quasi-ordering proofs. Let us introduce some definitions related to graph
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labeling. For this, we consider a qoset (S,�). A (S,�)-labeled graph is a pair (G, λ)
such that G is a graph, and λ : V (G)→ P<ω(S) is a function referred as the labeling of
the graph. For the sake of simplicity, we will refer to the labeled graph of a pair (G, λ)
by G and to λ by λG. If G is a class of (unlabeled) graphs, lab(S,�)(G) denotes the class
of (S,�)-labeled graphs of G. The notion of labeled graph generalizes the one of graph
as any (unlabeled) graph can be seen as a ∅-labeled graph.

This definition of a labeled graph differs from the commonly used one where vertices
are assigned single elements of S instead of finite subsets. Whereas the usual defini-
tion can be easily used to prove well-quasi-ordering results with the induced subgraph
ordering, the definition we introduced is suited for proofs on graph orderings involv-
ing contractions. The extensions of these orderings to labelled graphs will be given in
Section 2.4.

Rooted graphs. In several proofs, the labels that will be assigned to vertices of graphs
will be sets of rooted graphs. This will be used in order to encode a class of connected
graphs as labeled 2-connected graphs (cf. Lemma 3.2 and Lemma 3.3). Roots will also
be used on trees to defined a partial order on the vertices.

A rooted graph is a couple (G, r) where G is a graph and r is a vertex of G, called
root of G. For the sake of simplicity, we sometimes denote by G the rooted graph (G, r)
and refer to its root by root(G). If H is a class of graphs, we define its rooted closure,
denoted Hr as the class of rooted graphs Hr = {(G, v) : G ∈ H, v ∈ G}.

Rooted trees. Let (T, s) be a rooted tree. Given a vertex x ∈ V (T ), the descendants
of x in (T, s), denoted by desc(T,s)(x), is the set containing each vertex w such that
the unique path from w to s in T contains x. Given a rooted tree (T, s) and a vertex
x ∈ V (G), the height of x in (T, s) is the maximum distance between x and a vertex in
desc(T,s)(x). The height of (T, s) is the height of s in (T, s). The children of a vertex
x ∈ V (T ) are the vertices in desc(T,s)(x) that are adjacent to x. A leaf of (T, s) is a
vertex of T without children. The parent of a vertex x ∈ V (T ) \ {s}, denoted by p(x),
is the unique vertex of T that has x as a child.

2.4 Graph operations and orderings

Most of the common order relations on graphs can be defined in two equivalent ways:
either in terms of graph operations, or by using models. Let us have a closer look at
them.

2.4.1 Local operations

Let G be a graph. We here describe the effects of the following local operations when
applied to G: the vertex deletion, the edge deletion, the vertex dissolution, the vertex
identification and the lift.

Deleting a vertex v (resp. an edge e) yields the graph G \ {v} (resp. G \ {e}).
For every {u, v} ∈ E(G), the contraction of the edge {u, v} adds a new vertex w, sets
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mult({w,w′}) = mult({u,w′}) + mult({v, w′}) for every w ∈ N(u) ∪ N(v) and then
deletes u and v (see Figure 2.4). If G is a simple graph, we do not keep the multiple
edges that might be created during this process (i.e. we set their multiplicity to one).
In the case where G is labeled, we label the new vertex w in the obtained graph with
λG(u) ∪ λG(v).

e

Figure 2.4: The contraction of the edge e creates a double edge.

If u is a vertex of degree two, the dissolution of u is the contraction of one edge
incident with u. On the other hand, a subdivision of the edge {u, v} adds a new vertex
adjacent to u and v and decreases the multiplicity of the edge {u, v} by one (i.e., removes
this edge in the case were G is a simple graph). The vertex added during this process
is called a subdivision vertex. These two operations are depicted on Figure 2.5.

w e
dissolving w

subdividing e

Figure 2.5: Dissolution and subdivision as complementary operations.

The identification of two vertices u and v adds the edge {u, v} if it was not already
existing, and contracts it. If G is (Σ,�)-labeled (for some qoset (Σ,�)), a label contrac-
tion is the operation of relabeling a vertex v ∈ V (G) with a label l such that l�P λG(v).
This operation will be used when dealing with well-quasi-orders in Chapter 3. The lift
of two incident edges {u, v} and {v, w} decreases by one the multiplicities of these edges
and increases by one the multiplicity of {u,w} (or create the edge if it was not existing).

The closure of a class G by a given operation is the class obtained from graphs of G
by a finite application of this operation.

2.4.2 Containment models

In this section we define models, which are functions witnessing the presence of a sub-
structure in a graph. They come in different flavours, depending on the type of sub-
structure considered.

Containment models. Let G and H be two graphs and let us consider a function
µ : V (H)→ P<ω(V (G)) and the following properties:

(M1): for every two distinct u, v ∈ V (H), the sets µ(u) and µ(v) are vertex-disjoint;

(M2): for every u ∈ V (H), the subgraph of G induced by µ(u) is connected;
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(M3): λH(u)�?
⋃
v∈µ(u) λG(v);

(M4): root(G) ∈ µ(root(G));

(M5): ∀u, v ∈ V (H), multG(µ(u), µ(v)) ≥ multH({u, v});

(M6): ∀u, v ∈ V (H), multG(µ(u), µ(v)) = multH({u, v});

(M7):
⋃
v∈V (H) µ(v) = V (G);

(M8): ∀v ∈ V (H), |µ(v)| = 1.

. . . -model (M1) (M2) (M3) (M4) (M5) (M6) (M7) (M8)
minor X X (X) (X) X
induced minor X X (X) (X) X X
contraction X X (X) (X) X X X
subgraph X X (X) (X) X X X
induced subgraph X X (X) (X) X X X X

Table 2.1: Requirements for containment models

If µ satisfies (M1) up to (M5), then we call it an H-minor model in G, or a minor
model of H. A minor model that also satisfies (M6) is an induced minor model, and an
induced minor model where (M7) holds is a contraction model. A minor model that
additionally satisfies (M7) and (M8) is a subgraph model ; it is an induced subgraph model
if it satisfies (M1) up to (M8). These definitions are summarized by Table 2.1. Items
(M3) and (M4) are required only when H and G are labeled or rooted, respectively. An
example of a minor model is given in Figure 2.6. When (M3) holds, µ is said to be
label-preserving.

Figure 2.6: A K4-minor model (dashed arrows) in the 3×3 grid, that is also a topological
minor model and an induced minor model.
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Models for immersions and topological minors. In order to deal with the order-
ings of immersion and topological minor, to be defined in Subsection 2.4.3, we need a
different kind of model. An H-immersion model is a pair of functions (φ, ψ) satisfying
the following properties:

1. φ : V (H)→ V (G) is an injection;

2. ψ sends {u, v}i to a path of G between φ(u) and φ(v), for every {u, v} ∈ E(H)
and every i ∈ J1,multH({u, v})K, in a way such that distinct edges are sent to
edge-disjoint paths.

Every vertex in the image of φ is called a branch vertex and every path in ψ(E(H))
a certifying path. If it also holds that no branch vertex is an internal vertex of any
certifying path, then the function (φ, ψ) is an H-strong-immersion model. If moreover,
the paths in the image of ψ are internally disjoint, then (φ, ψ) is an H-topological minor
model.

With these definitions the following observation is straightforward.

Observation 2.1. Let H and G be graphs. If (φ, ψ) is an H-topological-minor model in
G then (φ, ψ) is also an H-strong-immersion model in G.

u

v

w

x

x

v

u w

Figure 2.7: A K4-immersion model in a graph that has no K4-minor model: vertices are
sent on vertices with the same name, and edges are sent to paths of the same color.

The next section links together models and local operations in the definition of graph
orderings.

2.4.3 Graph orderings

Local operations and models can be used to express that a graph is contained as a
substructure of an other one. The graph ordering where this notion of containment is
the most obvious is perhaps the subgraph relation which can be defined as follows: H
is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

The orderings we consider here can be defined in two equivalent ways: either using
models, of using local operations. Let us start with the definition involving models.

• H is a subgraph of G, what we note H ≤sg G, if there is an H-subgraph model in
G;
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• H is an induced subgraph of G, what we note H ≤isg G, if there is an H-induced
subgraph model in G;

• H is a contraction of G, what we note H ≤cG, if there is an H-contraction model
in G;

• H is a minor of G, what we note H ≤m G, if there is an H-minor model in G;

• H is an induced minor of G, what we note H ≤im G, if there is an H-induced
minor model in G;

• H is a topological minor of G, what we note H ≤tm G, if there is an H-topological
minor model in G;

• H is an immersion of G, what we note H ≤imm G, if there is an H-immersion
model in G;

• H is a strong immersion of G, what we note H ≤sim G, if there is an H-strong
immersion model in G;

We add µ as superscript of the aforementioned order symbols when we want to specify
that µ is a model witnessing the relation (like in H ≤c

µG). Observe that each of
the aforementioned relation defines a qoset on the class of graphs. For every � ∈
{≤sg,≤isg,≤c,≤m,≤im}, the graph G is said to be H-�-free, or to exclude H with
respect to �, if H �G does not hold.

We now give the equivalent definition of these containment relations in terms of
local operations. The list below also contains the definitions of dissolution, induced
immersions, and induced topological minors, that we did not defined in terms of models
as we will not consider them (see e.g. [KO04b] for a definition).

• H ≤isg G iff there is a sequence of vertex deletions transforming G into H;

• H ≤sg G iff there is a sequence of vertex deletions and edge deletions transforming
G into H;

• H ≤cG iff there is a sequence of edge contractions transforming G into H;

• H ≤imG iff there is a sequence of vertex deletions and edge contractions trans-
forming G into H;

• H ≤mG iff there is a sequence of vertex deletions, edge deletions and edge con-
tractions transforming G into H;

• H ≤immG iff there is a sequence of vertex deletions, edge deletions and lifts trans-
forming G into H;

• H ≤tmG iff there is a sequence of vertex deletions, edge deletions, and vertex
dissolutions transforming G into H;
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• H is an induced topological minor of G iff there is a sequence of vertex deletions
and vertex dissolutions transforming G into H;

• H is an induced immersion of G iff there is a sequence of vertex deletions and lifts
transforming G into H.

Note that the aforementioned sequences of operations are allowed to be empty. Table 2.2
summarizes these definitions. In this table, V D stands for “vertex deletion”, ED for
“edge deletion”, C− for vertex dissolution, C for edge contraction and L for lift. The
relations between the different containment relations are depicted on Figure 2.8 where
the same abbreviations are used.

Relation V D ED C− C L
isomorphism

spanning subgraph X
induced subgraph X

subgraph X X
dissolution X
contraction X X

induced minor X X X
induced topological minor X X

topological minor X X X
minor X X X X

induced immersion X X
immersion X X X

Table 2.2: Containment relations defined in terms of local operations.

The aforementioned orderings allow us to define classes of graphs.

Classes defined by graph orderings. Let H be a graph. An major of H (H-major
for short) is a subgraph-minimal graph that contains H as a minor. We denote the class
of H-majors by M(H).

A subdivision of H (H-subdivision for short) is a graph obtained from H by subdi-
viding edges. Observe that a graph G has a subgraph isomorphic to subdivision of H iff
it contains H as a topological minor. We denote by T (H) the class of all subdivisions
of H.

Also, an immersion expansion of H (H-immersion expansion for short) is a subgraph-
minimal graph that contain H as an immersion. Again, a graph G has a subgraph
isomorphic to an immersion expansion of H iff it contains H as an immersion. We write
I(H) for the class of immersions expansions of H. These definitions are extended to
classes: M(H) is the class of all subgraph-minimal graphs that contain some member
of H as a minor (and similarly for T (H) and I(H)).
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Isomorphism

Spanning subgraph

E

Dissolution

C−

Induced subgraph

V

Subgraph

VE

Contraction

C

Topological minor

VEC−

Immersion

VEL
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Figure 2.8: Connections between common orderings of graphs.

2.5 Tree-like decompositions and width parameters

A considerable amount of the recent algorithmic advances relies on tree-like decompo-
sitions, that are a way to decompose the graph into subsets organized in a tree-like
fashion. These decompositions give rise to graph parameters usually called width pa-
rameters. Among the existing decompositions, tree-decompositions are certainly those
that received the most considerable attention.

Definition 2.1. A tree decomposition of a graph G is a pair (T,X ) where T is a tree
and X a family {Xt}t∈V (T ) of subsets of V (G) (called bags) indexed by elements of V (T )
and such that the following holds

(i)
⋃
t∈V (T ) Xt = V (G);

(ii) for every edge e of G there is an element of X containing both ends of e;

(iii) for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ), v ∈ Xt} is connected.

The width of a tree decomposition T is defined as equal to maxt∈V (T ) |Xt| − 1. The
treewidth of G, written tw(G), is the minimum width of any of its tree decompositions.

The torso of a bag Xt of a tree decomposition (T, {Xt}t∈V (T )) is the underlying
simple graph of the graph obtained from G[Xt] by adding all the edges {x, y} such that
x, y ∈ Xt ∩Xt′ for some neighbor t′ of t in T .
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Treewidth has been extensively used in Algorithmics and Combinatorics. The Graph
Minor series of Robertson and Seymour provides several results and tools related to this
parameter. In particular, Robertson and Seymour proved that every graph of big enough
treewidth contains as a minor a big grid. This result will be discussed in Chapter 4.
Also, it appears that several algorithmic problems, that are hard in general, become
tractable on graphs of bounded treewidth. In this direction, Courcelle proved [Cou90]
that a large family of problems (those that can be expressed in monadic second-order
logic1) can be solved in linear time on graphs of bounded treewidth.

In order to deal with tree decompositions, we sometimes consider nice tree decom-
position, which are defined as follows.

Definition 2.2 ( [Klo94a]). A triple (T, r, {Xt}t∈V (T )) is said to be a nice tree decom-
position of a graph G if (T, {Xt}t∈V (T )) is a tree-decomposition where the following
holds:

1. every vertex of T has degree at most 3;

2. (T, r) is a rooted tree and the bag of the root r is empty (Xr = ∅);

3. every vertex t of T is

• either a base node, i.e. a leaf of T whose bag is empty (Xt = ∅) and different
from the root;

• or an introduce node, i.e. a vertex with only one child t′ such that Xt′ =
Xt ∪ {u} for some u ∈ V (G);

• or a forget node, i.e. a vertex with only one child t′ such that Xt = Xt′ ∪ {u}
for some u ∈ V (G);

• or a join node, i.e. a vertex with two child t1 and t2 such that Xt = Xt1 = Xt2 .

It is known that every graph G has an nice tree decomposition with width tw(G) and
at most 4n nodes [Klo94a]. A more restrictive notion is the one of path decomposition,
defined as follows.

Definition 2.3 ( [Klo94b]). A tree decomposition (T, {Xt}t∈V (T )) is a path decomposi-
tion if T is a path, and the pathwidth of G, that we write pw(G), is the minimum width
of a path decomposition of G.

A path decomposition
(
p1p2 . . . pk, {Xpi}i∈J1,kK

)
of a graph G is said to be nice if

|Xp1| = 1 and
∀i ∈ J2, kK ,

∣∣(Xpi \Xpi−1
) ∪ (Xpi−1

\Xpi)
∣∣ = 1

It is known [BT04] that every graph have an optimal path decomposition which is
nice and that in such decomposition, every node Xi is either an introduce node (i.e.
either i = 1 or

∣∣Xpi \Xpi−1

∣∣ = 1) or a forget node (i.e.
∣∣Xpi−1

\Xpi

∣∣ = 1).

1We do not define this logic here as we will not use it.
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Remark 2.1. For every graph G on n vertices, there is an optimal path decomposition
with n introduce nodes and n forget nodes (one of each for each vertex of G), thus of
length 2n.

Tree partitions have proven useful when dealing with problems related to vertices.
For instance, deciding if the deletion of a certain number of vertices yields a given
property is such a problem. However, these decompositions are not well-suited for the
study of problems related to edges. Therefore, several attempts have been done to design
an edge-analogues of treewidth. Let us present two of them.

Definition 2.4. A tree partition of a graph G is a pair D = (T,X ) where T is a tree
and X = {Xt}t∈V (T ) is a partition of V (G) (the elements of which are called bags) such
that either n(T ) = 1 or for every {x, y} ∈ E(G), there exists an edge {t, t′} ∈ E(T )
where {x, y} ⊆ Xt ∪Xt′ . In other words, the endpoints of every edge of G either belong
to the same bag or they belong to bags of adjacent vertices of T . Given an edge
f = {t, t′} ∈ E(T ), we define Ef as the set of edges with one endpoint in Xt and the
other in Xt′ . The width of D is defined as max{maxt∈V (T ) |Xt|,maxf∈E(T ) |Ef |}. The tree
partition width of G is the minimum width over all tree partitions of G and is denoted
by tpw(G).

A rooted tree partition of a graph G is a triple D = (T, s,X ) where (T, s) is a rooted
tree and (T,X ) is a tree partition of G.

Tree partitions have been introduced in [See85] (see also [Hal91] and tree partition
width has been defined for simple graphs in [DO96]. The above definition is an extension
of the original definition to the setting of (multi)graphs. Tree partitions will in particular
be used in Section 4.1 and Subsection 5.2.1. However, a drawback of tree partition
width compared to treewidth is that a graph with large tree partition width does not
necessarily contains a large substructure, whereas a graph of large treewidth is known to
contain a large grid, as mentioned above (see Theorem 4.1 for a formal statement). For
instance, the graph obtained by setting to k the multiplicity of every edge of a path on
k edges (for some positive integer k) has tree partition width k, however its subgraphs
are quite poor compared to those of a graph containing a large grid as a minor. Ding
described in [DO96, Theorem 1.2] the subgraphs that one can expect in graphs of large
tree partition width, as we mention in Subsection 5.3.3.

A decomposition that avoids this pitfall has been recently introduced by Wollan
in [Wol15]. A near-partition of a set S is a collection of pairwise disjoint subsets
S1, . . . , Sk ⊆ S (for some k ∈ N) such that

⋃k
i=1 Si = S. Observe that this defini-

tion allows a set of the family to be empty.

Definition 2.5 ( [Wol15]). A tree-cut decomposition of a graph G is a pair D = (T,X )
where T is a tree and X = {Xt}t∈V (T ) is a near-partition of V (G).

A rooted tree-cut decomposition of a graph G is a triple D = (T, s,X ) where (T, s)
is a rooted tree and (T,X ) is a tree-cut decomposition of G.

As proved by Wollan in [Wol15], every graph of large tree-cut width contains a large
wall as an immersion (cf. Theorem 4.16).
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Let D = (T, s,X ) be a rooted tree-cut decomposition of G. We set

Gt = G

 ⋃
t∈desc(T,s)(t)

Xt

 .
The adhesion of a vertex t of T , that we write adhD(t), is the number of edges with
exactly one endpoint in Gt. A vertex t ∈ V (T ) is thin if adhD(t) ≤ 2. We also say that
D is nice if for every thin vertex t ∈ V (T ) we have

N(V (Gt)) ∩
⋃

b is a sibling of t

V (Gb) = ∅.

In other words, there is no edge from a vertex of Gt to a vertex of Gb, for any sibling b of t,
whenever t is thin. This notion can be seen as an analogue of nice tree-decompositions.

In [GKS15], Ganian et al. proved that every graph has a tree-cut decomposition of
minimal width, that, moreover, is nice.

Proposition 2.1 ( [GKS15]). Every rooted tree-cut decomposition can be transformed
into a nice one without increasing the width.

2.6 Packing and covering

The main topic of Chapter 5 is the Erdős–Pósa property, which is a connection between
invariants of packing and covering. Let us introduce the definitions on this topic.

Most of the definitions we give here have two variants: one is related to vertices and
the other one is related to edges. In order to make the definitions more concise, we
use symbols v and e in order to distinguish the vertex and the edge variants we of the
properties/parameters that we are dealing with. For instance, if x ∈ {v, e}, and G is
a graph, we set Ax(G) = V (G) if x = v and Ax = E(G) if x = e. Similarly, x-disjoint
stands for vertex-disjoint when x = v and for edge-disjoint when x = e.

Packing and covering. Let H be a family of graphs and let x ∈ {v, e}. An x-H-cover
of G is a set C ⊆ Ax(G) such that G \ C does not contain any subgraph isomorphic to
a member of H. An x-H-packing in G is a collection of x-disjoint subgraphs of G, each
being isomorphic to some graph of H.

We denote by x-packH(G) the maximum size of an x-H-packing, which we call packing
number (with respect to H) and by x-coverH(G) the minimum size of an x-H-covering
in G, also referred to as covering number (also defined relatively to H).

There is an easy inequality between these two parameters.

Remark 2.2. For every x ∈ {v, e}, for every graph class H, and every graph G, the
following holds:

x-packH(G) ≤ x-coverH(G).

Indeed, any x-H-cover must contain at least one vertex (if x = v) or edge (if x = e)
of each element of an x-H-packing of maximum size.

The Erdős–Pósa property is concerned with the other direction, that is, bounding
the covering number in terms of the packing number.

31



The Erdős–Pósa property.

Definition 2.6. Let G and H be two graph classes and let x ∈ {v, e}. We say that H has
the x-Erdős–Pósa property for G if there is a function f : N→ N such that the following
holds:

∀G ∈ G, x-coverH(G) ≤ f(x-packH(G)).

Any function satisfying the above inequality is called a gap of the x-Erdős–Pósa
property of H for G. When a class of graphs has the x-Erdős–Pósa-property for the class
of finite graphs, we simply say that it has the x-Erdős–Pósa-property. We usually refer
to G as the host graph class and by H as the guest graph class.

2.7 Approximation algorithms

A way to approach problems that are NP-hard is via approximation algorithms. The
main idea is to trade accuracy for speed. As approximation algorithms appear very
locally in this thesis, we only give the few required definitions.

In an optimization problem, one is typically given an object x from some set S
and asked to compute a predefined function f : S → N on x. Most of the classic
problems on graph, such as Independent Set or Vertex Cover are optimization problems.
Informally, an approximation algorithm for an optimization problem is an algorithm that
computes an approximate solution for this problem. In order to give a guarantee on the
performance of the algorithm, we use the following definition: for a constant c ∈ R,
c > 1, we say that an algorithm is a c-approximation for a given problem if on every
input it returns a solution s such that the following holds:

1 ≤ s

OPT
≤ c,

where OPT denotes the optimal solution for this input. In other words, s differs from
the optimal solution by at most a constant factor. Such an algorithm is also called
a constant factor approximation. If the solution output by the algorithm satisfies the
following inequality:

1 ≤ s

OPT
≤ f(OPT),

for some function f : N → R, we say that it is an f(OPT)-approximation for the con-
sidered problem. This relaxation allows to give a performance guarantee for problems
where a constant factor approximation is unlikely. Last, if on every input the algorithm
returns a solution s such that the following holds:

1 ≤ s

OPT
≤ f(n),

for some function f : N→ R, we call it an f(n)-approximation.
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Chapter 3

Graphs and well-quasi-ordering

In this chapter, we consider quasi-orders defined by the usual order relations on graphs.
After presenting some results and techniques on well-quasi-ordering, we focus on the
contraction and induced minor relations. For these relations, we identify all well-quasi-
ordered subclasses, among those that are uniquely defined. This chapter contains ma-
terial that previously appeared in the following articles:

• Induced minors and well-quasi-ordering, co-authored with Jaros law B lasiok, Marcin
Kamiński, and Théophile Trunck, and presented at the Eighth European Confer-
ence on Combinatorics, Graph Theory and Applications, EuroComb 2015, Bergen,
Norway, 2015 [BKRT15];

• Multigraphs without large bonds are well-quasi-ordered by contraction, co-authored
with Marcin Kamiński and Théophile Trunck, 2014, submitted [KRT14]; and

• Well-quasi-ordering H-contraction-free graphs, co-authored with Marcin Kamiński
and Théophile Trunck, 2015, submitted [KRT16].

3.1 Preliminaries on well-quasi-orders

A well-quasi-order is a quasi-order which contains neither an infinite decreasing sequence
nor an infinite collection of pairwise incomparable elements. This strengthening of the
concept of well-order has been introduced in the 50’s. Since then, a whole theory of
well-quasi-orders has been developed and has led to surprising results and unsuspected
developments.

Before going more into detail, let us present one of the most remarkable aspects of
well-quasi-orders. Several objects of interest in graph theory are classes of graphs that
are downward closed. That is, every graph that is smaller (wrt. a given order) than a
graph in the class also belongs to the class. For instance, forests, planar graphs, more
generally, graphs of genus at most g (for every fixed g ∈ N), and graphs of treewidth
at most k (for every fixed k ∈ N) are downward closed wrt. the minor relation. On
the opposite, the class of 3-colorable graphs is not downward closed wrt. the minor
relation, as witnessed by the graph of Figure 3.1, which is 3-colorable but contains the
non-3-colorable graph K4 as a minor.
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Figure 3.1: A 3-colorable graph that contains K4 as minor.

For every class C of a quasi-order (S,�), we can ask the question : “can we easily
characterize the elements of S that belong to C?”. An approach on this question when
C is downward closed is to consider the minimal elements of the complementary of C,
when they exist. These elements are called obstructions, because every element x of
S belongs to C if and only if there is no obstruction y such that y�x. That way,
obstructions provide a precise characterization of C. Here the well-quasi-orders come
into play: if (S,�) is a well-quasi-order, then C has finitely many obstructions. These
obstructions exist because S \C does not contain infinite decreasing sequences and they
are finitely many as the set of obstructions is an antichain. In other words, there are
elements x0, . . . , xc (for some c ∈ N depending on C) such that the following holds:

∀x ∈ S, x ∈ C ⇐⇒ ∀i ∈ J0, cK , xi�x.

This property, that Pouzet refers to as a finite basis property in [Pou85], has the following
algorithmic implication. If, for every i ∈ J0, cK, there is a algorithm that can decide if
xi� y in a time that is polynomial in the size of y for every y ∈ S, then the membership
of C can be decided in a time that is polynomial in the input size. As an illustration, let
us consider the minor relation. Robertson and Seymour proved in their Graph Minors
series [RS04] that this relation well-quasi-orders all (finite) graphs and they also gave an
algorithm that, for every fixed graph H, decides if H is a minor of the input graph G in
a time that is polynomial in the size of G [RS95]. As mentioned above, a consequence of
these results is that, for every graph class that is downwards closed wrt. minors, there is
an algorithm that answers in polynomial time whether the input graph belongs to the
considered class. It is worth noting that these results are purely existential: they do not
provide any way to construct the algorithm. Even the upper-bound on the complexity
of these algorithms is existential, as it depends on the number of obstructions for the
considered class.

Recall that a qoset (for quasi-ordered set) is a pair of a set and a relation that is
reflexive and transitive. Also, for every qoset (A,�), we denote by (A?,�?) the qoset
of finite sequences over A ordered by the subsequence relation (cf. Section 2.2). A
cornerstone of the theory of well-quasi-orders is the following theorem, usually called
“Higman’s Lemma”.

Theorem 3.1 (Higman’s Lemma, [Hig52]). If (A,�) is a wqo, then so is (A?,�?).

It is noteworthy that Higman’s Lemma appears in the proofs of several later results on
well-quasi-ordering. In fact the main result of [Hig52] is more general than Theorem 3.1
but we will only use this form in this chapter. Given a qoset (S,�), the main question
we are here concerned with is the following.
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Question 3.1. Is (S,�) a well-quasi-order?

Let us now present some known results answering this question for various choices of
S and � among graph classes and graph orderings. Unless otherwise specified, the word
graph will in this chapter refer to simple graphs, i.e. graphs without loops or multiple
edges. One of the most important well-quasi-ordering result on graphs is certainly the
aforementioned Graph Minor Theorem by Robertson and Seymour.

Theorem 3.2 (Graph Minor Theorem, [RS04]). The class of all graphs is well-quasi-
ordered by the minor relation.

The Graph Minor Theorem extends the earlier Kruskal Tree Theorem, which was
concerned with trees.

Theorem 3.3 (Kruskal Tree Theorem, [Kru60], see also [NW63]). The class of all trees
is well-quasi-ordered by the topological minor relation.

Robertson and Seymour later proved that the same also holds for the immersion
relation.

Theorem 3.4 ([RS10]). The class of all graphs is well-quasi-ordered by the immersion
relation.

However, among the usual containment relations on graphs (listed in Section 2.4),
the minor relation and the immersion relation are the only relations known to be well-
quasi-order in general (i.e. on the class of all graphs). Regarding other relations, either
the problem is still open, or infinite antichains are known. Table 3.1 summarizes the
status of Question 3.1 when S is the class of all graphs.

well-quasi-order open not a well-quasi-order
minors strong immersions subgraphs
immersions induced immersions induced subgraphs

topological minors
induced topological minors
contractions
induced immersions

Table 3.1: Status of Question 3.1 for the common orderings of graphs.

For all the qosets that are not well-quasi-orders, a natural question is to identify the
well-quasi-ordered subclasses.

Question 3.2. For which C ⊆ S is (C,�) a well-quasi-order?

Much attention has been brought to this question in the last decades. For instance,
Fellows et al. proved in [FHR09] that graphs with bounded feedback-vertex-set are well-
quasi-ordered by topological minors. Another result is that of Oum [Oum08] who proved
that graphs of bounded rank-width are wqo by vertex-minors1. Other papers considering

1Vertex-minors is an other ordering of graphs, which we will not consider in this thesis.
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this question include [Tho85,Dam90,Din92,Din98,Pet02,Din09,DRT10,HL14,AL14]. In
order to approach Question 3.2, which is quite general, one may consider a fixed family
of subclasses only. One way to do this is to look at graph classes defined by forbidden
substructures.

Question 3.3. For which x ∈ S is the set {y ∈ S, x� y} well-quasi-ordered by �?

This line of research has been fruitful. Let us present some results in this direction,
starting from the following theorem by Damaschke, that initiated the quest for answers
to Question 3.3.

Theorem 3.5 ( [Dam90, Theorem 4]). Let H be a graph. The class of H-induced
subgraph-free graphs is well-quasi-ordered by the induced subgraph relation iff H ≤isg P4.

Notice that that the above result is a full characterization of subclasses that are
well-quasi-ordered by the induced subgraph relation, among those that are uniquely
defined. Such a dichotomy has also been proved for other orderings. Damaschke has
been followed by Ding who proved two years later the following non-induced counterpart
of Theorem 3.5.

Theorem 3.6 ( [Din92]). Let H be a graph. The class of H-subgraph-free graphs is
well-quasi-ordered by the subgraph relation iff H ≤sg Pn for some n ∈ N.

More recently, Liu obtained a result of the same type for topological minors.

Theorem 3.7 ( [HL14]). Let H be a graph. The class of H-topological minor-free graphs
is well-quasi-ordered by topological minors iff H ≤tm Rn for some n ∈ N, where Rn is
the multigraph obtained by doubling every edge of a path on n edges.

About the induced minor relation, a well-quasi-ordered class defined by excluding
an induced minor has been identified by Thomas.

Theorem 3.8 ( [Tho85]). The class of K4-(induced) minor-free graphs is well-quasi-
ordered by the induced minor relation.

Question 3.3 has also been considered in [KL11a, KL11b, Che11]. In this part, we
provide an answer to this question for the following graph containment relations:

• the induced minor relation ≤im on simple graphs, in Section 3.5;

• the contraction relation ≤c on simple graphs, in Section 3.6;

• the contraction relation ≤mc on multigraphs, in Section 3.7.

As mentioned above, none of these relations is a well-quasi order in general. Infinite
antichains witnessing this fact will be given in Subsection 3.4.1. Let us introduce three
graphs that play a major role in this chapter. They are depicted on Figure 3.2. The first
one, K̂4, is obtained by adding a vertex of degree two to K4. The second one, called the
gem, is constructed by adding a dominating vertex to P4. The last one is the diamond
(or D2), that one can obtain by removing an edge in K4. In the forthcoming section we
prove the following theorems.
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Figure 3.2: The graph K̂4, the gem, and the diamond (from left to right).

Theorem 3.9. Let H be a graph. The class of H-induced minor-free simple graphs is
wqo by ≤im iff H ≤im K̂4 or H ≤im Gem.

Theorem 3.10. Let H be a graph. The class of H-contraction-free simple graphs is
wqo by ≤c iff H ≤cD2.

Theorem 3.11. Let H be a class of graphs. The class of H-contraction-free multigraphs
is wqo by ≤mc iff there is an integer n such that θn′ ∈ H and Kn′ ∈ H for every integer
n′ ≥ n.

Theorem 3.9 and Theorem 3.10 are the induced minor and contraction counterparts
of Theorem 3.5. Besides, Theorem 3.9 completes Theorem 3.8 into a full dichotomy. We
shall stress that Theorem 3.11 is more general, in the sense that it characterizes all the
well-quasi-ordered classes defined by forbidding contractions, whereas Theorem 3.9 and
Theorem 3.10 only deal with uniquely defined such classes. It could be interesting to
extend Theorem 3.11 to induced minors and contractions in simple graphs, that is, to
answer the following question.

Question 3.4. For which classesH is the class ofH-induced minor-free (resp.H-contraction-
free) graphs well-quasi-ordered by ≤im (resp. ≤c)?

A first step towards this goal could be to look at classes defined by excluding two
graphs.

Question 3.5. For which graphs H1, H2 is the class of {H1, H2}-induced minor-free (resp.
{H1, H2}-contraction-free) graphs well-quasi-ordered by ≤im (resp. ≤c)?

This question already received partial answers on the induced subgraph ordering,
see e.g. [KL11a].

Another line of research when considering qosets that are not wqos is to consider
infinite antichains. In his study of infinite antichains for the (induced) subgraph relation,
Ding [Din09] introduced the concepts of canonical antichain and fundamental antichain.
Let us restate the definition we gave in Chapter 2. An antichain A of a partial order
(S,�) is said to be canonical if it is such that every contraction-closed subclass J of S
has an infinite antichain iff J ∩A is infinite. If Incl(A) = {x ∈ S, x ≺ a for some a ∈ A}
has no infinite antichains, then A is a fundamental antichain. Note that canonical
antichains can be used to characterize the �-closed subclasses of a partial order (S,�)
and also to describe the variety of its antichains. This raises the following question.

Question 3.6. If (S,�) is not a wqo, does it have a canonical antichain?
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As shown by the results below, the question of the presence or absence of a canonical
antichain has been studied for several containment relations and graph classes.

Theorem 3.12 ( [Din09]). Under the subgraph relation, the class of finite graphs has a
canonical antichain.

Theorem 3.13 ( [Din09]). Under the induced subgraph relation, the class of finite graphs
does not have a canonical antichain.

Theorem 3.14 ( [Din09]). Under the induced subgraph relation, both the class of interval
graphs and the class of bipartite permutation graphs have a canonical antichain.

We give an answer to Question 3.6 for the contraction relation with the following
result.

Theorem 3.15. Under the contraction relation, the class of all graphs does not have a
canonical antichain.

The proof of Theorem 3.15 relies on the tools introduced in [Din09] that can be
used to prove that a quasi-order does not have a canonical antichain. We also obtained
a complete characterization of the canonical antichains of the multigraph contraction
ordering.

Theorem 3.16. Every antichain A of ≤mc is canonical iff each of the following sets
are finite:

Aθ \ A; AK \ A; and A \ {Aθ ∪ AK}.

In other words, an antichain A is canonical iff it contains all but finitely many graphs
from Aθ, all but finitely many graphs from AK , and a finite number of graphs that do
not belong to Aθ ∪ AK . Two straightforward consequences are that ≤mc has infinite
canonical antichains and the following result.

Corollary 3.1. Every canonical antichain of ≤mc is fundamental.

3.2 Raising well-quasi-orders

As we explain in the forthcoming Section 3.3, a way to show that a given qoset (A,�A)
is a wqo is to build a wqo (B,�B) from smaller qosets that are known to be well-
quasi-ordered and then find a correspondence between the elements of A and B that
preserves the well-quasi-orderness. In this section, we present different constructions
to obtain well-quasi-orders. In particular, we recall that being well-quasi-ordered is
preserved by several operations including union, Cartesian product, and application of
a monotone function.

Let us start with an easy remark.

Remark 3.1. If B ⊆ A and (A,�) is a wqo, then so is (B,�).

Indeed, any infinite antichain of (B,�) is an antichain of (A,�).

38



Union and product. Recall that, in the union of two qosets (A,�A) and (B,�B),
two elements are comparable only if both belong to the same qoset, in which case they
are ordered as in this qoset. In the Cartesian product of (A,�A) and (B,�B), the
elements are pairs over A×B and are compared coordinate-wise. The formal definitions
can be found in Section 2.2.

Remark 3.2 (union of wqos). If (A,�A) and (B,�B), are two wqos, then so is (A ∪
B,�A ∪�B).

In fact, for every infinite antichain S of (A ∪ B,�A ∪�B), there is an infinite sub-
sequence of S whose all elements belong to one of A and B (otherwise S is finite). But
then one of (A,�A) and (B,�B) has an infinite antichain, a contradiction to our initial
assumption. Similarly, every finite union of wqos is a wqo.

Lemma 3.1 (Higman [Hig52]). If (A,�A) and (B,�B) are wqo, then so is (A ×
B,�A×�B).

Sequences and subsets. Higman’s Lemma (Theorem 3.1), which we mentioned in
the previous section, states that finite sequences over a well-quasi-order (A,�) are well-
quasi-ordered by �?. It has the following easy corollary.

Corollary 3.2. If (A,�) is a wqo, then so is (P<ω(A),�P ).

Surjective images. Recall that an epi is a function from one qoset to an other that
is surjective and monotone. Epis have the following interesting property, which we will
extensively use to show that some qosets are well-quasi-ordered.

Remark 3.3 (epi from a wqo). If the domain of an epi is wqo, then its codomain is
also wqo.

Indeed, for any pair x, y of elements of the domain of an epi ϕ such that ϕ(x) and f(y)
are incomparable, x and y are incomparable as well (by monotonicity of ϕ). Therefore,
and as ϕ is surjective, any infinite antichain of the codomain of ϕ can be translated into
an infinite antichain of its domain.

In order to apply Remark 3.3 one needs to show that the considered function is
monotone. The aim of the next remark is to make this task easier when dealing with
multivariate functions.

Remark 3.4 (componentwise monotonicity). Let (A,�A), (B,�B), and (C,�C) be three
qosets and let f : (A×B,�A×�B)→ (C,�C) be a function. If we have both

∀a ∈ A, ∀b, b′ ∈ B, b�B b′ ⇒ f(a, b)�C f(a, b′) (3.1)

and ∀a, a′ ∈ A, ∀b ∈ B, a�A a′ ⇒ f(a, b)�C f(a′, b), (3.2)

then f is monotone.

Indeed, let (a, b), (a′, b′) ∈ A × B be such that (a, b)�A×�B(a′, b′). By definition
of the relation �A×�B, we have both a� a′ and b� b′. From line (3.1) we get that
f(a, b)�C f(a, b′) and from line (3.2) that f(a, b′)�C f(a′, b′), hence f(a, b)�C f(a′, b′)
by transitivity of �C . Thus f is monotone. Observe that this remark can be generalized
to functions with more than two arguments.
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Excluding elements. We will often deal with classes defined by forbidding an ele-
ment, that is, subclasses of a qoset (S,�) of the form {y ∈ S, x� y} for some x ∈ S.

Remark 3.5. Let (S,�) be a qoset. For every x, x′ ∈ S such that x′�x, we have
{y ∈ S, x′� y} ⊆ {y ∈ S, x� y}. As a consequence, ({y ∈ S, x′� y},�) is a wqo
whenever ({y ∈ S, x� y},�) is.

Labeled graphs. As defined in Section 2.3, a graph labeled by a qoset is a graph, the
vertices of which are assigned subsets of this qoset. Informally speaking, labels will be
used to encode connected graphs into labeled 2-connected graphs. Given a connected
graph which is not 2-connected, we can pick an arbitrary block B, delete the rest of the
graph, and label each vertex v of B by the subgraph it was attached to in the original
graph if v was a cutvertex, and by ∅ otherwise. That way, contracting the label of a
vertex v corresponds to contracting a subgraph. This intuition is formalized by the next
result.

Lemma 3.2 ( [FHR09]). Let G be a class of graphs. If for any wqo (S,�) the class of
(S,�)-labeled 2-connected graphs of G is wqo by ≤im, then (G,≤im) is a wqo.

This result can also be proved for multigraph contractions.

Lemma 3.3. Let G be a class of connected multigraphs. If for any wqo (S,�) the class
of (S,�)-labeled 2-connected graphs of G is wqo by ≤mc, then (G,≤mc) is a wqo.

Proof. This proof is very similar to the proof of Lemma 3.2 given in [FHR09]. We
proceed by induction. Assuming that (H,≤mc) is not a wqo, we will reach a contradiction
by showing that its rooted closure (Hr,≤mc) is a wqo.

Let 〈Gi〉i∈N be a bad sequence in Hr such that, for every i ∈ N, there is no G≤mc Gi

such that a bad sequence starts with G0, . . . , Gi−1, G (a so-called minimal bad sequence).
For every i ∈ N, let Ai be the block of Gi which contains root(Gi). Let Ci the set of
cutvertices of Gi that are included in Ai. For each cutvertex c ∈ Ci, let Bi

c the connected
component in Gi \ (V (Ai) \ Ci), and rooted at c (i.e., we set root(Bi

c) = c). Note that
we have Bi

c≤mc Gi.
Let us denote by B the family of rooted graphs B = {Bi

c : c ∈ Ci, i ∈ N}. We will
show that (B,≤mc) is a wqo. Let 〈Hj〉j∈N be an infinite sequence in B and for every
j ∈ N choose an i = ϕ(j) ∈ N for which Hj ≤mc Gi. Pick a j with smallest ϕ(j) and
consider the sequence G1, . . . , Gϕ(j)−1, Hj, Hj+1, . . . . By minimality of 〈Gi〉i∈N and by
our choice of j, since Hj ≤mc Gϕ(j) and Hj 6= Gϕ(j), this sequence is good so contains a
good pair (G,G′). Now, if G is among the first ϕ(j)−1 elements, then as 〈Gi〉i∈N is bad
we must have G′ = Hj′ for some j′ ≥ j and so we have Gi′ = G≤mc G

′ = Hj′ ≤mc Gϕ(j′),
a contradiction. So there is a good pair in 〈Hi〉i≥j and hence the infinite sequence
〈Hj〉j∈N has a good pair, so (B,≤mc) is a wqo.

We will now find a good pair in 〈Gi〉i∈N to show a contradiction. The idea is to label
the graph family A = {Ai}i∈N so that each cutvertex c of a graph Ai gets labeled by
their corresponding connected component Bi

c, and the roots are preserved under this
labeling. More precisely, for each Ai we define a labeling σi that assigns to every vertex
v ∈ V (Gi) a label {(σ1

i (v), σ2
i (v))} defined as follows:
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• σ1
i (v) = 1 if v = root(Gi) and σ1

i (v) = 0 otherwise;

• σ2
i (v) = Bi

v if v ∈ Ci and σ2
i (v) is the one-vertex rooted graph otherwise.

The labeling σ of A is then {σi : i ∈ N}. Let us define a quasi-ordering � on the set
of labels Σ assigned by σ. For two labels (s1

a, s
2
a), (s

1
b , s

2
b) ∈ Σ we define (s1

a, s
2
a)�(s1

b , s
2
b)

iff s1
a = s1

b and s2
a≤mc s

2
b . Note that in this situation, s2

a and s2
b are rooted graphs, so

≤mc compares rooted graphs. Observe that since (B,≤mc) is wqo, then (Σ,�) is wqo.
For every i ∈ N, let A′i be the (Σ,�)-labeled rooted graph (Ai, σi). We now consider the
infinite sequence 〈A′i〉i∈N. By our initial assumption, (labΣ(A),≤mc) is wqo (asA consists
only in 2-connected graphs), so there is a good pair (A′i, A

′
j) in the sequence 〈A′i〉i∈N.

To complete the proof, we will show that A′i≤mc A
′
j ⇒ Gi≤mc Gj. Let µ be a

contraction model of A′i in A′j. Then for each cutvertex c ∈ Ci, µ(c) contains a vertex

d ∈ Cj with Bi
c≤mc B

j
d. Let µc denote a root-preserving contraction model of Bi

c onto
Bi
d. We construct a model model g as follows:

ν :


V (Gi) → P(V (Gj))

v 7→ µ(v) if v ∈ Ai \ Ci
v 7→ µc(v) if v ∈ Bi

c \ Ci
v 7→ µ(v) ∪ µv(v) if v ∈ Ci

We now prove that ν is a contraction model of Gi onto Gj. First note that by
definition of µ and each µc, we have ν(u) ∩ ν(v) = ∅, for any pair of distinct vertices u
and v in Gi, and also every vertex of Gj is in the image of some vertex of Gi (items (M1)
and (M7) in the definition of a contraction model). If u ∈ Ci, then µ(u) contains a vertex
v ∈ Cj for which Bi

u≤mc B
j
v and v is also contained in µv(v) since µv preserves roots.

Thus, Gj[ν(u)] is connected when u ∈ Ci (point (M2)). This is obviously true when
u 6∈ Ci again by the definitions of µ and each µc. Moreover, the endpoints of every edge
of Gi belong either both to Ai, or both to Bi

c, so point (M6) follows from the properties
of µ and each µc. Finally, as the labeling σ ensures that root(Gj) ∈ ν(root(Gi)), we
establish that Gi≤mc Gj. So 〈Gi〉i∈N has a good pair (Gi, Gj), a contradiction.

Let us now summarize the tools introduced in this section.

Lemma 3.4 (Summary of Section 3.2). If (A,�A) and (B,�B) are wqos, then

(i) (C,�A) is a wqo for every C ⊆ A (Remark 3.1);

(ii) (A ∪B,�A ∪�B) is a wqo (Remark 3.2);

(iii) (A×B,�A×�B) is a wqo (Lemma 3.1);

(iv) (A?,�?) is a wqo (Theorem 3.1);

(v) (P<ω(A),�P) is a wqo (Corollary 3.2);

(vi) (C,�C) is a wqo, for every epi f : (A,�A)→ (C,�C) (Remark 3.3);
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(vii) ({y ∈ C, x′�
c
y},�c) is a wqo whenever ({y ∈ C, x�

C
y},�C) is, for every x′, x

elements of a qoset (C,�C) such that x′�x (Remark 3.5);

(viii) if for any wqo (C,�C) the 2-connected graphs of a graph class H labeled by (C,�C)
are wqo by ≤im, then (H,≤im) is a wqo (Lemma 3.2);

(ix) if for any wqo (C,�C) the 2-connected multigraphs of a multigraph class H labeled
by (C,�C) are wqo by ≤mc, then (H,≤mc) is a wqo (Lemma 3.3).

In the next section we give the main lines of the proofs of Theorem 3.9, Theorem 3.10,
and Theorem 3.11.

3.3 A high-level view of the proofs

The techniques that we use in the following sections mostly follow a general scheme.
The purpose of this section is to provide an informal description of its steps. The general
setting is the following: we are given a qoset (S,�) and the goal is to show that it is a
wqo.

Step 1: Define a compact representation of the elements of S. More formally, we choose
an injective function f from S to some other set S ′. The intuition is that, usually,
S is a subset of a wider set and its elements only span a restricted area of this
set. Therefore we would like to project these elements into a smaller set, that
will be easier to well-quasi-order afterwards. This representation can be seen as
an encoding, as we will sometime break a graph into parts and represent is as
a tuple containing these parts. It may be deduced from structural information
about the graphs of S.

Step 2: Find a quasi-order relation �′ on S ′ with good properties. This relation should
be chosen such that whenever f(x)�′ f(y) holds, we have x� y, for every x, y ∈
S. We should stress that the choice of f must be done with this step in mind.

Step 3: The third and last step is to show that (S ′,�′) is a wqo. This can be done
by applying standard results on well-quasi-orders, if both S ′ and �′ have been
chosen carefully.

Finally, we obtain that f is a epi, the domain of which is a subset of the wqo (S ′,�′).
According to Remark 3.1 and Remark 3.3, we get that (S,�) is a wqo, as desired. As
an illustration of this scheme, let us prove the following easy lemma.

Lemma 3.5. Let H be a class of connected graphs and let G the class of graphs, the
connected components of which belong to H. If (H,≤isg) is a wqo, then so is (G,≤isg).

Proof. Let us follow the steps detailed above.

Step 1: We represent every graph G of G as a sequence f(G) listing its connected com-
ponents taken in an arbitrary order. The function f : G → H? thus defined is
clearly injective.
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Step 2: We notice that for every G,G′ ∈ G, if f(G)≤isg
? f(G′) then G≤isg G

′. Therefore
the quasi-order relation ≤isg

? suits our needs.

Step 3: We show that the codomain of f is a wqo. For this, we apply Higman’s Lemma
(Theorem 3.1) to (H,≤isg), which is a wqo by our initial assumption.

As explained above, this implies that (G,≤isg) is a wqo and we are done.

Let us end this section with a simple but crucial observation in the study of the well-
quasi-orderability of classes that are defined by forbidden structures (of any kind). If
none of the elements of an infinite antichain A contains some element x, then excluding
x does not give a well-quasi-order. Indeed, the class obtained still contains the infinite
antichain A. Let us formally restate this observation.

Observation 3.1. Let (S,�) be a qoset and let A ⊆ S be an infinite antichain wrt. �.
Let x ∈ S. If {y ∈ S, x� y} is well-quasi-ordered by �, then all but finitely many
elements of A are larger than x wrt. �.

For this reason, we devote the next section to a study of infinite antichains for the
orderings considered in this chapter.

3.4 The bestiary

It is worth noting that none of the orderings we consider in this chapter admits an
infinite decreasing sequence. Indeed, for all these relations, the sum of the number
of vertices and edges, which is a non-negative integer, is decreasing when considering
smaller graphs. Hence, every decreasing sequence of graphs yields a decreasing sequence
of positive integers of the same length, which is always finite. Therefore the only obstacle
for these relations to be well-quasi-orders is the presence of an infinite antichain.

As noted in Observation 3.1, the study of infinite antichains may provide helpful
information when proving dichotomy theorems. In this section, we present several an-
tichains for the orderings we consider.

3.4.1 Antichains for induced minors

In 1985, Thomas [Tho85] presented an infinite sequence of planar graphs (also mentioned
later in [RS93]) and proved that it is an antichain for induced minors. He showed that
this relation does not well-quasi-order planar graphs. The elements of this antichain,
called alternating double wheels, are constructed from an even cycle by adding two
nonadjacent vertices and connecting one to one color class of the cycle and connecting
the other vertex to the other color class (cf. Figure 3.3 for the three first such graphs).
This infinite antichain shows that (Excl≤im

(K5),≤im) is not a wqo since no alternating
double wheel contains K5 as (induced) minor. As a consequence, (Excl≤im

(H),≤im) is
not a wqo as soon as H contains K5 as induced minor.

Therefore, in the quest for all graphs H such that (Excl≤im
(H),≤im) is wqo, we can

focus the cases where H is K5-induced minor-free.
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Figure 3.3: Thomas’ alternating double wheels.

The infinite antichain AM depicted in Figure 3.4 was introduced in [MNT88], where
it is also proved that none of its members contains K−5 as induced minor. Similarly as
the above remark, it follows that if (Excl≤im

(H),≤im) is a wqo then K−5 6 ≤im H. Notice
that graphs in this antichain have bounded maximum degree.

, , , . . .

Figure 3.4: The infinite antichain AM

An interval graph is the intersection graph of segments of R. A well-known property
of interval graphs that we will use later is that they do not contains C4 as induced minor.
In order to show that interval graphs are not wqo by ≤im, Ding introduced in [Din98]
an infinite sequence of graphs defined as follows. For every n ∈ N, n > 2, let Tn be the
set of closed intervals

• [i, i] for i in J−2n,−1K ∪ J1, 2nK;

• [−2, 2], [−4, 1], [−2n+ 1, 2n], [−2n+ 1, 2n− 1];

• [−2i+ 1, 2i+ 1] for i in J1, n− 2K;

• [−2i, 2i− 2] for i in J3, nK.

Figure 3.5 depicts the intervals of T6: the real axis (solid line) is folded up and an
interval [a, b] is represented by a dashed line between a and b.
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Figure 3.5: An illustration of the intervals in T6.

For every n ∈ N, n > 2, let ADn be the intersection graph of segments of Tn. Let
AD =

〈
ADn
〉
n>2

. Ding proved in [Din98] that AD is an antichain for ≤im, thus showing
that interval graphs are not wqo by induced minors.

Let us now present two more infinite antichains. Let AC =
〈
Cn
〉
n≥6

be the sequence
of antiholes of order at least six, whose first elements are represented in Figure 3.6.

C6

,
C7

,
C8

,
C9

, . . .

Figure 3.6: Antiholes antichain.

Lemma 3.6. AC is an antichain.

Proof. Let deg be the function that maps a vertex v of a graph G to the value |V (G)|−
deg(v). Remark that performing edge contractions and vertex deletions in a graph can
only decrease the value of deg of a given vertex. Also notice that in every graph G of
AC , every vertex v satisfies deg(v) = 3. An edge contraction in G yields a vertex v
such that deg(v) = 1 whereas a vertex deletion gives a vertex v with deg(v) = 2. By
an above remark, this value cannot be increased by further edge contractions of vertex
deletions. Therefore there is no sequence of edge contractions and vertex deletions on
G yielding an other graph of AC . This proves that AC is an antichain wrt. ≤im.

We will meet again the antichain AC in the proof of Theorem 3.9. Another infinite
antichain which shares with AM the properties of planarity and bounded maximum
degree is the antichain of nested lozenges depicted in Figure 3.7. We will not go more
into detail about it here as this antichain will not be used in our proofs.

3.4.2 Antichains for contractions

Let us first mention that since every contraction of a graph is also an induced minor, all
the antichains for induced minors presented in Subsection 3.4.1 are also antichains for
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Figure 3.7: Nested lozenges.

the contraction relation. Not surprisingly there are more antichains for the contraction
ordering. The most simple is certainly the class AK = {Ki}i∈N of edgeless graphs. We
present here one more infinite antichain for contractions, which is the class of complete
bipartite graphs with one part of size two: AK = {K2,r, r ∈ N≥2} (cf. Figure 3.8).

AK =
, , , , , . . .

Figure 3.8: The antichain AK .

Lemma 3.7. For every (p, q), (p′, q′) ∈ N≥2 such that p ≤ p′ and q < q′, there is no
contraction model of Kp,q in Kp′,q′.

Proof. Let us assume for contradiction that there is a contraction model ϕ of Kp,q in
Kp′,q′ . As Kp′,q′ has more vertices than Kp,q, there is a vertex v of Kp,q such that
|ϕ(v)| ≥ 2. Observe that every subset of at least two vertices of Kp,q that induced a
connected subgraph is dominating. Indeed, such a subset must contain at least a vertex
from each part of the bipartition. It follows from the definition of a contraction model
that Kp′,q′ has a dominating vertex, a contradiction. Therefore there is no contraction
model of Kp,q in Kp′,q′ .

Corollary 3.3. {K2,p, p ∈ N≥2} is an antichain of ≤c.

If we allow multiple edges and consider the multigraph contraction ordering, then the
sequence of multiedges Aθ = {θi}i∈N∗ depicted in Figure 3.9 is also an infinite antichain.

As we will show in Subsection 3.7.3, every infinite antichain for multigraph contrac-
tion is mainly composed of AK and Aθ.

3.5 Induced minors and well-quasi-ordering

In this section, we prove the dichotomy Theorem 3.9. Our proof naturally has two parts:
for different values of H, we need to show wqo of H-induced minor-free graphs or exhibit
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Figure 3.9: The multiedges antichain.

an H-induced minor-free antichain.
In order to achieve Step 1 presented in Section 3.3, we first prove two decomposition

theorems. The following two theorems describe the structure of graphs with H forbidden
as an induced minor, when H is K̂4 and the Gem, respectively.

Theorem 3.17 (Decomposition of K̂4-induced minor-free graphs). Let G be a 2-connected
graph such that K̂4 6 ≤im G. Then:

• either K4 6 ≤imG;

• or G is a subdivision of a graph among K4, K3,3, and the prism;

• or V (G) has a partition (C,M) such that G[C] is an induced cycle, G[M ] is a
complete multipartite graph and every vertex of C is either adjacent in G to all
vertices of M , or to none of them.

Theorem 3.18 (Decomposition of Gem-induced minor-free graph). Let G be a 2-
connected graph such that Gem 6 ≤im G. Then G has a subset X ⊆ V (G) of at most
six vertices such that every connected component of G \X is either a cograph or a path
whose internal vertices are of degree two in G.

Using the two above structural results, we are able to show the well-quasi-ordering of
the two classes with respect to induced minors by following the steps described in Sec-
tion 3.3.

Theorem 3.19. The class of K̂4-induced minor-free graphs is wqo by ≤im.

Theorem 3.20. The class of Gem-induced minor-free graphs is wqo by ≤im.

Organization of the proof. Subsection 3.5.1 is devoted to the proof of Theorem 3.9,
assuming Theorem 3.19 and Theorem 3.20, the proofs of which are respectively given in
Subsection 3.5.2 and Subsection 3.5.3.

Let us first provide some definitions specific to this section. An induced subgraph
of a graph G is said to be basic in G if it is either a cograph, or an induced path whose
internal vertices are of degree two in G.

Complete multipartite graphs. A graph G is said to be complete multipartite if its
vertex set can be partitioned into sets V1, . . . , Vk (for some positive integer k) in a way
such that two vertices of G are adjacent iff they belong to different Vi’s. The class of
complete multipartite graphs is referred to as KN? .
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Containing K4-subdivisions. A graph G contains K4 as an induced minor if and
only if G contains K4-subdivision as a subgraph. This equivalence is highly specific to
the graph K4 and in general neither implication would be true. We will freely change
between those two notions for containing K4, depending on which one is more convenient
in the given context.

A graph G will be said to contain a proper K4-subdivision, if there is some vertex
v ∈ V (G), such that G \ v contains a K4-subdivision.

Cycle-multipartite. Given a graph G, a pair (C,R) of induced subgraphs of G is said
to be a cycle-multipartite decomposition of G if the following conditions are satisfied:

(i) (V (C), V (R)) is a partition of V (G);

(ii) C is a cycle and R is a complete multipartite graph;

(iii) ∀u, v ∈ V (R), NC(u) = NC(v).

The class of graphs having cycle-multipartite decomposition is denoted by W .

Cuts. In a graph G, a K2-cut (resp. K2-cut) is a subset S ⊆ V (G) such that G − S
is not connected and G[S] is isomorphic to K2 (resp. K2).

3.5.1 The dichotomy theorem

The purpose of this section is to prove Theorem 3.9, that is, to characterize all graphs
H such that (Excl≤im

(H),≤im) is a wqo. To this end, we will assume Theorem 3.19
and Theorem 3.20, which we will prove later, in Subsection 3.5.2 and Subsection 3.5.3
respectively.

The main ingredients of the proof are the infinite antichains presented in Subsec-
tion 3.4.1, together with Theorem 3.19 and Theorem 3.20. Infinite antichains will be
used to discard every graph H that is not induced minor of all but finitely many elements
of some infinite antichain. On the other hand, knowing that (Excl≤im

(H),≤im) is a wqo
gives that (Excl≤im

(H ′),≤im) is a wqo for every H ′≤im H, by the virtue of Remark 3.5.
In the statement of the following results, we assume that H is any graph.

Lemma 3.8. If (Excl≤im
(H),≤im) is a wqo then H is a linear forest.

Proof. Let us show that Excl≤im
(H) has an infinite antichain given that H is not a linear

forest. In this case, H either has a vertex of degree at least 3 or it contains an induced
cycle as induced subgraph.
First case: H has a vertex v of degree 3. Let x, y, z be three neighbors of v. In the graph
H[{v, x, y, z}], the vertex v is adjacent to none of x, y, z. In an antihole, every vertex
has exactly two non-neighbors, so H[{v, x, y, z}] is not an induced minor of any element
of AC . Therefore AC ⊆ Excl≤im

(H).
Second case: H contains an induced cycle as an induced subgraph. Let us first assume
that for some integer k ≥ 6 we have Ck≤imH. Now consider any Cn for n > |H|.
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Clearly, we have Cn 6 ≤im H. On the other hand if H ≤im Cn, then by the fact that
Ck≤imH and transitivity, we would have Ck≤im Cn, which would yield a contradiction
with the fact that AC is an antichain. Hence AC ∩ Excl≤im

(H) contains all antiholes of
size greater than |H|, and in particular is infinite as required. In the cases where H has a
cycle of length 3,4, or 5, it is easy to check that no element of AC contains (respectively)
three independent vertices, two independent edges, or an edge not adjacent to an other
vertex (which is an induced subgraph of C5).

Due to the interesting properties on H given by Lemma 3.8, we will be led below to
work with this graph rather than with H. The following lemma presents step by step
the properties that we can deduce on H by assuming that Excl≤im

(H) is wqo by ≤im.

Lemma 3.9. If (Excl≤im
(H),≤im) is a wqo, then we have

(R1) H has at most 4 connected components;

(R2) at most one connected component of H is not a single vertex;

(R3) the largest connected component of H has at most 4 vertices;

(R4) if n = |V (H)| and c = cc(H) then n ≤ 7 and H = (c− 1) ·K1 + Pn−c+1;

(R5) if cc(H) = 3 then |V (H)| ≤ 5.

(R6) if cc(H) = 4 then |V (H)| ≤ 4.

Proof. Proof of item (R1). The infinite antichain AM does not contain K5 and (induced)
minor, hence K5 6 ≤im H and so H does not contain 5 ·K1 as induced minor. Therefore
it has at most 4 connected components.
Proof of items (R2) and (R3). The infinite antichain AD does not contain C4 as induced
minor (as it is an interval graph), hence neither does H. Therefore H does not contain
2 · P2 as induced minor. This implies that H does not contain P5 as induced minor
and that given two connected components of H at least one must be of order one. As
connected components of H are paths (by Lemma 3.8), the largest connected component
of H has order at most 4.

Item (R4) follows from the above proofs and from the fact that H is a linear forest.
Proof of item (R5). Similarly as in the proof of item (R1), AM does not contain K−5 as

induced minor so K−5 = K2 + 3 ·K1 is not an induced minor of H. If we assume that
cc(H) = 3 and |V (H)| ≥ 6, the largest component of H is a path on (a least) 4 vertices,
so it contains K1 +K2 as induced subgraph. Together with the two other (single vertex)
components, this gives an K2 + 3 ·K1 induced minor, a contradiction.
Proof of item (R6). Let us assume that cc(H) = 4. If the largest connected component
has more than one vertex, then H contains K2 +3 ·K1 as an induced minor, which is not
possible (as in the proof of item (R5)). Therefore H = 4 ·K1 and so

∣∣V (H)
∣∣ = 4.

We are now able to describe more precisely graphs H for which (Excl≤im
(H),≤im)

could be a wqo. Let K+
3 be the complement of P3 +K1 and let K−4 be the complement

of K2 + 2 ·K1, which is also the graph obtained from K4 by deleting an edge (sometimes
referred as diamond graph).
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Lemma 3.10. If (Excl≤im
(H),≤im) is a wqo, then H ≤im K̂4 or H ≤im Gem.

Proof. Using the information on H given by Lemma 3.9, we can build a table of possible
graphs H depending on cc(H) and

∣∣V (H)
∣∣. Table 3.2 is such a table: each column

corresponds for a number of connected components (between one and four according to
item (R1)) and each line corresponds to an order (at most seven, by item (R4)). A grey
cell means either that there is no such graph (for instance a graph with one vertex and
two connected components), or that for all graphs H matching the number of connected
components and the order associated with this cell, the qoset (Excl≤im

(H),≤im) is not
a wqo.

|V (H)| \ cc(H) 1 2 3 4
1 K1

2 K2 2 ·K1

3 P3 K2 +K1 3 ·K1

4 P4 P3 +K1 K2 + 2 ·K1 4 ·K1

5 (R3) P4 +K1 P3 + 2 ·K1 (R6)
6 (R3) (R3) (R5) (R6)
7 (R3) (R3) (R5) (R6)

Table 3.2: If (Excl≤im
(H),≤im) is a wqo, then H belongs to this table.

From Table 3.2 we can easily deduce Table 3.3 of the corresponding graphs.

|V (H)| \ cc(H) 1 2 3 4
1 K1

2 2 ·K1 K2

3 K2 +K1 P3 K3

4 P4 K+
3 K−4 K4

5 (R3) Gem K̂4 (R6)
6 (R3) (R3) (R5) (R6)
7 (R3) (R3) (R5) (R6)

Table 3.3: If (Excl≤im
(H),≤im) is a wqo, then H belongs to this table.

Remark that we have

• K1≤im 2 ·K1≤im K2 +K1≤im P4≤im Gem;

• K2≤im P3≤im K
+
3 ≤im Gem;

• K3≤im K
−
4 ≤im K̂4; and

• K4≤im K̂4.

This concludes the proof.
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We are now ready to give the proof of Theorem 3.9.

Proof of Theorem 3.9. IfH 6 ≤im Gem andH 6 ≤im K̂4, then by Lemma 3.10 (Excl≤im
(H),≤im)

is not a wqo. On the other hand, by Theorem 3.19 and Theorem 3.20 we know that
both Excl≤im

(K̂4) and Excl≤im
(Gem) are wqo by ≤im. Consequently, by Remark 3.5,

(Excl≤im
(H),≤im) is wqo as soon as H ≤im Gem or H ≤im K̂4.

3.5.2 Graphs not containing K̂4

The main goal of this section is to provide a proof to Theorem 3.19. To this purpose,
we first prove in Section 3.5.2 that the graphs of Excl≤im

(K̂4) admit a simple structural
decomposition. This structure is then used in Section 3.5.2 to show that graphs of
Excl≤im

(K̂4) are well-quasi-ordered by the relation ≤im.

A decomposition theorem for Excl≤im
(K̂4)

The main topic of this section is the proof of Theorem 3.17. This theorem states that
every graph in the class Excl≤im

(K̂4), either does not have even K4 as induced minor, or
is a subdivision of some small graph, or has a cycle-multipartite decomposition. Most
of the time, we show that some property P is not satisfied by graphs of Excl≤im

(K̂4)

by showing an induced minor model of K̂4 in graphs satisfying P. We first assume that
G contains a proper K4-subdivision, and we show in Lemma 3.20 how to deal with the
other case.

Lemma 3.11. If G contains as induced minor any graph H consisting of:

• a K4-subdivision S;

• an extra vertex x linked by exactly two paths L1 and L2 to two distinct vertices
s1, s2 ∈ V (S), where the only common vertex of L1 and L2 is x;

• and possibly extra edges between the vertices of S, or between L1 and L2, or between
the interior of the paths and S,

then K̂4≤im G.

Proof. Let us call V = {v1, v2, v3, v4} the non-subdivision vertices of S, i.e. vertices
corresponding to vertices of K4. We present here a sequence of edge contractions in H
leading to K̂4. Let us repeat the following procedure: as long as there is a path between
two elements of V ∪{s1, s2, s}, internally disjoint with this set, contract the whole path
to a single edge.

Once we can not apply this contraction any more, we end up with a graph that has
two parts: the K4-subdivision with at most 2 subdivisions (with vertex set V ∪{s1, s2})
and the vertex x, which is now only adjacent to s1 and s2.
First case: s1, s2 ∈ V. The graph H is isomorphic to K̂4: it is K4 plus a vertex of
degree two.
Second case: s1 ∈ V and s2 6∈ V (and the symmetric case). As vertices of V are the
only vertices of H that have degree 3 in S, s2 is of degree 2 in S (it is introduced by
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subdivision). The contraction of the edge between s2 and one of its neighbors in S that
is different to s1 leads to first case.
Third case: s1, s2 6∈ V. As in the second case, these two vertices have degree two in S.
Since no two different edges of K4 can have the same endpoints, the neighborhoods of s1

and s2 have at most one common vertex. Then for every i ∈ {1, 2} there is a neighbor
ti of si that is not adjacent to s3−i. Contracting the edges {s1, t1} and {s2, t2} leads to
first case.

Corollary 3.4 (Proof of Lemma 3.11). Let G ∈ Excl≤im
(K̂4) be a 2-connected graph

containing a proper K4-subdivision. For every subdivision S of K4 in G, and for every
vertex x ∈ V (G) \ V (S), NS(x) ≥ 3.

Proof. Let S be a proper K4-subdivision in G and x ∈ V (G) \ V (S). Let L1, L2 be two
shortest paths from x to S meeting only in x. Such paths exist by the 2-connectivity
of G. Remark that if |NG(x) ∩ V (S)| ≤ 2, then then graph induced by S, L1, and L2

satisfies conditions of Lemma 3.11. Therefore, NS(x) ≥ 3.

Remark 3.6. For every two edges of K4 there is a Hamiltonian cycle using these edges.

Remark 3.7. Three edges of K4 are not contained into a same cycle iff they are incident
with the same vertex.

Lemma 3.12. Every 2-connected graph G ∈ Excl≤im
(K̂4) containing a proper K4-

subdivision has a 3-wheel as subgraph.

Proof. Let S be a minimum (proper) K4-subdivision in G and let x ∈ V (G) \ V (S).
We define V as in the proof of Lemma 3.11 and we say that two neighbours of x in S
are equivalent if they lie on the same path between two elements of V (intuitively they
correspond to the same edge of K4). By Corollary 3.4, we only have to consider the
case |NS(x)| ≥ 3.

First of all, observe that if some three neighbors of x lie on a cycle of S, then we are
done. Let us assume from now on, that there is no cycle of S containing three neighbors
of x. This implies that no two neighbors of x are equivalent (by Remark 3.6), no neighbor
of x belongs to V (by the same remark), and that |NS(x)| = 3 (by Remark 3.7). Let us
consider the induced minor H of S + x obtained by contracting all edges not incident
with two vertices of V ∪ NS(x). By Remark 3.7 and since the three neighbors of x do
not belong to a cycle, there is a vertex of V (H) \ {x} adjacent to the three neighbors
of x. Contracting two of the edges incident with this vertex merges two neighbors of x
and the graph we obtain is a K4-subdivision (corresponding to S) together with a vertex
of degree 2 (corresponding to x). By Lemma 3.11, this would imply that K̂4≤im G, a
contradiction. Therefore three neighbors of x lie on a cycle of S and this concludes the
proof.

Now we will deal with a graph G that satisfies conditions of Lemma 3.12; namely:
G is a 2-connected graph, without K̂4 as an induced minor, containing a proper K4-
subdivision; C denotes the cycle of a minimum (in terms of number of vertices) 3-wheel
in G, and R the graph induced by the remaining vertices.
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Remark 3.8. As this 3-wheel is a subdivision of K4 as subgraph of G, by Corollary 3.4,
every vertex of R has at least three neighbors in C.

Remark 3.9. This 3-wheel contains no more vertices than the K4-subdivision that we
assumed to be contained in G. Therefore, every minimum K4-subdivision of G (in terms
of vertices) is a 3-wheel.

Lemma 3.13. Let G be a 2-connected graph of Excl≤im
(K̂4). Every minimum (in terms

of number of vertices) 3-wheel W of cycle C and center r that is a subgraph of G is such
that, if C is not an induced cycle in G,

(i) the endpoints of every chord are both adjacent to some u ∈ NC(r);

(ii) every two distinct v, w ∈ NC(r) \ {u} are adjacent on C;

(iii) C has exactly one chord in G

(iv) |NC(r)| = 3.
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Figure 3.10: Forbidden configurations in the proof of Lemma 3.13.

Proof. Let u, v, w ∈ NC(r) be three distinct neighbours of r in C and let Cu be the path
of C between v and w that does not contains the vertex u, and similarly for Cv and Cw.
First of all, notice that no proper subgraph of W can be a subdivision of K4, otherwise G
would contain a graph smaller than W but meeting the same requirements, according to
Lemma 3.12. Below we will show that when conditions (i)-(iv) are not fulfilled, W is not
minimal, i.e. that when some vertices are deleted in W, it still contains a K4-subdivision.
Figure 3.10 illustrates such configurations, where white vertices can be deleted.

Let {x, y} be a chord of C in G. Remark that the endpoints of a chord cannot
belong to the same path Cl for any l ∈ {u, v, w} without violating the minimality of S,
as deleting vertices of Cl that are between x and y would still lead to a 3-wheel (first
configuration of Figure 3.10). Therefore, x and y belongs to different Cl’s, say without
loss of generality that x ∈ V (Cw) and y ∈ V (Cv).
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Let us prove that x and y must both be adjacent to u. By contradiction, we assume
that, say, y and u are not adjacent. Let us consider the induced subgraph of W obtained
by the deletion of the interior of the path yCvu (containing at least one vertex). Notice
that contracting each of the paths vCuw, vCwx, yCvw and (r, u) − uCwx gives K4, a
contradiction (cf. the second configuration of Figure 3.10). The case where x and u
are not adjacent is symmetric. This proves that every chord of C in G has endpoints
adjacent to a same neighbor of r on C, that is (i).

Now, we show that the path Cu must be an edge. To see this, assume by contradiction
that it has length at least 3. The subgraph of W induced by the six paths (r, v)−vCwx,
{r, u}, (r, w) − wCvy, {x, y}, uCwx and uCvy does not contain the internal vertices of
Cu, thus it is smaller than W (third configuration of Figure 3.10). However, it contains a
subdivision of K4 as subgraph, that can for instance be obtained by contracting each of
these six paths to an edge. This contradicts our first remark, therefore the two neighbors
v and w of r on the cycle are adjacent. This proves item (ii).

Let now assume that there C has a second chord {z, t} in G. In the light of the
previous remark, Cu is an edge, hence the only paths to which z and t can belong are
the paths xCwv and yCvw and, according to our first remark, they do not both belong
to the same of these two paths. Also, as {z, t} 6= {x, y}, one of z, t does not belong to
{x, y}. We can thus assume without loss of generality that z ∈ V (xCwv), t ∈ V (yCvw)
and z 6= x. This case is represented by the fourth configuration of Figure 3.10. Let us
consider the cycle C ′ obtained by the concatenation of the paths zCwv, Cu, wCvt and
(t, z) and the vertex r, which is connected to the cycle by the three paths (r, v), (r, w)
and (r, u)− uCvt that only share the vertex r. This subgraph is smaller than H since it
does not contain vertex x, but it is a subdivision of K4 (three paths issued from the same
vertex a and meeting the cycle C ′). By one of the above remarks, this configuration is
impossible and thus the chord (z, t) cannot exist. Hence we proved item (iii): C can
have at most one chord in G.

Notice that we have |NC(r)| ≥ 3 sinceW is a 3-wheel. We now assume that |NC(r)| >
3. Let u, v, w, z be four different neighbors of r such that z is a common neighbor of
the endpoints of the chord x and y. This case is depicted in the fifth configuration of
Figure 3.10. Then r has at least three neighbors (u, v, and w) on the cycle going through
the edge {x, y} and following C up to x without using the vertex z. As this contradicts
the minimality of W, we have |NC(r)| = 3, that is item (iv), and this concludes the
proof.

Corollary 3.5. According to Remark 3.9, every minimum K4-subdivision in G is a
3-wheel, so Lemma 3.13 is still true when replacing 3-wheel by K4-subdivision in its
statement.

Lemma 3.14. Every two non-adjacent vertices of R have the same neighborhood in C.

Proof. By contradiction, we assume that there are two non-adjacent vertices s, t ∈ V (R)
and a vertex u1 ∈ V (C) such that {s, u1} ∈ E(G) but {t, u1} 6∈ E(G). By Remark 3.8,
s and t have (at least) three neighbors in C. Let U = {u1, u2, u3} and V = {v1, v2, v3}
be the respective neighbors of s and t. We consider the graph H induced in G by C
and {s, t} where we iteratively contracted every edge of S not incident with two vertices
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of {u1, u2, u3, v1, v2, v3}. This graph is a (non necessarily induced) cycle on at most 6
vertices, that we call C ′ plus the two non-adjacent vertices of degree at least three s and
t. Remark that while two neighbors of s are adjacent and are not both neighbors of t,
we can contract the edge between them and decrease the degree of s, without changing
degree of t. If the degree of s reaches two by such means, then by Lemma 3.11, K̂4≤im H,
a contradiction. We can thus assume that every vertex of C ′ adjacent to a neighbor of
s is a neighbor of t. This is also true when s and t are swapped since this argument can
be applied to t too. This observation implies that NS(s) ∩NS(t) = ∅ (as u1 is adjacent
to s but not to t, none of its neighbors on C can be adjacent to s, and so on along the
cycle) and that the neighbors of s and t are alternating on C ′. Without loss of generality,
we suppose that C ′ = u1v1u2v2u3v3. We consider now the five following sets of vertices
of H : M1 = {u1},M2 = {s},M3 = {u2, v1},M4 = {v2, u3, v3},M5 = {t}. They are
depicted on Figure 3.11. Let µ : K̂4 → P<ω(V (H)) be the function defined as follows:
∀i ∈ J1, 5K , µ(vi) = Mi (using the names of vertices of K̂4 defined on Figure 3.2). Now,
remark that µ is an induced minor model of K̂4 in H: for every i ∈ J1, 5K , the set
Mi is connected, M1,M3,M4 forms a cycle (using edges {u1, v1}, {u2, v2}, {v3, u1} is this
order), M2 is adjacent to any of these three sets (by edges {s, u1}, {s, u2}, {s, u3}) and
the set M5 is only adjacent to M3 and M4 (by edges {t, v1}, {t, v2}). Remark that the
previous statement holds even when C ′ is not an induced cycle, as any possible chord of
C ′ will be between vertices of the sets M1,M2,M3,M4 (as M5 is reduced to t 6∈ V (C ′))
and these sets are already all pairwise adjacent. We assumed our initial graph to be
K̂4-induced minor-free but we proved that it contains an induced minor model of K̂4 :
this is the contradiction we were looking for.
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Figure 3.11: Graph H (left) used in Lemma 3.14 (middle) and in Lemma 3.15 (right).

Lemma 3.15. Every two adjacent vertices of R have the same neighborhood in C.

Proof. By contradiction, we assume that there are two adjacent vertices s, t ∈ V (R) and
u1 ∈ V (C) such that {s, u1} ∈ E(G) but {t, u1} 6∈ E(G). As this proof is very similar
to the proof of Lemma 3.14, we define u1, u2, u3, v1, v2, v3, U, V,H,C ′ in the same way
here.
First case: C ′ is an induced cycle. In this case, the graph H is the (induced) cycle
C ′ = u1v1u2v2u3v3 plus the two adjacent vertices s and t. Let us define five vertex sets:
M1 = {v2},M2 = {t},M3 = {u3, v3},M4 = {v1, u2, s},M5 = {u1}. They are depicted
on Figure 3.11. Now, remark that the function that sends the vertex of K̂4 labeled i
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on Figure 3.2 to Mi is an induced minor model of K̂4 in H: every set Mi is connected,
M1,M3,M4 forms a cycle (using edges {v2, u3}, {u3, s}, {u2, v2} is this order), M2 is
adjacent to any of these three sets (by edges {t, v2}, {t, v3}, {t, v1}), and the set M5 is
only adjacent to M3 and M4 (by edges {u1, v3}, {u1, v1}). As we assumed our initial
graph to be K̂4-induced minor-free, this is a contradiction.
Second case: the cycle C ′ is not induced. By Lemma 3.13 and as C is supposed to be a
minimal 3-wheel of G, the cycle C has only one chord. In this case, the graph H is the
(induced) cycle C ′ = u1v1u2v2u3v3 plus the two adjacent vertices s and t and an edge e
between two vertices of C ′. In H, both H \{s} and H \{t} are minimal 3-wheels, sharing
the same cycle C ′. By applying Lemma 3.13 on these two 3-wheels, we obtain that the
endpoints of e must both be adjacent to a vertex of u1, u2, u3 (neighbor of s on C ′) and
to a vertex of v1, v2, v3 (neighbor of t on C ′). Such a configuration is impossible.

Lemma 3.16. If C is not an induced cycle of G, then |V (R)| = 1.

Proof. Let r ∈ V (R) be the center of a minimum 3-wheel of cycle C. By contradiction,
let us assume that R contains a vertex s 6= r. By Lemma 3.13, r has exactly three
neighbors on C, one of which, that we call u, is adjacent to both endpoints of the only
chord of C. Furthermore the two other neighbors or r, that we denote by {v, w}, are
adjacent. According to Lemma 3.14 and Lemma 3.14, r and s are adjacent in G. There
are now two different cases to consider depending whether {r, s} is an edge or not. The
case {r, s} ∈ E(G) (respectively {r, s} 6∈ E(G)) is depicted on the right (respectively
left) of Figure 3.12. Remark that if {r, s} ∈ E(G), the graph G satisfies conditions of
Lemma 3.11 (with G[{r, s, u, v, w}] for S, {u, v} for {s1, s2} and x for x), so G≤im K̂4,
what is contradictory. In the other hand, when {r, s}not ∈ E(G), the induced subgraph
G[{r, s, u, v, w}] is isomorphic to K̂4, so we also have G≤im K̂4. Hence |V (R)| < 2. By
definition of C and R, the subgraph R contains at least one vertex (that is the center
of a 3-wheel of cycle C), thus |V (R)| = 1 as required.

r s
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uu

vv ww

x y

r s

C

uu

vv ww

x y

Figure 3.12: Two different cases in the proof of Lemma 3.16

Corollary 3.6. If C is not an induced cycle of G, then G is a subdivision of the prism.

Lemma 3.17. R is complete multipartite.

Proof. As a graph is complete multipartite iff it does not contain K1 + K2 as induced
subgraph, we only need to show that the case where R = K1 + K2 is not possible.
Consequently, let us assume that we are in this case, and let u, v, w be the vertices of
R, {u, v} being the only edge in R. As R is an induced subgraph of G, u and w are
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not adjacent in G neither. By Lemma 3.14, they have the same neighborhood on C.
The same argument can be applied to v and w to show that NC(u) = NC(v) = NC(w).
Let x, y, z ∈ NC(u) be three different vertices (they exist by Corollary 3.4) and let
H be the graph obtained from G by contracting every edge of C that is not incident
with two vertices of {x, y, z}. Such a graph is a triangle (obtained by contracting C)
and the three vertices u, v, w each adjacent to every vertex of the triangle, as drawn
in Lemma 3.17. Deleting vertex y gives a graph isomorphic to K̂4, as one can easily
check (cf. Lemma 3.17).

x

y zw

u v

x

zw

u v

Figure 3.13: The graph H of Lemma 3.17 (left) and the graph obtained after deletion
of y (right).

We now need to show that every graph containing a K4-subdivision either has a
proper K4-subdivision, or fall in the possible cases of the statement of Theorem 3.17.

Lemma 3.18. If G can be obtained by adding an edge between two vertices of a K3,3-
subdivision, then G has a proper K4-subdivision.

Proof. Let S be the spanning subgraph of G which is a K3,3-subdivision. A branch of S
is a maximal path, the internal vertices of which are of degree two. In S, non-subdivision
vertices are connected by branches. Let us call a, b, c, x, y, z the non-subdivision vertices
of S in a way such that there is neither a branch between any two vertices of {a, b, c}
nor between any two vertices of {x, y, z} (intuitively {a, b, c} and {x, y, z} correspond
to the two maximum independent sets of K3,3). Observe that every K3,3-subdivision
contains a K4-subdivision (but not a proper one). Let us now consider all the possible
endpoints of the only edge e of E(G) \ E(S).
First case: both endpoints of e belong to the same branch B of S. Let X be the set
of internal vertices of the subpath of B starting at the one endpoint of e and ending at
the other one. As G is a simple graph, |X| ≥ 1. Then G \X has a K4-subdivision (as
it is a K3,3-subdivision), which is a proper K4-subdivision of G.
Second case: e is incident with two non-subdivision vertices. Observe that the case
where e is incident with a vertex from {a, b, c} and the other from {x, y, z} is contained
in the previous case. Let us assume without loss of generality that e = {a, b}. Then
G \ {x} has a K4-subdivision. Indeed, if Bs,t denotes the branch with endpoints the
vertices s and t (for (s, t) ∈ {a, b, c}×{x, y, z}), then the vertices of the paths Bb,y, Bb,z,
Bc,z and Bc,y induce a cycle in G. The vertex a is then connected to this cycle with the
paths Ba,y, Ba,z and the edge e. Hence G has a proper K4-subdivision, as required.
Third case: e is incident with two subdivision vertices. If the two endpoints of e belong to
the same branch, then we are in the first case. Otherwise, we can easily reach the second
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case as follows. If we contract all the edges on the path connecting the first endpoint of
e to a vertex of {a, b, c} and all the edges on the path connecting the second endpoint of
e to a vertex of {x, y, z}, we get a K4-subdivision (because we never contracted an edge
incident with two non-subdivision vertices of S) plus the edge e which is now incident
with two non-subdivision vertices. This concludes the proof.

Lemma 3.19. If G can be obtained by adding an edge between two vertices of a prism-
subdivision, then G has a proper K4-subdivision.

Proof. Let S be a prism-subdivision in G and let e ∈ E(G) \ E(S). We will use the
concept of branch defined in the proof of Lemma 3.18, which is very similar to this
one. Let us call a, b, c, x, y, z the non-subdivision vertices in a way such that there are
branches between every pair of vertices of {a, b, c} (respectively {x, y, z}) and between
vertices of the pairs (a, x), (b, y), and (c, z). Intuitively {a, b, c} and {x, y, z} correspond
to the two triangles of the prism. Let us consider the positions of the endpoints of e.
First case: both endpoints of e belong to the same branch of S. Since the prism
contains a K4 subdivision (but not a proper one), we can in this case find a smaller
prism subdivision as in the first case of the proof of Lemma 3.18, and thus a proper
K4-subdivision.
Second case: e is incident with two non-subdivision vertices. Let us assume with-
out loss of generality that e = {a, y} (the cases e ⊆ {a, b, c}, e ⊆ {x, y, z}, and
e ∈ {{a, x}, {b, y}, {c, z}} are subcases of the first one). Then in G \ {x}, the paths
Ba,b, Bb,z and Bx,y together with the edge e induces a cycle to which the vertex c is
connected via the paths Bc,b, Bc,a, and Bc,y. Hence G has a proper K4-subdivision.
Third case: e is incident with two branches between a,b, and c (and the symmetric case
with branches between x, y, and z). Let us assume without loss of generality that e
has one endpoint r among the interior vertices of Ba,c and the other one s among the
interior vertices of Bb,c. Then (r, s), sBb,cc, and cBa,cr induce in G \ {x} a cycle to
which the vertex b is connected via the paths bBb,cs, bBa,ba together with aBa,cr, and
Bb,z together with Bz,y and By,b. Again, G has a proper K4-subdivision.
Fourth case: e is incident with two branches, the one connected to a vertex in {a, b, c}
and the other one connected to a vertex in {x, y, z}. In this case, by contracting the
edges of the first branch that are between the endpoint of e and a vertex of {a, b, c}
and similarly with the second branch and a vertex of {x, y, z} gives a graph with a
prism-subdivision plus an edge between two non-subdivision vertices (that is, first case),
exactly as in the proof of Lemma 3.18.

Lemma 3.20. If graph G contains a K4-subdivision, then either G has a proper K4-
subdivision, or G is a wheel, or a subdivision of one of the following graphs: K4, K3,3,
and the prism.

Proof. Looking for a contradiction, let G be a counterexample with the minimum num-
ber of vertices and, subject to that, the minimum number of edges. Let S be a K4-
subdivision in G and let e ∈ E(G) \ E(S). Observe that since G has no proper K4-
subdivision, S is a spanning subgraph of G. Also, e is well defined as we assume that G
is not a K4-subdivision. Notice that since the minimum degree of K4 is 3, contracting
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an edge incident with a vertex of degree 2 in G would yield a smaller counterexample.
Therefore G has minimum degree at least 3. Let G′ = G \ {e}. This graph clearly con-
tains S. By minimality of G, the graph G′ is either a wheel, or a subdivision of a graph
among K4, K3,3, and the prism. Observe that G′ cannot have a proper K4-subdivision
because it would also be a proper K4-subdivision in G.
First case: G′ is a wheel. Let C be the cycle of the wheel and let r be its center.
Obviously, in G the edge e has not r as endpoint otherwise G would also be a wheel.
Therefore e is incident with two vertices of C. Let P and P ′ be the two subpaths of C
whose endpoints are then endpoints of e. Observe that none of P and P ′ contains more
than two neighbors or r. Indeed, if, say, P contained at least three neighbors of r, then
the subgraph of G induced by the vertices of P , e, and r would contain a K4-subdivision,
hence contradicting the fact that G has no proper K4-subdivision.

Therefore G is the cycle C with exactly one chord, e, and the vertex r which has
at most 4 neighbors on C. Because G has maximum degree at least 3, it has at most
7 vertices. If r has three neighbors on C, then necessarily P contains one of them and
P ′ the other two (or the other way around). We can easily check in this case that G
is a subdivision of the prism. If r has four neighbors on C, the interior of P and P ′

must each contain two of them according to the above remarks. The deletion of any
neighbor of r in this graph yields a K4-subdivision of non-subdivision vertices r and the
remaining neighbors. Observe that both cases contradict the assumptions made on G.
Second case: G′ is a subdivision of K4, or K3,3, or the prism. If G′ is a subdivision of
K3,3 or of the prism, then the result follows by Lemma 3.18 and Lemma 3.19. Let us now
assume that G′ is a subdivision of K4 and let us consider branches of this subdivision
as defined in the proof of Lemma 3.18. If e has endpoints in the same branch, then as
in the first cases of the aforementioned lemmas we can find in G′ a K4-subdivision with
fewer vertices and thus a proper K4-subdivision in G. In the case where the endpoints
of e belong to the interior of two different branches, then it is easy to see that G is a
prism-subdivision. Let {x, y, z, t} be the non-subdivision vertices of the K4-subdivision.
Finally, let us assume that the one endpoint of e is a non-subdivision vertex, say x, and
the other one, that we call u, is a subdivision vertex of a branch, say By,z (using the
same notation as in the proof of Lemma 3.18). If X is set set of interior vertices of one
of Bx,y, Bx,z, or Bx,t, then the graph G \ X has a K4-subdivision of non-subdivision
vertices x, u, z, t, x, y, y, t or x, y, u, z respectively. In this case G has a proper K4-
subdivision. If none of Bx,y, Bx,z, and Bx,t has internal vertices, then G is a wheel of
center x.

In all the possible cases we reached the contradiction we were looking for. This
concludes the proof.

We are now ready to prove Theorem 3.17.

Proof of Theorem 3.17. Let G ∈ Excl≤im
(K̂4) be a 2-connected graph. If G does not

contain a K4-subdivision, then the theorem is trivially true for G. If graph G contains
a K4-subdivision but not a proper one, from Lemma 3.20 we get that G is a subdivision
of one of K4, K3,3, or the prism, in which case the theorem holds, or that G is a
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wheel, which has a trivial cycle-multipartite decomposition, with the center being the
multipartite part.

Finally, let us assume that G contains a proper K4-subdivision. By Lemma 3.12, G
contains a 3-wheel. Let C be the cycle of a minimum 3-wheel in G and R the subgraph
of G induced by V (G) \ V (C). According to Corollary 3.6, if C is not an induced cycle,
then G is a subdivision of the prism. When C is induced, then by Lemma 3.17, R is
complete. Furthermore, vertices of R have the same neighborhood on C, as proved in
Lemma 3.14 and Lemma 3.15. Therefore, (C,R) is a cycle-multipartite decomposition
of G and we are done.

From a decomposition theorem to well-quasi-ordering

This section is devoted to the proof of Theorem 3.19.
The proof relies on the two following lemmas which are proved in the next subsec-

tions.

Lemma 3.21. For every (unlabeled) graph G and every wqo (S,�), the class of (S,�)-
labeled G-subdivisions is well-quasi-ordered by the contraction relation.

Lemma 3.22. For every wqo (S,�), the class of (S,�)-labeled graphs having a cycle-
multipartite decomposition is well-quasi-ordered by induced minors.

Proof of Theorem 3.19. The class of graphs not containingK4 as minor (or, equivalently,
as induced minor) has been shown to be well-quasi-ordered by induced minors in [Tho85],
cf. Theorem 3.8. According to Remark 3.2, we can then restrict our attention to graphs
of Excl≤im

(K̂4) that contain K4 as minor. As some of these graphs might not be 2-
connected, we use Lemma 3.2: it is enough to show that for every wqo (S,�), the class
of (S,�)-labeled 2-connected graphs containing K4 as minor are wqo by induced minors.
By Theorem 3.17, this class can be divided into two subclasses:

• (2-connected) subdivisions of a graph among K4, K3,3, and the prism;

• graphs having a cycle-multipartite decomposition.

Lemma 3.21 and Lemma 3.22 handle these two cases, hence by Remark 3.2 the class
of (S,�)-labeled 2-connected graphs containing K4 as minor are wqo by induced minors
for every wqo (S,�). This concludes the proof.

The following subsections contains the proofs of Lemma 3.21 and Lemma 3.22, that
follow the steps described in Section 3.3.

Well-quasi-ordering subdivisions

Let OP denote the class of paths whose endpoints are distinguished, i.e. one end is said
to be the beginning and the other one the end. In the sequel, fst(P ) denotes the first
vertex of the path P and lst(P ) its last vertex. We extend the relation ≤im to OP as
follows: for every G,H ∈ OP , G≤im H if there in an induced minor model µ of G in
H such that fst(H) ∈ µ(fst(G)) and lst(H) ∈ µ(lst(G)), and similarly for ≤c .
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Lemma 3.23. If the qoset (Q,�Q) is a wqo, then the qoset (lab(Q,�Q)(OP),≤c) also is
a wqo.

Proof. Let us take (S,�) to be (P<ω(Q),�PQ ). By Corollary 3.2 (S,�) is a wqo.
We consider the function f : (S?,�?) → (lab(S,�)(OP),≤c) that, given a sequence
〈s1, . . . , sk〉 ∈ S? of elements of S, returns the path P on k vertices whose i-th ver-
tex vi is labeled by si for every i ∈ J1, lK and where fst(P ) = v1 and lst(P ) = vk.
The image of this function is clearly lab(S,�)(OP) and by Theorem 3.1 its domain is
well-quasi-ordered by �? . By the virtue of Remark 3.3, it is thus enough to show that
f : (S?,�?)→ (lab(S,�)(OP),≤c) is monotone in order to prove that (lab(S,�)(OP),≤c)
is wqo.

Let R = 〈r1, . . . , rk〉 , S = 〈s1, . . . , sl〉 ∈ S?, be two sequences such that R�? S and
let us show that f(R)≤c f(S). We will use the following notation: f(R) is the path
v1 . . . vk labeled by λR and similarly for f(S), u1 . . . ul and λS. Let ϕ : J1, kK→ J1, lK be
an increasing function such that ∀i ∈ J1, kK , we have ri� sϕ(i) (such a function exists
sinceR�? S). Let us consider the path obtained from f(S) by, for every i 6∈ {ϕ(j)}j∈J1,kK,
contracting the label of ui to the empty set and then dissolving ui. Remark that this
graph is a path on k vertices p1p2 . . . pk such that ∀i ∈ J1, kK , λR(vi) = ri�λS(pi) = sϕ(i).
Furthermore, this path is a contraction of f(S) where either u1 = p1 (respectively
ul = pk) or this vertex has been contracted to p1 (respectively pk), hence f(R)≤c f(S),
as desired.

Proof of Lemma 3.21. Let G be a non labeled graph, let (S,�) be a wqo and let G be
the class of all (S,�)-labeled G-subdivisions. We set m = |E(G)| . Let us show that
(G,≤c) is a wqo. First, we arbitrarily choose an orientation to every edge of G and
an enumeration e1, . . . , em of these edges. We now consider the function f that, given
a tuple (Q1, . . . , Qm) of m paths of lab(S,�)(OP), returns the graph constructed from
G by, for every i ∈ J1,mK , replacing the edge ei by the path Qi, while respecting the
orientation, i.e. the first (respectively last) vertex ofQi goes to the first (respectively last)
vertex of ei. By Lemma 3.1 on Cartesian products of wqos and since (lab(S,�)(OP),≤c)
is a wqo (Lemma 3.23), the domain lab(S,�)(OP)m of f is well-quasi-ordered by ≤c

m .
Notice that every element of the codomain of f is an G-subdivision (by definitions of f),
and moreover that f is surjective on G: for every (S,�)-labeled G-subdivision H we can
construct a tuple (Q1, . . . , Qm) of m paths of lab(S,�)(OP), such that f(Q1, . . . , Qm) =
H.

In order to show that (G,≤c) is a wqo, it is enough to prove that f : (lab(S,�)(OP),≤c
m)→

(G,≤c) is an epi, as explained in Remark 3.3, that is, to prove that for every two tu-
ples Q,R ∈ lab(S,�)(OP)m such that Q≤c

mR, we have f(Q)≤c f(R). According to
Remark 3.4, we only need to care, for every i ∈ J1,mK , of the case where Q and R
only differs by the i-th coordinate. It is at this point of the proof important to remark
the symmetry of the definition of f : since the different coordinates any element of the
domain of f are playing the same role, we only have to deal with the case where Q
and R differs by one (fixed) coordinate, say the first one. Therefore, let us consider
two tuples Q = (Q,Q2, . . . , Qm) and R = (R,Q2, . . . , Qm) of lab(S,�)(OP)m such that
Q≤c

mR, i.e. satisfying Q≤cR. Let µ : V (Q) → P<ω(V (R)) be a contraction model
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of Q in R and let µ′ : V (f(Q)) → P<ω(V (f(Q))) be the trivial contraction model of
f(Q) \ V (Q) in itself defined by ∀u ∈ V (f(Q)) \ V (Q), µ′(u) = {u}. We now consider
the function ν : V (f(Q))→ P<ω(V (f(R))) defined as follows:

ν :


V (f(Q)) → P<ω(V (f(R)))

u 7→ µ(u) if u ∈ V (Q)
u 7→ µ′(u) otherwise.

Let us show that ν is a contraction model of f(Q) in f(R). First, notice that
since both µ and µ′ are contraction models, ν inherits some of their properties: for
every u ∈ V (f(Q)), the induced subgraph V (f(R))[u], is connected and λf(Q)(u) ⊆⋃
u∈µ(u) λf(R)(u). For the same reason, we have:⋃

u∈V (f(Q))

ν(u) =
⋃

u∈V (Q)

µ(u) ∪
⋃

u∈V (f(Q)\V (Q))

µ′(u)

= V (R) ∪ V (f(Q)) \ V (Q)

= V (f(R)).

Let us now consider two distinct vertices u and v of f(Q).
First case: u and v both belong to the same set among V (Q) and V (f(Q)) \ V (Q). In
this case ν(u) and ν(v) are disjoint and they are adjacent iff {u, v} ∈ E(f(Q)) since
both µ and µ′ are contraction models.
Second case: u ∈ V (Q) and v ∈ V (f(Q)) \ V (Q) (or the symmetric case). As in the
previous case, ν(u) and ν(v) are disjoint. Assume that {u, v} is an edge of f(Q). Notice
that we necessarily have either u = fst(Q) and v ∈ Nf(Q)\V (Q)(fst(Q)), or u = lst(Q)
and v ∈ Nf(Q)\V (Q)(lst(Q)). Let us assume, without loss of generality, that we are in
the first of these two subcases. By definition of f(R), {fst(R), v} is an edge. Since µ is
a contraction model, we then also have fst(R) ∈ ν(u) and therefore ν(v) and ν(u) are
adjacent in f(R).

We just proved that ν is an induced minor model of f(Q) in f(R). As explained
above, this is enough in order to show that f is monotone with regard to ≤c

m,≤c . Hence
(G,≤c) is a wqo and this concludes the proof.

Well-quasi-ordering cycle-multipartite decompositions

In this section, we show that graphs having a cycle-multipartite decomposition are well-
quasi-ordered by induced minors.

Lemma 3.24. If (Q,�Q) is wqo then the class of (Q,�Q)-labeled independent sets is
wqo by the induced subgraph relation.

Proof. We will again define (S,�) := (P<ω(Q),�PQ , and observe that it is a wqo.
The function f that maps every sequence 〈x1, . . . , xk〉 (for some positive integer k) of

elements of S to the (S,�)-labeled independent set on vertex set {v1, . . . , vk} where vi
have label xi for every i ∈ J1, kK has clearly the class of (S,�)-labeled independent sets
as codomain. Let us show that f is an epi. Let X = 〈x1, . . . , xk〉 , Y = 〈x1, . . . , xl〉 ∈
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S? be two sequences such that X �? Y. By definition of the relation �?, there is an
increasing function ϕ : J1, kK → J1, lK such that ∀i ∈ J1, kK , xi� yϕi. Therefore the
function µ : V (f(X)) → V (f(Y )) that maps the vertex vi of f(X) to the singleton
{vϕ(i)} of f(Y ) is an induced subgraph model of f(X) in f(Y ) and this proves the
monotonicity of f with regard to �?,≤im . By the virtue of Remark 3.3 and since (S?,�?)
is a wqo, we get that the class of (S,�)-labeled independent sets is wqo by the induced
subgraph relation.

Corollary 3.7. With a very similar proof, we can also show that if (S,�) is wqo then
the class of (S,�)-labeled cliques is wqo by the induced subgraph relation.

Corollary 3.8. If a class of (S,�)-labeled graphs (G,≤im) is wqo, then so is its closure
by finite disjoint union (respectively join).

Proof. Let U be the closure of (G,≤im) by disjoint union. Remark that every graph of
U can be partitioned in a family of pairwise non-adjacent graphs of G. Therefore we can
define a function mapping every G-labeled independent set to the graph of U obtained
from G by replacing each vertex by its label (which is an (S,�)-labeled graph). It is easy
to check that this function is an epi of (G,≤im)→ (U ,≤im). Together with Remark 3.3
and Lemma 3.24, this yields the desired result.

Corollary 3.9. If (S,�) is a wqo then the class of (S,�)-labeled complete multipartite
graphs are wqo by the induced subgraph relation.

Proof of Lemma 3.22. We consider the function f : (lab(S,�)(OP)?×lab(S,�)(KN?),≤c
?×≤isg)→

(lab(S,�)(W),≤im) that, given a sequence [R0, . . . , Rk−1] ∈ lab(S,�)(OP) of (S,�)-labeled
paths of OP and a (S,�)-labeled complete multipartite graph K, returns the graph con-
structed as follows.

1. consider the disjoint union of K and the paths of {Ri}i∈J0,k−1K and call vi the
vertex obtained by identifying the two vertices lst(Ri) and fst(R(i+1) mod k), for
every i ∈ J0, k − 1K (informally, this graph is the disjoint union of K and the cycle
built by putting Ri’s end-to-end);

2. for every element v of {vi}i∈J0,k−1K, add all possible edges between v and the vertices
of K.

Remark that the codomain of f is W . Indeed, every element of the image of f
has a cycle-multipartite decomposition (by construction) and conversely, if G ∈ W is
of cycle-multipartite decomposition (C,K), one can construct a sequence of R0, . . . Rk

of subpaths of C meeting only on endpoints and whose interior vertices are of degree
two such that G = f(R, . . . Rk−1, K). Let us show that the domain of f is well-quasi-
ordered by ≤c

?×≤isg . We proved in Lemma 3.23 that (lab(S,�)(OP),≤c) is a wqo and
Corollary 3.9 shows that (KN? ,≤isg) is a wqo, so by applying Theorem 3.1 we get first
that (lab(S,�)(OP)?,≤c

?) is a wqo, and then by Lemma 3.1 together with Corollary 3.9
that (lab(S,�)(OP)? ×KN? ,≤c

?×≤isg) is a wqo.
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According to Remark 3.3, it is enough to show that the function

f : (lab(S,�)(OP)? × lab(S,�)(KN?),≤c
?×≤isg)→ (W ,≤im)

is an epi in order to prove that (lab(S,�)(W),≤isg) is wqo. We show the monotonicity of
f in two steps: the first by showing

∀R ∈ lab(S,�)(OP)?, ∀H,H ′ ∈ lab(S,�)(KN?), H ≤isg H
′ ⇒ f(R,H)≤im f(R,H ′)

and the second by proving

∀Q,R ∈ lab(S,�)(OP)?, ∀H ∈ lab(S,�)(KN?), Q≤c
?R⇒ f(Q,H)≤im f(R,H).

According to Remark 3.4, the desired result follows from these two assertions.
First step. Let R = 〈Ro, . . . , Rk−1〉 ∈ lab(S,�)(OP)? and H,H ′ ∈ lab(S,�)(KN?) be
such that H ≤isg H

′. We therefore have (R,H)≤c
?×≤isg(R,H ′). Let us show that

f(R,H)≤im f(Q,H ′). SinceH ≤isg H
′, there is a subsetA ⊆ V (H ′) such thatH ′\A = H.

Let C denote the cycle obtained from the disjoint union of {Ri}i∈J0,k−1K by the identifi-
cation of the two vertices lst(Ri) and fst(R(i+1) mod k), for every i ∈ J0, k − 1K , where we
call vi the vertex resulting from this identification. Let us consider the graph f(Q,H)\A:
to construct this graph we started with the disjoint union of C and H, then added
all possible edges between vi and V (H) for every i ∈ J0, k − 1K, and at last deleted
the vertices of A \ H. Remark that this graph is isomorphic to f(R,H) and therefore
f(R,H)≤im f(R,H ′), as desired.
Second step. Let Q = 〈Q0, . . . , Qk−1〉 and R = 〈R0, . . . , Rl−1〉 be two elements of
lab(S,�)(OP)? such thatQ≤c

?R and letH ∈ lab(S,�)(KN?).We thus have (Q,H)≤c
?×≤isg(R,H).

Let us show that f(Q,H)≤im f(R,H). By definition of the relation ≤c
?, there is an in-

creasing function ϕ : J0, k − 1K→ J0, l − 1K such that

∀i ∈ J0, k − 1K , Qi≤c Rϕ(i).

For every i ∈ J0, k − 1K , let µi : V (Qi) → P<ω(Rϕ(i)) be a contraction model of Qi in
Ri. Recall that since Qi and Rϕ(i) are oriented paths, the contraction sending Rϕ(i) on
Qi preserves endpoints. We now consider the function µ defined as follows

µ


V (f(Q,H)) → P<ω(V (f(R,H)))

x → {x} if x ∈ V (H)

lst(Qi) → µi(lst(Qi)) ∪
⋃ϕ(i+1)−1
j=ϕ(i)+1 V (Rj) \ {fst(Rϕ(i+1))}

x → µi(x) ⊆ Rϕ(i) if x ∈ Qi \ {lst(Qi)}.

We will show that µ is an induced minor model of f(Q,H) is f(R,H). First at all,
remark that every element of the image of f induces in f(R,H) a connected subgraph:

• either x ∈ V (H) and µ(x) is a singleton;

• or x ∈ lst(Qi) \ {lst(Qi)} and f(R,H)[µ(x)] is connected since µi(x) = µ(x) is an
induced minor model;
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• or x = lst(Qi) and µi(lst(Qi)) ∪
⋃ϕ(i+1)−1
j=ϕ(i)+1 V (Rj) \ {fst(Rϕ(i+1))} induces a in

f(R,H) a connected subgraph because f(R,H)[µi(lst(Qi))] is connected and the
other vertices are consecutive on the cycle.

Let us now show that adjacencies are preserved by µ. Let u, v be two distinct vertices
of f(Q,H). If u, v ∈ H, then µ(u) and µ(v) are adjacent in f(R,H) iff u and v are
in f(Q,H), as µ(u) = {u} and µ(v) = {v} (informally, the “H-part” of f(R,H) is not
changed by the model). If u, v ∈ Q, observe that u and v are adjacent in f(Q,H) iff
they belong to the same path of {Qi}i∈J0,k−1K. Thus in this case, the property that u
and v are adjacent in f(Q,H) iff µ(u) is adjacent to µ(v) in f(R,H) is given by the fact
that {µi}i∈J0,k−1K are contraction models.

If u ∈ Q and v ∈ H, then {u, v} ∈ f(Q,H) (resp. µ(u) is adjacent to µ(v) in
f(R,H)) iff u is an endpoint of a path of {Qi}i∈J0,k−1K (resp. µ(u) contains an endpoint
of a path of {Ri}i∈J0,l−1K), by definition of f . As the contraction relation on oriented
paths of OP is required to contract endpoints to endpoints, the image µ(u) must contain
the endpoint of a path of {Ri}i∈J0,l−1K iff u is the endpoint of a path of {Qi}i∈J0,k−1K.
Therefore u and v are adjacent in f(Q,H) iff µ(u) is adjacent to µ(v) in f(R,H), as
required. We finally proved that f is monotone with regard to ≤c

?×≤isg,≤im . This
was the only missing step in order to prove that (lab(S,�)(W),≤isg) is a wqo.

3.5.3 Graphs not containing Gem

The purpose of this section to give a proof to Theorem 3.20. This will be done by
first proving a decomposition theorem for graphs of Excl≤im

(Gem), and then using this
theorem to prove that (Excl≤im

(Gem),≤im) is a wqo.

A Decomposition theorem for Excl≤im
(Gem)

This section is devoted to the proof of Theorem 3.18, which is split in several lemmas.
In the sequel, G is a 2-connected graph of Excl≤im

(Gem). When G is 3-connected, we
will rely on the following result originally proved by Ponomarenko.

Proposition 3.1 ( [Pon91]). Every 3-connected Gem-induced minor-free graph is either
a cograph or has an induced subgraph S isomorphic to P4, such that every connected
component of G \ S is a cograph.

Therefore we will here focus on the case where G is 2-connected but not 3-connected.
A rooted diamond is a graph which can be constructed from a rooted C4 by adding a
chord incident with exactly one endpoint of the root (cf. Figure 3.14).

Figure 3.14: A rooted diamond, the root being the thick edge.
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Lemma 3.25. Let S = {v1, v2} be a cutset in G and let C be a component of G \ S.
Let H be the graph G[V (C) ∪ {v1, v2}] rooted at {v1, v2}. If C ′ has a rooted diamond as
an induced minor, then G≤im Gem.

Proof. Let C ′ be a component of G \ S other than C and let G′ be the graph obtained
from G by:

1. applying the necessary operations (contractions and vertex deletions) to transform
G[V (C) ∪ {v1, v2}] into a rooted diamond;

2. deleting every vertex not belonging to V (C) ∪ V (C ′) ∪ {v1, v2};

3. contracting C ′ to a single vertex.

The graph G′ is then a rooted diamond and a vertex adjacent to both endpoints of its
root, that is, G′ is isomorphic to Gem.

Let us now characterize these 2-connected graphs avoiding rooted diamonds.

Lemma 3.26. Let G be a graph rooted at {u, v} ∈ E(G). If {u, v} is not a cut of G and
G does not contain a rooted diamond as an induced minor, then either G is an induced
cycle or both u and v are dominating in G.

Proof. Assuming that u is not dominating and G is not an induced cycle, let us prove
that G contains a rooted diamond as induced minor. Let w ∈ V (G) be a vertex such
that {u,w} 6∈ E(G). Such a vertex always exists given that u is not dominating. Let C
be a shortest cycle using the edge {u, v} and the vertex w (which exists since G is 2-
connected), let Pu be the subpath of C linking u to w without meeting v and similarly
let Pv be the subpath of C linking v to w without meeting u. By the choice of C, both
Pu and Pv are induced paths. Notice that if there is an edge connecting a vertex of
Pu \ {w} to vertex of Pv \ {w}, then G contains a rooted diamond. Therefore we can
now assume that C is an induced cycle.

Recall that we initially assumed that G is not an induced cycle. Therefore G contains
a vertex not belonging to C. Let G′ be the graph obtained from G by contracting to
one vertex x any connected component of G \C and deleting all the other components.
Obviously we have G′≤im G. Let us show that G′ contains a rooted diamond as induced
minor.

Remark that the neighborhood of x, which is of size at least two (asG is 2-connected),
is not equal to {u, v}, otherwise {u, v} would be a cut in G. Now contract in G′ all the
edges of C \ {u, v} except three in a way such that |N(x)| ≥ 2 and N(x) 6= {u, v}. Let
G′′ be the obtained graph, which consists of a cycle of length four rooted at {u, v} and
a vertex x adjacent to at least two vertices of this cycle. We shall here recall that since
this cycle is a contraction of the induced cycle C, it is induced too. If x is adjacent
(among others) to two vertices at distance two on this cycle, then, by contracting the
edge between x and one of these vertices, we get a rooted diamond. The remaining
case is when x is only adjacent to the vertices of the cycle which are not u and v. The
contraction of the edge between v and one of these vertices gives a rooted diamond, and
this concludes the proof.
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Remark 3.10. In a Gem-induced minor-free graph G, every induced subgraph H domi-
nated by a vertex v ∈ V (G) \ V (H) is a cograph.

Indeed, assuming that H is not a cograph, let P be a path on four vertices which is
subgraph of H. Then G[V (P ) ∪ {v}] is isomorphic to Gem, a contradiction.

Lemma 3.27. If G has a K2-cut S = {v1, v2}, then every connected component of G\S
is basic in G.

Proof. By Lemma 3.25, for every connected component C of G \ S we know that the
graph G[V (C) ∪ S] rooted at {u, v} contains no rooted diamond. By the virtue of
Lemma 3.26, this graph either is an induced cycle or has a dominating vertex among
u and v. In the first case, C is a path whose all internal vertices are of degree two in
G, hence H is basic. If one of u and v is dominating, then C is a cograph according to
Remark 3.10. Therefore in both cases C is basic in G.

Let us now focus on 2-connected graphs with a K2-cut, which is the last case in our
characterization theorem.

Corollary 3.10. If G has a K2-cut S such that G\S contains more than two connected
components, then every connected component of G \ S is basic in G.

Proof. It follows directly from Lemma 3.27. Indeed, if the connected components of
G \ S are C1, C2, . . . Ck, let us contract C1 to an edge between the two vertices of S.
The obtained graph fulfills the assumptions of Lemma 3.27: S is a K2-cut. Therefore
each of the components C2, . . . , Ck is basic in G. Applying the same argument with C2

instead of C1 yields that C1 is basic in G as well.

Lemma 3.28. Let S = {u, v} be a K2-cut, such that and G \ S has only two connected
components H1 and H2. Then G contains a cycle C as induced subgraph such that every
connected component of G \ C is basic in G.

Proof. For every i ∈ {1, 2}, let Qi be a shortest path linking u to v in G[V (Hi) ∪ {u, v}].
Notice that the cycle C = G[V (Q1) ∪ V (Q2)] is then an induced cycle. For contradiction,
let us assume that some connected component J of G[V \ C] is not basic in G. By
symmetry, we can assume that J ⊂ H1.

Notice that since G is 2-connected, J has at least two distinct neighbors x, y on C.
Let G′ be the graph obtained from G[V (H1) ∪ V (C) ∪ V (H2)] by contracting Q1 to an
edge between u and v in a way such that x is not contracted to y (that is, x is contracted
to one of u, v and y to the other one). In G′, {u, v} is a K2-cut, therefore by Lemma 3.27,
every connected component of G \ S is basic in G′. As this consequence holds for every
choice of J and G′ is an induced minor of G, we eventually get that every connected
component of G \ C is basic in G.

In the sequel, S, u, v and C follow the definitions of the statement of Lemma 3.28.
In order to be more accurate on how the connected components of G \C are connected
to C, we will prove the following lemma according to which most of the vertices of C
have degree 2 in G. Let us assume that
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Remark 3.11. Every connected component J of G\C has at least two and at most three
neighbours on C.

Indeed, it has at least two neighbours on C because G is 2-connected. Besides if J
has at least four neighbours on C, then contracting in G[V (C) ∪ V (J)] the component
J to a single vertex, deleting a vertex of C not belonging to N(J) (which exists since
J belongs to only one of the components of G \ S) and then contracting every edge
incident with a vertex of degree two would yield Gem.

Lemma 3.29. If C has at least one vertex of degree two, then for every distinct con-
nected components J1 and J2 of G \ C we have NC(J1) ⊆ NC(J2) or NC(J2) ⊆ NC(J1).

Proof. Let us assume, for contradiction, that the claim is not true and let G be a minimal
counterexample with respect to induced minors. In such a case both J1 and J2 are
single vertices (say j1 and j2 respectively) and they are the only connected components
of G \ C. We now would like to argue that any such minimal counterexample must
contain as induced minor one of graphs presented on Figure 3.15 (where thick edges
represent the cycle C). This would conclude the proof as each of these graphs contains
Gem as induced minor, as shown in Figure 3.16.

First of all, in such a minimal counterexample there is only one vertex in C of degree
2, let us call it c. We will consider all the ways that the vertices j1 and j2 can be
connected to the neighbors of c and show that in every such case we can contract our
graph to one of the graphs on Figure 3.15. According to Remark 3.11, each of j1 and j2

will have either two or three neighbors on C.
First case: both j1 and j2 are connected with both neighbours of c. As N(j1) 6⊆ N(j2)
and N(j2) 6⊆ N(j1), each of j1, j2 has a neighbor which is not adjacent to the other. But
since j1 and j2 can have at most three neighbors, the neighborhood of j1 and j2 is now
completely characterized. The leftmost part of Figure 3.15 presents the only possible
graph for this case.

c
j1

j2

c
j1

j2

c
j2

j1

Figure 3.15: Induced minor-minimal counterexamples in Lemma 3.29.

Second case: j1 is connected with exactly one of neighbours of c and j2 is connected with
the other one. In this case, as each of j1, j2 has at least two neighbors on C, contracting
all the edges of C whose both endpoints are at distance at least two from c gives the
graph depicted in the center of Figure 3.15.
Third case: j1 is connected with both neighbours of c, and j2 is connected with at most
one of them. In this case, as long as C has more than 4 edges, we can contract an edge
of C to find a smaller counterexample. Precisely, if there are at least 4 edges, there
are two edges e1, e2 in C within distance exactly 1 to c and those two do not share an
endpoint. Moreover j2 has a neighbour s in C \ N(c), say x, which is not a neighbour
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of j1. Now one of the edges e1, e2 is not incident to s and contracting this edge would
yield a smaller counterexample.

Therefore, we only have to care about the case where C has exactly 4 edges and this
case is exactly the graph represented on the right of Figure 3.15.

We have considered all possible induced minor-minimal counterexamples (up to sym-
metry between j1 and j2). For each of these cases, which are presented on Figure 3.15,
we will now give an induced minor model of Gem, which proves that they all contain
Gem as induced minor. For each graph of depicted on Figure 3.16 we consider the model
mapping the vertex vi of Gem to the set of vertices labeled Mi. It is easy to check that
each of these sets induces a connected subgraph and that the adjacencies between two
sets correspond to the ones between the corresponding vertices of Gem. This concludes
the proof.

M2

M3

M1

M5

M1

M1

M4

M3

M3

M1

M4

M2

M5 M1

M1

M4

M3

M5

M2

Figure 3.16: Models of Gem in graphs from Figure 3.15.

Corollary 3.11. If C has at least one vertex of degree two, then it has at most three
vertices of degree greater than two.

Proof. Notice that the set of vertices of C that have degree greater then two is exactly
the union ofNC(J) over all connected components J ofG\C. We just saw in Lemma 3.29
that for every two connected components of G \ C, the neighborhood on C of one is
contained in the neighborhood on C of the other and that these neighborhoods have
size at most three. Therefore their union have size at most three as well.

Corollary 3.12. Every connected component of G \ C is basic and C has at most six
vertices of degree greater than two.

Proof. Remark that contracting H1 to a single vertex h in G gives a graph G′ and a
cycle C ′ (contraction of C) such that every connected component of G′ \ C ′ is basic
and C ′ has at least one vertex of degree 2, h. By Corollary 3.11 C ′ has at most three
vertices of degree greater than two. Notice that these vertices belong to G′ \ h which is
isomorphic to G \H1. Hence G \H1 has at most three vertices of degree greater than
two. Applying the same argument with H2 instead of H1 we get the desired result.

Now we are ready to prove main decomposition theorem for Gem-induced minor-free
graphs.
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Proof of Theorem 3.18. Recall that we are looking for a subset X of V (G) of size at
most 6 such that each component of G \X is basic in G.

If G is 3-connected, by Proposition 3.1 it is either a cograph, or has a subset X of
four vertices such that every connected component of G \X is a cograph. Let us now
assume that G is not 3-connected.

In the case where G has a K2-cut S, or if G has a K2-cut S such that G \ S has
more than two connected components, then according to Lemma 3.27 and Corollary 3.10
respectively, S satisfies the required properties. In the remaining case, by Corollary 3.12
G has a cycle C such that every connected component of G \C is basic in G and which
has at most six vertices of degree more than two in G. Let X be the set containing those
vertices of degree more than two. Observe that every connected component of G \ X
is either a connected component of G \ C (hence it is basic) or a part of C, i.e. a path
whose internal vertices are of degree two in G (which is basic as well). As |X| ≤ 6, X
satisfies the desired properties.

Well-quasi-ordering of labelled cographs

We were able to show that structure of 2-connected Gem-induced minor-free graphs is
essentially very simple, with building blocks being cographs and long induced paths. To
conclude that labelled 2-connected Gem-induced minor-free graphs are wqo by induced
minor relation we will need the fact that the building blocks, in particular labelled
cographs, are themselves well-quasi-ordered by the induced minor relation.

This following result has been proven by Damaschke in [Dam90] in the unlabelled
case. The proof for the labelled case follows the same general approach. We present
below the sketch of the proof.

Let us denote C to be a class of all cographs.

Theorem 3.21. For any wqo (Q,�Q), the class lab(Q,�Q)(C) is wqo with respect to ≤isg.

Proof. Let us define as usual (S,�) to be (P<ωQ,�P ). Define (S+,�+) such that S+

is disjoint union of S and {0, 1}; the order �+ is such that �+ is just � when restricted
to S, but 0, 1 and elements of S are incomparable.

By virtue of Remark 3.2 and Corollary 3.2, we know that (S+,�+) is wqo. By the
labelled version of the famous Kruskal theorem (see [Kru60]), the class of all finite trees
labelled by (S+,�+) is wqo, with respect to a topological minor relation. In particular,
we can consider class T of finite trees, labelled by (S+,�+), such that all internal nodes
have labels {0, 1}, and all leaves has label from S. We will consider this class again with
the ordering by a labelled topological minor relation. As it is a subclass of a wqo, the
class T itself is also wqo. We will now provide a epi φ : T → lab(Q,�Q)(C), and we will
conclude by Remark 3.3, that lab(Q,�Q)(C) is wqo.

The function φ is defined as follows: given a labelled tree T , if the whole tree is only
a single leaf, it produces a graph with a single vertex, and with the same label as the
one the leaf has in T . If the tree is larger than a single vertex, it has root r with label
s, and subtrees T1, T2, . . . , Tk, all rooted at some children of r. Then φ(T ) is defined
as disjoint union of φ(Ti) if label s were 0, or join of φ(Ti) of label of s were 1. It is
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well-known, that every cograph has such a presentation, i.e. that function φ indeed is
surjective. The tree T which is mapped G by φ is usually called cotree of G.

Now we only need to prove that φ is monotone. Indeed, consider two labelled trees
T1, T2 ∈ T , such that T1 ≤ T2, and let i : V (T1) 7→ V (T2) to be an embedding of T1 in
T2 as a topological minor, such that λT1(u)�+ λT2(i(u)). In particular, by the second
property, we conclude that i maps leaves of T1 to leaves of T2. Therefore we can consider
a corresponding mapping ĩ from V (φ(T1)) to V (φ(T1)). Clearly it is injective, and has
the property that λφ(T1)(u)�λφ(T2)(̃i(u)). To show that it defines an induced minor

model of φ(T1) as an induced subgraph of φ(T2), we only need to prove that ĩ(u) and
ĩ(v) are connected by an edge iff u and v are connected by an edge.

Remark that two vertices u, v ∈ V (φ(T )) are connected by an edge in φ(T ) iff the
label of a lowest common ancestor of the corresponding leaves in T is 1. But i was an
embedding of T1 in T2 as a topological minor, so in particular lowest common ancestor
of i(u) and i(v) is the same as an image of lowest common ancestor of u, v. Moreover,
by the definition of the order S+, embedding i preserves exactly labels of internal nodes.
Hence φ is indeed monotone and this concludes the proof of the theorem.

Well-quasi-ordering Gem-induced minor-free graphs

In this section we will give a proof of Theorem 3.20.
We define B as the class of graphs which are disjoint unions of induced paths and

cographs, and C as the class of cographs.

Lemma 3.30. Let k ∈ N, let (S,�) be a wqo and let G be the class of (S,�)-labelled
graphs such that the removal of at most k vertices yields a graph of B. Then (G,≤im) is
a wqo.

Proof. Let k be fixed.
For every G ∈ G, let XG be a set of at most six vertices of G such that G \X ∈ B.
For every graph H on at most six vertices, let GH = {G ∈ G, G[XG] = H}. Observe

that this gives a partition of G into a finite number of subclasses. By the virtue of
Remark 3.2, we only need to focus on one of these classes. For the sake of simplicity,
we assume that H has exactly k vertices {v1, . . . vk}.

Informally, our goal is now to define a function f which constructs a graph of GH ,
given an encoding in terms of graphs of B. We will then show that f is an epi.

Le f be the function whose domain is the quasi-order

(D,�D) = (S,�)k ×
(
P<ω(lab(S,�)(OP)),≤c

?
)(k2) × (lab(S,�)×(2J1,kK,=)(C),≤isg)

(where �D = �k×(≤c
?)(

k
2) ×≤isg) and which, given a tuple(

(si)i∈J1,kK, (Li,j)i,j∈J1,kK,i<j, J
)

such that

• (si)i∈J1,kK ∈ Sk is a tuple of k labels from S,
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• (Li,j)i,j∈J1,kK,i<j is a tuple of
(
k
2

)
subsets of (S,�)-labeled oriented paths, and

• J ∈ lab(S,�)×(2J1,kK,=)(C), is a (S,�)× (2J1,kK,=)-labeled cograph,

returns the graph constructed as follows, starting from H:

1. label si the vertex vi, for every i ∈ J1, kK;

2. for every i, j ∈ J1, kK2 , i < j, and for every path L ∈ Li,j, add a copy of L to the
current graph, connect vi to fst(L) and vj to lst(L);

3. add to the current graph a copy of the underlying graph of J and, for every vertex
labeled (s, {e1, . . . el}) (for some l ∈ J1, kK), give the label s to the corresponding
vertex in the current graph and make it adjacent to vertices ve1 , . . . , vdl .

By construction, the codomain of f is included in lab(S,�)(GH). Let us now show that
f is surjective on lab(S,�)(GH). Let G ∈ lab(S,�)(GH) and let us consider the connected
components of G \ XG. Let J be the disjoint union of all such components that are
cographs. Note that J is a cograph as well. For every vertex v of J of label s, we relabel
v with the label (s, {e1, . . . el}), where {e1, . . . el} are all the integers i ∈ J1, kK such that
v is adjacent to vi. For every i, j ∈ J1, kK , i < j, let Li,j be the set of paths of G \XH

which are neighbors in G of vi and vj, to which we give the following orientation: the
first vertex of such a path is the one which is adjacent to vi and its last vertex is the
one adjacent to vj. Last, let si be the label of vi for every i ∈ J1, kK. Then it is clear
that G is isomorphic to f({si}i∈J1,kK, {Li,j}i,j∈J1,kK,i<j, J). Consequently f is surjective
on lab(S,�)(GH).

Our current goal is now, in order to show that f : (B,�B) → (lab(S,�)(GH),≤im) is
an epi, is to prove that it is monotone. Let A,B be two elements of

Sk ×
(
P<ω(lab(S,�)(OP))

)(k2) × lab(S,�)×(2J1,kK,=)(C)

such that A�D B. Let us show that f(A)≤im f(B). According to Remark 3.4, it is
enough to focus on the cases where A and B differ by only one coordinate.
First case: A and B differ by the i-th coordinate, for i ∈ J1, kK. Let sA (resp. sB) be the
value of the i-th coordinate of A (resp. of B). According to the definition of f , the graphs
f(A) and f(B) differ only by the label of vertex vi: this label is sA in f(A) whereas it
equals sB in f(B). But since we have sA� sB (as A ≤B B), we get f(A)≤im f(B).
Second case: A and B differ by the last coordinate. Let JA (resp. JB) be the value of
the last coordinate of A (resp. of B). As previously, A�B B gives JA≤isg JB, therefore
we can obtain JA by removing vertices of JB and contracting labels. As the adjacencies
of vertices of JA and JB to the rest of f(A) and f(B) (respectively) depend only on the
label of their vertices, the same deletion and contraction operations in f(B) give f(A),
hence f(A)≤im f(B).
Third case: A and B differ by the i-th coordinate, for some i ∈

q
k + 1, k +

(
k
2

)y
. Let

LA (resp. LB) be the value of this coordinate in A (resp. in B). As previously again,
A�B B gives LA≤c LB, consequently we can obtain LA by contracting edges of JB
and contracting labels. Since the contraction relation on OP requires that endpoints
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(beginning and end of a path) are preserved, the same contraction operations in f(B)
give f(A), thus we again get f(A)≤im f(B).

We just proved that f is monotone, therefore it is an epi. By Remark 3.3, it is
enough to show that (B,�B) is a wqo in order to prove that (lab(S,�)(GH),≤im) is a
wqo.

Notice that (B,�B) is a Cartesian product of wqos and of the set of finite subsets of a
wqo. Indeed, we assumed that (S,�) is a wqo. Furthermore, we proved in Lemma 3.23
that for every wqo (S,�), the quasi-order (lab(S,�)(OP),≤c) is a wqo, and hence so
is (P<ω(lab(S,�)(OP)),≤c

?) (cf. Corollary 3.2). Last, we proved in Theorem 3.21 that
the class of cographs labeled by a wqo is well-quasi-ordered by the induced subgraph
relation. Therefore, (B,�B) is a wqo, which concludes the proof.

Proof of Theorem 3.20. According to Lemma 3.2, it is enough to prove that for every
wqo (S,�), the class of (S,�)-labeled 2-connected graphs which does not contain Gem as
induced minor is well-quasi-ordered by induced minors. By Theorem 3.18, these graphs
can be turned into a disjoint union of paths and cographs by the deletion of at most six
vertices. A consequence of Lemma 3.30 (for k = 6), these graphs are well-quasi-ordered
by induced minors and we are done.

3.6 Contractions and well-quasi-ordering

This section is devoted to the proof of Theorem 3.10.

3.6.1 On graphs with no diamond

In this section we show that graphs in Excl≤c(D2) have a simple structure. More pre-
cisely, we prove the following lemma.

Lemma 3.31. Graphs of Excl≤c(D2) are exactly the connected clique-cactus graphs.

The proof of Lemma 3.31 will be given after a few lemmas. If C is a cycle of a
graph G and {u, v}, {u′, v′} ⊆ V (C), we say that {u, v} and {u′, v′} are crossing in C if
u, v, u′, v′ are distinct and are appearing in this order on the cycle.

Lemma 3.32. Let G be a graph and let C be a cycle in G. If C has at least one chord
and one non-chord in G, then it has one chord and one non-chord that are crossing in
C.

Proof. Let {x, x′} be a non-chord of C in G and let P and Q be the connected com-
ponents of C \ {x, x′} which obviously are paths. Let us assume that every chord of C
in G has both endpoints either in P or in Q (otherwise we are done) and let {y, y′} be
a chord of C in G, the endpoints of which belong, say, to P . Let z be a vertex of the
subpath of P delimited by y and y′ such that z 6∈ {y, y′} and let z′ be a vertex of Q. If
{z, z′} is a chord of C in G, then {x, x′} and {z, z′} are satisfying the required property.
Otherwise, {z, z′} is a non-chord and now {y, y′} and {z, z′} are crossing.
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Lemma 3.33. Let G ∈ Excl≤c(D2). Every cycle of G is either an induced cycle, or it
induces a clique in G.

Proof. Let G be a graph of Excl≤c(D2) and let C be a cycle of G. For contradiction, let
us assume that C has at least one chord {u, u′} and one non-chord {v, v′}. According to
Lemma 3.32 we can assume without loss of generality that they are crossing in C. Let P
and Q be the two connected components of C \ {v, v′}. In the graph G[C], contracting
P to a single vertex x and Q to y yields a graph on four vertices v, v′, x, y such that

1. v, x, v′, y lie on the cycle in this order;

2. {v, v′} 6∈ E(G); and

3. {x, y} ∈ E(G) (as {u, u′} connects the subgraphs that are respectively contracted
to x and y).

The obtained graph is D2, a contradiction. Therefore C has either no chords or no
non-chords in G. It is clear that in the first case C is an induced cycle of G and that in
the second case it induces a clique.

Lemma 3.34. Let G ∈ Excl≤c(D2) be a 2-connected graph. Then G is either a cycle,
or a clique.

Proof. We assume that |V (G)| > 1, otherwise the result is trivial. Let C be a longest
cycle of G. By Lemma 3.33 the cycle C is either an induced cycle or it induces a
clique in G. Let us treat these two cases separately. For contradiction, we assume that
V (G) \ V (C) is not empty and we call H1, . . . , Ht the connected components of G \ C,
for some t ∈ N≥1. Let us consider the graph G′ where Hi, which is connected, has been
contracted to a single vertex hi, for every i ∈ J1, tK. Observe that G′ is 2-connected,
given that G is 2-connected. Also, G′ ∈ Excl≤c(D2).

First case: C induces a clique in G′. Notice that C is then a maximal clique. Let
u = h1. As C is maximal, there is a vertex v ∈ V (C) such that {u, v} 6∈ E(G′). Let x
and y be two neighbors of u on C (they exist since G′ is 2-connected). These vertices
define two subpaths of C. Let R be the longest of these paths that contains v. Observe
that in this case, R has at least three vertices. The union of {u, x}, {u, y} and R is a
cycle of G′ that we call C ′. According to Lemma 3.33, this cycle is either induced or it
induces a clique. As {u, v} 6∈ E(G′), C ′ cannot induce a clique in G. On the other hand,
C is not an induced cycle as every pair of vertices of R are adjacent (and |V (R)| ≥ 3 as
mentioned earlier). We reached the contradiction we were looking for.

Second case: C is an induced cycle and has at least 4 vertices. Let i ∈ J1, tK. As G′ is
2-connected, hi has at least two neighbors on C: let x and y be two of them.

Claim 3.1. x and y are not adjacent.

Proof. Let us assume that {x, y} ∈ E(G′). Let C ′ be the cycle obtained from C by
replacing the edge {x, y} by the path xhiy. This cycle is not induced as x, y are not
adjacent in C ′ whereas {x, y} ∈ E(G). It does not induce a clique neither since x is
not adjacent with the other neighbor of y on C (which is not x as we assume that
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C has at least 4 vertices). This contradicts Lemma 3.33 and therefore proves that
{x, y} 6∈ E(G).

Every pair of distinct vertices of the cycle C defines two subpaths of C meeting only
at these vertices. Let u and v be two vertices of C such that hi has at least one neighbor
in the interior of each of the subpaths of C defined by u and v, that we will respectively
call P and Q. Such vertices exists, as a consequence of Claim 3.1.

Let us consider the contraction H of G′ obtained by contracting the interior path of
P (respectively Q) to a single vertex wP (respectively wQ) and then by contracting the
edge connecting hi to wP . This edge exists by definition of u and v. Then uwPvwQ is a
cycle of H where {wP , wQ} is a chord (because we contracted to wP the vertex h1 which
was adjacent to both wP and wQ) and {u, v} is a non-chord (as they were non-adjacent
vertices of the induced cycle C and that noting has been contracted to them). According
to Lemma 3.33, the graph H contains D2 as contraction. As H is a contraction of G,
then D2≤c G, a contradiction.

In both cases we reached a contradiction, therefore V (G) \ V (C) is empty: G is a
clique or an induced cycle.

We are now ready to prove Lemma 3.31.

Proof of Lemma 3.31. The fact that a graph of Excl≤c(D2) is a clique-cactus is a straight-
forward corollary of Lemma 3.34. It is easy to see that a cactus graph does not contain
D2 as contraction by noticing that D2 is a contraction of a graph if and only if it is a
contraction of one of its 2-connected components. As D2 is neither a contraction of a
cycle, nor of a clique, we get the desired result.

3.6.2 Well-quasi-ordering clique-cactus graphs

We proved in the previous section that graphs of Excl≤c(D2) are exactly the connected
clique-cactus graphs. This section contains the last part of the proof of Theorem 3.10,
which is the following lemma.

Lemma 3.35. Connected clique-cactus graphs are well-quasi-ordered by ≤c.

In this section we deal with rooted graphs. Let us denote by C the class of rooted
connected clique-cactus graphs. In this class, two isomorphic graphs with a different root
are seen as different. It is clear that proving that (C,≤c) is a wqo implies Lemma 3.35.
This is what we will do.

Building blocks. Let us define three graph constructors stick : C? → C, cycle : C? → C,
and clique : C? → C. Given a sequence 〈G0, . . . , Gp−1〉 ∈ C? (for some p ∈ N), if U denote
the union of the graphs G1, . . . , Gp−1, then we define;

• stick(G0, . . . , Gp−1) is the graph obtained from U by identifying the vertices

root(G0), . . . , root(Gp−1)

;
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• cycle(G0, . . . , Gp−1) is the graph obtained from U by adding the edges

{root(Gi), root(G(i+1) mod p)}

for every i ∈ J0, p− 1K; and

• clique(G0, . . . , Gp−1) is the graph obtained from U by adding the edges

{root(Gi), root(Gj)}

for every distinct i, j ∈ J0, p− 1K.

The root of stick(G0, . . . , Gp−1), cycle(G0, . . . , Gp−1) and clique(G0, . . . , Gp−1) is the
vertex that is the root of G0. These constructors will allow us to encode graphs of C
into sequences.

We will now decompose graphs of C along blocks.
For every block B of a graph G, let decB(G) denote the collection of all the graphs

H that can be constructed from some connected component C of G \V (B) by adding a
new vertex v adjacent to the vertices of C that are adjacent to a vertex of B in G and
setting root(H) = v.

Observe that, as soon as root(G) ∈ V (B), every graph of decB(G) is a proper
contraction of G. Let dec(G) denote the union of the sets decB(G) for every block B of
G containing the root of G. The following observation is a consequence of Lemma 3.31.

Observation 3.2. For every graph G ∈ C there is a (non necessarily unique) sequence
〈G0, . . . ,Gp−1〉 ∈ dec(G)? (for some p ∈ N) such that either

G = cycle(stick(G0), . . . , stick(Gp−1)), or

G = clique(stick(G0), . . . , stick(Gp−1)).

From encodings to well-quasi-ordering. The following lemma will allow us to
work on sequences in order to show that two graphs are comparable.

Lemma 3.36. Let σ, τ ∈ C?. If σ≤c
? τ , then

(i) cycle(σ)≤c cycle(τ);

(ii) clique(σ)≤c clique(τ); and

(iii) stick(σ)≤c stick(τ).

Proof. Let σ = 〈H1, . . . , Hp〉 and τ = 〈G1, . . . , Gq〉 (for some positive integers p, q)
and let H = cycle(σ) and G = cycle(τ). For the sake of readability we will refer to
Hi’s (respectively Gi’s) either as elements of σ (respectively τ) or as subgraphs of H
(respectively G).

If σ≤c
? τ , then there is, by definition of ≤c

?, an increasing function ϕ : J1, pK→ J1, qK
such that ∀i ∈ J1, pK , Hi≤cGϕ(i). Therefore there is a sequence of edge contractions
transforming Gϕ(i) into Hi for every i ∈ J1, pK. Let us perform the following operations
on G:
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1. for every j ∈ J1, qK \ {ϕ(i), i ∈ J1, pK} we contract the subgraph Gj to a single
vertex vj and we then contract some edge incident with vj;

2. for every i ∈ J1, pK we contract the subgraph Gi in order to obtain the sub-
graph Hϕ(i).

Observe that after step 1., we obtain the graph cycle(τ−), where τ− can be obtained from
τ be deleting elements of indices in J1, qK \ {ϕ(i), i ∈ J1, pK}. Intuitively, we contracted
the graphs that do not appear in H and removed their attachment point from the cycle.
Then we replace in step 2. every graph of τ− by its corresponding contraction of σ.
Therefore the graph obtained at the end is cycle(σ), that is H, as required.

The cases (ii) and (iii) are very similar: H can be obtained from G by following the
same operations as above.

Proof of Lemma 3.35. Let us assume by contradiction that (C,≤c) is not a wqo. All
decreasing sequences of this quasi-order are finite (as each contraction decreases the
number of edges by one), therefore (C,≤c) contains an infinite antichain. Let us consider
a minimal antichain {Ai}i∈N of (C,≤c). Let B =

⋃
i∈N dec(Ai) and let us show that

(B,≤c) is a wqo. For contradiction, let us assume that it is not a wqo and let {Bi}i∈N
be a minimal antichain of this quasi-order.

By definition of B, for every H ∈ B there is an integer i ∈ N such that H ≤cAi (for
instance, an integer i such that H ∈ dec(Ai)). Therefore for every i ∈ N there is an
integer π(i) such that Bi≤cAπ(i). Let k ∈ N be the integer where π is minimum. Then
the following sequence

A = A0, . . . , Aπ(k)−1, Bk, Bk+1, . . .

is an infinite antichain of (C,≤c). Indeed, as both {Ai}i∈N and {Bi}i∈N are antichains,
every pair of comparable graphs of A involves one graph of {Ai}i∈J1,π(k)−1K and one
graph of {Bi}i∈N≥k . Let us assume that for some i ∈ J0, π(k)− 1K and j ∈ N≥k we
have Ai ≤ Bj. Then Ai ≤ Bj ≤ Aπ(i), a contradiction with the fact that {Ai}i∈N is an
antichain. The case Bj ≤ Ai is not possible by the choice of k. This proves that (B,≤c) is
a wqo. According to Theorem 3.1, (B?,≤c

?) is also a wqo. Let B′ = {stick(σ), σ ∈ B?}.
Item (iii) of Lemma 3.36 implies that any antichain in (B′,≤c) can be translated into an
antichain of the same length in (B?,≤c

?), hence (B′,≤c) is a wqo. By the same argument
(now using items (i) and (ii) of Lemma 3.36), we deduce that the quasi-orders

({cycle(σ), σ ∈ B′?},≤c) and ({clique(σ), σ ∈ B′?},≤c)

are well-quasi-orders. Therefore U = {cycle(σ), σ ∈ B′?} ∪ {clique(σ), σ ∈ B′?} is well-
quasi-ordered by ≤c, as a consequence of Remark 3.2. According to Observation 3.2,
we have {Ai}i∈N ⊆ U . This contradicts the fact that {Ai}i∈N is an infinite antichain.
Therefore (C,≤c) is a wqo and we are done.

3.6.3 The dichotomy

The next observations will allow us to give the the proof of Theorem 3.10, using the
results obtained in the previous section. Recall that our goal is to characterize the
graphs H such that (Excl≤c(H),≤c) is a wqo.
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Observation 3.3. For every p ∈ N≥1, contracting one edge in Dp gives either Dp−1, or
K1,p, depending on which edge is contracted.

As we want to identify graphsH such that (Excl≤c(H),≤c) is a wqo, we must consider
every graph H such that A ∩ Excl≤c(H) is finite, for every antichain A. A first step
towards this goal is the following observation.

Lemma 3.37. Let p ∈ N≥2. If H ≤cK2,p then H ∈ D ∪ S.

Proof. Given that H ≤cK2,p, there is a sequence of contractions transforming K2,p into
H. If this sequence contains only one contraction, then it is straightforward that H =
Dp−1. Therefore in the other cases H is a contraction of Dp−1. We get the result from
Observation 3.3 and the observation that every contraction of a graph of S belongs
to S.

Observation 3.4. For every positive integers p, q such that p < q, we have Dp≤cK2,q.

Indeed, if F is a collection of q − p edges that are pairwise not incident with the
same vertex of degree 2 of K2,p, then it is easy to check that contracting F in K2,p yields
Dp. An immediate consequence of Observation 3.4 is that AK ∩Excl≤c(Dp) is finite for
every positive integer p.

From the fact that every graph of D ∪ S is a contraction of Dp for some positive
integer p, Observation 3.4 gives.

Observation 3.5. If (Excl≤c(H),≤) is a wqo, then H ≤c Dp for some p ∈ N≥1

However we will need an other antichain in order to find more properties that H
must satisfy. Let us consider the antichain AC of antiholes, that has been presented in
Subsection 3.4.1.

Again, we look at graphs H such that Excl≤c(H) ∩ AC is finite. As a wqo must
contain none of AK and AC , it is enough to consider graphs such that Excl≤c(H) ∩AC
is finite among those for which Excl≤c(H) ∩ AK is finite.

Lemma 3.38. If p ≥ 3 then Excl≤c(Dp) ∩ AC is infinite.

Proof. For every p ≥ 3, then graph Dp has independence number at least 3. Let q > p.
As contracting edges can only decrease the independence number, there is no sequence
of contractions transforming Cq (which has independent number 2) to Dp, for every
integer q > p. Therefore Cq ∈ Excl≤c(Dp), for every integer q > p.

Corollary 3.13. If (Excl≤c(H),≤c) is a wqo, then H ≤c D2.

We are now ready to give the proof of Theorem 3.10.

Proof of Theorem 3.10. Let H be a graph such that Excl≤c(H) is a wqo. Then H ≤cD2,
by Corollary 3.13. On the other hand, if H ≤cD2 then Excl≤c(H) ⊆ Excl≤c(D2). Ob-
serve that every antichain (respectively decreasing sequence) of (Excl≤c(H),≤c) is an
antichain (respectively a decreasing sequence) of (Excl≤c(D2),≤c). As a consequence of
Lemma 3.35 we get that (Excl≤c(H),≤c) is a wqo and we are done.
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3.6.4 Canonical antichains and contractions

In this section, we will use the following result of Ding in order to prove Theorem 3.15.

Lemma 3.39 ( [Din09]). Let (S,�) be a quasi-order, let {Ai}i∈N be a sequence of
elements of S and let {Wi}i∈N be a sequence of sequences of elements of S. If we have

(i) {Ai}i∈N is a fundamental infinite antichain; and

(ii) for every i ∈ N, Wi is a fundamental infinite antichain; and

(iii) for every i ∈ N and every H ∈ Wi, Ai�H,

then (S,�) does not have a canonical antichain.

We will now define some sequences of graphs and show that they satisfy the properties
of Lemma 3.39.

For every p, q ∈ N, let Wp,q be the graph obtained by adding two non-adjacent
dominating vertices to the disjoint union of Kp and K2,q. These two vertices are called
poles, and the two vertices corresponding to the part of K2,q of size 2 are called semipoles.
Observe that the other vertices either have degree two (in which case they are adjacent
to the two poles, only), or have degree four (and they are adjacent to both poles and
both semipoles).

Lemma 3.40. For every p, p′, q, q′ ∈ N≥3, there is no contraction model of Wp,q in Wp′,q′

if (p, q) 6= (p′, q′).

Proof. Let us assume that there is a contraction model ϕ of Wp,q in Wp′,q′ . Let u be
a vertex of Wp,q of degree two. By definition of a contraction model, its image by ϕ
must be a subset of degree 2. In Wp′,q′ , the connected subsets of degree 2 are either of
the form {v}, or V (Wp′,q′) \ {v}, where v ∈ V (Wp′,q′) has degree 2. As Wp,q has more
than two vertices, the only possible form for ϕ(u) is {v} for some vertex v ∈ V (Wp′,q′)
of degree 2. Therefore we have p ≤ p′. The same argument applied to vertices of degree
4 yields q ≤ q′. Let us now consider poles and semipoles.

Let u be a pole. Observe that according to the above remarks, ϕ(u) must be adjacent
to vertices of degree two, so it should contain a pole of Wp,q. If ϕ(u) contains in addition
a vertex of degree 2 or 4 of Wp,q, then ϕ(u) is dominating. This is not possible since u is
not dominating, therefore ϕ(u) = {v} for some pole v of Wp′,q′ . Let us now assume that
u is a semipole of Wp,q. As previously, the above remarks imply that ϕ(u) is adjacent
to vertices of degree 4 of Wp′,q′ . Hence ϕ(u) contains a semipole of Wp′,q′ (it cannot
contain a pole as both belong to the image of poles of Wp,q). Therefore each semipole
of Wp,q is sent to a subset of V (Wp′,q′) containing a semipole. Observe that ϕ(u) cannot
contain a vertex of degree two otherwise it would not be connected. Besides, it cannot
contain a vertex of degree 4 otherwise it would be adjacent to the image by ϕ of the
other semipole of Wp,q. Consequently ϕ(u) contains a semipole of Wp′,q′ and no other
vertex. We proved that for every u ∈ V (Wp,q), the set ϕ(u) is a singleton. Therefore
|V (Wp,q)| = |V (Wp′,q′)|. Given that p ≤ p′ and q ≤ q′ (as proved above), this is possible
only if p = p′ and q = q′. This concludes the proof.
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Corollary 3.14. {Wp,q}p,q≥3 is an antichain for ≤c.

For every i ∈ N≥3, let Wi = {Wi,q}q∈N≥3
.

Lemma 3.41. For every p, q ∈ N≥3, K2,p+1≤c Wp,q.

Proof. Let S be the set of vertices of degree 4 and semipoles of Wp,q (i.e. the vertices of
the copy of K2,q used in the construction of Wp,q). These vertices induced a connected
subgraph as every vertex of degree 4 is adjacent to both semipoles. It is not hard to see
that contracting S to a single vertex yields K2,p+1.

Observation 3.6. Let p, q ∈ N≥3. There is no path with containing four independent
vertices in Wp,q.

Corollary 3.15. For every p, q ∈ N≥3, the graph Wp,q does not contain the gem as
induced minor.

Corollary 3.16. No graph of Incl≤c(Wi) contains the gem as induced minor, for every
i ∈ N≥3.

The following observation will allow us to use Theorem 3.20, which deals with induced
minors.

Observation 3.7. Let H and G be two graphs. If both of them have a dominating vertex,
then H ≤cG ⇐⇒ H ≤im G.

The following corollary is a direct consequence of Theorem 3.20, Observation 3.7
and Corollary 3.16.

Corollary 3.17. Graphs of Incl≤c(Wi) with a dominating vertex are wqo by ≤c, for
every i ∈ N≥3.

Lemma 3.42. Wi is a fundamental antichain, for every i ∈ N≥3.

Proof. Let i ∈ N≥3. We need to show that (Incl≤c(Wi),≤c) is a wqo. Let us call inner
edge every edge of Wp,q that is not incident with a pole, for every p, q ∈ N≥3. Observe
that if a graph H ∈ Incl≤c(Wi) has been obtained by contracting at least one edge
incident with a pole, then H has a dominating vertex. According to Corollary 3.17,
these graphs are wqo by ≤c, therefore we will here consider graphs of Incl≤c(Wi) that
have been obtained by only contracting inner edges. We call I this class.

We first show that I is the union of the two following classes:

• the class I0 of graphs that can be obtained by adding two non-adjacent dominating
vertices to Ki +Dq for some q ∈ N≥0; and

• the class I1 of graphs that can be obtained by adding two non-adjacent dominating
vertices to Ki + Sq for some q ∈ N≥0.
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Again we use the notion of poles to denote the two dominating vertices added to
construct graphs of I0 and I1. A semipole is either a dominating vertex of Dq (when
dealing with graphs of I0), or the dominating vertex of Sq (when dealing with graphs
of I1).

Contracting an inner edge in Wi,q clearly yields a graph of I0. Now, observe that
any further contraction of an edge connecting a vertex of degree 4 to a semipole gives
a graph of I0 again. If, on the other hand, we contract the edge connecting the two
semipoles, then we get a graph of I1. On a graph of I1, contracting an edges of the star
(used in the construction of this graph) still gives a graph of I1. Therefore I = I0 ∪ I1.

Let us assume that I is not wqo by ≤c. Therefore it has an infinite antichain. As
I = I0 ∪ I1, one of I0 and I1 (at least) has an infinite antichain. Let A be such an
infinite antichain.

We now look at vertices of graphs of A that are neither poles, nor semipoles, nor
have degree 2. These vertices are the vertices of degree 2 of the copy of Dq or the vertices
of degree one of the copy of Sq used in the construction of the graphs of A (depending
whether A ⊆ I0 or A ⊆ I1). We call them inner vertices.

Let A and A′ be two graphs of A such that A has less inner vertices than A′. These
graphs exist since the elements of A are distinct. Let q be the number of inner vertices
of A and q′ the one of A′.

In both cases A ⊆ I0 and A ⊆ I1 we can obtain A from A′ by contracting q′−q inner
vertices of A′ to a semipole. This contradicts the fact that A is an antichain. Therefore
(I,≤c) is a wqo. This implies that Wi is fundamental, as required.

We are now ready to prove Theorem 3.15.

Proof of Theorem 3.15. Let Ai = K2,i+1 for every i ∈ N≥3. According to Lemma 3.42
and Lemma 3.41, these sequences of graphs satisfy the requirements of Lemma 3.39.
Therefore there is no canonical antichain for the contraction relation.

3.7 Multigraph contractions and well-quasi-ordering

In this section, we prove Theorem 3.11 and Theorem 3.16. Let us introduce some
definitions and present the intermediate results that we use. First of all, as opposite to
the previous sections of this chapter, we deal here with multigraphs: multiple edges are
allowed, but not loops.

A bond is a minimal non-empty edge cut, i.e. a minimal set of edges whose removal
increases the number of connected components (cf. Figure 3.17).

Figure 3.17: A bond of size 3 (dashed edges) in the house graph.
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For every p, k ∈ N, let Gp,k be the class of graphs having at most p connected
components and not containing a bond of order more than k. What we prove in this
section following.

Theorem 3.22. For every p, k ∈ N, the class Gp,k is well-quasi-ordered by ≤mc .

It is easy to see that Theorem 3.11 is a consequence of Theorem 3.22. Remark that a
graph has a bond of order k iff it contains θk as contraction, and that it has p connected
components iff it can be contracted to Kp. Theorem 3.22 is proven in Subsection 3.7.2
and results on canonical antichains appear in Subsection 3.7.3.

Let us now introduce the notation and definitions we will use in this section. As we
have to handle many objects with several indices, we find more convenient to use the dot
notation A.b, informally meaning “object b related to object A”. For every i ∈ {2, 3}
we denote by H(i)

k the class of all i-connected graphs in a class H.

2-rooted graphs. We define a 2-rooted graph in a very similar way as a rooted graph
is defined. A 2-rooted graph is a triple (G, r, s) where G is a graph and r and s are
two distinct vertices of G. Given two 2-rooted graphs (G, r, s), (H, r′, s′), we say that
(H, r′, s′) is a contraction of (G, r, s), what we denote by (H, r′, s′)≤mc(G, r, s), if there
is a contraction model µ of H in G such that r′ ∈ µ(r) and s′ ∈ µ(s′). For the sake
of simplicity, we sometimes denote by G the 2-rooted graph (G, r, s) and refer to its
first (respectively second) root by G.r (respectively G.s). For every rooted graph G, we
define root(G) = {G.r,G.s}. A 2-rooted graph G is edge-rooted if {G.r,G.s} ∈ E(G).

G.r

u

G.s

v

H.r H.s

J.r

J.s

⊕vu =

G H J = G⊕vu H

Figure 3.18: Attaching H to vertices (u, v) of G (roots are the white vertices).

The operation of attaching a 2-rooted graph H on the pair of vertices (u, v) of graph
G, denoted G⊕vuH, yields the graph rooted in (G.r,G.s) obtained by identifying u with
H.r and v with H.s in the disjoint union of G and H (see Figure 3.18 for an illustration).
If both G and H are (Σ,�)-labeled (for some qoset (Σ,�)), then the labeling function
λ of the graph G⊕vu H is defined as follows:

λ :


V (G⊕vu H) → P(Σ)

w 7→ G.λ(w) if w ∈ V (G) \ {u, v}
w 7→ H.λ(w) if w ∈ V (H) \ {H.r,H.s}
w 7→ G.λ(w) ∪H.λ(w) otherwise, i.e. when w ∈ {u, v}.
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Now we state several results that we will use. The first one is a decomposition
theorem for 2-connected graphs by Tutte.

Proposition 3.2 ( [Tut61], see also [Die05, Exercise 20 of Chapter 12]). Every 2-
connected simple graph has a tree-decomposition (T,X ) such that |Xt ∩ Xt′| = 2 for
every edge {t, t′} ∈ T and all torsos are either 3-connected or a cycle.

Proposition 3.3 ( [OOT93]). For every k ∈ N there is a positive integer ζk such that
every 3-connected simple graph of order at least ζk contains a wheel of order k or a K3,k

as minor.

3.7.1 Gluing graphs

This section is devoted to building larger wqos from smaller ones in classes of labeled
graphs that are rooted by two vertices. Step by step, we will construct wqos that will
be directly used in the proof of the main result, as in Step 3 of the general scheme of
Section 3.3. Labels will be used to reduce the study of (unlabeled) graphs to the case
of 2-connected graphs with labels (by the virtue of Lemma 3.3), whereas roots enable
us to construct graphs using the operation ⊕. In this section, (Σ,�) be any qoset.

Lemma 3.43. Let H,H ′, G,G′ be four (Σ,�)-labeled 2-rooted graphs. If H ≤mc H
′ and

G≤mc
µG′, then for every distinct u, v in V (G) and u′ ∈ µ(u), v′ ∈ µ(v) we have

G⊕vu H ≤mc G
′ ⊕v′u′ H ′.

Proof. Let µH : V (H)→ P(V (H ′)) (respectively µG : V (G)→ P(V (G′))) be a contrac-
tion model of H in H ′ (respectively of G in G′). We consider the following function:

ν :


V (G⊕vu H) → P(V (G′ ⊕v′u′ H ′))

v 7→ µH(v) if v ∈ H \ root(H)
v 7→ µG(v) if v ∈ G \ {u, v}
v 7→ µH(v) ∪ µG(v) otherwise.

Let us check that ν is a contraction model of G⊕vuH in G′⊕v′u′H ′. First, observe that
for every x ∈ V (G⊕vuH), the subgraph induced in G′⊕v′u′H ′ by ν(x) is connected (M2):
either ν(x) = µH(x) or ν(x) = µG(x) (and in these cases it follows from the fact that
µH and µG are models) or ν(x) = µH(x) ∪ µG(x) (if x ∈ {u, v}) and (G′ ⊕v′u′ H ′)[ν(x)]
is connected because both µH(x) and µG(x) induce a connected subgraph and both
contain the root of H ′. Furthermore, the images through ν of two distinct vertices are
always disjoint (M1), and every vertex of G′ ⊕v′u′ H ′ belongs to the image of a vertex
(M7), again because µH and µG are models. Let us now show point (M6). For every
distinct x, y ∈ V (G⊕vu H),

• either x, y ∈ V (H) and {x, y} 6= root(H) and then

multG⊕vuH(x, y) =
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕vuH′(x
′, y′)

as µH is a contraction model (and symmetrically for the case x, y ∈ V (G) and
{x, y} 6= {u, v});
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• or x ∈ V (H) \ root(H) and y ∈ V (G) \ {u, v}: there are no edges between x and
y because every edge of G ⊕vu H is either an edge of H or an edge of G, neither
between ν(x) and ν(y) since ν(x) ⊆ V (H) \ root(H) and ν(y) ⊆ V (G) \ {u, v},
therefore we get

multG⊕vuH(x, y) =
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕vuH′(x
′, y′) = 0;

• or {x, y} = {u, v} = root(H):

multG⊕vuH(x, y) = multG(x, y) + multH(x, y) (by definition of ⊕)

=
∑

(x′,y′)∈µG(x)×µG(y)

multG′(x
′, y′)

+
∑

(x′,y′)∈µH(x)×µH(y)

multH′(x
′, y′)

=
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕vuH′(x
′, y′).

Besides, as a consequence that µG is root-preserving, ν also has this property. Last,
let us check that ν is label-preserving. Let x ∈ V (G ⊕vu H). If x 6∈ {u, v}, then (G ⊕vu
H).λ(x) = G.λ(x) or (G ⊕vu H).λ(x) = H.λ(x) (depending whether x ∈ V (G) \ {u, v}
or x ∈ H \ root(H)) and in these cases labels are preserved, since µG and µH are
label-preserving. If x ∈ {u, v}, then, as µG and µH are label-preserving we have:

(G⊕vu H).λ(x) = G.λ(x) ∪H.λ(y)

�?
⋃

x′∈µG(x)

G′.λ(x′) ∪
⋃

x′∈µH(x)

H ′.λ(x′)

�?
⋃

x′∈ν(x)

(G′ ⊕vu H ′).λ(x′)

and thus ν is label-preserving as well. We just proved that ν is a contraction model of
G⊕vu H in G′ ⊕vu H ′. Consequently, G⊕vu H ≤mc G

′ ⊕vu H ′, as desired.

Corollary 3.18. Let l ∈ N∗, let J be a (Σ,�)-labeled 2-rooted graph and 〈(ui, vi)〉i∈J1,lK
be a sequence of pairs of distinct vertices of J. Let H be a class of (Σ,�)-labeled 2-
rooted graphs, 〈G1, . . . , Gl〉 , 〈H1, . . . , Hl〉 ∈ Hl and let G (respectively H) be the graph
constructed by attaching Gi (respectively Hi) to the vertices (ui, vi) of J, for every i ∈
J1, lK . If 〈H1, . . . , Hl〉≤mc

l 〈G1, . . . , Gl, 〉 then H ≤mc G.

Proof. By induction on l. The case l = 1 follows from Lemma 3.43. If l ≥ 2, then,
let G′ (respectively H ′) be the graph constructed by attaching Gi (respectively Hi)
to the vertices (ui, vi) of J, for every i ∈ J1, l − 1K . By induction hypothesis, we have
H ′≤mc G

′. Since H (respectively G) is isomorphic to H ′ ⊕vlul Hl (respectively G′ ⊕vlul Gl)
and Hl≤mc Gl, by Lemma 3.43, we have H ≤mc G as desired.
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Lemma 3.44. Let H be a family of (Σ,�)-labeled 2-rooted connected graphs, let J be a
(Σ,�)-labeled 2-rooted graph, and let HJ be the class of (Σ,�)-labeled 2-rooted graphs
that can be constructed by attaching a graph H ∈ H to (u, v) for every u, v ∈ V (J). If
(H,≤mc) is a wqo, then so is (HJ ,≤mc).

Proof. Let (u1, v1), . . . , (ul, vl) be an enumeration of all the pairs of distinct vertices of J .
In this proof, we will design an epi that constructs graphs of HJ from a tuple of l graphs
of H. Let f : (Hl,≤mc

l)→ (HJ ,≤mc) be the function that, given a tuple (H1, . . . , Hl) of
l graphs of H, returns the graph constructed from J attaching Hi to (ui, vi) for every
i ∈ J1, lK. This function is clearly surjective. Let us show that it is monotone.

Let (G1, . . . , Gl), (H1, . . . , Hl) ∈ Hl be two tuples such that the following holds:

(H1, . . . , Hl)≤mc
l(G1, . . . , Gl).

According to Remark 3.4, it is enough to deal with the cases where these two sequences
differ only in one coordinate. Since all parameters of f play a similar role, we only look
at the case where H1≤mc G1 and ∀i ∈ J2, lK , Hi = Gi. Let J ′ be the graph obtained
from J by attaching Gi to (ui, vi), for every i ∈ J2, lK . Remark that f(H1, . . . , Hl)
(respectively f(G1, . . . , Gl)) can be obtained by attachingH1 (respectivelyG1) to (u1, v1)
in J ′. By Lemma 3.43 and since H1≤mc G1, we have J ⊕v1u1 H1≤mc J ⊕v1u1 G1 and thus
f(H1, . . . , Hl)≤mc f(G1, . . . , Gl). Consequently, f is monotone and surjective: f is an
epi. In order to show that HJ is a wqo, it suffices to prove that the domain of f is a
wqo (cf. Remark 3.3). As a finite Cartesian product of wqos, (Hl,≤mc

l) is a wqo by
Lemma 3.1. This concludes the proof.

Lemma 3.45. Let H be a family of (Σ,�)-labeled 2-rooted connected graphs and let H◦
be the class of (Σ,�)-labeled graphs that can be constructed from a cycle by attaching a
graph of H to either (u, v) or (v, u) for every edge {u, v}, after deleting the edge {u, v}.
If (H,≤mc) is a wqo, then so is (H◦,≤mc).

Proof. Again, this proof relies on the property of epimorphisms to send wqos on wqos: we
will present an epi that maps sequences of graphs of (H,≤mc) to graphs of (H◦,≤mc). Let
H′ = H∪{(H, s, r), (H, r, s) ∈ H}, i.e. H′ contains graphs of H with the roots possibly
swapped. As the union of two wqos, (H′,≤mc) is a wqo (Remark 3.2). We consider
the function f : (H′?,≤mc

?)→ (H◦,≤mc) that, given a sequence 〈H1, . . . , Hk〉 of graphs
of (H′,≤mc) (for some integer k ≥ 2), returns the graph obtained from the cycle on
vertices v0, . . . , vk−1 (in this order) by deleting the edge {vi, v(i+1) mod k} and attaching
Hi to (vi, v(i+1) mod k), for all i ∈ J1, kK . Observe that by definition of H◦ and H′, the
function f is surjective. We now show that f is monotone. Let G = 〈G0, . . . , Gk−1〉
and H = 〈H0, . . . , Hl−1〉 ∈ H′? be two sequences such that G≤mc

?H. For the sake of
readability, we will refer to the vertices of f(G) (respectively f(H)) and to the graphs
of G (respectively H) by the same names. By definition of the relation ≤mc

?, there is
an increasing function ρ : J0, k − 1K → J0, l − 1K such that for every i ∈ J0, k − 1K , we
have Gi≤mc Hρ(i).

A crucial remark here is that since the graphs of H′ are connected, each of them can
be contracted to an edge between its two roots. Therefore, for every graph Hi of the
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sequence H (for some i ∈ J0, l − 1K) we can first contract Hi to an edge in f(H) and then
contract this edge. That way we obtain a graph similar to f(H) except that Hi has been
deleted and its roots merged: this is the graph f(〈H0, . . . , Hi−1, Hi+1, . . . , Hl−1〉). By ap-
plying this operation on every subgraph of f(H) belonging to {Hi, i ∈ J1, lK\ρ(J0, kK)},
we obtain the graph f(

〈
Hρ(i)

〉
i∈J1,kK) and we thus have f(

〈
Hρ(i)

〉
i∈J1,kK)≤mc f(H). Now,

recall that the function ρ is such that for every i ∈ J0, k − 1K , we have Gi≤mc Hρ(i).
Furthermore, the graphs f(G) and f(

〈
Hρ(i)

〉
i∈J1,kK) are both constructed by attaching

graphs to the same graph (a cycle on k vertices). By Corollary 3.18, we therefore have
f(G)≤mc f(

〈
Hρ(i)

〉
i∈J1,kK), hence f(G)≤mc f(H) by transitivity of ≤mc . We just proved

that f is an epi. The domain of f is a wqo (as a set of finite sequences from a wqo,
cf. Theorem 3.1), so its codomain (H◦,≤mc) is a wqo as well according to Remark 3.3
and this concludes the proof.

Lemma 3.46. Let k ∈ N and let H be a class of 2-rooted graphs, none of which hav-
ing more than k edges between the two roots. Let H− be the class of graphs of H
where all edges between the two roots have been removed. If (H,≤mc) is a wqo, then so
is (H−,≤mc).

Proof. Let us assume that (H,≤mc) is a wqo. For every i ∈ J0, kK , let Hi be the subclass
of graphs of H having exactly i edges between the two roots. Each class Hi (i ∈ J0, kK)
is a subclass of H which is well-quasi-ordered by ≤mc, therefore it is well-quasi-ordered
by ≤mc as well. Let f be the function that, given a 2-rooted graph G, returns a copy
of G where all edges between the roots have been deleted. The rest of the proof draws
upon the following remark.

Remark 3.12. Let G,H be two edge-rooted graphs where the edge between the roots
has the same multiplicity. Then H ≤mc G⇔ f(H)≤mc f(G) (every model of H in G is
also a contraction model of f(H) in f(G), and vice-versa).

Let i ∈ J0, kK , let H−i = {f(H), H ∈ Hi}, and let 〈f(Gi)〉i∈N be an infinite sequence
of H−i . By an observation above, (Hi,≤mc) is a wqo, hence 〈Gi〉i∈N has a good pair
(Gi, Gj) (with i, j ∈ N, i < j). According to Remark 3.12, (f(Gi), f(Gj)) is a good pair
of 〈f(Gi)〉i∈N . Every infinite sequence of (H−i ,≤mc) has a good pair, therefore this qoset
is a wqo. Remark that (H−,≤mc) is the union of the k + 1 wqos {(H−i ,≤mc)}i∈J0,kK,
therefore it is a wqo as well (cf. Remark 3.2) and this concludes the proof.

Proposition 3.2 provides an interesting description of the structure of 2-connected
simple graphs. The two following easy lemmas show that it can easily be adapted to
multigraphs.

Lemma 3.47. Let G be a graph and let G′ be its underlying simple graph. The graph
G is 2-connected iff G′ is 2-connected or G = θk for some integer k ≥ 2.

Proof. It is clear that G is 2-connected whenever G′ is. Let us now assume that G is
2-connected but G′ is not, and let u, v ∈ V (G′) be two distinct vertices of G′ such that
there is no pair of internally disjoint paths from u to v in G′. Since G is 2-connected,
there are two internally disjoint paths P and Q in G linking u to v. Remark that if P and
Q are edge-disjoint, then the corresponding paths in G′ are internally disjoint and link u
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to v, a contradiction with the choice of these two vertices. Therefore P and Q share an
edge (which has multiplicity at least two). Since these paths are internally disjoint, their
ends must be the ends of the edge that they share: {u, v} is an edge with multiplicity
at least two. Removing the edge {u, v} in G yields two connected components, one, Gu,
containing u and the other, Gv, containing v. Since every path from vertices of Gu to
vertices of Gv in G contains u, the graph Gu contains only the vertex u (otherwise G is
not 2-connected) and by symmetry V (Gv) = {v}. Therefore G = θk, for some integer
k ≥ 2, as required.

Lemma 3.48 (extension of Proposition 3.2 to graphs). Every 2-connected graph has a
a tree-decomposition (T,X ) such that |Xt∩Xt′| = 2 for every edge {t, t′} ∈ T and where
every torso is either 3-connected or a cycle.

Proof. Let G be a 2-connected graph and G′ be its underlying simple graph. If G′

is 2-connected, then by Proposition 3.2 it has a tree-decomposition (T,X ) such that
|Xt ∩Xt′ | = 2 for every edge {t, t′} ∈ T and where every torso is either 3-connected, or
a cycle. Noticing that (T,X ) is also a tree-decomposition of G concludes this case. If
G′ is not 2-connected, then by Lemma 3.47 we have G = θk for some integer k ≥ 2. If
k = 2 the graph G is a cycle, and if k > 2 it is 3-connected, therefore it has a trivial
tree-decomposition with one bag, which satisfies the properties required in the statement
of the lemma.

We call a tree decomposition as in Lemma 3.48 a Tutte decomposition.

3.7.2 Well-quasi-ordering graphs without big bonds

The main result is proved in three steps. First, we show that for every k ∈ N, the
class of labeled 2-connected graphs of G1,k is well-quasi-ordered by ≤mc . Then, we use
Lemma 3.3 to extend this result to all graphs of G1,k, i.e. all connected graphs not
containing a bond of size more than k. The result for disconnected graphs then follows
by the application of Lemma 3.5.

Lemma 3.49. For every k ∈ N, and for every wqo (Σ,�), the qoset

(lab(Σ,�)(G(2)
1,k),≤mc)

is a wqo.

Proof. Let k ∈ N, and let (Σ,�) be a wqo. By contradiction, let us assume that

(lab(Σ,�)(G(2)
1,k),≤mc) is not a wqo. We consider the edge-rooted closureH of lab(Σ,�)(G(2)

1,k),
i.e. the class of all edge-rooted graphs whose underlying non-rooted graphs belongs to
lab(Σ,�)(G(2)

1,k). Clearly, (H,≤mc) is not a wqo, as a consequence of our initial assumption.
We will show that this leads to a contradiction.

Let {Ai}i∈N be an infinite minimal (wrt. ≤mc) bad sequence of (H,≤mc): for every
i ∈ N, Ai is a minimal graph (wrt. ≤mc) such that there is an infinite bad sequence
starting with A0, . . . , Ai. For every i ∈ N, Ai has a Tutte decomposition (Lemma 3.48)
which has a bag containing the endpoints of the edge {Ai.r, Ai.s} (because it is a tree
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decomposition). Let Ai.X be the torso of some (arbitrarily chosen) bag in such a
decomposition which contains Ai.r and Ai.s.

For every edge x, y ∈ V (Ai.X), let Ai.Vx,y be the vertex set of the (unique) block
which contains both x and y in the graph obtained from Ai by deleting vertices V (Ai.X)\
{x, y} and adding the edge {x, y} with multiplicity 2.

Let us consider graphs obtained by contracting all the edges of Ai that does not
have both endpoints in Ai.Vx,y in a way such that Ai.r gets contracted to x and Ai.s
gets contracted to y. Remark that for fixed i and (x, y), these graphs differ only by
the multiplicity of the edge between the two roots x and y. For every i ∈ N and
x, y ∈ V (Ai.X), we denote by Ai.Cx,y an arbitrarily chosen such graph. Eventually, we

set Ai.C = {Ai.Cx,y, x, y ∈ V (Ai.X)}. Remark that every graph of Ai.C belongs to G(2)
1,k

and is a contraction of Ai.

Claim 3.2. C = ∪i∈NAi.C is wqo by ≤mc .

Proof. By contradiction, assume that (C,≤mc) has an infinite bad sequence {Bi}i∈N. By
definition of C, for every i ∈ N there is a j = ϕ(i) ∈ N such that Bi≤mc Aj. Let i0 ∈ N
be an integer with ϕ(i0) minimum. Let us consider the following infinite sequence:

A0, . . . , Aϕ(i0)−1, Bi0 , Bi0+1, . . . .

Remark that this sequence cannot have a good pair of the form Ai≤mc Aj, 0 ≤ i <
j < ϕ(i0) (respectively Bi≤mc Bj, i0 ≤ i < j) since {Ai}i∈N (respectively {Bi}i∈N)
is an antichain. Let us assume that there is a good pair of the form Ai≤mc Bj, for
some i ∈ J0, ϕ(i0)− 1K , j ≥ i0. Then we have Ai≤mc Bj ≤mc Aϕ(j). By the choice
of i0 we have ϕ(i0) ≤ ϕ(j), hence i < ϕ(j) so (Ai, Aϕ(j)) is a good pair of {Ai}i∈N,
a contradiction. Therefore, this sequence is an infinite bad sequence of (H,≤mc) and
we have Bi0 ≤mc Aϕ(i0) and Bi0 6= Aϕ(i0). This contradicts the minimality of {Ai}i∈N,
therefore (C,≤mc) is a wqo.

Let C− be the class of 2-rooted graphs obtained from graphs of C by deleting the
edge between the roots. We set C+ = {H ⊕H.sH.r θi, i ∈ J0, kK , H ∈ C−}. In other words
C+ is the class of graphs that can be constructed by possibly replacing the edge at the
root of a graph of C by an edge of multiplicity i, for any i ∈ J1, kK.

Remark 3.13. It follows from Lemma 3.46 that both (C−,≤mc) and (C+,≤mc) are wqos.

Notice that for every i ∈ N and {x, y} ∈ E(Ai.X), the graph Ai[Ai.Vx,y] rooted in
(x, y) belongs to C+. As explained thereafter, this property enables us to see Ai as a
graph built from graphs of C+.

According to Lemma 3.48, for every i ∈ N, the graph Ai.X (which is the torso of a
bag of a Tutte decomposition) is either a 3-connected graph (and thus |V (Ai.X)| < ζk
by Proposition 3.3), or a cycle (of any length). Therefore we can partition {Ai}i∈N into
at most ζk subsequences depending on the type of Ai.X, where this type can be either
“cycle” or one type for each possible value of |V (Ai.X)| when Ai.X is 3-connected. Let
us show that each of these subsequences is finite.

First case: {Ai}i∈N has an infinite subsequence {Di}i∈N such that for every i ∈ N, Di.X
is a cycle. Then each graph of {Di}i∈N can be constructed by attaching a graph of the
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wqo (C+,≤mc) to each edge of a cycle after deleting this edge. By Lemma 3.45, these
graphs are wqo by ≤mc, a contradiction.

Second case: for some positive integer n < ζk, {Ai}i∈N has an infinite subsequence
{Di}i∈N such that for every i ∈ N, |V (Di.X)| = n. Then every graph of {Di}i∈N can be
constructed by attaching a graph of the wqo (C+,≤mc) to each pair of distinct vertices
of Kn. By Lemma 3.44, {Di}i∈N has a good pair, which is contradictory since it is a
bad sequence.

We just proved that {Ai}i∈N can be partitioned into a finite number of subsequences
each of which is finite. Hence {Ai}i∈N is finite as well, a contradiction. Therefore our

initial assumption is false and (lab(Σ,�)(G(2)
1,k),≤mc) is a wqo.

Corollary 3.19. For every k ∈ N, the class G1,k is well-quasi-ordered by ≤mc .

Proof. According to Lemma 3.49, for every wqo (Σ,�), the class of Σ-labeled 2-connected
graphs of G are wqo by ≤mc . By Lemma 3.3, this implies that (G1,k,≤mc) is a wqo and
we are done.

The proof of Theorem 3.22 now follows from the combination of Corollary 3.19 and
Lemma 3.5.

3.7.3 Canonical antichains and multigraph contractions

This section is devoted to the proof of the two results related to canonical antichains
of ≤mc.

Remark 3.14. Every canonical antichain of ≤mc is infinite.

Proof of Theorem 3.16. “⇒”: Let A be a canonical antichain of ≤mc and let us assume
for contradiction that B = Aθ \ A (respectively B = AK \ A) is infinite. Let B+

be the closure of B and remark that B+ = B ∪ {K1} (respectively B+ = B). Then the
contraction-closed class B+ has finite intersection with A whereas it contains the infinite
antichain B. This is a contradiction with the fact that A is canonical, hence both Aθ \A
and AK \ A are finite.

Let us now assume that C = A \ {Aθ ∪ AK} is infinite and let C+ be the closure
of C. Being a subset of an antichain, C is an antichain as well and consequently C+ is
a contraction-closed class that is not well-quasi-ordered. By Theorem 3.11, C+ contains
infinitely many elements of Aθ ∪AK . Notice that besides being infinite, C+ ∩ (Aθ ∪AK)
is also disjoint from A ∩ (Aθ ∪ AK), otherwise A would contain an element from C
contractible to an element of A ∩ (Aθ ∪ AK). But then one of Aθ \ A and AK \ A is
infinite, a contradiction with our previous conclusion. Therefore C is finite.

“⇐”: Let A be an antichain such that each of Aθ \ A, AK \ A, and A \ {Aθ ∪AK}
is finite, and let us show that A is canonical. Let F be a contraction-closed class of G.
If F ∩A is infinite, then F trivially contains the infinite antichain F ∩A. On the other
hand, if F ∩ A is finite then by Theorem 3.11 the class F is well-quasi-ordered, hence
by definition it does not contain an infinite antichain. Consequently, A is canonical, as
required.
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Proof of Corollary 3.1. Let A be a canonical antichain of ≤mc. Observe that we have
the following:

Incl≤mc(A) = Incl≤mc(A ∩Aθ) ∪ Incl≤mc(A ∩AK) ∪ Incl≤mc(A \ (Aθ ∪ AK)).

Now, is is easy to notice that:

• Incl≤mc(A ∩Aθ) ⊆ Incl≤mc(Aθ) = {K1};

• Incl≤mc(A ∩AK) ⊆ Incl≤mc(AK) = ∅;

• Incl≤mc(A \ (Aθ ∪AK)) is finite, because A \ (Aθ ∪AK) is finite by Theorem 3.16
and since A is canonical.

Therefore, Incl≤mc(A) is finite as well and hence cannot contain an infinite antichain;
this proves that A is fundamental.
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Chapter 4

Exclusion theorems

This chapter contains material that previously appeared in the following articles:

• Low polynomial exclusion of planar graph patterns, co-authored with Dimitrios M.
Thilikos, to appear in Journal of Graph Theory, 2015 [RT15];

• An edge variant of the Erdős-Pósa property, co-authored with Ignasi Sau and
Dimitrios M. Thilikos, to appear in Discrete Mathematics, Volume 339, Issue 8,
2016 [RST16];

• Minors in graphs of large θr-girth, co-authored with Dimitris Chatzidimitriou,
Ignasi Sau, and Dimitrios M. Thilikos, 2015, submitted [CRST15b].

• Packing and covering immersion models of planar subcubic graphs, co-authored
with Archontia Giannopoulou, O-joung Kwon, and Dimitrios M. Thilikos, pre-
sented at the 42nd International Workshop on Graph-Theoretic Concepts in Com-
puter Science, WG 2016, Istanbul, Turkey, 2016 [GKRT16];

One of the most celebrated results from the Graph Minors series of Robertson and
Seymour is the following result, also known as the Grid Exclusion Theorem.

Theorem 4.1 (Grid Exclusion Theorem, [RS86]). There exists a function f : N → N
such that, for every integer h, every graph that does not contain a minor isomorphic to
the h× h-grid has treewidth at most f(h).

This result is an exclusion theorem: it relates a graph parameter (in this case the
treewidth) with the absence of a pattern as a substructure. In this chapter, we present
exclusion theorems related to the parameters of girth (Section 4.1), treewidth (Sec-
tion 4.3), maximum degree (Section 4.2), and tree-cut width (Section 4.4).

Beside their combinatorial value, exclusion theorems has proven useful in order to
obtain Erdős–Pósa-type results. This aspect will be illustrated in Chapter 5.

4.1 Clique majors in graphs of large θr-girth

In this section, we introduce the concept of θr-girth of a graph and show that graphs of
sufficiently large minimum degree contain clique-majors whose order is an exponential
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function of their girth, extending a result of [KO03]. We also show that the minimum
degree can be replaced by some connectivity measurement.

4.1.1 The quest for large clique-majors

A classic result in graph theory asserts that if a graph has minimum degree ck
√

log k,
then it can be transformed to a complete graph of at least k vertices by applying edge
contractions (i.e., it contains a k-clique minor). This result has been proved by Kos-
tochka in [Kos84] and Thomason in [Tho83a] and a precise estimation of the constant c
has been given by Thomason in [Tho01a]. For recent results related to conditions that
force a clique minor see [Mar04,JW13,DHJ+13,FKO09,KO04a].

Recall that the girth of a graphG is the minimum length of a cycle inG. Interestingly,
graphs of large minimum degree contain clique-minors whose order is an exponential
function of their girth. In particular, it follows by the main result of Kühn and Osthus
in [KO03] that there is a constant c such that, if a graph has minimum degree d ≥ 3
and girth z, then it contains as a minor a clique of size k, where

k ≥ dcz√
z · log d

.

In this section we provide conditions, alternative to the above one, that can force
the existence of a clique-minor whose size is exponential.

H-girth. We say that a graph H is a minor of a graph G, if H can be obtained from
G by using the operations vertex-removal, edge-removal, and edge-contraction. An H-
model in G is a subgraph of G that contains H as a minor. Given two graphs G and H,
we define the H-girth of G as the minimum number of edges of an H-model in G. If G
does not contain H as a minor, we will say that its H-girth is equal to infinity. For every
r ∈ N, recall that θr denote the graph with two vertices and r parallel edges. Clearly,
the girth of a graph is its θ2-girth and, for every r1 ≤ r2, the θr1-girth of a graph is at
most its θr2-girth.

Our first result is the following extension of the result of Kühn and Osthus in [KO03]
for the case of θr-girth.

Theorem 4.2. There is a constant c > 0 such that, for every r ≥ 2, d ≥ 3r, and z ≥ r,
if a graph has minimum degree d and θr-girth at least z, then it contains as a minor a
clique of size k, where

k ≥
(d
r
)
cz
r√

z
r
· log d

.

In the formula above, a lower bound to the minimum degree as a function of r is
necessary. An easy computation shows that when applying Theorem 4.2 for r = 2, we
can get the aforementioned formula of Kühn and Osthus, where the constant in the
exponent is one fourth of the constant of Theorem 4.2.

Our second finding is that this degree condition can be replaced by some “loose
connectivity” requirement.
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Loose connectivity. For two integers α, β ∈ N, a graph G is called (α, β)-loosely
connected if for every A,B ⊆ V (G) such that V (G) = A∪B and G has no edge between
A \ B and B \ A, we have that |A ∩ B| < β ⇒ min(|A \ B|, |B \ A|) ≤ α. Intuitively,
this means that a small separator (i.e., on less than β vertices) cannot “split” the graph
into two large parts (that is, with more than α vertices each).

Our second result indicates that the requirement on the minimum degree in Theo-
rem 4.2 can be replaced by the loose connectivity condition as follows.

Theorem 4.3. There is a constant c > 0 such that, for every r ≥ 2, z > r, and α ≥ 1,
it holds that if a graph has more than (α + 1) · (2r − 1) vertices, is (α, 2r − 1)-loosely
connected, and has θr-girth at least z, then it contains as a minor a clique of size k
where

k ≥ 2c·
z
rα

√
r
.

Both Theorem 4.2 and Theorem 4.3 are derived from two more general results,
namely Theorem 4.5 and Theorem 4.4, respectively. Theorem 4.5 asserts that graphs
with large θr-girth and sufficiently large minimum degree contain as a minor a graph
whose minimum degree is exponential in the girth. Theorem 4.4 replaces the mini-
mum degree condition with the absence of sufficiently large “edge-protrusions”, that are
roughly tree-like structured subgraphs with small boundary to the rest of the graph (see
Subsection 4.1.2 for the detailed definitions).

Organisation of the section. The main notions used in this section are defined in
Subsection 4.1.2. Then, we show in Subsection 4.1.3 that the proofs of Theorem 4.2
and Theorem 4.3 can be derived from Theorem 4.5 and Theorem 4.4, which are proved
in Subsection 4.1.4.

4.1.2 Definitions specific to this section

In this section, when giving the running time of an algorithm involving some graph G,
we agree that n = |V (G)| and m = |E(G)|.

In order to decompose graphs along edge cuts, we introduce the following edge-
counterpart of the notion of (vertex-)protrusion used in [BFL+09a, BFL+09b] (among
others). A subset Y ⊆ V (G) is a t-edge-protrusion of G with extension w (for some
positive integer w) if the graph G[Y ∪NG(Y )] has a rooted tree-partition D = (T, s,X )
of width at most t and such that NG(Y ) = Xs and |V (T )| ≥ w. The protrusion Y is
said to be connected whenever Y ∪NG(Y ) induces a connected subgraph in G.

Distance-decompositions. A distance-decomposition of a connected graph G is a
rooted tree-partition D = (T, s,X ) of G, where the following additional requirements
are met (see also [YBdFT99]):

(i) Xs contains only one vertex, we shall call it u, refered to as the origin of D;

(ii) for every t ∈ V (T ) and every x ∈ Xt, distG(x, u) = distT (t, s);
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(iii) for every t ∈ V (T ), the graph Gt = G
[⋃

t′∈desc(T,s)(t)
Xt′

]
is connected; and

(iv) if C is the set of children of a vertex t ∈ V (T ), then the graphs {Gt′}t′∈C are the
connected components of Gt \Xt.

An example of distance-decomposition is given in Figure 4.1. For every vertex u of a
graph on m edges, a distance-decomposition (T, s,X ) with origin u can be constructed
in O(m) steps by breadth-first search.

u5

u6

u8

u7

u3

u4

u1u0

u2 {u5}

{u6, u7} {u3, u4}

{u8} {u0, u2} {u1}

Figure 4.1: A graph (left) and a distance-decomposition with origin u5 of it (right).

For every t ∈ V (T ) \ {s}, we define E(t) as the set of edges that have one endpoint
in Xt and the other in Xp(t).

Let P be a path in G and D = (T, s,X ) a distance-decomposition of P . We say that
P is a straight path if the heights, in (T, s), of the indices of the bags in D that contain
vertices of P are pairwise distinct. Obviously, in that case, the sequence of the heights
of the bags that contain each subsequent vertex of the path is strictly monotone.

Grouped partitions. Let G be a connected graph and let d ∈ N. A d-grouped
partition of G is a partition R = {R1, . . . , Rl} of V (G) (for some positive integer l) such
that for each i ∈ {1, . . . , l}, the graph G[Ri] is connected and there is a vertex si ∈ Ri

with the following properties:

(i) eccG[Ri](si) ≤ 2d and

(ii) for each edge e = {x, y} ∈ E(G) where x ∈ Ri and y ∈ Rj for some distinct
integers i, j ∈ {1, . . . , l}, it holds that distG(x, si) ≥ d and distG(y, sj) ≥ d.

A set S = {s1, . . . , sl} as above is a set of centers of R where si is the center of Ri for
i ∈ {1, . . . , l}.

Given a graph G, we define a d-scattered set W of G as follows:

• W ⊆ V (G) and

• ∀u, v ∈ W, distG(u, v) > d.

If W is inclusion-maximal, it will be called a maximal d-scattered set of G.
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Frontiers and ports. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped parti-
tion of G, and let S = {s1, . . . , sl} be a set of centers ofR. For every i ∈ J1, lK, we denote
by Di = (Ti, si,Xi) the unique distance-decomposition with origin si of the graph G[Ri]
where Xi = {X i

t}t∈V (Ti). For every i ∈ J1, lK and every h ∈ J0, eccTi(si)K, we denote by

Ihi the vertices of (Ti, si) that are at distance h from si, and we set I<hi =
⋃h−1
h′=0 I

s
h′ and

I≥hi =
⋃eccTi (si)

h′=h Ih
′

i . We also set

V h
i =

⋃
t∈Ihi

X i
t , V <h

i =
⋃
t∈I<hi

X i
t , and V ≥hi =

⋃
t∈I≥hi

X i
t .

The vertex-frontier Fi of Ri is the set of vertices in V d−1
i that are connected in G to

a vertex x ∈ V (G) \ Ri via a path, the internal vertices of which belong to V ≥di . The
node-frontier of Ti is

Ni = {t ∈ V (Ti) | Fi ∩Xt 6= ∅}. (4.1)

A vertex t ∈ I≥d−1
i is called a port of Ti if X i

t contains some vertex that is adjacent in
G to a vertex of V (G) \Ri.

4.1.3 Finding small θr-models

Two intermediate results

The main results of this section are the following.

Theorem 4.4. There exists an algorithm that, with input three positive integers r, w, z
and an n-vertex graph G, outputs one of the following:

• a θr-model in G with at most z edges,

• a connected (2r − 2)-edge-protrusion Y of G with extension more than w, or

• an H-model in G for some graph H where δ(H) ≥ 1
r−1

2
z−5r

4r(2w+1) ,

in Or(m) steps.

Theorem 4.5. There exists an algorithm that, with input three integers r, δ, z, where
r ≥ 2, δ ≥ 3r, and z ≥ r and an n-vertex graph G, outputs one one the following:

• a θr-model in G with at most z edges,

• a vertex v of G of degree less than δ, or

• an H-model in G for some graph H where δ(H) ≥ δ−2r+3
r−1

· b δ
r−1
− 1c

z−r
4r ,

in Or(m) steps.
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The results of Chandran and Subramanian in [CS05] imply that if G has girth at
least z and mimumum degree at least δ, then tw(G) ≥ δc·z, for some constant c. As in
the third condition of Theorem 4.5 it holds that tw(G) ≥ tw(H) ≥ δ(H), Theorem 4.5
can also be seen as a qualitative extension of the results of [CS05].

The above two results will be used to prove Theorem 4.2 and Theorem 4.3. We will
also need the following result of Kostochka [Kos84].

Proposition 4.1 ([Kos84], see also [Tho83a,Tho01a]). There exists a constant cK ∈ R
such that for every d ∈ N, every graph of average degree at least d contains a clique of
order k as a minor, for some integer k satisfying

k ≥ cK ·
d√

log d
.

Proof of Theorem 4.2. Observe that since G has no θr-model with at most z edges and G
has minimum degree δ ≥ 3r, a call to the algorithm of Theorem 4.5 on (r, δ, z, G) should

return an H-model in G, for some graph H where δ(H) ≥ δ−2r+3
r−1

· b δ
r−1
− 1c

z−r
4r =: d. It

is not hard to check that there is a positive constant c′ ∈ R such that

cK ·
d√

log d
≥

( δ
r
)c
′· z
r√

z
r
· log δ

.

Hence by Proposition 4.1, G has a clique of the desired order as a minor.

Proof of Theorem 4.3. As in the proof of Theorem 4.2, the properties that G enjoys will
force a minor of large minimum degree. Let us call the algorithm of Theorem 4.4 on
(r, 3α, z,G). We assumed that G has no θr-model with z edges or less, hence the output
of the algorithm cannot be such a model. Let us now assume that the algorithm outputs
a (2r − 2)-edge-protrusion Y of extension more than 3α, and let (T, s,X ) be a rooted
tree-partition of Y of width at most 2r − 2 such that NG(Y ) = Xs and |V (T )| > 3α.
It is known that every tree of order n has a vertex, the removal of which partitions the
tree into components of size at most n/2 each. Hence, there is a vertex v ∈ V (T ) and
a partition (Z,Z ′) of V (T ) \ {v} such that:

• both Z ∪ {v} and Z ′ ∪ {v} induce connected subtrees of T ;

• 1
3
|V (T )| ≤ |Z|, |Z ′| ≤ 2

3
|V (T )|; and

• Xs ⊆ Z or v = s.

Let A = Z ′ ∪ {Xv} and B = V (G) \Z ′. Notice that V (G) = A∪B and that no edge of
G lies between A and B. As A ∩ B = Xv, we have |A ∩ B| < 2r − 1. Last, Z ′ ⊆ A \ B
and Z ⊆ B \A give that |A \B|, |B \A| ≥ α. The existence of A and B contradicts the
fact that G is (α, 2r − 1)-loosely connected. Thus G has no (2r − 2)-edge-protrusion Y
of extension more than 3α.

A consequence of this observation is that the only possible output of the algorithm
mentioned above is an H-model in G for some graph H, where

δ(H) ≥ 1

r − 1
· 2

z−5r
4r(6α+1) =: d.
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As in the proof of Theorem 4.2, it suffices to remark that there is a positive constant
c′′ ∈ R such that

cK ·
d√

log d
≥ 2c

′′· z
rα

√
r

in order to conclude the proof.

4.1.4 The proofs of Theorem 4.4 and Theorem 4.5

Preliminary results

Before proving Theorem 4.4 and Theorem 4.5 (in Section 4.1.4 and Section 4.1.4, re-
spectively) we need some preliminary results. Let us start we some definitions.

Let (T, s) be a rooted tree and let N be a subset of its leaves. We say that a vertex
u of T is N-critical if either it belongs to N ∪ {s} or there are at least two vertices in
N that are descendants of two distinct children of u. An N-unimportant path in T is a
path with at least 2 vertices, with exactly two N -critical vertices, which are its endpoints
(see Figure 4.2 for a picture). Notice that an N -unimportant path in T cannot have
an internal vertex that belongs to some other N -unimportant path. Also, among the
two endpoints of an N -unimportant path there is always one which is a descendant of
the other. As we see in the proof of the following lemma, N -unimportant paths are the
maximal paths with internal vertices of degree 2 that appear if we repeatedly delete
leaves that do not belong to N ∪ {s}.

root

Figure 4.2: An unimportant path (dashed) in a tree. Gray subtrees are those without
vertices from N .

Lemma 4.1. Let d, k ∈ N, k ≥ 1. Let (T, s) be a rooted tree and let N be a set of leaves
of (T, s), each of which is at distance at least than d from s. If for some integer k, every
N-unimportant path in T has length at most k, then |N | ≥ 2d/k.

Proof. We consider the subtree T ′ of T obtained by repeatedly deleting leaves that do
not belong to N ∪ {s}. By construction, every leaf of (T ′, s) belongs to N , hence our
goal is then to show that (T ′, s) has many leaves. Notice that in (T ′, s), every vertex
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of degree at least 3 is N -critical. Therefore, the N -unimportant paths of (T ′, s) are the
maximal paths, the internal vertices of which have degree two. By contracting each of
these paths into an edge, we obtain a tree T ′′ where every internal vertex has degree
at least 3. Observe that every edge on a root-leaf path of T ′′ is originated from the
contraction of a path on at most k edges, as we assume that every N -unimportant path
in T has length at most k. We deduce that T ′′ has height at least d/k, hence it has at
least 2d/k leaves. Consequently, T ′ has at least 2d/k leaves, and then |N | ≥ 2d/k.

Recall that if (T, s,X ) is a distance-decomposition of a graph and t ∈ V (T ) \ {s},
E(t) denotes as the set of edges that have one endpoint in Xt and the other in Xp(t).

Lemma 4.2. Let G be an n-vertex graph, let r be a positive integer, let D = (T, s,X )
be a distance-decomposition of G, and let d > 1 be the height of (T, s). Then either G
contains a θr-model with at most 2 · r · d edges or for every vertex i ∈ V (T ) \ s, it holds
that |E(i)| ≤ r− 1. Moreover there exists an algorithm that, in Or(m) steps, either finds
such a model, or asserts that |E(i)| ≤ r − 1 for every i ∈ V (T ) \ s.

Proof. We consider the non-trivial case where r ≥ 2. Suppose that there exists a node
t of (T, s) such that |E(t)| ≥ r. Clearly, such a t can be found in O(m) steps. We will
prove that G contains a θr-model. Let k be the height of t in T .

We need first the following claim.

Claim 4.1. Given a non-empty proper subset U of Xt, we can find in Gt a path of length
at most 2k from a vertex of U to a vertex of Xt \ U , in O(m) steps.

Proof of Claim 4.1. We can compute a shortest path P from a vertex of U to a vertex of
Xt\U , in O(m) steps using a BFS. Let us show that P has length at most 2k. Let u ∈ U
and v ∈ Xt \U be the endpoints of P , and let w be a vertex of P of the lowest possible
height h (0 ≤ h ≤ k). Then it holds that distGt(v, u) = distGt(U, v). We examine the
non-trivial case where P has more than one edge. By minimality of P we have w /∈ Xt.

Our next step is to prove that if P has more than one edge, then both the subpaths
of P from u to w and from v to w are straight. Suppose now, without loss of generality,
that the subpath from u to w is not straight and let z be the first vertex of it (starting
from u) which is contained in a bag of height greater than or equal to the height of
the bag of its predecessor in P . By definition of a distance-decomposition (in particular
items (ii) and (iii)), there is at least one vertex x ∈ Xt which is connected by a straight
path P ′ to z in G. Then there are two possibilities:

• either x ∈ U , and then the union of the path P ′ and the portion of P between z
and v is a path that is shorter than P ;

• or x ∈ Xt \ U , and in this case the union of the path P ′ and the portion of P
between u and z is a path that is shorter than P .

As, in both cases, the occurring paths contradict the construction of P , we conclude
that both the subpath of P from u to w and the one from v to w are straight. This
implies that P has length at most 2 · (k − h) ≤ 2 · k and the claim follows. 3
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Our next step is to construct a vertex set U and a set of paths P as follows. We set
P = ∅, U = ∅, and we start by adding in U an arbitrarily chosen vertex u ∈ Xt. Using
the procedure of Claim 4.1, we repeatedly find a path from a vertex of U to a vertex of
Xt \ U , add this second vertex to U and the path to P , until there are at least r edges
in E(t) that have endpoints in U .

The construction of U requires at most r repetitions of the procedure of Claim 4.1,
and therefore O(r · m) steps in total. Clearly |U | ≤ r, hence |P| ≤ r − 1. Besides,
every path in P has length at most 2k according to Claim 4.1. Notice now that ∪∪∪∪∪∪∪∪∪P is
a connected subgraph of Gt with at most 2k · (r − 1) edges.

As there are at least r edges in E(t) with endpoints in U we may consider a subset
F of them where |F | = r. Since D is a distance-decomposition (by item (ii) of the
definition), each edge e ∈ F is connected to the origin by a path of length d − k − 1
whose edges do not belong to Gt. Let P ′ be the collection of these paths. Clearly, the
paths in P ′ contain, in total, at most r · (d− k − 1) edges.

If we now contract in G all edges in P and all edges in P ′, except those in F , and
then remove all edges not in F , we obtain a graph isomorphic to θr. Therefore we found
in G a θr-model with at most

r · (d− k − 1) + 2 · k · (r − 1) + r ≤ r · (d− k − 1) + 2 · k · r + r

= r · (d+ k)

≤ 2 · r · d (since d ≥ k)

edges in O(r ·m) steps.

The following result is a direct consequence of Lemma 4.2 and item (ii) of the defi-
nition of a distance-decomposition.

Corollary 4.1. Let G be an n-vertex graph, let r be a positive integer, let D = (T, s,X )
be a distance-decomposition of G, and let d > 1 be the height of (T, s). If some bag of
D contains at least r vertices, then G contains a θr-model with at most 2 · r · d edges,
which can be found in Or(m) steps.

The remaining lemmata will be related to grouped partitions.

Lemma 4.3. For every positive integer d and every connected graph G there is a d-
grouped partition of G that can be constructed in O(m) steps.

Proof. If diam(G) ≤ 2d, then {V (G)} is a d-grouped partition of G. Otherwise, let
R = {s1, . . . , sl} be a maximal 2d-scattered set in G. This set can be constructed in
O(m) steps by breadth-first search. The sets {Ri}i∈J1,lK are constructed by the following
procedure:

1. Set k = 0 and R0
i = {si} for every i ∈ J1, lK;

2. For every i ∈ J1, lK, every v ∈ Rk
i and every u ∈ NG(v), if u has not been considered

so far, add u to Rk+1
i ;
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3. If k < 2d, increment k by 1 and go to step 2;

4. Let Ri =
⋃2d
k=0R

k
i for every i ∈ J1, lK.

Let R = {Ri}i∈J1,lK. By construction, each set Ri induces a connected graph in G. It
remains to prove that R is a partition of V (G) and that it has the desired properties.

Notice that in the above construction if a vertex is assigned to the set Ri, then it
is not assigned to Rj, for every distinct integers i, j ∈ J1, lK. Let v ∈ V (G) be a vertex
that does not belong to Ri for any i ∈ J1, lK after the procedure is completed. Then for
every i ∈ J1, lK we have distG(v, si) > 2d and v /∈ R, which contradicts the maximality
of R. Therefore R is a partition of V (G).

Since for each vertex v in Ri it holds that distG(v, si) ≤ 2d, R obviously satisfies
property (i) of the definition.

For property (ii) of the definition, let e = {x, y} be an edge in G such that x ∈ Ri,
y ∈ Rj, for some distinct integers i, j ∈ J1, lK. Towards a contradiction, we assume
without loss of generality that distG(x, si) < d. This means that during the construction
of Ri, the vertex x was added to the set Rk

i for some k ≤ d − 1. Also, since the
vertex y is adjacent to x but was added to Rl

j for some l ≤ 2d instead of Rk+1
i , it

follows that l ≤ k + 1, which means that distG(y, sj) ≤ k + 1. Hence distG(si, sj) ≤
distG(si, x) + distG(x, y) + distG(y, sj) ≤ k+ 1 + k+ 1 ≤ 2d again is not possible since
R is a 2d-scattered set.

Finally, in the procedure above, each edge of the graph is encountered at most once,
hence the whole algorithm will take at most O(m) time. This concludes the proof of
the lemma.

Lemma 4.4. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let si be a center of Ri, for every i ∈ J1, lK. If for some distinct i, j ∈ J1, lK, G has at
least r edges from vertices in Ri to vertices in Rj then G[Ri ∪ Rj] contains a θr-model
with at most 4 · r · d+ r edges, which can be found in Or(m) steps.

Proof. Suppose that for some i ∈ J1, lK, G has a set F of at least r edges from vertices
in Ri to vertices in Rj. Let R′i ⊆ Ri and R′j ⊆ Rj be the sets of the endpoints of those
edges. Since R is a d-grouped partition of G, it holds that, for each x ∈ R′i and y ∈ R′j,
distG(x, si) ≤ 2d and distG(y, sj) ≤ 2d. That directly implies that for every h ∈ {i, j},
there is a collection Ph of r paths, each of length at most 2d and not necessarily disjoint,
in G[Rh] connecting sh with each vertex in R′h, which we can find in Or(m) steps. It is
now easy to observe that the graph Q, obtained from ∪∪∪∪∪∪∪∪∪Pi ∪ ∪∪∪∪∪∪∪∪∪Pj by adding all edges of
F , is the union of r paths between si and sj, each containing at most 4 · d + 1 edges.
Therefore, Q is a model of θr with at most 4 · r · d+ r edges, as required. As mentioned
earlier the construction of Pi and Pj takes Or(m) steps.

Lemma 4.5. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ J1, lK, let Di = (Ti, ri,Xi)
be the distance-decomposition with origin si of the graph G[Ri]. If for some i ∈ J1, lK
and w ∈ N, the tree Ti, with node-frontier Ni, has an Ni-unimportant path of length at
least 2(w + 1), then G has a connected (2r − 2)-edge-protrusion Y with extension more
than w, which can be constructed in Or(m) steps.
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Proof. Let P = t0 . . . tp be a Ni-unimportant path of length p ≥ 2(w + 1) in Ti. We
assume without loss of generality that tp ∈ desc(Ti,ri)(t0). Due to the definition of
distance-decompositions, the vertices in X i

t0
or X i

tp form a vertex-separator of G. Let

Z ⊆ E(G) be the set containing all edges between X i
t0

and X i
t1

and all edges between
X i
tp−1

and X i
tp in G. Clearly, Z is an edge-separator of G with at most 2r− 2 edges. Let

T ′i be the subtree of Ti that we obtain if we remove the descendants of tp and any vertex
that is not a descendant of t1. Let Y =

⋃
t∈V (T ′i )\{t0,tp}

X i
t . In other words, Y consists of

the vertices in the bags of T ′i excluding X i
i and X i

j. Obviously, NG(Y ) = Xt0 ∪Xtp .
We will now construct a rooted tree-partition F = (TF , rF ,XF) of G[Y ∪NG(Y )] of

width at most 2r−2 and such that |V (TF)| > w. Let TF be the tree obtained from T ′h by
identifying, for every j ∈ J0, b(p− 1)/2cK, the vertex tj with the vertex tp−j. If multiple
edges are created during this identification, we replace them with simple ones. We also
delete loops that may be created. Let us define the elements of XF = {XFt }t∈V (TF )

as follows. If t ∈ V (TF ) is the result of the identification of tj and tp−j for some
j ∈ J0, b(p− 1)/2cK, then we set XFt = Xtj ∪Xtp−j . On the other hand, if t ∈ V (TF ) is
a vertex of T ′i that has not been identified with some other vertex, then XFt = Xt. The
construction of F is completed by setting rF to be the result of the identification of t0
and tp, the endpoints of P .

It is easy to verify that F is a rooted tree-partition of G[Y ∪ NG(Y )] of width at
most 2r − 2. Notice also that the identification of the antipodal vertices of the path P
creates a path in TF of length b(p − 1)/2c. This implies that the extension of F is at
least b(p− 1)/2c ≥ w + 1. Besides, all the operations performed to construct F can be
implemented in Or(m) steps. This completes the proof.

We conclude this section with two easy lemmata related to ports and frontiers.

Lemma 4.6. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G, and
let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ J1, lK, let Di = (Ti, ri,Xi)
be the distance-decomposition with origin si of the graph G[Ri], and let Ni be the node-
frontier of Ti. Then, for every i ∈ J1, lK, there are at least |Ni| ports in Ti.

Proof. Let i ∈ J1, lK. We will show that every vertex in the node-frontier of Ti has a
descendant which is a port. For every vertex t ∈ Ni ⊆ V (Ti), there is, by definition, a
path from t to a vertex in G \ Ri, the internal vertices of which belong to V ≥di . Let v
be the last vertex of this path (starting from t) which belongs to Ri and let t′ ∈ V (T )
be the vertex such that v ∈ X i

t . Then t′ is a port of Ti. Observe that t′ cannot be the
descendant of any other vertex of Ni. Therefore there are at least |Ni| ports in Ti.

Corollary 4.2. Let G be a graph, let R = {R1, . . . , Rl} be a d-grouped partition of G,
and let S = {s1, . . . , sl} be a set of centers of R. For every i ∈ J1, lK, let Di = (Ti, ri,Xi)
be the distance-decomposition with origin si of the graph G[Ri], and let Ni be the node-
frontier of Ti. If for some integer k, every Ni-unimportant path in Ti has length at most
k, then Th contains at least 2d/k ports.

Proof. Let i ∈ J1, lK. From Lemma 4.6, it is enough to prove that |Ni| ≥ 2d/k. Then the
result follows by applying Lemma 4.1 for (Ti, si), d, Ni, and k.
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Proof of Theorem 4.4

Proof. Let d = z−r
4r

. According to Lemma 4.3, we can construct in O(m) steps a d-
grouped partition R = {R1, . . . , Rl} of V (G), with a set of centers S = {s1, . . . , sl}, and
also, for every i ∈ J1, lK, the distance-decompositions Di = (Ti, ri,Xi) with origins si of
the graphs G[Ri]. For every i ∈ J1, lK, we use the notation Xi = {X i

t}t∈V (Ti) and denote
by Ni the node-frontiers of Ti.

By applying the algorithm of Lemma 4.4, in Or(m) steps, we either find a θr-model
in G with at most z = 4 ·r ·d+r edges or we know that for every two distinct i, j ∈ J1, lK
there are at most r − 1 edges of G with one endpoint in Ri and one in Rj.

Similarly, by applying the algorithm of Lemma 4.2, in Or(m) steps we either find a
θr-model in G with at most 2 · r · d ≤ z edges or we know that for every i ∈ J1, kK and
every t ∈ V (Ti), the bag X i

t contains at most r − 1 vertices.
Using the algorithm of Lemma 4.5, in Or(m) steps we either find a (2r − 2)-edge-

protrusion with extension more than w, or we know that for every i ∈ J1, lK, all Ni-
unimportant paths of Ti have length at most 2w + 1.

We may now assume that none of the above algorithms provided a θr-model with z
edges, or a (2r − 2)-edge-protrusion.

From Corollary 4.2, for every i ∈ J1, lK the tree Ti contains at least 2
d−1
2w+1 = 2

z−5r
4r·(2w+1)

ports, which by definition means that there are at least 2
z−5r

4r·(2w+1) edges in G with one
endpoint in Ri and the other in V (G) \ Ri. By Lemma 4.4, for every distinct integers
i, j ∈ J1, lK there are at most r − 1 edges with one endpoint in Ri and the other in Rj.
As a consequence of the two previous implications, for every i ∈ J1, lK there is a set

Zi ⊆ J1, lK \ {i}, where |Zi| ≥ 1
r−1

2
z−5r

4r(2w+1) , such that for every j ∈ Zi there exists an
edge with one endpoint in Ri and the other in Rj. Consequently, if we now contract all
edges in G[Ri] for every i ∈ J1, lK, the resulting graph H is a minor of G of minimum

degree at least 1
r−1

2
z−5r

4r(2w+1) . Therefore, we output G, which is an H-model, as required
in this case.

Proof of Theorem 4.5

Proof. The proof is quite similar to the one of Theorem 4.4. If G contains a vertex v
of degree less than δ, we can easily find it in Or(m) steps. Hence, from now on we can
assume that every vertex has degree at least δ.

Let d = z−r
4r

. From Lemma 4.3, in O(m) steps, we can construct a d-grouped partition
R = {R1, . . . , Rl} of G, with a set of centers S = {s1, . . . , sl}, and also the distance-
decomposition Di = (Ti, ri,Xi) with origins si of the graphs G[Ri], for every i ∈ J1, lK.
We use again the notation Xi = {X i

t}t∈V (Ti).
As in the proof of Theorem 4.4, in Or(m) steps, we can either find a θr-model in G

with at most z = 4·r·d+r edges or we know that for every distinct integers i, j ∈ [l] there
are at most r − 1 edges of G with one endpoint in Ri and one in Rj (cf. Lemma 4.4).

Using Corollary 4.1, we can in Or(m) steps either find a θr-model in G with at most
z edges or we know that every bag of Di has less than r vertices, for every i ∈ J1, lK.
Let i ∈ J1, lK and let u ∈ Ri be a vertex at distance less than d from si. As u has degree
at least 3r, it must have neighbors in at least 3 different bags of Di, apart from the one
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containing it. This means that every vertex in Ti of distance less than d from ri has

degree at least b δ
r−1
c ≥ 3 and therefore Ti has at least b δ

r−1
− 1cd leaves. Notice also that

if t is a leaf of Ti, then each vertex in X i
t can have at most r−1 neighbors in X i

p(t) and at

most r−2 neighbors in X i
t . Therefore there are at least δ− (r−1)− (r−2) = δ−2r+3

edges in G with one endpoint in X i
t and the other in V (G) \ Ri. This means that for

every i ∈ J1, lK there are at least (δ− 2r+ 3) · b δ
r−1
− 1cd edges with one endpoint in Ri

and the other V (G) \Ri.
Similarly to the proof of Theorem 4.4, we deduce that, for each i ∈ J1, lK, there is a

set Zi ⊆ J1, lK \ {i} where |Zi| ≥ δ−2r+3
r−1

· b δ
r−1
− 1cd such that, for every j ∈ Zi, there

exists an edge with one endpoint in Ri and the other in Rj. This implies the existence

of an H-model in G for some H with δ(H) ≥ δ−2r+3
r−1

· b δ
r−1
− 1c

z−r
4r . We then output G,

which, in this case, is an H-model.

4.1.5 Concluding remarks

In this section, we introduced the concept of H-girth and proved that for every r ∈ N≥2,
a large θr-girth forces an exponentially large clique minor. This extends the results of
Kühn and Osthus related to the usual notion of girth. We also gave a variant of our result
where the minimum degree is replaced by a connectivity measure. As an application of
our result, we will in Subsection 4.3.6 optimally improve (up to a constant factor) the
upper-bound on the treewidth of graphs excluding k · θr as a minor. A first question is
whether our lower-bound on the clique minor size can be improved.

Let us now state more general questions spawned by this work. A natural line of
research is to investigate the H-girth parameter for different instantiations of H. An
interesting problem in this direction could be to characterize the graphs H for which
our results (Theorem 4.2 and Theorem 4.3) can be extended.

From its definition, the H-girth is related to the minor relation. An other direction
of research would be to extend the parameter of H-girth to other containment relations.
One could consider, for a fixed graph H, the minimum size of an induced subgraph that
can be contracted to H, or the minimum size of a subdivision of H in a graph. The first
one of these parameters is related to induced minors and the second one to topological
minors.

As the usual notion of girth appears in various contexts in graph theory, we wonder
for which graphs H the results related to girth can be extended to the H-girth or to the
two aforementioned variants.

4.2 Degree and θr-packings

In this section we show how lower bounds on the degree of the vertices of a graph can
be used to prove the existence of a packing of θr-majors.
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4.2.1 On maximal degree and edge-disjoint packings

The main result of this section is the following. It relates the maximum degree of a
2-connected graph with the presence of an edge-disjoint union of θr-majors.

Lemma 4.7. Let k > 0, r > 0 be two integers, and let G be a 2-connected graph with
∆(G) ≥ 2kr. Then G contains has a subgraph that is the disjoint union of k edge-disjoint
M(θr)-subgraphs.

For the purpose of the proof, we deal with graphs in which some vertices are marked.
If G is a graph and m : V (G)→ {0, 1} is a function, we say that (G,m) is a graph marked
by m. A vertex v of G such that m(v) = 1 is said to be marked. We denote by µ the
function that, given a graph, returns its number of marked vertices. We now define an
r-good partition. Given a positive integer r, a marked tree (T,m) is said to have an
r-good partition of root v if there is a pair ((T1,m1), (T2,m2)) of marked trees such that:

(i) T1 and T2 are subtrees of T such that (E(T1), E(T2)) is a partition of E(T );

(ii) r ≤ µ ((T1,m1)) ≤ 2r;

(iii) v ∈ V (T2); and

(iv) every vertex that is marked in (T,m) is either marked in (T1,m1) or marked in
(T2,m2), but not in both. In other words, for every u ∈ V (T ),

• if v ∈ V (T1)∩V (T2) then m(v) = 1⇔ m1(v) = 1 or m2(v) = 1 but not both;

• otherwise, let i ∈ {1, 2} be the integer such that v ∈ V (Ti). Then we have
m(v) = mi(v).

We remark that because of (iv), µ(T ) = µ(T1) + µ(T2). If for every v ∈ V (T ), (T,m)
has an r-good partition of root v, then T is said to have an r-good partition.

Lemma 4.8. For every integer r > 0 and every marked tree (T,m), if µ(T ) ≥ 2r then
(T,m) has an r-good partition.

Proof. Let r > 0 be an integer. We prove this lemma by induction on the size of the
tree.
Base case: |V (T )| = 0. Since 2r ≥ 2 > |V (T )| , T does not have 2r marked vertices and
we are done.
Induction step: Assume that for every integer n′ < n, every marked tree (T ′,m′) on n′

vertices and satisfying µ((T ′,m′)) ≥ 2r has an r-good partition (induction hypothesis).
Let us prove that every marked tree on n vertices has a r-good partition if it has at

least 2r marked vertices. Let (T,m) be a tree on n vertices and let v be a vertex of T.
We assume that µ((T,m)) ≥ 2r. We distinguish two cases.

• µ((T,m)) = 2r:

Let T1 = T, let m1 = m, let T2 = ({v}, ∅), and let m2 : V (T2) → {0, 1} be the
function equal to 0 on every vertex of T2. Remark that (E(T1), E(T2)) = (E(T ), ∅)
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is a partition of E(T ), T2 contains v, and as (T,m) contains (exactly) 2r marked
vertices, so does (T1,m). Consequently ((T1,m1), (T2,m2)) is an r-good partition
of (T,m).

• µ((T,m)) > 2r:

We distinguish different cases depending on the degree of the root v in T.

Case 1: deg(v) = 1.

Let u be the neighbor of v in T, let T ′ = T \ {v}, and m′ = m|V (T ′). Remark
that µ((T ′,m′)) ≥ 2r and |V (T ′)| = |V (T )| − 1. By induction hypothesis,
(T ′,m′) has an r-good partition ((T ′1,m1), (T ′2,m1)) of root u. We extend it
to T by setting T1 = T ′1 and T2 = (V (T ′2) ∪ {v}, E(T ′2) ∪ {v, u}) . Notice that
T2 contains v. As the subtree T ′1 contains at least r and at most 2r marked
vertices (induction hypothesis), so does T1. Also, remark that (E(T1), E(T2))
is a partition of E(T ) and that since u ∈ T ′2, the graph T2 is connected.
Therefore the pair (T1, T2) is an r-good partition of T.

Case 2: deg(v) = d > 1.

Let u1, . . . , ud be the neighbors of v in T and for every i ∈ J1, dK , let Ci be the
connected component of T \ {v} that contains ui. We also define, for every
i ∈ J1, dK , the restricted marking function wi = m|V (Ci).

Subcase (a): there exists i ∈ J1, dK such that µ((Ci, wi)) > 2r.
Let T ′ = (V (Ci) ∪ {v}, E(Ci) ∪ {u, v}) and let m′ = m|V (T ′). Remark
that |V (T ′)| < |V (T )| and µ((T ′,m′)) > 2r. According to the induc-
tion hypothesis, (T ′,m′) has an r-good partition ((T1,m1), (T2,m2)) of
root ui. Similarly as before, we can extend it into an r-good partition
((T1,m1), (T2,m2)) of (T,m). This is done by setting:

T1 = T ′1,

m1 = m′1,

T2 = (V (T ′2) ∪ {v}, E(T ′2) ∪ {v, ui}), and

m2 :

{
v 7→ 0
u ∈ V (T2) \ {v} 7→ m′2(u)

.

Subcase (b): there exists i ∈ J1, dK such that r ≤ µ((Ci, wi)) ≤ 2r.
Let T1 = Ci and T2 = T [E(T ) \ E(T1)]. In this case, (E(T1), E(T2)) is a
partition of E(T ) and T2 is connected since it contains v, the vertex which
is adjacent to the Cj’s. Thus, if we set m1 = m|V (T1) and m2 = m|V (T2),
((T1,m1), (T2,m2)) is an r-good partition of (T,m).

Subcase (c): for all i ∈ J1, dK , µ((Ci, wi)) < r.
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Let j = min
{
j ∈ J2, dK ,

∑j
i=1 µ((Ci, wi)) ≥ r

}
. We set:

T1 = (∪i∈J1,jKV (Ci) ∪ {v},∪i∈J1,jK(E(Ci) ∪ {v, ui})),

m1 :

{
v 7→ 0
u ∈ V T1 \ {v} 7→ m(u)

,

T2 = T [E(T ) \ E(T1)], and

m2 = m|V (T2).

By definition of j, µ((T1,m1)) ≥ r and as for every i ∈ J1, dK , µ((Ci, wi)) <
r we also have µ((T1,m1)) < 2r. As before, the pair ((T1,m1), (T2,m2))
is an r-good partition of (T,m).

In conclusion, we proved by induction that for every integer r, every tree having at
least 2r marked vertices has an r-good partition.

We are now ready to give the proof of Lemma 4.7.

Proof of Lemma 4.7. As G is 2-connected, the removal of a vertex v of maximum degree
gives a connected graph. Let T be a minimal tree of G\{v} spanning the neighborhood
NG(v) of v. We mark the vertices of T that are elements of NG(v): this gives the marking
function m for T. Let us prove by induction on k that (T,m) has k edge-disjoint marked
subtrees (T1,m1), . . . , (Tk,mk), each containing at least r marked vertices. If we do so,
then we are done because {{v}, Ti}i∈J1,kK is a collection of k edge-disjoint θr models. In
fact, as for every i ∈ J1, kK , Ti contains r′ ≥ r vertices adjacent to v in G, contracting
the edges of Ti in G[{v} ∪ V (Ti)] gives the graph θr′ . Let r > 0 be an integer.
Base case k = 1: Clear.
Induction step k > 1: Assume that for every k′ < k, every tree with at least 2k′r
vertices marked has k′ edge-disjoint subtrees, each with at least r marked vertices.
Let (T,m) be a marked tree such that µ((T,m)) ≥ 2kr. According to Lemma 4.8,
(T,m) has an r-good partition ((T1,m1), (T ′1,m

′
1)) such that r ≤ µ((T1,m1)) ≤ 2r and

µ((T ′1,m
′
1)) = µ((T,m)) − µ((T1,m1)) ≥ 2(k − 1)r. By induction hypothesis, (T ′1,m

′
1)

has k − 1 edge-disjoint marked subtrees (T2,m2), . . . , (Tk,mk) each containing at least
r marked vertices. Remark that as all these trees are subgraphs of T ′1, which is edge-
disjoint from T1 in T , they are edge-disjoint from T1 as well. Consequently, (T1,m1),
(T2,m2), . . . , (Tk,mk) is the family of edge-disjoint subtrees we were looking for.

4.2.2 On the minimum degree and vertex-disjoint packings

In this subsection we show that every graph of large minimum degree contains k · θr as
minor, which can be found in polynomial time. Our proof relies on the following result.

Theorem 4.6 (Theorem 12 of [BTV07]). Given k, r ∈ N≥1 and an input graph G such
that δ(G) ≥ k(r+1)−1, a partition (V1, . . . , Vk) of V (G) satisfying ∀i ∈ J1, kK , δ(G[Vi]) ≥
r can be found in O(nc) steps, for some c ∈ N.

Theorem 4.6 is the algorithmic version of the next older result.
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Theorem 4.7 ([Sti96, Corollary 3]). For every k, r ∈ N≥1, every graph G with δ(G) ≥
k(r+1)−1 has a partition (V1, . . . , Vk) of its vertex set satisfying δ(G[Vi]) ≥ r for every
i ∈ J1, kK.

Lemma 4.9. There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥
kr, returns a e-M(θr)-packing of G of size k, in O(m) steps.

Proof. Starting from any vertex u, we grow a maximal path P in G by iteratively adding
to P a vertex that is adjacent to the previously added vertex but does not belong to P .
Since δ(G) ≥ kr, any such path will have length at least kr + 1. At the end, all the
neighbors of the last vertex v of P belong to P (otherwise P could be extended). Since
v has degree at least kr, v has at least kr neighbors in P . Let w0, . . . , wkr−1 be an
enumeration of the kr first neighbors of v in the order given by P , starting from u.
For every i ∈ J0, k − 1K, let Si be the subgraph of G induced by v and the subpath
of P starting at wir and ending at w(i+1)r−1. Observe that for every i ∈ J0, k − 1K, Si
contains a θr-major and that the intersection of every pair of graphs from {Si}i∈J0,k−1K is
{v}. Hence P contains a e-M(θr)-packing of G of size k, as desired. Every edge of G is
considered at most once in this algorithm, yielding to a running time of O(m) steps.

Corollary 4.3. There is an algorithm that, given r ∈ N≥1 and a graph G with δ(G) ≥ r,
returns a θr-major of G in O(m)-steps.

Observe that the previous lemma only deals with edge-disjoint packings. An analogue
of Lemma 4.9 for vertex-disjoint packings can be proved using Theorem 4.6 to the price
of a worse time complexity.

Lemma 4.10. There is an algorithm that, given k, r ∈ N≥1 and a graph G with δ(G) ≥
k(r + 1) − 1, outputs a v-M(θr)-packing of G of size k in O(nc + m) steps, where c is
the constant of Theorem 4.6.

Proof. After applying the algorithm of Theorem 4.6 on G to obtain in O(nc)-time k
graphsG[V1], . . . , G[Vk], we extract a θr-major from each of them using Corollary 4.3.

4.3 Treewidth and excluded majors

In this section, we show upper-bounds on the treewidth of graphs not containing a
major of some fixed pattern, among which: the wheel, the double wheel, any graph of
pathwidth at most 2, the yurt graph, and the disjoint union of copies of the graph θr.

In [RST94a], Robertson, Seymour, and Thomas proved that every planar graph is a
minor of a large enough grid.

Lemma 4.11 ( [RST94a, (1.5)]). For every positive integer h, the h × h-grid contains
as a minor any planar graph H satifsying 2|V (H)|+ 4|E(H)| ≤ h.

Together with Theorem 4.1, the above lemma implies the next result.

Theorem 4.8. There is a function f : N → N such that, for every for every planar
graph H on h vertices, every graph G that does not contain a minor isomorphic to H
has treewidth at most f(h).
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The original proof of Theorem 4.1 in [RS86] does not provide any explicit estimation
for the function f . Later, in [RST94a], Robertson, Seymour, and Thomas proved the
same result for f(h) = 2O(h5), while a less complicated proof appeared in [DJGT99a].
The bound f(h) ≤ h− 2 was also obtained in [BRST91] in the case where H is required
to be a forest. Theorem 4.8 has several applications in algorithms and a lot of research
has been devoted to optimizing the function f in general or for specific instantiations of
H (see [RST94b,DJGT99b]).

For a long time, whether Theorem 4.8 can be proved for a polynomial f was an open
problem. In [RST94a], an Ω(h2 · log h) lower bound was provided for the best possible
estimation of f and was also conjectured that the optimal estimation should not be far
away from this lower bound. In fact, a more precise variant of the same conjecture was
given by Demaine, Hajiaghayi, and Kawarabayashi in [DHK09] where they conjectured
that Theorem 4.8 holds for f(h) = O(h3). The bounds of [RST94a] were then improved
by Kawarabayashi and Kobayashi [iKK12], where they show that Theorem 4.8 holds for
f(h) = 2O(h·log h). The same bounds were obtained by Leaf and Seymour [LS15]. Until
recently, this was the best known estimation of the function f .

In a breakthrough result [CC13b], Chekuri and Chuzhoy proved that Theorem 4.1
holds for f(h) = O(h228). Chuzhoy recently improved this bound.

Theorem 4.9 ( [Chu16], see also [CC13b,Chu15]). There exists a function f1 : N→ N
with f1(h) = O(h19 polylog h) such that, for every integer h, every graph that does not
contain a minor isomorphic to the h× h-grid has treewidth at most f(h).

The remaining open question is whether the degree of this polynomial bound can
be substantially reduced in general. In this direction, one may still consider restrictions
either on the graph G or on the graph H that yield a low polynomial dependence
between the treewidth and the size of the excluded minor. In the first direction, Demaine
and Hajiaghayi proved in [DH08] that, when G is restricted to belong to some graph
class excluding some fixed graph as a minor, then Theorem 4.8 (optimally) holds for
f(h) = O(h). Similar results have been proved by Fomin, Saurabh, and Lokshtanov,
in [FLS12], for the case where G is either a unit disk graph or a map graph that does
not contain a clique as a subgraph.

In a second direction, one may consider H to be some specific planar graph and find
a good upper bound for the treewidth of the graphs that exclude it as a minor. More
generally, we can consider a parametrized class of planar graphs Hk where each graph
in Hk has size bounded by a polynomial in k, and prove that the following fragment of
Theorem 4.8 holds for some low degree polynomial function f : N→ N:

∀k ≥ 0 ∀H ∈ Hk, ifH 6 ≤m G then tw(G) ≤ f(k). (4.2)

The question can be stated as follows: find pairs (Hk, g(k)) for which (4.2) holds for
some f(k) = O(g(k)), where Hk is as general as possible and g is as small as possible
(and certainly polynomial). It is known, for example, that (4.2) holds for the pair
({Ck}, k), where Ck is the cycle or a path of k vertices (see e.g. [Bod93,FL94]), and for
the pair ({K2,k}, k), (see [BvLTT97b]). Two more results in the same direction that
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appeared in the last decade are the following: according to the result of Birmelé, Bondy,
and Reed in [BBR07a], (4.2) holds for the pair (Pk, k2) where Pk contains all minors of
K2×Ck (we denote by K2×Ck the Cartesian product of K2 and the cycle of k vertices,
also known as the k-prism). Finally, one of the consequences of the recent results of Leaf
and Seymour in [LS15], implies that (4.2) holds for the pair (Fk, k), where Fk contains
every graph on k vertices that contains a vertex that meets all its cycles.

Results presented in this section. In this section we provide new exclusion theo-
rems by proving that (4.2) holds for the pairs:

• (H0
k, k

2), where H0
k contains all simple graphs H on k vertices and of pathwidth

at most 2;

• (H1
k, k), where H1

k contains all minors of a wheel on k+ 1 vertices – see Figure 4.3;

• (H2
k, k

2 log2 n), where H2
k contains all minors of a double wheel on k+ 2 vertices –

see Figure 4.3;

• (H3
k, k

4), where H3
k contains all minors of the yurt graph on 2k + 1 vertices (i.e.

the graph obtained it we take a (2× k)-grid and add a new vertex adjacent with
all the vertices of its “upper layer” – see Figure 4.6); and

• (H4
k,r, k log k), where H4

k,r contains all minors of the graph k · θr.

Notice that none of the classes H1
k, H2

k, H3
k, and H4

k is minor comparable with the
classes Pk and Fk treated in [BBR07a] and [LS15], whereas H3

k,r ( Pkr. Moreover,
H1
k ( H2

k ( H3
k, while H3

k,r ( H0
k. The above results are presented thereafter in detail,

without the O-notation.

Theorem 4.10. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 36k − 2, then
G contains a wheel of order k as minor.

Theorem 4.11. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 12(8k log(8k) +
2)2 − 4, then G contains a double wheel of order at least k as minor.

Theorem 4.12. Let G be a graph, let H be a simple graph on k vertices such that
pw(H) ≤ 2. If tw(G) ≥ 3(k − 2)2 − 1 then G contains H as a minor.

Theorem 4.12 can be extended to the setting of graphs that are not simple as follows.

Corollary 4.4. Let G be a graph, let H be a graph such that pw(H) ≤ 2 and let
k = |V (H)|+ |E(H)|. If tw(G) ≥ 3(k − 2)2 − 1 then G contains H as a minor.

Theorem 4.13. Let k > 0 be an integer and G be a graph. If tw(G) ≥ 6k4 − 24k3 +
48k2 − 48k + 23, then G contains the yurt graph of order k as minor.

Theorem 4.14. Let k > 0 and r ≥ 2 be two integers and let G be a graph. If tw(G) ≥
26r · k · log(k + 1), then G contains k · θr as a minor.
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The aforementioned results will we proved in the forthcoming sections, in this order.
The proofs of the four first results use as a departure point the results of Leaf and
Seymour in [LS15], whereas the last one uses the results of Geelen, Gerards, Robertson,
and Whittle on the excluded minors for the matroids of branch-width k [GGRW03]
together with Theorem 4.4. In Subsection 4.3.1, we introduce notions that we will use
and we prove two lemmas, for later use. We give in Subsection 4.3.7 lower bounds on
the best function f of (4.2) that one can expect for the classes studied here and we
discuss the tightness of our results.

4.3.1 Our tools

This section contains some definitions, as well as two lemmas that will be useful later.

Definition 4.1 (linked set). Let G be a graph and S ⊆ V (G). The set S is said to
be linked in G if for every two subsets X1, X2 of S (not necessarily disjoint) such that
|X1| = |X2|, there is a set Q of |X1| (vertex-)disjoint paths between X1 and X2 in G
whose length is not one (but can be null) and whose endpoints only are in S.

Definition 4.2 (left-contains, [LS15]). Let H be a graph on r vertices, G a graph and
(A,B) a separation of order r in G. We say that (A,B) left-contains H if G[A] contains
a minor model M of H such that ∀M ∈M, |M ∩ (A ∩B)| = 1

In this section, we denote by Bh the complete binary tree of height h, for every
integer h > 0.

Proposition 4.2 ( [LS15, (4.3)]). Let k > 0 be an integer, let F be a forest on k vertices
and let G be a graph. If tw(G) ≥ 3

2
k − 1, then G has a separation (A,B) of order k

such that

• G[B \ A] is connected;

• A ∩B is linked in G[B];

• (A,B) left-contains F .

Proposition 4.3 (Erdős–Szekeres Theorem, [ES87]). Let k and ` be two positive in-
tegers. Then any sequence of (`− 1)(k − 1) + 1 distinct integers contains either an
increasing subsequence of length k or a decreasing subsequence of length `.

Lemma 4.12. For every tree T , |V (T )| ≤ |L(T )|·diam(T )
2

+ 1.

Proof. Root T to a vertex r ∈ V (T ) that is halfway of a longest path of T . For each

leaf x ∈ L(T ), we know that |V (xT r̊)| ≤
⌊
diam(T )

2

⌋
. Observe that V (T ) = {r} ∪⋃

x∈L(T ) V (xT r̊). Therefore,

|V (T )| ≤
∑

x∈L(T )

|V (xT r̊)|+ 1

|V (T )| ≤ |L(T )| ·
⌊

diam(T )

2

⌋
+ 1.
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Notice that equality holds for the subdivided star (obtained from K1,n by subdividing
k times every edge, for some n, k ∈ N).

Definition 4.3 (The set Λ(T )). Let T be a tree. We denote by Λ(T ) the set containing
every graph obtained as follows: take the disjoint union of T , a path P where |V (P )| ≥√
|L(T )|, and an extra vertex vnew, and add edges such that

(i) there is an edge between vnew and every vertex of P ;

(ii) there are |V (P )| disjoint edges between P and L(T );

(iii) there are no more edges than the edges of T and P and the edges mentioned in (i)
and (ii).

Lemma 4.13. Let n ≥ 1 be an integer, T be a tree on n vertices an let G be a graph.
If tw(G) ≥ 3n− 1, then H ≤m G for some H ∈ Λ(T ).

Proof. Let n, T , and G be as in the statement of the lemma. Let l be the number of
leaves of T , and let J be a path on l vertices. We consider the disjoint union of J and
T .

The graph G has treewidth at least 3
2
(n + l) − 1, then by Proposition 4.2, G has a

separation (A,B) of order n+ l such that

(i) G[B \ A] is connected;

(ii) A ∩B is linked in G[B];

(iii) (A,B) left-contains the graph J ∪ T .

Let (M, ϕ) be the a minor model of J ∪ T in G[A] that witnesses (iii). We call
the vertices of A ∩ B that belong to ϕ(v) for some v ∈ V (J) the J-part, and vertices
that belong to ϕ(v) for some v ∈ L(T ) forms the L(T )-part. Notice that two distinct
vertices of the J-part (resp. L(T )-part) will be contracted to distinct vertices by the
minor model.

Let P a set of l disjoint paths with the one endpoint in the J-part and the other
in the L(T )-part, and whose interior belongs to B \ A. The existence of such paths is
given by (ii). For each P ∈ P , we arbitrarily choose a vertex vP of the interior of P ,
that is, vP ∈ V (P ) \A. By (i), G[B \ A] is connected: let Y be a smallest tree spanning
the vertices {vP}P∈P . Let s =

√
|L(T )|, and let Y ∗ be the tree obtained from Y by

dissolving every vertex of degree two that is not vP for some P ∈ P . We are now facing
two possible situations.

Case 1: Y ∗ has a path of length s. Let Q be the path of Y corresponding to a path
of lenght s in Y ∗ and let S be the set of vertices u ∈ V (Q) that are not of degree two
or that are vP for some P ∈ P . Observe that from every u ∈ S, there is a path Ju to
the L(T )-part and a path J ′u to the J-part. Indeed, if u = vP for some P ∈ P , then
u is a vertex of P linking (by definition) a vertex of the L(T )-part to a vertex of the
J-part. Otherwise, u is of degree at least 3 in Y and every leaf of the subtrees of Y \Q
(at least one of which is adjacent to u), is a vP for some P ∈ P (by minimality of Y ),
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so is connected to the L(T )-part and the J-part as explained above. Furthermore, for
every two distinct u, v ∈ S, the aforementioned path are disjoint.

Let us now summarize. G[∪v∈V (J)ϕ(v)] is a connected subgraph of G, which is
connected by the s disjoint paths J ′uu∈S to the path Y . All the endpoints of the paths
J ′uu∈S on Y are connected by s disjoint paths Juu∈S to the L(T )-part, which correspond
to the leaves in a minor model of T . Therefore this graph contains a member of Λ(T )
as a minor, as required.
Case 2: diam(Y ∗) < s. From Lemma 4.12, |L(Y )| = |L(Y ∗)| ≥ s. Observe that
L(Y ) ⊆ {vP}P∈P (this follows by the minimality of Y ). Let S = V (Y ) \ L(Y ). We
consider the minor of G obtained by contracting, for every P ∈ P such that vP ∈ L(Y ),
every edge of the subpath connecting the J-part to a leaf of Y . In this graph, S induces
a connected subgraph adjacent to at least s distinct vertices of the J-part. All these
s vertices of the J-part are connected by s disjoint paths to distinct vertices of the
L(T )-part. Thus this contains a member of Λ(T ) as a minor, and so do G.

The proof of Theorem 4.14 requires additional definitions, that we introduce in the
corresponding section as they are not used in the proofs of the other results.

4.3.2 Excluding a wheel with a linear bound on treewidth

In this section we prove Theorem 4.10. For every integer r ≥ r, we denote by Wr the
wheel of order r where every vertex of the cycle is adjacent to the center. An example
is given in Figure 4.3.

w1w2

w3

w4 w5

w6
o

w1w2

w3

w4 w5

w6
o1

o2

Figure 4.3: A wheel of order six (left) and a double wheel of order 6 (right).

Lemma 4.14. Let h > 2 be an integer. Let G be a graph obtained from the union of
the tree T = Bh and a path P by adding the edges {l, ψ(l)} ∈ E(G) for every l ∈ L(T ),
where ψ : L(T )→ V (P ) is a bijection. Then G contains a wheel of order 2h−2 + 1 as a
minor.
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Proof. Let h, ψ, T , P = p1 . . . p2h and G be as above. Let r be the root of T .
In the arguments to follow, if t ∈ V (T ), we denote by Tt the subtree of T rooted at

t (i.e. the subtree of T whose vertices are all the vertices t′ ∈ V (T ) such that the path
t′Tr contains t).

We consider the vertices u = ψ−1(p1) ∈ L(T ) and v = ψ−1(p2h) ∈ L(T ) and w =
lcaT (u, v) ∈ V (T ) \ L(T ).

Let τ be a largest subtree of T which is disjoint from uTv. Let Lτ = L(τ)∩L(T ) and
let Q = ψ(Lτ ) ⊆ P . It is not hard to see that G contains W|Q|+1 as a minor. Indeed,
the paths P and uTv together with the edges {p1, u} and {p2h, v} form a cycle in G.
Besides, the tree τ , which is disjoint from this cycle, has at least |Q| + 1 vertices that
are adjacent to distinct vertices of P : |Q| of them are the elements of Q, and the other
one is the (only) vertex of τ adjacent to uTv (which exists by maximality of τ). In the
subgraph of G induced by V (P ) ∪ V (uTv) ∪ V (τ), contracting τ to a vertex gives a
vertex adjacent to at least |Q|+ 1 vertices of a (non necessarily induced) cycle, a graph
containing W|Q|+1 as subgraph.

Depending on G, |Q| may take different values. However, we show that it is never
less than 2h−2. Remember, |Q| is the number of leaves that a largest subtree of T that
is disjoint from uTv shares with T . The root r of T has two children r1 and r2, inducing
two subtrees Tr1 and Tr2 of T . Recall, w = lcaT (u, v).

Case 1. w 6= r. As w 6= r, w is a vertex of one of {Tr1 , Tr2}, say Tr1 , which contains also
u and v, and thus the path uTv. The other subtree Tr2 is then disjoint from uTv, it has
height h−1 and is complete so it has 2h−1 leaves. Consequently, in this case |Q| ≥ 2h−1.

Case 2. w = r. In this case, the path uTv contains r (and r 6= u, r 6= v as u and v are
leaves) so u and v are not in the same subtree of {Tr1 , Tr2} and uTv contains the two
edges {r, r1} and {r, r2}. For every i ∈ {1, 2}, we denote by ri,1 and ri,2 the two children
of ri in T . We assume without loss of generality that u ∈ V (Tr1,1) and v ∈ V (Tr2,1) (if
not, we just rename the ri’s ans ri,j’s). Notice that the path uTv is the concatenation
of the paths uTr1r1, r1Tr2, r2Tr2v. Since the tree Tr1,2 is disjoint from uTv, is complete
and is of height h− 2, it has 2h−2 leaves. Therefore we have |Q| ≥ 2h−2.

In both cases, |Q| ≥ 2h−2 and according to what we proved before, G contains a
minor model of W|Q|+1. As every wheel contains as a minor every smaller wheel, we
proved that G contains a wheel of order at least 2h−2.

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. Let k > 0 be an integer, G be a graph such that tw(G) ≥
36k−2, and let h = dlog 4ke . Since every wheel contains a minor model of every smaller
wheel, we have

Wk≤m W2dlog ke+1

≤m W2d(log 4k)−2e+1

≤m W2h−2+1
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Therefore, if we prove that G contains a W2h−2+1-minor model, then we are done because
the minor relation is transitive. Let Y −h be the graph of the following form: the disjoint
union of the complete binary tree Bh of height h with leaves set YL and of the path YP
on 2h vertices, and let Yh be the set of graphs of the same form, but with the extra
edges {{l, φ(l)}}l∈YL , where φ : YL → V (YP ) is a bijection. As we proved in Lemma 4.14

that every graph in Yh contains the wheel of order 2h−2 + 1 as minor, showing that G
contains an element of Yh as minor suffices to prove this lemma. That is what we will
do.

From our initial assumption, we deduce the following.

tw(G) ≥ 36k − 5

2

≥ 3

2
(3 · 2log 8k − 1)− 1

≥ 3

2
(3 · 2blog 4kc+1 − 1)− 1

tw(G) ≥ 3

2
(3 · 2h − 1)− 1

According to Proposition 4.2, G has a separation (A,B) of order 3 · 2h− 1 such that

(i) G[B \ A] is connected;

(ii) A ∩B is linked in G[B];

(iii) (A,B) left-contains the graph Y −h .

By definition of left-contains, G[A] contains a minor model (M−, ϕ−) of Y −h and
every element of M− contains exactly one element of A ∩ B. For every x ∈ A ∩ B, we
denote by M−

x the element of M− that contains x. Let L (resp. R) be the subset of
A∩B of vertices that belong to an element of M related to the leaves of Bh in Y −h (resp.
to the path P ). We remark that these sets are both of cardinality 2h.

Since A∩B is linked in G[B] (see (ii)), there is a set P of 2h disjoint paths between
the vertices of L and the elements of R. Let ψ : L→ V (P ) be the function that match
each element l of L with the (unique) element of R it is linked to by a path (that we
call Pl) of P . Observe that ψ is a bijection. We set

∀l ∈ L, Ml = M−
l ∪ V (lPlψ̊(l))

∀r ∈ (A ∩B) \ L, Mr = M−
r

M =
⋃

x∈A∪B

Mx.

Let us show thatM allows us to define a minor model of some H ∈ Yh. Let us consider
the following mapping.

ϕ :

{
V (Y −h ) → M
x 7→ Mx
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We claim that (M, ϕ) is a minor model of H for some H ∈ Yh. This is a consequence
of the following remarks.

Remark 4.1. Every element ofM is either an element ofM−, or the union of a element
M ofM− and of the vertices of a path that start in M , thus every element ofM induces
a connected subgraph of G.

Remark 4.2. The paths of P are all disjoint and are disjoint from the elements of M−.
Every interior of path of P is in but one element ofM, therefore the elements ofM are
disjoint.

Remark 4.3. The elements {ml}l∈L are in bijection with the elements of {mr}r∈R (thanks
to the function ψ) and every two vertices l ∈ L and ψ(l) ∈ R are such that there is an
edge between ml and mψ(l) (by definition of M+).

We just proved that (M, ϕ) is a minor model of a graph of Yh in G. Finally, we apply
Lemma 4.14 to find a minor model of the wheel of order 2h−2 + 1 = 2dlog ke−2 + 1 ≥ k in
G and this concludes the proof.

4.3.3 Excluding a double wheel with a O(k log k)2 bound on
treewidth

This section is devoted to the proof of Theorem 4.11. Recall that for every integer
n ≥ 3, a double wheel of order n is obtained from a cycle of order n by adding two
non-adjacent, each connected to at least three vertices of the cycle. We denote by W2

n

the double wheel of order n where the two extra vertices are adjacent to every vertex of
the cycle.

Lemma 4.15. Let G be a graph and h > 0 be an integer. If tw(G) ≥ 6 · 2h − 4, then G

contains as minor a double wheel of order at least 2
h
2 −2

2h−3
.

Proof. Let h and G be as above. Observe that tw(G) ≥ 3(2h+1 − 1) − 1. As the
binary tree T = Bh has 2h+1 − 1 vertices, G contains a graph H ∈ Λ(Bh) as minor (by
Lemma 4.13). Let us show that any graph H ∈ Λ(Bh) contains a double wheel of order

at least 2
h
2 −2

2h−3
as minor.

Let P be the path of length at least 2
h
2 in the definition of H. Let L be the set, of

size at least 2
h
2 , of the leaves of T that are adjacent to P in H. Such a set exists by

definition of Λ(Bh). We also define u (resp. u′) as the vertex of L(T ) that is adjacent to
one end of P (resp. to the other end of P ) and Q = uTu′.

As T is a binary tree of height h, Q has at most 2h − 1 vertices. Each vertex of Q
is of degree at most 3 in T except the two ends which are of degree 1. Consequently,
T \ Q has at most 2h − 3 connected components that are subtrees of T. Notice that

every vertex of the 2
h
2 elements of L is either a leaf of one of these 2h − 3 subtrees, or

one of the two ends of Q. By the pigeonhole principle, one of these subtrees, which we

call T1, has at least 2
h
2 −2

2h−3
leaves that are elements of L.

Let Mo1 be the set of vertices of this subtree T1. We also set Mo2 = {vnew} (cf. Defini-
tion 4.3 for a definition of vnew). Let us consider the cycle C made by the concatenation
of the paths uPu′ and u′Tu in H.
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By definition of Mo1 , there are at least 2
h
2 −2

2h−3
vertices of C adjacent to vertices of Mo1 .

Let J =
{
j1, . . . , j|J |

}
be the set of such vertices of C, in the same order as they appear

in C (we then have |J | ≥ 2
h
2 −2

2h−3
).

We arbitrarily choose an orientation of C and define the sets of verticesM1,M2, . . . ,M|J |
as follows.

∀i ∈ J1, |J | − 1K , Mi = V (jiC ˚ji+1)

M|J | = V (j|J |Cj̊1)

Let M =
{
M1, . . . ,M|J |,Mo1 ,Mo2

}
and ψ : V (W2

|J |) → M be the function defined
by

∀i ∈ J1, |J |K , ψ(wi) = Mi

ψ(o1) = Mo1

ψ(o2) = Mo2

Notice that ψ maps the vertices of W2
|J | to connected subgraphs of H such that ∀(v, w) ∈

E(W2
|J |), there is a vertex of ψ(v) adjacent in H to a vertex of ψ(w). Therefore, (M, ψ)

is a W2
|J |-minor model in H.

Since |J | ≥ 2
h
2 −2

2h−3
, H contains a double wheel of order at least 2

h
2 −2

2h−3
, which is what

we wanted to show.

Corollary 4.5. Let l > 0 be an integer and G be a graph. If tw(G) ≥ 12l − 4 then G

contains a double wheel of order at least
√
l−2

2 log l−5
as minor.

Proof. Let l and G be as above. First remark that

dlog le − 1 ≤ log l ≤ dlog le (4.3)

Our initial assumption on tw(G) gives the following.

tw(G) ≥ 12l − 4

≥ 6 · 2log(2l) − 4

≥ 6 · 2log l+1 − 4

≥ 6 · 2dlog le − 4 by (4.3)

By Lemma 4.15, G contains a double wheel of order at least

q =
2
dlog le

2 − 2

2 dlog le − 3

≥ 2
1
2

log l − 2

2(log l − 1)− 3
by (4.3)

≥
√
l − 2

2 log l − 5

Therefore, G contains a double wheel of order q ≥
√
l−2

2 log l−5
, as required.
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We can now deduce Theorem 4.11 from Corollary 4.5.

Proof of Theorem 4.11. Applying Corollary 4.5 for l = (8k log(8k) + 2)2 yields that G
contains a double wheel of order at least

q ≥
√
l − 2

2 log l − 5

≥ 8k log(8k)

4 log(8k log(8k) + 2)− 5

≥ 8k log(8k)

4 log(8k log(8k))− 1

≥ 8k log(8k)

4(log(8k) + log log(8k))− 1

≥ 8k log(8k)

8 log(8k)− 1

≥ k

Consequently G contains a double wheel of order q ≥ k and we are done.

4.3.4 Excluding a graph of pathwidth at most 2 with a quadratic
bound on treewidth

This sections contains the proofs of Theorem 4.12 and Corollary 4.4. We define the
graph Ξr as the graph of the following form (see Figure 4.4).{

V (G) = {x0, . . . , xr−1, y0, . . . , yr−1, z0, . . . , zr−1}
E(G) = {{xi, xi+1} , {zi, zi+1}}i∈J1,r−1K ∪ {{xi, yi} , {yi, zi}}i∈J0,r−1K

z0 z1 z2 z3 z4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 4.4: The graph Ξ5.

Graphs of pathwidth 2 in Ξr

Instead of proving that a treewidth quadratic in |V (H)|+ |E(H)| forces an H-minor for
every graph H of pathwidth at most 2, we prove that a treewidth quadratic in r forces an
Ξr-minor and then that every graph H of pathwidth at most 2 with |V (H)|+|E(H)| ≤ r
is a minor of Ξr. Recall that every graph has an optimal path decomposition which is
nice. Let us state some observations on path decompositions.
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Remark 4.4. Let G be a graph and let (p1p2 . . . pk,X ), X = {Xpi}i∈J1,kK be a nice (non

necessarly optimal) path decomposition of G. Let w be the width of this decomposition.
For every i ∈ J2, k − 1K, if pi is a forget node, |Xpi | ≤ w− 1 and pi+1 is an introduce

node, then by setting

X ′pi = Xpi−1
∪Xpi+1

∀j ∈ J1, kK , j 6= i, X ′pj = Xpj

X ′ =
{
X ′pj

}
j∈J1,kK

we create from (p1p2 . . . pk,X ′) a valid path decomposition of G, where pi is now an
introduce node and pi+1 a forget node. Observe that

∣∣X ′pi∣∣ ≤ |Xpi |+2 = w+1 Therefore
the new path decomposition has the same width as the original one. Note that the
condition |Xpi | ≤ w − 1 holds, for instance, when pi−1 is required to be a forget node
too (for i ∈ J3, k − 1K).

Remark 4.5. Let G be a graph and P = (p1p2 . . . pk,X ) be a nice path decomposition
of G. For every i ∈ J1, kK, the path p1 . . . pi contains at most as many forget nodes as
introduce nodes and the difference between these two numbers is at most w + 1 where
w is the width of P.

Lemma 4.16. Let G be a graph on n vertices . Then G has an optimal path decompo-
sition P such that

(i) every bag of P has size pw(G) + 1;

(ii) every two adjacent bags differs by exactly one element, i.e. for every two adjacent
vertices u and v of P , |Xu \Xv| = |Xv \Xu| = 1.

Proof. Let P = (p1p2 . . . p2k,X ) with X = {Xpi}i∈J1,2kK be a nice optimal path decom-
position of G with as many introduce nodes (resp. forget nodes) as there are vertices in
G.

Let s = pw(G) + 1. According to Remark 4.4 and Remark 4.5, P can be modified
into a path decomposition of G of the same width and such that

(a) the s first vertices of P are introduce nodes and ps+1 is a forget node;

(b) the s last vertices of P are forget nodes and p2k−s is an introduce node;

(c) for every i ∈ Js, 2k − sK, pi and pi+1 are nodes of different type.

In the arguments to follow, we assume that P satisfies this property.

Remark 4.6. Introduce nodes all have bags of cardinality s.

Remark 4.7. For every i ∈ J0, k − sK, the node ps+2i is an introduce node and the node
ps+2i+1 is a forget node, which implies Xps+2i

( Xps+2i+1
. Also note that for every

i ∈ J1, s− 1K , Xpi ( Xps and for every i ∈ J2k − s+ 1, 2kK, Xpi ( Xp2k−s .
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Intuitively, every bag X that is included in one of its adjacent bags X ′ contains no
more information than what X ′ already contains, so we will just remove it.

We thus define P ′ = psps+2 . . . ps+2i . . . p2k−s (a path made of all introduce nodes of
P ). Clearly, P and P ′ have the same width and as we deleted only redundant nodes, P ′

is still a valid path decomposition of G.
Since every two adjacent nodes of P ′ were introduce nodes separated by a forget node

in P , they only differ by one element. According to Remark 4.6 and since every node of
P ′ was an introduce node in P , every bag of P ′ have size pw(G)+1. Consequently, P ′ is
an optimal path decomposition that satisfies the conditions of the lemma statement.

Remark 4.8. The path decomposition of Lemma 4.16 has length V (G)− pw(G).

Proof. Let (P,X ) be such a path decomposition. Remember that the first node of P
has a bag of size pw(G) + 1 and that every two adjacent nodes of P have bags which
differs by exactly one element. Since every vertex of G is in a bag of P , in addition to
the first bag containing pw(G) + 1 vertices of G, P must have V (G)−pw(G)− 1 other
bags in order to contain all vertices of G. Therefore P has length V (G)− pw(G).

A proof of a slightly weaker version of the following lemma previously appeared [Pro89].

Lemma 4.17. For every simple graph G on n vertices and of pathwidth at most 2, there
is a minor model of G in Ξn−1.

Proof. Let G be as in the statement of the lemma. We assume that pw(G) = 2 (if
this is not the case we add edges to G in order to obtain a graph of pathwidth 2 which
contains G as a minor). Let r = V (G)− pw(G) = n− 2.

Let P = (p1 . . . pr, {Xp1 , . . . , Xpr}) be an optimal path decomposition of G satisfying
the properties of Lemma 4.16, of length r. Such decomposition exists according to
Lemma 4.16 and Remark 4.8).

Using this decomposition, we will now define a labeling λ of the vertices of Ξr+1.
When dealing with the vertices of Ξr+1 we will use the notations given in the definition
of this graph. Let λ : V (Ξr+1)→ V (G) be the function defined as follows:

(a) λ(x0) and λ(y0) are both equal to one (arbitrarily chosen) element of the set Xp1 ∩
Xp2 ;

(b) λ(z0) is equal to the only element of the set Xp1 ∩Xp2 \ {λ(x1)};

(c) ∀i ∈ J2, rK, λ(yi) = Xpi \Xpi−1
and we consider two cases:

Case 1: Xpi−1
∩Xpi = Xpi ∩Xpi+1

λ(xi) = λ(xi−1) and λ(zi) = λ(zi−1);

Case 2: Xpi−1
∩Xpi 6= Xpi ∩Xpi+1

if Xpi−1
∩Xpi ∩Xpi+1

= λ(xi−1),

then λ(xi) = λ(xi−1) and λ(zi) = Xpi \Xpi−1
;

else λ(xi) = Xpi \Xpi−1
and λ(zi) = λ(zi−1).
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Thanks to this labeling, we are now able to present a minor model of G in Ξr+1 :

∀v ∈ V (G), Mv = {u ∈ V (Ξr+1), λ(u) = v}
M = {Mv}v∈V (G)

ϕ :

{
V (G) → M
u 7→ Mu

To show that (M, ϕ) is a G-minor model in Ξr+1, we now check if it matches the
definition of a minor model.

By definition, every element ofM is a subset of V (Ξr+1). To show that every element
of M induces a connected subgraph in G, it suffices to show that nodes of Ξr+1 which
have the same label induces a connected subgraph in G (by construction of the elements
ofM). This can easily be seen by remarking that for every i ∈ J2, rK, every vertex yi of
Ξr+1 gets a new label and that every vertex xi (resp. zi) of Ξr+1 receive either the same
label as yi, or the same label as xi−1 (resp. zi−1).

Let us show that this labeling ensure that if two vertices u and v of G are in the
same bag of P , there are two adjacent vertices of Ξr+1 that respectively gets labels u
and v. Let u, v be two vertices of G which are in the same bag of P . Let i be such that
Xi is the first bag of P (with respect to the subscripts of the bags of P ) which contains
both u and v. The case i = 1 is trivial so we assume that i > 1. We also assume without
loss of generality that Xi \ Xi−1 = {v}, what gives λ(yi) = v. Depending on in what
case we are, either either λ(xi) = u (c1) or λ(zi) = u ((c1) and (c2)). In both cases, u
and v are the labels of two adjacent nodes of Ξr+1. By construction of the elements of
M, this implies that if {u, v} ∈ E(G), then there are vertices u′ ∈ ϕ(u) and v′ ∈ ϕ(v)
such that {u′, v′} ∈ E(Ξr+1).

Therefore, (M, ϕ) is a G-minor model in Ξn−1, what we wanted to find.

Observe that Lemma 4.17 can be straighforwardly extended to the setting of graphs
that are not simple. Indeed, given a graph G, one can subdivide once every edge in order
to obtain a simple graph G′ that contains G as a minor, and then apply Lemma 4.17 on
G′, that satisfies |V (G′)| = |V (G)|+ |E(G)|.

Corollary 4.6. For every graph G of pathwidth at most 2, there is a minor model of G
in Ξn, where n = |V (G)|+ |E(G)| − 1.

Exclusion of Ξr

Lemma 4.18. For any graph, if tw(G) ≥ 3`−1 then G contains as minor the following
graph: a path P = p1 . . . p2` of length 2` and a family Q of ` paths of length 2 such that
every vertex of P is the end of exactly one path of Q and every path of Q has one end
in p1 . . . pl (the first half of P ) and the other end in pl+1 . . . p2l (the second half of P )
(see Figure 4.5).
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P

Q

first half of P second half of P

Figure 4.5: Example for Lemma 4.18.

Proof. Let ` > 0 be an integer and G be a graph of treewidth at least 3`− 1. According
to Proposition 4.2, G has a separation (A,B) of order 2` such that

(i) G[B \ A] is connected;

(ii) A ∩B is linked in G[B];

(iii) (A,B) left-contains a path P = p1 . . . p2` of length 2`.

Let (M, ϕ) be a minor model of P in G[A], with M = {M1, . . . ,M2`}. We assume
without loss of generality that ϕ maps pi to Mi for every i ∈ J1, 2`K.

As A ∩ B is linked in G[B], there is a set Q of ` disjoint paths in G[B] of length at
least 2 and such that every path q ∈ Q has one end in (A ∩ B) ∩

⋃
i∈J1,`KMi, the other

end in (A ∩B) ∩
⋃
i∈J`+1,2`KMi and its internal vertices are not in A ∩B.

Let G′ be the graph obtained from G[
(⋃

q∈Q V (q)
)
∪
(⋃

M∈MM
)
] after the following

operations.

1. iteratively contract the edges of every path of Q until it reaches a length of 2. The
paths of Q have length at least 2, so this is always possible.

2. for every i ∈ J1, 2`K, contract Mi to a single vertex. The elements of a minor model
are connected (by definition) thus this operation can always be performed.

As one can easily check, the graph G′ is the graph we were looking for and it has been
obtained by contracting some edges of a subgraph of G, therefore G′≤mG.

We can now prove Theorem 4.12.

Proof of Theorem 4.12. LetG, H and h be as in the statement of the Lemma. According
to Lemma 4.17, every simple graph F on n vertices and of pathwidth at most two is
a minor of Ξn−1. Therefore, in order to show that H ≤mG it is enough to prove that
Ξk−1≤m G. This is what we will do.

According to Lemma 4.18, G contains as minor two paths P = p1 . . . p(k−2)2 and

R = r1 . . . rk−2)2 and a family Q of (k − 2)2 paths of length 2 such that every vertex of
P or R is the end of exactly one path of Q and every path of Q has one end in P and
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the other end in R. For every p ∈ P , we denote by ϕ(p) the (unique) vertex of R to
which p is linked to by a path of Q. Observe that ϕ is a bijection. By Proposition 4.3,
there is a subsequence P ′ = (p′1, p

′
2, . . . , p

′
k−1) of the vertices of P such that the vertices

ϕ(p′1), ϕ(p′2), . . . , ϕ(p′k−1) appear in R either in this order or in the reverse order. Let
R′ = (ϕ(p′1), ϕ(p′2), . . . , ϕ(p′k−1)) and Q′ be the set of inner vertices of the paths from p′i
to ϕ(p′i) for all i ∈ J1, k − 1K .

Iteratively contracting in G the edges of P (resp. R) which have at most one end
in P ′ (resp. in R′) and removing the vertices that are not in P ′, R′ or Q′ gives the
graph Ξk−1. The operations used to obtain it are vertices and edge deletions, and edge
contractions, thus Ξk−1 is a minor of G. This concludes the proof.

Observe that Theorem 4.12 can be extended to the setting of graphs that are not
simple as we did for Corollary 4.6, what gives Corollary 4.4.

4.3.5 Excluding a yurt graph with a O(k4) bound on treewidth

In this section we prove Theorem 4.13. For every positive integer n, we denote by Yn
the Yurt graph of order n (as a reminder, see Figure 4.6).

Figure 4.6: The yurt graph of order 5.

For every r > 0, we define the comb of order r as the tree made from the path
p1p2 . . . pr and the extra vertices v1, v2, . . . , vr by adding an edge between pi and vi for
every i ∈ J1, rK .

By using Lemma 4.13 we can immediately prove Theorem 4.13.

Proof. Let k > 0 be an integer and G be a graph such that tw(G) ≥ 6k4 − 24k3 +
48k2 − 48k + 23. Let C be the comb with l = k4 − 4k3 + 8k2 − 8k + 4 teeth. As
tw(G) ≥ 3 |V (C)| − 1, G contains as a minor some graph of Λ(C) by Lemma 4.13.

Let us prove that every graph of Λ(C) contains the yurt graph of order k. Let H
be a graph of Λ(C). We respectively call T , P and o the tree, path and extra vertex of
Λ(C). Let F be the subset of edges between P and the leaves of T

Let L = l0, . . . , lk2−2k+2 (resp. Q = q0, . . . , qk2−2k+2) be the leaves of T (resp. of
P )that are the end of an edge of F We assume without loss of generality that they
appears in this order.

According to Proposition 4.3, there is a subsequence Q′ of Q of length k such that
the corresponding vertices L′ of L appear in the same order. As one can easily see, this
graph contains the yurt of order k and we are done.
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4.3.6 Excluding a union of k disjoint copies of θr with a O(k log k)
bound on treewidth

This section is devoted to the proof of Theorem 4.14. Before we present the proof, we
need to introduce some definitions and related results.

Preliminaries

Let G be a graph and G1, G2 two non-empty subgraphs of G. We say that (G1, G2) is
a separation of G if:

• V (G1) ∪ V (G2) = V (G); and

• (E(G1), E(G2)) is a partition of E(G).

Let G be a graph. Given a set E ⊆ E(G), we define VE as the set of all endpoints of
the edges in E. Given a partition (E1, E2) of E(G) we define δ(E1, E2) = |VE1 ∩ VE2|.

A cut C = (X, Y ) of G is a partition of V (G) into two subsets X and Y . We define
the cut-set of C as EC = {{x, y} ∈ E(G) | x ∈ X and y ∈ Y } and call |EC | the order of
the cut. Also, given a graph G, we denote by σ(G) the number of connected components
of G.

The branchwidth of a graph. A branch-decomposition of a graph G is a pair (T, τ)
where T is a ternary tree and τ a bijection from the edges of G to the leaves of T .
Deleting any edge e of T partitions the leaves of T into two sets, and thus the edges
of G into two subsets Ee

1 and Ee
2. The width of a branch-decomposition (T, τ) is equal

to maxe∈E(T ){δ(Ee
1, E

e
2)}. The branchwidth of a graph G, denoted bw(G), is defined as

the minimum width over all branch-decompositions of G.

The branchwidth of a matroid. We assume that the reader is familiar with the basic
notions of matroid theory. We will use the standard notation from Oxley’s book [Oxl92].
The branchwidth of a matroid is defined very similarly to that of a graph. Let M be
a matroid with finite ground set E(M) and rank function r. The order of a non-
trivial partition (E1, E2) of E(M) is defined as λ(E1, E2) = r(E1) + r(E2) − r(E) + 1.
A branch-decomposition of a matroid M is a pair (T, µ) where T is a ternary tree
and µ is a bijection from the elements of E(M) to the leaves of T . Deleting any
edge e of T partitions the leaves of T into two sets, and thus the elements of E(M)
into two subsets Ee

1 and Ee
2. The width of a branch-decomposition (T, µ) is equal

to maxe∈E(T ){λ(Ee
1, E

e
2)}. The branchwidth of a matroid M, denoted bw(M), is again

defined as the minimum width over all branch-decompositions ofM. The cycle matroid
of a graph G denoted MG, has ground set E(MG) = E(G) and the cycles of G as the
cycles ofMG. Let G be a graph,MG its cycle matroid and (G1, G2) a separation of G.
Then clearly (E(G1), E(G2)) is a partition of E(MG), but to avoid confusion we will
henceforth denote it (E1, E2) and we will call it the partition of MG that corresponds to
the separation (G1, G2) of G. Observe that the order of this partition is:

λ(E1, E2) = δ(E(G1), E(G2))− σ(G1)− σ(G2) + σ(G) + 1. (?)
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Minor obstructions. Let G be a graph class. We denote by obs(G) the set of all
minor-minimal graphs H such that H /∈ G and we will call it the minor obstruction set
for G. Clearly, if G is closed under minors, the minor obstruction set for G provides
a complete characterization for G: a graph G belongs in G if and only if none of the
graphs in obs(G) is a minor of G.

Given a class of matroids M, the minor obstruction set for M, denoted by obs(M), is
defined very similarly to its graph-counterpart: it is simply the set of all minor-minimal
matroids M such that M /∈M.

We will need the following results.

Proposition 4.4 ([RS91, Theorem 5.1]). Let G be a graph of branchwidth at least 2.
Then, bw(G) ≤ tw(G) + 1 ≤ b3

2
bw(G)c.

Proposition 4.5 ([BvLTT97a]). Let r ∈ N≥1 and let G be a graph. If bw(G) ≥ 2r+ 1,
then G contains a θr-model.

Proposition 4.6 ([HJ07, Theorem 4]). Let G be a graph that contains a cycle and MG

be its cycle matroid. Then, bw(G) = bw(MG).

Proposition 4.7 ([GGRW03, Lemma 4.1]). Let a matroid M be a minor obstruction
for the class of matroids of branchwidth at most k and let g(n) = (6n−1 − 1)/5. Then,
for every partition (X, Y ) of M with λ(X, Y ) ≤ k, either |X| ≤ g(λ(X, Y )) or |Y | ≤
g(λ(X, Y )).

The following observations are also crucial.

Observation 4.1. Let G be a graph class that is closed under minors and let MG =
{MG | G ∈ G}. G is minor closed if and only if MG is minor closed. Moreover, for
every H ∈ obs(G) it holds that MH ∈ obs(MG).

Observation 4.2. There is a c ∈ R≥2, such that for any integer k ≥ r ≥ 2, if g(n) =

(6n−1− 1)/5, then 1
r−1

2
cr log k−5r

4r(2g(2r−2)+1) ≥ k(r+ 1)− 1. Moreover, this holds for c = 26 logr
2
3
.

Now we are ready to prove the main result of this section.

Proof of Theorem 4.14

For every r ∈ N, we define f(r) = 2
3
26r. By Proposition 4.4, it is enough to prove that

if bw(G) ≥ f(r) · k · log(k + 1), then G contains k · θr as a minor. To prove this we use
induction on k.

The case where k = 1 follows from Proposition 4.5 and the fact that f(r) ≥ 2r + 1.
We now examine the case where k > 1, assuming that the proposition holds for smaller
values of k. As bw(G) ≥ f(r) · k · log(k + 1), G contains a minor obstruction for the
class of graphs of branchwidth at most f(r) · k · log(k + 1)− 1.

Claim 4.2. Any (2r − 2)-edge-protrusion of G has extension at most g(2r − 2).

Proof of Claim 4.2. Let C = (X, Y ) be a cut in G of order at most 2r − 2 and let
GX be the subgraph of G with V (GX) = X ∪NG(X) and let E(GX) = E(G[X]) ∪ EC .
Clearly the pair (GX , G[Y ]) is a separation of G. LetMG be the cycle matroid of G and
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(EX , EY ) be the partition ofMG that corresponds to the aforementioned separation. By
Proposition 4.6, bw(MG) = bw(G) ≥ f(r)·k ·log(k+1). Therefore, by Observation 4.1,
MG is a minor obstruction for the class of matroids of branchwidth f(r)·k ·log(k+1)−1.
We set λ = λ(EX , EY ). From (?), we have:

λ = r(EX) + r(EY )− r(MG) + 1

= δ(E(GX), E(G[Y ]))− σ(GX)− σ(G[Y ]) + σ(G) + 1

≤ δ(E(GX), E(G[Y ]))

≤ |EC | = 2r − 2

≤ f(r) · k · log(k + 1)− 1.

Thus, by Proposition 4.7, either |EX | ≤ g(λ) or |EY | ≤ g(λ). Since g is non-
decreasing, either |E(GX)| ≤ g(2r − 2) or |E(G[Y ])| ≤ g(2r − 2). This directly implies
that for any (2r−2)-edge-protrusion Z of G, G[Z ∪NG(Z)] has at most g(2r−2) edges.
Therefore Z’s extension is also at most g(2r − 2) and the claim follows. 3

Combining the above claim, Observation 4.2, and Theorem 4.4, we infer that either
G contains a θr-model M with at most f(r) · log k edges, or it contains a minor with

minimum degree at least 1
r−1
·2

f(r) log k−5r
4r(2g(2r−2)+1) ≥ k(r+1)−1. If the second case is true, then

by Lemma 4.10 G contains k · θr as a minor, which proves the inductive step. We now
consider the first case. Because M is 2-connected, we obtain that |V (M)| ≤ |E(M)|.
Therefore, |V (M)| ≤ |E(M)| ≤ f(r) · log k and we can bound the treewidth of the graph
G′ = G \ V (M) as follows:

tw(G′) ≥ tw(G)− |V (M)|
≥ f(r) · k · log(k + 1)− f(r) · log k

≥ f(r) · k · log k − f(r) · log k

= f(r) · (k − 1) · log k.

Then, from the induction hypothesis, G′ contains a (k−1)·θr-model M ′ and obviously
M ∪M ′ is a k · θr-model in G, which concludes our proof.

Theorem 4.14 implies that for every fixed r, it holds that every graph excluding k ·θr
as a minor has treewidth O(k · log k). We give in Subsection 4.3.7 a lemma indicating
that this bound is tight up to the constants hidden in the O-notation.

4.3.7 Lower bounds

An natural question is whether the aforementioned results for the classes {Hi
k}i∈J1,4K

are tight. In this section we provide lower bounds on the best function f that one can
obtain in (4.2) for these classes.

Lemma 4.19. There is a sequence (Gk)k∈N≥3
of graphs such that:

• Gk does not contain W2
k as a minor, for every k ∈ N≥3; and
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• tw(Gk) = Ω(k).

Proof. The sequence (Kk−1)k∈N≥3
satisfies the above properties.

As Wk≤m W2
k for every k ∈ N≥3, Lemma 4.19 implies that (4.2) does not hold for

the classes H1
k and H2

k with a function f such that f(k) = o(k).

Corollary 4.7. The bound given in Theorem 4.10 is tight up to a constant factor.

Lemma 4.20. There is a sequence (Gi)i∈N≥1
of graphs and an increasing sequence

(ki)i∈N≥1
of integers such that:

• Gi does not contain ki ·K3 as a minor, for every i ∈ N≥1; and

• tw(Gi) = Ω(ki log ki).

Proof. According to [Mor94, Theorem 5.13], there is an infinite familly {Gi}i∈N of 3-
regular Ramanujan graphs Gi such that i 7→ |Gi| is an increasing function. Furthermore,
for every i ∈ N, the graph Gi has girth at least 2

3
log |V (Gi)| ( [Mor94, Theorem 5.13])

and satisfies tw(Gi) = Ω(|V (Gi)|) (see [BEM+04, Corollary 1]). For every i ∈ N, let ki
be the minimum integer such that |V (Gi)| < ki · 2

3
log |V (Gi)|. Observe that (ki)i∈N is

increasing. Notice that |V (Gi)| = Ω(ki · log ki), and thus tw(Gi) = Ω(ki · log ki). We will
show that Gi does not contain ki vertex-disjoint cycles, which implies that ki · θr is not
a minor of Gi, for every r ∈ N≥2. Suppose for contradiction that Gi contains ki vertex-
disjoint cycles. As the girth of Gi is at least 2

3
log |V (Gi)|, each of these cycles has at

least 2
3

log |V (Gi)| vertices. Therefore G should contain at least k · 2
3

log |V (Gi)| vertices.
This implies that |V (G)| ≥ k · 2

3
log |V (Gi)| > |V (Gi)|, a contradiction. Therefore (ki)i∈N

and (Gi)i∈N satisfy the required properties.

As every graph of H0
2k ∪ H3

2k ∪ H4
k,r contains k ·K3 as a minor (for every r ∈ N≥2),

we deduce that (4.2) does not hold for the classes H0
k, H3

k, and H4
k with a function f

such that f(k) = o(k log k).

Corollary 4.8. For every fixed r ∈ N≥2, the bound given in Theorem 4.14 is tight up
to a constant factor.

4.4 Immersions of planar subcubic graphs in graphs

of large tree-cut width

This section contains the proof of the following result.

Theorem 4.15. There is a function f : N → N where f(h) = O(h29 polylog(h)) such
that for every planar subcubic graph H with h edges and every graph G, if tcw(G) ≥ f(h)
then H is an immersion of G.

This theorem is a consequence of Theorem 4.9 and the following exclusion theorem
for walls. We present it here as we will use it in Chapter 5.
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Theorem 4.16 ( [Wol15, Theorem 7]). Let G be a graph and r ≥ 1 be a positive integer.
Let f be a function for which Theorem 4.1 (the grid exclusion theorem) holds. If G has
tree-cut width at least 4r10f(r), then G admits an immersion of the r-wall.

We will also use the following ingredient.

Lemma 4.21 ( [Kan96]). Every simple planar subcubic graph of n vertices is a topo-
logical minor of the bn

2
c-grid.

According to Theorem 4.16, graphs of large enough tree-cut width contain a large
wall as an immersion. Therefore we only need to show that every planar subcubic graph
is an immersion of a (large enough) wall in order to prove Theorem 4.15. For this we
use a supergraph of the wall defined as follows from the grid Wk. Let E = {e, e ∈
E(P

(v)
j ) ∩ E(P

(h)
i ), j ∈ {1, 2, . . . , k}, i ∈ {1, 2, . . . , k + 1}}. We obtain Ŵk by Wk by

adding a second copy of every edge in E. (For an example, see Figure 4.7.)

Figure 4.7: The graph Ŵ5.

The next observation is a formal statement of what is depicted on Figure 4.8: Ŵn

contains Γn as a strong immersion. Branch vertices are depicted by white nodes and
horizontal (respectively vertical) paths use the color green (respectively red).

Observation 4.3. Let k ≥ 2 be an integer. If we define φ and ψ with domains V (Γn)
and E(Γn), respectively, as follows:

φ((i, j)) = (i, 2j − 1)

ψ({(i, j), (i, j + 1)}) = (i, 2j − 1)(i, 2j)(i, 2(j + 1)− 1)

ψ({(i, j), (i+ 1, j)}) = (i, 2j − 1)(i+ 1, 2j − 1) for odd i

ψ({(i, j), (i+ 1, j)}) = (i, 2j − 1)(i, 2j)(i+ 1, 2j)(i+ 1, 2j − 1) for even i,

then (φ, ψ) is a Γk-strong-immersion model in Ŵk (where we assume that Γk has vertex
set J1, kK2).

The next result is mentioned in [Tho88] but not proof is provided.
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Figure 4.8: Finding Γ5 as a strong immersion in Ŵ5.

Lemma 4.22. Every planar subcubic graph on n-vertices is a topological minor of the
wall Wn.

Proof. Let H be a graph on n vertices. The proof goes as follows: we first construct uniformize
(topo-
logi-
cal)model
for-
mal-
ism

uniformize
(topo-
logi-
cal)model
for-
mal-
ism

a topological expansion H ′ of H that is a simple graph. Then we prove that H ′ is a
strong-immersion of Ŵn and obtain the following ordering:

H ≤tm H
′≤tm Γn≤sim Ŵn. (4.4)

Finally, we construct a topological model of H ′ in Ŵn. The expansion of this model is
simple, hence it will be a subgraph of Wn, as required.

Let H be a planar subcubic graph and let H ′ be the simple subcubic planar graph
obtained from H by subdividing all but one edges of every multiedge. Notice that the
first inequality of equation (4.4) is satisfied. Let us count how many vertices are added
during the construction of H ′. As H is subcubic, among the edges incident to a given
vertex, at most two are being subdivided. That way we count each subdivided edge
twice (once for each of its endpoints), hence we get:

|V (H ′)| ≤ 2|V (H)|.

According to Lemma 4.21, H ′ is a topological minor of Γn: this gives the second in-
equality of the equation. Observation 4.3 gives the third inequality.

Let (φ1, ψ1) be an H ′-topological model in Γn and let (φ2, ψ2) be the Γn-strong-

immersion model in Ŵn given by Observation 4.3. These two models can be used to
construct an H ′-strong immersion model (φ, ψ) in Ŵn, as the composition of (φ1, ψ1)
and (φ2, ψ2): for every v ∈ V (H ′), φ(v) = φ2(φ1(v)) and for every e ∈ E(H ′), ψ(e) is
the concatenation of the paths obtained by applying ψ2 to the edges of the path ψ1(e)
(taken in the same order as they appear in this path). Observe that this model satisfies
the following properties:

• the expansion of (φ, ψ) is a subgraph of the expansion of (φ2, ψ2); and
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• the branch vertices of (φ, ψ) are branch vertices of (φ2, ψ2).

We provide the following diagram to recall the roles of the different models we use
(topological models are indicated by double arrows and strong immersion models by
simple ones).

H ′ Γn

Ŵn

(φ1, ψ1)

(φ2, ψ2)
(φ, ψ)

Let us show the following claim.

Claim 4.3. Let e, f ∈ E(H ′). If v is an internal vertex of both ψ(e) and ψ(f), then
these paths also share an endpoint, which is adjacent to v.

If ψ(e) and ψ(f) share an internal vertex v, there are two edges a ∈ ψ1(e) and
b ∈ ψ1(f) such that both ψ2(a) and ψ2(b) contain v. By definition of (φ2, ψ2), such a
situation occurs only if a = {(i, j), (i + 1, j)} (for even i) and b = {(i, j), (i, j + 1)} or
b = {(i+1, j), (i+1, j+1)}, for some even i ∈ J1, nK and some j ∈ J1, nK (see Figure 4.8).
Observe that in both cases a and b share an endpoint. As (φ1, ψ1) is a topological minor
model, ψ1(e) and ψ1(f) may meet on endpoints only. Therefore the common endpoint
of a and b is an endpoint of both ψ1(e) and ψ1(f), hence ψ(e) and ψ(f) have a common
endpoint. This proves the first part of the claim. The second part is now clear from the
definition of (φ2, ψ2), as we know that the paths ψ1(e) and ψ1(f) start from the same
vertex, one with a “vertical” edge, the other with a “horizontal” edge (see Figure 4.8).�

If (φ, ψ), which is a strong immersion model, is a topological model, then we can
directly jump to the next step. Otherwise, according to Claim 4.3, there are two edges
e = {u, v}, f = {u,w} of H and vertices x, y ∈ Ŵn such that ψ(e) and ψ(f) both start

with x = φ(u) followed by y. Hence {x, y} is a double edge of Ŵn. As (φ, ψ) is a strong
immersion model of a subcubic graph, x has degree at most three in the expansion
of (φ, ψ) We can therefore modify (φ, ψ) as follows: we set φ(u) = x and we shorten
ψ({u, v}) and ψ({u,w}) by removing the edge {x, y} from each of them. In the case
where there is a third vertex t ∈ V (H) \ {v, w} adjacent to u, we also extend the path
ψ({t, u}) by adding the edge {x, y}. See Figure 4.9 for an example.

Figure 4.9: Swapping branch vertices.

It is easy to see that by applying these changes we still get an H ′-strong immersion
model, with less crossings of certifying paths. By repeatedly applying these steps we
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eventually obtain a H ′-topological model in Ŵ+
n . Notice that its expansion is a simple

graph, as H ′ is a simple graph. Therefore this expansion is also a subgraph of Wn. We
proved that H ′ is a topological minor of Wn. It follows that the same holds for H and
we are done.

The proof of Theorem 4.15 is now staighforward: given that tcw(G) ≥ 4h10f1(h)
(recall that f1 is the function of the Grid Exclusion Theorem, Theorem 4.9), G contains
Wh as an immersion (Theorem 4.16). As we just proved with Lemma 4.22, every planar
subcubic graph on h vertices is an immersion of Wn, so it is an immersion of G. Also,
4h10f1(h) = O(h29 polylog(h)).
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Chapter 5

The Erdős-Pósa property

This chapter contains material that previously appeared in the following articles:

• Polynomial gap extensions of the Erdős-Pósa Theorem, co-authored with Dimitrios
M. Thilikos, and presented at the Seventh European Conference on Combinatorics,
Graph Theory and Applications, EuroComb 2013, Pisa, Italy, 2013 [RT13];

• An edge variant of the Erdős-Pósa property, co-authored with Ignasi Sau and
Dimitrios M. Thilikos, to appear in Discrete Mathematics, Volume 339, Issue 8,
2016 [RST16];

• An O(log OPT)-approximation for covering/packing minor models of θr, co-authored
with Dimitris Chatzidimitriou, Ignasi Sau, and Dimitrios M. Thilikos, presented
in Approximation and Online Algorithms: 13th International Workshop, WAOA
2015, Patras, Greece, 2015 [CRST15a];

• Packing and covering immersion models of planar subcubic graphs, co-authored
with Archontia Giannopoulou, O-joung Kwon, and Dimitrios M. Thilikos, to be
presented at the 42nd International Workshop on Graph-Theoretic Concepts in
Computer Science, WG 2016, Istanbul, Turkey, 2016 [GKRT16];

• Recent techniques and results on the Erdős-Pósa property, co-authored with Dim-
itrios M. Thilikos, 2016, submitted [RT16].

5.1 Introduction

A considerable part of Combinatorics has been developed around min-max theorems.
Min-max theorems usually identify dualities between certain objects in graphs, hyper-
graphs, and other combinatorial structures. The target is to prove that the absence of
the primal object implies the presence of the dual one and vice versa.

A classic example of such a duality is Menger’s theorem: the primal concept is the
existence of k internally disjoint paths between two vertex sets S and T of a graph G,
while the dual concept is a collection of k vertices that intersect all (S, T )-paths. Another
example is Kőnig’s theorem where the primal notion is the existence of a matching of k
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vertices in a bipartite graph and the dual one is the existence of a vertex cover of size k.
It is also known that, in case of general graphs, this duality becomes an approximate one,
i.e., a vertex cover of size 2k. In both aforementioned examples, the duality is between
the notions of packing and covering of a collection C of combinatorial objects of a graph.
In Menger’s theorem C consists of all (S, T )-paths of G while in Kőnig’s theorem C is the
set of all edges of G. That way, both aforementioned min-max theorems can be stated,
for some class of graphs G (called host class) and some gap function f : N → N, as
follows:

For every graph G in G, either G contains k-vertex disjoint objects in C or
it contains f(k) vertices intersecting all objects in C that appear in G.

Clearly, for the case of Menger’s theorem the host class is the class of all graphs while in
the case of Kőnig’s theorem the host class is restricted to the class of bipartite graphs. In
both cases the derived duality is an exact one in the sense that f is the identity function.
However, this is not the case if we want to extend the duality of Kőnig’s theorem in
the case of all graphs, where we can consider f : k 7→ 2k (i.e., we have an approximate
duality).

One of the most celebrated results about packing/covering dualities was obtained
by Paul Erdős and Lajos Pósa in 1965 where the object to cover and pack was the
set of all cycles of G [EP65]. In this case the host class contains all graphs, while
f : k 7→ O(k · log k). Moreover, Erdős and Pósa proved that this gap is optimal in the
sense that it cannot be improved to a function f : k 7→ o(k·log k). This result motivated a
long line of research for min-max dualities that are not necessarily exact or approximate.
Since then, a multitude of results on Erdős–Pósa properties have appeared for several
combinatorial objects, including extensions to digraphs [LY78, Sey96, RRST96, HM13,
GT10], rooted graphs [KKK12, PW12, Joo14, BJS14], labeled graphs [KW05], signed
graphs [HNP06,ADG04], hypergraphs [Alo02,Bou13,BT15], matroids [GK09], and other
combinatorial structures [GL69] (see [Ree97] for a survey on this topic). Also it is worth
stressing that Erdős–Pósa dualities have been useful in more applied domains. For
example, in bioinformatics where they where useful for upper-bounding the number of
fixed-points of a boolean networks [Ara08,ADG04,ARS16].

The chapter is organized as follows. We first describe some recent techniques for
proving Erdős–Pósa properties, mainly based on techniques related to tree-like decom-
positions of graphs (Subsection 5.2.1 and Subsection 5.2.2). We focused our presentation
to the description of general frameworks that, we believe, might be useful for further in-
vestigations. We then present several results related to the Erdős-Pósa property. Lastly,
in Subsection 5.4.2, we provide an extensive update of results on Erdős–Pósa properties,
reflecting the current progress on this vibrant area of graph theory. Most of the notions
used in this chapter are defined in Section 2.6.

5.2 General techniques for proving Erdős-Pósa type

results

In this section we present general tools for proving Erdős–Pósa type results.
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5.2.1 Erdős–Pósa from graph decompositions

Let H be a graph class, p be a graph parameter, and x ∈ {v, e}. We say that a function
f : N→ N is a ceiling for the triple (p,H, x) if for every graph G, p(G) ≤ f(x-packH(G)).
Intuitively, there is a ceiling for the triple (p,H, x) if a large value of p on a graph forces
a large x-packing of elements of H. Notice that every ceiling for (p,H, v) is a ceiling for
(p,H, e), since a vertex-disjoint packing is a special case of an edge-disjoint packing.

Given a graph parameter p and an integer k, we denote

Gp≤k = {G, p(G) ≤ k}.

Theorem 5.1. Let H be a class of graphs, x ∈ {v, e}, p be a graph parameter, let
f : N→ N be a function and let hr : N→ N be a function, for every r ∈ N. Suppose that
the following two conditions hold:

A. f is a ceiling for the triple (p,H, x);

B. for every r ∈ N, H has the x-Erdős–Pósa property for Gp≤r with gap hr;

then H has the x-Erdős–Pósa property with gap k 7→ hf(k)(k).

Proof. Let G be a graph and let k = x-packH(G). We have p(G) ≤ f(k), by definition
of a ceiling. Therefore, G ∈ Gp≤r, and thus x-coverH(G) ≤ hf(k)(k).

Theorem 5.1 will be used as a master theorem for the results of this section.

Vertex version and tree decompositions

In a breakthrough paper [CC13a], Chekuri and Chuzhoy proved that every graph of
large treewidth can be partitioned into several subgraphs of large treewidth, with a
polynomial dependency between the treewidth of the original graph, the one of the
subgraphs, and the number of subgraphs. In fact they proved the two next results.

Theorem 5.2 ( [CC13a, Theorem 1.1]). There is a non-decreasing function f2 : R→ R
with f2(t) = polylog t such that, for every graph G and every positive integers h and p,
if

hp2 ≤ tw(G)

f2(tw(G))
,

then there is a partition G1, . . . , Gh of G into vertex-disjoint subgraphs such that tw(Gi) ≥
p for every i ∈ J1, hK .

Theorem 5.3 ( [CC13a, Theorem 1.2]). There is a non-decreasing function f3 : R→ R
with f3(t) = polylog t such that, for every graph G and every positive integers h and p,
if

h3p ≤ tw(G)

f3(tw(G))
,

then there is a partition G1, . . . , Gh of G into vertex-disjoint subgraphs such that tw(Gi) ≥
p for every i ∈ J1, hK .
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There results have been used to obtain ceilings. In fact, [CC13a] also contains the
following result.

Lemma 5.1 ( [CC13a, from the proof of Theorem 5.4]). If r is an integer and H is
a class of graphs such that every graph of treewidth at least r contains an H-subgraph,
then there is a ceiling f4 for (tw,H, v) such that f4(k) = kr2 polylog(kr).

Let us now see the role of ceilings with respect to the Erdős–Pósa property. A
function f : R → R is said to be superadditive if f(x) + f(y) ≤ f(x + y) for every
pair x, y of positive reals. The following argument has been first used in [FST11] (see
also [CC13a,RST16,CRST15a]).

Lemma 5.2. Let H be a family of connected graphs. If f is a superadditive ceiling for
(tw,H, v) then H has the v-Erdős–Pósa property with gap k 7→ 5 · f(k) log(k + 1).

Proof. Let us show the following for every integer k: for every graph G, if v-packH(G) =
k then v-coverH ≤ 5f(k) log(k+ 1). The proof is by induction on k. The base case k = 0
is trivial. Let k > 0, and let us assume that the above statement holds for every positive
integer k′ < k (induction hypothesis).

Let G be a graph such that v-packH(G) = k. We will rely on the following claim.

Claim 5.1. There is a separation (A,B) of order tw(G) + 1 of G such that

k/3 ≤ v-packH(G[A \B]) ≤ 2k/3.

Proof. It is known that every graph G has an nice tree decomposition with width
tw(G) [Klo94a]. We therefore can assume that (T, r, (Xt)t∈V (T )) is a nice tree decompo-
sition of G of optimal width. We define

Gt = G

 ⋃
s∈desc(T,r)(t)

Xs

 and G−t = Gt \Xt.

Let t be a vertex of T at minimal distance from a leaf subject to the requirement
v-packH(Gt) > 2k/3. Such a vertex exists, as v-packH(Gr) = k. Observe that t is either
a forget node, or a join node. Indeed, for every base node u we have v-packH(Gu) = 0.
Moreover, every introduce node u with child v satisfies v-packH(Gu) = v-packH(Gv),
since G−u = G−v .

First case: t is a forget node with child u. We set A = V (Gu) and B = V (G) \ V (G−u ).

Second case: t is a join node with children u1, u2. We set A = V (Gui) and B = V (G) \
V (G−ui), where ui is a child of t such that v-packH(Gui) ≥ k/3. Such child exist because
v-packH(Gt) = v-packH(Gu1) + v-packH(Gu2) (as t is a join node) and v-packH(Gt) >
2k/3, by definition of t.
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It is clear that in both cases (A,B) is a separation of order tw(G)+1. The inequality
v-packH(G[A]) ≤ 2k/3 follows from the definition of t. In the first case, we have

v-packH(G[A]) = v-packH(Gu)

≥ v-packH(Gt)− 1 (as t is a forget node)

>
2k

3
− 1

≥ k

3
.

In the second case, the choice of i ensures that k/3 ≤ v-packH(G[A]).

Observe that tw(G) ≤ f(k), by definition of f. According to Claim 5.1, there is a
separation (A,B) of order tw(G)+1 in G such that k/3 ≤ v-packH(G[A\B]) ≤ 2k/3. Let
kA = v-packH(G[A \B]) and kB = v-packH(G[B \ A]). It follows that kA, kB ≤ b2k/3c .

We then have

v-coverH(G) ≤ v-coverH(G[A \B]) + v-coverH(G[B \ A]) + |A ∩B|
≤ v-coverH(G[A \B]) + v-coverH(G[B \ A]) + f(k) + 1

≤ 5f(kA) log(kA + 1) + 5f(kB) log(kB + 1) + f(k) + 1.

Notice that in the case where k = 1, we get kA = kB = 0 and we have v-coverH(G) ≤
f(k) ≤ 3 f(k) log(k+1). Therefore we now assume k ≥ 2. We can deduce from kA, kB ≤⌊

2
3
k
⌋

that kA + 1 ≤ 3
4
(k + 1) and kB + 1 ≤ 3

4
(k + 1).

v-coverH(G) ≤ 5 · (f(kA) + f(kB)) log

(
3(k + 1)

4

)
+ f(k) + 1

≤ 5 · f(k) log

(
3(k + 1)

4

)
+ f(k) + 1 (superadditivity of f)

≤ 5 · f(k) log(k + 1)− 3 · log(4/3)f(k) + 2f(k)

≤ 5 · f(k) log(k + 1). �

Corollary 5.1 (see also [CC13a] and [CC13b]). For every connected planar graph H,
the class M(H) has the v-Erdős–Pósa property with gap O(k · h38 · polylog(kh)), where
h = V (H) + 2E(H).

For every connected planar graph H, Corollary 5.1 provides a gap for M(H) that
is polynomial in both k and h = V (H) + 2E(H). In Subsection 5.3.1 we will apply
Lemma 5.1 to majors of specific planar graphs in order to obtain better gaps.

Notice that the proof of Lemma 5.2 strongly relies on the fact that H is connected.
The non-connected case requires some more ideas that are originating from [RS86] (also
used for forests in [FJW13a]). We expose them hereafter. We will need the two next
lemmas.
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Lemma 5.3 ( [RS86]). Let q, k be two positive integers, let T be a tree and let A1, . . . ,Aq
be families of subtrees of T. Assume that for every i ∈ J1, qK, there are kq elements of
Ai that are pairwise vertex-disjoint. Then for every i ∈ J1, qK, there are k elements
T i1, . . . , T

i
k of Ai such that

T 1
1 , . . . T

1
k , T

2
1 , . . . T

2
k , . . . , T

q
1 , . . . T

q
k

are all pairwise vertex-disjoint.

The next lemma is the Erdős–Pósa property of subtrees of a tree. It can be obtained
from the fact that subtrees of a tree have the Helly property.

Lemma 5.4 (see [GL69]). Let T be a tree and let A be a collection of subtrees of T. For
every positive integer k, either T has (at least) k vertex disjoint subtrees that belong to
A, or T has a subset X of less than k vertices such that no subtree of T \X belongs to
A.

We are now ready to deal with disconnected patterns.

Lemma 5.5 ( [RS86]). Let w be a positive integer and let H be a graph on q connected
components. M(H) has the v-Erdős–Pósa property on the class of graphs of treewidth
at most w with gap k 7→ (w − 1)(kq − 1).

Proof. Let k be a positive integer. We want to show that either v-packM(H)(G) ≥ k or
v-coverM(H)(G) ≤ (w − 1)(kq − 1). Let H1, . . . , Hq be the connected components of H.
Let (T,X ) be a tree-decomposition of G of width w. For every subgraph F of G, we
denote by T (F ) the subgraph of T induced by the bags containing vertices of F. Notice
that T (F ) is connected if F is connected.

For every i ∈ J1, qK, we let Hi be the class of subgraphs of G that are isomorphic to
a graph in M(Hi) and we consider the class Ti = {T (F ), F ∈ Hi}.

If for every i ∈ J1, qK, Ti contains kq vertex-disjoint trees, then according to Lemma 5.3
there are pairwise vertex-disjoint trees {T ij}i∈J1,qK, j∈J1,kK. Observe that for every two sub-
graphs F, F ′ of G, if T (F ) and T (F ′) are vertex-disjoint, then so are F and F ′. Therefore
G has pairwise vertex-disjoint subgraphs {F i

j}i∈J1,qK, j∈J1,kK such that F i
j is isomorphic

to an element of Hi for every i ∈ J1, qK and j ∈ J1, kK . This proves that in this case,
v-packM(H)(G) ≥ k.

We therefore now assume that the above condition does not hold, namely there is
an index i ∈ J1, qK such that Ti contains less than kq vertex-disjoint trees. Lemma 5.5
implies the existence of a subset X with |X| ≤ kq−1 such that T \X is free from subtrees
isomorphic to a member of Ti. Let Y denote the union of the bags indexed by vertices
in X. Observe that |Y | ≤ (w−1)|X| ≤ (w−1)(kq−1). The choice of Y ensures that G\Y
has no subgraph isomorphic to a member of Hi. Hence v-coverM(Hi) ≤ (w − 1)(kq − 1).
We deduce v-coverM(H) ≤ (w − 1)(kq − 1).

Corollary 5.2. For every planar graph H with q connected components, the classM(H)
has the Erdős–Pósa property with gap O(qk2·h38·polylog(kh)), where h = V (H)+2E(H).

136



Edge version and tree partitions

In the edge variant of the Erdős–Pósa properties we use tree-partition width as a possible
edge-analogue of treewidth.

Let H be a class of graphs. We define H̃ as the set of all the subgraph minimal
elements of H, i.e.,

H̃ = {H, H ∈ H and none of the subgraphs of H belongs to H}.

We define ∆(H) as the maximum number of edges incident to a vertex in a graph of
H (counting multiple edges). We also set ∆̃(H) = ∆(H̃).

Observation 5.1. For every graph H of h edges, it holds that ∆̃(M(H)) ≤ h, ∆̃(T (H)) ≤
h, ∆̃(I(H)) ≤ 2h.

Lemma 5.6. Let H be a class of connected non-trivial graphs where ∆̃(H) ≤ d. Then for
every r ∈ N, H has the e-Erdős–Pósa-property on Gtpw≤r with gap gr(k) = k ·r ·(dr+1).

Proof. Let r ∈ N. We will show the following for every k ∈ N: for every graph G ∈
Gtpw≤r, if e-packH(G) = k then e-coverH(G) ≤ gr(k).

We proceed by induction. The base case k = 0 is trivial. We thus assume that
k > 0 and that the above statement holds for every positive integer k′ < k (induction
hypothesis).

Let G ∈ Gtpw≤r be a graph such that e-packH(G) = k. We assume that G is con-
nected, as otherwise we can treat each connected component separately.

Let (T, s, {Xt}t∈V (T )) be an optimal rooted tree partition decomposition of G. We

define Gt = G
[⋃

u∈desc(T,s)(t)
Xu

]
. For every edge {u, v} of T we denote by E{u,v} the

edges of G with the one endpoint in Xu and the other one in Xv. Let t be a vertex of T
of minimum distance from a leaf, subject to e-packH(Gt) > 0.

Let M be a subgraph-minimal subgraph of Gt that is isomorphic to some member of
H and let t1, . . . , tp be the children of t such that V (Gti)∩V (M) 6= ∅ for every i ∈ J1, pK.
By minimality of M , it has no vertex with more than ∆̃(H) ≤ d incident edges. As
|Xt| ≤ r, we deduce that p ≤ rd.

Let C = E(Xt)∪
⋃p
i=1 E{t,ui}. Notice that |C| ≤ r+ dr2. Let us consider then graph

G′ = G \ C. Let M ′ is a subgraph of G′ that is isomorphic to some member of H. By
minimality of t, e-packH(Gti) = 0, for every i ∈ J1, pK . Therefore, if M ′ contained an
edge e ∈ E(Gti) (for some i ∈ J1, pK), it would also contain an edge of E(G) \ E(Gti).
Since every graph of H is connected, M ′ would also need to contain some edge of Et,ui
in order to be connected to edges of E(G) \ E(Gti). However E(G′) ∩ Et,ui = ∅. We
deduce that for every subgraph M ′ of G′ that is isomorphic to some member of H, we
have E(M ′) ∩ E(M) = ∅. It follows that every e-H-packing in G′ is edge-disjoint with
M.

Hence e-packH(G′) < k, as otherwise a packing of size k in G′ would, together
with M , yield a packing of size k + 1 in G whereas e-packH(G) = k. By applying the
induction hypothesis on G′, there is a subset D ⊆ E(G′) such that e-packH(G′ \D) = 0
and moreover |D| ≤ gr(k − 1). It is easy to see that C ∪ D is an e-H-cover of G.
Furthermore |C ∪D| ≤ r(dr + 1) + gr(k − 1) = gr(k), as required.
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In this section we presented decomposition-based techniques aiming to prove the
edge-Erdős-Pósa property, and towards this purpose we used tree-partition decomposi-
tions as a possible edge-counterpart to tree-decompositions, that are used in the vertex
case. Let us briefly mention that there are other tree-like decompositions that deserve
attention. For instance, tree-cut decompositions can be succesfully used to deal with
immersion expansions, as we will see in Subsection 5.3.4. Applications of the techniques
described in this section will be presented in Section 5.3.

5.2.2 Erdős–Pósa from girth

In this section, we give a proof of the Erdős–Pósa Theorem that highlights a technique
for proving more general Erdős–Pósa type results. The technique can be informally
summarized as follow. We prove that either G contains a small cycle or that it can be
reduced to a smaller graph with the same packing and covering number. We then apply
induction on either the graph where a small cycle has been deleted (in the first case), or
on the reduced graph (in the second case). This technique has been successfully applied
in [FJW13a,CRST15a], for instance. Let us first recall the following result.

Lemma 5.7 ([Tho83b], see also [Die05, Theorem 7.4.2]). There is a constant c ∈ R,
such that every graph of minimum degree at least 3 and girth at least c log q contains Kq

as a minor, for every q ∈ N≥1.

A direct consequence of this result is the following trichotomy.

Corollary 5.3. For every graph G and every integer q > 1, one of the following holds:

(i) G has a cycle on at most c log q vertices;

(ii) G has a vertex of degree at most 2;

(iii) G contains Kq as a minor.

We now prove the lemma that implies the classic Erdős–Pósa Theorem both for the
vertex and its edge version. Recall that Ax(G) denotes V (G) or E(G), depending if
x = v or x = e.

Lemma 5.8. For every q ∈ N+ and every x ∈ {v, e}, the set M(θ2) has the x-Erdős–
Pósa property for the class of Kq-minor-free with gap O(k · log q).

Proof. We will prove that for every non-negative integer k and every Kq-minor-free
graph G, either G has k x-disjoint cycles, or G has a subset X ⊆ Ax(G) of size at most
ck log q such that G\X is a forest. We proceed by induction on the pair (k,G), with the
well-founded order defined by (k′, G′) ≤ (k,G) ⇐⇒ (k′ ≤ k and |Ax(G

′)| ≤ |Ax(G)|),
for all graphs G, G′ and non-negative integers k, k′.

The base cases corresponding to k = 0 or |Ax(G)| = 0 are trivial. Let us now assume
that k ≥ 1, |Ax(G)| ≥ 1, and that the lemma holds for every pair (k′, G′) such that
(k′, G′) ≤ (k,G).
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According to Corollary 5.3, either Gi has a cycle C on at most c log q vertices, or it
has a vertex v of degree at most two, or it contains Kq as a minor. The last case is not
possible, as we require G to be Kq-minor-free.

Whenever the first case applies, we set G′ = G\Ax(C) and we consider the pair (k−
1, G′). If G′ contains k− 1 x-disjoint cycles, then G contains k x-disjoint cycles obtained
by adding C to those of G′ and we are done. Otherwise, the induction hypothesis implies
the existence of a subset X ′ ⊆ Ax(G

′) with |X| ≤ c(k − 1) log q such that G′ \ X ′ is a
forest. Then by definition of C, X = X ′ ∪Ax(C) has size at most c log q and G \X is a
forest, as required.

In the second case, we delete v if it is isolated and we contract an edge e incident
with it otherwise. Notice that since we cannot apply the first case, this contraction
does not decrease the number of cycles in G. Also, we can assume without loss of
generality that v (respectively e) is not part of a minimum x-cover of cycles in G,
as any vertex adjacent to v (respectively edge incident with e) covers all the cycles
covered by v (respectively e). Therefore the obtained graph G′ satisfies x-packH(G′)
and x-coverH(G) = x-coverH(G′). It is not hard to see that Ax(G

′) < Ax(G). Therefore
we can apply the induction hypothesis on G′ and obtain the desired result on G′, that
immediately translates to G by the above remarks.

By setting q = 3k and observing that every graph containing K3k as a minor also
contains k vertex-disjoint cycles (hence also edge-disjoint), Lemma 5.8 yields the vertex
and edge versions of the classic Erdős–Pósa theorem as a corollary.

The technique presented in this section has been used to show the following result.

Theorem 5.4 ([FJW13a]). For every forest H, M(H) has the v-Erdős–Pósa property
with gap OH(k).

Other applications will be presented in Section 5.3. To extend the idea of Lemma 5.8
in order to prove that some graph classH has the x-Erdős–Pósa property with gap f : N→
N, one should show that for every positive integer k and every graphG with x-packH(G) ≤
k,

• either there is a graph G′ with x-packH(G′) and x-coverH(G) = x-coverH(G′) and
such that |G′|+ ‖G′‖ < |G|+ ‖G‖ (reduction case);

• orG has a subgraph isomorphic to a member ofH on at most f(k)/k vertices/edges
(progress case).

An application of the aforementioned techniques to these cases is given in Section 5.3.

5.3 Applications to selected classes of graphs

In this section, we show classes of graphs where the techniques presented in Section 5.2
can be applied to yield Erdős–Pósa type results. The classes we will consider are the
following:

• majors of wheels, yurts, and graphs of pathwidth at most two in Subsection 5.3.1;
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• majors of θr in Subsection 5.3.2;

• immersion models of connected planar subcubic graphs in Subsection 5.3.4;

5.3.1 Wheels, yurts, and graphs of pathwidth at most two

The gap provided by Corollary 5.1 relies on general exclusion theorems for majors of
planar graphs. In this section we provide an application of the results of Section 5.2.1
to decrease the contribution of H, for specific planar patterns where a better exclusion
theorem is known. The classes we will consider are the majors of the follwing graphs:
wheels, double wheels, graphs of pathwidth at most 2, and yurt graphs; and we will use
the exclusion theorems introduced in Section 4.3.

Theorem 5.5. The class M(H) has the v-Erdős–Pósa-property with gap:

(i) k 7→ kh2 polylog(kh) if H is a wheel of order h;

(ii) k 7→ kh4 polylog(kh) if H is a graph of pathwidth at most two with |V (H)| +
|E(H)| = h or a double wheel of order h;

(iii) k 7→ kh8 polylog(kh) if H is a yurt graph of order h.

Proof. Let us prove (i). We denote by Wh the wheel of order h, for every positive
integer h. According to Theorem 4.10, for every positive integer h, every graph of
treewidth at least 36h− 2 contains a major of Wh. Lemma 5.1 then implies that there
is a ceiling fh for (tw,M(Wh), v), with fh(k) = k(36h − 2)2 polylog(kh). Thanks to
Lemma 5.2, this ceiling yields a gap gh(k) = 5k(36h−2)2 polylog(kh) · log(k+1) and we
are done. The proofs of (ii) and (iii) follow the very same path, using exclusion theorems
Theorem 4.11, Theorem 4.12, and Theorem 4.13.

5.3.2 Pumpkins

A way to extend the classic Erdős-Pósa Theorem is to consider generalizations of the
class of cycles. A class that attracted some attention in this direction isM(θr) for r ∈ N,
which is the class of cycles when r = 2. For instance, Fomin et al. gave in [FST11] the
following extension.

Theorem 5.6 ( [FST11]). There is a function fr(k) = O(k2r2) such that for every
r ∈ N, M(θr) has the v-Erdős–Pósa property with gap fr.

In an unpublished manuscript [FJS13], Fiorini et al. proved that the classic Erdős–
Pósa Theorem can be extended toM(θr) (instead of cycles) without increasing the order
of magnitude of the gap, O(k log k).

Theorem 5.7 ( [FJS13], see also [CRST15a]). There is a function fr(k) = Or(k log k)
such that for every r ∈ N, M(θr) has the v-Erdős–Pósa property with gap fr.

We present in this section the following result.
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Theorem 5.8. There is a function fr with fr(k) = O(k2r2 polylog kr) and fr(k) =
O(k4r2 polylog kr), such that for every r ∈ N, M(θr) has the e-Erdős–Pósa property
with gap fr.

Theorem 5.8 is an edge-analogue if Theorem 5.8. The bound on the gap is worse in
terms of k but it indicated the contribution of r, which is polynomial.

We will in Chapter 6 prove the follwing result, that completes the symmetry between
the vertex and edge settings.

Theorem 5.9. There is a function fr(k) = Or(k log k) such that for every x ∈ {v, e}
and every r ∈ N, M(θr) has the x-Erdős–Pósa property with gap fr.

Let us here prove Theorem 5.8. Recall that we proved in Section 4.2 that every
2-connected graph that has a vertex of degree at least 2kr has a subgraph that is an
edge-disjoint union of kM(θr)-subgraphs. Let us show the next result.

Lemma 5.9. Let r ∈ N. If M(θr) has the v-Erdős–Pósa property with a gap f that is
superadditive, then it has the e-Erdős–Pósa property with gap k 7→ 2kr · f(k).

We first need some intermediate lemmas in order to be able to use Theorem 5.1.

Lemma 5.10. Let d ∈ N. The class M(θr) has the e-Erdős–Pósa property for the class
of graphs of maximum degree at most d with gap k 7→ d · f(k), where f is the (vertex-)
gap provided by Theorem 5.7.

Proof. Let G be a graph satisfying ∆(G) ≤ d and let k be a positive integer. If G
contains k vertex-disjoint M(θr)-subgraphs, these subgraphs are in particular edge-
disjoint hence e-packM(θr)(G) ≥ k. On the other hand, if v-packM(θr)(G) < k, according
to Theorem 5.7 there is a subset X ⊆ V (G) such that |X| ≤ f(k) and G \X does not
contain any M(θr)-subgraph. Let Y be the set of edges incident to the vertices in X.
As ∆(G) ≤ d we have |Y | ≤ d · f(k). Notice that any M(θr)-subgraph of G \ Y does
not contain a vertex from X, hence the existence of such a subgraph would contradict
the definition of X. This proves that e-coverM(θr) ≤ d · f(k) and we are done.

Lemma 5.11. If a class of 2-connected graphs H has the e-Erdős–Pósa property for
2-connected graphs with a superadditive gap, then it has the e-Erdős–Pósa property (for
all graphs) with the same gap.

Proof. Let f be the gap mentioned in the statement of the lemma. Let G be a graph
and let G1, . . . , Gt be its 2-connected components, for some positive integer t. Let k
be an integer and let pi = e-packH(Gi), for every i ∈ J1, tK. If p1 + · · · + pt ≥ k, then
e-packH(G) ≥ k, as two subgraphs in two distinct 2-connected components of G are
always edge-disjoint. On the other hand, let us assume that p1 + · · · + pt < k. We
have e-coverH(Gi) ≤ f(pi) for every i ∈ J1, tK. Since no H-subgraph of G contains edges
from two or more distinct 2-connected components, we can cover H-subgraphs in each
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2-connected component in order to cover them in the graph:

e-coverH(G) ≤
t∑
i=1

e-coverH(Gi)

≤
t∑
i=1

f(pi)

≤ f

(
t∑
i=1

pi

)
(f is superadditive)

≤ f(k − 1).

We can now prove Lemma 5.9.

Proof of Lemma 5.9. By applying Theorem 5.1 to Lemma 4.7 and Lemma 5.10, we
obtain the result for 2-connected graphs. Lemma 5.11 then allows us to extend it to
graphs that are not 2-connected.

We also need the following result.

Theorem 5.10 ( [BvLTT97b, Theorem 14]). For every r ∈ N, every graph of treewidth
at least 2r − 1 contains a K2,r major.

Let us now prove Lemma 5.9.

Proof of Lemma 5.9. Lemma 5.1 applied to M(θr) using Theorem 5.10 yields a gap
fr(k) = O(kr2 polylog kr) for the vertex-Erdős-Pósa property ofM(θr). Then, Lemma 5.9
yields a gap 2kr · fr(k) = O(k2r3 polylog kr) for the edge version, as required. A gap of
order of magnitude O(k4r2 polylog kr) can be obtained the same way using Theorem 5.3
instead of Lemma 5.1.

5.3.3 Double pumpkins

For every r, r′ ∈ N, we denote by θr,r′ the graph obtained by identifying one vertex of θr
with one vertex of θr′ . In this section, we use the tools provided by Section 5.2 to prove
that M(θr,r′) have the edge-Erdős–Pósa-property for simple graphs.

Theorem 5.11. For every r, r′ ∈ N, M(θr,r′) has the edge-Erdős–Pósa property for
simple graphs.

We must note that at the time of writing, the graphs {θr,r′}r,r′∈N are the only graphs
on at least three vertices, the majors of which are known to have the edge-Erdős–Pósa
property. This fact must be compared to the results on the vertex variant where the
graphs H for which M(H) has the vertex-Erdős–Pósa property have been completely
characterized: they are exactly the planar graphs [RS86, Theorem 8.2]. This raises the
following question.
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7-fan

4-star

7-wall

4-path

Figure 5.1: Unavoidable patterns of graphs of large tree-partition width.

Question 5.1. What are the graphs, the majors of which have the edge-Erdős–Pósa
property?

Lemma 5.23 provides a partial answer to Question 5.1: all these graphs are planar.
Prior to the proof of Theorem 5.11, we need to introduce a result of Ding et al. [DO96],
the statement of which requires additional definitions.

Walls, fans, paths, and stars. Wall have been defined in Subsection 2.3.2. As a
reminder, the 7-wall is depicted in Figure 5.1. The n-fan is the graph obtained by
adding a dominating vertex to a path on n vertices. A collection of paths is said to be
independent if two paths of the collection never share interior vertices. The n-star is
the graph obtained by replacing every edge of K1,n with n independent paths of two
edges. The n-path is the graph obtained by replacing every edge of an n-edge path with
n independent paths of two edges. Examples of these graphs are depicted in Figure 5.1.
The wall number (resp. fan number, star number, and path number) of a graph G is
defined as the largest integer k such that G contains a subdivision of a k-wall (resp. of a
k-fan, of a k-star, of a k-path), or infinity is no such integer exists. Let γ(G) denote the
maximum of the wall number, fan number, star number, and path number of a graph G.

Ding et al. gave in [DO96] the following characterization of classes of graphs of
bounded tree-partition width in terms of excluded topological minors.

Theorem 5.12 ([DO96]). There is a function f5 : N→ N such that every simple graph
G satisfies tpw(G) ≤ f5(γ(G)).

In other words, for every integer k, every simple graph of large enough tree-partition
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width contains a subdivision of one of the following graphs: the k-wall, the k-fan, the
k-path, or the k-star.

Notice that for every r, r′ ∈ N, r′ ≤ r, the graph θr,r′ is a minor of the following
graphs: the r-path, the r-star, the (r + r′ + 1)-fan, and the r-wall (for r ≥ 6). Hence,
every simple graph of large enough tree-partition width contains a θr,r′-major. This can
easily be generalized to edge-disjoint packings, as follows.

Lemma 5.12. For every r, r′, k ∈ N, every graph G satisfying γ(G) ≥ k(r + r′ + 7)
contains an e-M(θr,r′)-packing of size k.

Using Theorem 5.12, we get the following corollary.

Corollary 5.4. For every r, r′, k ∈ N, every simple graph G satisfying tpw(G) ≥
f5(k(r + r′ + 7)) contains an e-M(θr,r′)-packing of size k.

In other words, Corollary 5.4 provides a ceiling for the triple (tpw,M(θr,r′ , e) in
simple graphs. The proof of Theorem 5.11 now follows by a straighforward application
of Theorem 5.1 to Corollary 5.4 and Lemma 5.6.

5.3.4 Planar subcubic graphs

In this section, we apply the tools of Section 5.2 to immersion expansions of planar
subcubic graphs. The result we prove is the following.

Theorem 5.13. For every connected planar subcubic graph H on h > 0 edges and every
x ∈ {v, e}, the class I(H) has the x-Erdős–Pósa property with a gap that is polynomial
in both h and the packing number.

We will show in Section 5.4.1 that neither the planarity requirement, not the subcu-
bicity can be droped.

The main tools of our proof are the graph invariants of tree-cut width and tree-
partition width. Our proof uses the exclusion result Theorem 4.15 which implies that,
for every fixed planar subcubic graph H and every positive integer k, every graph of
large enough tree-cut width contains k vertex-disjoint immersion expansions of H. This
allows us to focus on graphs of bounded tree-cut width. By applying suitable reductions,
we finally reduce the problem to graphs of bounded tree partition width (Lemma 5.13).
The result then follows by the application of Theorem 5.1.

From tree-cut decompositions to tree-partitions

The purpose of this section is to reduce the proof of Theorem 5.13 (when x = e) for
host graphs with bounded tree-cut width to the case where host graphs have bounded
tree-partition width. In particular, we prove the following lemma.

Lemma 5.13. For every connected graph G, and every connected graph H with at least
one edge, there is a graph G′ and a graph H ′ such that

• tpw(G′) ≤ (tcw(G) + 1)2/2,
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• e-packI(H′)(G
′) ≤ e-packI(H)(G), and

• e-coverI(H)(G) ≤ e-coverI(H′)(G
′).

Observe that, with the notation of Lemma 5.13, if we prove that

e-coverI(H′)(G
′) ≤ f(e-packI(H′)(G

′))

for some function f : N→ N, then it immediately implies

e-coverI(H)(G) ≤ f(e-packI(H)(G)).

For every graph G, we define G+ as the graph obtained if, for every vertex v, we add
two new vertices v′ and v′′ and the edges {v′, v′′} (of multiplicity 2), {v, v′} and {v, v′′}
(both of multiplicity 1). Observe that for every G, we have mδ(G+) ≥ 3. We also define
G∗ as the graph obtained by adding, for every vertex v, the new vertices v′1, . . . , v

′
mdeg(v)

and v′′1 , . . . , v
′′
mdeg(v) and the edges {v′i, v′′i } (of multiplicity 2), {v, v′i}, and {v, v′′i } (both

of multiplicity 1), for every i ∈ J1, deg(v)K. If v is a vertex of G, then we denote by Zv,i
the subgraph G∗[{v, v′i, v′′i }] for every i ∈ J1,mdegG(v)K.

Observation 5.2. Let H and G be two graphs, and let (φ, ψ) be an H-immersion model
in G. Then for every vertex x of G, we have mdegH(x) ≤ mdegG(φ(x)).

Our first aim is to prove the following three lemmata.

Lemma 5.14. Let G be a graph, let H be a connected graph with at least one edge and
let G′ be a subdivision of G∗. Then we have

• e-packI(H+)(G
∗) = e-packI(H+)(G

′) and

• e-coverI(H+)(G
∗) = e-coverI(H+)(G

′).

Proof. We denote by S the set of subdivision vertices added during the construction of
G′ from G+. As G′ is a subdivision of G∗, we have e-packI(H+)(G

′) ≥ e-packI(H+)(G
∗)

and e-coverI(H+)(G
′) ≥ e-coverI(H+)(G

∗).
As a consequence of Observation 5.2 and the fact that mδ(H+) ≥ 3, if M is an

H+-immersion expansion in G′ then no branch vertex of M belongs to S. Indeed, every
vertex of S has multidegree 2 in G′. Therefore, by dissolving in M the vertices of S
that belong to V (M), we obtain an H+-immersion expansion in G∗. It follows that
e-packI(H+)(G

∗) ≥ e-packI(H+)(G
′), hence e-packI(H+)(G

∗) = e-packI(H+)(G
′).

On the other hand, let X be an H+-cover of G∗ and let X ′ be a set of edges con-
structed by taking, for every e ∈ X, an edge of the path of G′ connecting the endpoints
of e that has been created by subdividing e. Assume that X ′ is not an H+-cover of G′.
According to the remark above, this implies thatX is not anH+-cover ofG∗, a contradic-
tion. Hence X ′ is an H+-cover of G′ and thus e-coverI(H+)(G

∗) = e-coverI(H+)(G
′).

Lemma 5.15. For every two graphs H and G such that H is connected and has at least
one edge, we have e-packI(H+)(G

∗) ≤ e-packI(H)(G).
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Proof. In G∗ (respectively H+), we say that a vertex is original if it belongs to V (G)
(respectively V (H)). Let (φ, ψ) be an H+-immersion model in G∗.

We first show that if u is an original vertex of H+, then φ(u) is an original vertex
of G∗. By contradiction, let us assume that φ(u) is not original, for some original vertex
u of H+. Then φ(u) = v′i or φ(u) = v′′i , for some v ∈ V (G) and i ∈ J1,mdegG(v)K.

Observe that since H is connected and has at least one edge, every vertex of H+

has degree at least three: let x, y, and z be the endpoints of three multiedges incident
with u. Then ψ({u, x}), ψ({u, x}), and ψ({u, x}) are edge-disjoint paths connecting
φ(u) to three distinct vertices. This is not possible because there is an edge cut of size
two, {{v, v′i}, {v, v′′i }}, separating the two vertices v′i and v′′i (among which is φ(u)) from
the rest of the graph. Consequently, if u ∈ V (H+) is original, then φ(u) is original.

Let us now consider an edge {u, v} ∈ E(H). By the above remark, φ(u) and φ(v)
are original vertices of G∗. It is easy to see that ψ({u, v}) contains only original vertices
of G∗. Indeed, if this path contained a non-original vertex w′ or w′′ for some original
vertex w of V (G∗), it would use w twice in order to reach u and v, what is not allowed.
Therefore, from the definition of H+, the pair (φ|V (H), ψ|E(H)) is an H-immersion model
of G.

We proved that every H+-immersion-expansion of G∗ contains an H-immersion-
expansion that belongs to the subgraph G of G∗. Consequently every H+-packing of G∗

contains an H-packing of the same size that belongs to G, and the desired inequality
follows.

Lemma 5.16. For every two graphs H and G such that H is connected and has at least
one edge, we have e-coverI(H)(G) ≤ e-coverI(H+)(G

∗).

Proof. Similarly to the proof of Lemma 5.15, we say that an edge of G∗ is original if
it belongs to E(G). Let X ⊆ E(G∗) be a minimum cover of H+-immersion expansions
in G∗.

First case: all the edges in X are original. In this case, X is an H-cover of G as well.
Indeed, if G \X contains an H-immersion expansion M , then G∗ \X contains M∗ that,
in turn, contains H+. Hence in this case, e-coverI(H)(G) ≤ e-coverI(H+)(G

∗).

Second case: there is an edge e ∈ X that is not original. Let v be the original vertex of
G∗ such that either e ∈ Zv,l for some l ∈ J1,mdegG(v)K. Let us first show the following
claim.
Claim: For every i ∈ J1,mdegG(v)K, there is an edge of Zv,i that belongs to X.

Proof of claim: Looking for a contradiction, let us assume that we have E(Zv,i)∩X = ∅,
for some i ∈ J1,mdegG(v)K. Clearly i 6= l. By minimality of X, the graph G \ (X \ {e})
contains an H+-immersion expansion M that uses e. Observe that M ′ = M \E(Zv,l)∪
E(Zv,i) contains an H+-immersion expansion (since Zv,l and Zv,i are isomorphic). Hence,
M ′ is a subgraph of G \ (X \ {e}) that contains an H+-immersion expansion. This is
not possible as X is a cover, so we reach the contradiction we were looking for and the
claim holds. �

We build a set Y as follows. For every edge f ∈ X, if f is original then we add
to Y . Otherwise, if vf is the (original) vertex of G∗ such that e ∈ E(Zvf ,i) for some
i ∈ J1,mdegG(vf )K, then we add to Y all edges that are incident to vf .

146



The above claim ensures that when a non-original edge f of X is encountered,
then X contains an edge in each of Zvf ,1, . . . , Zvf ,mdegG(vf ). Therefore, the same set
of edges, of size mdegG(vf ), will be added to Y when encountering an other edge from
Zvf ,1, . . . , Zvf ,mdegG(vf ). Consequently, |X| = |Y |.

Let us not show that Y is an H+-cover of G∗. Suppose that there exists an H+-
immersion expansion M in G∗ \ Y . Observe that since H is connected and has at least
one edge, M does not belong to

⋃
i∈{1,...,mdegG(u)} Zu,i, for every original vertex u of G∗.

Let
Z =

⋃
u∈V (G)

⋃
i∈{1,...,mdegG(u)}

E(Zu,i)

Then M is a subgraph of G \ (Y ∪ Z). As X ⊆ Y ∪ Z, this contradicts the fact that X
is a cover. Therefore, Y is an H+-cover. Moreover all the edges in Y are original. As
this situation is treated by the first case above, we are done.

If (T, {Xt}t∈V (T )) is a tree-cut decomposition of a graph G and t ∈ V (T ), we say than
an edge of G crosses the bag Xt if its endpoints belongs to bags Xt1 and Xt2 , for some
t1, t2 ∈ V (T ) such that t belongs to the interior of the (unique) path of T connecting t1
to t2. We are now ready to prove Lemma 5.13.

of Lemma 5.13. Let k = tcw(G). We examine the nontrivial case where G is not a tree,
i.e., tcw(G) ≥ 2. Let us consider the graph G∗. We claim that tcw(G∗) = tcw(G).
Indeed, starting from an optimal tree-cut decomposition of G, we can, for every vertex v
of G and for every i ∈ J1,mdegG(v)K, create a bag that is a children of the one of v and
contains {v′i, v′′i }. According to the definition of G∗, this creates a tree-cut decomposition
D = ((T, s), {Xt}t∈V (T )) of G∗. Observe that for every vertex x that we introduced to
the tree of the decomposition during this process, adhD(x) = 2 and the corresponding
bag has size two. This proves that tcw(G∗) ≤ max(tcw(G), 2) = tcw(G). As G is a
subgraph of G∗, we obtain tcw(G) ≤ tcw(G∗) and the proof of the claim is complete.

According to Proposition 2.1, we can assume that G∗ has a nice rooted tree-cut
decomposition of width ≤ k. For notational simplicity we again denote it by D =
((T, s), {Xt}t∈V (T )) and, obviously, we can also assume that all leaves of T correspond
to non-empty bags.

Our next step is to transform the rooted tree-cut decomposition D into a rooted
tree-partition D′ = ((T, s), {X ′t}t∈V (T )) of a subdivision G′ of G∗. Notice that the only
differences between two decompositions are that, in a tree-cut decomposition, empty
bags are allowed as well as edges connecting vertices of bags corresponding to non-
adjacent vertices of T .

We proceed as follows: if X is a bag crossed by edges, we subdivide every edge
crossing X and add the obtained subdivision vertex to X. By repeating this process
we decrease at each step the number of bags crossed by edges, that eventually reaches
zero. Let G′ be the obtained graph and observe that G′ is a subdivision of G. As G
is connected, the obtained rooted tree-cut decomposition D′ = ((T, s), {X ′t}t∈V (T )) is a
rooted tree partition of G′.
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Notice that the adhesion of any bag of T in D is the same as in D′. However, the
bags of D′ may grow during the construction of G′. Let t be a vertex of T and let
{t1, . . . , tm} be the set of children of t. We claim that |X ′t| ≤ (k + 1)2/2.

Let Et be the set of edges crossing Xt in G. Let Ht be the torso of D at t, and let
H ′t = Ht \Xt. Observe that |Et| is the same as the number of edges in H ′t. Let zp be the
vertex of H ′t corresponding to the parent of t, and similarly for each i ∈ {1, . . . ,m} let
zi be the vertex of H ′t corresponding to the child ti of t. Notice that if ti is a thin child
of t, then zi can be adjacent to only zp as D is a nice rooted tree-cut decomposition.
Thus the sum of the number of incident edges with zi in H ′t for all thin children ti of t is
at most adhD(t) ≤ k. On the other hand, if ti is a bold child of t, then zi has at least 3
neighbors in Ht, and thus it is contained in the 3-center of (Ht, Xt). Thus, the number
of all bold children of t is bounded by k − |Xt|. Since each vertex in H ′t is incident
with at most k edges, the total number of edges in H ′t is at most (k − |Xt|+ 1)k/2 + k.
As |E(H ′t)| = |Et| = |X ′t \ Xt|, it implies that |X ′t| ≤ |Xt| + k · (k − |Xt| + 2)/2 ≤
max{2k, k(k + 2)/2} ≤ (k + 1)2/2. We conclude that G′ has a rooted tree-partition of
width at most (tcw(G) + 1)2/2.

Recall that G′ is a subdivision of G∗. By the virtue of Lemma 5.16, Lemma 5.15,
and Lemma 5.14, we obtain that e-packI(H+)(G

′) ≤ e-packI(H)(G) and e-coverI(H)(G) ≤
e-coverI(H+)(G

′). Hence G′ satisfies the desired properties.

Therefore we get the following lemma.

Lemma 5.17. Let H be a graph on h edges, let r be an integer and let G be a graph
such that tcw(G) ≤ r. Then e-packI(H)(G) ≤ e-packI(H)(G) · h(r + 1)4.

Proof. Let G′ and H ′ be the graphs given by Lemma 5.13. As tcw(G) ≤ r we have
tpw(G′) ≤ (r + 1)2/2. Applying Lemma 5.6, we get:

e-packI(H′)(G
′) ≤ e-packI(H′)(G

′) · h(r + 1)4.

Then Lemma 5.13 provides the desired inequality (cf. the remark following it).

The edge version of Theorem 5.13 now follows from the application of Theorem 5.1,
using the ceiling provided by Theorem 4.15 together with Lemma 5.17.

The vertex case

To prove the vertex version of Theorem 5.13 is a much easier task. For this, we follow the
same methodology by using the graph parameter of treewidth instead of tree-cut width,
and topological minors instead of immersions. We use the following vertex-counterpart
of Theorem 4.15.

Lemma 5.18. For every h ∈ N there is a function f : N → N with f(k) = (h · k)O(1)

such that, for every planar subcubic graph H with |V (H)| + |E(H)| = h, f is a ceiling
for (tw, I(H), v).
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Proof. A equivalent statement of Theorem 4.9 is that every graph of treewidth at least
f1(k) contains a subdivision of a wall of height and width Ω(k) as a subgraph, for every
k ∈ N. According to Lemma 4.22, every planar subcubic graph H is an immersion of
the wall of width and height h, where h = |V (H)|+ |E(H)|. Therefore the wall of width
and height kh contains k-edge-disjoint I(H)-subgraphs. We deduce that every graph of
treewidth at least f1(c·hk) contains k vertex-disjoint I(H)-subgraphs, for some constant
c not depending on H. We note that f1 is polynomial and this concludes the proof.

The vertex version of Theorem 5.13 follows by the application of Theorem 5.1 to
Lemma 5.18 and Lemma 5.2.

5.4 Summary of results

5.4.1 Results in terms of containment relations

For every partial order � on graphs, and for every graph H, let

G�(H) = {G, H �G}.

For instance, G≤m(H) is the class of all graphs containing H as a minor. For every
x ∈ {v, e}, we define

EPx
� = {H, G�(H) has the x-Erdős–Pósa property}

A general question on Erdős–Pósa properties is to characterize EPx
� for several con-

tainment relations. In this section we mainly provide some negative results about this
problem. We start with the following easy observation.

Lemma 5.19. If � is the subgraph or the induced subgraph relation, x ∈ {v, e}, and
H is a non-trivial graph, then G�(H) has the x-Erdős–Pósa property, with gap f : k 7→
k · |Ax(G)|. In other words, EPx

� is the set of all graphs.

Proof. Let H and G be two graphs and let k = x-packG�(H)(G). Let M1, . . . ,Mk be

a v-G�(H)-packing (respectively e-G�(H)-packing) of size k with the minimal number
of vertices (respectively edges). Observe that in this case, |Mi| = |H| (respectively
‖Mi‖ = ‖H‖) for every i ∈ J1, kK . Let X =

⋃k
i=1 V (Mi) (respectively X =

⋃k
i=1 E(Mi)).

As the packing we consider is of size k, the graph G \ X does not have any subgraph
isomorphic to a member of G�(H). Hence X is an v-G�(H)-cover (respectively e-G�(H)-
cover), and besides we have |X| = k · |H| (respectively |X| = k · ‖H‖).

Notice that in case x = v, it is not necessary to demand that H is non-trivial in the
statement of Lemma 5.19.
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Some negative results

Let us now state several negative results on the Erdős–Pósa property of classes related
to topological minors.

In the proofs below, we use the notion of Euler genus of a graph G. The Euler
genus of a non-orientable surface Σ is equal to the non-orientable genus g̃(Σ) (or the
crosscap number). The Euler genus of an orientable surface Σ is 2g(Σ), where g(Σ)
is the orientable genus of Σ. We refer to the book of Mohar and Thomassen [MT01]
for more details on graph embeddings. The Euler genus of a graph G is the minimum
integer γ such that G can be embedded on a surface of the Euler genus γ.

Lemma 5.20. Let H be a non-planar graph. Then T (H) does not have the v-Erdős–
Pósa property.

Proof. For every integers k > 0 and d, we denote by Γd,k the graph obtained from a grid
of width dk and height d + k − 1 by adding k vertices a1, . . . , ak (that we call apices)
and connecting a1 to the d first vertices on the first row of the grid (starting from the
left), a2 to the d next vertices, and so on. For every i ∈ J0, d− 1K, the set of vertices at
indices {ik + j, j ∈ J0, k − 1K} on the last row of Γd,k is called the i-th port of Γd,k. We
will refer to the vertex at index ik+ j of the last row as the j-th vertex of the i-th port.
See Figure 5.2 for a drawing of Γ4,3. On this drawing, the ports are U0, . . . , U3.

a1 a2 a3

U0 U1 U2 U3

Figure 5.2: The gadget Γ4,3 used in Lemma 5.20.

Let k be a positive integer. For every vertex v of H, we arbitrarily choose an ordering
of its neighbors and we denote by σv(u) the rank of u in this ordering (ranging from 0
to deg(v)− 1), for every neighbor u of v. We also let Fv be a copy of the graph Γdeg(v),k.

The graph Gk can be constructed from the disjoint union of the graphs of {Fv, v ∈
V (H)} by adding, for every pair u, v of adjacent vertices, the edge connecting the i-th
vertex of the σv(u)-th port of Fv to the i-th vertex of the σu(v)-th port of Fu, for every
i ∈ J0, k − 1K . Informally, we connect the vertices of the σv(u)-th port of Fv to the
vertices of the σu(v)-th port of Fu using “parallel” edges.
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It can be easily checked that the Euler genera of Gk and H are equal. As the
Euler genus of the disjoint union of two copies of H is larger than the one of H (see
[BHK62]), we get that v-packT (H)(G) < 2. On the other hand, our construction ensures
that v-packT (H)(G) ≥ 1.

Let us now show that for every subsetX ⊆ V (Gk) with |X| < k we have v-packT (H)(G\
X) ≥ 1. This would complete the proof, since {Gk, k ∈ N≥1} would be an infinite family
of graphs that have no v-T (H)-packings of size 2 but where a minimum v-T (H)-cover
can be arbitrarily large.

Let u and v be two adjacent vertices of H, and let d = deg(v). For For every
i ∈ J0, k − 1K, let Ci denote the vertices that are

• either in the same column of Fu as the i-th vertex of the σu(v)-th port of Fu;

• or in the same column of Fv as the i-th vertex of the σv(u)-th port of Fv.

The family {Ci, i ∈ J1, kK} contains k vertex disjoint elements, therefore at least one of
the does not contain any vertex from X (as |X| < k). Therefore, for every edge {u, v}
of H there is an edge f({u, v}) between a vertex x of the σu(v)-th port of Fu and a
vertex y of the σv(u)-th port of Fv such that no vertex of the same column as x in Fu
(respectively y in Fv) belong to X. Using the same argument we can show that for every
vertex v ∈ V (H) there is an apex a such that the columns of Fv adjacent to a are free
of vertices of X. Also we know that at least d rows do not contain vertices from X, as
the grid of Fv has height d+ k − 1. Therefore Fv contains as a subgraph a grid Sv such
that:

1. an apex a is adjacent to d vertices of the first row of Sv;

2. for every vertex u adjacent to v, the edge f({u, v}) shares one vertex the last row
of Sv;

3. no vertex of the last row of Sv belong to two edges f({u, v}) and f({u′, v}) for
some distinct neighbors u, u′ of v;

4. Sv has height and width at least d;

5. Sv does not contain any vertex of X.

We deduce that Fv \X contains d paths P0, . . . , Pd−1 that have only the apex a as
common vertex and such that Pi connects a to an endpoint of f({v, ui}), where ui is
the neighbor of v of rank i, for every i ∈ J0, d− 1K . It is now easy to see that the graph

Gk

⋃ v ∈ V (H)

degH(v)−1⋃
i=0

V (P v
i )


contains a subdivision of H that does not contain any vertex of X. This concludes the
proof.
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The proof of Lemma 5.20 can be adapted to the setting of the edge-Erdős–Pósa
property under the additional requirement that the pattern is subcubic.

Lemma 5.21. Let H be a subcubic non-planar graph. Then T (H) does not have the
e-Erdős–Pósa property.

Proof. Let k be a positive integer. We use the same construction of Gk as in the proof
of Lemma 5.20 with the following modifications: each vertex v of degree d ≥ 4 of Gk is
replaced by a subcubic tree, the leaves of which are the neighbors of v. Let us call G′k the
graph we obtain. It is not hard to see that the genera of G′k and Gk are equal. Moreover,
as G′k is subcubic, every e-T (H)-packing is also an v-T (H)-packing. We then obtain as
previously that e-packT (H)(G

′
k) = 1. The arguments to show that e-coverT (H)(G

′
k) ≥ k

are identical to the ones used in the proof of Lemma 5.20.

In fact, Lemma 5.20 and Lemma 5.21 can be used to prove that more general classes
do not have the Erdős–Pósa property, as follows. As we will see in Corollary 5.5 and
Corollary 5.6, the conditions of Lemma 5.22 already encompass several well-studied
classes.

Lemma 5.22. Let x ∈ {v, e}, let H be a non-planar graph and let H be a class of graphs
such that:

(i) T (H) ⊆ H; and

(ii) H is graph of minimum Euler genus in H;

(iii) if x = e, then H is subcubic.

Then H does not have the x-Erdős–Pósa property.

Proof. Let k be a positive integer. We again consider the constructions of Gk and G′k
used in the proofs of Lemma 5.20 and Lemma 5.21. Let Jk be Gk if x = v and Jk = G′k
if x = e. Let show that v-packH(Jk) = 1. For this, let us assume that there is an x-
T (H)-packing F1, . . . , Fp, for some p ∈ N≥2 in Jk. It is crucial to note that in both the
cases x = v and x = v, the subgraphs F1, . . . , Fp are vertex-disjoint. In fact, when x = v,
this follows from the definition of a v-T (H)-packing, and if x = e it is because G′k is
subcubic. Then we have:

γ(Jk) ≥ γ(F1 ∪ · · · ∪ Fp)

=

p∑
i=1

γ(Fi) (see [BHK62])

≥ p · γ(H) (by minimality of H)

γ(Jk) > γ(H) (contradiction).

We reached a contradiction, hence v-packH(Jk) = 1. On the other hand,

v-coverH(Jk) ≥ v-coverT (H)(Jk) ≥ k.

The last inequality can be found in the proof of Lemma 5.20 or Lemma 5.21 (depending
if x = v or x = e). This concludes the proof.
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Corollary 5.5. For every non-planar graph H, none of I(H) and M(H) have the
v-Erdős–Pósa property.

Corollary 5.6. For every subcubic non-planar graph H, none of I(H) andM(H) have
the e-Erdős–Pósa property.

Corollary 5.6 can be strengthened by dropping the degree condition on H when
considering minor models of H, as follows.

Lemma 5.23. For every non-planar graph H, M(H) does not have the e-Erdős–Pósa
property.

Proof. Let k be a positive integer. Again we use the graph G′k constructed as in
Lemma 5.21. We modify it by replacing every apex a by a subcubic tree, the leaves of
which are the neighbors of a. Let G′′k denote the graph that we obtain. Observe that
G′′k is subcubic. Therefore, using the same argument as in the proof of Lemma 5.21 we
can show that e-packM(H)(G) = 1. In the sequel we use the terminology of the proof of
Lemma 5.20. Let F ′′v denote the graph obtained from Fv by replacing every vertex u of
degree at least 4 by a subcubic tree, the leaves of which are the neighbors of u, for every
v ∈ V (H). The proof that e-coverM(H)(G) ≥ k goes as in the proof of Lemma 5.20,
except that we obtain, for every v ∈ V (H), that F ′′v \ X contains a tree, the leaves of
which are endpoints of f({v, ui}) for i ∈ J0, d− 1K (instead of paths connecting an apex
to endpoints of f({v, ui})). Fortunately this is enough to guarantee that G′′k\X contains
H as a minor, and we are done.

Thomassen in [Tho88] provided an example of a tree such that H 6∈ EPv
≤tm

(the same
graph does not belong to EPe

≤tm
neither). Inspired by this construction we give another

such graph that, additionally, is biconnected. This graph H is depicted in Figure 5.3. To
see that H 6∈ EPv

≤tm
and H 6∈ EPe

≤tm
, consider as host graph G the graph in Figure 5.4.

This graph consists of a main body that is a wall of height 3 and three triples of graphs
attached at its upper, leftmost, and lower paths. Each of these triples consists of three
copies of some of the 3-connected components of H. Notice that G does not contain
more than one H-immersion expansion. However, in order to cover all H-immersion
expansions of G one needs to remove at least 3 edges/vertices. By increasing the heigh
of the wall of G, we may increase the minimum size of an I(H)-vertex/edge cover while
no I(H)-vertex/edge packing of size greater than 1 will appear. It is easy to modify
H so to make it 3-connected: just add a new vertex and make it adjacent with the
tree vertices of degree 4. The resulting graph H ′ remains planar. The same arguments,
applied to an easy modification of the host graph, can prove that H ′ is not a graph in
Hv or He.

Lemma 5.24. There is a 2-connected (respectively 3-connected) planar graph that be-
longs to none of EPv

≤tm
, EPe

≤tm
, EPv

≤imm
, and EPe

≤imm
.

Let us now summarize results related to the most common containment relations.

Subgraphs and induced subgraphs: EPx
� is the class of all graphs, both for � being

the subgraph and induced subgraph relation, for every x ∈ {v, e} (Lemma 5.19).
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Figure 5.3: A biconnected graph H for which I(H) does not have the v/e-E&P property.

Figure 5.4: The host graph G.

Minors: EPv
≤m

is the class of planar graphs [RS86, Theorem 8.2]. About the edge
version, Theorem 5.9, Theorem 5.8, and Theorem 5.11 imply that EPe

≤m
includes

the class {θr}r∈N≥1
∪ {θr,r′}r,r′∈N, and we show in Lemma 5.23 that EPe

≤m
is a

subclass of planar graphs.

Topological Minors: EPv
≤tm

has been characterized in [LPW14]. There are trees,
2-connected and 3-connected graphs that belongs to none of EPv

≤tm
and EPe

≤tm

([Tho88] and Lemma 5.24). The class EPv
≤tm

does not contain any non-planar
graph (Lemma 5.20) and EPe

≤tm
does not contain any non-planar subcubic graph

(Lemma 5.21).

Immersions: As proved in Subsection 5.3.4, EPv
≤imm

contains all planar subcubic graphs
and EPe

≤imm
contains all non-trivial, connected, planar subcubic graphs. More-

over, EPv
≤imm

does not contain any non-planar graph (Corollary 5.5) and EPe
≤imm

does not contain any subcubic non-planar graph (Corollary 5.6). On the other
hand there is a 3-connected planar graph that belongs to none of EPv

≤imm
and

EPv
≤imm

Lemma 5.24.

5.4.2 Results in terms of graph classes

We provide a series of tables presenting known results on the Erdős–Pósa property of
some graph classes, sorted depending on the pattern. Results related to other structures
(matroids, hypergraphs, geometry), to directed graphs or to fractional versions are not
mentioned here.
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A dash in the “gap” column means that the authors did not explicitly provided a
gap function (even though one may be computable from the proof).

The fourth column refers to the type of packing/cover, cf. Subsection 5.4.3. Most
(but not all) of the notation used in this section is defined in Subsection 5.4.3.

Positive results

Acyclic patterns
Ref. Guest class H Host class G T. Gap

[Kőn31] K2 bipartite v k
[Men27] S-T -paths any v/e k
[Grü38] directed S-T -paths any v/e k
[FJW13a],

Theorem 5.4
M(H), H forest any v OH(k)

Triangles
Ref. Guest class H Host class G T. Gap

[Tuz90] triangles
planar graphs e 2k
G with ||G|| ≥
7|G|2/16

e 2k

tripartite graphs e 7k/3
[Kri95] triangles T (K3,3)-free graphs e 2k
[HK88] triangles tripartite graphs e 1.956k
[Hax99] triangles any e (3− 3

23
)k

[ALBT11] triangles
odd-wheel-free
graphs

e 2k

4-colorable graphs

[HKT11] triangles
K4-free planar
graphs

e 3k/2

K4-free flat graphs

Cycles
Ref. Guest class H Host class G T. Gap

[EP65] cycles any v (4 + o(1))k log k
[Sim67] cycles any v

(
1
2

+ o(1)
)
k log k

[Die05] cycles any e (2 + o(1))k log k
[DZ02] cycles G1, weighted w k
[DXZ03] cycles G2 v k

[KLL02b] cycles
planar graphs v 5k
outerplanar graphs v 2k

[MYZ13] cycles planar graphs
v 3k
e 4k − 1
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Cycles with length constraints
Ref. Guest class H Host class G T. Gap

[Ree99] odd cycles planar graphs v superexponential

[FHRV05] odd cycles planar graphs
v 10k
e 2k

[Tho01b] odd cycles 239k-connected
graphs

v 2k − 2

[RR01] odd cycles 576k-connected
graphs

v 2k − 2

[KR09] odd cycles 24k-connected
graphs

v 2k − 2

[Ree99] odd cycles k-near bipartite
graphs

v –

[KN07] odd cycles embeddable in an
orientable surface
of Euler genus g

v/e –

[BR00] odd cycles any e –
[KV04] odd cycles planar graphs e 2k

[KK12] odd cycles 4-edge-connected
graphs

e 22O(k log k)

[Ree97] odd cycles any v1/2 –
[KW05] non-zero cycles (15k/2)-connected

group-labeled
graphs

v 2k − 2

[BBR07b] C≥t any v (13 + ot(1))tk2

[FH14] C≥t any v (6t+ 4 + ot(1))k log k
[MNŠW16] C≥t any v 6kt+(10+o(1))k log k

Extensions of cycles
Ref. Guest class H Host class G T. Gap

[Sim67] dumb-bells any v (4000 + o(1))k log k
[FLM+13] M(θt) any v O(t2k2)
[FJS13] M(θt) any v Ot(k log k)

[RST16] M(θt) any e
O(k2t2 polylog kt)
O(k4t2 polylog kt)

[CRST15a],
Th. 5.9

M(θt) any v/e Ot(k log k)
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Minor models
Ref. Guest class H Host class G T. Gap

[RS86],
Lemma 5.5

M(H), H planar
any v –
{G, tw(G) ≤ t} v (t− 1)(k cc(H)− 1)

[DKW10] M(Kt) O(kt)-connected
graphs

v –

[FST11] M(H), H planar
connected

Kq-minor free v Oh,q(k)

[RT13] M(H), pw(H)≤ 2
and H connected

any v 2O(|H|2) · k2 log k

[CC13a],
[CC13b],
Cor. 5.1

M(H), H planar
connected

any v O(|H|O(1)·k polylog k)

[CRST15a],
Lemma 5.6,
Th. 5.11

M(H), H con-
nected

{G, tpw(G) ≤ t} v/e OH,t(k)

M(θt,t′) simple graphs e –

Topological minor models
Ref. Guest class H Host class G T. Gap

[Tho88] T(0 mod t)(H), H
planar subcubic

any v –

[LPW14] T (H), H ∈ L any v –

Immersion expansions
Ref. Guest class H Host class G T. Gap

[Liu15] I(H) 4-edge-connected e –

[GKRT16],
Th. 5.13
Lemma 5.17

I(H), H planar
subcubic connected
non-trivial

any e (|H|k)O(1)

I(H), H connected
non-trivial

{G, tpw(G) ≤ t}
e ‖H‖ · t2 · k{G, tcw(G) ≤ t}

[Liu15] I1/2(H) any e1/2 –

Patterns with prescribed vertices
Let us first present the two settings of Erdős–Pósa problems with prescribed vertices
that we want to deal with here. The first type is when the guest class consists of
fixed subgraphs of the host graph. For instance, one can consider a family F of (non
necessarily disjoint) subtrees of a tree T , and compare the maximum number of disjoint
elements in F with the minimum number of vertices/edges of T meeting all elements
of F . We will refer to these guest classes by words indicating that we are dealing with
substructures (like “subtrees”). We stress that in this setting, the host class is allowed
to contain one subgraph F of the host graph, but not one other subgraph F ′ even if F
and F ′ are isomorphic.

157



In order to introduce the second type of problem, we need the following definition.
Let x ∈ {v, e}. If H is a class of graphs, G is a graph and S ⊆ Ax(G), then a S-H-
subgraph of G is a subgraph of G isomorphic to some member of H and that contain
one edge/vertex of S. We are now interested in comparing, for every graph G and every
S ⊆ Ax(G), the maximum number of S-H-subgraph of G with the minimum number
of elements of Ax(G) that meet all S-H-subgraphs of G. We refer to these problems
by prefixing the guest class with an “S” (like in “S-cycles”). A generalization of this
type of problem has been introduced in [KM15]: instead of one set S, one considers a
collection Z = {Z1, Z2, Z3} of three subsets of Ax(G) and a Z-subgraph is required to
intersect at least two sets of Z.

For every positive integer t, a t-path is a disjoint union of t paths, and a t-subpath
of a t-path G is a subgraph that has a connected intersection with every connected
component of G. The concept of t-forests and t-subforests is defined similarly.

Ref. Guest class H Host class G T. Gap

[HS58] subpaths paths v k

[GL69]
t-subpaths t-paths v O(kt!)
subgraphs H with
cc(H) ≤ t

paths v –

t-subforests t-forests v –
[GL69] subtrees of a tree trees v k
[Kai97] t-subpaths t-paths v (t2 − t+ 1)k
[Alo98] t-subpaths t-paths v 2t2k

[Alo02]
subgraphs H with
cc(H) ≤ t

trees v 2t2k

subgraphs H with
cc(H) ≤ t}

{G, tw(G) ≤ w} v 2(w + 1)t2k

[KiKM11] S-cycles any v O(k2 log k)
[PW12] S-cycles any v/e O(k log k)
[BJS14] S-cycles ∩ C≥t any v O(tk log k)
[Joo14] odd S-cycles 50k-connected

graphs
v O(k)

[KM15] Z-M(H), H planar any v –

Classes with bounded parameters
Ref. Guest class H Host class G T. Gap

[Tho88] any family of con-
nected graphs

{G, tw(G) ≤ t} v k(t+ 1)

[FJW13a] {H, pw(H) ≥ t} any v Ot(k)

[CRST15a]
any finite family of
connected graphs

{G, tpw(G) ≤ t} v/e OH,t(k)
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Negative results

The next table present classes of patterns that do not have the Erdős–Pósa property for
some class of hosts, as well as classes that do not have the Erdős–Pósa property for a
certain gap function. It indicates to which extend the results of the table of Section 5.4.2
are best possible.

Negative results on cycles
Ref. Guest class H Host class G T. Gap

[Tuz90] triangles all graphs e < 2k
[EP65] cycles all graphs v o(k log k)
[KLL02b] cycles planar graphs v < 2k
[MYZ13] cycles planar graphs e ck − 1, c < 4
[DL88] odd cycles all graphs v any
[Ree99] odd cycles all graphs e any
[Tho01b] odd cycles planar graphs v < 2k − 2
[KV04] odd cycles planar graphs e < 2k
[PW12] S-cycles any v o(k log k)

[FH14] C≥t all graphs v
o(k log k), t
fixed
o(t), k fixed

[MNŠW16] C≥t all graphs v
< (k − 1)t

< (k−1) log k
8

Negative results on patterns related to containment relations
Ref. Guest class H Host class G T. Gap

from
[EP65]

M(H), H has a cycle all graphs v o(k log k)

[RS86] M(H), H non-planar all graphs v any
Lemma 5.23 M(H), H non-planar all graphs e any
Lemma 5.20 T (H), H non-planar all graphs v any
[Tho88] T (H), for infinitely many

trees H with ∆(H) = 4
planar graphs e any

Lemma 5.21 T (H), H non-planar subcu-
bic

all graphs e any

copying
[Tho88]

I(H), for infinitely many
trees H with ∆(H) = 4

planar graphs e any

Cor. 5.5 I(H), H non-planar all graphs v any
Cor. 5.6 I(H), H non-planar subcu-

bic
all graphs e any

[GKRT16] I(H), for some 3-connected
H with ∆(H) = 4

planar graphs e any

[Liu15] I(H), for every H 3-edge-connected
graphs

e any
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5.4.3 Notation used in Subsection 5.4.2

In this section we recall or introduce (some of) the notations that are used in Subsec-
tion 5.4.2.

Types of packings/covers. The fourth column gives the type of the packings/covers
the current line is about. The character v (respectively e) refers to vertex-disjoint
(respectively edge-disjoint) packings and vertex (respectively edge) covers. We write
v/e when the mentioned result holds for both the vertex and the edge version. e1/2

corresponds to half-integral packings (i.e. each edge can be used at most twice) and
edge covers. Finally, w stands for vertex covers and packings where every vertex v of
the host graph can be used at most w(v) times by every packing, where w is a function
mapping reals to the vertices of the host graph.

Classes of graphs. We denote by I1/2(H) the class of all graphs containing H as a
half-integral1 immersion. For every t ∈ N, T(0 mod t)(H) denotes the class of subdivisions
of H where every edge is subdivided 0 mod t times. The class of cycles of length at least
t is referred to as C≥t. A dumb-bell is a graph obtained by connecting two cycles by a
(non-trivial) path. We denote by L a graph class defined in the manuscript [LPW14].
For every positive integer k with, we say that a graph is k-near bipartite if every set
X of vertices contains a stable of size at least |X|/2 − k. A graph is flat if every edge
belongs to at most two triangles.

Definitions from [DZ02, DXZ03]. An odd ring is a graph obtained from an odd
cycle by replacing every edge {u, v} by either a triangle, or three triangles uab and ucd
together with the edges {b, c} and {a, d}. We denote by G1 the class of graphs with no
induced subdivision of the following: K2,3, a wheel, or an odd ring. We denote by G2

the class of graphs with no induced subdivision of the following: K3,3, a wheel, or an
odd ring.

1A graph H is a half-integral immersion of a graph G is H is an immersion of the graph obtained
by G after duplicating the multiplicity of all its edges.
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Chapter 6

From the Erdős–Pósa property to
approximation

In this chapter we show how the combinatorial connection between invariants of packing
and covering provided by the Erdős–Pósa property can be used to design approximation
algorithms. We focus on packing and covering graphs fromM(θr) for any r ∈ N, in both
the vertex and edge setting. Drawing upon combinatorial results presented in Chapter 4,
we give an algorithmic proof thatM(θr) has the vertex- and edge-Erdős–Pósa property
with gap O(k log k), which is optimal. Using the algorithmic machinery of our proofs we
introduce a unified approach for the design of an O(logOPT)-approximation algorithm
for v-packθr , v-coverθr , e-packθr , and e-coverθr that runs in O(n · log(n) ·m) steps.

This chapter contains material that previously appeared in the following article:
An O(logOPT)-approximation for covering/packing minor models of θr, co-authored
with Dimitris Chatzidimitriou, Ignasi Sau, and Dimitrios M. Thilikos, presented in
Approximation and Online Algorithms: 13th International Workshop, WAOA 2015,
Patras, Greece, 2015 [CRST15a].

6.1 Introduction

From the algorithmic point of view, the computation of x-packH (for x ∈ {v, e}) cor-
responds to the general family of graph packing problems, while the computation of
x-coverH belongs to the general family of graph modification problems where the mod-
ification operation is the removal of vertices/edges (depending on whether x = v or
x = e). Interestingly, particular instantiations of H = M(θr) generate known, well
studied, NP-hard problems. For instance, asking whether v-coverM(θr) ≤ k generates
Vertex Cover for r = 1, Feedback Vertex Set for r = 2, and Diamond Hit-
ting Set for r = 3 [FJP10, FLMS12b]. Moreover, asking whether x-packM(θr)(G) ≥ k
corresponds to Vertex Cycle Packing [BTY11,KLL02a] and Edge Cycle Pack-
ing [ACR03, KNS+07] when x = v and x = e, respectively. Finally, asking whether
|E(G)| − e-coverM(θr)(G) ≤ k corresponds to the Maximum Cactus Subgraph1. All

1The Maximum Cactus Subgraph problem asks, given a graph G and an integer k, whether G
contains a subgraph with k edges where no two cycles share an edge. It can be reduced to the Vertex
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parameters keep being NP-complete to compute because the aforementioned base cases
can be reduced to the general one by replacing each edge by one of multiplicity r − 1.

From the approximation point of view, it was proven in [FLMS12b] that, when H
is a planar graph, there is a randomized polynomial O(1)-approximation algorithm for
v-coverM(H). For the cases of v-coverM(θr) and v-packM(θr), O(log n)-approximations
are known for every r ≥ 1 because of [JPS+11, JPS+14] (see also [SV05]). Moreover,
v-coverM(θ3) admits a deterministic 9-approximation [FJP10]. About the edge variant,
it is known, from [KNY05], that there is a polynomial O(

√
log n)-approximation algo-

rithm for e-packM(θ2)(G). Notice also that it is trivial to compute e-coverM(θ1)(G) in
polynomial time. However, to our knowledge, nothing is known about the computation
of e-coverM(θr)(G) for r ≥ 3.

In this section we introduce a unified approach for the study of the combinatorial
interconnections and the approximability of the parameters v-coverM(θr), e-coverM(θr),
v-packM(θr), and e-packM(θr). Our main combinatorial result is the following.

Theorem 6.1. For every r ∈ N≥2 and every x ∈ {v, e} the graph class M(θr) has the
x-EP-property with (optimal) gap function f(k) = O(k · log k).

Our proof is unified and treats simultaneously the covering and the packing param-
eters for both the vertex and the edge cases. This verifies the optimal combinatorial
bound for the case where x = v [FJS13] and optimally improves (in terms of k) the bound
in given in Subsection 5.3.2 (which appeared in [RST16]) for the case where x = e. In
this section, when giving the running time of an algorithm with input some graph G, we
agree that n = |V (G)| and m = |E(G)|. Based on the proof of Theorem 6.1, we prove
the following algorithmic result.

Theorem 6.2. For every r ∈ N≥2 and every x ∈ {v, e}, there exists an O(n · log(n) ·m)-
step algorithm that, given a graph G, outputs an O(logOPT)-approximation for x-coverM(θr)

and x-packM(θr).

Theorem 6.2 improves the results in [JPS+11, JPS+14] for the cases of v-coverM(θr)

and v-packM(θr) and is, to our knowledge, the first approximation algorithm for e-coverM(θr)

and e-packM(θr) for r ≥ 3.

Overview of the proof. Our proofs are based on the notion of partitioned protrusion
that, roughly, is a tree-structured subgraph of G with small boundary to the rest of G
(see Subsection 6.2.2 for the precise definition). Partitioned protrusions, that we met
in Section 4.1 under the name of edge-protrusions, can be seen as the edge-analogue of
the notion of protrusions introduced in [BFL+09a] (see also [BFL+09b]). Our approach
makes strong use of the main result of Section 4.1, that is equivalently stated as The-
orem 4.4 in this section. According to this result, there exists a polynomial algorithm
that, given a graph G and an integer k as an input, outputs one of the following:

1. a collection of k edge/vertex disjoint θr-majors of G,

Cycle Packing problem on cubic graphs which, in turn, can be proved to be NP-complete using a
simple variant of the NP-completeness proof of Exact Cover by 2-Sets [Gol15].
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2. a θr-major J with O(log k) edges, or

3. a large partitioned protrusion of G.

Our approximation algorithm does the following for each k ≤ |V (G)|. If the first
case of the above combinatorial result applies on G, we can safely output a packing of
k θr-majors in G. In the second case, we make some progress as we may remove the
vertices/edges of J from G and then set k := k − 1. In order to deal with the third
case, we prove that in a graph G with a sufficiently large partitioned protrusion, we
can either find some θr-major with O(log k) edges (which is the same as in the second
case), or we can replace it by a smaller graph where both x-coverM(θr) and x-packM(θr)

remain invariant (Lemma 6.1). The proof that such a reduction is possible is given
in Section 6.3 and is based on a suitable dynamic programming encoding of partial
packings and coverings that is designed to work on partitioned protrusions.

Notice that the “essential step” in the above procedure is the second case that
reduces the packing number of the current graph by 1 to the price of reducing the
covering number by O(log k). This is the main argument (previously used in [FJW13b])
that supports the claimed O(logOPT)-approximation algorithm (Theorem 6.2) and the
corresponding Erdős–Pósa relations in Theorem 6.1.

Organization of the chapter. In Section 6.2 we provide all concepts and notation
that we use in our proofs. Section 6.3 contains the proof of Lemma 6.1, which is the
main technical part of the paper. The presentation and analysis of our approximation
algorithm is done in Section 6.4, where Theorem 6.1 and Theorem 6.2 are proven.

6.2 Definitions specific to this section

6.2.1 Basic definitions

If H is a finite collection of graphs, we set n(H) =
∑

H∈H n(H), m(H) =
∑

H∈Hm(H).
Given a graph H and a graph J that are both subgraphs of the same graph G, we

define the subgraph H ∩G J of G as the graph (V (H) ∩ V (J), E(H) ∩ E(J)).
Given a graph G and a set S ⊆ V (G), such that all vertices in S have degree 2 in

G, we define diss(G,S) as the graph obtained from G after we dissolve in it all vertices
in S.

Topological minors. Whereas the results presented in this chapter deal with majors,
the tools that we provide in Section 6.3 are expressed in the setting of subdivisions. We
show in Section 6.4 how this more general setting can be applied to majors. If G is a
graph and H is a finite collection of connected graphs, recall than an H-subdivision in
G is a subgraph M of G that is a subdivision of a graph, denoted by M̂ in this chapter,
that is isomorphic to a member of H. Clearly, the vertices of M̂ are vertices of G and
its edges correspond to paths in G between their endpoints such that internal vertices
of a path do not appear in any other path. We refer to the vertices of M̂ in G as the
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branch vertices of the H-subdivision M , whereas internal vertices of the paths between
branch vertices are called subdivision vertices of M .

6.2.2 Boundaried graphs

Informally, a boundaried graph is used to represent a graph that has been obtained
by “dissecting” a larger graph along some of its edges, where the boundary vertices
correspond to edges that have been cut. In this section we formally define boundaried
graphs and related notions. We also give a notion of equivalence that is a cornerstone
of our algorithms.

Boundaried graphs A boundaried graph G = (G,B, λ) is a triple consisting of a
graph G, a set B of vertices of degree one (called boundary), and a bijection λ from B
to a subset of N≥1. The edges with at least one endpoint in B are called boundary edges.
We define Es(G) as the subset of E(G) of boundary edges. We stress that instead of
N≥1 we could choose any other set of symbols to label the vertices of B. We denote the
set of labels of G by Λ(G) = λ(B). Given a collection H of graphs, we say that a G is
H-free if G \B is H-free.

Two boundaried graphs G1 and G2 are compatible if Λ(G1) = Λ(G2). Let now
G1 = (G1, B1, λ1) and G2 = (G2, B2, λ2) be two compatible boundaried graphs. We
define the graph G1⊕G2 as the graph obtained by first taking the disjoint union of G1

and G2, then, for every i ∈ Λ(G1), identifying λ−1
1 (i) with λ−1

2 (i), and finally dissolving
all resulting identified vertices. Suppose that e is an edge of G = G1⊕G2 that was
created after dissolving the vertex resulting from the identification of a vertex v1 in B1

and a vertex v2 in B2 and that ei is the boundary edge of Gi that has vi as endpoint,
for i = 1, 2. Then we say that e is the heir of ei in G, for i = 1, 2, and we denote this
by heirG(ei). For i ∈ {1, 2}, if S ⊆ E(Gi), then

heirG(S) = (E(Gi) ∩ S) ∪ {heirG(e) | e ∈ Es(Gi) ∩ S}.

For reasons of notational consistency, if V ⊆ V (Gi), we denote heirG(V ) = V .
Figure 6.1 shows the result of the operation ⊕ on two graphs. Boundaries are drawn

in gray and their labels are written next to them. The graphs G1 and G2 on this picture
are compatible as Λ(G1) = Λ(G2) = {0, 1, 2, 3}.

For every t ∈ N≥1, we denote by Bt all boundaried graphs whose boundary is labeled
by numbers in J1, tK. Given a boundaried graph G = (G,B, λ) and a subset S of
V (G) such that all vertices in S have degree 2 in G, we define diss(G, S) as the graph
Ĝ = (Ĝ, B, λ) where Ĝ = diss(G,S).

Let W be a graph and S be a non-empty subset of V (W ). An S-splitting of W is
a pair (GS,GSc) consisting of two boundaried graphs GS = (GS, BS, λS) and GSc =
(GSs , BSs , λSs) that can be obtained as follows: First, let W+ be the graph obtained by
subdividing in W every edge with one endpoint in S and the other in V (W ) \S and let
B be the set of created vertices. Let λ be any bijection from B to a subset of N≥1. Then
GS = W+[S ∪ B], GSc = W+ \ S, BS = BSc = B, and λS = λSc = λ. Notice that there
are infinite such pairs, depending on the numbers that are assigned to the boundaries of
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⊕ =

G1 G2 G

Figure 6.1: Gluing graphs together: G = G1 ⊕G2.

GS and GSc . Moreover, keep in mind that all the boundary edges of GS are non-loop
edges with exactly one endpoint in B and the same holds for the boundary edges of GSs .
An example of a splitting is given in Figure 6.2, where boundaries are depicted by gray
vertices.

W

5

3 6

GS

5

3

6

GSc

Figure 6.2: Cutting a graph: (GS,GSc) is an S-splitting of W , where S consists of all
the white vertices.

We say that G′ = (G′, B′, λ′) is a boundaried subgraph of G = (G,B, λ) if G′ is
a subgraph of G, B′ ⊆ B and λ′ = λ|B′ . On the other hand, G is a subgraph of a
(non-boundaried) graph H if G = HS for some S-splitting (HS,HSc), where S ⊆ V (H).

If H is a graph, G is a subgraph of H, and F = (F,B, λ) is a boundaried subgraph
of H, we define G∩H F as follows. Let S = V (G)∩ (V (F ) \B) and let G+ be the graph
obtained by subdividing once every edge of G that has one endpoint in S and the other
in V (G) \ S. We call B′ the set of created vertices and let G′ = G+[S ∪B′]. Then G′ is
a subgraph of F where B′ ⊆ B. For every v ∈ B′, we set λ′(v) = λ(v), which is allowed
according to the previous remark. Then G ∩H F = (G′, B′, λ′). Observe that G ∩H F is
an S-splitting of G.

Given two boundaried graphs G′ = (G′, B′, λ′) and G = (G,B, λ), we say that they
are isomorphic if there is an isomorphism from G′ to G that respects the labelings of B
and B′, i.e., maps every vertex x ∈ B′ to λ−1(λ′(x)) ∈ B. Given a boundaried graph
G = (G,B, λ), we denote n(G) = n(G)− |B| and m(G) = m(G).

Given a boundaried graph G = (G,B, λ) and an x ∈ {v, e}, we set Ax(G) = V (G)\B
or Ax(G) = E(G), depending on whether x = v or x = e.
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Partial structures. Let F be a finite family of connected graphs. A boundaried
subgraph J of a boundaried graph G is a partial F-subdivision if there is a boundaried
graph H which is compatible with G and a boundaried subgraph J′ of H which is
compatible with J such that J ⊕ J′ is an F -subdivision of G ⊕ H. Intuitively, this
means that J can be extended into an F -subdivision in some larger graph. In this case,
the F -subdivision J⊕ J′ is said to be an extension of J.

Similarly, for every p ∈ N≥1, a collection of boundaried subgraphs J = {J1, . . . ,Jp}
of a graph G is a partial x-F-packing if there is a boundaried graph H which is com-
patible with G and a collection of boundaried subgraphs {J′1, . . . ,J′p} of H such that
{J1 ⊕ J′1, . . . ,Jp ⊕ J′p} is an x-F -packing of G ⊕ H. The obtained packing is said to
be an extension of the partial packing J . A partial packing is T (F)-free if none of its
members is an F -subdivision for some F ∈ F . Observe that since every graph in F is
connected, every partial subdivision of an T (F)-free partial packing in G must contain
at least one boundary vertex of G.

Partitions and protrusions. In order to decompose graphs along edge cuts, we
introduce the following edge-counterpart of the notion of (vertex) protrusion introduced
in [BFL+09a,BFL+09b].

Given a rooted tree-partition D = (T, s,X ) of G and a vertex i ∈ V (T ), we define

Ti = T [descT,s(i)], Vi =
⋃

h∈V (Ti)

Xh, and Gi = G[Vi].

Let W be a graph and t ∈ N≥1. A pair P = (G,D) is a t-partitioned protrusion of
W if there exists an S ⊆ V (W ) such that

• G = (G,B, λ) is a boundaried graph where G ∈ Bt and G = GS for some S-
splitting (GS,GSc) of W and

• D = (T, s, {Xu}u∈V (T )) is a rooted tree-partition of G\B of width at most t, where
Xs is the set of neighbors in G of the vertices in B.

Given a family F of graphs, we say that a t-partitioned protrusion (G,D) of a graph
W is F-free if G is F -free. For every vertex u ∈ V (T ), we also define the t-partitioned
protrusion Pu of W as a pair Pu = (Gu,Du), where Du = (Tu, u, {Xv}v∈Vu) and Gu =
GVu for some Vu-splitting (GVu ,GV c

u
) of W . We choose the labeling function of Gs so

that it is the same as the one of G, i.e., Gs = G. Notice that the labelings of all other
Gu’s are arbitrary. For every u ∈ V (T ) we define

Gu = {Gl}l∈children(T,s)(u).

6.2.3 Encodings, signatures, and folios

In this section we introduce tools that we will use to sort boundaried graphs depending
on the subdivisions that are realizable inside.
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Encodings. Let H be a family of graphs, let t ∈ N≥1, and let x ∈ {v, e}. If G =
(G,B, λ) ∈ Bt is a boundaried graph and S ⊆ Ax(G), we define ppxH(G, S) (pp as the
initials of partial packings) as the collection of all sets {(J1, L1), . . . , (Jσ, Lσ)} such that

(i) {J1, . . . ,Jσ} is a partial x-T (H)-packing of G \ S of size σ and

(ii) Li = V (M̂i) ∩ V (G), where Mi is an extension of Ji, for every i ∈ J1, σK.

H = {K4, K2,3}

F G

Figure 6.3: An e-T (H)-packing in G. Branch vertices are circled.

In other words, Li contains branch vertices of the partial H-subdivision Ji for every
i ∈ J1, σK (see Figure 6.3 and Figure 6.4). The set ppxH(G, S) encodes all different
restrictions in G of partial x-H-packings that avoid the set S. Given a boundaried
graph G = (G,B, λ) and a set L ⊆ V (G) such that every vertex of V (G) \L has degree
2 in G, we define κ(G, L) as the boundaried graph obtained from G by dissolving every
vertex of V (G) \ L, i.e., κ(G, L) = (diss(G, V (G) \ L), B, λ). In the definition of κ we
assume that the boundary vertices of κ(G, L) remain the same as in G while the other
vertices are treated as new vertices (see Figure 6.5).

This allows us to introduce the following notation aimed at representing, intuitively,
the essential part of each partial packing:

cppxH(G, S) = {Ĵ = {Ĵ1, . . . , Ĵσ} = {κ(J1, L1), . . . , κ(Jσ, Lσ)} |
{(J1, L1), . . . , (Jσ, Lσ)} ∈ ppH(G, S)}

(here, cpp is mnemonic for compressed partial packings).

J

L

Figure 6.4: A partial subdivision from the packing of Figure 6.3, where L is the set of
subdivision vertices.
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Ĵ

Figure 6.5: The compression of the partial packing of Figure 6.4: Ĵ = κ(J, L).

Isomorphisms. If G = (G,B, λ) and G′ = (G′, B′, λ′) are two compatible boundaried
graphs in Bt, S ∈ V (G), and S ′ ∈ V (G′), we say that a member Ĵ of cppxH(G, S) and
a member Ĵ ′ of cppxH(G′, S ′) are isomorphic if there is a bijection between them such
that paired elements are isomorphic. We also say that cppxH(G, S) and cppxH(G′, S ′) are
isomorphic if there is a bijection between them such that paired elements are isomorphic.

We now come to the point where we can define, for every boundaried graph, a
signature encoding all the possible partial packings that can be realized in this graph.

Signatures and folios. For every y ∈ N, we set

sigxH(G, y) = {cppxH(G, S), S ⊆ Ax(G), |S| = y}

and, given two compatible boundaried graphs G,G′ ∈ Bt and a y ∈ N, we say that
sigxH(G, y) and sigxH(G′, y) are isomorphic if there is a bijection between them such that
paired elements are isomorphic.

Finally, for ρ ∈ N, we set

folioH,ρ(G) = (sigvH(G, 0), . . . , sigvH(G, ρ), sigeH(G, 0), . . . , sigeH(G, ρ)).

Given two G,G′ ∈ Bt, a ρ ∈ N, and a finite collection of connected graphsH, we say that
G 'H,ρ G′ if G and G′ are compatible, neither G nor G′ contains an H-subdivision,
and the elements of folioH,ρ(G) and folioH,ρ(G

′) are position-wise isomorphic.

6.3 The reduction

Let H be a finite set of connected graphs. In this section we show that one can, in linear
time, either find a small H-subdivision in a t-partitionned protrusion, or reduce it so
that the parameters of packing and covering (wrt. H-subdivisions) remain unchanged.
More formally, the purpose of this section is to prove the following lemma.

Lemma 6.1. There exists a function f6 : N2 → N and an algorithm that, given a positive
integer t, a finite collection H of connected graphs where h = m(H), and a t-partitioned
protrusion P = (G, (T, s,X )) of a graph W with n(G) > f6(h, t), outputs either

• an H-subdivision of W with at most f6(h, t) edges, or
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• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )).

Before giving the proof of Lemma 6.1, we need to prove several intermediate results.
In the sequel, unless stated otherwise, we assume that x ∈ {v, e}, t ∈ N≥1 and that H is
a finite collection of connected graphs. We set h = m(H).

Lemma 6.2. There are two functions f7 : N2 → N and f8 : N2 → N such that, for every
graph W and every t-partitionned protrusion (G, (T, s,X )) of W , if P is an H-free
partial x-H-packing in G then:

(a) The partial subdivisions of graphs of H that are contained in P have in total at most
f7(h, t) branch vertices.

(b) P intersects at most f8(h, t) graphs of Gs.

Proof. Proof of (a). First, note that P has cardinality at most t. Indeed, since every
element of P is a partial subdivision (because the packing is T (H)-free) of a connected
graph, it contains a boundary edge of G (which by definition has degree one). Also,
two distinct partial subdivisions in P are (at least) edge-disjoint. Finaly, each of these
partial subdivisions contains at most maxH∈H n(H) ≤ h branch vertices. Consequently,
the number of branch vertices of graphs of H induced by the elements of P in G is
at most t · h. Hence the function f7(h, t) := t · h upper-bounds the amount of branch
vertices each T (H)-free partial packing can contain.

Proof of (b). Let ζ be the maximum multiplicity of an edge in a graph of H. Because
of (a), P has at most f7(h, t) branch vertices of graphs of H, so at most f7(h, t) graphs
of Gs may contain such vertices. Besides, P might also contain paths free of branch
vertices linking pairs of branch vertices. Since there are at most (f7(h, t))2 such pairs
and no pair will need to be connected with more than ζ ≤ h distinct paths, it follows
that at most (f7(h, t))2 ·h graphs of Gs contain vertices from these paths. Therefore, the
elements of P intersects all together at most f7(h, t) + (f7(h, t))2 · h =: f8(h, t) graphs
of Gs.

Lemma 6.3. The size of the image of the function cppxH, when its domain is restricted
to

{(G, S), G is T (H)-free and S ⊆ Ax(G)},

is upper-bounded by a function of h and t.

Proof. Let G ∈ Bt be T (H)-free and let S ⊆ Ax(G). By Lemma 6.2(a), every T (H)-free
partial x-H-packing in G contains at most f7(h, t) branch vertices. A partial packing
may in addition use at most t boundary vertices. Let Ch,t be the class of all boundaried
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graphs of Bt on at most f7(h, t) + t vertices. Clearly the size of this class is a function
depending on h and t only. Recall that the elements of the set cppxH(G, S) are obtained
from partial x-H-packings by dissolving internal vertices of the paths linking branch
vertices, hence every element of cppxH(G, S) is a boundaried graph of Bt having at
most f7(h, t) + t vertices. Therefore, for any T (H)-free boundaried graph G ∈ Bt
and subset S ⊆ Ax(G), we have cppxH(G, S) ⊆ Ch,t. As a consequence, the image
of the function cppxH when restricted to T (H)-free boundaried graphs G ∈ Bt (and
subsets S ⊆ Ax(G)) is a subset of the power set of Ch,t, so its size is upper-bounded by
a function that depends only on h and t.

Corollary 6.1. There is a function f9 : N2 → N such that the relation 'H,t partitions
T (H)-free boundaried graphs of Bt into at most f9(h, t) equivalence classes.

The following follows directly from the definition of cppxH.

Remark 6.1. Let F,G ∈ Bt be two compatible boundaried graphs and let k ∈ N. The
following are equivalent:

• F⊕G has an x-T (H)-packing of size k;

• there is a Ĵ ∈ cppxH(G, ∅) such that F⊕∪∪∪∪∪∪∪∪∪Ĵ has an x-T (H)-packing of size k.

The choice of the definition of the relation ' is justified by the following lemma.
Informally speaking, it states that we can replace a t-partitioned protrusion of a graph
with any other 'H,t-equivalent t-partitioned protrusion without changing the covering
and packing number of the graph. The reduction algorithm that we give after this
lemma relies on this powerful property.

Lemma 6.4 (protrusion replacement). Let F,G,G′ ∈ Bt be three compatible boundaried
graphs such that G 'H,t G′. For every k ∈ N, we have:

(i) there is an x-T (H)-packing of size k in F⊕G iff there is one in F⊕G′; and

(ii) there is an x-T (H)-cover of size k in F⊕G iff there is one in F⊕G′.

Proof. Proof of (i), “⇒”. Let M be an x-T (H)-packing of size at least k in F ⊕ G,
whose set of branch vertices is L. We define

JF = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G F,

JG = (∪∪∪∪∪∪∪∪∪M) ∩F⊕G G, and

ĴG =
⋃

M∈M

κ(M ∩F⊕G G, L ∩ V (G)).

Note that ĴG ∈ cppxH(G, ∅) and that F ⊕ ĴG has an x-T (H)-packing of size at least k
(cf. Remark 6.1). By definition of ', there is a bijection ψ between cppxH(G, ∅) and
cppxH(G′, ∅). Let Ĵ′G be the image of ĴG by ψ. Since Ĵ′G and ĴG are isomorphic, F⊕ Ĵ′G
also has an x-T (H)-packing of size at least k. By Remark 6.1, this implies that such a
packing exists in F⊕G′ as well. The direction “⇐” is symmetric as G and G′ play the
same role.
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Proof of (ii), “⇒”. Let C ⊆ Ax(F⊕G) be a minimum x-H-covering of F⊕G of size
at most k. Let S = C ∩ Ax(G). Since we assume that G is T (H)-free and that C is
minimum, we can also assume that |S| ≤ t (otherwise we could get a smaller covering by
taking the t boundary vertices/edges of G). By our assumption that G 'H,t G′, there is
an isomorphism between sigxH(G, |S|) and sigxH(G′, |S|). Let S ′ ⊆ Ax(G

′) be a set such
that cppxH(G, S) is sent to cppxH(G′, S ′) by this isomorphism. Then observe that every
partial packing J ′ of G′ \ S ′, such that (F \ C) ⊕ (∪∪∪∪∪∪∪∪∪J ′) has an H-subdivision, can be
translated into a partial packing J of G \ S such that (F \ C)⊕ (∪∪∪∪∪∪∪∪∪J ) also has such a
subdivision, in the same way as in the proof of (i) above. As C is a cover, this would
lead to contradiction. Therefore ppxH(G, S) does not contain such a partial packing. As
a consequence, C∩Ax(F)∪S ′ is a covering of F⊕G′ of size at most k. As in the previous
case, the proof of direction “⇐” comes from the symmetry in the statement.

Lemma 6.4 can be rewritten as follows.

Corollary 6.2. Under the assumptions of Lemma 6.4, we have x-pack(F ⊕ G) =
x-pack(F⊕G′) and x-cover(F⊕G) = x-cover(F⊕G′).

Recall that f9(h, t) denotes the number of equivalence classes of 'H,t among bound-
aried graphs of Bt. For every h, t ∈ N, let f10(h, t) = f9(h, t) · f8(h, t) and let and

f6(h, t) = 2ht3 · (f10(h, t))f9(h,t)+1. Let us give some intuition about these definitions.
The first remark is an application of the pigeonhole principle.

Remark 6.2. In a collection of more than f10(h, t) T (H)-free boundaried graphs of Bt,
there is one that is equivalent (w.r.t. 'H,t) to f8(h, t) other graphs of the collection.

Lemma 6.5. If (T, s,X ) is a rooted tree-partition of a graph G with the following
properties:

• (T,X ) has width at most t;

• T has height at most f9(h, t); and

• T has degree at most f10(h, t) + 1,

then G has at most f6(h, t) vertices, and everyH-subdivision of G has at most f6(h, t) edges.

Proof. Indeed, the above assumptions imply that T has at most (f10(h, t))f9(h,t)+1 ver-
tices. Every bag of (T,X ) contains at most t vertices of G, therefore G has at most

(f10(h, t))f9(h,t)+1 · t ≤ f6(h, t) vertices. Also, every bag induces a subgraph with at most
t(t− 1)/2 multiedges (i.e. without counting multiplicities), and for every edge f of T we
have |Ef | ≤ t, hence every bag contributes for at most t2+t multiedges. Therefore G has

at most (t+ t2) (f10(h, t))f9(h,t)+1 multiedges. Now, observe that a multiedge of G is used
at most h times by an H-subdivision, since every path connecting two branch vertices
of a subdivision uses a given multiedge at most once. We deduce that an H-subdivision
of G contains at most h · (t+ t2) (f10(h, t))f9(h,t)+1 ≤ f6(h, t) edges.
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The two next lemmas are the main tools used in the proof of Lemma 6.1. Un-
der different conditions, they provide either a small subdivision, or a reduced graph.
Lemma 6.6 considers the case where a vertex of T has high degree, whereas Lemma 6.7
deals with the situation where T has a long path.

Lemma 6.6. There is an algorithm that, given a t-partitioned protrusion P = (G, (T, s,X )),
and a vertex u ∈ V (T ) with more than f10(h, t) children such that for every v ∈
children(T,s)(u), we have m(Gv) ≤ f6(h, t), outputs either

• an H-subdivision with at most f6(h, t) edges, or

• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Moreover, this algorithm runs in Oh,t(1) steps.

Proof. If Gv contains an H-subdivision for some child v of u, then this subdivision has
at most f6(h, t) edges and we are done. Therefore we now consider the case where Gv

is H-free for every child v of u. This allows us to consider the folios of these boundaried
graphs.

As u has more than f10(h, t) children, it contains a collection of d = f8(h, t) +
1 children v1, . . . , vd, such that Gv1 'H,t Gvi for every i ∈ J2, dK (by Remark 6.2).
Since every x-T (H)-packing of W will intersect at most f8(h, t) bags of children of u
(by Lemma 6.2(b)), we can safely delete one of the f8(h, t) + 1 equivalent subgraphs
mentioned above.

We use the following procedure in order to identify such a subgraph to delete or a
small H-subdivision;

1. let A be an array of f9(h, t) counters initialized to 0, each corresponding to a
distinct equivalence class of 'H,t;

2. pick a vertex v ∈ children(T,s)(u) that has not been considered yet;

3. if Gv contains an H-subdivision M , then return M and exit;

4. otherwise, increment the counter of A corresponding to the equivalence class of
Gv by one;

5. if this counter reaches d+ 1, return v, otherwise go back to line 2.

Notice that the subdivision returned in line 3 has size at most f6(h, t) as mentioned
above, and that the vertex returned in line 5 has the desired property. The relation
'H,t has at most f9(h, t) equivalence classes (Corollary 6.1), thus the main loop will be
run at most f9(h, t) · f8(h, t) + 1 times (by the pigeonhole principle). Eventually, lines 3
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and 4 can be performed in Oh,t(1)-time given that Gv has size bounded by a function
of h and t.

In the end, we return W ′ = W \ V (Gv) if the algorithm above outputs v and M
otherwise.

Lemma 6.7. There is an algorithm that, given a t-partitioned protrusion P = (G, (T, s,X ))
of a graph W and a vertex u ∈ V (T ) of height f9(h, t) in (T, s) such that Tu has maxi-
mum degree at most f10(h, t) + 1, outputs either

• an H-subdivision with at most f6(h, t) edges, or

• a graph W ′ such that

x-packT (H)(W
′) = x-packT (H)(W ),

x-coverT (H)(W
′) = x-coverT (H)(W ), and

n(W ′) < n(W ).

Moreover, this algorithm runs in Oh,t(1)-time.

Proof. As in the proof of Lemma 6.5, we use the fact that every H-subdivision of Gu

uses every multiedge at most h times. A consequence is that the boundaried subgraph of
Gu obtained by setting the multiplicity of every multiedge e to min(mult(e), h) contains
an H-subdivision iff Gu does. As the number of vertices and edges of this subgraph is
bounded by a function of h and t, we can therefore check in Oh,t(1)-time if Gu contains
an H-subdivision. If one is found, it has at most f6(h, t) edges (Lemma 6.5) and we are
done.

Let us now consider the case where Gu is T (H)-free. By definition of vertex u, there
is a path on f9(h, t) + 1 vertices from a leaf of Tu to u. Let us arbitrarily choose, for
every vertex v of this path, a Vv-splitting (GGv ,GGc

v
) of G. By definition of f9(h, t) (the

number of equivalence classes in 'H,t in Bt), there are two distinct vertices v, w on this
path such that Gv 'H,t Gw. As mentioned above, the number edges of Gu is bounded by
a function of h and t, hence finding these two vertices can be done in Oh,t(1)-time. Let us
assume without loss of generality that s is closer to v than w. Let H be the boundaried
graph such that W = H ⊕ GGv and let W ′ = H ⊕ GGw . By Corollary 6.2, we have
x-packT (H)(W

′) = x-packT (H)(W ) and x-coverT (H)(W
′) = x-coverT (H)(W ). Furthermore,

the graph W ′ is clearly smaller than W .

We are now ready to prove Lemma 6.1.

Proof of Lemma 6.1. Let us consider the following procedure:

1. by a DFS on (T, s), compute the height of each vertex of T and find (if it exists)
a vertex v of degree more than f10(h, t) + 1 and height at most f9(h, t) − 1 that
has minimum height;

2. if such a vertex v is found, then apply the algorithm of Lemma 6.6 on P and v,
and return the obtained result;
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3. otherwise, find a vertex u of height exactly f9(h, t) in (T, s) and then apply the
algorithm of Lemma 6.7 on P and (Tu, u) and return the obtained result.

Observe that since n(G) > f6(h, t), Lemma 6.5 implies that either T has diameter more
than f9(h, t), or it contains a vertex of degree more than f10(h, t) + 1. Therefore, the
vertex u of line 3 always exists in the case where no vertex of high degree is found in
line 1. The correctness of this algorithm follows from Lemma 6.6 and Lemma 6.7. The
DFS done on line 1 takes time O(n(T )) and the rest of the algorithm takes time Oh,t(1)
according to the aforementioned lemmas.

6.4 Approximation meets the Erdős–Pósa property

We show in this section an application of the results of Section 6.3. Given a graph H,
we denote by ex(H) the set of all graphs that contain H as a minor, and, subject to
this condition, are minimal for the topological minor relation. Whereas Lemma 6.1 is
stated in terms of subdivisions, we translate to the setting of majors using the following
remark.

Remark 6.3. Recall that M(H) is defined as the set of subgraph-mininal graphs con-
taining H as a minor. For every graph H, the following holds:

M(H) = T (ex(H)).

Also, the size of ex(H) is upper-bounded by some function of m(H).

Applied to Lemma 6.1, the above remark yields the next corollary.

Corollary 6.3. There is an algorithm that, given a positive integer t, a finite col-
lection H of connected graphs where h = m(H), and a t-partitioned protrusion P =
(G, (T, s,X )) of a graph W with n(G) > f6(h, t), outputs either

• an H-major of W with at most f6(h, t) edges, or

• a graph W ′ such that

x-packM(H)(W
′) = x-packM(H)(W ),

x-coverM(H)(W
′) = x-coverM(H)(W ), and

n(W ′) < n(W ).

Furthermore, this algorithm runs in time Ot,h(n(T )).

Let us restate the main result of Section 4.1.3, that we will use in the subsequent
proofs.

Theorem 6.3 (Restatement of Theorem 4.4). There is an algorithm that, with input
three positive integers r, w, z and a graph W , outputs one of the following:

• a θr-major of W with at most z edges,
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• a (2r− 2)-partitioned protrusion (G,D) of W , where G = (G,B, λ) and such that
G is a connected graph and n(G) > w, or

• an H-major of W for some graph H with δ(H) ≥ 1
r−1

2
z−5r

4r(2w+1) ,

in Or(m) steps.

6.4.1 Reduce or progress

The proof of the next lemma combines Theorem 4.4 and Corollary 6.3.

Lemma 6.8 (reduce or progress). There is an algorithm that, with input x ∈ {v, e},
r ∈ N≥2, k ∈ N and an n-vertex graph W , outputs one of the following:

• a θr-major of W with at most Or(log k) edges;

• a graph W ′ where

x-coverM(θr)(W
′) = x-coverM(θr)(W ),

x-packM(θr)(W
′) = x-packM(θr)(W ), and

n(W ′) < n(W ); or

• an H-major in W , for some graph H with δ(H) ≥ k(r + 1),

in Or(m) steps.

Proof. We set t = 2r − 2, w = f6(h, t), z = 2r(w − 1) log(k(r + 1)(r − 1)) + 5r, and
h = m(M(θr)). Observe that z = Or(log k) and h, t, w = Or(1). Also observe that our

choice for variable z ensures that 2
z−5r

2r(w−1)/(r − 1) = k(r + 1).

By applying the algorithm of Theorem 4.4 to r, w, z, and W , we obtain in Or(m(W ))-
time either:

First case: a θr-major in W of at most z edges,

Second case: a (2r − 2)-edge-protrusion Y of W with extension > w, or

Third case: an H-major M in W , for some graph H with δ(H) ≥ k(r + 1).

In the first case, we return the obtained θr-major.

In the second case, by applying the algorithm of Corollary 6.3 on Y , we get in
O(n(W ))-time either a θr-major of W on at most w = Or(1) vertices, or a graph W ′

where, for x ∈ {v, e}, x-coverH(W ′) = x-coverH(W ), x-packH(W ′) = x-packH(W ) and
n(W ′) < n(W ).

In the third case, we return the major M .

In each of the above cases, we get after O(m) steps either a major of a graph with
large minimum degree, or a small θr-major in W , or an equivalent graph that has less
vertices.
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It might not be clear yet to what purpose the major of a graph of degree more than
k(r+1) output by the algorithm of Lemma 6.8 can be used. Recall that we presented in
Subsection 4.2.2 an algorithm that finds a large packing of θr-majors in a graph of large
minimum degree. Applying this algorithm to the graph output by Lemma 6.8 gives the
desired packing.

6.4.2 Approximation algorithms

Theorem 6.1 is a direct combinatorial consequence of the following.

Theorem 6.4. There is a function f11 : N → N and an algorithm that, with input
x ∈ {v, e}, r ∈ N≥2, k ∈ N, and an n-vertex graph W , outputs either a x-M(θr)-packing
of W of size k or an x-M(θr)-covering of W of size at most f11(r) · k · log k. Moreover,
this algorithm runs in O(n ·m) steps if x = e and in O(nc + n ·m) steps if x = v, where
c is the constant from Theorem 4.6.

Proof. Let f11 : N → N be a function such that each θr-major output by the algorithm
of Lemma 6.8 has size at most f11(r) · log k. We consider the following procedure:

1. G := W ; P := ∅;

2. apply the algorithm of Lemma 6.8 on (x, r, k,G):

Progress: if the output is a θr-major M , let G := G \Ax(M) and P = P ∪ {M};
Win: if the output is a H-major M in W for some graph H with δ(H) ≥ k(r+1),

apply the algorithm of Lemma 4.9 (if x = e) or the one of Lemma 4.10 (if
x = v) to H to obtain an x-M(θr)-packing of size k in H; using M , translate
this packing into an x-M(θr)-packing of size k in W and return this new
packing;

Reduce: otherwise, the output is a graph G′: let G := G′;

3. if |P | = k then return P which is an x-M(θr)-packing of size k in W ;

4. if n(W ) = 0 then return P which is in this case a a x-M(θr)-covering of size at
most f11(r) log k of W ;

5. Otherwise, go back to line 2.

This algorithm clearly returns the desired result. Furthermore, the loop is executed at
most n(W ) times and each call to the algorithm of Lemma 6.8 takes O(m(W )) steps.
When the algorithm reaches the “Win” case (which can happen at most once), the
calls to the algorithm of Lemma 4.9 (if x = e) or the one of Lemma 4.10 (if x = v),
respectively, take O(m(H)) and O ((n(H))c) steps. Therefore, in total, this algorithm
terminates in O(n ·m) steps if x = e and in O (nc + n ·m) steps if x = v.
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Observe that if the algorithm of Theorem 6.4 reaches the “Win” case, then the input
graph is known to contain an x-M(θr)-packing of size at least k. As a consequence, if
we are only interested in the existence of a packing or covering, the call to the algorithm
of Lemma 4.9 or Lemma 4.10 is not necessary. This gives a faster algorithm for the
existential version of Theorem 6.4.

Corollary 6.4. There is an algorithm that, with input x ∈ {v, e}, r ∈ N≥2, k ∈ N, and
a graph W , outputs 0 only if W has an x-M(θr)-packing of size k or 1 only if W has
an x-M(θr)-covering of size at most f11(r) · k · log k. Furthermore this algorithm runs
in O(n ·m) steps.

Notice that there may be graphs where both the outputs 0 and 1 of the algorithm
of Corollary 6.4 are valid. We now conclude this section with the proof of Theorem 6.2.

Proof of Theorem 6.2. Let us call A the algorithm of Corollary 6.4. Let k0 ∈ J1, n(W )K
be an integer such that A(x, r, k0,W ) = 1 and A(x, r, k0 − 1,W ) = 0, and let us show
that the value k0 log k0 is an O(logOPT)-approximation of both x-packM(θr)(W ) and
x-coverM(θr)(W ).

First, notice that for every k > x-packM(θr)(W ), the value returned by A(x, r, k,W )
is 1. Symmetrically, for every k such that k log k < x-coverM(θr)(W ), the value of
A(x, r, k,W ) is 0. Therefore, the value k0 is such that:

k0 − 1 ≤ x-packM(θr)(W ) and

x-coverM(θr)(W ) ≤ k0 log k0.

As every minimal covering must contain at least one vertex or edge (depending on
whether x = v or x = e) of each model of a maximal packing, x-packM(θr)(W ) ≤
x-coverM(θr)(W ), hence we have the following two equations:

x-packM(θr)(W ) ≤ k0 log k0 ≤ (x-packM(θr)(W ) + 1) log(x-packM(θr)(W ) + 1) (6.1)

x-coverM(θr)(W ) ≤ k0 log k0 ≤ (x-coverM(θr)(W ) + 1) log(x-coverM(θr)(W ) + 1). (6.2)

Dividing (6.1) by x-packM(θr)(W ) and (6.2) by x-coverM(θr)(W ), we get:

1 ≤ k0 log k0

x-packM(θr)(W )
≤ log(x-packM(θr)(W ) + 1) +

log x-packM(θr)(W )

x-packM(θr)(W )

≤ c · log x-packM(θr)(W ) for some c ∈ N≥1, and

1 ≤ k0 log k0

x-coverM(θr)(W )
≤ log(x-coverM(θr)(W ) + 1) +

log x-coverM(θr)(W )

x-coverM(θr)(W )

≤ c′ · log x-coverM(θr)(W ) for some c′ ∈ N≥1.

Therefore the value k0 log k0 is both an O(logOPT)-approximation of x-packM(θr)(W )
and x-coverM(θr)(W ). The value k0 can be found by performing a binary search in the
interval J1, nK, with O(log n) calls to Algorithm A. Hence, our approximation algorithm
runs in O(n · log(n) ·m) steps.
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Notice that all our results are strongly exploiting Lemma 6.1 that holds for every
finite collection H of connected graphs. Actually, what is missing in order to have an
overall generalization of all of our results, is an extension of Theorem 4.4 whereM(θr) is
replaced by any finite collection H of connected planar graphs. This is an an interesting
combinatorial problem even for particular instantiations of H.
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Modern Birkhäuser Classics, pages 49–56. Birkhäuser Boston, 1987.
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for a generalization of packing and covering cycles. Journal of Graph The-
ory, To appear in 2013.

186



[FLM+16] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip,
and Saket Saurabh. Hitting forbidden minors: Approximation and kernel-
ization. SIAM Journal on Discrete Mathematics, 30(1):383–410, 2016.

[FLMS12a] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar f-deletion:
Approximation, kernelization and optimal fpt algorithms. In Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,
pages 470–479, Oct 2012.

[FLMS12b] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
Planar F-deletion: Approximation, kernelization and optimal FPT-
algorithms. In Proceedings of the IEEE 53rd Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 470–479, Oct 2012.

[FLS12] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensional-
ity and geometric graphs. In 23st ACM–SIAM Symposium on Discrete
Algorithms (SODA 2012). ACM-SIAM, San Francisco, California, 2012.

[FST11] Fedor V. Fomin, Saket Saurabh, and Dimitrios M. Thilikos. Strengthening
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[JPS+11] Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan
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