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Abstract

Inferring genomic duplication events

One of evolutionary molecular biology fundamental problems is to discover ge-
nomic duplication events and their locations in the species tree. Such events can
be reconstructed by clustering single gene duplications inferred by reconciling a set
of gene trees with a species tree. Existing reconciliation based approaches vary in
the two fundamental aspects: (a) the choice of evolutionary scenarios that model al-
lowed locations of duplications in the species tree, and (b) the rules of clustering gene
duplications from gene trees into a single multiple duplication event, i.e., episode
clustering (EC) or minimum episodes (ME) methods. There are several mod-
els in the literature that specify how gene duplications from gene families can be
interpreted as one duplication episode. However, in all duplication episode problems
gene trees are rooted. This restriction limits the applicability, since unrooted gene
family trees are frequently inferred by phylogenetic methods.

In this dissertation, we propose a model of evolutionary scenarios that preserves
the minimal number of gene duplications. We study the RME problem, that is, ME
method of clustering when input gene trees are rooted. Our analysis concerns several
models of allowed evolutionary scenarios with a focus on interval models in which
every gene duplication has an interval consisting of allowed locations in the species
tree and fulfills some additional requirements like monotonicity. We present math-
ematical foundations for general genomic duplication problems. Next, we propose
the first linear time and space algorithm for RME jointly for any interval model and
the algorithm for the most general model in which every evolutionary scenario is
allowed. We also present a comparative study of different models of genomic du-
plication based on simulated and empirical datasets. We provide algorithms and
tools that can be applied to solve efficiently RME problems for various models. Our
comparative study helps to identify which model is the most reasonable choice in
inferring genomic duplication events.

This dissertation proposes the first solutions to the open problems of UEC (un-
rooted episode clustering) and UME (unrooted minimum episodes) in which every
reconciliation with the minimal number of single gene duplications is allowed and
under the assumption that input gene trees are unrooted. In particular, we show
new theoretical properties of unrooted reconciliation for the duplication cost and
apply them to design several exact and heuristic algorithms for solving the genomic
duplication problems. Our comparative study shows that we can improve known
results on genomic duplication inference from rooted trees. Moreover, our evaluation
on empirical datasets confirms several genomic duplication events from the litera-
ture and demonstrates that the proposed algorithms can be successfully applied in
practice.



Streszczenie

Studium zdarzeń duplikacji w genomie

Jednym z fundamentalnych zagadnień w molekularnej biologii obliczeniowej jest
wykrywanie zdarzeń duplikacji w genomie oraz określenie ich położenia w drzewie
gatunków. Rekonstrukcja tych zdarzeń jest możliwa poprzez klastrowanie poje-
dynczych duplikacji genu, wyznaczonych przez uzgadnianie zbioru drzew genów ze
zbiorem gatunków. Istniejące metody różnią się w dwóch zasadniczych kwestiach:
(a) wyboru scenariuszy ewolucyjnych, które modelują dopuszczalne lokalizacje dup-
likacji w drzewie gatunków oraz (b) określenia zasad klastrowania duplikacji genów
z drzew genów w jedno zdarzenie wielokrotnej duplikacji, metod jak np. episode
clustering (EC) lub minimum episodes (ME). Analizując literaturę można
wyróżnić kilka modeli opisujących jak duplikacje genów z drzew rodzin genów in-
terpretować jako jedno zdarzenie, jednak wszystkie one dotyczą przypadku, gdy
drzewa genów są ukorzenione. Warunek ten ogranicza możliwości zastosowań, gdyż
to nieukorzenione drzewa genów są wynikiem popularnych metod filogenetycznych.

W niniejszej rozprawie, proponujemy model scenariuszy ewolucyjnych, który za-
chowuje minimalną liczbę duplikacji genów. Badamy problem RME, czyli klastrowa-
nia metodą ME w przypadku, gdy wejściowe drzewa genów są ukorzenione. Przeana-
lizowaliśmy kilka modeli dopuszczalnych scenariuszy ewolucyjnych, ze szczególnym
uwzględnieniem modeli interwałowych, w których każda duplikacja genu ma przy-
pisany interwał dopuszczalnych lokalizacji w drzewie gatunków, oraz nakładają-
cych dodatkowe ograniczenia jak monotoniczność. Przedstawiamy matematyczne
podstawy dla ogólnych problemów duplikacji genomowych. Następnie, dla prob-
lemu RME proponujemy pierwszy liniowy algorytm uniwersalny dla modeli inter-
wałowych oraz algorytm dla najbardziej ogólnego modelu, w którym każdy scenariusz
ewolucyjny jest dopuszczalny. Dodatkowo przedstawiamy studium porównawcze
dla różnych modeli duplikacji genomowych, które bazuje na danych symulowanych
i empirycznych. Dostarczamy algorytmów i narzędzi do efektywnego rozwiązywa-
nia problemów RME dla różnych modeli. Nasze studium porównawcze pozwala na
zidentyfikowanie, który model stanowi najrozsądniejszy wybór przy wnioskowaniu
zdarzeń duplikacji genomu.

Niniejsza rozprawa przedstawia pierwsze rozwiązania dla otwartych problemów
UEC (episode clustering) i UME (minimum episodes), w których każdy scenariusz
implikujący minimalną liczbę pojedynczych duplikacji genu jest dopuszczalny oraz
przyjmujemy założenie, że wejściowe drzewa genów są nieukorzenione. W szczegól-
ności prezentujemy nowe teoretyczne własności nieukorzenionego uzgadniania dla
kosztu duplikacyjnego i wykorzystujemy je do zaprojektowania dokładnych i heurysty-
cznych algorytmów rozwiązujących problemy duplikacji genomowych. Nasza ewalu-
acja eksperymentalna pokazuje, że potrafimy ulepszyć znane wyniki dla wnioskowa-
nia duplikacji genomowych z ukorzenionych drzew. Dodatkowo nasza analiza na
empirycznych danych potwierdziła kilka zdarzeń duplikacji genomowych z literatury
demonstrując, że proponowane algorytmy można z sukcesem wykorzystywać w prak-
tyce.
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CHAPTER 1
General Introduction to Biology

In this Chapter we present the overview on the fascinating branch of science, which is
biology. During the years, biology becomes more and more interspersed with human
sciences, chemistry, physics and now with computer science. On the other hand, it
still elusive and full of exceptions in cautiously defined rules.

Section 1.1 consists of brief description of the evolution of thinking in biology.
The first goal is to provide a motivation and show that scientific breakthroughs
in that area are deeply connected to other branches of science. Therefore, they
may influence the world in the way of perceiving of fundamental ideas, as well as
in common everyday life. The second goal is to show that elusiveness. Despite
the significant development, some fundamental questions remain still the subject of
debate.

Section 1.2 contains selected papers that were crucial to understand the mech-
anism in genetics, whereas Section 1.3 concludes mentioned research and mainly
basing on [Brown, 2002, Brown, 2009] provide biological background and definitions
used throughout this work.

The motivation for the choice of the topic of the dissertation is presented in
Section 1.4 where we describe selected whole-genome duplication studies. In this
dissertation we propose novel solutions and algorithms, and the experimental evalu-
ation of our methods on biological datasets will be compared to results presented in
Section 1.4.

1.1.
Brief description of the evolution of thinking in biology

Since ancient history of the mankind there are evidences of the curiosity to answer
the following questions: What is the purpose of my existence? Why am I here?
How the cosmos and its inhabitants were created? What is life? About 9,000-10,000
years ago in the Middle East humans instead of hunting and gathering started to
cultivate crops such as wheat and barley [Brown, 2002]. There is a probability that
primitive cultures recognized the influence of heredity for domestic animals breed-
ing and early civilization has applied its principles to the improvement of cultivated
crops. One of eldest examples may be a Babylonian tablet that is more than 6,000
years old and shows pedigrees of horses and indicates possible inherited characteris-
tics [Winchester, 2018]. In 4th century BCE ancient Greek science reached a climax
with polyhistors like Aristotle, who is an author (among many others) of “History
of Animals”, “Metaphysica”, “Nicomachean Ethics” and his successor in the Lyceum
and an author of “Inquiry into Plants” and “Growth of Plants” Theophrastus, who
also was interested in ethics, metaphysics and more [Rogers et al., 2018].
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1.1. Brief description of the evolution of thinking in biology 10

1.1.1 Early concepts of heredity and evolution that remain actual

Aristotle formulated principles that all organisms are structurally and functionally
adapted to their habits and habitats and that Nature is parsimonious [Rogers et al.,
2018] which are essential for modern science. The words genus and species are
translations of the Greek genos and eidos used by Aristotle [Rogers et al., 2018].

1.1.2 Elucidation of the theory of origin of life

However, many other ideas of crucial importance that were formulated, needed to
be extended and elucidated by modern science. Aristotle identified four means of
reproduction including the abiogenetic origin of life [Rogers et al., 2018].

On the one hand, spontaneous generation theory explain the origins of life sim-
ilarly by a hypothetical process in which living organisms develop from nonliving
matter [The Editors of Encyclopaedia Britannica, 2018c]. However, it explained such
occurrences as the appearance of maggots on decaying meat. Only in 1668 Francesco
Redi in Experiments on the Generation of Insects described one of the first biological
experiments using sealed and open flasks with different types of meats that produced
the evidence against spontaneous generation of maggots [Hawgood, 2003]. In XVIII
century there was still a debate. Spallanzani in his experiment boiled chicken broth
in sealed flask and showed that cloudiness did not appear, however, he drew off the
air in the process and the antagonists stated that he proved only that spontaneous
generation need air [VanMeter and Hubert, 2015]. Finally in 1859 Pasteur conducted
a refined experiment with beef broth sterilized by boiling in a flask with curved long
neck. Only re-exposition to air cause cloudiness which indicates microbial contami-
nation [Ullmann, 2018].

On the other hand, in the 1920s Haldane and Oparin independently presented
similar ideas concerning the conditions required for the origin of life on Earth. Both
suggested that abiogenic materials in the presence of an external energy source could
form organic molecules [Rogers, 2018a]. In 1953 Urey and Miller tested this theory
and successfully produced organic molecules from some of the inorganic components
thought to have been present on prebiotic Earth [Rogers, 2018a](see Section 1.3.3).

1.1.3 Debate on the origin of changes

Anaximander, who lived in VII and VI century BCE, proposed a theory that is
still prevailing. Life arose spontaneously in mud and the first animals to emerge had
been fishes, whose descendants eventually left water and moved to dry land and gave
rise to other animals. In this early evolutionary theory those changes were described
as a transmutation which is a conversion of one form into another [Rogers et al.,
2018].

Explanation of the process of heredity, that is how to pass instruction necessary
to create new life, was also the subject of considerations. Aristotle believed that the
instructions were constant and inherent in gametes, while Hippocrates imagined that
instructional particles shaped by experience are gathered by adult body [Lander and
Weinberg, 2000].

However, Aristotle rejected any suggestion of natural selection [Rogers et al.,
2018], a process that results in the adaptation of an organism to its environment by
means of selectively reproducing changes in its genotype, or genetic constitution [The
Editors of Encyclopaedia Britannica, 2018b], which was firstly postulated by reading
Alfred Russel Wallace and Charles Darwin work at the Linnean Society on July 1,
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1858 [Desmond, 2018]. In 1859 famous Charles Darwin book "On the Origin of
Species by Means of Natural Selection, or the Preservation of Favoured Races in the
Struggle for Life" was published [Desmond, 2018]. However, Darwin believed in the
theory [Desmond, 2018] that organisms acquire traits that allows them to adapt to
the environment and such traits can be further inherited, the theory was postulated
by Jean-Baptiste Lamarck in his Philosophie zoologique from 1809 [Brown, 2002].
Lamarck was the first who proposed that this basic idea originated from Hippocrates
could result in species change [Burkhardt, 2018]. Only August Weismann in 1880s
performed an experiment in which he removed tails from mice and observed five
generations of progeny to conclude that mutilations were not inherited [Beale, 2018].

Existence of DNA, discovered in 1869 by Johann Friedrich Miescher [Brown,
2002], supports Aristotle concept of constant instructions. Hermann Joseph Muller
argued for the gene as the basis of life, and therefore of evolution [Crow, 2005]. His
research published in 1927 [Muller, 1927] shown that X-irradiation induces genetic
mutations, for which he won the Nobel Prize for Physiology or Medicine in 1946 [The
Editors of Encyclopaedia Britannica, 2018a]. Muller noted that new gene functions,
and therefore greater complexity, could arise from gene duplication and emphasized
mutation as the basic element of evolution [Crow, 2005]. Mutations are random with
respect to phenotypic effect, and therefore most are harmful [Crow, 2005]. Random
character of mutations in bacteria was confirmed by an experiment described by
Luria and Delbrück [Luria and Delbruck, 1943] (who won the 1969 Nobel Prize in
Physiology or Medicine in part for this work). They grew cultures of Escherichia coli
and then add T1 bacteriophage which kill most of the bacterias except for the mu-
tants. Cultures had different numbers of resistant bacterias and therefore mutations
occurred at random [Brown, 2009].

Today after more than 2,300 years, our knowledge is significantly greater, how-
ever, answers lead to new discoveries and the debate is still ongoing. The phenomena
of Hypermutation and programmed mutations appear to contradict randomness of
mutations [Brown, 2009]. Hypermutation occurs when there is an increase of the
rate at which mutations occur in cell genome [Brown, 2002]. At V-gene segments of
immunoglobulin genes, the repair system changes the nucleotide in the parent strand,
and so stabilizes the mutation rather than correcting it [Cascalho et al., 1998]. The
authors [Brown, 2009] argue that increased mutation rate do not contradict ran-
domness of the process, however, review [Steele and Lloyd, 2015] from 2015 reports
non-random mutation patterns.

There is ongoing debate about program mutations started in 1988 in [Cairns
et al., 1988]. Authors proposed that E. coli is able to direct mutations towards genes
whose mutation would be advantageous under the environmental conditions that the
bacterium is encountering [Brown, 2002]. The original proposal was discarded even
by the author [Chicurel, 2001]. In 1998 a model was proposed [Andersson et al.,
1998] by which gene amplification during selective growth can give the appearance
of adaptive mutability without requiring any change in mutability. A report from
2017 [Bragonzi et al., 2017] suggests that Burkholderia cenocepacia strain increased
its capacity to cause a chronic lung infection after serial passages in mice, adapting
to the local environmental conditions of murine lung tissues and establishing chronic
infection. However, answer to the question how environmental bacteria adapt in the
complex and variable environment of the host is still largely unknown.

The cells in a multicellular organism have nominally identical DNA sequences, yet
derived from one fertilized egg become specialized, for example as brain cells, or skin
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cells. The lack of identified genetic determinants that fully explain the heritability of
complex traits, and the inability to pinpoint causative genetic effects in some complex
diseases, suggest possible epigenetic explanations for this missing information. An
epigenetic system should be heritable, self-perpetuating, and reversible. [Riddihough
and Zahn, 2010] It is clear that at least some epigenetic modifications are heritable,
passed from parents to offspring in a phenomenon that is generally referred to as
epigenetic inheritance. The mechanism by which epigenetic information is inher-
ited is unclear. [Rogers and Fridovich-Keil, 2018] Epigenetic inheritance might be
conceptually closer to Hippocrates idea.

A good summary of the debate may be the conclusion from Koonin and Wolf
paper [Koonin and Wolf, 2009] that Both Darwinian and Lamarckian modalities
of evolution appear to be important, and reflect different aspects of the interaction
between populations and the environment.

1.2.
Selected milestones in genetics

In 1865 Gregor Mendel describes for the first time principles of heredity based on
his breeding experiments with peas [Mendel, 1866]. Johann Friedrich Miescher dis-
covered DNA in 1869 in the extract from human white blood cells (that also con-
tained proteins) and obtained pure DNA sample from salmon sperm the following
year [Brown, 2002]. The behaviour of chromosomes in the cell nucleus during normal
cell division (mitosis) was observed in salamander larvae cells [Lander and Weinberg,
2000] and described by Walther Flemming in 1882 [Flemming, 1882]. From 1885 to
1901 Albrecht Kossel with his students chemically analyzed the nucleic acids using hy-
drolysis and other techniques, and in result discovered their component compounds:
adenine, cytosine, guanine, thymine, and uracil [The Editors of Encyclopædia Bri-
tannica, 2018a]. For his contributions to understanding the chemistry of nucleic
acids and proteins he was awarded the Nobel Prize for Physiology or Medicine in
1910. Walter S. Sutton described in 1903 that heredity of genes in a cell corre-
sponds to chromosome behavior during mitosis [Sutton, 1903]. Observations that
genes are material beings, placed on chromosomes, linearly, on well defined posi-
tions were published in 1915 [Morgan, 1915]. Thomas Hunt Morgan as a result of
this research was awarded the Nobel Prize for Physiology or Medicine in 1933 for
the discovery of “hereditary transmission mechanisms in Drosophila” [Allen, 2018].
Only in 1928 Frederick Griffith observed that extract prepared from virulent, disease-
causing Streptococcus pneumoniae bacteria killed by heat treatment, when added to
avirulent strain cause conversion of living benign bacteria into deadly ones [Griffith,
1928, Brown, 2002]. This process was called transformation and in 1944 Oswald
Avery, Colin McLeod and Maclyn McCarty [Avery et al., 1944] revealed that DNA
is the factor responsible for this conversion [Lander and Weinberg, 2000].

However, the explanation how heredity instructions are stored and encoded re-
main an open question [Lander and Weinberg, 2000]. Erwin Schrödinger in 1944
in his book What is Life? [Schrödinger, 1944] proposed that genes should be con-
structed from small number of isomeric elements whose sequence form a code for
heredity instructions in similar way as Morse code is based on [Lander and Wein-
berg, 2000].

Meanwhile, in 1941 George W. Beadle and Edward L. Tatum proposed that
genes affect heredity by determining enzyme structure [Beadle and Tatum, 1941].
That discovery lead to the 1958 Nobel Prize for Physiology or Medicine award [The
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Editors of Encyclopædia Britannica, 2018f]. Also in 1941 A.J.P. Martin and R.L.M.
Synge whilst working on the separation of amino acids published a paper [Martin and
Synge, 1941] that led to development of partition chromatography and later a paper
chromatography. Martin and Synge were awarded the Nobel Prize for Chemistry in
1952.

In 1946 [Lederberg and Tatum, 1946] paper was shown, that two different strains
of a bacterium when mixed, result in genetic recombination between them and thus
a new, crossbred strain of the bacterium is created. Joshua Lederberg was awarded
1958 Nobel Prize for Physiology or Medicine for discovering the mechanisms of ge-
netic recombination in bacteria [The Editors of Encyclopædia Britannica, 2018g].

Barbara McClintock not only confirmed Morgan’s ideas about the role played by
the chromosome in heredity [Ravindran, 2012] by showing that genetic recombination
involved the physical exchange of chromosome segments in 1931 [Creighton and Mc-
Clintock, 1931], but also in 1950 paper [McClintock, 1950] she described that some
genes are mobile and can move from one position to another in a chromosome. The
concept of transposition did not fit the current understanding and it took decades to
be widely recognized, but finally Barbara McClintock was awarded the Nobel Prize
in Physiology or Medicine in 1983 for her discovery [Ravindran, 2012].

Due to Erwin Chargaff experiments, especially those in 1949/50 [Vischer et al.,
1949, Chargaff et al., 1950, Zamenhof et al., 1952], following observations were made:
(1) between cytosine and guanine and between adenine and thymine there is one to
one ratio, (2) total amount of bases as well as other ratios vary among species. Alfred
D. Hershey, who was awarded in 1969 the Nobel Prize in Physiology or Medicine for
discoveries concerning the replication mechanism and the genetic structure of viruses,
and Martha Chase in their experiment in 1952 observed that when bacteriophages
infect bacteria cell then DNA is the main component that enter the cell [Hershey
and Chase, 1952]. In result, scientists were aware of the fact that DNA might be the
genetic material and was therefore worth studying [Brown, 2002].

In 1953 in Nature three consecutive articles introduced DNA double-helix struc-
ture [Watson and Crick, 1953, Wilkins et al., 1953, Franklin and Gosling, 1953].
Rosalind Franklin X-ray diffraction analysis provided the experimental data in sup-
port of the double helix [Brown, 2002] and Raymond Gosling has taken the famous
photograph 51 [No authors listed, 2013]. The 1962 Nobel Prize for Physiology or
Medicine for the determination of the molecular structure of DNA was awarded to
Francis Crick with James Watson and Maurice Wilkins [The Editors of Encyclopæ-
dia Britannica, 2018e]. Matthew Meselson and Franklin Stahl in 1958 [Meselson and
Stahl, 1958] used isotope of nitrogen to label DNA in order to distinguish newly
synthesized DNA from the parental polynucleotides Escherichia coli. They showed
that DNA replication, which is a synthesis of a new copy of the genome, in living
cells follows the semiconservative scheme, in which each daughter double helix is
made up of one polynucleotide from the parent and one newly synthesized polynu-
cleotide [Brown, 2002].

Vincent du Vigneaud in 1954 reported [du Vigneaud et al., 1954] of the first
synthesis of a polypeptide hormone and already in 1955 he was awarded the Nobel
Prize for Chemistry. Polynucleotide phosphorylase (PNPase) which is an enzyme
that degrades RNA was discovered by Severo Ochoa in 1955 [Grunberg-Manago
et al., 1955] in conditions that enabled to use that enzyme to synthesize RNA [The
Editors of Encyclopædia Britannica, 2018h]. In 1956 Arthur Kornberg presented
evidence of an enzyme-catalyzed polymerization reaction [Bessman et al., 1956] and
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isolated the first DNA polymerizing enzyme (DNA polymerase I). Work of Severo
Ochoa and Arthur Kornberg won them the Nobel Prize for Physiology or Medicine
in 1959 [The Editors of Encyclopædia Britannica, 2018b].

In 1958 William H. Stein and Stanford Moore helped in developing the first
automatic amino-acid analyzer [Spackman et al., 1958] and reporting the complete
sequence of Ribonuclease A [Smyth et al., 1963] and polypeptide chain structure
of Deoxyribonuclease I [Salnikow et al., 1973]. Christian B. Anfinsen results from
1961 paper [Anfinsen et al., 1961] postulated that amino-acid sequence is sufficient
for protein to adopt its final conformation. He described that ribonuclease after
denaturation could be refolded and still preserve enzyme activity. In 1972 Anfinsen,
Stein and Moore were awarded the Nobel Prize for Chemistry.

The first operon, which is a group of genes that are located adjacent to one
another in the genome, was described by François Jacob and Jacques Monod in
1961 [Jacob and Monod, 1961]. They were awarded the Nobel Prize for Physiol-
ogy or Medicine in 1965 and their work is the foundation of our understanding of
regulatory control over transcription initiation in bacteria [Brown, 2002]. Moreover,
in [Jacob and Monod, 1961] Jacob and Monod proposed the existence of a messen-
ger ribonucleic acid (mRNA) which sequence is translated into a polypeptide when
protein is synthesized. Three nucleotides in such a sequence form a codon and all
codons except for nonsense ones ultimately are responsible for the incorporation of
a specific amino acid into a cell protein. The secret code of life, which was high-
lighted by Schrödingers book, was revealed in Marshall Nirenberg work mainly in
the article [Nirenberg and Leder, 1964] from 1964. Robert William Holley, Har Gob-
ind Khorana and Marshall Warren Nirenberg for interpretation of the genetic code
received the Nobel Prize for Physiology or Medicine in 1968.

Hamilton Othanel Smith in 1970 [Smith and Wilcox, 1970, Kelly and Smith,
1970] described first type II restriction enzyme, an enzyme that not only recognizes
a specific region in a DNA sequence, but also always cuts the DNA at that very site.
Werner Arber, Daniel Nathans and Hamilton O. Smith for the discovery of restric-
tion enzymes and their application were awarded the Nobel Prize for Physiology or
Medicine in 1978.

In 1974 [Kornberg, 1974] Roger D. Kornberg (Nobel Prize in Chemistry in 2006)
described nucleosome thus explaining how DNA is packed in the cell.

The fact that fragments of DNA that code proteins are interrupted by parts that
do not contain genetic information was reported independently in 1977 [Berget et al.,
1977, Chow et al., 1977] by two teams. Richard J. Roberts and Phillip A. Sharp for
that discovery received the 1993 Nobel Prize for Physiology or Medicine. The coding
segments are called exons and the noncoding ones - introns. In 1977 Sanger’s group
used the method of DNA sequencing to deduce most of the first complete genome to
be sequenced, bacteriophage ΦX174. Frederic Sanger for his determination of base
sequences in nucleic acids won a Nobel Prize in Chemistry 1980 (he was also awarded
in 1958 for determining the structure of insulin molecule) [Jeffers, 2018].

Edward B. Lewis in 1978 [Lewis, 1978] showed that genes order on the chromo-
some is generally the same as their corresponding body segments but genetic regula-
tory functions may overlap [The Editors of Encyclopædia Britannica, 2018d]. Eric F.
Wieschaus and Christiane Nüsslein-Volhard divided genes responsible for Drosophila
melanogaster embryonic development into three categories (see [Nusslein-Volhard
and Wieschaus, 1980] published in 1980): gap genes, a scheme for general body devel-
opment, pair-rule genes, which determine body segmentation, and segment-polarity
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genes, which organize repeating structures within each segment [The Editors of En-
cyclopædia Britannica, 2018c]. Edward B. Lewis, Eric F. Wieschaus and Christiane
Nüsslein-Volhard won the Nobel Prize for Physiology or Medicine in 1995.

Stanley B. Prusiner published a paper [Prusiner, 1982] in 1982 about disease-
causing proteins called prions and was awarded in 1997 for his discovery the Nobel
Prize for Physiology or Medicine. Thomas Robert Cech [Kruger et al., 1982] (in 1982)
and Sidney Altman [Guerrier-Takada et al., 1983] (in 1983) independently discredited
a belief that enzymatic activity is an exclusive domain of protein molecules, by
showing that RNA is also capable of triggering and acceleration of chemical reactions
in living cells. Cech and Altman share the 1989 Nobel Prize for Chemistry.

Tonegawa Susumu answer the question how antibody diversity is generated, that
is, how from a limited number of genes obtain much more antibodies. According
to Tonegawa’s research [Tonegawa, 1983], published in 1983 and awarded the Nobel
Prize for Physiology or Medicine in 1987, antibodies are constructed from gene frag-
ments that are rearranged randomly to generate different antibody molecules [The
Editors of Encyclopædia Britannica, 2018i]. The same year genetic markers on chro-
mosome 4 for Huntington‘s disease were discovered [Gusella et al., 1983] and thus
enabling scientists having the ability to screen people for a disease without being
able to cure it.

In 1984 Michael W. Young [Bargiello et al., 1984] independently with Jeffrey C.
Hall and Michael Rosbash [Reddy et al., 1984] discovered the period gene which
protein product is called PER. Further studies lead Young to discovery of another
gene responsible for creating protein TIM [Rogers, 2018c]. When TIM bind to PER
it enables PER to enter the cell nucleus and to inhibit its own transcription (synthesis
of RNA from DNA). Therefore, PER accumulates in the cell nucleus at night, while
during the day its levels decline, when the TIM protein degrades in a light-dependent
mechanism. Rhythm-regulating genes responding to light and other factors influence
circadian rhythm, which is the self-regulating 24-hour biological clock that drives
daily behavioral patterns and physiological processes including metabolism and sleep.
Young, Rosbash and Hall received the 2017 Nobel Prize for Physiology or Medicine.

Alec Jeffreys work [Jeffreys et al., 1985, Gill et al., 1985] was the foundation for
genetic profiling which is well known technique in forensic science. The combination
of microsatellite length variants is unique to every human (genetically identical twins
are exceptions) and thus can be used as a genetic profile [Brown, 2002].

Telomerase was discovered by Elizabeth H. Blackburn and Carol W. Greider
(see work published in 1985 [Greider and Blackburn, 1985]). This enzyme plays a
fundamental role in maintaining chromosomes by adding DNA to telomeres which
shorten following cell division and are essential determinants of cell life span. The
Nobel Prize for Physiology or Medicine in 2009 was granted Elizabeth H. Blackburn,
Carol W. Greider and Jack W. Szostak [Rogers, 2018b]. In 1986 H. Robert Horvitz
reported the first two genes that trigger self-destruction process in a cell [Ellis and
Horvitz, 1986]. For the discovery that tissue and organ development is regulated by
genes responsible for programmed cell death mechanism he won the Nobel Prize for
Physiology or Medicine in 2002. Yoshinori Ohsumi in 1992 paper [Takeshige et al.,
1992] was the first to demonstrate autophagy in yeasts, which is a mechanism of
degradation and recycling proteins in cells. He identified genes essential for this
process and for his studies Ohsumi was awarded the 2016 Nobel Prize for Physiology
or Medicine.

The problem of revealing unknown (ex. human) gene functions is being dealt
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by inactivating the equivalent genes in the mouse. Method called gene targeting
uses homologous recombination (the exchange of genetic material between two
strands of DNA) to change an endogenous gene. The difficulty that not only one
mutated cell is needed, but a whole mutant mouse, was overcome by creating such
mouse in 1989 (see article [Capecchi, 1989] by Mario R. Capecchi). The solution
was to use a special type of a mouse cell, an embryonic stem or ES cell [Brown,
2002] which were discovered by Martin J. Evans in 1981 [Evans and Kaufman, 1981].
Martin J. Evans, Mario R. Capecchi and Oliver Smithies won the 2007 Nobel Prize
for Physiology or Medicine for developing gene targeting. A new method of gene
inactivation, that rather than disrupt the gene itself destroys its mRNA in RNA
degradation process called RNA inference, was suggested in 1998 [Fire et al., 1998]
and two of the authors Andrew Z. Fire and Craig C. Mello received the Nobel Prize
for Physiology or Medicine in 2006 for the discovery.

Human Genome Project launched in 1990 and resulted in first complete genome
DNA sequences of: a free living organism - bacteria Haemophilus influenzae in 1995,
an eucaryote - yeast Saccharomyces cerevisiae in 1996, a multicellular organism -
roundworm Caenorhabditis elegans in 1998, and finally in 2000 first draft of a human
genome [Lander and Weinberg, 2000].

Shinya Yamanaka described in 2006 how to generate stem cells from existing cells
of the body. Process of reversion of an adult state to a pluripotent state is triggered
by inserting specific genes into the nuclei [Takahashi and Yamanaka, 2006]. In result
he obtained induced pluripotent stem (iPS) cells that regained the capacity
to differentiate into any cell type of the body. This discovery, its importance to
regenerative medicine, led him to the 2012 Nobel Prize in Physiology or Medicine
award.

The possibilities of modern science seems to be unlimited, able to fulfill dreams of
generations and the prospects are surely breathtaking. 26.01.2000 at the ceremony
of announcing the success of Human Genome Project in sequencing human genome
the president of the USA Clinton said: Today we are learning the language in which
God created life. We are gaining ever more awe for the complexity, the beauty and the
wonder of God’s most divine and sacred gift. And the director managing the project
Francis Collins added: It is humbling for me, and awe-inspiring to realize that we have
caught the first glimpse of our own instruction book, previously known only to God
[Collins, 2006]. Collins in his 2006 book [Collins, 2006] points to theistic evolution,
which holds that God used the elegant mechanism of evolution to create all of life,
including human beings (and which is a view espoused by Asa Grey or saint Pope
John Paul II), as an explanation that reconciles faith and science [Marroquin, 2007].
He tried to offer a model for a dialogue and points out that: In 1916, researchers
asked biologists, physicists and mathematicians whether they believed in God who
actively communicates with humankind and to whom one may pray in expectation
of receiving the answer. About 40 percent answered in the affirmative. In 1997 [...]
the percentage remained very nearly the same [Collins, 2006]. Seemingly unlimited
progress should come with caution and respect. New ethical issues arises particularly
regarding genetic discrimination. In example, shall identification of genes responsible
for an inherited disease (like Huntington leading to early death) enable the possibility
of the denial of medical insurance? [Ruse, 2018]. Only in 1932 Aldous Huxley, a
friend of J.B.S. Haldane, inspired by his friend‘s work [Hughes, 2008] publish a
greatly renowned and acclaimed book entitled Brave New World [Huxley, 1932] that
describes future of controlled reproduction, genetic engineering, neurotechnology and
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a world socialist state as an alienated hell [Hughes, 2008]. In [Lander and Weinberg,
2000] Eric Lander warns that some may conclude that the human spirit and human
potential are shackled by double-helical chains. And in the last sentence ends with
a warning: Meeting these challenges, some quite insidious, will require our constant
vigilance, lest we lose sight of why we are here, who we are, and what we wish to
become. That are the very questions which were the starting point.

1.3.
Introduction to genetics

Life is defined by genomes which are entities that contain all of the biological
information essential for a creation of a given organism and a preservation of its life.

Genomes are made of DNA (deoxyribonucleic acid) in cellular life forms while a
few viruses have RNA (ribonucleic acid) genomes.1 DNA and RNA are polymeric
molecules which consists of chains of monomeric subunits called nucleotides. Each
nucleotide consist of a five-carbon sugar to which a phosphate group and nitrogenous
base are attached. The chemical link between adjacent monomers is a phosphodi-
ester bond between sugar molecules, which are deoxyribose molecules (in DNA)
or ribose molecules (in RNA). Nitrogenous bases in DNA can be divided into two
purines (adenine and guanine) and two pyrimidines (cytosine and thymine) whereas
in RNA there is uracil instead of thymine. The full chemical name of a nucleotide
2′-deoxyadenosine 5′-triphosphate can be abbreviated into dATP but in the context
of DNA sequence we use simply A, and C, G, T for nucleotides with other bases,
respectively. Similarly, adenosine 5′-triphosphate with abbreviation ATP in context
of RNA sequence is simply denoted by A, and C, G, U for other nucleotides, respec-
tively. Therefore, we can think of both DNA and RNA as words over four letter
alphabet.

Similarly to DNA, proteins are linear, unbranched polymers, called also polypep-
tides. Monomers, called amino acids, are linked by a peptide bond and their se-
quence forms primary structure of a protein. Secondary structure describes the con-
formations taken up by a polypeptide, while tertiary structure results from folding
the secondary structural units and sometimes embeds a knot thus providing inter-
esting topological aspect of study. Quaternary structure defines the association of
two or more polypeptides.

Genome is a repository of genetic information. One can think of it as the con-
tainer for the genes, which are DNA segments containing biological information
and hence coding for an RNA and/or polypeptide molecule. Complex biochemical
reactions controlled by coordinated activity of enzymes and other proteins lead to
gene expression. The process of copying of a single gene into a RNA molecule is
called transcription. The first product of gene expression, transcriptome, is a
set of RNA molecules containing currently needed biological information in the cell,
which are called mRNA (messenger RNA). The next step is proteome, which is a
repertoire of proteins in a cell that define the scope of biochemical reactions for that
cell. The chemical substances produced as a result of metabolism form endogenous
metabolome.

1Information in this section is based on [Brown, 2002, Brown, 2009] and publications from
Section 1.2.
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The RNA in the cell can be divided into two groups. The first group consists
of non-coding, or functional, RNA which are: ribosomal RNA (rRNA), transfer
RNA (tRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), short
interfering RNA (siRNA), microRNA (miRNA) and piwi-interacting RNA (piRNA).
The second group, coding RNA, consists of mRNA. The process of creating proteins
from mRNA is called translation. There are 20 amino acids, so the question is,
how does a genetic code on 4 letter nucleotide alphabet look like. Minimal number
of nucleotides needed to encode all amino acids is 3 (minx∈N4x > 20). In fact, a
codon consists of three nucleotides and is either a punctuation codon that indicate
the points within an mRNA sequence where translation should start and finish or
encodes an amino acid. There is one termination codon, three initiation codons, and
there are one, two, three, four or six codons corresponding to an amino acid. This
feature of the genetic code is called degeneracy.

The first idea of an information flow in a cell, named the central dogma of molec-
ular biology, was focused on translation and transcription and was refined by Crick
in [Crick, 1970]. However, the discovery of prions start the debate how to interpret
processes in which they are involved [Koonin, 2012]. Figure 1.2 aim is to present the
complexity of the processes in the cell and is based on many breakthrough researches
which lead to at least 6 Nobel prizes.

Genome

Transcriptome

Proteome

Metabolome

reversible DNA
methylation

reversible RNA
methylation

reversible histone
methylation
acethylation

Epigenome

Transcription

Translation

Central dogma

DNA repair,
replication

reverse
transcription

RNA 
replication

metabolism
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Figure 1.1. The flow of information in a cell. The scheme is based on [Katrib
et al., 2016, Fu et al., 2014, Crick, 1970, Koonin, 2012]. Vitamin B2 as metabolome
example from [Harrison, 2017]. Estrogen protein (ESC1) from [Rose and Hildebrand,
2015, Norman et al., 2015].

DNA consists of two strands of nucleotide sequences between which hydrogen
bonds are created in two base-pair combinations: A with T, and G with C. Those
connected strands form double helix structure which in eukaryotes in nucleus is
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packed with histone proteins and forms chromatin structures in chromosomes. Eight
histone proteins form a barrel-shaped core octamer which is called nucleosome and
the DNA wound it twice around the outside. Eukaryotes have at least two chromo-
somes which during metaphase are in compact form that consist of two chromatids
held together by a centromere and their ends we call telomeres. The structure has
crucial impact on gene expression which is greater when DNA is between nucleo-
somes. Moreover, it was thought that centromere were genetically inactive and the
discovery that DNA in that region contains genes was a surprise [Brown, 2009].
Histone modifications like methylation play essential roles in many epigenetic phe-
nomena [Cheung and Lau, 2005].

1.3.1 Genes and gene expression

To analyze the gene we can study the nucleotide sequence of an organism. An
open reading frame (ORF) is a part of a protein-coding gene that is translated
into protein and consists of codons starting with an initiation codon and ending
with a termination codon. The sequence positioned upstream of a gene, that is a
place of binding of RNA polymerase in order to initiate transcription we call a pro-
moter region. An operon is a set of adjacent genes subject to the same regulatory
regime and transcribed from a single promoter. The nucleotide sequence to which
a repressor protein binds in order to prevent transcription of a gene or operon is
called operator. Comparative genomics can be used to identify groups of proteins
with functional relationship. One way is to study bacterial operons, while the other
focus on protein sequences. For instance, two proteins in Escherichia coli his2 and
his10 together are similar to HIS2 protein in yeasts. From the analysis of human
proteome researches made a hypothesis that there are about 80,000-100,000 human
genes (popular in 1990s see [Pertea and Salzberg, 2010]). However, after genome se-
quencing the estimate is set to 35,000. Similarly, Drosophila melanogaster has only
about 13,600 genes while Caenorhabditis elegans around 19,000. Most human genes
are discontinuous genes that consist of coding regions exons and non-coding regions
called introns. Alternative splicing is a process that by joining together different
combinations of exons from a single pre-mRNA result in the production of two or
more mRNAs. Around 35% of human genes are subject to that process and one of
them is slo. This gene encode membrane protein that regulates the flow of potassium
ions into and out of cells and consists of 35 exons from which only 8 are optional.
That gives 8! = 40320 possible membrane proteins with different properties, while
in fact there are over 500 found in human cells. Different hair cells on the basilar
membrane of the cochlea in the inner ear respond to different sound frequencies. Slo
protein properties by partially determining their individual capabilities are responsi-
ble for the auditory range of humans. In Drosophila melanogaster alternative splicing
in gene expression influence the determination of the sex. Males for slx gene has all
exons, thus do not synthesize SXL protein while females do. For dsx gene males and
females produce different proteins. The number of different immunoglobulin and
T-cell receptor proteins, which humans can make approximately 108, exceeds by a
few levels of magnitude the number of genes. Creation of either immunoglobulin D
or immunoglobulin M also depends on alternative splicing but also on genome rear-
rangements. The genes may be assigned into multigene families, or gene families
according to the level of similarity of their sequences. Further division is possible.
A classical gene family like rRNA genes conserves nearly identical sequence during
evolution, whereas a complex family like mammalian globin genes produce proteins
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with distinctive biochemical properties and its genes are expressed at different stages
in human development. The classification of into families may base either on amino
acid sequence of a protein encoded by a gene, or on the nucleotide sequence of DNA
of a gene.

1.3.2 Mechanism of DNA sequence modifications

The evolution of DNA sequence over time is a result of structural rearrangements
resulting from recombination and transposition and the accumulation of mutations.

Structural rearrangements

First example of major scale DNA sequence modifications is a chromosomal translo-
cation in which the fragment of one chromosome is merging with other chromosome.
In human genome such a translocation between 9 and 22 chromosomes is a frequent
cause of chronic myelogenous leukemia.

Interesting fact which refer to chromosomes is that cells can do mathematical
calculations. Genomic imprinting is a process of inactivating of a gene on one of a pair
of homologous chromosomes that is done by methylation. There exist mechanisms
that in a female nucleus can count the number of X chromosomes and the number
of autosomes and compare those values. If the cell has a diploid set of autosomes
and four X chromosomes, in three of them most of the genes will be methylated.
However, for the same number of four X chromosomes, if the cell is tetraploid, only
two X chromosomes will be inactivated.

DNA replication is the synthesis of a new copy of the genome. Replication errors
and the effects of mutagenic agents are dealt with process called DNA repair. The
breast and ovarian cancer susceptibility gene BRCA1 product functions in pathway
that maintain DNA damage repair [Wu et al., 2010].2 Homologous recombination
which occurs between two double-stranded DNA molecules that share extensive nu-
cleotide sequence similarity. That recombination is responsible for crossing-over dur-
ing meiosis but currently it is believed that its major role is DNA repair. When
two double-stranded DNA sequences share only short regions of nucleotide similar-
ity still site-specific recombination may occur. That include processes of integration
and cutting of bacteriophage λ genome which are typical strategies applied in genetic
engineering. Recombination is used to create genetically modified crops or knockout
mice, which is a mice with inactive gene to discover this gene potential function
in human organism. Selectable marker is a gene that enables to distinguish trans-
formed cells during cloning. One of them, frequently used kanR, encode neomycin
phosphotransferase II. It is a selective marker that may lead to antibiotic resistance
(like kanamycin). Thus, during a debate researchers argue about the possibility of
passing resistance to bacteria in digestive tract. Nowadays, there is a second step in
which Cre recombinase cut out kanR gene from the DNA of a crop.

Finally, the last structural DNA modification is done by transposons, genetic
elements which are able to move in a DNA molecule by copy-and-paste mecha-
nism (replicative transposition) or cut-and-paste process (conservative transposi-
tion). Transposition may have adverse effect to the genome like silencing a gene
by cutting in its coding region, and influencing expression of neighboring genes when
they include promotor sequence. Hemophilia, a disease responsible for a coagulation
disorder, may be caused by a transposition of LINE-1 transposon into a sequence of

2The article [Gowen et al., 1998] cited in [Brown, 2002, Brown, 2009] was retracted from Science
in 2003 [Gowen et al., 2003].
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Factor VIII gene that encode an essential blood-clotting protein. Cells try to mini-
mize those potential adverse effects by methylation, which is a common mechanism
of silencing genome areas and makes transposition impossible.

Mutations

A mutation is an alteration in the nucleotide sequence of a DNA molecule. Point
mutation is a single nucleotide change and can be either a transition when a purine
is replaced another purine or a pyrimidine with another pyrimidine or a transversion,
otherwise. We distinguish also insertions and deletions of one or more nucleotides.

Most of mutations do not influence the function or the expression of genes and
are called silent mutations. In human a mutation in around 98,5% of the genome will
cause no effect. However, mutation in coding region of a gene are of utmost impor-
tance. Synonymous mutation changes a codon into a second codon that specifies the
same amino acid and thus is also a silent mutation. Nucleotide change may result in
converting a codon for one amino acid into a codon for another amino acid. and is
called missense or non-synonymous mutation. A protein with one different amino
acid may maintain its functions. Nonsense mutation changes amino acid codon into
termination codon, whereas readthrough mutation changes a termination codon into
one that specify an amino acid. Both shortening and elongation of proteins may
have negative impact on their functions.

Insertion or deletion of a number of nucleotides that is not divided by 3 changes
the grouping of nucleotides into codons and is called a frameshift mutation. DNA
sequence contains microsatellites comprised of tandem copies of 1-, 2-, 3- or 4-
nucleotide repeat units. Replication slippage is an error in DNA replication that
leads to an increase or decrease in the number of that units. In result, no two hu-
mans alive today, except for identical twins, have exactly the same combination of
microsatellite length variants. Therefore, for every person by examining enough mi-
crosatellites we can provide an unique pattern called the genetic profile. Nowadays
it is used in forensic medicine in crime solving or to determine relationship. Genetic
profile is inherited partly from the mother and partly from the father so it can be
used to study the populations of humans, animals or even plants. Replication slip-
page is probably also responsible Huntington’s disease and other diseases caused by
the expansion of trinucleotide repeats in or near to a gene.

All that changes influence the evolution of genes and result in a loss or rarely in
a gain of a function in an organism. An example is the acquisition of streptomycin
resistance in Escherichia coli. The change in targeted by an inhibitor structure of
ribosomal protein S12 result in fact that antibiotic no longer bind to the protein and
interfere with its function.

Drosophila melanogaster wild type has DNA transposon called P element in in-
active state, while laboratory type do not contain that transposone. Laboratory and
wild type when mating produce an offspring with an active P element. Transposi-
tion activity influence genes causing infertility and other aberrations. In result, those
population cannot interbreed and we may state the hypothesis that speciation may
occur due to the activity of transposons.

1.3.3 How genes evolve?

The universe started existing about 14 × 109 years ago according to current
knowledge [Brown, 2009]. 10× 109 years ago the galaxies were formed, and then our
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solar system was created around 4, 6× 109 years ago. Finally, life in the form of the
cells arose 3, 5× 109 years ago [Brown, 2009].

The atmosphere of Earth back then was composed of mostly methane, ammonia,
water, and carbon dioxide [Brown, 2009, Michaelian, 2011]. Only in 1924 Oparin
suggested the material origin of life [Oparin, 1924, Michaelian, 2011, Rogers, 2018a]
which inspired famous experiment by Miller and Urey in 1953 [Miller, 1953, Miller
and Urey, 1959, Rogers, 2018a]. To simulate primitive ocean and the prebiotic at-
mosphere they combined warm water with a mixture of four gases: water vapor,
methane, ammonia, and molecular hydrogen. Moreover, in order to simulate light-
nings [Brown, 2009] they pulsed that atmosphere with electric discharges to produce
at least 11 of the 20 then known amino acids [Michaelian, 2011]. The polymeriza-
tion may happen in a pure geochemical process. The greater challenge is to explain
how to obtain an organized system from random biomolecules [Brown, 2009]. One
of hypothesis is that early life was based on RNA and its catalytic activity [Bartel
and Unrau, 1999, Brown, 2009]. Many such systems may evolve independently, how-
ever, the clear analogy of most fundamental biochemical mechanisms in bacterial,
archaeal and eucaryotic cells (like the genetic code) imply the existence of common
ancestor [Brown, 2009].

The uneventful progress of evolution was interrupted by periods of rapid changes,
called explosions, when many new organisms emerged. One of such periods took place
around 1, 4 × 109 years ago when Eucaryotes appeared. Eucaryotes have two times
more genes than Procaryotes, estimating 10,000 in comparison to 5,000. The second
period of drastic increase of organism diversity took place about 0, 541 × 109 years
ago in Cambrian explosion, when Vertebrates emerged. Again, basing on today’s
Vertebrates we can estimate that the number of genes in emerging organisms were
three times greater than in antecedent ones [Brown, 2009].

There are two ways of acquiring new genes in a genome: by the duplication of
selected or all genes or by obtaining genes from other species [Brown, 2009].

Gene duplication plays crucial role in genome evolution

The history of the hypothesis that gene duplication is a driving force in the evo-
lution is well presented in [Taylor and Raes, 2004]. I would like to present only
a few milestones. The beginning we can date back to Darwin questioning sudden
leaps in evolution [Friedman, 2009]. The sudden rise and rapid diversification of
angiosperm plants he called an abominable mystery [Dittmar and Liberles, 2011].
In 1911, Kuwada reported chromosome duplication event in Zea mays (maize). He
recognized two sets of paralogous chromosomes in karyotype of maize and concluded
that maize was an ancient tetraploid [Taylor and Raes, 2004]. Haldane, in 1932,
described the possibility that duplication events are favorable because they produce
genes that could be altered without disadvantage to the organism [Taylor and Raes,
2004, Taylor and Raes, 1932]. P. Golik in translator’s note in [Brown, 2009] also
indicated J.B.S. Haldane as the creator of first theories that emphasize the role of
duplication in evolution. Haldane was a friend of A. Huxley and his studies inspired
his friends’ famous book (see Section 1.2). Moreover, he independently to Oparin’s
work formulated theories of forming the organic molecules from abiogenic materials in
the presence of an external energy source [Rogers, 2018a]. In 1933, Haldane proposed
an idea of preservation of a duplicate gene through positive selection by the gain of
a new beneficial function, which is a process called neofunctionalization [Haldane,
1933, Dittmar and Liberles, 2011].
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Susumu Ohno in an author of a book, published in 1970, which is entitled Evolu-
tion by Gene Duplication [Ohno, 1970]. Ohno suggested that large-scale duplication
events are essential for increasing biological complexity and that one or two genome
duplications facilitate the evolution of vertebrates [Dittmar and Liberles, 2011]. In
his opinion neofunctionalization is crucial for preserving duplicate genes. In the book
Evolution after Gene Duplication we can read about methods to analyze duplication
retention mechanism [Dittmar and Liberles, 2011].

The authors divide genomic duplications into two categories: small-scale dupli-
cations (SSDs) and whole genome duplications (WGDs) [Dittmar and Liberles,
2011]. SSDs may occur by several mechanisms described in Section 1.3.2 like recom-
bination (unequal crossing-over, unequal sister chromatid exchange, DNA amplifica-
tion) or replication slippage. All those mechanisms lead to tandem duplications,
in which duplicated areas are near each other in the genome [Brown, 2009]. Such
arrangement can be observed in several gene families, for example, α-globin family
on chromosome 16 and β-globin family on chromosome 11 in human genome. SSDs
may also arise from duplicative retrotransposition and some mechanisms are yet un-
characterized [Dittmar and Liberles, 2011]. The copy created by transposition do
not have promotor sequence, which is absent in mRNA. However, such pseudogene
can be inserted near the promotor of existing gene and become active. We call them
retrogenes. Retrogenes do not have introns that existed in ancestral copy. On the
other hand, transcription of antisense RNA may enable the existence of full length
functional gene copy inserted in any position in the genome [Brown, 2002].

The first category concerns duplication of short sequences. The duplication of
the whole chromosome result in human in a state called trisomy, when cells have
three copies of one chromosome and two copies of all of the rest chromosomes. This
condition is either lethal, or causes genetic diseases like the Down syndrome in which
an extra chromosome 21 is present. However, these pernicious effect do not concern
the duplication of the whole set of chromosomes. Whole genome duplications may
occur in an error during meiosis. Due to an error gametes may be diploid rather then
haploid. In the event that two of them fuse, a new autopolyploid is created, which in
this case is tetraploid. Autopolyploidy is not uncommon, especially in plants. New
organisms are able to live because every chromosome has a homologous partner.
Moreover, they form new species because tetraploid and diploid when interbreed will
produce a triploid descendants that cannot breed. The observation that autopoli-
ploidy is the cause of speciation was made for example by Hugo de Vries, one of the
rediscoverers of Mendel’s experiments. For Oenothera lamarckiana a diploid plant
he isolated a tetraploid version, which he named Oenothera gigas [Brown, 2002]. Al-
though there is an impression that stable polyploidy is maintained more frequently
in plants than in animals, recent studies showed that it is not as exceptional as was
originally assumed. In fact, evidence of polyploidy was found in all major taxonomic
animal groups, especially in fish and amphibians. However, present existence of poly-
ploid mammals is equivocal [Wertheim et al., 2013]. Tetraploidy in Tympanoctomys
barrerae (red vizcacha rat) is reported in [Gallardo et al., 1999, Gallardo et al.,
2006, Brown, 2009], while authors of [Svartman et al., 2005] discard that statement
and argue that polyploidy in mammals remains as unlikely as it has always been. Fi-
nally, in [Suarez-Villota et al., 2012] reason to a hybrid nature of the Tympanoctomys
barrerae karyotype, which is a result of a hybridization event in the origin of this
species.

The second possible way of acquisition of new genes by the genome is an adap-
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tation of genes from other species. In plants not only autoploidy is not uncommon
but also allopolyploidy, which is a fusion between gametes from different species
that lead to a polyploid nucleus. Triticum aestivum, which is a common crop bread
wheat, is a hexaploid that originated from allopolyploidization between tetraploid
Triticum turgidum, which is a cultivated emmer wheat, and a diploid wild grass,
Aegilops squarrosa [Brown, 2002]. We can read in [Brown, 2002]: The wild-grass
nucleus contained novel alleles for the high-molecular-weight glutenin genes which,
when combined with the glutenin alleles already present in emmer wheat, resulted in
the superior properties for breadmaking displayed by the hexaploid wheats. However,
in [Ray, 2015] we can find: Gluten, the protein that helps provide the ’glue’ that
binds certain foods also divides us into those who cannot eat it, those who can, and
those who choose not to. Awareness and understanding of gluten-related disorders
has improved over the past few decades as we began to understand the full spectrum
of gluten-induced disease: from sensitivity, to allergy, to autoimmune response. In
fact, our food may be a trigger to a diseases like Coeliac disease, which is a chronic,
immune-based enteropathy triggered by gluten [Ray, 2015]. This is briefly men-
tioned positive and negative impact of allopolyploidization, which can be described
as a combination of genome duplication and interspecies gene transfer [Brown, 2002].

Horizontal gene transfer (HGT) is a transfer of a gene from one species to
another. Among animals HGTs are possible in result of the activities of retroviruses
or transposones, while in bacteria there are several mechanisms for HGT like for
example conjugation and transformation [Brown, 2002].

Genome evolution by gene rearrangements

Novel protein functions can be produced not only by duplication followed by mu-
tation that lead to new genes but also by rearranging existing genes. Rearranging
the sequences that encode a domain may lead to creation of a protein with novel
functions. DNA sequences may be duplicated by unequal crossing-over, replication
slippage and other methods that lead to gene duplication. The case when only the
gene segment coding for a structural domain is duplicated we call the domain dupli-
cation. Domain shuffling occurs when coding sequences for structural domains from
completely different genes merge and form a new encoding for a hybrid or mosaic
protein [Brown, 2002]. Exons are separate gene fragments, thus are good candidates
to code structural domains that can be duplicated and shuffled. On the one hand,
α2 Type I collagen gene of vertebrates have repetition of the structural domains that
clearly might evolved from exon duplications. Moreover, tissue plasminogen activa-
tor (TPA) gene responsible of blood clotting regulatory in vertebrates consist of four
exons: one could be derived from fibronectin (responsible for the module that enables
the TPA protein to bind to fibrin), one from the epidermal growth factor gene (may
enable TPA to stimulate cell proliferation), and two from plasminogen gene (code
for structures which TPA uses to bind to fibrin clots) [Brown, 2002]. These are good
examples, however, in general duplication and shuffling of domenes is less precise.

Gene family examples

The remarkable example of the role of SSDs or WGDs in gene evolution can be
provided by homeotic selector genes that have the key developmental function and
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are responsible for specification of the body plans of animals3. Eight homeotic selec-
tor genes in the genome of Drosophila fly form a cluster called HOM-C. The more
complex organism in terms of variations of the basic body plan have greater number
of Hox clusters. Among chordates the amphioxus has two Hox clusters, and the
most vertebrates have four Hox gene clusters, but ray-finned fishes have seven Hox
clusters.

In the evolutionary process gene duplication is not always followed by sequence
divergence and creation of a family of genes with different functions. When it results
in the members of a multigene family retaining the same or similar sequences we
call it concerted evolution. The prime examples are the rRNA genes. Their copy
numbers varies among species, in Mycoplasma genitalium there are two, whereas
in Xenopus laevis more then 500, but all of the copies preserves almost the same
sequence. Special mechanisms facilitates that preservation of functional sequence by
preventing individual copies from accumulating mutations.

Another example present the situation where evolution produce two genes with
complementary functions in place of one. The trypsin and chymotrypsin are two
genes derived from a common ancestor that have complementary protein functions
in the vertebrate digestive tract. Both encode proteases that are involved in pro-
tein breakdown and are cutting proteins at different amino acids. Trypsin is cutting
at arginine and lysine, while chymotrypsin at phenylalanines, tryptophans and ty-
rosines.

In conclusion, genes may be obtained by the genome in several different pro-
cesses. Then, they may lost its function and vanish, preserve virtually the same
sequence or evolve and obtain new function. Moreover, there are susceptible to gene
rearrangements. The picture of a gene family due to all that mechanisms could be
convoluted.

Human genome

One of the mysteries concerns the origin of the introns. The self-splicing introns
are believed to remain almost unchanged after evolving in the RNA world. There
are two hypothesis that concern the GU-AG introns in eukaryotic genomes. Introns
early theory states that they are ancient and being lost, however, introns late idea
states that they are recent and are being accumulated [Brown, 2002].

Humans closest relative among the primates is the chimpanzee. The next mys-
tery is to answer the question what is determining the difference between species.
We can answer 1, 73% of nucleic sequence, less than 1, 5% in coding regions and
rarely more then 3% is some noncoding regions. About 29% of all genes in human
genome encode proteins with identical amino acid sequences to chimpanzee equiva-
lents. Nevertheless, the centromere DNA sequences are significantly different. The
greatest dissimilarity is in number of chromosomes. Human chromosome 2 was cre-
ated probably by merging two chimpanzee chromosomes. Moreover, chromosomes
5, 6, 9 and 12 had undergone a few noticeable rearrangements. However, remaining
18 chromosomes appear to be almost identical. The differences in human genes may
result from diet more rich in meat, or resistance to diseases like tuberculosis. The
study of genes involved in brain and neural activity revealed that FOXP2 sequences
in human and chimpanzee differs by two amino acids [Brown, 2009]. Mutations in
FOXP2 cause developmental verbal dyspraxia [Feuk et al., 2006], therefore, this gene

3This part is based on [Brown, 2002]
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may decide about human ability to use speech. In conclusion, most or even all crucial
differences between human and chimpanzee are not in genome sequence but result
from regulatory of gene expression [Brown, 2009].

The recent study shows that in biology one should be cautious to make general
assumptions. Even the statement of the double helix structure of the DNA has an
exception. In the nuclei of human cells i-motifs structures can be formed, i.e., in
regulatory regions of the human genome, including promoters and telomeric regions.
Those structures are cell-cycle and pH dependent and could provide key regulatory
roles [Zeraati et al., 2018].

1.4.
Motivation

In this Section we present brief review of the research to highlight the importance of
genomic duplications. In particular, the development of the study of genomic dupli-
cations has broad spectrum of potential applications that can lead to an economical
and societal impact. First, in Section 1.4.1 we present the examples of general
applications of phylogenetics. Then, in Section 1.4.2 we focus on whole-genome du-
plications. Detection and the determination of time of occurrence of such events is a
desired research goal for biologists. Thus, this Section presents our motivation and
our justification for the choice of the topic of the dissertation.

1.4.1 The selected applications of Molecular Phylogenetics

To depict the vast spectrum of impact areas let us emphasize that evolutionary trees
were used to study the dynamic range of patients’ cancer progressions, in order to
tailor corresponding treatments [Nik-Zainal et al., 2012] and to predict outbreaks
of infectious diseases like meticillin-resistant Staphylococcus aureus (MRSA) [Harris
et al., 2013].

Another usage of evolutionary trees was supportive to the determination of the
origin of AIDS, that was the question, which public opinion was intensely inter-
ested to answer. The analysis of the topology of phylogenetic trees shows that the
AIDS epidemic may began when virus cross from chimpanzees to humans (SIV in
chimpanzees is the closest relative to HIV-1 among primates). Initially, there was
a very small number of viruses, perhaps just one, which have spread and diversified
since entering the human population [Brown, 2002]. An example of the popularity
of the topic, can be the book [Warszewski, 2014] from the cycle of historical battles.
Warszewski suggests and argues for the hypothesis that for the spread of the AIDS
epidemic might be responsible the Che Guevara partisan unit after their return from
Democratic Republic of the Congo. The article from Science [Korber et al., 2000]
present the estimated date 1931, to be the date of the last common ancestor of
the main group of HIV-1, basing on a comprehensive full-length envelope sequence
alignment.

Furthermore, the research in phylogenetics settle the argument between molecular
biologist and paleontologists in determining the time of the speciation of humans and
chimpanzees. Paleontologists, from studies of fossils, had concluded that speciation
event took place some 15 million years ago. The evaluation of hypotheses using
gene tree-species tree mismatch probabilities in a likelihood ratio test, favors the
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phylogeny with humans and chimpanzees clade [Ruvolo, 1997]. The split of those
two lineages is estimated to occur 4,6 – 5 million years ago [Brown, 2002].

Another problem to debate was the question of the place of origin of humans. The
paleontological evidence indicates that Homo erectus first moved outside of Africa
over 1 million years ago. The hypothesis of multiregional evolution was rejected after
mitochondrial DNA analysis which revealed that the ancestors of modern humans
still lived in Africa 200,000 years ago [Cann et al., 1987]. The individual who carried
the ancestral mitochondrial DNA, called mitochondrial Eve, could accompanied the
individual, called Y chromosome Adam, who also lived in Africa some 200 000 years
ago according to studies of Y chromosome [Pääbo, 1999]. However, the analysis
of β-globin sequences estimates the common ancestor to have lived 800,000 years
ago [Harding et al., 1997], whereas the examination of the PDHA1 gene of an X
chromosome suggest that time to be 1,900,000 years ago [Harris and Hey, 1999]. Ne-
anderthals are the descendants of Homo erectus that lived in Europe and extincted.
Current evidence reveals that the human and Neanderthal lineages diverged before
the emergence of modern humans [Noonan, 2010]. The analysis of mitochondrial
DNA haplotypes in [Richards et al., 2000] shows that farming spread in Europe
was done by a small group of ‘pioneers’ who interbred with the existing pre-farming
communities rather than displacing them [Brown, 2002]. There is no evidence for
the presence of Homo erectus in the Americas. The hypothesis of the origins of hu-
mans in Americas is that humans cross the Bering Strait and came from Asia about
22,500 years ago [Brown, 2002]. Recent studies show that western Eurasian genetic
signatures in modern-day Native Americans originate not only from post-Columbian
admixture, but also from a mixed ancestry of the First Americans [Raghavan et al.,
2014]. The mix of ancient population is likely to have occurred after the divergence of
Native American ancestors from east Asian ancestors, but before the diversification
of Native American populations in the New World [Raghavan et al., 2014]. Moreover,
the presence of related population in Siberia during the period of the Last Glacial
Maximum suggests that route of migration was through the Bering Strait [Raghavan
et al., 2014].

The big question is also to how to provide the food for a rapidly growing popu-
lation. The development of pesticides and the study of its influence can be tackled
with the help of phylogenetics. The authors of [Hammond et al., 2012] report a sig-
nificant phylogenetic signal that shows the sensitivity to the insecticide and the exis-
tence of time lag effects on tadpole mortality. The genomic duplications are crucial
for the evolution of crops like bread wheat Triticum aestivum (see Section 1.3.3.1).
Autopolyploidy and allopolyploidy are a common phenomenon in plants. In next
Section we focus on multiple gene duplications.

1.4.2 Biological study of multiple gene duplications

Here, we show the significance of tackling the scientific problem of multiple ge-
nomic duplications.

Genomic duplication events play crucial role in evolution of life on Earth. The
elemental goal in evolutionary biology is to unravel intricate histories of how the
gene families and genomes evolve. The research in phylogenetics focus on the ways
of detecting and classifying such events extensively studying various plant, bacterial,
fungus and animal genomes [Kellis et al., 2004, Guyot and Keller, 2004, Vision et al.,
2000, Costantino et al., 2014, Aury et al., 2006, Cui et al., 2006, Van de Peer et al.,
2009].
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The phenomenon of whole-genome duplication has impacted the evolutionary
history of plants, yeasts and vertebrates. In particular, WGD was common in the
history of flowering plants, and therefore, this phenomenon has crucial influence on
the evolution of crops [Aury et al., 2006, Van de Peer et al., 2009, Vandepoele et al.,
2003, Sato et al., 2012].

The studies of whole-genome duplication focus on detecting its occurrences. This
phenomenon occurred before the differentiation of species in cereals [Vandepoele
et al., 2003]. Moreover, WGDs affected the evolution of rice, maize [Gaut, 2001]
and soya bean [Schmutz et al., 2010]. The cause of similarities between tomato and
potato is an event of a whole-genome triplication followed by widespread gene loss
that occurred in their common ancestor [Sato et al., 2012].

Important is also to analyze plants that are undesirable in agriculture. The study
of knapweed in [Blair et al., 2012] mention that currently in America coexist two
incompatible types which are a diploid Centaurea diffusa and a tetraploid Centaurea
stoebe subsp. micranthos. The authors suggest that if diploid Centaurea stoebe subsp.
stoebe from Europe is introduced to North America, interspecific hybridization has
the potential to result in even more aggressive invaders [Blair et al., 2012].

Additionally, to mention very recent practical research, WGD was studied in
the context of mechanisms underlying metabolic diversity within plant species and
the potential strategies (and barriers) to introgress novel metabolic traits [Scossa
et al., 2016]. Furthermore, numerous plant WGDs seem associated with periods
of increased environmental stress and/or fluctuations [Vanneste et al., 2014]. In
conclusion, the research on phenomenon of whole-genome duplication not only can
explain ancient evolution but also recent studies concern influence of WGDs on the
quality of crops and the association between WGD and environment. Research on
multiple gene duplications has a great potential for further practical applications.
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Figure 1.2. The whole-genome duplication events, potential locations denoted by
stars, in vertebrates. Figure from [Ponting, 2008].
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Figure 1.3. The whole-genome duplication events in fungi. Red circles mark locations
of suspected polyploidy, blue squares indicate lineages with individuals having hybrid
origin. Figure from [Albertin and Marullo, 2012].
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Figure 1.4. The whole-genome duplication event in Saccharomycotina (subset of first
fully sequenced genomes in 2004). The event was reported already in [Wolfe and
Shields, 1997]. To find branch of Zygosaccharomyces rouxii, which parent speciation
is an ancestor of WGD event, please refer to Figure 1.3. Figure from [Dujon and
Louis, 2017].

Figure 1.5. The whole-genome duplication events in plants (potential locations de-
noted by various marks). Figure from [Albert et al., 2013].



CHAPTER 2
Introduction to reconciliation

In this Chapter we start with the explanation and definition of basic concepts. Sec-
tion 2.1 contains the mathematical description of the relations between species and
between genes. Next, there is an introduction to the reconciliation, a process that
from biological point of view explains the evolution by an introduction of events such
as gene duplications, gene losses or speciations. Throughout this thesis, we do not
consider such events as horizontal gene transfers. Section 2.2 presents the concept
of an evolutionary scenario that explains the evolution of genes within species. The
reconciliation and evolution are illustrated in Sections 2.1 and 2.2 for the case when
both gene tree and species tree are rooted. Then, in Section 2.3 we introduce the
background definitions for the reconciliation when gene trees are unrooted. In such
a case, there is a need of the inference of a rooted gene tree that is derived from
unrooted gene tree. The process of selecting a rooted gene tree we call a rooting of
unrooted gene tree and the results of this process we call rootings. In Section 2.3,
we present the properties of rootings and their connection to unrooted gene tree
topology.

2.1.
Classical rooted reconciliation

In this thesis we propose to use the model of the reconciliation in which a rooted
gene tree is reconciled with its rooted species tree. The work of Goodman [Goodman
et al., 1979] introduced the concept of reconciliation that is using mapping between
trees to explain the differences between a gene and a species tree. That idea was
formalized by Page in [Page, 1994, Page and Charleston, 1997a], where potential
incongruences between trees were explained by introducing evolutionary events such
as gene duplications, gene losses, and speciation events. The events of gene
losses are frequent in both prokaryotes and eukaryotes [Koonin and Galperin, 2003,
Sebat et al., 2004, Demuth et al., 2006], while duplications are recognized as a
driving force of the evolution of eukaryotes [Maere et al., 2005, Lynch and Conery,
2000, Lynch and Conery, 2003, Fischer et al., 2014].

The reconstruction of evolutionary history of individual genes is generally well
established. The theoretical properties and practical aspects of tree reconciliation
have been extensively studied [Koonin and Galperin, 2003, Bourque and El-Mabrouk,
2006, Nakhleh, 2013], e.g., in the context of the introduction to gene, species tree phy-
logeny [Goodman et al., 1979, Page and Holmes, 1998, Slowinski and Page, 1999], the
introduction to mappings and reconciliation [Page, 1994, Mirkin et al., 1995, Guigó
et al., 1996], modeling evolutionary scenarios [Maddison, 1997, Bonizzoni et al.,

32
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Figure 2.1. An example of hypothetical reconciliation for a species tree S and a
rooted gene family tree G. Labels are a for an ape, b for a bear and c for a cat. The
gene tree consists of three genes: two from ape and one from bear. The evolutionary
time interval in this scenario consist of events: 1-gene duplication, 2-speciation, 3-
gene loss, 4-speciation and 5-gene loss. The scenario E is depicted as an embedding
of the gene tree G into the species tree S according to the rule that “species are
containers for genes” generalized to trees.

2005, Arvestad et al., 2009, Doyon et al., 2009, Górecki et al., 2011, Górecki and Eu-
lenstein, 2014a], application of Bayesian methods [Arvestad et al., 2003, Rasmussen
and Kellis, 2011, Sjostrand et al., 2014], probabilistic framework for exploring space
of reconciliations [Doyon et al., 2012], gene tree bootstrapping [Felsenstein, 1985, Be-
hzadi and Vingron, 2006, Durand et al., 2006, Mykowiecka and Górecki, 2018], su-
pertree inference [Hallett and Lagergren, 2000, Ma et al., 2000, Page, 2000, Chen
et al., 2006, Górecki and Tiuryn, 2007b, Bansal and Shamir, 2011, Burleigh et al.,
2011, Górecki and Eulenstein, 2012b, Lafond et al., 2015], error correction in gene
trees [Górecki and Eulenstein, 2012a, Wu et al., 2013, Noutahi et al., 2016], non-
binary species tree [Stolzer et al., 2012], horizontal gene transfer detection [Hallett
and Lagergren, 2001, Górecki, 2010], incomplete lineage sorting influence on de-
tecting duplications [Zhang, 2011, Zheng and Zhang, 2014], maximum parsimony
in case when each event has assigned a cost [Wu et al., 2014], NP-hardness of
duplication-loss-coalescence model [Bork et al., 2017], gene tree reconstruction [Scor-
navacca et al., 2014, Dondi et al., 2017], gene order [Holloway et al., 2013, Duchemin
et al., 2017], metagenomics [Betkier et al., 2015, Mykowiecka et al., 2017], relations
to comparison functions [Górecki et al., 2013], and theoretical results related to the
mathematical properties of tree comparison functions in general [Górecki and Eu-
lenstein, 2014b, Górecki and Eulenstein, 2015, Górecki et al., 2014a, Górecki et al.,
2014b, Górecki et al., 2016, Górecki et al., 2017a, Górecki et al., 2017b]. It has
become clear that molecular evolution cannot only be studied based on the analysis
on the nucleotide level.

2.1.1 Gene and species trees - basic definitions

A species tree is a rooted binary tree with leaves uniquely labeled by the names
of species. Throughout this work, we usually use S to denote a species tree.

A rooted gene tree is a rooted binary tree with leaves labeled by the names of
species. The set of species present in T is denoted by L(T ).

In this thesis we always assume that L(G) ⊆ L(S) for any gene tree G and species
tree S.
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The rooted tree (T1, T2) has two subtrees T1 and T2 whose roots are children of
the tree root. Additionally, for nodes a and b, we introduce a partial order and we
write a � b when a and b are on the same path from the root, with b being closer
to the root than a. Notation a ≺ b means that a � b and a 6= b. In other words if
a ≺ b then a is said to be a descendant of b while b is an ancestor of a. The root
of a tree T we denote by root(T ). The height of a tree is the maximal number of
edges on the path from a leaf to the root of the tree.

By T (v) we denote the subtree of T rooted at v. An cluster for a node v is the
set of all species present in T (v). An interval is a path of nodes in T connecting
two comparable nodes s and s′ such that s � s′.

2.1.2 LCA-based reconciliation
Here, we present the notation from graph theory that is applied to describe

evolutionary processes.
Let T = 〈VT , ET 〉 be a rooted gene tree. The least common ancestor (lca)

mapping, MT : VT → VS , is defined as follows. If v is a leaf in T then MT (v) is
the leaf in S labeled by the label of v. When v is an internal node in T having two
children a and b, then MT (v) is the least common ancestor of MT (a) and MT (b) in
S. An internal node g ∈ VT is called a duplication if MT (g) = MT (a) for a child a
of g.

The duplication cost, denoted by D(T, S), is the total number of duplications
in T . Each non-duplication node of T we call a speciation (including all the leaves).
The total number of gene losses required to reconcile T and S can be defined by:

L(T, S) = 2D(T, S) +
∑

g is internal,a,b children of g

(‖MT (a),MT (b)‖ − 2),

where ‖a, b‖ is the number of edges on the path connecting a and b in S. Finally, we
can define the duplication-loss cost of reconciling a rooted gene tree T and a species
tree S as follows: DL(T, S) = D(T, S) + L(T, S). Examples of the reconciliation are
depicted in Figure 2.2.

We denote by Dup(T ), the set of all duplication nodes in T .

b
a

cc c c
a

b b b
a

b c

G S E

Figure 2.2. An example of reconciliation for a gene tree G and a species tree S with
the least common ancestor mapping (LCA-mapping), LCA-mappings, inferred from
leaf labelings (here depicted with thin arrows), play a crucial role in interpreting
macro-evolutionary events located in gene and species trees.

2.2.
Evolutionary scenarios

In this thesis, we use the idea of interpreting the reconciliation as the model a
biologically consistent scenarios which are embeddings of a gene tree into a species
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tree that induce the location of evolutionary events in the species tree [Górecki and
Tiuryn, 2006]. Identification of such a scenario is made by a function called the
duplication mapping that assigns a gene tree node, interpreted as an event called
a single gene duplication, to a node of a species tree [Guigó et al., 1996, Page
and Cotton, 2002, Bansal and Eulenstein, 2008, Burleigh et al., 2008, Mettanant and
Fakcharoenphol, 2008, Burleigh et al., 2010, Luo et al., 2011, Paszek and Górecki,
2016, Nøjgaard et al., 2017].

In the classical LCA-based reconciliation (see Section 2.1.2), a duplication is a
node g of a gene tree such that g and at least one of its children are mapped to the
same node in the species tree. The example of the joint evolution of genes and species
is depicted on Figure 2.2. The gene duplications are marked, in example, we have a
gene duplication at node ((b, c), (c, c)) in the gene tree G and mapped to the node
(b, c) in the species tree S. In other words, the tree reconciliation identified a single
gene duplication event including its location in the species tree. Reconciliation
explains incongruence between a species tree S and a gene tree G (a tree inferred
from gene sequences) by using the minimal number of duplication and loss events,
called the duplication-loss cost (DL). A typical interpretation of reconciliation is
an embedding of a gene tree into the species tree as shown in Figure 2.2.

The most fundamental properties of the model for a given rooted gene tree and
its corresponding rooted species tree are:

ä reconciliation is linear in time and space [Page, 1994, Ma et al., 2000],

ä there exists exactly one scenario based on LCA reconciliation (see Section 2.1.2)
that minimizes the total number of gene duplication and loss events [Bonizzoni
et al., 2005, Górecki and Tiuryn, 2006],

ä however, the scenario is non-unique for the duplication cost only [Górecki and
Tiuryn, 2006].

ä the number of evolutionary scenarios that are compatible with these trees is
infinite [Górecki and Tiuryn, 2006].

2.2.1 DLS-trees: a model of evolutionary scenarios

Now we present a description of the model of DLS-trees [Górecki and Tiuryn, 2006]
that will be used to represent evolutionary scenarios. A DLS-tree is a binary tree
having two types of internal nodes, denoting gene duplications and speciations,
and two types of leaves denoting gene losses and sampled gene sequences. By
using the standard nested parenthesis notation, we define DLS-trees (introduced
in [Górecki and Tiuryn, 2006], below we use the formula from [Górecki and Eulen-
stein, 2014a], in form from [Paszek and Górecki, 2017a]):

1. a is a single-noded DLS-tree denoting a gene sequence from species a,

2. A− is a single-noded DLS-tree denoting a lost gene lineage, where A is a
non-empty set of species,

3. (R1, R2)+ is a DLS-tree whose root is a duplication node and its children are
DLS-trees R1 and R2 such that L(R1) = L(R2),

4. (R1, R2)∼ is a DLS-tree whose root represents a speciation and its children are
DLS-trees R1 and R2 such that L(R1) ∩ L(R2) = ∅.
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For instance, T = ((a, b)∼, ab−)+ is a DLS-tree in which one copy of a gene is
immediately lost after a duplication event (for simplicity we write ab− instead of
{a, b}−). We say that a DLS-tree is lost if its every leaf is lost. A gene tree can
be extracted from a non-lost DLS-tree T by removing all lost subtrees from T and
suppressing nodes of degree 2. Such operation will be denoted by gt(T ). For example,
gt((((a, b)∼, ab−)+, c)∼) = ((a, b), c).

We say that T is compatible with a species tree S if every cluster of T is present
in S. We write that a DLS-tree T is a scenario for a gene tree G and a species
tree S if gt(T ) = G and T is compatible with S. In such a case, every node g in
G uniquely corresponds to a node in T denoted by ξ(g). Therefore, we can define
mappings ξ : G→ T and φT : G→ S, such that φT (g) is the node in S whose cluster
equals the cluster of ξ(g) (see example in Figure 2.3).

Gene loss

Speciation node

Duplication node

Figure 2.3. An example of scenario T for a gene tree G and a species tree S and two
corresponding mappings: ξ : VG → VT and φT : VG → VS shown for internal nodes
of G (Figure from [Paszek and Górecki, 2017a]).

A scenario in which all internal nodes are mapped into the root of the species
tree we call fat (see [Górecki and Tiuryn, 2006]).

2.2.2 LCA model

LCA model consists of the single most parsimonious scenario that has minimal
number of gene duplication and gene loss events. We presented the formal definition
of this model in [Paszek and Górecki, 2017a].

Let us fix a gene tree G and a species tree S such that L(G) ⊆ L(S). Then
the smallest size scenario for G and S induces the minimal number of gene duplica-
tions [Bonizzoni et al., 2005, Górecki and Tiuryn, 2006]. Such scenarios, which are
equivalent to reconciled trees [Page, 1994], are defined by the lca-mapping between
G and S as follows.
Definition 1 (LCA model of allowed scenarios). The lca-scenario for G and S is
a DLS-tree R∗(G,S) = ρ(root(G),M(root(G))), such that ρ(g, s) = s is when g and
s are leaves. Otherwise,

ρ(g, s) =


(ρ(g, u),L(S(v))−)∼ s � u � M(g), (2.1)
(ρ(p, u), ρ(q, v))∼ M(p) � u ≺ M(g) = s � v � M(q), (2.2)
(ρ(p, s), ρ(q, s))+ M(g) = M(p) = s. (2.3)

where u, v are the children of s in (2.1)-(2.2) and p, q are the children of g in (2.2)-
(2.3).

Having the above definition, we can divide the set of internal nodes of G into two
parts: lca-duplications satisfying condition (2.3) and the remaining elements (i.e.,
satisfying (2.2)) called lca-speciations.
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Now, the classical duplication cost between a G and S is defined as the to-
tal number of gene duplication nodes in R∗(G,S). Note that M = φR∗(G,S) and
LCA(G,S) = {R∗(G,S)}.

2.3.
Unrooted Reconciliation

While the classical reconciliation model has been introduced with rooted trees as
evolution is a time-directed process, in computational practice, most standard phy-
logenetic inference methods from molecular sequences, like maximum likelihood,
maximum parsimony or neighbor joining, infer unrooted gene family trees, and it
is often difficult, to identify credible rootings [Farris, 1970, Fitch and Markowitz,
1970, Felsenstein, 1981, Saitou and Nei, 1987, Ronquist and Huelsenbeck, 2003].

For example, outgroup rooting can result in incorrect rootings when evolution-
ary events cause heterogeneity in the gene trees, and rooting gene trees under the
molecular clock assumption, or similarly by using midpoint rooting, also can result
in error when there is a molecular rate variation throughout the tree [Holland et al.,
2003, Huelsenbeck et al., 2002].

The approach that selects the rooting of an unrooted gene tree basing on min-
imization of a cost function has been addressed in [Chen et al., 2000]. The idea
analyzed in [Górecki and Tiuryn, 2007b, Górecki and Tiuryn, 2007a, Górecki and
Eulenstein, 2012a, Górecki et al., 2013] is to seek the rooting that in the context of a
given species tree indicates the minimum number of evolutionary events such as gene
duplications or gene duplications and losses. Here, we introduce this idea by present-
ing background definitions and selected theoretical results that were fundamental to
this thesis.

The unrooted gene tree is an undirected acyclic connected graph in which
each node has degree 1 (leaves) or 3 (internal nodes), and the leaves are labeled by
the names of species. For an unrooted gene tree U = 〈VU , EU 〉 and an edge e ∈ EU ,
by Ue, we denote the rooting of U obtained from U by placing the root on e. Such a
rooting induces the duplication cost D(Ue, S). We call D-minimal, the rooting or
edges having the minimal duplication cost in the set of all rootings of U . It follows
from the theory of unrooted reconciliation [Górecki and Tiuryn, 2007a, Górecki et al.,
2013] that the set of D-minimal edges, called D-plateau, is a full subtree of U (see
Figure 2.4).

The same property holds for the DL-plateau, that is, the set of edges with the
minimal duplication-loss cost. We use a similar notation for DL-minimal edges,
rootings and so on. The most important property of these plateaus is below.

Theorem 1 (From [Górecki et al., 2013]). DL-plateau is a subgraph of D-plateau.

In this work, the subtree induced by the set of all D-minimal edges will be denoted
by U∗. For X, the set of edges of unrooted tree U , by U |X we denote the smallest
subgraph of U containing all edges from X.

Without loss of generality we assume that every root of a gene tree is mapped into
the root of S, denoted by root(S), and both trees are non-trivial. An edge e = 〈v, w〉
of U is empty if the root of Ue is a speciation, i.e., MUe(v) 6= root(S) 6= MUe(w).
We call e double if MUe(v) = root(S) = MUe(w). Otherwise, e is called single. A
single edge e is called v-incoming or w-outgoing if MUe(v) 6= root(S) = MUe(w).
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Figure 2.4. An example of plateaus. Top: Unrooted gene tree G1 with DL-plateau,
and with D-plateau subtrees marked. The corresponding species tree S with two
locations of duplications shown. The number placed above the edge in unrooted
gene tree denotes the duplication-loss cost when DL-plateau is marked (and dupli-
cation cost for D-plateau) of the reconciliation of the rooting at that edge with S.
Bottom: All D-plateau rootings of G1.

Let v be an internal node of U , then a star with a center v consists of three edges,
denoted by ea, eb and ec, sharing v and incident to nodes a, b and c, respectively
(see Figure 2.5). The are several types of possible star topology based on the above
classification of edges: the S1 star has one v-incoming edge and two v-outgoing edges,
the S2 star has exactly two v-outgoing edges and one empty edge, the S3 star has
two v-outgoing edges and one double edge, the S4 star all 3 edges are double, and
the S5 star has one v-outgoing edge and two double edges. The star topologies are
depicted in Figure 2.5.

a

doublesingle empty

S3S1 S2 S4 S5

b

vc

Ta

Tb

Tc

Figure 2.5. Types of stars. Star topology with the center v, types of edges and stars,
where > denotes root(S). (Figure from [Paszek and Górecki, 2016]).

Theorem 2 (Adopted from [Górecki and Tiuryn, 2007a]). For a given unrooted gene
tree U , we have

ä either U has exactly one empty edge or G has at least one double edge,

ä if the DL-plateau of U consists of exactly one edge, then this edge is either
empty or double, and all other edges are single.

ä if the DL-plateau of U has more than one edge, then it contains all edges present
in stars S4 and S5, and all other edges are single.
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Note that if a gene has an empty edge, then it has at most two stars S2 (see
examples in Figure 5.2).

The presence of the star called S2 having one empty edge in an unrooted gene
tree will be of major interest in our analysis. In such a case the remaining edges
are single, and by using the notation from Figure 6.1, for x ∈ {a, b} we have that
MU〈v,x〉(x) 6= root(S) = MU〈v,x〉(v).



CHAPTER 3
Genomic duplications

This Chapter presents the concept of genomic duplication and introduce the formal
definitions to describe it. Moreover, it contains our theoretical results in the area of
duplication models from [Paszek and Górecki, 2016, Paszek and Górecki, 2017a].

The desired research goal is to discover the locations of gene duplications. In
Section 3.1 we explain various approaches of detecting whole-genome duplications.
The conclusion from that review is the fact of the absence of a method which is based
on phylogenetics and reconciliation of gene trees with a species tree. Probabilistic
methods that use phylogenetic information exist but this information is used to refine
main approach.

Section 3.2 is an introduction to the concept of multiple gene duplication.
The reconciliation model described in Chapter 2 is defined for a single rooted

gene tree. In such a case scenario of the evolution defined by the lca-mapping is
the most parsimonious, that is, it requires the minimal number of gene duplications
and gene losses events [Górecki and Tiuryn, 2006]. However, to properly depict
evolution we need to incorporate information from numerous gene trees. In that
case, the problem becomes more complex, i.e., the phenomena of whole-genome
duplication and hybridization result in creation of organisms with multiple copies of
genes. This phenomena is not unusual, polyploids are common among plants, as well
as among certain groups of fish and amphibians. Moreover, the mechanisms that lead
to tandem duplications also may result in a duplication of multiple number of genes.
Therefore, to obtain models more suitable for multiple gene trees, we may relax the
reconciliation based on lca-mapping for a single gene tree. In Section 3.3 we present
description of such models. In particular, we introduce the model from [Paszek
and Górecki, 2016] that preserves the minimal number of single gene duplications.
Moreover, we propose mathematical description, classify and compare such models
(see [Paszek and Górecki, 2017a]).

Section 3.4 presents existing studies that focus on analyzing multiple gene du-
plications and are based on reconciliation. The research described in this thesis
concerns the unsolved problems named in Section 3.4. Solutions to that problems
are a milestone in the development of successful method of detecting whole-genome
duplications and the approach of this methods is novel in comparison to existing
ones described in Section 3.1.

Finally, this Chapter presents related research in order to show the context of our
work that enables the evaluation of pioneering nature of the project and its impact
on the development of the research field. Moreover, the review of related research
reveal interesting algorithmical and mathematical (topological) problems and the
opportunity to challenge them was also our motivation.

40
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3.1.
Whole genome duplications

In this dissertation we study problems that concern multiple gene duplication events.
The special case of such events are whole-genome duplication (WGD) events. The
phenomenon of WGD and its impact on the theory of evolution is described in
Chapter 1. In Section 1.4.2 we present arguments for the great potential of practical
applications of multiple gene duplications studies.

Section describes existing methods of detection of whole-genome duplications.
Identifying genomic duplications is a challenging task as duplicated genome frag-
ments can be either lost or retained, in each organism independently leading to a
patchy distribution of duplicated copies (see Figure 3.1).

3.1.1 Methods of detection

The methods of detecting whole-genome duplications can be divided into three
categories: based on synteny and colinearity comparison of genomes [Kellis et al.,
2004, Tang et al., 2008, Holloway et al., 2013], the estimation of the age distribution of
paralogous gene pairs [Vision et al., 2000, Lynch and Conery, 2000, Blanc and Wolfe,
2004], and phylogenetic tree inference [Bowers et al., 2003, Jiao et al., 2011, Rabier
et al., 2014].

Synteny uses the genome sequence of given species to infer relatively recent whole
genome duplications. WGD events have characteristic signature of matching pairs
of synteny blocks. The process of detection of whole genome duplication is based on
interspecies comparison of genomes [Kellis et al., 2004, Tang et al., 2008, Lyons et al.,
2008]. Limitation of this approach is the requirement of data on whole genomes with
synteny locations. Moreover, extensive rearrangements of the genome and loss of
copies of genes over time reduce the size of synteny blocks and hinder the identifica-
tion of ancient WGD events.

Another method, calledKS , is the estimation of the age distribution of paralogous
gene pairs through the average number of synonymous substitutions per synonymous
site [Vision et al., 2000, Lynch and Conery, 2000, Blanc and Wolfe, 2004]. However,
negative impact on KS approach have factors like: excessive gene loss, molecular rate
heterogeneity among lineages, gene families or even genes, concentration of duplicate
pair estimates on more recent nodes, and saturation of Ks between older paralogue
pairs. For example, WGD event inferred by synteny method was not evident in
KS plot for paralogue pairs of Arabidopsis thaliana [Blanc and Wolfe, 2004, Jiao
et al., 2011]. Hence, KS method is the most effective in detecting recent WGD
events. Moreover, both synteny and KS method do not directly estimate the timing
of whole genome duplications.

The mapping of the paralogs created by given WGD event onto phylogenetic trees
can be used to determine whether the paralogs resulted from a duplication event be-
fore or after a given speciation event [Bowers et al., 2003]. Similar phylogenetic
strategy that use gene family trees of many species was applied to detect and locate
WGD events [Jiao et al., 2011, Jiao et al., 2012, McKain et al., 2012]. First, duplica-
tion nodes are selected from those estimated to occur on a specific branch of species
phylogeny. Then, the age distribution of these duplications is analyzed in a similar
way to KS values. The advantages of this method are: the potential to detect much
older WGD events than synteny or KS based methods, and the ability of estimating
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the time and the phylogenetic location of the WGD event. The limitation of this
method is the selection of particular duplications that have to occur in given time
interval. The authors of [Rabier et al., 2014] proposed a probabilistic model to refine
this method. The WGD inference that bases on the mutation rate and incorporates
the protein-protein interaction network perspective is presented in [Zhu et al., 2013].
In conclusion, phylogenetic methods are based on probabilistic approach (bootstrap,
Bayesian Information Criterion).

The methods proposed in this dissertation can be classified as phylogenetic. In
the next sections, we focus on the phylogenetic concepts needed to understand the
problem of genomic duplication.

3.2.
Multiple gene duplications - reconciliation approach

The problem of discovering locations of gene duplications and multiple gene duplica-
tions is fundamental to understand the way gene families and genomes evolve. That
lead to the studies on the inference of large genomic duplications, called also
multiple gene duplication events, that can span through thousands of genes
families, in which parts of a genome are duplicated. In fact, it is known that a large
duplication event is usually followed by many gene losses and gene rearrangements
(see Chapter 1). In consequence, the reconstruction of such events may be difficult
(see Figure 3.1). The reconciliation of a single gene family tree with a species tree is
relatively simple from computational point of view (see Section 2.1). However, when
focusing on multiple gene duplications, the problem becomes more complex.

We can apply the reconciliation in order to identify the location of gene duplica-
tions in the species tree. Then, we are able to infer the event of genomic duplication
by grouping single duplication events located at the same node of a species tree.
Now we can formulate the general concept of the genomic duplication problem as
the problem of clustering as follows:

Given a collection of gene trees and a species tree.
Find the minimal size clustering of all single gene duplications.

The formulation of the problem defined as above for the classical LCA-based
reconciliation (as depicted in Figure 2.2), requires perfect trees with complete data
without errors. In practice, errors in sequencing, computational limitations or bio-
logical processes such as gene loss or horizontal gene transfer make obtaining perfect
trees an impossible task. Therefore, in general, the LCA-reconciliation that locates
a single duplication event on the lowest possible node in the species tree is not ap-
propriate to model multiple duplication events (see Figure 3.1).

3.3.
Models of allowed evolutionary scenarios

In the pioneering article [Guigó et al., 1996], Guigó et al. in their approach to detect
multiple gene duplication episodes proposed to relax the LCA-reconciliation, by al-
lowing some additional locations for single duplication events. In result, this method
may lead to the increase of the reconciliation cost (see examples in Figure 3.2).
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Figure 3.1. An example of evolution with an occurrence of the duplication of multi-
ple genes. Top: A species tree in which every node represents a species, depicts the
relation between three species: a pear, an apple and an ancestor of pear and apple.
Inside a node, there is a selected fragment of a sequence of the corresponding species.
Due to a multiple duplication (marked by a green star in the root of the tree), the
sequence of three genes (denoted by colors red, green, blue) were duplicated in the
ancient ancestor of pear and apple. However, as a result of processes that cause
gene losses, current sequences of pear and apple genomes contain different combi-
nations of genes. Center: An example of the inference of gene trees from species.
Up: A species tree in which a node represents a species. Inside a leaf node, there
is a selected fragment of a sequence of the corresponding species. The lines connect
the sequences of homologous genes, that is sequences identified to share a common
ancestor. Below: Inferred rooted gene trees that are based on the similarity of
sequences. Bottom: An example of an evolutionary scenario in the LCA reconcil-
iation. The gene trees inferred from sequences suggest three events of single gene
duplication instead of one multiple duplication event as indicated in top part of the
picture.

In this Section we describe models that for a given gene tree and a species tree
induce the set of the best evolutionary scenarios, called allowed scenarios, evalu-
ated by criteria defined by model (please refer to Section 2.2 for the definition of an
evolutionary scenario).

For a gene tree G and a species tree S, a model of allowed scenarios, or a
model, denoted by A(G,S) is a set of scenarios, called allowed scenarios, for G
and S.
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In conclusion, we can reformulate the problem in the following way:

Given a collection of gene trees, a species tree and a model of allowed scenarios.
Find the minimal size clustering of all single gene duplications.

We distinguish various models of allowed scenarios that we describe in the fol-
lowing sections.

The LCA model that induces only one allowed scenario which is a product of
reconciliation of a gene tree with the species tree is described in Section 2.2.

3.3.1 GMS model

Let us describe the model from the pioneering work of Guigó et al., which was pro-
posed in the original paper that introduce multiple gene duplications [Guigó et al.,
1996]. This model was used in the majority of the following studies of the sub-
ject [Page and Cotton, 2002, Bansal and Eulenstein, 2008, Burleigh et al., 2008, Met-
tanant and Fakcharoenphol, 2008, Burleigh et al., 2010, Luo et al., 2011].
Definition 2 (GMS model of allowed scenarios). GMS(G,S) consists of all scenarios
T having the minimal number of duplications such that for any lca-duplication node
d in G:

ä FT (d) � M(d), if d = root(G),

ä FT (d) = M(d), if M(d) = M(par(d)),

ä M(d) � FT (d) ≺ M(par(d)), otherwise.

The restrictiveness of the model of allowed scenarios GMS was the reason for us
to seek for more general model definition.

3.3.2 PG model - a parsimonious model that preserves minimal num-
ber of single gene duplications

Now, we describe our model introduced in [Paszek and Górecki, 2016]. To model
gene duplication episodes we allow to relocate a gene duplication from its lca-mapping
location to one of its ancestors. In other words, we introduce mappings representing
evolutionary scenarios that can differ from the scenario defined by the lca-mapping.
Additionally, we require that the total number of gene duplications is minimal. To
ensure biological correctness of such mappings, we introduce several conditions, e.g.,
time order preservation. The restriction to preserve the minimal number of sin-
gle gene duplications is motivated by the parsimony. The increase in number of
gene losses is justified by the desire to represent the theory of evolution, in which
duplication of numerous genes is followed by many gene losses [Ohno, 1970]. The
commonness of polyploidy strongly supports that theory (see Chapter 1 for more
details). The formal definition of the model is:
Definition 3 (PGmodel of allowed scenarios). PG model can be defined by a mapping
FG : VG → VS, which is called valid if the following conditions are satisfied:

ä FG(a) � FG(b) if a � b (time consistency),

ä FG(a) = MG(a) for any speciation node a (fixed speciations),

ä FG(a) � MG(a) for any duplication node a (duplication can be raised),
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ä FG(a) ≺ MG(b) for any speciation node b such that a ≺ b (fixed number of gene
duplications).

It can be shown that every valid mapping uniquely defines an evolutionary sce-
nario represented by a DLS-tree [Górecki and Tiuryn, 2006], which will be called an
allowed scenario for PG model. Additionally, every DLS-tree obtained from a valid
mapping can be transformed into the optimal evolutionary scenario (i.e., lca-based
scenario), by a sequence of TMOVE (i.e., lowering duplication) transformations.
Please refer to [Górecki and Tiuryn, 2006] for more details on formal modeling of
evolutionary scenarios. PG(G,S) is the set of all scenarios for G and S having the
minimal number of gene duplications. Observe, that the above model is more general
than the GMS model [Bansal and Eulenstein, 2008].

3.3.3 FHS model

Th most general model was proposed in [Fellows et al., 1998].
Definition 4 (FHS model of allowed scenarios). In this model, we call it the FHS
model, any scenario for G and S is allowed.

Depending on the rules of how to cluster single gene duplications, one problem
for this model is NP-hard, whereas the solution to other problem is trivially a fat
scenario. Please refer to Table 3.1 for more details. The definition of fat scenario is
in Section 2.2, the definition of genomic duplication problems in Section 3.4.

a

b c

a

b c

a
b b

a

b c

Figure 3.2. An example of evolutionary scenarios for a gene tree G = (a, (b, b))
with single duplication and a species tree S = (a, (b, c)). Left: A gene tree G with
single duplication marked by blue rectangle. Right: Three embeddings of a gene
tree G into species tree S that represent evolutionary scenarios. Observe, that first
scenario defined by LCA mapping has minimal location of the duplication in the
species tree. It infers the minimal number of duplication and loss events. The formal
relation between scenarios described in [Górecki and Tiuryn, 2006] we can treat as
the movement of the duplication up in the species tree. Note, that there are two
kinds of moves (see [Górecki and Tiuryn, 2006]). First kind is like the move between
the first and the second scenario, it does not increase the number of duplications,
whereas the second kind, like move between the second and the third scenario, does
increase the number of duplications. The last (third) scenario is an example of a fat
scenario. The first scenario is allowed in LCA model. The first and second scenarios
are possible variants in the GMS model. All three scenarios are allowed in FHS
model.

3.3.4 Interval models

In this Section we present the idea of interval models, the models in which al-
lowed duplication locations can be defined by a path in the species tree. The concept
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of intervals was introduced in [Czabarka et al., 2012] in a more general framework
without requirement that the intervals induce a biologically consistent evolution-
ary scenarios. Below, we present a refined definition that introduce restrictions like
preserving the monotonicity of nodes in gene tree.
Definition 5 (Interval model of allowed scenarios). A model A is an interval model
if for every gene tree G, a species tree S and T ∈ A(G,S), we have:

ä for every lca-speciation g in G, ξ(g) is a speciation node in T ,

ä for every lca-duplication d, FT (d) ∈ Int(d), where Int(d) is an interval in S,
connecting two comparable nodes s and s′; by I(d) we denote the pair 〈s, s′〉,

ä for any duplications d � d′, min I(d) � min I(d′) and max I(d) � max I(d′).

The intervals for LCA are trivially defined by I(d) = 〈M(d),M(d)〉, while intervals
in GMS are given above in the definition of models. In PG the interval Int(d) is the
maximal interval of nodes � M(d) such that there is no lca-speciation g satisfying
FT (g) ∈ Int(d). It should be clear that LCA, GMS and PG satisfy the above condi-
tions, while FHS does not. Directly from this property we have that every allowed
scenario in the interval model has the minimal number of duplications, therefore, PG
is the most general interval model for biologically consistent evolutionary scenarios
(see Figure 4.4 for example).

3.4.
Genomic duplication problems

3.4.1 Rules of clustering single gene duplications

Two fundamental issues arise when dealing with genomic duplication problems:
(1) a model of allowed evolutionary scenarios and (2) the rules of clustering gene
duplications from gene trees into a single multiple duplication event. The model is
described in previous section, here we show the definitions of clustering rules.

To provide an accurate model of many simultaneous genomic duplications, we
need additional rules that determine when two single duplications can be clustered.
Given a model of allowed scenarios, we can distinguish three variants of multiple
gene duplication problems (see Figure 3.3), that differ in such rules:

ä Episode Clustering - gene duplications can be clustered if they can be
mapped to the same node of the species tree [Guigó et al., 1996, Page and
Cotton, 2002, Bansal and Eulenstein, 2008],

ä Minimum Episodes Clustering - duplications from the same gene tree can
be clustered if they are not comparable and both can be mapped to the same
node of the species tree [Guigó et al., 1996, Bansal and Eulenstein, 2008],

ä Gene Duplication Clustering - gene duplications cannot be clustered if
they occur in the same gene tree [Fellows et al., 1998].

In this thesis we consider two variants of the above problems: for rooted gene trees
and unrooted gene trees. Therefore, we use abbreviations REC and RME to denote
rooted variants of Episode Clustering and Minimum Episodes, respectively, and UEC
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Figure 3.3. An example of REC, RME and GD duplication clustering with one gene
tree, where GD denotes Gene Duplication Clustering. Left: a gene tree with three
gene duplications mapped to b. Right: embeddings (scenarios) of the gene tree into
a species tree showing a solution to REC, RME, and GD problems, respectively. In
REC all duplications are clustered together, while in RME the top duplication cannot
be clustered with its children. Hence, the solution to RME consists of two clusters
represented by rectangles. GD clustering has 3 clusters as duplications from the same
tree cannot be clustered together.

and UME to denote Episode Clustering and Minimum Episodes for unrooted gene
trees.

REC Problem can be treated as a simplified version of the general genomic dupli-
cation problem in which the goal is to find only the minimal number of nodes of the
species tree at which the multiple duplication event occurred. In other words, solu-
tions to REC rather provide a rough estimation of the genomic duplication events.
For example, if two WGD occurred between two consecutive speciation events, they
will be clustered as one multiple duplication event. From the biological point of view,
the most desired are solutions to RME. See also Figure 3.3.

3.4.2 Related work

REC Problem is to find evolutionary scenarios with the minimal number of loca-
tions of duplication episodes in a species tree. In other words, two duplications can
be clustered if they have the same location in the species tree. The problem was
introduced by Guigó et al. [Guigó et al., 1996] with the GMS-model and a heuristic
solution. Page and Cotton [Page and Cotton, 2002] formulated the problem of lo-
cating episodes of gene duplication as a set cover problem and proposed a heuristic.
Bansal and Eulenstein [Bansal and Eulenstein, 2008] introduced the polynomial time
algorithm to solve REC Problem under GMS-model which is a special case of Tree
Interval Cover Problem (TIC) [Burleigh et al., 2008]. Burleigh et al. [Burleigh et al.,
2008] presented polynomial time solution to TIC Problem. Finally, Luo et al. [Luo
et al., 2011] proposed a linear time and space algorithm for TIC Problem that ap-
plies to REC Problem under every interval model. REC Problem for FHS-model has
a trivial outcome with one cluster.

Gene Duplication Clustering Problem is similar to REC Problem with the dif-
ference that a cluster cannot have two gene duplications from the same tree. Gene
Duplication Clustering Problem for the FHS-model is NP-hard [Fellows et al., 1998].

Clustering for the REC Problem could be refined by excluding cases in which
a duplication and its ancestor duplication (from the same gene tree) are clustered
together. Such a formulation of multiple gene duplication problem is called RME
Problem [Guigó et al., 1996, Bansal and Eulenstein, 2008] (see Figure 3.4).

The first polynomial time algorithm for RME Problem under GMS-model was pro-
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Figure 3.4. An example of a solution to RME Problem for the gene tree G and
species tree S from Figure 2.2. Left: The gene tree with duplication marked. Right:
The minimal scenario defined by LCA mapping and the optimal scenario for RME
clustering under GMS model.

posed in [Bansal and Eulenstein, 2008], whereas the optimal linear time and space
algorithm in [Mettanant and Fakcharoenphol, 2008, Luo et al., 2011]. The concept
of intervals was introduced in [Czabarka et al., 2012] in a more general framework
without requirement that the intervals induce a biologically consistent evolution-
ary scenarios. The iterative algorithm from [Czabarka et al., 2012] implemented
in straightforward way has O(|S|2|G|) complexity ([Czabarka et al., 2012] suggests
that the algorithm from [Bansal and Eulenstein, 2008] can solve instances for every
interval model, however, it is designed for GMS-model and cannot be generalized).
In summary, there was a need of a general algorithm that solves RME. In Chapter 4
we present a solution for a variety of models, in particular, the linear time algorithm
applicable for any interval model.

Moreover, there were no solutions to the variants of the problem in which input
gene trees are unrooted.

Table 3.1. Summary of genomic duplication problems for rooted gene trees. Here,
we assume that an instance consists of a set of rooted trees and a species tree all
having n leaves in total.

Model LCA GMS PG FHS
Problem
Episode O(n) time O(n) by O(n) we adapted in trivial solution
Clustering trivial solution Alg. from [Paszek and Górecki, 2016] one location
REC [Luo et al., 2011] Alg. from [Luo et al., 2011] the root
Minimum O(n) time O(n) by O(n) complexity unknown
Episodes easy Alg. from our interval Alg. in exponential Alg. in
RME [Luo et al., 2011] [Paszek and Górecki, 2017a] [Paszek and Górecki, 2017a]
Gene O(n) time complexity complexity NP-hard
Duplication easy unknown unknown [Fellows et al., 1998]
GD

In this Chapter we presented mathematical foundations for general genomic du-
plication problems introduced in [Paszek and Górecki, 2017a]. In summary, often
problems in computational biology are defined in two variants: for rooted and un-
rooted gene trees independently. There are algorithms for classical computational bi-
ology problems defined for unrooted trees like [Górecki and Eulenstein, 2011, Górecki
and Eulenstein, 2012b, Górecki and Eulenstein, 2012a, Chang et al., 2013, Górecki
and Eulenstein, 2014c, Betkier et al., 2015]. Finding a solution for a particular prob-
lem in the unrooted variant is sometimes more desired as rooting a gene tree might
be difficult. In Chapter 5 and in Chapter 6 we present the solutions to Unrooted
Episode Clustering (UEC), and Unrooted Minimum Episodes (UME) prob-
lems, respectively (see [Paszek and Górecki, 2016, Paszek and Górecki, 2017b, Paszek
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and Górecki, 2018]). The fundamental result that enabled the creation efficient algo-
rithms for UME was the linear time solution to RME universal for any interval model
described in Chapter 4 (see [Paszek and Górecki, 2017a]).

Table 3.1 summarizes the genomic duplication problems for rooted gene trees.
The corresponding problems for unrooted gene trees were open. In this disserta-
tion, efficient algorithmic solutions to UEC and UME under PG model, proposed
in [Paszek and Górecki, 2016, Paszek and Górecki, 2018], are described in Chapter 5
and Chapter 6.



CHAPTER 4
Minimum Episodes Problem for
rooted gene trees

In this Chapter we focus an the problem of multiple genomic duplications for the
case where all gene trees are rooted. The description of the problem is presented in
Section 4.1. The solution to that problem is described in Section 4.2, which presents
description of the algorithms. In particular, we propose a linear time and space
algorithm for solving RME Problem jointly for any interval model including GMS
and PG models. Next, we describe how it can be applied to solve RME for the most
computationally demanding FHS model.

Section 4.5 describes the datasets which were selected by us for experimental
evaluation of our algorithms on real biological data. Section 4.6 contains a compar-
ative study for RME Problem under four models of allowed scenarios for simulated
and biological datasets. This chapter contains the main results published in [Paszek
and Górecki, 2017a].

4.1.
Multiple gene duplications

Detecting the events of multiple gene duplications is both interesting from the math-
ematical and algorithmic point of view and desired by biologists in their studies.
This statement is supported by the fact that novel methods and their application
to detect the phenomenon of whole-genome duplication are published in top-rated
journals like Nature or Science [Vision et al., 2000, Lynch and Conery, 2000, Bowers
et al., 2003, Kellis et al., 2004, Tang et al., 2008, Jiao et al., 2011].

Two fundamental aspect are crucial to define a multiple gene duplication problem.
First, is to choose a model of allowed evolutionary scenarios, which is responsible for
determining the allowed locations in the species tree for gene duplications. Next, is
to define the rules of clustering gene duplications from gene trees, which are assigned
to the same location, into a single multiple duplication event. Then, the problem is
to find the clustering of the minimal size.

4.1.1 The definitions of RME problems

First, we introduce the cost for determining the number of multiple gene dupli-
cation episodes for a collection of evolutionary scenarios.

Let R be a collection of scenarios compatible with a species tree S. We say that
duplication nodes d and d′ from R are clusterable, denoted d ∼c d

′, iff
ä (1) d and d′ have the same cluster and

50
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ä (2) if d and d′ are present in the same DLS-tree then either d and d′ are
incomparable or equal.

Then, the minimum number of duplication episodes for a collection of scenarios,
denoted MES(R, S), is the minimal size of the partition of the set of all duplication
nodes present in scenarios such that every two duplications from the same partition
set are clusterable. The elements of the partition we call (multiple duplication)
episodes. Formally,

MES(R, S) = min⋃
P=Dup(R)

{|P | : ∀A∈P∀d,d′∈A d ∼c d
′},

where Dup(R) is the set of all duplication nodes present in R.
The minimum number of episodes for a collection of scenarios can be obtained

as follows.

Lemma 1. For a collection R of scenarios compatible with a species tree S,

MES(R, S) =
∑
v∈VS

max
T∈R

duppath(T, v),

where duppath(T, v) is the maximal (node) length of path in T that consists of com-
parable duplication nodes whose cluster equals the cluster of v.

Proof. It follows from the fact that every v ∈ S requires at least maxT∈R duppath(T, v)
episodes in order to satisfy the condition from the MES score definition.

Originally the problem of multiple gene duplications was introduced by [Guigó
et al., 1996] and formalized in [Fellows et al., 1998, Bansal and Eulenstein, 2008],
however, despite similar concept of multiple gene duplication these problems are not
equivalent due to the differences in the model of allowed scenarios.

Multiple duplication studies generate broad class of problems that vary in proper-
ties that depend on the method of clustering and the model of allowed scenarios. Let
choose minimum episodes as the clustering method. Now, we obtain the following
meta-problem parameterized by a model.

Problem 1 (Minimum Episodes under A). Given: a collection of gene trees G1,
G2, . . . , Gn a species tree S and a model of allowed scenarios A. Compute minimum
episodes score, or RME score, as:

RMEA(G1, G2, . . . , Gn, S) = min∀iRi∈A(Gi,S)MES({Ri}i=1,2,...,n, S).

Examples of RME clustering are depicted in Figure 4.1 and in Figure 4.2. Note
that the definition of RMEGMS score is equivalent to definitions from [Bansal and
Eulenstein, 2008, Luo et al., 2011].
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Figure 4.1. An example of solutions to RME Problem under LCA, GMS, PG and
FHS for a species tree S and gene tree G (Figure based on Figure from [Paszek and
Górecki, 2017a]). For interval models (LCA, GMS, PG) the duplication nodes are
marked by species tree nodes from the corresponding interval. For FHS the duplica-
tion and speciation nodes which are ancestors of some duplication node are marked
according to their lca-mapping. Each highlighted region in a gene tree denotes nodes
mapped into the same node in the species tree in an RME clustering. The numbers
near regions denote the contribution of each region to the overall optimal RME score.
The RME score is 2 in every model.
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Figure 4.2. An example of solutions to RME Problem under LCA, GMS, PG and
FHS for a species tree S and gene tree G′ (Figure based on Figure from [Paszek and
Górecki, 2017a]). For the description of markings please refer to Figure 4.1. The
numbers near regions denote the contribution of each region to the overall optimal
RME score. RMELCA, RMEGMS and RMEPG score for G and S is 7, 6 and 5, respec-
tively. In order to obtain RMEFHS score the speciation node at the root of G has to
be converted into a duplication. In consequence, the optimal RME clustering consists
of 4 episodes, where all duplications are mapped to the root of S.

Theorem 3. For any collection of gene trees G and a species tree S we have

RMEFHS(G, S) ≤ RMEPG(G, S) ≤ RMEGMS(G, S) ≤ RMELCA(G, S).

Proof. It follows from inclusions of the corresponding allowed scenarios sets.

See also Figure 4.3 for a more complex example of episode clustering.
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Figure 4.3. Selected optimal solutions to RME Problem under all models for two
input gene trees {G,G′} and S from Figure 4.1 and Figure 4.2 (Figure based on
Figure from [Paszek and Górecki, 2017a]). Top: The gene trees and the species
tree. Bottom: The solutions to RME Problem is presented as an embedding of G
and G′ into S. Rectangles denote episodes, while circles in FHS scenario denote the
speciation nodes converted into duplications. Embeddings are decorated with RME
scores (in large font size).
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4.2.
Solution to the RME problem

In [Czabarka et al., 2012] we can find a study of the solution to a genomic duplication
problem, however, the proposed model of intervals was used without the requirement
that the intervals can model properly evolutionary scenarios. The authors presented
a general iterative algorithm to compute the RME score given an interval model
(depicted here in Algorithm 1). [Czabarka et al., 2012] provided a proof of correctness
and claimed that the algorithm from [Bansal and Eulenstein, 2008] can be used to
solve efficiently the problem. However, the latter algorithm is designed to solve RME
Problem under GMS and cannot be generalized due to a simple interval model (e.g.,
intervals for comparable duplications in GMS intersect in at most one node). Starting
with a naive implementation of Algorithm 1, we need O(|S|) steps for the main loop
and for the most expensive line 5 at least O(|G|2). Hence, the time complexity of
Algorithm 1 is O(|S||G|2).

In summary, we have the following complexity results for RME Problem: the
complexity for FHS is open, GMS can be solved in linear time [Luo et al., 2011],
while PG can be solved in O(|S|2|G|) by naive implementation of Algorithm 1. In
the next section, we propose an efficient linear time algorithm for RME score inference
for any interval model.

Algorithm 1 RME score under an interval model (adopted from [Czabarka et al.,
2012])
1: Input: A collection of gene trees G1, G2, . . . , Gn, a species tree S and a set of

duplication nodes Dup ⊂
⋃

i VGi such that for every d ∈ Dup, I(d) = 〈s, s′〉, where
s � s′ are the ends of the interval associated with d.

2: Output: RME(G1, G2, . . . , Gn, S).
3: Let t be the lowest among top nodes of intervals, i.e., t = mind max I(d).
4: Let k be the maximal length of the t-chain, where t-chain is a path consisting of

duplication nodes d such that max I(d) = t.
5: For every t′ mark a duplication d such that t ∈ Int(d) if there is no t′-chain having

at least k nodes below d
6: Remove all marked duplication intervals, add k to the score and repeat steps 3-6

until there is no interval left.

4.3.
Linear-time solution to RME under interval models

In this section, we propose Algorithm 2 and we show that it is a linear time variant of
Algorithm 1. Having this, there is no need to provide a separate proof of correctness
of Algorithm 2, because it is already given in [Czabarka et al., 2012] for Algorithm 1.
The following Lemmas 2, 3 and 4 study the correspondence between Algorithm 2
and Algorithm 1.

Lemma 2. The sequence of nodes t visited in the main loop of Algorithm 1 is equal
to the sequence of nodes t (from T ) visited in the main loop of Algorithm 2.

Proof. It follows easily from the construction of tree T from Algorithm 2.
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Lemma 3. For every fixed t, visited in the main loops of Algorithm 1 and Algo-
rithm 2, values of k from line 4 of Algorithm 1 and line 8 of Algorithm 2 are equal.

Algorithm 2 Solution to RME under an interval model
1: Input/output: see Algorithm 1.
2: Let T be a subtree of S induced by {max I(d)}d∈Dup;

Prepare lca data structures for T .
3: For d ∈ Dup: lowest(d) := min Int(d) ∩ VT ,

where Int(d) = {v : min I(d) ≤ v ≤ max I(d)}.
4: For t ∈ T : U(t) := {d ∈ Dup : max I(d) = t and

(
∃id = root(Gi) or par(d) /∈ Dup

or par(d) ∈ Dup and max I(d) 6= max I(par(d)
)
}

5: For t ∈ T : B(t) := {d ∈ Dup : lowest(d) = t and ch(d) ∩ Dup = ∅},
where ch(d) is the set of children of d.

6: RME := 0;
For every gene tree node g: g. active := g ∈ Dup.

7: For t ∈ T in postorder // Main loop, lines 7-29
8: Let k := maxr∈U(t) epi(r), where under assumption that max ∅ = −∞,

epi(r) =

{
−∞ if not r. active
1 + max(0,maxc∈ch(r) epi(c)) otherwise.

9: If k = −∞ Then B(parT (t)) := B(parT (t)) ∪ B(t)
Else {

10: RME := RME+k; cand := ∅
11: For d ∈ B(t) // Loop A, lines 11-22
12: h := 1; newcand := null
13: While h ≤ k and not newcand // Loop A’, lines 13-21
14: d. visited := t
15: If d is the root of a gene tree Then Break
16: σ := sibling(d); d.h := h; d := par(d)
17: If not d. active Then Break
18: If lcaT (lowest(d), t) 6= t or h = k Then newcand := d
19: Elif not σ. active Then h := h+ 1
20: Elif σ. visited = t Then h := 1 + max(k, σ.h)
21: Else Break
22: If newcand Then cand := cand∪{newcand}
23: For d ∈ B(t) // Loop B, lines 23-24
24: While d. active and d. visited = t: { d. active := false; d := par(d) }
25: For d in cand // Loop C, lines 25-28
26: If not left(d. active) and not right(d. active) Then
27: If lcaT (lowest(d), t) = t Then B(parT (t)) := B(parT (t)) ∪ {d}
28: Else B(lowest(d)) := B(lowest(d)) ∪ {d}
29: }
30: Return RME

Lemma 4. At the beginning of main loops, d is a duplication with a non-removed
interval in Algorithm 1 if and only if d is an active (i.e., d.active=True) duplication
in Algorithm 2.
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Proof. The proof is by induction, where Loop A corresponds to line 5 from Algo-
rithm 1. The key observation is that marked nodes in line 5 (Algorithm 1) are visited
in Loop A (line 14, Algorithm 2).

The next lemma describes the property of the main structure for efficient marking
and removal of intervals.

Lemma 5. For every fixed t, visited in the main loop of Algorithm 2, let At be the
set of all active duplications at the beginning of the main loop. Let Ft be the subgraph
(a forest) of G induced by At. Then, B(t) consists of all leaves d from Ft such that
t ∈ Int(d).

Proof. The proof is by induction. The property should be clear when visiting the
first node (see line 5). Assume that, t is visited and in line 8 we have a node d in B(t)
that is not a leaf in Ft. Then, there is a node t′ ≺ t, such that d ∈ B(t′) was inserted
into B(t) either in line 9 or in lines 27/28 of the step of the main loop processing
t′. In the first case, t is a parent of t′, and there was no active duplication below
d, which is a contradiction. The second case is similar: see the condition in line 26.
Finally, every leaf from Ft is present in B(t), which is a consequence of the traversal
in Loop A/A’, where the parent of the last visited/marked node becomes a new leaf
candidate (see line 18).

Theorem 4. Given a collection of gene trees R and a species tree S, Algorithm 2
computes RME(R, S).

Proof. By Lemmas 2-5, Algorithm 2 implements Algorithm 1. The proof of correct-
ness of Algorithm 1 is given in [Czabarka et al., 2012].

Theorem 5. Algorithm 2 has O(|S|+
∑
|Gi|) time and space complexity.

Proof. We assume that trees are implemented in a standard pointer-like structure.
For every t ∈ T , the set of duplication leaves B(t) is a list that uses pointers.
For computation of lcaT (e.g., in line 18) in constant time, we need the lca-structure
preprocessing in O(|T |) time present in line 2 [Bender and Farach-Colton, 2000].
Dup is not stored as a separate structure, it is sufficient to have an attribute in every
node of gene trees. Having this, it is not difficult to see that lines 2-6 require several
traversals of input trees and a tree T (being smaller than S).

In line 8, only duplication intervals whose top is t are processed, therefore, in
total, every duplication node is visited at most once when computing epi.

Loop A, traverses up to k levels of all active duplication trees starting from the
current set of duplication leaves. All visited duplications are then set to be non-
active, therefore, they will never be visited again. Hence, in all runs of the main
loop, Loop A requires time proportional to |Dup|, which is O(

∑
|Gi|). The same

applies to Loop B. Finally, Loop C consists of the update of duplication leaves.
Every new candidate located in line 18 has to be appended to the list of a node
� t from T . However, every candidate requires the removal of at least one unique
duplication node in Loop A’ (i.e., setting its active status to False). Therefore, in the
total execution of Algorithm 2, the number of steps in line 25 is limited by |Dup|. We
conclude that in the total execution of Algorithm 2, the steps of Loops A-C require
O(|Dup|) time. We conclude that the time and space complexity is linear.
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4.4.
Algorithms for RME Problem under FHS model

It is unknown whether RME Problem under FHS is tractable, however, there are
several properties of RMEFHS that can be used to solve or approximate hard instances
of this problem in practice.

Recall that by height of a tree, we define the maximal number of edges on the
path from a leaf to the root of the tree.

Lemma 6 (RMEFHS upper bound). The maximal height of a gene tree from the input
is an upper bound of RMEFHS.

Proof. The bound is obtained by converting all speciation nodes into duplications.
Then, all internal nodes are duplications which can be mapped to the root. In such
a case the number of episodes is equal to the maximal height of input gene trees.

We conclude from the proof that the upper bound is reached by a trivial mapping
where all internal nodes are mapped into the root of the species tree (a fat scenario,
see Section 2.2).

The number of lca-duplications present in an interval of a gene tree we call
duplication index.

Algorithm 3 RME score under the FHS model
1: Input/output: see Algorithm 1.
2: Let Spec be a set of all lca-speciation nodes (for G1, G2, . . . , Gn) which are an-

cestor of some duplication.
3: Calculate lower and upper bounds for RME score (see Lemma 6, 7).
4: Return RME score if the bounds are equal
5: For every subset X of Spec
6: Convert every speciation from X into a duplication
7: Set intervals for all duplication nodes by using PG model
8: Apply Algorithm 2 to obtain RME score
9: Return minimal RME score

Lemma 7 (RMEFHS lower bound). The lower bound of RMEFHS is the maximal
duplication index among all intervals from all input gene trees.

Proof. RME clustering rules determine that comparable duplications have to be in
different episodes. Therefore, the score cannot be lower than the maximal duplication
index.

Examples of bounds can be found in Figure 4.8.
The complexity of Algorithm 3 is O(2k), where k is the size of Spec (see line 5

of Algorithm 3).

4.5.
Datasets for experimental evaluation

In our analysis we performed our experiments both on simulated and biological
datasets. The simulated trees were generated by urec [Górecki and Tiuryn, 2007b]



Chapter 4. Minimum Episodes Problem for rooted gene trees 59

according to Yule model of random trees and the choice of different parameters (like
size, labelling) determined the relation between gene trees and the corresponding
species tree. The evaluation of our algorithms focused on three biological datasets:
Guigó dataset [Guigó et al., 1996], Génolevures [Sherman et al., 2009]
and TreeFam [Ruan et al., 2008].

To properly define a dataset we need the description of the collection of gene
trees and a species tree to reconcile with. In our study, for a given collection of gene
trees, we sometimes performed multiple tests for different choices of species trees.

The smallest dataset originates from [Guigó et al., 1996], called here Guigó
dataset, that introduced the concept of multiple duplications, therefore it is our
first choice to compare our results to. This set is a collection of 53 rooted gene
trees from 16 Eucaryotes [Guigó et al., 1996]. In our study we focused on: (a) the
species tree from [Page and Charleston, 1997b] described as the most biologically
reasonable, (b) the original species tree introduced with gene trees in [Guigó et al.,
1996] paper and with (c) 71 species trees from [Chang et al., 2013], known to have
the total minimal duplication cost.

Génolevures consists of 4144 unrooted gene families from nine yeast geno-
mes [Sherman et al., 2009]. We used the corresponding gene family trees inferred by
the authors of [Górecki and Eulenstein, 2012a] using tools from Phylip [Felsenstein,
1989]. Our analysis included species tree: (a) from [Dujon, 2006], (b) from [Shen
et al., 2016] and (c) the one having the lowest duplication-loss cost computed by
Fasturec [Górecki and Eulenstein, 2012b].

Yarrowia
lipolytica

Debaryomyces
hansenii

Eremothecium
gossypii

Kluyveromyces
lactis

Kluyveromyces
thermotolerans

Saccharomyces
kluyveri

Zygosaccharomyces
rouxii

Candida
glabrata

Saccharomyces
cerevisiae

(YALI) (DEHA) (ERGO) (KLLA) (KLTH) (SAKL) (ZYRO) (CAGL) (SACE)

Figure 4.5. Génolevures dataset. Species tree topology from [Shen et al., 2016] with
full and abbreviated species names. Please refer to Figure 1.3 and Figure 1.4 to find
reference genomic duplications. To find genomic duplications inferred by our tools
see Figure 6.5.

TreeFam consists of 1274 unrooted gene family trees [Ruan et al., 2008] sampled
from mostly animal species. For this dataset we also produced a set of rooted gene
trees obtained by urec [Górecki and Tiuryn, 2007b] by choosing the rooting having
the minimal number of gene duplications. The species tree used was based on NCBI
taxonomy [Wheeler et al., 2007] (we used two variants one that consists of 28 species
and one that span over 25 species).
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4.6.
Experimental evaluation of RME

We performed several computational experiments on simulated and biological datasets
in order to compare the solutions to RME Problem under all four models of evolu-
tionary scenarios.

In the first simulation 100 pairs of bijectively labeled random gene and species
trees of the size n ∈ {5, . . . , 50} were generated according to Yule model (see [Hard-
ing, 1971, Steel and McKenzie, 2001]) by urec [Górecki and Tiuryn, 2007b]. In the
second experiment we generated 100 pairs consisting of a random species tree of the
size n and a random gene tree of the size 2n, for n ∈ {5, . . . , 25}.
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Figure 4.6. The average of optimal RME scores under LCA, GMS, PG and FHS
models for simulated datasets (Figure from [Paszek and Górecki, 2017a]). In both
experiments for every size n we generated 100 random pairs of gene and species trees.
Then, we calculated an average RME score. Left: gene trees and species trees were
bijectively labeled. Right: result for gene trees of the size 2n.

Experimental evaluation on simulated datasets show that GMS provide similar
results to LCA, and RME scores for PG and FHS are comparable (see Figure 4.6).

Guigó dataset. We inferred multiple gene duplication events for the dataset for
two species trees: one from [Guigó et al., 1996] and the second tree from [Page and
Charleston, 1997b]. Algorithm 3 for FHS reported 15 and 14 lca-speciations in Spec
for S1 and S2, respectively, therefore, we were able to compute the score. For the
first species tree we observe the same multiple gene duplication scenarios for GMS
and PG models (see Figure 4.7).

This confirms the results obtained in [Guigó et al., 1996, Bansal and Eulenstein,
2008]. Moreover, the same location of episodes were obtained by [Page and Cotton,
2002] for REC Problem. The species tree from [Page and Charleston, 1997b], consid-
ered biologically more meaningful than the first tree, has more diverse scores. Under
PG model 6 episodes are placed on 4 nodes. The same number of locations was ob-
tained in the solution to the unrooted variant of EC clustering UEC under PG model
(see Section 3.3), however, the results are incomparable as input gene trees were
unrooted (see Chapter 5 and [Paszek and Górecki, 2016]).

TreeFam dataset. Algorithm 3 cannot be directly applied as the number of lca-
speciations in Spec is 12263. Firstly, we calculated the lower and the upper bounds,
which equals 18 and 23 respectively and both are reached by a single unique tree G∗

depicted in Figure 4.8. In G∗ the number of lca-speciations after preprocessing was
equal to 40, which is still too large. Next, we show that 18 of these speciations have
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Figure 4.7. The location and the number of episodes (multiple gene duplication
events) corresponding to the optimal RME score under LCA, GMS, PG and FHS
models in two species trees for Guigó dataset [Guigó et al., 1996] (Figure from [Paszek
and Górecki, 2017a]). Left: a species tree from [Guigó et al., 1996]. RMELCA is 9,
RMEGMS and RMEPG equals 5 and RMEFHS is 4. Right: a species tree from [Page
and Charleston, 1997b]. RMELCA equals 12, RMEGMS - 7, RMEPG - 6 and RMEFHS - 4.

to be converted into duplication (otherwise there is no better score than the upper
bound of 23). Having this Algorithm 3 reported the best score of 23 and the same
result is for the whole input (see Lemma 6).

The results for TreeFam (see Figure 4.9) suggest that RME Problem under FHS
for large empirical instances have a simple solution induced by fat scenarios (see
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Figure 4.8. Analysis of a Spec speciation set from a gene tree from TreeFam (Figure
from [Paszek and Górecki, 2017a]). Left: the unique highest tree G∗ from TreeFam
dataset contracted and compressed to represent all lca-speciations from Spec (see
Algorithm 3). Subtrees composed of duplications mapped into the same leaf are
replaced by its longest path (see e.g. RAT). Leaves are removed. Right: TreeFam
species tree. Empty symbols in both trees denote speciation nodes. Red and blue
symbols denote duplications. The longest path of G∗ has the length 23 and starts
in the leaf labeled RAT. It contains five speciation nodes: σ1, σ2, . . . , σ5, therefore
the lower bound for RME score is 23 − 5 = 18. It is not difficult to prove that if
σ6 is not converted into duplication then the RME score is at least 23. Similarly,
if σ7 is not converted then the cost is at least 24. In both cases the score does not
improve the upper bound (23), therefore, when searching for the optimal solution,
all descendants of red nodes including σ7 can be converted into duplications, which
limits the search space in Algorithm 3 to a tractable size, i.e., O(222), where 22 is
the number of the remaining lca-speciation nodes.

Lemma 6), which corresponds to the trivial solution to EC problem under FHS.
Moreover, it seems that the upper bound is usually a good approximation of RMEFHS

score.
Runtime. The experiments on simulated datasets were performed on 64 core

server for two days. Analysis of the Guigó and TreeFam datasets were done on a
standard workstation in 30 seconds and 10 hours, respectively.
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Figure 4.9. The solution to RME Problem under LCA, GMS, PG and FHS for
TreeFam [Ruan et al., 2008]. The scores are 249, 243, 230 and 23, respectively.
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4.7.
Discussion

In this chapter we proposed the first linear time algorithm for solving RME Prob-
lem for any interval model of allowed evolutionary scenarios. Then, we applied the
algorithm to conduct experiments on biological and simulated datasets in order to
compare RME Problem solutions under four models of allowed scenarios. We showed
that GMS model infers results comparable to the simplest model LCA, while the most
general FHS on a large biological dataset induced a biologically disputable solution,
where all duplications are placed at the root of a species tree. Therefore, among
all known models, PG model seems to be a reasonable choice for modeling genomic
duplications. However, further research is needed especially for the assessment of
credibility of inferred genomic duplication events.

There are several further directions. The first is to consider optimal solution
that have the lowest number of speciations converted into gene duplications. Next,
the complexity of RME Problem under FHS model is an open problem. Finally,
multiple gene duplication problems are more complex when the input trees are un-
rooted. Consideration of unrooted gene trees increases the applicability since such
trees are frequently inferred by phylogenetic methods. Algorithm 2 is the first step
towards solving UME,the unrooted variant of RME Problem. Our solution to UME
is described in Chapter 6. Our implementation of Algorithm 2 and Algorithm 3 is
publicly available at http://www.mimuw.edu.pl/jpaszek/rme.html.



CHAPTER 5
Unrooted Episode Clustering

The reconciliation becomes more complex when we consider unrooted gene trees
instead of rooted gene trees (see Chapter 2). Similarly, REC and RME problems are
defined for rooted trees. Therefore, in order to solve an unrooted variant of, i.e.
UEC, we need to choose an edge from the unrooted gene tree, obtain the rooting,
and then solve the REC Problem for that rooting. In this Chapter we study UEC
Problem in which PG is the model of allowed scenarios and the rules that define
how to group duplications defined by episode clustering and input gene trees are
unrooted. Section 5.1 provides the formal description of the problem.

In Section 5.2 we present new results for unrooted reconciliation that are ap-
plicable to the solution of the problem proposed in Section 5.3. We present the
first solution to the open problem UEC enunciated in [Burleigh et al., 2008]. We
show that for a given set of unrooted gene trees and a species tree we can solve
the UEC by reducing it to the rooted episode clustering problem that has a linear
time complexity. Our solutions require a linear time preprocessing and a creation of
at most 1 + 2k collections of rooted gene trees, that is, instances of REC, where k
is the number of input gene trees having a special topology located in the plateau
of the duplication cost (formally, the condition requires two stars S2 [Górecki and
Tiuryn, 2007a]). Usually k represents a small fraction of the whole input, thus, this
condition significantly reduces the complexity. In other words, we show that the
problem of UEC is fixed parameter tractable.

Section 5.6 contains experimental analysis of the implementation of our algo-
rithms. In a number of empirical computational experiments we show that despite
the exponential worst case complexity our algorithm is able to resolve instances of
the problem after the verification of at most two rooted datasets. In consequence,
our solution can be efficiently applied to locate duplication clusters in collections of
unrooted gene trees.

This Chapter is mostly based on results published in [Paszek and Górecki, 2016].

5.1.
Episode Clustering Problems

In this Section we provide the definition of genomic duplication problems in which
we cluster all gene duplications mapped into the same location in a species tree. We
call it episode clustering.

Recall that by Dup(T ), we define the set of all duplication nodes in T . Let
G1, G2, . . . , Gn be a collection of rooted gene trees. Assume that, for every i ∈
{1, 2, . . . , n}, Fi is a valid mapping between Gi and the species tree S (see Definition 3
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of valid mapping in Section 3.3). Every element s ∈
⋃

i Fi(Dup(Gi)) denotes the
location of multiple gene duplication events in S. Such locations will be called
duplication episodes. In this Chapter we use the PG model to determine allowed
scenarios which infer those locations (the description of PG model is in Section 3.3).

A duplication cluster for s is the set of all gene duplications present in Gi’s
that are mapped to s. By >-cluster we denote the duplication cluster whose elements
are mapped to root(S).

Problem 2 (Rooted Episode Clustering, REC). Given a collection of rooted gene
trees G1, G2, . . . , Gn and a species tree S. Compute the minimal number of dupli-
cation episodes, denoted by REC(G1, G2, . . . , Gn, S), in the set of all valid mappings
F1,F2, . . . ,Fn such that Fi : VGi → VS.

The linear-time and space solution to REC for GMS in [Luo et al., 2011] can be
applied also to PG model. In this Chapter we solve the following problem for PG
model (see Section 3.3.2 for model description).

Problem 3 (Unrooted Episode Clustering, UEC). Given a collection of unrooted
gene trees G1, G2, . . . , Gn and a species tree S. Compute the minimal
REC(T1, T2, . . . , Tn, S) in the set of rooted gene trees {T1, T2, . . . , Tn} such that Ti
is a rooting obtained from Gi by placing the root on the edge from the D-plateau.

Observe, that we allow rootings only in the D-plateau (see definition in Sec-
tion 2.3). Otherwise, the total number of gene duplications is not minimal. By
SINGLE-UEC we denote the problem UEC for a single unrooted gene tree, i.e., when
n = 1. Every edge in an unrooted gene tree that induces the optimal solution
for SINGLE-UEC will be called optimal (for SINGLE-UEC). For convenience, we
assume that S is fixed and use REC(T1, T2, . . . , Tn) instead of REC(T1, T2, . . . , Tn, S).

5.2.
Novel properties of D-plateau nodes

In this Section we describe new theoretical results in unrooted reconciliation, that
is, new properties of the nodes that are inside D-plateau. We start with a technical
lemma that shows correspondence between D-plateau and DL-plateau for a case
when unrooted gene tree has double edge.

Lemma 8. If the DL-plateau consists of exactly one double edge then the D-plateau
and the DL-plateau are equal.

Proof. Let 〈v, a〉 be the DL-plateau edge (see Figure 2.5). It follows from the property
of star S3 that both v and a are mapped to root(S) in the DL-minimal rooting and
their children (if present) are mapped below root(S). Hence, the root is a duplication,
while v and a are speciation nodes. Now, it is easy to show that rooting on edge
〈v, b〉 (or 〈v, c〉) induces one additional gene duplication at v. We conclude that the
only edge with the minimal duplication cost is 〈v, a〉.

We say that a node is a super-duplication (respectively, a super-speciation)
if it is a duplication (respectively, a speciation) in every rooting with the minimal
duplication cost.



Chapter 5. Unrooted Episode Clustering 67

Please recall, that the plateau is a subtree of a gene tree, thus a leaf of the D-
plateau may refer to an internal node of a gene tree. For example, in Figure 5.2, the
D-plateau of G1 has four leaves: one is an internal node of G1 and others, labeled
a, c, e, are leaves of G1.

Lemma 9. Assume that an unrooted tree has a double edge. Then

ä every leaf of the D-plateau is a super-speciation

ä and every internal node of the D-plateau is a super-duplication.

Proof. For the first part of the proof, let us assume that v is a leaf of the D-plateau.
By using the notation from Figure 2.5, let v be a center of a star such that 〈v, a〉
belongs to the D-plateau. Assume that v is a duplication in every D-minimal rooting.
Then, the D-minimal rooting G〈v,a〉 has one duplication in v. The edge 〈v, b〉 does not
belong to D-plateau, therefore, the rooting G〈v,b〉 has at least one more duplication
than G〈v,a〉. Hence, G〈v,b〉 has two duplications in v and in the root. Moreover, the
root of G〈v,a〉 is not a duplication. However, this is possible only when root(T (a))
and root(T (v)) are mapped below root(S), thus the 〈v, a〉 is an empty edge, which
is a contradiction with Theorem 2. This completes the first part of the proof.

Next, if the DL-plateau consists of exactly one double edge, then, by Lemma 8
the property holds trivially. Now, we assume that the DL-plateau has more than one
edge. We show that every internal node v of the DL-plateau is a super-duplication.
From Theorem 2 we know that v is incident to at least two double edges. Hence, in
any rooting at least one of its children is mapped to root(S). We conclude that v is
a duplication mapped to root(S).

Let us consider a path p = v1, v2, . . . , vn (n > 1) connecting an internal node v1
from the DL-plateau with a leaf vn from the D-plateau. We show that the first n−1
nodes on p are duplications for every rooting placed on this path. It follows from
the first part of this proof that v1 is a super-duplication mapped to root(S). Hence,
when rooting at 〈vn−1, vn〉, we have n gene duplications: for v1, v2, . . . , vn−1 and one
for the root. All edges from p are elements of the D-plateau, thus moving the root
to other edges on p will preserve the total number of gene duplications.

It should be clear that the same holds when choosing other root positions even
outside of the D-plateau (see [Paszek and Górecki, 2016], note that in [Paszek and
Górecki, 2016] the super-duplication definition differs from the definition which is
used both in [Paszek and Górecki, 2018] and in this dissertation). We omit the
details.

5.3.
Solution to SINGLE-UEC under PG

First, we analyze the case when unrooted tree has an empty edge. Then, we focus
on a complementary case when double edge is present. Next, we present the solution
to UEC for a single unrooted gene tree. Finally, we describe algorithms for solving
UEC for multiple input trees.

5.3.1 Episodes in a gene tree with an empty edge

In this Section we solve SINGLE-UEC problem for the case when the input gene tree
has one empty edge.
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Let v be a center of the star that contains the only DL-plateau edge in a gene
tree G. This star induces three rooted subtrees Ta, Tb and Tc rooted at neighbors
a, b and c, respectively, as indicated in Figure 2.5. Let 1 be the indicator function,
that is, 1(p) is 1 if p is satisfied and 0 otherwise.

Lemma 10. Let a0, a1, a2, . . . , an+1 (for n ≥ 0) be the path of D-plateau nodes
connecting v = a0 and an+1 ∈ Ta in G. Let Gn be the D-minimal rooting induced by
the edge 〈an, an+1〉. If e∗ = 〈v, c〉 is empty then

REC(Gn) = REC(T1, T2, . . . , Tn+1, Tb, Tc) + 1(root(Ti) /∈ Dup(Gn) for all i),

where T1, T2, . . . , Tn+1 are subtrees of Ta such that Ta = (T1, (T2, . . . , (Tn, Tn+1) . . . ))
and the root of Tn+1 is an+1 (see Figure 2.5 and Figure 5.1).

Proof. First we show that v is a speciation node in Gn. It follows from the fact that
v is a center of S2 star and 〈v, b〉 is single. Thus, Mn(v) = root(S), Mn(c) ≺ root(S)
and Mn(b) ≺ root(S), where Mn is the lca-mapping for Gn. From the fact that
Mn(v) = root(S) we conclude that all nodes on the path connecting the parent of v
with the root in Gn are mapped to root(S), therefore, they are duplications.

Lets consider the number of duplication clusters in Gn. We have the >-cluster
composed of the duplication nodes a1, a2, . . . , an, root(Gn) mapped to root(S). Both
Tc and Tb in Gn are under speciation node v so their clusters are disjoint with the
>-cluster. Finally, if the root of some Ti is a duplication then its cluster can be
merged with the >-cluster. Therefore, the >-cluster contributes to REC(Gn) only
if the root of Ti is a speciation for every i. Now, it is easy to conclude the final
formula.

Lemma 11. Under the assumptions from the previous lemma, we have

REC(Gn) = REC(G∗) + 1(b ∈ Dup(G∗) and root(Ti) /∈ Dup(G∗) for all i),

where G∗ is the rooting induced the empty edge e∗ = 〈v, c〉 (see Figure 5.1).

Proof. Both rootings Gn and G∗ are D-minimal. Hence, D(G∗, S) = D(Gn, S) and,
in consequence, the number of duplication nodes in A = {a1, a2, . . . , an, v, root(G∗)}
in G∗ and B = {a1, a2, . . . , an, v, root(Gn)} in Gn are equal. It follows from the
properties of star S2, that in Gn node v is a speciation mapped to root(S). Hence,
all predecessors of v are duplications in Gn. Thus, we have exactly n+1 duplications
in B. On the other hand, by star S2, root(G∗) is a speciation, therefore all remaining
nodes in A are duplications.

We conclude that Gn has the >-cluster containing duplications from A, and G∗
has a cluster (mapped below root(S)) containing duplications from B, respectively.
These two clusters we call high clusters. If the root of one of Ti’s is a duplication,
then it can be merged with the high cluster in both rootings. Otherwise, if every
root of these subtrees is a speciation then the high cluster is disjoint with clusters
from T1, T2, . . . , Tn+1. Moreover, if b is a duplication then the high cluster contains b
in G∗. However, in Gn the cluster of b will be disjoint with the >-cluster due to the
speciation node v. Combining the above observations we obtain our formula.

Lemma 10 and Lemma 11 complete the case of empty rootings. We proved that
rooting on empty edge has the best REC.
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5.3.2 Episodes in a gene tree with a double edge

In the next lemma we show that rootings at edges of the D-plateau induce the
same REC cost.
Lemma 12. If an unrooted gene tree G has no empty edge then for any D-minimal
rooting of G denoted by G∗

REC(G∗) = REC(T1, T2, . . . , Tn) + 1,

where T1, T2, . . . , Tn are the rooted subtrees of G obtained from G by removing all
internal nodes of the D-plateau.

Proof. It follows from Lemma 9 and its proof that all internal nodes of the D-plateau
are present in the >-cluster in the clustering with minimal number of clusters. This
cluster is separated from other duplication clusters by speciation nodes located on
the border of the D-plateau. Thus, the clusters induced by optimal solution to REC
for G∗ are the clusters induced by optimal solution to REC of T1, T2, . . . , Tn plus the
>-cluster.
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Figure 5.1. Trees from Lemma 10 and 11 (Figure from [Paszek and Górecki, 2016]).
A gene tree G (left) and the rootings of G (right) from Lemma 10 and Lemma 11.

Theorem 6 (Solution to SINGLE-UEC). For any gene tree G, an edge e is optimal
for SINGLE-UEC, if either e is empty or e is in the D-plateau and G has a double
edge.

Proof. The first part of the proof follows immediately from Lemma 11 and the second
part from Lemma 12.

5.4.
Solution to UEC under PG

Now we present solutions to our unrooted episode clustering problem.

Theorem 7. For a collection of unrooted gene trees G1, G2, . . . , Gn, if every gene
tree has a double edge then rooting every gene tree on an edge from the D-plateau
yields the optimal solution for UEC.
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Proof. Assume that n = 2 and letG′1 andG′2 be two D-plateau rootings ofG1 andG2,
respectively. It should be clear that REC(G′1, G

′
2) = REC(T ), where T = (G′1, G

′
2).

Next, by Lemma 12, REC(T ) is independent on the choice of rooting of G1 and G2, as
long as the rootings are in the D-plateau. Therefore, we conclude that REC(T ) is the
solution to UEC Problem for G1 and G2. This observation can be easily generalized
by induction to any n.

Note that we cannot generalize the property stated in Theorem 7 to gene trees
with empty edges. The example is shown in Figure 5.2. Consider the dataset
{G1, G2}. G1 has five D-minimal rootings, while G2 has exactly one. In G2∗ we
have one >-cluster, therefore G2∗ with G1∗, i.e., the empty edge rooting of G1, have
two duplication clusters. However, the best clusterings for {G1, G2} having exactly
one cluster are obtained for G1,1, G1,2 or G1,3. On the other hand, the best cluster-
ings can be also obtained for empty edge rootings, e.g. {G1,∗, G4,∗} with cost 2 for
the input {G1, G4}. From these examples, we see that the empty edges have differ-
ent properties than double edges in the context of UEC, and we cannot generalize
Theorem 7 to empty edges.

Theorem 8 (Candidate rootings for UEC). For a collection of unrooted gene trees G,
the solution to UEC is induced by a rooting edge e of G ∈ G satisfying:

(U1) if G has a double edge, then e is any D-minimal edge in G,

(U2) if G has an empty edge, then e is an element of star S2.

Proof. If some G ∈ G has a double edge then the property follows from Theorem 7
and Lemma 12. For gene trees with an empty edge e∗ we show that any D-minimal
rooting of the edge that is not adjacent to e∗ can be equivalently replaced by a rooting
adjacent to e∗. By using the notation from Figure 2.5, let Ta = (Ta′ , Ta′′) such that
a′ and a′′ are the roots of Ta′ and Ta′′ , respectively. We show that the rooting G〈v,a〉
denoted by Ga (see Figure 5.3) has the same duplication episodes as the rooting
Ga′ obtained for the edge 〈a, a′〉. In both rootings v is a speciation, therefore the
structure of clusters present in Tb and Tc is the same in both rootings. The edge
〈v, a〉 is a-incoming, thus the roots are duplications mapped to root(S). From the
fact that 〈a, a′〉 is in the D-plateau we have that a is a duplication. Thus, every root
and a induce the >-cluster. Finally, if a′′ is a duplication node, then in both rootings
it will be a member of the >-cluster. We proved these two adjacent rootings have
the structure of clusters. Therefore, it is sufficient to choose the rooting Ga instead
of Ga′ . This proof can be naturally extended by induction to any edge from the
D-plateau.

We conclude that for a gene tree G we have at most 5 candidates for rootings.
For instance, G4 has two stars S2 in the D-plateau, therefore we have 5 candidate
rootings: the empty edge rooting G4,∗ and the rootings of adjacent edges G4,1, G4,4,
G4,7 and G4,10. Note that the clusters from G4,1 are equivalent to clusters from G4,2

and G4,3. Similar property holds for other candidates.
Next, we show that the condition U2 can be improved.

Lemma 13. Under the assumptions from Theorem 8. Let the set of clusters induced
by the solution to UEC contains >-cluster. Then, the condition (U2) from Theorem 8
can be refined as follows:
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Figure 5.2. An example of unrooted episode clustering (Figure from [Paszek and
Górecki, 2016]). A species tree S and four unrooted gene trees G1, G2, G3, G4 with
all D-minimal rootings. For every gene tree two star topologies are shown: one for the
duplication-loss cost (left) and one for the duplications cost (right). Every edge of a
gene tree is decorated with the corresponding cost of rooting. Every duplication node
in rootings of gene trees is decorated by all possible locations (i.e., valid mappings)
of its duplication cluster from optimal solutions of SINGLE-UEC. Note that the
rooting G4∗, whose lca-mappings are shown in Figure 2.2, has two duplications at
(c, (b, a)) and (h, (f, g)) that are raised (here) to create two duplications clusters. Let
{G2, G4} be an instance of UEC Problem. Then, the >-cluster, that is present in
G2∗, contributes to the optimal solution. In such a case, the solution is induced by
one of the two instances of REC Problem: {G2∗, G4,1} or {G2∗, G4,7}. This property
is proved in Theorem 8 and in Lemma 13.
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(U2’) if e∗ is the empty edge in G, then e is one among at most two non-adjacent
edges such that e = 〈x, y〉 is adjacent to e∗ and M∗(x) = M∗(y), where M∗ is
the lca-mapping for G∗.

Proof. Let G be a gene tree with an empty edge. Let ea be that edge from (U2’). By
using the notation from Figure 5.3, we compare the rooting G∗ and G〈v,a〉, denoted
here by Ga. We have the following clusters in G∗: the cluster C that contains c (if
c is a duplication) and the cluster X that contains v (it follows from the proof of
Lemma 11 that v is a duplication node). Thus,X = {v}∪A∪B whereA andB denote
duplications from Ta and Tb, respectively. Note that C has the same contribution to
EC in both rootings, which follows from the property that valid mappings of C are
the same in both rootings. In Ga, A is a subset of the >-cluster whose contribution
to EC is already incorporated (by the assumption). The node v is a duplication
in G∗. Hence, without loss of generality we assume that M∗(a) = M∗(v), i.e., the
rooting edge 〈v, a〉 satisfies the condition from (U2’).

We have two cases depending on whether B is empty. If B is empty then Ga

has “better” composition of clusters than in G∗, i.e., one cluster less then in G∗ and
other clusters has the same valid mappings. Otherwise, both rootings are equivalent
if M∗(b) = M∗(v) (B in Ga has the same valid mappings as X in G∗), or again Ga

has a better structure of clusters than G∗ if M∗(b) ≺M∗(v) (valid mappings of X in
G∗ are included in valid mappings of B in Ga). Similarly, we show that Ga is also
better than G〈v,b〉 (see also rootings of G4 in Figure 5.2).
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Figure 5.3. Trees from Theorem 8 and Lemma 13 (Figure from [Paszek and Górecki,
2016]). The rootings of G from Theorem 8 and Lemma 13. We use the notation Ga

instead of G〈v,a〉. See Figure 5.1 for a legend of the symbols used.

We proved that among three rootings from the star S2 we can choose one candi-
date. The second edge is obtained from the second star S2 (sharing the empty edge)
if it is present in the gene tree (see Theorem 2).

From the last lemma we have at most two candidates for any gene tree from the
input collection. For example, the candidate rooting G4,1 has more flexible valid
mappings than G4,4, e.g. the duplication cluster of ((c, b), a) in G4,1 has larger
range of possible mappings than the duplication cluster of ((d, b), a) in G4,4, while
the remaining two clusters have the same locations in the species tree. Hence, for
the dataset {G3, G4}, if the >-cluster is present in the solution to UEC, we have
two candidates G4,1 and G4,7 (which is more flexible than G4,10). Note, that the
clustering cost 3 is obtained by rootings G3,∗ and G4,1 (or G4,2, G4,3).
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5.5.
Algorithms for UEC under PG

Algorithm 4 presents the solution to UEC Problem. The correctness of this algorithm
follows from Theorem 8 and Lemma 13. Algorithm 4 has two phases. In the first
phase for every gene tree a set of candidate rootings is prepared with respect to the
conditions (U1) and (U2’). To find optimal rootings we use a linear time algorithm
(procedure FindOptEdge) based on greedy descent method that search a double or
an empty edge in a gene tree [Górecki and Tiuryn, 2007a]. Based on condition
U2’, we divide possible solutions into two categories depending on the presence of
>-cluster in an optimal clustering. If the >-cluster is not present then every gene
tree has an empty edge (in line 10). Otherwise, we check every possible variant of
rooting candidates. Note that from Lemma 13, a gene tree has two candidates if and
only if the gene tree has two stars S2 that are included in the D-plateau. Thus, the
overall time complexity depends on the presence of such trees in the input. From
this observation we conclude the following result.

Theorem 9. The time complexity of Algorithm 4 is O(2k(
∑

i |Gi|+ |S|)), where k is
the number of input gene trees having two stars S2 that are included in the D-plateau.

Algorithm 4 Exact solution to UEC
1: Input A binary species tree S, a collection of unrooted gene trees G1, G2, . . . , Gn.
2: Output Minimal REC(T1, T2, . . . , Tn, S) in the set of all rootings Ti of Gi such

that Ti is a rooting obtained from Gi by placing the root on the edge from the
D-plateau.

3: For every i compute the set of candidate rooting edges Ri:
4: e∗:=FindOptEdge(Gi)
5: If e∗ is double: Ri := {e∗}
6: If e∗ is empty Then For x ∈ e∗ such that x is not a leaf.
7: Let c be a child of x in G∗ such that 〈x, c〉 is D-minimal

and not adjacent to any edge from Ri and M∗(c) = M∗(x)
8: Ri := Ri ∪ {〈x, c〉}.
9: If every Gi has an empty edge

Then α := REC(T1, T2, . . . , Tn), where Ti is the empty edge rooting of Gi

Else α := +∞.
10: β = minei∈Ri REC(Ge1 , Ge2 , . . . , Gen).
11: Return min{α, β}.
12: Function FindOptEdge(G)
13: Let mx,y = MG〈x,y〉(x)

// can be computed in O(|G|) steps [Górecki and Tiuryn, 2007a].
14: Let v be a node from VG and

Let root(S) be the lca-mapping of some rooting of G.
15: While there exists a node w adjacent with v such that mw,v = root(S) 6= mv,w

16: Do: set v := w (star S1).
17: Return 〈v, w〉 such that 〈v, w〉 an empty or double edge

i.e., mv,w = root(S) = mw,v or mv,w 6= root(S) 6= mw,v.

Thus, from theoretical point of view UEC is fixed parameter tractable. Later we
show that k usually represents a small fraction (up to 5%) of the whole input. For
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the cases when 2k is still too large for efficient computation, we propose Algorithm 5,
in which we first solve the instance of UEC for the collection of gene trees that have a
unique candidate. Clearly, if there are rootings of the whole input that have the same
cost, then this cost is optimal. The overall complexity of Algorithm 5 is the same
as Algorithm 4, however, for large datasets this strategy appeared to be successful
after checking just one additional candidate set (in lines 2-4).

Algorithm 5 Exact solution to UEC (Two step approach)
1: Input/output The same as in Algorithm 4.
2: Let δ = REC(G′1, G

′
2, . . . , G

′
n′) computed by Algorithm 4, such that

{G′1, G′2, . . . , G′n′} is the set of all input gene trees having a unique candidate
rooting edge (i.e., |Ri| = 1).

3: If δ = α Return α, where α is from the 9th line of Algorithm 4 computed for
the whole input.

4: For every e1 ∈ R1, e2 ∈ R2, . . . , en ∈ Rn

(i.e. candidate rootings of the whole input)
5: If REC(Ge1 , Ge2 , . . . , Gen) = δ Then Return δ.
6: Return the minimal REC value computed in lines 3 and 6.

5.6.
Experimental evaluation

We performed several computational experiments on three empirical datasets (see
Section 4.5).

Guigó dataset was evaluated with 71 species trees from [Chang et al., 2013],
known to have the total minimal duplication cost. Génolevures was paired with
two species trees: one from [Dujon, 2006] and the second one having the lowest
duplication-loss cost computed by Fasturec [Górecki and Eulenstein, 2012b].

We implemented our algorithms and the algorithms for the REC variant of the
Problem (based on [Luo et al., 2011]). In our experiments the rooting candidates
were used to compare the results for UEC with the model of mappings (for rooted
gene trees) proposed in [Bansal and Eulenstein, 2008].

We performed two series of 74 computational experiments, one for our model and
one with the model described in [Bansal and Eulenstein, 2008]. The total running
time of our program was about 7 minutes on a standard PC workstation. For every
dataset we were able to find solutions to UEC by testing at most two rooted instances
of input gene trees (see Algorithm 5). The summary of experiments is depicted in
Table 5.1.

For the Guigó dataset we found four duplication clusters, while for the rooted
model from [Bansal and Eulenstein, 2008] we located five clusters. The difference
can be explained by the properties of our model that is more flexible: the input trees
are unrooted and the model of valid mappings is more generic. Observe that this
dataset has unique rooting candidates (k = 0).

Génolevures is the most complex dataset due to its size and potentially large
parameter k. Despite these properties, Algorithm 5 located 17 clusters for the filtered
input with all unique rooting candidates. In other words, in this filtered dataset a
duplication cluster is present in every node of the species tree. Obviously, the whole
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input dataset has the same property. The same holds for the model from [Bansal
and Eulenstein, 2008].

In TreeFam we located 45 clusters for the filtered dataset with unique rooting
candidates. Then, Algorithm 5 found the solution having the same cost for the whole
dataset (see Figure 5.4). The same result was obtained for the model from [Bansal
and Eulenstein, 2008] (see Table 5.1).

Table 5.1. The experimental results of UEC evaluation

Set # species # leaves # gene
k

PG Model GMSModel
trees trees UEC % locations UEC % locations

Guigó 71 16 53 0 4 12,9 % 5 16,1 %

Génolevures 1 1 9 4144 55 17 100 % 17 100 %
1 2 9 4144 156 17 100 % 17 100 %

TreeFam 1 28 1274 67 45 81,8 % 45 81,8 %

5.7.
Discussion

In this Chapter we presented the first solution to the open problem of the duplica-
tion episode clustering for case when the input collection is composed of unrooted
gene trees. By using theoretical properties of the unrooted reconciliation we proved
that the problem has nice mathematical and computational properties. From prac-
tical point of view, we were able to provide efficient algorithms and tools that were
successfully applied to locate duplication clusters in real datasets.

From the computational point of view the complexity of our algorithms depends
on the parameter k, i.e., in the worst case REC Problem has to be solved 2k times
in order to find a solution to UEC. Even if k usually represents a small fraction
of the whole input it can be still large, e.g. k > 100 for the yeast dataset, which
may prohibit computation of all possible variants. Here we proposed a solution, that
is based on the observation that the clustering induced from the input gene trees
having unique candidates (that is, without k gene trees with non-unique variants),
usually represents an optimal solution for the whole input. Thus, the strategy that
we applied in Algorithm 5, i.e., first cluster easy part and then try to incorporate
the hard one by using already identified clusters, appeared to be successful even for
potentially complex datasets.

Our computational experiments show that the duplication clusters are usually
located in large parts of the species tree especially when the input dataset consists
of thousands of gene trees. To provide more detailed information on the duplication
clusters, we studied minimal episode problem (UME) which is a natural extension
of the episode clustering problem described in Chapter 6.

Our software for solving unrooted episode clustering problem is publicly available
at http://www.mimuw.edu.pl/~jpaszek/uec.php.

1Tree from [Dujon, 2006]
2Tree from [Górecki and Eulenstein, 2012b]

http://www.mimuw.edu.pl/~jpaszek/uec.php
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Figure 5.4. Duplication clusters in empirical datasets (Figure from [Paszek and
Górecki, 2016]). Duplication clusters (marked by red circles) inferred from experi-
ments. (A) Guigó species tree (chosen from 71 species trees from [Chang et al., 2013]
as the most biologically reasonable [Page and Charleston, 1997b]). (B) TreeFam
species tree based on NCBI taxonomy.



CHAPTER 6
Unrooted Minimum Episodes

In this chapter we study UME, that is,the multiple genomic problem for unrooted
gene trees, clustering called minimum episodes and the model of allowed scenarios
that preserves minimal number of single gene duplications. The solution to this prob-
lem for the case when input trees are rooted is described in Chapter 4. Section 6.1
presents the definition of the unrooted and general variants of the problem.

New results in the theory of unrooted reconciliation are described in Section 6.2.
Here, we expanded the theory of unrooted reconciliation by presenting new properties
of the plateau which is the subtree of an unrooted gene tree containing edges whose
rootings have the minimal duplication cost. Next, we show that these properties lead
to a decomposition of an unrooted gene tree that allows limiting the possible search
space significantly.

The solution to the problem is presented in Section 6.4. According to our knowl-
edge, the complexity of UME is unknown. We show that every instance of UME can
be transformed into at most 5k “simpler” instances that can be solved in linear time,
where k is bounded above by special cases of S2 stars [Górecki and Tiuryn, 2007a]
in input trees. Next, we propose two linear time algorithms for computing bounds
of the score. Finally, for the case when k is large, we propose an efficient heuristic
algorithm, which in practice allows solving exactly empirical instances consisting of
thousands of unrooted gene trees.

The results from experimental evaluation of the implementation of algorithms
is in Section 6.5. Our evaluation study on empirical dataset confirmed several ge-
nomic duplication events from the literature and demonstrate that algorithms can
be successfully applied.

This Chapter is based on [Paszek and Górecki, 2018] and [Paszek and Górecki,
2017b].

6.1.
Minimum Episodes Problems

This section contains the formulation of minimum episodes problems. The variant of
this problem for rooted gene trees is analyzed in Chapter 4. Here, we define unrooted
and general variants.

Let A(G,S) be the set of all scenarios allowed in PG model, which are scenarios
that for a rooted gene tree G and a species tree S have the minimal number of gene
duplications (please refer to Section 3.3.2 for model description). In this Chapter
every element of A(G,S) will be referred to as an allowed scenario. Now, we
formulate the general problem in which the input consists of mixed types of gene
trees: rooted and unrooted.

77
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Problem 4 (General Minimum Episodes, GME, under A).
Given a collection of gene trees (rooted or not) U = {U1, U2, . . . , Un} and a species
tree S. Compute minimum episodes score RME(U , S), or RME score, as the mini-
mal value of MES({Ri}i=1,2,...,n, S) in the sets of scenarios Ri such that
Ri ∈ A(U i, S) if U i is rooted or Ri ∈ A(U i

e, S) if U i is unrooted, where e is a
D-minimal edge.

Observe that we allow only scenarios that preserve the minimal number of gene
duplications. We distinguish two variants of GME Problem:

ä unrooted minimum episodes (UME) and

ä rooted minimum episodes (RME)

in which the instances consist entirely of unrooted and rooted gene trees, respectively.
RME Problem has a linear time and space solution described in Chapter 4 and
in [Paszek and Górecki, 2017a]. See also [Bansal and Eulenstein, 2008, Luo et al.,
2011] for more details on RME Problem.

6.2.
New properties of D-plateau nodes

Section 5.2 introduces the definition of super-duplication and super-speciation and
analyze unrooted gene tree with double edge. Here, we start with the case when
there is an empty edge in an unrooted tree. Recall that, U∗ denotes the set of all
D-minimal edges (see Section 2.3). We have:

Lemma 14. Let U be an unrooted gene tree with an empty edge e. A node incident
to e is a speciation in Ue if and only if it is a leaf of the D-plateau.

Proof. We use the notation from Figure 6.1 where e is 〈v, c〉. We may assume that
c is an internal node of U , otherwise, we have a trivial case where c is a leaf in the
rooting of U which is a speciation. Thus, we have two S2 stars sharing the empty
edge. (⇐) Without loss of generality, we may assume that v is a leaf of U∗. If v is
not a speciation in U〈v,c〉 then it is a duplication. From the definition of the empty
edge the root of U〈v,c〉 and node v in U〈v,a〉 are speciations. Moreover, the node v in
U〈v,a〉 is mapped to root(S) thus the root of U〈v,a〉 is a duplication. Both rootings
U〈v,c〉 and U〈v,a〉, have the same number of duplications having the same setting of
duplications in subtrees Ta, Tb and Tc as indicated in Figure 6.1. Hence, 〈v, a〉 is a
U∗ edge, a contradiction. (⇒) The proof is similar to the first case.

The conclusion from the above Lemma 14 is that either only empty edge or
the whole S2 star is included in the D-plateau (see Section 2.3). Moreover, we can
describe the D-plateau having an empty edge by the following lemma:

Lemma 15. If the unrooted gene tree has an empty edge then every leaf of the D-
plateau is a super-speciation, and every internal node of the D-plateau not incident
to an empty edge is a super-duplication.
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Figure 6.1. Types of edges, star S2, and two rootings of an unrooted gene tree U :
on the empty edge 〈v, c〉 and on the single edge 〈v, a〉. Here, > denotes the root of
S (Figure from [Paszek and Górecki, 2018]).

Proof. For the first part of the proof, let assume that v is a leaf of U∗ which consists
of 〈v, c〉 edge. Assume that v is a duplication in some D-plateau rooting. Then,
the subtree Tv in this rooting is also a subtree in all D-plateau rootings because v
is a leaf of U∗. Hence, v is a super-duplication. If 〈v, c〉 is an empty edge we have
a contradiction from Lemma 14. Assume that 〈v, c〉 is non-empty. The edge 〈v, a〉
does not belong to U∗, therefore, the rooting U〈v,a〉 has more duplications than U〈v,c〉.
Hence, U〈v,a〉 has two duplications in v and in the root. Therefore, the root of U〈v,c〉 is
not a duplication. However, this is possible only when Ta and Tv are mapped below
the root(S), thus the 〈v, c〉 is an empty edge, a contradiction. For the next part of the
proof, if the U∗ consists of exactly one empty edge then the property holds trivially.
Let assume that the U∗ has more than one edge. We show that every internal node v
of U∗, that is, not incident to an empty edge is a super-duplication. Let us consider
a path p = v1, v2, . . . , vn (n > 1) consisting of nodes not incident with the empty
edge connecting v = v1 with a leaf vn of U∗. Hence, when rooting on p, v is mapped
to root(S) as it is the ancestor of nodes incident with the empty edge. Moreover,
when rooting on 〈vn−1, vn〉 we have n gene duplications: for v1, v2, . . . , vn−1 and one
for the root. All edges from p are elements of U∗, thus moving the root to other
edges on p will preserve the total number of gene duplications. We showed that the
first n − 1 nodes on p are duplications for every rooting placed on this path. If v
is incident to an empty edge it is a speciation mapped to the root(S) when rooting
on p. When rooting on an empty edge the root is a speciation. Moreover, from
Lemma 14 a child of the root is a duplication if it is an internal node of U∗. Hence,
all D-plateau rootings have the same number of duplications equalling the number
of internal nodes of U∗. When rooting on an empty edge, the root is a speciation
and all internal nodes of U∗ are duplications. Otherwise, if we place the root on the
edge from U∗, the root is a duplication node and the only speciation is that node
among nodes incident to an empty edge which is an ancestor to the other.

6.3.
Unrooted tree decomposition

Now, we show that every unrooted gene tree can be decomposed into a set of trees
having at most one unrooted tree with a simplified structure allowing to solve UME
in a more efficient way. Please recall that M(v) is lca-mapping function (see Sec-
tion 2.1.2), by S(v) we denote the subtree of S rooted at v (see Section 2.1.1), and
the function φ is defined in Section 2.2.1. We start with the following observation.

Lemma 16. Let U be an unrooted gene tree and T be a rooted subtree of U rooted
at v. Let X ⊆ U∗ such that



6.3. Unrooted tree decomposition 80

ä X is disjoint with VT \ {v},

ä v is a speciation in every scenario from A(Ue, S) for all e ∈ EX .

Then, for any set of scenarios X :

min
R∈A(Ue,S),e∈EX

MES(X ∪ {R}, S) = min
R′∈A(U ′e,S),e∈EX ,

R′′∈A(T,S)

MES(X ∪ {R′, R′′}, S), (6.1)

where U ′e is the unrooted tree obtained from U by replacing T with S(M(v)).

Proof. In every allowed scenario R from the left side, φUe(v) is a speciation node.
Thus, scenarios R′ and R′′ can be obtained from R as follows: R′′ is the subtree
rooted at φUe(v) in R, while R′ is obtained from R by replacing the subtree with the
copy of S(M(v)), where every internal node is a speciation. Such a transformation is
a bijection that preserves the clusterability of duplication nodes. We omit technical
details.

Given a species tree S and a rooted tree G by G̃ we denote the set of all �-
maximal elements in the set of all non-root speciation nodes from G. Lets ∼ be a
relation on edges of U∗ for an unrooted gene tree U such that e ∼ e′ if Ũe = Ũe′ . It
should be clear that ∼ is an equivalence relation. The set of equivalence classes of
this relation we denote by U */∼. An example is depicted in Figure 6.2.
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max non-root:
at node v:
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Figure 6.2. Equivalence relation ∼ (Figure from [Paszek and Górecki, 2018]). An
example of an unrooted gene tree U with one S2 star and all D-plateau rootings
reconciled with a species tree S=(((a,b),(c,d)),e). U∗ contains five edges and induces
three ∼-equivalence classes. The first consists of an empty edge 〈e, v〉, the second
of 〈d, v〉 while the last class consists of the remaining three edges. These three
classes induce rootings {G1}, {G5} and {G2, G3, G4}, respectively. Observe, that
G̃2 = G̃3 = G̃4 consist of a subset of U∗ leaves and a speciation (different for each
class) at node v which is a center of S2 star.

Lemma 17. If an empty edge is present in an unrooted gene tree then every D-
plateau edge present in S2 star uniquely defines one ∼-equivalence class. Otherwise,
the tree has exactly one ∼-equivalence class.
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Proof. Let U be an unrooted gene tree. We have two cases: (a) either U has a double
edge or (b) U has an empty edge. In the case (a), it follows from Lemma 9, that Ũe

consists of all U∗ leaves for every e from U∗. Thus, we have one equivalence class
consisting of all U∗ edges. Let use the notation from Figure 6.1. For the case (b),
from the proof of Lemma 15 we conclude that for the empty edge 〈v, c〉 the set Ũ〈v,c〉
consists of all U∗ leaves. Moreover, from the conclusion from the proof of Lemma 14,
there are 0, 2 or 4 single edges in U∗ present in S2 stars. Let 〈v, a〉 be such an edge.
The set Ũ〈v,a〉 consists of: (a) v which is the root of the subtree T (v) = (T (b), T (c))
and thus it is a speciation (it maps to root(S) and both its children map below the
root(S)) and (b) all leaves of U∗ present in T (a). From Lemma 15 for every edge
e of U∗ present in T (a), we have Ũe = Ũ〈v,a〉. Summing up there can be 1, 3 or 5
∼-equivalence classes uniquely defined by every edge of U∗ present in S2 star (see
Figure 6.2).

If an empty edge is an element of a class X ∈ U */∼, X will be called plain.
Otherwise, we call X complex. Recall, that for the set X of edges of unrooted tree
U , by U |X is the smallest subgraph of U containing all edges fromX (see Section 2.3).

Lemma 18. If X ∈ U */∼ is complex then the leaves from U |X are speciations in
every tree Ue for every e in X.

Proof. U has either an empty or a double edge. The leaves of U∗ are super-spe-
ciations from Lemma 9 and Lemma 15. If U has a double edge, then there is only
one ∼-equivalence class (Lemma 17) and every leaf v of U |X is also a leaf in U∗. If U
has an empty edge, say e, then there are 0, 2 or 4 classes X disjoint with {e}. For all
of them the set of the leaves of U |X consists of a subset of the leaves of U∗ (disjoint
with subsets corresponding to other classes see Figure 6.2) and a node v which is the
center of a star S2 and a speciation when rooting on edges from X (see the proof of
Lemma 17).

Definition 6 (Unrooted Decomposition). Let U be an unrooted gene tree, and X ∈
U */∼, then:

ä If X has an empty edge e then ∆(U,X) = {Ue}.

ä Otherwise, ∆(U,X) is the set of all maximal subtrees Tv of U such that v is a
leaf of U |X and Tv ∩ U |X = {v}.

For a complex class X, UX denotes a tree obtained from U |X by replacing ev-
ery leaf v with the subtree S(M(root(Tv))). For example, for the largest class X
from Figure 6.2, we have: ∆(U,X) = {c, (d, e), ((a, b), b), ((c, d), d))} and UX =
((((a, b), (c, d)), e), ((a, b), (c, d)), c).

The intuition is that ∆(U,X) is the set of rooted trees T induced by X with the
following properties: (a) the root of T is a speciation, and (b) T is a subtree present
in all rootings induced by X. For example, when we consider an empty class there
is only one possible rooting Ue. Hence, ∆(U,X) = {Ue}. Lemma 18 describes the
properties of ∆(U,X) for a complex class X. Finally, for an unrooted tree U we have
the following formula:

Lemma 19 (Decomposition Lemma). For a given set of input gene trees G, an input
unrooted gene tree U and a species tree S we have, GME(G ∪ {U}, S) =

= min
X∈U */∼

{
GME(G ∪ {Ue}) if X = {e} and e is empty,
mine∈X GME(G ∪ {UX

e } ∪∆(U,X), S) otherwise.
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Proof. Let us consider the set of allowed DLS scenarios induced by rootings of edges
from each X ∈ U */∼. If X is plain, then the set is A(Ue, S). If X is complex, then
by Lemma 18, X and every leaf v from U |X , satisfies assumptions from Lemma 16.
Thus, the subtree of U disjoint withX\{v} can be detached and replaced by S(M(v))
in U . By Lemma 16 the MES score is preserved. The rest follows by induction on
the set of leaves v, where we show that the unrooted tree after all transformations
is UX and the set of detached subtrees is ∆(U,X).

6.4.
Solution to UME under PG

The linear time algorithm for RME from [Paszek and Górecki, 2017a], which is de-
scribed in Chapter 4 in Section 4.2 as Algorithm 2, is an essential part of the solution
of UME.

Recall that for the input consisting of rooted gene trees, every duplication d is
associated with the interval consisting of all possible locations of d in the species
tree.

Algorithm 2 is a greedy bottom-up algorithm that iteratively assigns duplications
to the top-end of intervals. In every step, it finds the lowest top node s of available
intervals and assigns to s all duplications d having max I(d) equal to s. Additionally,
the algorithm assigns other duplications to s but only if the RME score is not in-
creased, which is controlled by λ(s). For details please refer to [Paszek and Górecki,
2017a] or Section 4.2.

6.4.1 Exact solution to UME under PG

A naïve solution to UME is to run RME algorithm for every combination of D-
plateau rootings from input gene trees. In many cases the D-plateau can be large,
hence, the time complexity of such a solution is O(

∏
i |Ui|(

∑
i |Ui|+ |S|)). Here, we

propose an algorithm based on Lemma 19 to limit the cases that have to be checked
to the number of classes of ∼ relation.
Lemma 20 (Correctness of gnaw). Let U be an unrooted gene tree and X be a
complex class. Let Xr be a set of rooted gene trees T such that the root of every T is
a speciation. Let me(u, v) = 〈s, n〉, in a call of gnaw with UX and Xr, such that v is
internal in X. Then,

ä for every rooting UX
e such that e ∈ X, and having v below the root, if Algo-

rithm 2 (RME) is executed for Xr ∪ {UX
e }, then v is assigned to a node s and

n = levels(d),

ä the call of gnaw returns mine∈X ME(Xr ∪{UX
e }).

Proof. First, observe that every call of gnaw satisfies the assumptions (see Defini-
tion 6). Assume that e ∈ X. Then, by the properties of a complex class X, we
have in UX

e that the root and all internal nodes of X, are duplications, while all
leaves of X are speciations. Let X ′e be the set of duplication nodes from X including
the root. Thus, for every d ∈ X ′e, we have I(d) = 〈Me(v), root(S)〉, where Me is
the lca-mapping from UX

e to S. Hence, all duplications from Xr have the top in-
terval node below the root, therefore, if Algorithm 2 (RME) would be called with
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the input consisting of Xr ∪ {UX
e }, then, for v being the root of S (in line 2 of Al-

gorithm 2), all Xr duplications are already processed. Additionally, a duplication
d from X ′e can be assigned earlier to a node v � Me(d) only in step 5, if the con-
dition is satisfied. Thus, we can separate the process of RME computation for Xr

(line 7 of Algorithm 6) and the rootings of UX . Furthermore, processing UX can
be done collectively for all rootings from X, by using a dynamic programming that
jointly executes the assignment operation. Note, that in line 11 the first elements
of me(x, u) and me(y, u) are comparable (i.e., u is a duplication), therefore, max is
well defined by using lexicographical order. The proof of the first part follows by
induction, in which a node in a rooted subtree of UX is assigned to the first next
free “slot” in a species node. Such a slot can be located by using next. When all slots
of non-root nodes are occupied then duplications have to be assigned to the root.
Such assignments create new episode events. Thus, the score of every rooting placed
on e = {u, v} can be easily computed by verifying if such additional episodes were
created. This information is stored for the two subtrees of the root in me(u, v) and
me(v, u), respectively, i.e., if me(u, v) = 〈root(S), n〉, then n additional episodes are
required. This value for both subtrees is stored in me. Note that, max in line 12 is
well defined, otherwise, X cannot be complex. Additionally, the root of UX

e creates
one more episode. Therefore, the score returned by gnaw consists of r (from rooted
trees), the minimal value of me (the contribution of X) and 1 (the root duplication).
An example is depicted in Figure 6.3.
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Figure 6.3. Illustration of gnaw for U with a double edge (Figure from [Paszek
and Górecki, 2018]). Here, τ denotes the root of S. Assume that S has two positive
lambda’s computed in line 7 of Algorithm 6: λ(α) = 2 and λ(β) = 1. Every edge
e = 〈u, v〉 of the D-plateau is split into two directed edges: 〈u, v〉 and 〈v, u〉. Each
directed edge 〈u, v〉 is decorated with the lca-mapping M〈u,v〉(v) and me(u, v). For
example, τ6 denotes the lca-mapping to τ and me(u, v) = 〈τ, 6〉. Here, gnaw returns
3 + 1 + 3 induced by the marked edge.
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Algorithm 6 Exact solution to UME

1: Input: Unrooted gene trees U1, U2, . . . , Un, a species tree S.
Output: UME({U1, U2, . . . , Un}, S).

2: For every sequence X1, X2, . . . , Xn of classes
from the product U∗1 /∼ × U∗2 /∼ × · · · × U∗n/∼:

3: Xr :=
⋃

i ∆(Ui, Xi) and
Xu :=

⋃
i{UXi : Xi has no empty edge}

4: mex := maxUX∈Xu
gnaw(UX ,Xr, S)

5: Return the minimal value of mex computed in the above loop,
where gnaw is defined below:

6: Function gnaw(UX ,Xr, S):
7: Compute r = RME(Xr, S) and λ(v) for every v ∈ S

by Algorithm 2. // Solve an instance of RME
8: Let λ(root(S)) = +∞ and λ(v) = 0 for every

v 6= root(S) not visited in Algorithm 1 in line 3.
9: For every s ∈ S,

Let φ(s) =


root(S) if s = root(S),

par(s), if λ(par(s)) > 0,

φ(par(s)) otherwise.
10: For every ordered pair 〈u, v〉 of adjacent nodes in X:

11: me(u, v) =


〈M〈u,v〉(v), 0〉 u is a leaf in X,
next(max(me(x, u),me(y, u))) u is internal in X and {x,y,v}

are all nodes adjacent to u,

where next(s, n) =

{
(s, n+ 1) if n < λ(s),

(φ(s), 1) otherwise.
12: For e = {u, v} ∈ X,

me := max{n : for 〈s, n〉 ∈ {me(u, v),me(v, u)} such that s = root(S)}
13: Return r + 1 + mine∈X me // End of gnaw

Lemma 21 (Correctness). Given a collection of unrooted gene trees U and a species
tree S, Algorithm 6 returns UME(U , S).

Proof. The proof follows from Decomposition Lemma 16 and Lemma 20.

Lemma 22 (Complexity of Exact UME). Algorithm 6 requires O((|S|+
∑

i |Ui|)5k)
time and O(

∑
i |Ui| + |S|) space, where k is the number of gene trees with S2 star

having more than one class of U */∼.

Proof. Time: The number of iterations of the main loop is bounded above by 5k.
Locating classes of ∼ and transforming trees can be done in linear time. Each call
of function gnaw requires O(

∑
T∈Xr

|T | + |UX |) time. Space: It follows from the
complexity of Algorithm 2 and gnaw.

6.4.2 Heuristics for UME under PG

In this section, we propose several alternative solutions to our problem designed
to cope with hard instances of ME Problem. For example, when the input consists
of thousands of trees, it is more likely that k is large enough (e.g., for k ≥ 20) to
prohibit applications of Algorithm 6.
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The first approach, presented in Algorithm 7 and Algorithm 8, is to decrease the
search space by introducing the lower and upper bounds on the optimal solution in a
similar way that we proposed in [Paszek and Górecki, 2017a]. In these algorithms we
define function gnawrooting, being a variant of gnaw from Algorithm 6, that instead
of the minimal score it returns the corresponding D-minimal rooting of the input
gene tree.

Algorithm 7 Lower Bound of UME score
1: Input: see Algorithm 6.

Output: a lower bound of UME({U1, U2, . . . , Un}, S).
2: Function gnawrooting(UX , S):

// Assumption: λ and φ are computed.
3: Execute lines 10 -12 from Algorithm 6.
4: Return one element from arg mine∈X me

5: End of Function
6: Xr := ∅
7: For U in {U1, U2, . . . , Un}:
8: If U */∼ consist of a single class X Then

Xr := Xr ∪ ∆(U,X)
If X is not an empty class Then Xu := Xu ∪{UX}

9: Else
Add to Xr all maximal rooted subtrees obtained
from U by removing all internal nodes of U∗

10: Given Xr and S compute λ and φ (the lines 7-9 of Algorithm 6).
11: For U in Xu:

e = gnawrooting(U, S)
Xr := Xr ∪{Ue}

12: Return RME(Xr, S) // Solve an instance of RME by Algorithm 2

Lemma 23. Algorithm 7 computes the lower bound of ME score in O(|S|+
∑

i |Ui|)
time and space.

Proof. Algorithm 7 computes the score from a set of input gene trees as follows. For
each gene tree U :

ä If U */∼ contains exactly one class then decompose the tree similarly to Algo-
rithm 6, i.e., incorporate all duplications from U into the clustering space.

ä Otherwise, ignore every duplication located in the D-plateau. In other words,
to preserve all non-D-plateau duplications, it is sufficient to extract all (rooted)
subtrees of U obtained from U by removing all internal nodes of the D-plateau.

Having this, we conclude that the size of the clustering computed by Algorithm 7 is
less or equal to the size of the clustering from Algorithm 6.

The function gnawrooting processes all edges of the input tree in linear time,
thus, the time complexity of the loop from line 11 is equal to O(

∑
i |Ui|). A similar

property has the decomposition from lines 7-9. The ME score for rooted trees is
computed by Algorithm 2 two times: in line 10 and in line 12. Hence, the time and
space complexity of Algorithm 6 is O(|S|+

∑
i |Ui|).

Lemma 24. Algorithm 8 computes the upper bound of ME score in O(|S|+
∑

i |Ui|)
time and space.
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Proof. Algorithm 8 returns the number of episodes computed for exactly one set
of rootings that uniquely corresponds to an element from the product of classes
U∗1 /∼ × U∗2 /∼ × · · · × U∗n/∼. Hence, this number of episodes is evaluated in max-
formula in line 4 of Algorithm 2. Therefore, the ME score computed by Algorithm 2
is bounded above by output of Algorithm 8. The class of the maximal size for a gene
tree G can be found in O(|G|) time, therefore, the complexity of the decomposition
from lines 3-6 is O(

∑
i |Ui|).

Algorithm 8 Upper Bound of UME score
1: Input: see Algorithm 6.

Output: an upper bound of UME({U1, U2, . . . , Un}, S).
2: Xr := ∅
3: For U in {U1, U2, . . . , Un}:
4: Let X ∈ U */∼ be the class having the maximal size
5: Xr := Xr ∪ ∆(U,X)
6: If X is not an empty class Then Xu := Xu ∪ {UX}
7: Execute lines 10 -12 from Algorithm 7.

Algorithm 8 is a greedy heuristic in which the method of class selection can be
replaced in several ways, e.g., by using a random class, the minimal size class or the
class with the minimal value of gnaw. Moreover, it could be further refined to obtain
a feasible algorithm similar to one presented in [Paszek and Górecki, 2016].

Finally, we present Algorithm 9. It is a heuristic solution to UME Problem having
a quadratic time complexity. Algorithm 9 is designed to utilize the following prop-
erty: if the input consists of thousands of trees, then it is more likely that clustering
of duplications from all non-D-plateau rooted subtrees is sufficient to approximate,
or even to provide, the exact ME score. Therefore, Algorithm 9 first solves compu-
tationally simple instances of RME extracted from the input gene trees and, then if
the solution is not found, it proceeds to complex unrooted parts. In the next Section
(see Table 6.1), we observe a surprising performance of Algorithm 9 allowing to solve
exactly hard instances containing a large number of complex classes with runtimes
counted in seconds. Also, when the ‘rooted’ part of an instance is small (see the
Guigó dataset with 53 trees), the runtime could be much worse than for the large
and potentially hard datasets (e.g., Génolevures with 4144 trees).

Lemma 25. Algorithm 9 is a heuristic solution to UME that runs in O((|S| +∑
i |Ui|)2) time and O(|S|+

∑
i |Ui|) space.

Proof. The first part of Algorithm 9 consists of two phases. The first phase (lines
10-11) has a linear time complexity (see Lemma 24 and Lemma 23). In the second
phase (lines 12-24) it may provide an exact solution in quadratic time due to the
calls of gnaw.

In the second part of Algorithm 9, depending on the size of E it is either com-
puting an exact solution by applying Algorithm 6, or it returns a heuristic solution
that has quadratic worst-time complexity. This part of the heuristic is similar to
Algorithm 8, however, instead of selecting the largest class we choose the class with
the minimal RME score of gnaw output (see line 20).

Observe, that some duplications, which are included in Algorithm 9 in line 12 and
corresponding to Algorithm 7 line 9 in Algorithm 9 are included for the second time.
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Note, the UME score will remain the same, because all of them have a D-plateau leaf
ancestor.

Algorithm 9 UME Heuristic
1: Input/Output: see Algorithm 6.
2: Function mixedUME(U,R, S):
3: // U - unrooted gene trees, R - rooted gene trees
4: For every sequence X ∈ U∗1 /∼ × U∗2 /∼ × · · · × U∗n/∼:
5: Xr := R ∪

⋃
i ∆(Ui, Xi)

6: Xu :=
⋃

i{UXi : Xi has no empty edge}
7: mex := maxUX∈Xu

gnaw(UX ,Xr, S)
8: Return the minimal value of mex computed in the above loop.
9: End of Function

10: Compute lower bound (α) and upper bound (β) by Algorithm 7 and Algorithm 8,
respectively, for the input U and S.

11: If α = β Then Return α // Exact solution
12: Let Xr be the set of rooted trees for which ME score is returned by Algorithm 7

when computing α.
13: E = ∅ // a set of unprocessed trees for the exact solution
14: H = ∅ // a set of pairs (tree, abstract class) for a heuristic
15: For U in {U1, U2, . . . , Un}: // Loop A
16: If |U */∼ | > 1 Then
17: m := −1 // minimal gnaw value for chosen class
18: For X ∈ U */∼:
19: p := gnaw(UX ,Xr ∪∆(U,X), S);
20: If m = −1 or p < m Then m := p;Y := X;
21: If m = α Then break;
22: If m = β Then Return β // Exact solution found
23: Elif m > α Then E := E ∪ {U}; H := H ∪ {(U, Y )}
24: If |E| is empty Then Return α // Exact solution found
25: If |E| < q, where q is a small constant (e.g. q = 10) Then
26: Return mixedUME(E ,Xr, S) // Compute exact solution
27: // Heuristic solution
28: For every pair (U,X) from H

Xr := Xr ∪ ∆(U,X)
If X is not an empty class Then Xu := Xu ∪ {UX}
Execute lines 10 -12 from Algorithm 7.

Our algorithms are implemented in a prototype computer program written in
C++ and python. Additionally, for a more detailed output, all score computing
algorithms are extended with a routine for the reconstruction of gene duplication
clusters (episodes) with their location in the species tree.

6.5.
Experimental evaluation of UME

Datasets properties including the size of classes are depicted in Table 6.1 (see datasets
description in Section 4.5).
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Table 6.1. Decomposition properties of selected datasets
Species tree 1 class 3 classes 5 classes

Dataset Size double empty empty empty
name reference edge edge edge edge

Guigó 53 S1 [Page and Charleston, 1997b] 0 41 12 0
S2 [Guigó et al., 1996] 3 38 12 0

TreeFam 1274 NCBI [Wheeler et al., 2007] 133 611 463 67
Génolevures 4144 [Dujon, 2006] 589 2226 1274 55

[Page and Charleston, 1997b] 673 2250 1079 142

Note, that hard instances for UEC and UME consist of trees that have two S2
stars. Number of such trees is in the column k in Table 5.1 and the column 5 classes
in Table 6.1. Values match for the same input sets, which are NCBI species tree
with TreeFam gene trees and species tree from [Dujon, 2006] with Génolevures gene
trees.

In Table 6.2 we present the UME Problem solutions for selected datasets, that are
provided by our tool, which implements algorithms presented in this Chapter. Note,
that due to small implementation error, results in partial results of upper bound
differ slightly to those presented in [Paszek and Górecki, 2018]. The runtime of
implementations of Algorithm 7 and Algorithm 8 is lower than 30 seconds on empir-
ical datasets on standard portable computer. Observe, that Loop A in Algorithm 9
can be processed in parallel, therefore, on multiprocessor dedicated servers even for
Génolevures calculations might take less than an hour. Note, that in Loop A there is
no need to check all classes from U */∼. The column, labeled # trees > lower bound,
denotes the trees for which we have to check all classes. The |E| equal to 0 means
that those trees do not increase the lower bound. In summary, to obtain results
linear processing of trees in Loop A (every step executes linear-time Algorithm 2) is
enough.

Table 6.2. UME scores for selected datasets
Lower Upper Loop A in Alg.9 UME score

Dataset Size Species tree bound bound # trees (exact)
reference by Alg.7 by Alg.8 > lower bound |E| by Alg.9

Guigó 53 [Page and Charleston, 1997b] 3 7 5
[Guigó et al., 1996] 3 6 5

TreeFam 1274 [Wheeler et al., 2007] 227 228 1 0 227
Génolevures 4144 [Dujon, 2006] 100 104 3

[Page and Charleston, 1997b] 91 92 1

Guigó dataset. Multiple gene duplication events were inferred for two species
trees: S1 from [Page and Charleston, 1997b] and S2 from [Guigó et al., 1996]. The
comparison of the results for RME [Paszek and Górecki, 2017a] and Algorithm 6
is shown in Figure 6.4, where the original rooting of each gene tree was ignored in
UME.

Génolevures. The gene trees were reconciled with the species trees from [Dujon,
2006] and [Shen et al., 2016]. The summary of duplication episodes found by our
algorithms is depicted in Figure 6.5.

TreeFam. The species tree is based on NCBI taxonomy [Wheeler et al., 2007].
The summary of duplication episodes found by our algorithms is depicted in Fig-
ure 6.6.
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Figure 6.4. Duplication episodes in Guigó dataset [Guigó et al., 1996] inferred by
RME [Paszek and Górecki, 2017a] and UME algorithms for the species trees S1 [Page
and Charleston, 1997b] and S2 [Guigó et al., 1996] (Figure from [Paszek and Górecki,
2018]).
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Figure 6.5. Duplication episodes found in Génolevures (Figure from [Paszek and
Górecki, 2018]). Left: a summary of 100 duplication episodes found in Génolevures
dataset [Sherman et al., 2009] by Algorithm 9 for the species trees from [Dujon, 2006].
Right: 91 duplication episodes found in the species tree from [Shen et al., 2016]. D2
and D2∗ denote one whole genome duplication (WGD) event suggested in [Capra
et al., 2010, Hudson and Conant, 2012], while D1 and D1∗ denote one WGD event
from [Marcet-Houben and Gabaldón, 2015]. The number of episodes assigned to a
single edge is presented on the side (blue italic), for example, our algorithm found
13 duplication episodes in the rooting edge in both trees. A gray histogram (the
right side of a node) denotes the frequency of gene trees (Y axis) being involved
into exactly x (X-axis starting from 1) episodes located on the corresponding node.
The number above the highest bar denotes the maximal number of such gene trees.
For example, the gray histogram in the left tree with the second bar of the size 960
denotes that there are 960 gene trees contributing to exactly 2 episodes at the current
node. Bars of frequency lower that 10 are not shown. A red bar on the left of a node
denotes the number of gene trees having at least one duplication event mapped to
this node, i.e., the sum of bars of the corresponding gray histogram.
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Figure 6.6. 227 duplication episodes found by Algorithm 9 for the TreeFam dataset
(Figure from [Paszek and Górecki, 2018]). The upper and lower bounds returned
by our algorithms are the same, therefore, 227 is the exact solution. Please refer to
Figure 6.5 for the description of numbers and histograms. Two consecutive WGD
events at D1 and one WGD event at D2 are reported in [Hufton et al., 2008, Inoue
et al., 2015, Braasch and Postlethwait, 2012].

6.6.
Discussion

Guigó dataset: The clustering for the species tree S1 indicates that UME algorithm
found a better scenario than RME, i.e., 5 episodes vs. 6. Additionally, the duplication
locations are generally in agreement with the solution to the unrooted variant of
episode clustering (see more in [Paszek and Górecki, 2016]). Next, the result of RME
for S2 is consistent with [Guigó et al., 1996, Bansal and Eulenstein, 2008]. However,
in [Page and Cotton, 2002] authors suggested a different evolutionary scenario having
more duplication episodes. The results differ, i.e., for the gene tree for β-nerve growth
factor precursor (NGF) of topology (rept, (mamm, (amph, aves))) in the placement
of two duplications inferred by that gene tree and S2. In the optimal solution from
UME algorithm, the rooting of NGF gene tree is (aves, ((mamm, rept), amph)) and
it infers one duplication with S2.
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Génolevures: We locate two genomic duplication events spanning a large num-
ber of gene trees in the left species tree: one situated at D1 (2638 trees) and the
other above D2 (1064 trees). While in the right tree, we have three such events:
at D1∗ (2228 trees) and the children of D1∗. There is a definite correspondence
between the events located above D2 and D2∗. Next, we observe at least 960 trees
participating in two duplication clusters at D1. Therefore, we postulate that D1 has
at least two large genomic duplications. Also, they seem to correspond to two events
from the right tree located at D1∗ and the left child of D1∗.

In comparison to the literature, we claim that the peaks at D1 and D1∗ match
the whole genome duplication that was a direct consequence of ancient interspecies
hybridization [Marcet-Houben and Gabaldón, 2015]. The location of a WGD event
at D2 and D2∗ [Capra et al., 2010, Hudson and Conant, 2012] is not supported by
our analysis. Based on UME clustering, the most likely location of such an event is
their parent, i.e., the root of (ZY RO, (CAGL,SACE)).

TreeFam: The episode clustering (see Figure 6.6) indicates several genomic
duplications located at D1, D2, D3, D4 and D5. The dataset have only two plant
genomes so it is inadequate to study WGD in plants. The same applies to yeasts
(2 species), worms (2 species) and insects (6 species). The major part of TreeFam
consists of Chordates, for which various studies [Hufton et al., 2008, Inoue et al.,
2015, Braasch and Postlethwait, 2012] suggest the existence of two consecutive WGDs
located at D1 as well as one WGD event at D2. Both are partially supported by
our analysis by the presence of relatively large number of gene trees contributing to
gene duplication events at these two nodes. The genomic duplication at D3 spans
almost every tree from the dataset suggesting one WGD event, however, we did not
find any evidence of such an event in the literature.

6.7.
Conclusions

In this Chapter, we proposed the first solution to the problem of minimum episodes
clustering for the case when input gene trees are unrooted. We showed new properties
of unrooted reconciliation for the duplication cost. Then, we proposed a decomposi-
tion of an unrooted gene tree that allows transforming a gene tree into a set of rooted
trees and a simplified unrooted tree. Based on the tree decomposition, we designed
several exact and heuristic algorithms for solving the problem. From the application
point of view, the most important is an efficient heuristic algorithm, which in practice
allows solving exactly empirical instances consisting of thousands of unrooted gene
trees. Our evaluation on empirical datasets confirmed several genomic duplication
events from the literature.

Future work will focus on the open question of the complexity of UME (we con-
jecture that UME is intractable). Moreover, we plan to research on the applications
of the developed theory to infer genomic duplication events from simulated and em-
pirical datasets of unrooted gene trees including a comparative study of other models
of duplication intervals [Paszek and Górecki, 2016].



CHAPTER 7
Conclusions

In this dissertation we present new theoretical results for unrooted reconciliation and
apply them to develop solutions to several algorithmic problems.

Moreover, we propose a model of allowed evolutionary scenarios that preserves
the minimal number of single gene duplications. We show the biological motivation
for the model and present a comparative study with existing models.

We propose the first linear time and space algorithm for RME jointly for any
interval model, and the solutions to open problems UME and UEC for unrooted gene
trees and under our model.

Popular phylogenetic methods infer unrooted gene family trees, hence, we provide
broader applicability of methods that cluster duplications. Moreover, we show that
unrooted approach might improve known results on genomic duplication inference
from rooted trees.

Our experimental evaluation on biological dataset indicate that we can provide
new insights into the genomic duplication inference.

In future, we plan further testing of models of allowed evolutionary scenarios. Our
goal is to, with the collaboration of biologists, use the implementations of created
algorithms to study multiple genomic duplications like whole-genome duplications.
Currently, we can detect whole-genome duplications as well hybridizations.
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