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Abstract

Real Legendrian subvarieties are classical objects of differential geometry and
classical mechanics and they have been studied since antiquity (see [Arn74],
[Sta91] and references therein). However, complex Legendrian subvarieties are
much more rigid and have more exceptional properties. The most remarkable
case is the Legendrian subvarieties of projective space and prior to the author’s
research only few smooth examples of these were known (see [Bry82|, [LMO04]).
Strong restrictions on the topology of such varieties have been found and studied
by Landsberg and Manivel ([LM04]).

The results of this thesis are two fold:

The first series of results is related to the automorphism group of any Legen-
drian subvariety in any projective contact manifold. The connected component of
this group (under suitable minor assumptions) is completely determined by the
sections of the distinguished line bundle on the contact manifold vanishing on
the Legendrian variety. Moreover its action preserves the contact structure. The
relation between the Lie algebra tangent to automorphisms and the sections is
given by an explicit formula (see also |[LeB95|, |Bea99|). This extends the results
of the author’s MSc thesis [Buc03].

The second series of results is devoted to finding new examples of smooth
Legendrian subvarieties of projective space. The examples known previously
were some homogeneous spaces, many examples of curves and a family of surfaces
birational to some K3 surfaces. The contribution of this thesis is in three steps:
First we find an example of a smooth toric surface. Next we find a smooth
quasihomogeneous Fano 8-fold that admits a Legendrian embedding. Finally, we
realise that both of these are special cases of a very general construction: a general
hyperplane section of a smooth Legendrian variety, after a suitable projection,
is a smooth Legendrian variety of smaller dimension. By applying this result to
known examples and decomposable Legendrian varieties, we construct infinitely
many new examples in every dimension, with various Picard rank, canonical
degree, Kodaira dimension and other invariants.

The original motivation for this research comes from a 50 year old problem
of giving compact examples of quaternion-Kahler manifolds (see |Ber55|, [LS94|,
|[LeB95| and references therein). Also Legendrian varieties are related to some
algebraic structures (see [Muk98|, [LMO1], [LMO02]). A new potential application
to classification of smooth varieties with smooth dual arises from this thesis.
keywords:

Legendrian variety, complex contact manifold, automorphism group;

AMS Mathematical Subject Classification 2000:
Primary: 14M99; Secondary: 53D10, 14130, 53D20;



Streszczenie

Rzeczywiste rozmaitosci legendrowskie stanowiag standardowy przedmiot ba-
dan geometrii rozniczkowej oraz mechaniki klasycznej (zobacz |[Arn74|, |Sta91|
oraz odnosniki tamze). W niniejszej pracy badamy ich geometro-algebraiczny od-
powiednik: zespolone podrozmaito$ci legendrowskie zespolonych rozmaitosci kon-
taktowych. W poréwnaniu z rzeczywistymi, zespolone sa duzo bardziej sztywne i
maja bardziej wyjatkowe wlasnosci. Najwazniejszy przypadek to podrozmaitosci
legendrowskie w zespolonej przestrzeni rzutowej — przed badaniami autora zna-
nych byto jedynie kilka gtadkich przykladéw (zobacz |Bry82|, [LM04|), a mocne
ograniczenia dotyczace whasnosci topologicznych takich rozmaitosci zostaty udo-
wodnione przez Landsberga i Manivela [LM04].

Wyniki badan autora przedstawione w niniejszej pracy sa dwojakie:

Pierwsza seria wynikow jest rozszerzeniem pracy magisterskiej autora [Buc03|
i dotyczy grupy automorfizméw dowolnej podrozmaitosci legendrowskiej w dowol-
nej rzutowej rozmaitosci kontaktowej. Spojna sktadowa jednosci tej grupy (przy
odpowiednich, mato istotnych zalozeniach) jest catkowicie wyznaczona przez te
ciecia wyr6znionej wigzki liniowiej na rozmaitosci kontaktowej, ktore znikaja na
ustalonej rozmaitodci legendrowskiej. Co wiecej, dzialanie tej sktadowej zacho-
wuje strukture kontaktowa. Powyzszy zwiazek miedzy cieciami a algebra Liego
grupy automorfizmow opisany jest konkretnie, przez zadany wzorem izomorfizm
(zobacz takze [LeB95|, [Bea98]).

Pozostale wyniki dotycza znajdowania nowych przyktadow gtadkich podroz-
maitosci legendrowskich w przestrzeni rzutowej. Przyktady, ktore byly znane
wczedniej to pewne przestrzenie jednorodne, liczne przyktady krzywych i rodzina
powierzchni biwymiernych z pewnymi powierzchniami K3. Wklad niniejszej
pracy dzieli sie na trzy czeSci: Najpierw znajdujemy przykitad gtadkiej legen-
drowskiej torycznej powierzchni. Nastepnie znajdujemy przyklad 8-wymiarowej
gtadkiej rozmaitosci Fano. Na koniec pokazujemy, ze obydwa te przyktady sa
szczegdlnymi przypadkami bardzo ogolnej konstrukeji: og6lne hiperptaskie ciecie
rozmaito$ci legendrowskiej, po odpowiednim zrzutowaniu, zadaje gtadka rozma-
itos¢ legendrowska mniejszego wymiaru. Stosujac wielokrotnie powyzsze stwier-
dzenie do znanych przyktadow oraz do rozktadalnych rozmaitosci legendrowskich,
otrzymujemy nieskonczenie wiele nowych przyktadéow w kazdym wymiarze. Przy-
ktady te réznig sie od siebie miedzy innymi ranga grupy Picarda, stopniem dy-
wizora kanonicznego oraz wymiarem Kodairy.

Inspiracja dla tej pracy jest 50-cio letni problem dotyczacy skonstruowania
zwartych przykltadoéw rozmaitosci kwaternionowo-kiahlerowskich (zobacz [Ber55|,
[LS94], [LeB95] oraz odnos$niki tamze) oraz fakt, ze rozmaitosci legendrowskie
sa powiazane z pewnymi obiektami algebraicznymi (zobacz |[Muk98|, |[LMO01],
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[LMO02|). Konsekwencjg tej pracy moze by¢ kolejne ich zastosowanie. Pokazu-
jemy, ze problem klasyfikacji gtadkich rozmaitodci o gltadkiej rozmaitosci dualnej
jest rownowazny klasyfikacji pewnych rozmaitosci legendrowskich w przestrzeni
rzutowe;j.
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Chapter I

Introduction

I.1 State of art

This thesis is devoted to study algebraic and geometric properties of Legendrian
subvarieties. The main motivation for our research comes from the classification
problem of contact Fano manifolds'.

I.1.1 Contact Fano manifolds and quaternion-Kihler man-
ifolds

Results of Demailly [Dem02| and Kebekus, Peternell, Sommese and Wisgniewski
[KPSWO00| prove that if Y is a complex projective contact manifold, then either
Y is a Fano variety with second Betti number b, = 1 or Y is a projectivisation
of the cotangent bundle to some projective manifold M.

The following conjecture would be an important classification result in alge-
braic geometry:

Conjecture I.1. IfY?"*! is a Fano complex contact manifold, then'Y is a homo-
geneous variety which is the unique closed orbit of the adjoint action of a simple
Lie group G on P(g) (where the g is the Lie algebra of G).

The closed orbits appearing in the conjecture are called adjoint varieties.

This conjecture originated with a famous problem in Riemannian geometry.
In 1955 Berger |Ber55| gave a list of all possible holonomy groups? of simply
connected Riemannian manifolds. The existence problem for all the cases has

IA complex manifold Y271 is called a contact manifold if there exists a rank 2n vector
subbundle F' C TY of the tangent bundle, such that the map F ® FF — TY/F determined by
the Lie bracket is nowhere degenerate (see chapter III for more details). A projective variety
is Fano if its anticanonical bundle is ample.

2Given an m-dimensional Riemannian manifold M, the holonomy group of M is the
subgroup of orthogonal group O(T, M) generated by parallel translations along loops through
T.
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been solved locally. Compact non-homogeneous examples with most of the possi-
ble holonomy groups were constructed, for instance the two exceptional cases Gy
and Spin; were constructed by D. Joyce — see an excellent review on the subject
[Joy00]. Since then all the cases from Berger’s list have been illustrated with com-
pact non-homogeneous examples, with the unique exception of the quaternion-
Kéhler manifolds®. Although there exist non-compact, non-homogeneous exam-
ples, it is conjectured that the compact quaternion-Kahler manifolds must be
homogeneous, at least assuming positivity (see [LeB95| and references therein for
an explanation of what positivity means and why it is reasonable to assume it).

Conjecture 1.2 (LeBrun, Salamon). Let M* be a positive quaternion-Kdihler
manifold. Then M is a homogeneous symmetric space (more precisely, it is one
of the Wolf spaces — see [Wol65]).

The relation between the two conjectures is given by the construction of a
twistor space Y, an S%-bundle of complex structures on tangent spaces to a
quaternion-Kéahler manifold M. If M is compact and has positive scalar curva-
ture, then Y has a natural complex structure and is a contact Fano variety with
a Kéhler-Einstein metric. In particular, the twistor space of a Wolf space is an
adjoint variety. Hence conjecture 1.1 implies conjecture 1.2. Conversely, LeBrun
|[LeB95| observed that if Y is a contact Fano manifold with K&hler-Einstein met-
ric, then it is a twistor space of a quaternion-Kéahler manifold.

A number of attempts have been undertaken to prove the above conjectures.
They were proved in low dimension: for n = 1 by N. Hitchin |Hit81| and Y. Ye
[Ye94|, n = 2 by Y.S. Poon and S.M. Salamon [PS91| and S. Druel |Dru98|
and conjecture 1.2 for n = 3 by H.&R. Herrera [HHO02|. Moreover A. Beauville,
J. Wisniewski, S. Kebekus, T. Peternell, A. Sommese, J.P. Demailly, C. LeBrun,
J-M. Hwang and many other researchers have worked on this problem.

Let Y2t be a contact Fano manifold not isomorphic to a projective space.
Wisniewski |Wis00| and Kebekus [Keb01|, |Keb05| have studied geometric prop-
erties of contact lines* and have proved that contact lines through a general point
behave very much like ordinary lines in a projective space. Moreover the union of
contact lines through any fixed point is a Legendrian subvariety® in Y. In addi-
tion, the variety X of tangent directions to such lines through a general point is a
smooth Legendrian subvariety in P?"~!. If Y is one of the adjoint varieties, then
X will be a homogeneous Legendrian subvariety called a subadjoint variety
(see [LMO04|, [Muk98]). Proving that there is an embedding of Y into a projec-
tive space which maps contact lines to ordinary lines would imply conjecture I.1.

3A Riemannian 4n-dimensional manifold M is called quaternion-Kihler if its holonomy
group is a subgroup of Sp(1) x Sp(n)/Z..

4A rational curve C C Y is a contact line if its intersection with the anticanonical bundle
is minimal possible, i.e. equal to n + 1.

5A subvariety X C Y is Legendrian if it is maximally F-integrable  see chapter III for
the details.



ALGEBRAIC LEGENDRIAN VARIETIES Chapter I

Moreover it is proved by Hong [Hon00|, that if X is homogeneous, then so is Y.
Therefore contact lines and particularly the Legendrian varieties determined by

them are important objects, useful in the study of conjecture 1.1.

Lie Type Contact manifold | Legendrian vari- | Remarks
group y?2n+l ety Xn~!
SLyto Ania P(TP"*1) Pl b Pl (V) =2
C ]P>2n—1
SPonte | Cntt P2+l 0 c pnt Y does not have
any contact lines
SOpa14 Bnis or | Gro(2,n +4) P! X Q"2 | Y is the Grassman-
Dot C p2n-l nian of projective
? lines on a quadric
Qn+2
Go Grassmannian of | Pt ¢ P3 X is the twisted
special lines on cubic curve
Q5
F, an F variety Grp(3,6) Cc P13
Es an Eg variety Gr(3,6) c P¥
Er an F; variety Sg C P31 X is the spinor va-
riety
FEyg an FEg variety the FEr va-
riety C P55

Table I.1: Simple Lie groups together with the corresponding adjoint variety Y
and its variety of tangent directions to contact lines: the subadjoint variety X

(listed in details also in §1.1.2).

I.1.2 Legendrian subvarieties of projective space

Prior to the author’s research the following were the only known examples of

smooth Legendrian subvarieties of projective space (see |Bry82|, [LMO04|):

1) linear subspaces;

2) some homogeneous spaces called subadjoint varieties (see table I.1): the

product of a line and a quadric P! x Q"2 and five exceptional cases:

e twisted cubic curve P! C P3,

e Grassmannian Grp(3,6) C P'3 of Lagrangian subspaces in C°,

e full Grassmannian Gr(3,6) C P!,




JAROSEAW BUCZYNSKI

e spinor variety S¢ C P3' (i.e. the homogeneous SO(12)-space para-
metrising the vector subspaces of dimension 6 contained in a non-
degenerate quadratic cone in C'?) and

e the 27-dimensional E7-variety in P corresponding to the marked root:

3) every smooth projective curve admits a Legendrian embedding in P? |Bry82];
4) a family of smooth surfaces birational to the Kummer K 3-surfaces [LM04].

The subadjoint varieties are expected to be the only homogeneous Legen-
drian subvarieties in P*"~! (a partial proof can be found in [LM04]) and they are
the only symmetric Legendrian varieties. Also, they are the only smooth irre-
ducible Legendrian varieties whose ideal is generated by quadratic polynomials
(see |Buc06]| or theorem IIL.5).

The subadjoint varieties are strongly related to the group they arise from.
Landsberg and Manivel |[LM02| use the subadjoint varieties to reprove the classi-
fication of simple Lie groups by means of projective geometry only. Also Mukai
[Muk98| relates the symmetric Legendrian varieties with another algebraic struc-
ture: simple Jordan algebras. In [LMO1] the authors give a uniform description
of the exceptional cases (arising from Fj, Fg, F7 and Ej).

1.2 Main results and structure of the thesis

The results of this thesis address two complementary problems regarding Legen-
drian varieties:

e write explicit restrictions on the properties of Legendrian varieties;
e give examples of smooth Legendrian varieties.

We contribute to the first problem by giving a very precise understanding of the
embedded automorphism group of a Legendrian variety. The second problem
is solved by proving that a general hyperplane section of a smooth Legendrian
variety admits a Legendrian embedding.

In our masters thesis [Buc03|, we prove that the quadratic part of the ideal of a
Legendrian subvariety X of projective space P?*~! produces a connected subgroup
of projective automorphisms of X. In [Buc06| we improve this result by observing
that this group is actually the maximal connected subgroup of automorphisms of
the contact structure on P*"~! preserving the Legendrian subvariety (see theorem
I11.5).

In the present dissertation we extend this result further. Firstly, we replace
P?"~1 with an arbitrary contact manifold Y. Then the connected component of

10



ALGEBRAIC LEGENDRIAN VARIETIES Chapter I

the subgroup of Aut(Y’) that preserves both the contact structure and a given
Legendrian subvariety X C Y, is completely determined by those sections of a
distinguished line bundle L on Y that vanish on X. Secondly, we try to remove the
assumption that the automorphisms preserve the contact structure. By applying
the results of [LeB95] and [Keb01] on the uniqueness of contact structures we can
deal with this problem for most projective contact Fano manifolds (see corollary
[11.25). The remaining cases are the projectivised cotangent bundles and the
projective space. The first case is not very interesting, as all the Legendrian
subvarieties are classified for these contact manifolds (see corollary I11.19). On
the other hand the case of projective space is the most important and interesting.
It is described precisely in chapter IV. We prove there that a connected group of
projective automorphisms that preserve a smooth Legendrian variety necessarily
preserves the contact structure. We also give counterexamples to the analogous
statement without assuming smoothness and provide some evidence that our
counterexamples are the only possible ones.

Our methodology for finding new examples of smooth Legendrian subvarieties
is the following. We pose questions of classification of smooth Legendrian varieties
satisfying certain additional conditions. For instance, we assume that the variety
is toric (see chapter V) or that it is contained in a specific F-cointegrable variety
(see chapter VI). In this way we produce a few new smooth examples including
a toric surface and a quasihomogeneous Fano 8-fold. Finally we prove that both
examples are very close to subadjoint varieties  each of them is isomorphic to
a hyperplane section of a subadjoint variety. We generalise this and prove that a
general hyperplane section of a smooth Legendrian variety admits a Legendrian
embedding into a smaller projective space.

Section 1.3 is devoted to introducing our notation and presenting some ele-
mentary algebro-geometric facts.

Chapter II is a brief revision of symplectic geometry that will be used in
our discussion of contact manifolds. Also some statements from [Buc06| are
generalised to this context.

Chapter III contains an independent review of local geometry of contact man-
ifolds, with emphasis on their infinitesimal automorphisms. There we compare
(after [LeB95] and [Bea99]) two natural Lie algebra structures related to a con-
tact manifold Y: the Lie bracket of vector fields and the Poisson bracket on the
structure sheaf of the symplectisation of Y. We use this comparison to prove
the first theorem on embedded automorphisms of Legendrian subvarieties. The
theorem states that those automorphisms that preserve the contact structure are
completely determined by the ideal of the variety.

In chapters IV-VII we turn our attention to Legendrian subvarieties of pro-
jective space.

In chapter IV we continue the topic of automorphisms of Legendrian varieties.
We prove the second theorem on embedded automorphisms of Legendrian sub-

11
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varieties, stating that under minor assumptions they must preserve the contact
structure. The results of this chapter are published in [Buc07c].

In chapter V we illustrate, in the case of subvarieties of projective space, how
to classify toric Legendrian subvarieties. We give the list of all smooth cases,
which include a new example: the projective plane blown up in three linearly
independent points. Also the results of that chapter are published in [Buc07c].

Chapter VI contains the classification of Legendrian varieties, which are con-
tained in a specific F-cointegrable variety. Another new example arises in this
way: the smooth quasihomogeneous 8-fold. Also we present two other variants of
the construction, producing a smooth 5-fold and a smooth 14-fold. The contents
of that chapter will be published as |[Buc07b].

Finally chapter VII describes a Legendrian embedding of a hyperplane section
of a Legendrian variety. Also a variant of an inverse construction (i.e. to describe a
bigger Legendrian variety from a given one, such that a hyperplane section of the
big one is the original one) is presented and is applied to Bryant’s, Landsberg’s
and Manivel’s examples of smooth Legendrian varieties. Parts of that chapter
will be published as [Buc07a].

Appendix A revises the differential geometric properties of infinitesimal auto-
morphisms that are necessary for chapter III, but can be expressed without any
explicit reference to the contact structure.

I.2.1 Open problems

Keeping in mind the elegant results sketched in §I.1 and having many new exam-
ples of smooth Legendrian varieties (as well as families of such), several natural
questions remain unanswered.

New contact manifolds?

Can we construct a new example of a contact manifold, whose variety of tangent
directions to contact lines is one of the new Legendrian varieties (or is in the
given family)? If conjecture 1.1 is true, then the answer is negative. If the
answer is negative, then what are the obstructions, i.e., what conditions should we
require on the Legendrian variety to make the reconstruction of contact manifold
possible?

Further applications to algebra?

Can the new Legendrian varieties be used in a similar manner as the subadjoint
cases and will they prove themselves to be equally extraordinary varieties? The
first tiny piece of evidence for this is explained in §VI.2.1. On the other hand, it is
unlikely that such a big variety of examples can have analogous special properties.

12
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Self-dual varieties?

Another problem we want to mention here is a classical question in algebraic
geometry: what are the smooth subvarieties of projective space, whose dual vari-
ety® is also smooth? So far the only examples of these are the self-dual varieties.
Thanks to L. Ein |Ein86|, the classification of smooth self-dual varieties Z C P™
is known when 3 codim Z > dim Z. In corollary VII.17 we prove that the prob-
lem of classifying smooth varieties with smooth dual can be expressed in terms
of Legendrian varieties and possibly we can apply the techniques of Legendrian
varieties to finish the classification.

Projectively and linearly normal Legendrian varieties?

We dare to conjecture:

Conjecture 1.3. Let X C P(V) be a smooth linearly normal’ Legendrian variety.
Then X is one of the subadjoint varieties.

In view of theorems VII.1 and VII.10, the classification of linearly normal Le-
gendrian varieties might be a necessary step towards a classification of Legendrian
varieties.

Furthermore, the conjecture might also contribute to the proof of conjecture
[.1. For instance assume conjecture 1.3 holds and Y is a contact Fano manifold,
for which the variety cut out by contact lines through a general point is normal.
Then by applying the results of [Keb05] we get that the associated Legendrian
variety X C P?"~! is projectively normal® and by the conjecture and results of
|[Hon00| the manifold Y is an adjoint variety.

The author is able to prove conjecture 1.3 if dim X = 1, but this is not an
elegant argument nor does it have important applications. We omit the proof here
until we manage to improve the argument or to generalise it to higher dimensions.

[.3 Notation and elementary properties

In the present thesis we always work over the field of complex numbers C.

I.3.1 Vector spaces and projectivisation

Let V be a vector space over C. By P(V') we mean the naive projectivisation of

V, i.e. the quotient (V\{0})/C*.

6Given a subvariety Z C P(W), the dual variety Z* C P(W*) is the closure of the set of
hyperplanes tangent to Z, see §VIIL.3 for details.

TA subvariety X C P™ is linearly normal if it is embedded by a complete linear system.

8 A subvariety X C P™ is projectively normal if its affine cone is normal. If X is projec-
tively normal, then it is also linearly normal by [Har77, ex. 11.5.14(d)]
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If v € V' \ {0}, then by [v] € P(V) we denote the line spanned by v.

Analogously, if E' is a vector bundle, by P(E) we denote the naive projectivi-
sation of E. Let so C E be the zero section of E. If v € E'\ s¢, then by [v] € P(F)
we denote the line spanned by v in the appropriate fibre of E.

1.3.2 Bilinear forms and their matrices

Let V be a complex vector space of dimension m and f a bilinear form on V.
Fix a basis B of V and let M(f) = M(f,B) be the m x m-matrix such that:

flo,w) =v" M(f)w,

where v and w are arbitrary column vectors of V. We say that M(f) is the
matrix of f in the basis B.

In particular if w is a symplectic form (see §I1.1.1), dimV = 2n and B is a
symplectic basis, then

J::M(w,B):[ 0 Id"}.

—-1d, O
Moreover in such a case J is also the matrix of the linear map w:
w: V—V"
v— w(v,)

in the basis B on V' and the dual basis on V*.
Similarly, if ¢ is a quadratic form on V', then we denote by M(q) = M (q, B)
the matrix of ¢ in the basis B:

q(v) = v" M(q)v.

I.3.3 Complex and algebraic manifolds

Our main concern is with complex projective manifolds and varieties. This is
where two categories meet: complex algebraic varieties and analytic spaces (see
|Gri74|). Since the author’s origins lie in algebraic geometry, this thesis’ intention
is to study algebraic Legendrian varieties. However, for some statements there
is no reason to limit to the algebraic case, so we state them also for the analytic
situation.

So Y will be usually the ambient manifold (for example contact or symplectic
manifold), either a complex manifold or smooth algebraic variety. Some state-
ments are local for Y (in the analytic topology), hence it is enough to prove them
for Y ~ D where D?" C C" is a complex disc.

Our main interest is in X C Y, which will be either an analytic subspace (if Y’
is a complex manifold), or an algebraic subvariety (if Y is algebraic). For short,
will always say X C Y is a subvariety.

14
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I.3.4 Vector bundles, sheaves and sections

Given an analytic space or algebraic variety Y, we denote by Oy both the struc-
ture sheaf (consisting of either holomorphic or algebraic functions on Y in the
appropriate analytic or Zariski topology) and the trivial line bundle. If X C Y
is a subvariety, then by Z(X) we mean the sheaf of ideals in Oy defining X.

Given a vector bundle £ on Y we will use the same letter F for the sheaf of
sections of E. To avoid confusion and too many brackets (for example Z(X)(U))
given an open subset U C Y and a sheaf (or vector bundle) F, we will write
HO(U, F) rather than F(U) to mean the value of the sheaf at the open subset
U (or sections of vector bundle). By F|y we mean the sheaf (or vector bundle)
restriction of F to the open subset U.

Where there can be no confusion, given a sheaf F which does not have any
natural vector bundle structure we will write s € F to mean:

Jan open U C Y with s € H(U, F).

On the other hand, if E is a vector bundle, then by v € E, we mean that v is a
vector in the bundle.
Given a vector bundle E, we denote by E* the dual vector bundle:

E* :=Hom(E,O).

If §: F — G is a map of sheaves or vector bundles and s € H°(U, F), then
by 6(s) we mean the image section of G.

1.3.5 Derivatives

Given a complex manifold or smooth algebraic variety Y and a k-form 6 €
H°(U,QFY) by df we denote the exterior derivative of §. This convention is
also valid for O-forms f € Oy = QY.

By TY we mean the tangent vector bundle. Nevertheless we keep in mind,
that a vector field u € H°(U,TY) can also be interpreted as a derivation p :
Oy — Oy. In particular, we can define the Lie bracket of two vector fields
w,v € HY (U, TY) as:

[, v] = v — .
This convention is in agreement with [Arn74]|.

Given a holomorphic or algebraic map ¢ : Y — Y’, by D¢ we mean the
derivative map:

D¢ :TY — ¢*TY".

If € HO(U,Q*Y) and p € H°(U,TY), then by 0(u) we mean the contracted
(k — 1)-form. For example, if § = 0; A 0, for 1-forms 6;, then

0(1) = 01(p)02 — b2(11)61
The reader should also refer to §A.2.2 for the convention on automorphisms
and infinitesimal automorphisms.

15
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[.3.6 Submersion onto image

We recall the standard fact, that every algebraic map is generically a submersion
on the closure of the image.

Lemma 1.4. Let M and N be two algebraic varieties over an algebraically closed
field of characteristic 0 and let p : M — N be a map such that N = p(M).
Then for a general v € M, the derivative Dyp : T, M — Tp,yN is surjective.

Proof. See [Har77, thm II1.10.6].
O

As a corollary, we prove an easy proposition about subvarieties of product
manifolds.

Proposition 1.5. Let S; and Sy be two smooth algebraic varieties and let X C
S1 xSy be a closed irreducible subvariety. Let X; C S; be the closure of the image
of X under the projection m; onto S;. Assume that for a Zariski open dense subset
of smooth points U C X we have that the tangent bundle to X decomposes as
TX|p=(TXNmTS)|lv® (TX Nm3TSs) |y a sum of two vector bundles. Then
X = X; x X,.

Proof. Since X is irreducible, so is X; and X5 and clearly X C X; x X5. So it
is enough to prove that dim X; 4+ dim X, = dim X = dim U. However, the maps
D(m;|v) are surjective onto TX N 7w;T'S; and hence by lemma 1.4:

dim X7 +dim Xy = rk(TX N7y TS)) |y + k(T X Ny TS) |y =1k TX |y = dim X.

O

1.3.7 Line bundles and C*-bundles

Let Y be complex manifold or a smooth algebraic variety and let L be a line
bundle on Y. By L*® we denote the principal C*-bundle over Y obtained as the
line bundle L* with the zero section removed. Let 7 be the projection L* — Y.

Let Ry be the sheaf of graded Oy-algebras ,,., L™ on Y. Given an open
subset U C Y the ring R (U) consists of all the algebraic functions on 7! (U),
i.e. R = m,Ore. Therefore

L®* = Specy Rp.

Moreover, HO(U, L™) C H°(n=*(U), Ors) is the set of homogeneous functions of
weight m (see §A.1).
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Lemma 1.6. Let Y be a smooth algebraic variety and let L be a line bundle on
Y. Then Pic(L®) ~ Pic(Y') /(L) and the map Pic(Y) — Pic(L®) is induced by the
projection m : L* — Y.

Proof. The Picard group of the total space of L* is isomorphic to PicY and
the isomorphisms are given by the projection and the zero section sy : Y — L*.
Further, so(Y") is a Cartier divisor linearly equivalent to any other rational section
s:Y --» L*. Therefore s§(so(Y)) = L* and hence by |Har77, prop. 6.5(c)| the
following sequence is exact:

7 — PicY > Pic L* — 0
1 — [L*]

O

The relative tangent bundle, i.e. ker (D7 : TL®* — 7*TY") is trivialised by the
vector field uc« related to the action of C* (see §A.2.2) and hence we have the
short exact sequence:

0— Ope — TL®* — 7"TY — 0.

In particular Ky = 7* Ky

[.3.8 Tangent cone

We recall the notion of the tangent cone and a few among many of its properties.
For more details and the proofs we refer to |[Har95, lecture 20| and [Mum99,
I11.§3,84].

For an irreducible Noetherian scheme X over C and a closed point x € X we
consider the local ring Oy, and we let m, be the maximal ideal in Ox . Let

R @) (mt/mi).

=0

where m? is just the whole of Ox .. Now we define the tangent cone TC, X at x
to X to be Spec R.

If X is a subscheme of an affine space A™ (which we will usually assume
to be an affine piece of a projective space), the tangent cone at x to X can be
understood as a subscheme of A™. Its equations can be derived from the ideal of
X. For simplicity assume z = 0 € A™ and then the polynomials defining T'Cy X
are the lowest degree homogeneous parts of the polynomials in the ideal of X.

Another interesting point-wise definition is that v € TCyX is a closed point
if and only if there exists a holomorphic map ¢, from the disc D; := {t € C

17
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|t| < d} to X, such that ¢,(0) = 0 and the first non-zero coefficient in the Taylor
expansion in t of ¢, (¢) is v, i.e.:

0, D — X
t = tho+thtly, + L

We list some of the properties of the tangent cone, which will be used freely
in the proofs:

(1) The dimension of every component of T'C, X is equal to the dimension of

X.

(2) TC,X is naturally embedded in the Zariski tangent space to X at x and
TC,X spans (as a scheme) the tangent space.

(3) X is regular at z if and only if TC, X is equal (as a scheme) to the tangent
space.

18



Chapter 11

Elementary symplectic geometry

We introduce some elementary facts from symplectic geometry, having in mind
the needs of subsequent chapters. Most of this material is contained in (or can be
easily deduced from) classical textbooks on symplectic geometry, such as |[MS98|,
although we rewrite this over the ground field C rather than R.

II.1 Linear symplectic geometry

In this section we study linear algebra of vector space, which has a symplectic
form. Although it is elementary, it is very important for our considerations as it
has threefold application: Firstly, the content of this section describes the local
behaviour of symplectic manifolds (see §I1.2), particularly the symplectisations
of contact manifolds (see §111.2.1). Secondly, it describes very much of global
geometry of projective space as a contact manifold (see I11.12, but also look
through chapters IV VII). Finally, it explains the fibrewise behaviour of contact
distribution (see §I11.2).

I1.1.1 Symplectic vector space

A symplectic form on a vector space V is a non-degenerate skew-symmetric bi-
linear form. So w € /\2 V* is a symplectic form if and only if

Vo €V Jw €V such that w(v,w) #0
or equivalently the map
w:V — Vr
v — w(v,-)
is an isomorphism.
If a vector space V has a symplectic form w, we say that V (or (V,w) if

specifying the form is important) is a symplectic vector space. In such a case
the dimension of V' is even and there exists a basis vy, ..., v,, w1, ..., w, (where
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n = 1dimV) of V such that w(v;,w;) = 1, w(v;,v;) = 0 and w(v;, w;) = 0 for
1 # 7. Such a basis is called a symplectic basis.
By w" we denote the corresponding symplectic form on V*:

~—1\*
wv = (w 1) w.

Note that if vq,...,v,, wy,...,w, is a symplectic basis of V and zq,...,x,,
Y1, - - -, Yn 1s the dual basis of V* then x1, ..., z,,y1, ..., Yn is a symplectic basis of
V*. In such a case x1,...,2,,Y1, ..., Y, are also called symplectic coordinates

on V.

I1.1.2 Isotropic, coisotropic, Lagrangian and symplectic sub-
spaces

Assume V is a vector space of dimension 2n and w is a symplectic form on V. Now
suppose W C V is a linear subspace. By W'« we denote the w perpendicular
complement of W:

W ={veV|VweW wlw)=0}.

Denote by 7 the natural projection V* — W*. We say that the subspace W is:

isotropic & wlw=0 & WcCcWr & |kerw is co-
isotropic;

coisotropic | & wY|kerr =0 & WO Wt & | ker 7 is iso-

(or  some- tropic;

times called

involutive)

Lagrangian | & W is isotropic < W =W & | kerm is La-
or involutive and grangian;
dimW =n = %dimV

symplectic | & w|y is a symplec- & WNW* =0 < |kerw is
tic form on W symplectic.

I1.1.3 Symplectic reduction of vector space

With the assumptions as above let W C V be any linear subspace and let W' :=
W N W+« Define w’ to be the following bilinear form on V' := W/W":

for wy,wy € W let W'([wy], [we]) := w(wy, ws).

Then (V',w’) is a symplectic vector space.

The particular case we are mostly interested in is when W is a hyperplane or
more generally a coisotropic subspace.

Note the following elementary properties of this construction:
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Proposition I1.1. For a subspace L C V let L' be the image of LOW in V',

(a) If L is isotropic (resp. coisotropic or Lagrangian) in V', then L' is isotropic
(resp. coisotropic or Lagrangian) in V'.

(b) Conversely, if W is coisotropic, L C W and L' is isotropic (resp. coisotropic
or Lagrangian) in V', then L is isotropic (resp. coisotropic or Lagrangian)

m V.

O

I1.1.4 Symplectic automorphisms and weks-symplectic ma-
trices

A linear automorphism ¢ of a symplectic vector space (V,w) is called a sym-
plectomorphism if ¢y*w = w i.e.:

Vu,v €V w(®(u),(v) =w(u,v).

We denote by Sp(V') the group of all symplectomorphisms of V" and by sp(V) its
Lie algebra:

sp(V) ={g € End(V) |[Vu,v €V w(u,g(v))+w(g(u),v) =0}.

A linear automorphism v of V' is called a conformal symplectomorphism
if Y*w = cw for some constant ¢ € C*. We denote by cSp(V) the group of all
conformal symplectomorphisms of V' and by csp(V') the tangent Lie algebra.

Fix a basis B of V and note that a matrix ¢ € gl(V) is in the symplectic
algebra sp(V) if and only if

g"J+Jg=0

where J := M(w, B). For the sake of chapter IV we also need to define a com-
plementary linear subspace to sp(V):

Definition. A matriz g € gl(V) is weks-symplectic' if and only if it satisfies
the equation:

gt J—Jg=0.

The vector space of all weks-symplectic matrices will be denoted by rosp(V') (even
though it is not a Lie subalgebra of gl(V)).

LA better name would be skew-symplectic or anti-symplectic, but these are reserved for some
different notions.
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We immediately see that a matrix is weks-symplectic if and only if it corre-
sponds to a linear endomorphism ¢, such that for every u,v € V:

w(gu,v) —w(u, gv) = 0. (I1.2)

This is a coordinate free way to describe rosp(V).

Assume that our basis B is symplectic. In particular J? = M(w, B)? = — Idy,.
Remark I1.3. For a matriz g € gl(V) we have:
(a) g €sp(V) < Jg is a symmetric matriz;

(b) g evosp(V) <= Jg is a skew-symmetric matriz.

Note that if g € gl(V'), then we can write:
1 T 1 T
g9=5lg+JgJ)+5(g—Jg"J)

and the first component = (g4 JgTJ) is in sp(V), while the second g_ :=
g+ =39+ Jg p g
%(g —JgTJ) is in tosp(V). Obviously, this decomposition corresponds to express-
ing the matrix Jg as a sum of symmetric and skew-symmetric matrices.
We list some properties of rosp(V):
Proposition 11.4. Let g, h € wsp(V'). The following properties are satisfied:
(i) Write the additive Jordan decomposition for g:

9g=9s+gn

where gs is semisimple and g, 1is nilpotent. Then both g5 € wsp(V) and
gn € wsp(V).

(i1) For A\ € C, denote by Vy the \-eigenspace of g. For any A, Ay € C two
different eigenvalues V), is w-perpendicular to Vs, .

(iii) If g is semisimple, then each space V) is symplectic.
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I1.1.5 Standard symplectic structure on W & W*

Let W be any finite dimensional vector space. Set V := W @& W™* and there is a
canonical symplectic form on V:

w((v, @), (w,B)) = B(v) — a(w).
If ai,...,a, is any basis of W and A, ..., \, is the dual basis of W*, then
A1y ooy Oy Ay e vy A
is a symplectic basis of V. In particular, we have the natural embedding

GL(W) — Sp(V)
A— AP (A_l)T.

We note the following elementary lemma:

Lemma I1.5. Let L C W be any linear subspace. Then L @ ker(W* — L*) C V
1s a Lagrangian subspace.

O

I1.2 Symplectic manifolds and their subvarieties

Symplectic manifolds will serve us to understand some geometric and algebraic
structures of the symplectisations of contact manifolds (see §I11.2.1).

A complex manifold or a smooth complex algebraic variety Y is a symplectic
manifold if there exists a global closed holomorphic 2-form w € H°(Q?Y), dw =
0 which restricted to every fibre is a symplectic form on the tangent space. In
other words, w”" is a nowhere vanishing section of Ky = Q*Y. The form w is
called a symplectic form on Y.

Similarly as in the case of the vector space, the symplectic form determines
an isomorphism:

O: TY — TY

vo— w(v,-).

The theory of compact (or projective) complex symplectic manifolds is well
developed and has a lot of beautiful results (see for example |Leh04], [Huy03] and
references therein). Yet here we will only use some non-compact examples as a
tool for studying contact manifolds and we will only need a few of their basic
properties. Also some extensions of the symplectic structure to the singularities
of Y are studied, but we are interested only in the case where Y is smooth.
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I1.2.1 Lagrangian and other subvarieties of a symplectic
manifold

Let (Y,w) be a symplectic manifold. For a subvariety X C Y we say X is
respectively

1) isotropic,
2) coisotropic,
3) Lagrangian,

if and only if there exists an open dense subset U (equivalently, for any open
dense subset U) of smooth points of X, such that for every x € U the tangent
space T, X C T,Y is respectively

1) isotropic,
2) coisotropic,
3) Lagrangian.
Or equivalently, for every x € U the conormal space N; X C TY is respectively
1) coisotropic,
2) isotropic,
3) Lagrangian.

Note that a subvariety is Lagrangian if and only if it is isotropic (or coisotro-
pic) and the dimension is equal to n.

I1.2.2 Examples

The following examples are important for our considerations, as they will appear
as symplectisations of projective contact manifolds (see §111.2.1).

The affine space

Our key example is the simplest possible: an affine space of even dimension. So
assume (V,w) is a symplectic vector space of dimension 2n. Then take the affine
space A?" of the same dimension, whose tangent space at every point is V and
globally TA?™ = A? x V. Then w trivially extends to the product and it is a
symplectic form on A%".

By an abuse of notation, we will denote the affine space by V' as well (so in
particular a 0 is fixed in the affine space and the action of C* by homotheties is
chosen). In this setup, the form w is homogeneous of weight 2 (see §A.1).
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Products

Assume Y] and Y5 are two symplectic manifolds with symplectic forms w; and ws
respectively. Clearly Y; x Y5 is a symplectic manifold with the symplectic form
piwi + piwe, where the p;’s are the appropriate projections.

Next, let X; C Y; be two subvarieties. Both the X;’s are respectively

1) isotropic,
2) coisotropic,
3) Lagrangian,
if and only if the product X; x Xy C Y] X Y5 is respectively
1) isotropic
2) coisotropic,

3) Lagrangian.

Cotangent Bundle

Let M be a complex manifold or a smooth algebraic variety of dimension n. Set
Y to be the total space of the cotangent vector bundle T*M and let p: Y — M

be the projection map. If xy,...,z, are local coordinates on U C M, then
i,y Ty, = daq, ..., Yy, = dx, form the local coordinates on Y |y. Then we
can set:

wlp ==dr; Adyy + ...+ dz, Ady, € H'(U,Q?Y),

and these glue to a well defined symplectic form w € H°(Y, Q?Y"). This symplectic
form is homogeneous of weight 1 with respect to the usual action on the cotangent
spaces.

Since for m € M, x € T;;, M we have T, ,)Y = T,,M & T;, M this example of
symplectic manifold, generalises the standard symplectic structure on W & W*
(see §I1.1.5). The following example generalises lemma I1.5:

Example I1.6. Let Z C M be any subvariety. Define Z# C Y to be the conor-
mal variety to Z, i.e. the closure of the union of conormal spaces to smooth

points of Z: A
Z#* .= N*Z,/M.

Then Z# is a Lagrangian subvariety in Y.

Proof. Let z € Z be a smooth point and let x € N*Zy/M. Then one can
choose appropriate local coordinates on M around z and an appropriate local
trivialisation of the cotangent bundle T M, such that:

T,2% =T.Z & N*Zy/M C T.M & T M.
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This is a Lagrangian subspace by lemma II.5.

O

Lemma I1.7. Conversely, assume M is a smooth algebraic variety and Y 1is the
total space of T* M. Moreover assume X C Y is an irreducible closed Lagrangian
subvariety invariant under the C*-action on'Y. If Z = p(X), then X = Z#.

Proof. Let x € X be a general point and let z := p(x). So x is a point in T M
and
T.Y = T.M @ T*M.

Since X is C*-invariant, under the above identification
(0,z) e T, X CT,Y.

We want to prove that (0,x) € N;Z/M and this will follow if we prove 7, X N
T:M = NZ/M.
By lemma [.4 the map Dp : T, X — T, Z is surjective, so

T.X+T;M=T,Z8®T;M.
Since X is Lagrangian, we also have the dual equality:
T,XNT'M = (T,X)™ N (T:M)*
= (T,X + Ty M)*™
= (1.Z ® T*M)™
= N;Z/M.

Hence T,X NT;M = N;Z/M as claimed and therefore x € N;Z/M. Since x
was a general point of X and botp X and Z were irreducible, we have X C Z7#
and by dimension counting X = Z#.

O

Adjoint and coadjoint orbits

Let G be a semisimple complex Lie group and consider the coadjoint action on
the dual of its Lie algebra g*. Let Y be an orbit of this action. The tangent space
at £ € Y is naturally isomorphic to g/Z (), where

Z(§) ={veg|vweg &((v,w]) =0}.

Here [v, w] denotes the Lie algebra operation in g. For v, w € g let [v] and [w] be
the corresponding vector fields on Y determined by v and w. We define:

we([v], [w]) := &([v, w]).
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Then w is a symplectic form on Y, which is called the Kostant-Kirillov form, see
for instance |Bea98, (2.1)].

Now assume G is simple and Y is invariant under homotheties (for instance Y’
is the unique minimal nonzero orbit  see [Bea98, prop. 2.2 and prop. 2.6]). Then
the actions of G and C* commute (because G acts on g* by linear automorphisms,
C* via homotheties and every linear map commutes with a homothety). Therefore
the vector fields of the form [v] for some v € g are homogeneous of weight 0 and
hence:

(Arw)e([v]; [w]) = wne ([v], [w]) = €([v, w]) = twe([v], [w]).

i.e. w is homogeneous of weight 1.

We can identify g* and g by Killing form (see [Hum?75]), so equally well we
can consider adjoint orbits. Therefore if Y is as above, then it is isomorphic to a
C*-bundle over an adjoint variety (see §1.1.1). More precisely Y is a symplecti-
sation (see §I11.2.1) of the adjoint variety.

Open subsets

Let (Y,w) be a symplectic manifold and let U be an open subset. Then (U, w|y)
is again a symplectic manifold.

II.3 Poisson bracket

The Poisson bracket is an important algebraic structure of a symplectic manifold.
In corollary I11.14 we observe that given a contact manifold and its symplecti-
sation, the Poisson bracket descents from the symplectisation to a bracket on a
specific sheaf of rings on the contact manifold. Moreover, this descended struc-
ture is strictly related to the automorphisms of the contact manifold (see theorem
I11.15).

Let (Y,w) be a symplectic manifold and let Oy be the sheaf of holomorphic
(or algebraic) functions on Y. Given f,g € H(U, Oy) let {, € H*(U,TY) be the
unique vector field such that w({,) = dg. Then we set:

{f, g} :=df (&),

or equivalently:

{f,9} () ==, (dga, dfa).

The bilinear skew-symmetric map {-,-} : Oy x Oy — Oy is called the Pois-
son bracket.
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Lemma I1.8. The Poisson bracket satisfies the Jacobi identity and therefore
makes Oy into a sheaf of Lie algebras. The compatibility between the Poisson
bracket and the standard ring multiplication on Oy (U) is given by the following
Leibniz rule:

{fg,h}y = flg,h} +g{f h}.

Proof. See for example [Arn74, §40]  the proof is identical to the real case.
O

The Poisson bracket is determined by the symplectic form and moreover it is
defined locally. Hence we have the following property:

Proposition I1.9. Assume (Y,w) and (Y’ ') are two symplectic manifolds of
dimension 2n. Assume moreover, that we have a finite covering map:

Y — Y’

such that ¥*w’" = w. Then the Poisson structures are compatible: for f, g € Oy
we have:

VS gr =107 4}

Theorem I1.10. Assume Y is a symplectic manifold.

(i) Suppose X CY is a coisotropic subvariety. Then the sheaf of ideals T(X) C
Oy is a subalgebra with respect to the Poisson bracket.

(ii) Conversely, suppose X CY is a closed, generically reduced subscheme and
that Z(X) is preserved by the Poisson bracket. Then the corresponding
variety Xieq 1S coisotropic.

Versions of the theorem can be found in |Cou95, chapter 11, prop. 2.4] and in
[Buc06, thm 4.2]. We follow more or less the proof from [Buc06]:

Proof. Let X, be the locus of smooth points of X. We must show that
w"|n+xo/y = 0 if and only if Z(X) is a Lie subalgebra sheaf in Oy.

Suppose that © € X is any point, U C Y is an open neighbourhood of x and
that f,g € H°(U,Z(X)) are some functions vanishing on X. Then df,,dg, €
N*X,/Y.

If wY|N+x,/y = 0, then

{f.9} (z) = w; (dgs, dfa) =0,

ie. {f,9}|x, =0, so extending the equality to the closure of X, we get

{f.9} € H"(U.I(X)).
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Hence Z(X) is a Lie subalgebra.
Conversely, if Z(X) is a Lie subalgebra, then

w'(dga, dfs) = {f, g} (x) = 0.

Since the map
H°(U,I(X)) — N:Xo/Y
f —  df,

is an epimorphism of vector spaces for each z € Xy and for U sufficiently small,
we have w|y«x,/y = 0.

O

I1.3.1 Properties of Poisson bracket

In our considerations on contact manifolds and their various subvarieties we will
need the three lemmas that are explained in this subsection. These lemmas refer
to proposition I1.10 we have seen that there is a relation between coisotro-
pic varieties and Lie subalgebras of Oy that are ideals under the standard ring
multiplication.

The first lemma claims that to test if an ideal is a subalgebra it is enough to
test it on an appropriate open cover of Y.

Lemma I1.11. Let Y be a symplectic manifold and let T <@ Oy be a coherent
sheaf of ideals. In such a case T is preserved by the Poisson bracket if and only
if there exists an open cover {U;} of Y such that for each i:

o if V. C U; is another open subset, then the functions in H°(V,Oy) are
determined by the functions in H°(U;, Oy) this means that if Y s alge-
braic variety (respectively, analytic space), then the elements of H°(V, Oy)
can all be written as quotients (respectively, Taylor series) of elements of
HO(U;, Oy); such property holds for instance if U; is affine or if U; is bi-
holomorphic to a disk D* C C?" or it is biholomorphic to D2 x C*;

e and the ideal H® (U;,T) < H° (U;, Oy) is preserved by the Poisson bracket.

Proof. One implication is obvious, while the other follows from the Leibniz rule
(see lemma I1.8) and from elementary properties of coherent sheaves.

O

The second lemma asserts that for an isotropic subvariety X, only functions
constant on X can preserve Z(X) by Poisson multiplication.
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Lemma I1.12. Assume Y s a symplectic manifold, X is a closed irreducible
isotropic subvariety. Let h € H° (Y, Oy) be any function such that

{h\U,HO(U, I(X))} C HO(U, I(X)) for any open subset U C Y.
Then h is constant on X.

Proof. Choose an arbitrary x € X, a small enough open neighbourhood U C Y
of z, and take any f € H(U,Z(X)).
Since {h|v, [} € H*(U,Z(X)):

and since U can be taken so small that {df, | f € H°(U,Z(X))} span the conor-

mal space we have:

since X is isotropic

dh, € (N*X/Y)™ C N*X/Y.

So dh vanishes on T X, and hence h is constant on X.
O

Lemma I1.13. Assume Y s a symplectic manifold, X is a closed irreducible
isotropic subvariety and S C X is a closed subvariety. If {Z(5),Z(X)} C Z(S),
then either S is contained in the singular locus of X or X is Lagrangian and

S=X.

Proof. The proof goes along the lines of the proof of [Buc06, thm 5.8|. Suppose
S is not contained in the singular locus of X, so that a general point s € S is
a smooth point of both X and S. Let U C Y be an open neighbourhood of s.
Then for all f € H°(U,Z(S)) and g € H° (U, Z(X))

0 = {fig}(s) = w(dfs. dgs), (11.14)
SO
N:X/Y = span{(dg),|ge€ H(U.I(X))}
C (NIS/Y) by (IL.14)
C (NIX/Y)
C NX/Y because X is isotropic.

Therefore we have all inclusions becoming equalities and in particular codim S =
codim X and hence S = X. Moreover (N*X/Y)™ = N*X/Y, where s is a
general point of X, so X is Lagrangian.

O

30



ALGEBRAIC LEGENDRIAN VARIETIES Chapter 11

I1.3.2 Homogeneous symplectic form

Lemma II.15. Assume (Y,w) is a symplectic manifold with a C*-action and
that w is homogeneous. Let U CY be a C*-invariant open subset and let f, g €
HO(U, Oy) be some homogeneous functions. Then {f, g} is homogeneous of weight

wi(f) + wt(g) — wt(w).

Proof. Let {, € H(U,TY) be such a vector field, that w(§,) = dg. By lemma
A.1(i) we have wt(&,) = wt(g) — wt(w) and since {f, g} = (df)(,), the claim
follows from lemma A.1(i)&(iii).

O

I1.3.3 Example: Veronese map of degree 2

The following example is important for our considerations, as it proves that for
the contact manifold P?"~!, we can equally well consider the Poisson structure
on €P, .y Sym’ C*" (as we do in [Buc03] and [Buc06]) and the Poisson structure
on @0y Sym‘ C?"; as naturally will arise from the point of view of contact
manifolds — see §I11.2.1. Also this example will be used to illustrate that every
contact structure on P?*~! comes from a symplectic structure on C2".

Let (V,w) be a symplectic vector space. We let

ClV] =Clxy, ... x9)] @ Sym' V*
€N
be the coordinate ring of V. Also consider
S = (C even _ @ Sym V*
1€2N

and let Y’ := SpecS \ {0}. Then we have the following Z, covering map:
v:V\{0} — Y,

which is the restriction of the map induced by S < C[V/]. This is the underlying
map of the second Veronese embedding of P(V'). In the language of §1.3.7, we
have Y’ = (O]p(v)(Q)) and V' \ {O} = (O]p(v)(]_)) .

The symplectic form w is Zy invariant:
w(—v, —w) = w(v,w),

hence it descents to a symplectic form w’ on Y’, making Y’ a symplectic manifold,
such that:

v = w.
The natural gradings on C[V] and on S induce the actions of C* on V' \ {0}
and on Y’ (note that the action on Y’ is not faithful, its kernel is Z) and ¢ is
equivariant with respect to these actions.
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Corollary I1.16. With the setup as above, the form W' is homogeneous of weight
2 with respect to the C*-action described above, so it is of weight 1 with respect to
the faithful action of C*/Zy ~ C*. Conwversely, if w' is a homogeneous symplectic
form on Y of weight 2, then *w' is a constant symplectic form on V \ {0}.

Proof. This follows from lemma A.1(ii) and the characterisation of constant
forms on an affine space in §A.1.

O

Corollary I1.17. The Poisson bracket on S induced by W' is the restriction of
the Poisson bracket on C[V] induced by w.

Proof. This follows immediately from proposition I1.9.
O

We note that Y is the minimal adjoint orbit (see §11.2.2) for the simple group
Sp,,,- This simple Lie group and its minimal adjoint orbit have quite exceptional
behaviour (see table I.1) and it is worth explain this in more detail.
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Contact geometry

A projective space seems to be the most standard example of a projective variety.
Yet, as a contact manifold, the projective space of odd dimension is the most
exceptional among exceptional examples. As a consequence, the study of its
Legendrian subvarieties is quite complicated and very interesting. We start our
considerations by introducing this case. Further we generalise to the other contact
manifolds.

ITI.1 Projective space as a contact manifold

Let (V,w) be a symplectic vector space and let P(V') be its naive projectivisation.
Then for every [v] € P(V) the tangent space T1,jP(V) is naturally isomorphic to
the quotient V/[v]. Let F' = Fpny C TP(V) be a corank 1 vector subbundle
defined fibrewise:

Foy = ([v]™) /[v].

Also let L be the quotient line bundle, so that we have the following short exact
sequence:
0— F—TPV) -5 L —0.

We say that F' (respectively ) is the contact distribution (respectively the
contact form) associated with the symplectic form w.

By 8II.1.3 the vector space F}, carries a natural symplectic structure wg,. By
proposition A.2 (i) df gives a well defined twisted 2-form on F:

df = /\QF—>L.

Proposition II1.1. With an appropriate choice of local trivialisation of L, for
every p € P(V') one has wg, = (d0),. In particular df is nowhere degenerate and
it determines an isomorphism:

F~F'®L.
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Moreover L ~ Op(2).

Proof. See also |LeB95, Ex. 2.1].

Let 1...,2,,Y1,...,Yn be some symplectic coordinates on V. Then the w-
perpendicular space to (a1, ..., a,,by,...,b,) is given by the equation
bix1 + ...+ byxy, — a1y — ... — apy, = 0.

We look for a twisted 1-form 6 on P(V') whose kernel at each point is exactly as
above. This is for instance satisfied by

1
0 = 5(—y1dx1 — .= ypdr, + xdyy + .+ 2 dy,).

The ambiguity is only in the choice of the scalar coefficient we choose % in

order to acquire the right formula for df. Choose an affine piece U C P(V'), say
where 1 = 1. On U we have

1
0y = 5(—y2dx2 — . —ypdr, + dyy + zodys + . .. + 2, dy,)

and then:
dfly = dzg Adys + ... + dz, A dy,.

On the other hand, fixing p € U, p = [1,ag,...an, b1, ...by):
F, = {(xl,...,xn,yl,...,yn) eV |bixy +boxg + ... byxp—

—yl—azyz—-.-—anynzo}/[p]-

Therefore F' is the image under the projection V- — V/[p] of:

A

F, = {(O,xg,...,xn, asya + ...+ apyy — boxo — ... — by, Y2, ... Yn) € V}

and
w\pp =daxy Adys + ...+ dz, Ady,.

To see that L ~ Op(y(2) take a section of TIP(V'), for instance xla%l' Then

0
0 (51718—3:1) = —T1l

is a section of L and hence L ~ Opg/(2).
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III.1.1 Legendrian subvarieties of projective space

Assume (V,w) is a symplectic vector space of dimension 2n.
In our works |Buc03|, [Buc06|, |Buc07¢|, [Buc07b| and |Buc07a] we find con-
venient to use the following definition:

Definition. We say that a subvariety X C P(V') is Legendrian if the affine
cone X CV is a Lagrangian subvariety (see §I1.2.1).

Yet the original definition is formulated in a slightly different, but equivalent
manner:

Proposition IT11.2. Let X C P(V) be a subvariety. The following conditions are
equivalent:

o X is Legendrian;

o X is Fpqy)-integrable and it is of pure dimension n —1.;

Proof. If X is Fpy)-integrable, then X is Legendrian by propositions III.1 and
A.2(iv). The other implication is obvious.
0

II1.1.2 Decomposable and degenerate Legendrian subvari-
eties

Definition. Let Vi and Va be two symplectic vector spaces and let X; C P(V)
and Xy C P(V3) be two Legendrian subvarieties. Now assume V :=V} @ Vy and
X =Xy % Xy C P(V), i.e. X is the join of Xy and X5 meaning the union of
all lines from Xq to Xo. Now, clearly, the affine cone X is the product Xl X Xg
(where X; is the affine cone of X;), so by §11.2.2 X is Legendrian. In such a
situation we say that X is a decomposable Legendrian subvariety. We say
that a Legendrian subvariety in P(V') is indecomposable, if it is not of that form
for any non-trivial symplectic decomposition V =V, & V5.

The indecomposable Legendrian subvarieties have more consistent description
of their projective automorphisms group (see chapter IV). On the other hand,
decomposable Legendrian varieties (which usually themselves are badly singular)
will provide some very interesting families of examples of smooth Legendrian
varieties (see chapter VII).

We say a subvariety of projective space is degenerate if it is contained in
some hyperplane. Otherwise, we say it is non-degenerate. The following easy
proposition in some versions is well known. The presented version comes from
|[Buc06, thm 3.4| but see also [LMO04, prop. 17 (1)| or [Buc03, tw. 3.16].
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Proposition II1.3. Let X C P(V) be a Legendrian subvariety. Then the follow-
ing conditions are equivalent:

(i) X is degenerate.

(i1) There exists a symplectic linear subspace W' C V' of codimension 2, such
that X' = P(W')N X is a Legendrian subvariety in P(W') and X is a cone
over X'.

(111) X is a cone over some variety X'.

In particular degenerate Legendrian subvarieties are decomposable.

We also quote [LM04, prop. 17 (2)|:

Proposition II1.4. Let X C P(V) be a smooth Legendrian variety. If X is
non-degenerate, then the tangent variety 7(X) C P(V) and the dual variety'
X* C P(V*) are hypersurfaces isomorphic via @ : V — V*.

We note that original formulation in [LM04| omits the smoothness assump-
tion. Otherwise, the decomposable Legendrian varieties are counterexamples. In
the proof the authors freely interchange the tangent variety 7(X) (which by defi-
nition is the union of the limits of secants through two points approaching a third
fixed point) and the closure of the union of embedded tangent spaces at smooth
points. These are the same for X smooth. The tangent variety 7(X) is indeed a
hypersurface in the secant variety o(X) which for a non-degenerate Legendrian
variety is P(V'). The closure of the embedded tangent spaces at smooth points is
indeed isomorphic to X*. The mistake does not influence any other result of the
paper, but the reader should be careful in applying the proposition.

I11.1.3 Quadrics

In [Buc06] we prove:

Theorem IIL.5. Let X C P(V) be a Legendrian subvariety. Consider the fol-
lowing map p:

H(Op)(2)) ~ Sym?* V* 3 ¢ = (v — 2" M(q)x)~> 2J - M(q) € sp(V).

where M(q) is the matriz of ¢ and J = M(w). Let Z(X)y C Sym?V* be the

vector space of quadrics containing X. Then:

LGiven a subvariety Z C P(V), the dual variety is the closure of the set of hyperplanes
tangent to Z, see §VIL.3 for details.
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. p(i(X)g) is a Lie subalgebra of sp(V') tangent to a closed subgroup

exp (p(f(X)a)) <Sp(V).

e We have the natural action of Sp(V') on P(V'). The group exp <p(f(X)2))

is the maximal connected subgroup in Sp(V') which under this action pre-

serves X C P(V).
Proof. See [Buc06, cor. 4.4, cor. 5.5, lem. 5.6].
Il

We skip the proof because in §I11.3 we generalise this theorem to Legendrian
subvarieties of an arbitrary contact manifold. In chapter IV we prove that for

smooth X the group exp <p(f(X)2)> is maximal also in PGL(V).

I11.2 Contact manifolds

Definition. Let Y be a complex manifold or smooth algebraic variety and fix a
short exact sequence

0— F—TY 5 L—0
where F C TY 1s a corank 1 subbundle of the tangent bundle. We say that Y is
a contact manafold if the twisted 2-form

d9:/\2F—>L

(see proposition A.2(i)) is nowhere degenerate, so that df, is a symplectic form
on Fy for everyy € Y. In such a case F' is called the contact distribution on
Y and 6 is the contact form onY .

Example I11.6. By proposition II1.1, the projective space with the contact dis-
tribution associated with a symplectic form is a contact manifold.

The following properties are standard, well known (see for instance |Bea98|):
Proposition I11.7. We have the following properties of contact manifold Y :
(i) The dimension of Y is odd.

(ii) Let U C 'Y be an open subset, let up € H°(U, F) be any section and let
Gup * Flu — Llu be a map of sheaves:

Vv € H'(U,F) ¢, (v) :=0([ur,v]).

Then ¢,, is a map of Oy-modules and the assignment pip — ¢, s an
isomorphism of Oy -modules:

F~F®L.

37



JAROSEAW BUCZYNSKI

(=n—1)

(11i) The canonical divisor Ky is isomorphic to L% . In particular Y is a

Fano variety if and only if L is ample.

Proof. We only prove (ii), the other parts follow easily. Map ¢,,. is a map of
Op-modules by A.2(iii). By A.2(ii) we have equality:

Gur(v) = dO(pp,v).

Since df is non-degenerate, it follows that pip +— ¢, is indeed an isomorphism.

O

II1.2.1 Symplectisation

The following construction is standard  see for instance [Arn74], [KPSWO00],
|Bea9s].

Let L* be the principal C*-bundle as in §1.3.7. In §A.2.3 and §A.2.4 we
study in detail the properties of L* and an extension of the twisted form 6 to
L*. We have an equivalence between contact structures on Y and symplectic
homogeneous weight 1 structures on L*:

Theorem II1.8. Let Y be a complex manifold or smooth algebraic variety with
a line bundle L and the principal C*-bundle L*® as in §1.5.7.

o If0:TY — L is a contact form, then d6°® (see §A.2.4) is a homogeneous
symplectic form on L*® of weight 1.

e Conversely, assume w is a symplectic form on L®, which is homogeneous
of weight 1. Then there exists a unique contact form 6 : TY — L onY,
such that w = d6°.

Proof. See proposition A.18.
O

If (Y, F) is a contact manifold, then the symplectic manifold (L°®,d#*) from
the theorem is called the symplectisation of (Y, F').

Using the theorem and §I1.2.2 we have following examples of contact mani-
folds:

Example II1.9. Let G be a simple group and let Y be the closed orbit in P(g).
Then Y is a contact manifold (compare with conjecture 1.1).

Example II1.10. If Y ~ P(T*M), then let L = Opr-py(1) and hence L® ~
T*M\so, where sq is the zero section and Y is a contact manifold.
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Example I11.11. IfY is a contact Fano manifold, then

Y ~ Proj (EB HO(Y, Lm)) ,

meN

L* ~ Spec (@ HO(Y, Lm)> \ {0}

meN

where 0 is the point corresponding to the mazimal ideal @, -, H'(Y,L™) (see
[Gro61, §2.3]).

O

Example II1.12. If Y ~ P(V), then by proposition II1.7(iii) we have L =~
Opv)(2). Therefore V\{0} is a 2 to 1 unramified cover of L®, see §11.3.3. In
particular, from theorem I11.8 and corollary 11.16 we conclude that every contact
structure on P(V') is associated to some constant symplectic form w on V (see

§II1.1).

By |[KPSWO00| combined with |[Dem02| every contact projective manifold Y
is either isomorphic to P(7*M) or it is Fano with by = 1. In the second case

by proposition I11.7(iii) and the Kobayashi-Ochiai characterisation of projective
space [KOT73| either Y ~ P(V) or PicY = Z[L].

I11.2.2 Contact automorphisms

Automorphisms of contact manifolds preserving the contact structure were also
studied by LeBrun [LeB95| and Beauville [Bea98|. We use their methods to state
slightly more general results about infinitesimal automorphisms. In the end we
globalise the automorphisms for projective contact manifolds.

Let Y be a contact manifold and let 7 : L®* — Y be the symplectisation as
in §111.2.1. Also let R, be as in §1.3.7.

Example 111.13. IfY is a contact Fano manifold, then

H(Y,Ry) = H'(L®, Op.) = (@ HO(Y, L™) )

meN

Since Y = Proj(H°(Y,R.)) (see example II1.11), all the structure of Y as well as
its global and local behaviour is determined by this ring of global sections. Hence
in this case whatever is stated below for the sheaf Ry can be deduced from the
analogous statement about H°(Y,Ry) only.
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Corollary III.14.

(i) Let f,g € Ore be two functions on L* homogeneous with respect to the
action of C*. Then {f, g} is also homogeneous and wt{ f, g} = wt f+wt g—1

(i) The Poisson bracket descends to Ry and determines a bilinear map:

HO(U, L™) x HO(U, L") — HO(U, L™+,

Proof. This follows from corollary 11.15. See also [LeB95, rem. 2.3|.
U

We will refer to the Lie algebra structure on R defined above also as Pois-
son structure and denote the bracket by {-,-}. For s € H°(U, L) let § be the
corresponding element in H® (771(U),L*) = R (V).

By corollary II1.14 the invertible sheaf L has a Lie algebra structure and
it is crucial for our considerations, that it is isomorphic to the sheaf autilflf of
infinitesimal automorphisms of Y preserving F' (see §A.2.3 for more details):

aut (U) .= {p € H'(U,TY) | [u, F] C F}.

Theorem II1.15. Let Y be a contact manifold, F' be the contact distribution, 6
be the contact form and let U C'Y be an open subset. Using the notation of §A.2
we have:

1) TY = autit! @ F as sheaves of Abelian groups.

2) The map of sheaves 0|auti1§1fi autit® — L maps isomorphically the Lie algebra

structure of autit’ onto the Lie algebra structure of L given by the Poisson

bracket.
inf

3) The following two Lie algebra representations of aut® on Ors are equal:

e The induced representation of autitt on L® (see §4.2.9).

e The representation induced by the adjoint representation.:

peauts(U), f € HO(U,Op) = p.f = {6(n), f}.

Proof. The following proof of 1) is taken from [Bea98, prop. 1.1], but see also
[LeB95, prop. 2.1].
To prove 1), take any u € H°(U, TY) and consider the map of sheaves:

F‘U a— L|U
v o— ([, v]).
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By proposition A.2(iii) the above map is a map of Oy |y-modules, hence it is an
element of H°(U, F*® L). Let pr be the corresponding element of HO(U, F') (see
proposition I11.7(ii)). By the definition of the isomorphism F* ® L ~ F'| we have

0 (e, v]) = 0 ((u, v])

for every v € F|y, hence [u — pup,v] € F|y. Therefore y — pp € aut®(U), so

p=pr+ (1 —pr)

gives the required splitting.

For 2) see also [Bea98, prop. 1.6] and [LeB95, rem. 2.3]. By 1), the map 6|q,gnt
is an isomorphism of sheaves of Abelian groups. So it is enough to prove that
9|auti;f preserves the Lie algebra structures. For every p,v € aut®(U) denote by
f and 7 the induced infinitesimal automorphisms of L* (see §A.2.3). We have:

(0.0} (a(70). 7))
)

=(d6*)¥(d6*(v),do* (j1)) by prop. A.21
6" (7, 1)
=0([u, v]) by cor. A.22.

Hence 9|auti£f preserves the Lie algebra structures.

Part 3) is local and since both representations satisfy the Leibniz rule (see
equation (A.14) and lemma IL.8), it is enough to check the equality for multi-
plicative generators of Op.. Locally, these might be taken for instance as sections
of L and so 3) follows from 2).

U

We underline, that auti®, as a subsheaf of TY is not a Oy-submodule (see
§A.2.3). So in particular the obtained splitting of the short exact sequence of
sheaves of Abelian groups

0—F—TY 21—

is not a splitting of vector bundles.

Turning to global situation assume Y is projective and let Aut(Y), Autz(Y)
and aut(Y), autp(Y) denote, respectively, the group of automorphisms of Y,
the group of automorphisms of Y preserving the contact structure and their Lie
algebras.

LeBrun [LeB95] and Kebekus [Keb01| observed that in the case of projective
contact Fano manifolds with Picard group generated by L, the global sections of
L are isomorphic to aut(Y):
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Corollary II1.16. Let Y be a projective contact manifold with contact distribu-
tion F'.

(i) Then 6 maps isomorphically autp(Y) onto H*(Y, L).

(ii) If moreover Y is Fano with Pic(Y) = Z[L], then Aut(Y') = Autp(Y) and
hence the Lie algebra H°(Y, L) is naturally isomorphic to aut(Y).

Proof. By corollary A.10 we have autp(Y) = aut®(Y), so (i) follows from
theorem III.15 2).

On the other hand (ii) follows from [Keb01, cor. 4.5].

IT1.3 Legendrian subvarieties in contact manifold

Definition. Let Y be a complex contact manifold with a contact distribution F.
A subvariety X C Y is Legendrian if X is F-integrable (i.e., TX C F) and
2dim X +1=dimY (i.e., X has mazimal possible dimension).

If Y ~ P?"*1 then the above definition agrees with the definition in §II1.1.1
by proposition II[.2. In general, we have analogous properties with V' replaced
by L*:

Proposition I11.17. Let Y be a contact manifold with a contact distribution
F CTY and with its symplectisation 7 : L®* — Y. Assume X C Y is a subvariety.
Then:

(a) X is F-integrable if and only if m=1(X) C L*® is isotropic.
(b) X is Legendrian if and only if m=1(X) C L® is Lagrangian.

Proof. Part (a) follows from lemma A.19 and part (b) follows from (a).
U

In the case of subvarieties of a symplectic manifold, we have three important
types of subvarieties (isotropic, Legendrian and coisotropic). Also for subvarieties
of contact manifold in addition to F-integrable and Legendrian subvarieties, it is
useful to consider the subvarieties corresponding to the coisotropic case:

Definition. In the setup of proposition I11.17, we say that X is F-cointegrable
if ™ 1(X) C L* is coisotropic.

Example II1.18. Assume X C L is irreducible and Lagrangian and let X be
the closure of m(X) C Y. Then X is F-cointegrable. If moreover X is not
C*-invariant, then dim X = (dimY + 1).
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Corollary II1.19. If Y = P(T*M) for some smooth algebraic variety M and
X is an algebraic Legendrian subvariety, then X is the conormal variety Z# to
some algebraic subvariety Z C M.

Proof. It follows from proposition I11.17, example I11.10 and lemma I1.7.
U

Let Ry = m.OLe be the sheaf of rings on Y defined in 1.3.7. For a subvariety

X CY,let Z(X) < Ry be the sheaf of ideals generated by those local sections
of L™ that vanish on X. Then:

.z (77H(X)) = Z(X) (I11.20)

where Z (77}(X)) < Or. is the ideal sheaf of 771(X). In this context, the
meaning of lemma I1.11 is the following:

Lemma II11.21. With the notation as above, let T <1 Ore be a coherent sheaf of
ideals. Then I 1is preserved by the Poisson bracket on Ore if and only if m.7 is
preserved by the Poisson bracket on Ry,

O

Hence we get the description of F-cointegrable subvarieties in terms of the
Poisson bracket on Rp:

Proposition II1.22. With the assumptions as above, a subvariety X C Y s
F-cointegrable if and only if T(X) is preserved by the Poisson bracket on Ryp.

Proof. The proposition combines equation (I11.20), theorem I1.10 and lemma
I11.21.
O

Given a subvariety X C Y, we define aut® (-, X) to be the sheaf of Lie alge-
bras of those infinitesimal automorphisms of Y, which preserve X and contact
distribution F' (see also §A.2.3):

aut (U, X) = {u e HY(U,TY) | [, F] C F and
Vi e T(X)ly (df)(n) € Z(X)ly }

Further, let f(X)l C L be the degree 1 part of the sheaf of homogeneous ideals
Z(X). Since L is a line bundle with the action of aut®’ (see §A.2.3), choosing a
local trivialisation and using the gluing property of sheaves we can replace Z(X)
in the definition of aut®*(-, X) with Z(X)::

autnt (U, X) = {/L e HO(U,TY) | [, F] C F and

pI(X)ly € Z(Xlo ) (111.23)
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where . denotes the induced action of aut® on L described in §A.2.3.
The following theorem establishes a connection between the infinitesimal au-
tomorphisms of a Legendrian variety and its ideal:

Theorem 111.24. Let Y be a contact manifold with a contact distribution F and
let 0 : TY — L be the quotient map. Also let U C'Y be an open subset. Assume
X CY is an irreducible subvariety.

A. If X is F-integrable, then 0 (autil?f(U, X)) c HY <U, f(X)l)
B. If X is F-cointegrable, then 6 (aut®'(U, X)) > H° (U, f(X)l)
C. If X is Legendrian, then 0 (autilli‘f(U, X)) = HY <U, f(X)1>

Proof. In the case of A, choose arbitrary p € aut{(U, X). We must prove that
O(u) € H(U,Z,(X)) or, equivalently, that

o) € HO (v~ (U).2(x~ (X))

(recall that for a section s € H°(U, L) by § we denote the corresponding element
in H(7=Y(U), Og.)).

By (I11.23) the action of s preserves Z(X)|y and hence also Z(7 (X)) a2y
By theorem II1.15 3) this means that

—_—

{0, T )y} € () ey

Moreover 7~ 1(X) is isotropic by proposition II1.17.

—_—

By lemma I1.12 function 6(u) is constant on 7=1(X). But (u) is also a
C*-homogeneous function of weight 1, so it must vanish on 77!'(X). Therefore

0(n) € HO <7r_1(U),I(7T_1(X))> as claimed.

To prove B let p € aut®®(U) be an infinitesimal automorphism such that
O(n) € Z(X);. By proposition 111.22

{0, 7(X)} c T(X)
so by theorem III.15 3) we have
pn.I(X) C Z(X)

(where . denotes the induced representation of auti®! on L°, see §A.2.3). Hence
by equation (I11.23) the infinitesimal automorphism g is contained in aut® (U, X)

and H° (U, f(X)1> C 0 (autih (U, X)) as claimed.
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Part C is an immediate consequence of A and B.

O

The following corollary says that in the case when Y is projective also the
global automorphisms of a Legendrian subvariety can be understood in terms of
the ideal of the variety. In particular, in (i), we generalise [Buc03, wn. 4.3] or
[Buc06, cor. 5.5 & lem. 5.6].

Corollary II1.25. Let Y be a projective contact manifold, let I be the contact
distribution and let X be a Legendrian subvariety. Let aut(Y, X) (resp. autp(Y, X))

be the Lie algebra of group of automorphisms of Y preserving X (resp. preserving
X and F). Then:

(i) 0(autp(Y, X)) = HO (Y,f(X)l);

(ii) If in addition PicY = Z[L], then 0 (aut(Y, X)) = H° (Y, f(X)l).

Proof. It follows from corollary I11.16 and theorem I11.24C.
O

In chapter IV we discuss the extension of corollary 1I1.25(ii) to YV =~ P21,
The following corollary generalises |Buc06, thm 5.8]:

Corollary II1.26. If Y is a projective contact manifold and X C'Y is an irre-
ducible Legendrian subvariety such that Z(X) is generated by H° (Y, I(X)l), then
Autp(Y, X) acts transitively on the smooth locus of X. In particular, if X is in
addition smooth, then X is a homogeneous space.

Proof. If S C X,S # X is a closed subvariety invariant under the action of
Autp(Y, X), then by theorem II1.15 3) and by corollary II1.25(i):

vf e (V.I(X)) {Z(s). 1} < Z(s),
Hence by the Leibniz rule and since Z(X) is generated by H° (Y, f(X)l), we have:

{I(W‘l(S)),I<7r‘1(X))} c I(w‘1(5)>.

So by lemma I1.13, variety S is contained in the singular locus of X.

Now let O C X be an orbit of a smooth point under the action of Autp(Y, X).
Then the closure O is not contained in the singular locus so by above it must be
equal to all of X. Moreover O \ O is a closed subset invariant under the action
and not equal to X, so it is contained in the singular locus. So O is the whole
smooth locus of X.

U

We conclude this chapter by underlining that, unfortunately, the above results
are proved only for automorphisms of Y, that preserve Legendrian subvariety X,
not simply for automorphisms of X.
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Chapter IV

Projective automorphisms of a
Legendrian variety

The content of this chapter is published in [Buc07c].
We are interested in the following conjecture:

Conjecture IV.1. Let X C P?*"~! be an irreducible indecomposable Legendrian
subvariety and let G < PGLy, be a connected subgroup of linear automorphisms
preserving X. Then G is contained in the image of the natural map Sp,, —

PGLs,,.

It is quite natural to believe, that if a linear map preserves a form on a
big number of linear subspaces, then it actually preserves the form (at least
up to scalar). With this approach, [JJ04, cor. 6.4] proved the conjecture in
the case where the image of X under the Gauss map is non-degenerate in the
Grassmannian of Lagrangian subspaces in C?". Unfortunately, this is not enough
- for example P! x (); C P® has a degenerate image under the Gauss map and
this is one of the simplest examples of smooth Legendrian subvarieties.

In §IV.2 we prove:

Theorem IV.2. If X C P?! is a smooth Legendrian subvariety which is not a
linear subspace and G < PGLsy, is a connected subgroup preserving X, then G is
contained in the image of the natural map Sp,, — PGLy,.

This theorem, combined with corollary II1.25 gives us a good understanding
of the group of projective automorphisms of a smooth Legendrian subvariety in

IP)2n—l

IV.1 Discussion of assumptions

One obvious remark is that homotheties act trivially on P(V'), but in general
are not symplectic on V. Therefore, it is more convenient to think of conformal
symplectomorphisms (see §I1.1.4).
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It is clear, that if we hope for a positive answer to the question whether a pro-
jective automorphism of a Legendrian subvariety necessarily preserves the contact
structure, then we must assume that our Legendrian variety is non-degenerate.

Another natural assumption is that X is irreducible — one can also easily
produce a counterexample if we skip this assumption. Yet still this is not enough.

Let X = X %« Xy C P(V] @ V3) be a decomposable Legendrian variety. Then
we can act via A\; Idy, on V; and via A\; Idy, on V5 - such an action will preserve X
and in general it is not conformal symplectic. This explains why the assumptions
of our conjecture IV.1 are necessary.

IV.2 Preservation of contact structure

Let X' C P(V) be an irreducible, indecomposable Legendrian subvariety, let X be
the affine cone over X’ and X be the smooth locus of X. Assume that G is the
maximal connected subgroup in GLs, preserving X. Let g < gl,, be the Lie
algebra tangent to G.. To prove the conjecture it would be enough to show that g
is contained in the Lie algebra csp,, tangent to conformal symplectomorphisms,
i.e. the Lie algebra spanned by sp,, and the identity matrix Idy,.

Recall from §I1.1.4 the notion of weks-symplectic matrices.

Theorem IV.3. With the above notation the following properties hold:

I. The underlying vector space of g decomposes into symplectic and weks-
symplectic part:

g=(gNsp(V)) & (gNrsp(V)).
II. If g € gNrosp(V), then g preserves every tangent space to X :
Vee Xy g(T,X)CT, X
and hence also

Vie C Vre X, Texp(tg)(x)X = exp(tg) (TwX) =T,X.

III. If g € g Nrosp(V) is semisimple, then g = A1d for some X € C.
IV. Assume 0 # g € g Nrosp(V) is nilpotent and let m > 1 be an integer
such that g™ = 0 and g™ # 0. Then g™ (X) is always non-zero and is

contained in the singular locus of X. In particular, X' is singular.

In what follows we prove the four parts of theorem IV.3.
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I. Decomposition into symplectic and weks-symplectic part

Proof. Take g € g to be an arbitrary element. Then for every x € X, one has
g(x) e T, X

and therefore
0=w(g(z),z) = el gt Jr = %xT (gTJ — Jg) .

Hence the quadratic polynomial f(z) := 27 (g7 J — Jg)z is identically zero on
X and hence it is in the ideal of X. Therefore by maximality of G and theorem
IT1.5 the map J (gTJ — Jg) is also in g. However,

J(g" T —Jg)=Jg"J +g,

so JgT'J € g and both symplectic and weks-symplectic components g, and g_
are in g.

O

From the point of view of the conjecture, the symplectic part is fine. We would
only need to prove that g = AId. So from now on we assume g = g_ € wsp(V).

II. Action on tangent space

Proof. Let 7, := exp(tg) for t € C. Then 44 € G and hence it acts on X. Choose
a point x € X, and two tangent vectors in the same tangent space u,v € T, X.
Then clearly also ~,(u) and ~,(v) are contained in one tangent space, namely

T, ()X . Hence:

0 =w (12(w), 1(v))
=w((Iday +tg + .. )u, (Iday +tg + .. .)v)
=w(u,v) + t(w(gu, v) + w(u, gv)) + 2(...).

In particular the part of the expression linear in ¢ vanishes, hence w(gu,v) +
w(u, gv) = 0. Combining this with equation (II.2) we get that:

w(gu,v) = w(u, gv) = 0.

However, this implies that gu € (T, X)* = T,X. Therefore g preserves the
tangent space at every smooth point of X and hence also 7; preserves that space.

O
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III. Semisimple part

Since G is an algebraic subgroup in GL(V'), hence g has the natural Jordan
decomposition inherited from gl(V'), i.e. if we write the Jordan decomposition for
g = gs+ gn, then gs, g, € g (see [Hum75, thm 15.3(b)]). Therefore by proposition
I1.4(i), proving that for g € gNwsp(V) we have g; = A1dy, and g, = 0 would be
enough to establish the conjecture.

Here we deal with the semisimple part.

Proof. Argue by contradiction. Let Vi be an arbitrary eigenspace of g and
let V5 be the sum of the other eigenspaces. If g # Ald,,, then both V; and
V, are non-zero and by proposition 11.4(ii) and (iii) they are w-perpendicular,
complementary symplectic subspaces of V. Let z € Xy be any point. Since g
preserves T, X by part II it follows that T, X = (T, XNV})® (T, XNV3). But then
both (7, XNV;) C V; are Lagrangian subspaces, hence have constant (independent
of z) dimensions. Hence T, Xy = (T, XoNV}) ® (T XoNV3) is a sum of two vector
bundles and from proposition 1.5 we get that X is a product of two Lagrangian
subvarieties, contradicting our assumption that X’ is indecomposable.

U

IV. Nilpotent part — X’ is singular

Lemma IV.4. Assume X' C P(V) is any closed subvariety preserved by the
action of exp(tg) for some nilpotent endomorphism g € gl(V'). If v is a point of
the affine cone over X' and m is an integer such that g™ (v) = 0 and g™ (v) # 0,
then [g™(v)] € P(V) is in X'.

Proof. Point [¢™(v)] € P(V) is just the limit of [exp(tg)(v)] as t goes to oco.
U

Lemma IV.5. Assume g € gl(V) is nilpotent and g™ = 0, g™ # 0 for an
integer m > 1. Let X C V be an affine cone over some irreducible projective sub-
variety in P(V'), which is preserved by the action of exp(tg), but is not contained
in the set of the fized points. Assume that this action preserves the tangent space
T,X at every smooth point x of X. If there exists a non-zero vector in V which
is a smooth point of X contained in g"(X), then X is a linear subspace.

Proof. Step 0 - notation. We let Y to be the closure of ¢"(X), so in particular
Y is irreducible. By lemma IV.4, we know that Y C X. Let y be a general point
of Y. Then by our assumptions y is a smooth point of both X and Y.
Next denote by
Wy = (g"™) " (C"y).
You can think of W, as union of those lines in V' (or points in the projective
space P(V')), which under the action of exp(tg) converge to the line spanned by
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y (or [y])! as t goes to oo . We also note that the closure W), is a linear subspace
spanned by an arbitrary element v € W, and ker g".
Also we let F, :== W, N X, so that:

F, = (¢"|x)"(C'y).
Finally, v from now on will always denote an arbitrary point of F),.

Step 1 - tangent space to X at points of F,. Since y is a smooth point of
X also F), consists of smooth points of X. This is because the set of singular
points is closed and exp(tg) invariant. By our assumptions exp(tg) preserves
every tangent space to X and thus for every v € F}, we have:

TUX == Ttl (tg)(U)X == T

77 eXp limtaoo(tim exp(tg)(v)) = TZ/X
So the tangent space to X is constant over the F), and in particular F, C T, X.
Step 2 - dimensions of Y and F,. From the definitions of ¥ and y and by
step 1 we get that for any point v € F:
T,Y = im(g9"|r,x) = im(g"|z,x).
Hence dimY = dim7,Y" = rk(¢™ |z, x).
Since y was a general point of Y, we have that:

dimY + dim F, = dim X + 1.

So dim F,, = dim ker(¢"|r, x) + 1.

Step 3 - the closure of I, is a linear subspace. From the definition of F, and
step 1 we know that I}, C T, X N W, and

T,X N W, = T, X Nspan{v, ker g™} = span{v, ker(¢"|r,x)}.

Hence dim F, = dim T, X N W, so the closure of F), is exactly 7, X N Wy and
clearly this closure is contained in X. In particular ker(¢9" |7, x) C X.

Step 4 - Y is contained in ker(g™|r,x). Let Z be X Nker g™. By step 3 we
know that ker(¢g™|r,x) C Z. Now we calculate the local dimension of Z at y:

dimker(g9"|7,x) < dim, Z < dim T, Z < dim(7, X Nker g™) = dim ker(¢" |7, x).

Since the first and the last entries are identical, we must have all equalities.
In particular the local dimension of Z at y is equal to the dimension of the
tangent space to Z at y. So y is a smooth point of Z and therefore there is a

! This statement is not perfectly precise, though it is true on an open dense subset. There are
some other lines, which converge to [y], namely those generated by v € ker g™, but ¢g¥(v) = \y
for some k < m. We are not interested in those points.
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unique component of Z passing through y, namely the linear space ker(g"™|z, x).
Since Y is contained in Z (because im g™ C ker ¢™) and y € Y, we must have
Y C ker(g9"|7,x)-

Step 5 - vary y. Recall, that by step 1 the tangent space to X is the same
all over F,. So also it is the same on every smooth point of X, which falls into
the closure of F,. But by step 4, Y is a subset of ker(¢g™|r,x), which is in the
closure of F, by step 3. So the tangent space to X is the same for an open subset
of points in Y. Now apply again step 1 for different g’s in this open subset and
we get that X has constant tangent space on a dense open subset of X. This is
possible if and only if X is a linear subspace, which completes the proof of the
lemma.

O
Now part IV of the theorem follows easily:

Proof. By the assumptions of the theorem X is not contained in any hyperplane,
so in particular X is not contained in ker ¢". So by lemma IV.4 the image ¢"(X)
contains points other than 0. Next by lemma IV.5 and part II of the theorem,
since X cannot be a linear subspace, there can be no smooth points of X in
9" (X).

O

Smooth case

We conclude that parts I, IIT and IV of theorem IV.3 together with proposition
I1.4(i) and [Hum?75, thm. 15.3(b)|] imply theorem IV.2. We only note that a
smooth Legendrian subvariety is either a linear subspace or it is indecomposable.

IV.3 Some comments

Conjecture IV.1 is now reduced to the following special case not covered by
theorem IV.3:

Conjecture I1V.6. Let X' C P(V) be an irreducible Legendrian subvariety. Let
g € wsp(V) be a nilpotent endomorphism and m be an integer such that g™ # 0
and g™ = 0. Assume that the action of exp(tg) preserves X'. Assume more-
over, that X' is singular at points of the image of the rational map g™ (X'). Then
X' is decomposable.

We also note the improved relation between projective automorphisms of a
Legendrian subvariety and quadratic equations satisfied by its points:

Corollary IV.7. Let X C P(V) be an irreducible Legendrian subvariety for
which conjecture 1V.1 holds (for example X is smooth). If G < PGL(V) is the
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mazimal subgroup preserving X, then dimG = dimZy(X), where Zo(X) is the
space of homogeneous quadratic polynomials vanishing on X.

Proof. It follows immediately from the statement of the conjecture and theorem

IIL.5.
U

Finally, it is important to note, that theorem IV.3 part III does not imply
that every torus acting on an indecomposable, but singular Legendrian variety
X' is contained in the image of Sp(V'). It only says that the intersection of such
a torus with the weks-symplectic part is always finite. Therefore if there is a
non-trivial torus acting on X', there is also some non-trivial connected subgroup
of Sp(V') acting on X’ and also some quadratic equations in the ideal of X'.
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Chapter V

Toric Legendrian subvarieties in
projective space

The content of this chapter is published in [Buc07c].

We apply theorem IV.2 to classify smooth toric Legendrian subvarieties. We
choose appropriate coordinates to reduce this problem to some combinatorics (for
surface case — see §V.2) and some elementary geometry of convex bodies (for
higher dimensions — see §V.3). Eventually we get:

Theorem V.1. Every smooth toric Legendrian subvariety in a projective space
1s 1somorphic to one of the following:

e « linear subspace,

o Pt x Q; C P?,

o Pl x Qy ~ P! x P! x P! C P7

o or IP? blown up in three non-colinear points.

For proofs see corollaries V.7 and V.11. The linear subspace is not really
interesting, the products P! x Q; and P! x Q, are well known (see §1.1.2). The
last case of blow up was an original example of [Buc07c].

V.1 Classification of toric Legendrian varieties

Within this chapter X is a toric subvariety of dimension n — 1 in a projective
space of dimension 2n — 1. We assume it is embedded torically, so that the action
of T := (C*)"! on X extends to an action on the whole P?"~! but we do not
assume that the embedding is projectively normal. The notation is based on
[Stu97| though we also use techniques of [Oda88]. We would like to understand
when X can be Legendrian with respect to some contact structure on P?*~! and
in particular, when it can be a smooth toric Legendrian variety.
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There are two reasons for considering non projectively normal toric varieties
here. The first one is that the new example we find is not projectively normal.
The second one is the conjecture [Stu97, conj. 2.9|, which says that a smooth,
toric, projectively normal variety is defined by quadrics. We do not expect to
produce a counterexample to this conjecture and on the other hand all smooth
Legendrian varieties defined by quadrics are known to be just the subadjoint
varieties (see |Buc06, thm.5.11]).

In addition we assume that either X is smooth or at least the following con-
dition is satisfied:

e action of the torus 7" on P?"~! preserves the standard contact structure

%) The action of the t T on P2t the standard contact struct
on P?2"~1  In other words, the image of T — PGLsy, is contained in the
image of Sp,,, — PGLsy,.

In the case where X is smooth, the (x) condition is always satisfied by theorem
IV.2. But for some statements below we do not need non-singularity, so we only
assume (x).

Theorem V.2. Let X C P>"7! be a toric (in the above sense) non-degenerate
Legendrian subvariety satisfying (x). Then there exists a choice of symplectic
coordinates on V' and coprime integers ag > a1 > ... > an,_1 > 0 such that X s
the closure of the image of the following map:

al pa2 ap—1 ag ag ao
—ajp—az —ap—1 —ap —ag —ag 2n—1
tl t2 PRI ’tn_l 9 tl 9 t2 9 ey n_l] E ]P .

In other words, X is the closure of the orbit of a point
[—CL(), 1,09, ..., apn_1,1,1,... 1] e p>t

under the torus action with weights

Wo = (alaa'Qa"'aan—l)7
wy = (ap,0,...,0), wy:=(0,a0,0,...,0), ..., wy_1:=(0,...,0,a0)
and — Wo, —W1y..., ~Wp_1-

Moreover every such X is a non-degenerate toric Legendrian subvariety.

We are aware that for many choices of the a;’s from the theorem, the action
of the torus on X (and on P?"7!) is not faithful, so that for such examples a
better choice of coordinates could be made. However, we are willing to pay the
price of taking a quotient of 7" to get a uniform description. One advantage
of the description given in the theorem is that a part of it is almost indepen-
dent of the choice of the a;’s. This part is the (n — 1)-dimensional “octahedron”
conv{wy, ... Wy 1, —Wiy,... —wu_1} CZ" 'R,
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Proof. Assume X is Legendrian with respect to a symplectic form w, that X
is non-degenerate, that the torus T" acts on P?"~! preserving X and satisfies (x).
Replacing if necessary T" by some covering we may assume that 7" — PGLs,
factorises through a maximal torus Tsp, C Spy,:

T — Tsp,, C Spy, — PGLy,.

This implies, that for an appropriate symplectic basis the variety X is the
closure of the image of the map T — P?"~! given by:

T >t [wt™, ot ...y tnt 70 g ] g P
where 7; € C, w; € Z" ' and for v = (vy,...v,1) € Z" P welet t :=t}* ... t,"7.
This means that X is the closure of the T-orbit of the point' [zg,... 2z, 1,1,...,1]
where T" acts with weights wy, ... w,_1, —wq, ..., —W,_1.

Since X is non-degenerate, the weights are pairwise different. Also the weights
are not contained in any hyperplane in Z" ! ® R, because the dimension of T is
equal to the dimension of X and we assume X has an open orbit of the T-action.
So there exists exactly one (up to scalar) linear relation:

—agwo + awy + ... + ap_qw,—1 = 0.

We assume that the a;’s are coprime integers. Permuting coordinates appropri-
ately we can assume that |ag| > |a1| > ... > |an,—1] > 0. After a symplectic
change of coordinates, we can assume without loss of generality that all the a;’s
are non negative by exchanging w; with —w; (and z; with _m%) if necessary.
Clearly not all the a;’s are zero so in particular ag > 0 and hence

AWy + ...+ Qp_1Wp—1
Qg .

Wy =

Therefore, if we set e; := 2 for i € {1,...,n — 1}, the points e; form a basis
of a lattice M containing all w;’s. The lattice M might be finer than the one
generated by the w;’s. Replacing again T" by a finite cover, we can assume that
the action of T' is expressible in the terms of weights in M. Then:

Wy = @€y + ...+ p_1€n-1,

Wy = Qpé1,

Wp—-1 = Qp€n—1-

Note that usually one assumes that this point is just [1,...,1]. In our case we would have
to consider non-symplectic coordinates. We prefer to deal with a point with more complicated
coordinates.
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It remains to prove three things: that a,_; > 0, that the z;’s might be chosen
as in the statement of the theorem and finally that every such variety is actually
Legendrian. We will do all three together.

The torus acts symplectically on the projective space, thus the tangent spaces
to the affine cone are Lagrangian if and only if just one tangent space at a point
of the open orbit is Lagrangian. So take the point [zg,...2,-1,1,...,1]. The
affine tangent space is spanned by the following vectors:

v ::( Lo, L1, X2y..., Tp_1, ]" 1’ ]'""’ 1)’

Uq ::( xoal’]}‘lao’ 07 ey O, _a17_a/07 07 sty O)’
U9 ::( Topasg, O’J}‘gao,..., O, —as, 0,_CLO,---, 0)7
Un—1 3:(370(%—17 07 07 co 3 Tp—10G0, —0p—1, 07 07 s ,—CLO).

Now the products are following:

w(ug, u;) = 0;

w(u;,v) = 2(zoa; + zia0).
Therefore the linear space spanned by v and the u;’s is Lagrangian if and only if:

Ti = —To—.
Qo

In particular, since x; # 0, the a; cannot be zero either. After another conformal
symplectic base change, we can assume that xo = —ag and then x; = a;. On the
other hand, the above equation is satisfied for the variety in the theorem. Hence

the theorem is proved.
O

Our next goal is to determine for which values of the a;’s the variety X is
smooth. The curve case is not interesting at all and also very easy, so we start
from n = 3, i.e. Legendrian surfaces.

V.2 Smooth toric Legendrian surfaces

We are interested in knowing when the toric projective surface with weights of
torus action

Wo :Z(a1,a2), wy 3:(&0,0)> w2 3:(0"‘0)’

—Wop :(—0,1, —0,2), —wW1 :(—ao, O), —Wa :(0, —ao)
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Figure V.1: The two examples of weights giving smooth toric Legendrian surfaces.

is smooth. Our assumptions on the a;’s are following:
ag > ay > ag >0 (Vg)
and ag, ay, ap are coprime integers.

Example V.4. Let ag = 2 and a; = ay = 1 (see figure V.1). Then X is the
product of P and a quadric plane curve Q.

Example V.5. Let ag = ay = ay = 1 (see figure V.1). Although the embedding
is not projectively normal (we lack the weight (0,0) in the middle), the image is
smooth anyway. Then X is the blow up of P? in three non-colinear points.

We will prove there is no other smooth example.

We must consider two cases (see figure V.2): either ay > a; +ay (which means
that wy is in the interior of the square conv{wy, wy, —wy, —ws}) or ag < ay + as
(so that wy is outside or on the border of the square).

Geometrically, case ag > a; +a, means, that the normalisation of X is P! x P!
It is just an easy explicit verification that X is not smooth with these additional
weights in the interior.

In the other case, for a vertex v of the polytope
conv{wy, wy, Wy, —Wo, —W1, —Wa },
we define the sublattice M, to have the origin at v and to be generated by
{wo — v, w1 — v, Wy — vV, —wWy — vV, —wW; — vV, —Wy — V}.

Since X is smooth, for every vertex v the vectors of the edges meeting at v
must form a basis of M, (compare with [Stu97, prop.2.4 & lemma 2.2]). In
particular, if v = —wy (it is immediate from inequalities (V.3) that v is indeed a
vertex), then wy — (—ws) = (0, 2ag) can be expressed as an integer combination
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Figure V.2: Due to the inequalities a9 > a1 > 0 and ag > az > 0, the weight wq is
located somewhere in the grey square. The two cases we consider are if wg is also inside
the square conv{w;, we, —w1, —wz} (left figure) or it is outside (right figure). In the second
case, a necessary condition to get a smooth variety, is that the two bold vectors generate a
lattice containing all the weights. In particular the dashed vector can be obtained as an integer
combination of the bold ones.

of wy + wy = (ag, ap) and —wy + wy = (—ay,ag — az) (see the right hand side of
figure V.2). So write:

(0,2ap) = k(ag, ap) + l(—ay, ap — as) (V.6)

for some integers k and [. It is obvious that k£ and [ must be strictly positive,
since wy is in the cone generated by w; 4+ we and —wy + wy with the vertex at
—wsq. But then (since ag — as > 0) from equation (V.6) on the second coordinate
we get that either k=1 or k = 2.

If K =1, then we easily get that:

ag = la1

ag = a1 + as.
Hence (I — 1)a; = ay and by inequalities (V.3) we get [ = 2 and therefore (since
the a;’s are coprime) (ag, a1, as) = (2,1, 1), which is example V.4.

On the other hand, if £k = 2, then
ap = Q2

and hence by inequalities (V.3) and since the a;’s are coprime, we get (ag, a1, az) =
(1,1,1), which is example V.5.

Corollary V.7. If X C P’ is smooth toric Legendrian surface, then it is either
P! x Q; or P? blown up in three non-colinear points or plane P2 C P°.

O
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V.3 Higher dimensional toric Legendrian varieties

In this section we assume that n > 4. By means of the geometry of convex bodies
we will prove there is only one smooth toric non-degenerate Legendrian variety
in dimension n — 1 = 3 and no more in higher dimensions. We use theorem V.2
so that we have a toric variety with weights:

Wy = (alaa'Qa"'aan—l)7
wyp = (ao,O,...O),

Wp—1 = (0, “ee 0, CL(]),

— Wo, =Wy, ..., —Wn-1

where the a;’s are coprime positive integers with ag > ay > ... > a,_1.

Figure V.3: The smooth example in dimension 3: (ag,a1,az,a3) = (1,1,1,1).

3 ) 3

Example V.8. Let n =4 and (ag, a1, az,a3) = (1,1,1,1). Then the related toric
variety is P x P x P (see figure V.3).

Further, let A be the polytope defined by the weights:
A = conv{wg, wr, ..., Wy_1, —Wo, —W1, ..., ~Wp_1} CZ" T @R,
Lemma V.9. Let I,J C {1,...,n—1} be two complementary subsets of indexes.
(a) Assume iy,iy € I and iy # iy. If

PILEDBL

el jeJ

< ay,

then the interval (w;,,w;,) is an edge of A.
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(b) Assume k€ I andl e J. If

oY a

il jeJ
then both intervals (wo, wg) and (wo, —w;) are edges of A.

(¢c) If k,l e {1,....,n—1} and k # [, then (wy, —w;) is an edge of A.

Proof. Fix ¢ > 0 small enough, set a = >, .;a; — >, ;a; and define the
following hyperplanes in Z" ! @ R:

- {ngi—u—e)zxj zao},

iel jed

Hb::{ao—ak (le Z:@—a) oz—ao)(xk—ak)zo},

el jeJ
Hg::{ao%—al (Zx, Z:@—a) a—ao)(:vl+al):0}
1€l jeJ

and H. :=={zy, —x;=ap}.

Assuming the inequality of (a), H, N A is equal to conv{w; | i € I} and the
rest of A lies on one side of H,. So H, is a supporting hyperplane for the face
conv{w; | i € I}, which is a simplex of dimension (#I — 1) and therefore all its
edges are also edges of A as claimed in (a).

Next assume that the inequality of (b) holds. Then H, (respectively H}) is a
supporting hyperplane for the edge (wy, wy) (respectively (wo, —wy)).

Similarly, in the case of (¢), H, is a supporting hyperplane for {wg, —w;}.
L]

Theorem V.10. Let X C P?"~! be a toric non-degenerate Legendrian variety of
dimension n — 1 satisfying (%) (see page 54). If n > 4 and normalisation of X
has at most quotient singularities, then n = 4 and X = P' x P! x P!

Proof. Since the normalisation of X has at most quotient singularities, it follows
that the polytope A is simple, i.e. every vertex has exactly n—1 edges (see [Ful93|
or [Oda88, §2.4, p. 102|). We will prove this is impossible, unless n = 4 and
(ao,al,ag,ag) (1,1,1,1)

If wg € B := conv{wy,...,w,_1, —w1,...— w,_1}, then A is just equal to B
and clearly in such a case every vertex of A has 2(n — 2) edges. Hence more than
n—1forn > 4.
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Thus from now on we can assume that a; + ...+ a,_1 > ag. So by lemma
V.9(b), (wo, w;) is an edge for every i € {1,...,n —1}.

Choose any j € {1,...,n—1}andset [ :={1,....,7—1,7+1,...,n—1}.

If either

< Qg or

(£0) e

then using lemma V.9 we can count the edges at either w; or wy and see that
there is always more than n —1 of them. We note that a; — (Zig ai) > ag never
happens due to our assumptions on the a;’s.

Therefore the remaining case to consider is

(E az‘) — a; = Qao,
iel

where the equality holds for every j € {1,...,n — 1}. This implies:

1
n—3

a; =y = ... = Qp—-1 = agp.

Since the a;’s are positive integers and coprime, we must have
(ag,aiy...,ap_1) =(n—3,1,...,1)

which is exactly example V.8 for n = 4. Otherwise, if n > 5 we can take
J = {j1,72} for any two different j;,7o € {1,...,n — 1} and set I to be the
complement of J. Then #/ > 2 and by lemma V.9(a) and (c) there are too many
edges at the w;’s.

O

Corollary V.11. If X C P* ! is a smooth toric Legendrian subvariety and
n > 4, then it is either a linear subspace or n = 4 and X = P! x P! x PL.

O
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Chapter VI

Examples of quasihomogeneous
Legendrian varieties

The content of this chapter is published in [Buc07b].

We construct a family of examples of Legendrian subvarieties in projective
spaces. Although most of them are singular, a new example of a smooth Legen-
drian variety in dimension 8 is in this family. The 8-fold has interesting properties:
it is a compactification of the special linear group, a Fano manifold of index 5
and Picard number 1 (see theorem VI.4(b)). Also we show how this construction
generalises to give new smooth examples in dimensions 5 and 14 (see §VI.2.1).

In §VI.1 we introduce the notation for this chapter. In §VI1.2 we formulate the
results and make some comments on possible generalisations. In §VI.3 we study
the structure of a group action related to the problem. In §VI.4 we finally prove
the results.

VI.1 Notation and definitions

For this chapter we fix an integer m > 2.

Vector space V

Let V be a vector space over complex numbers C of dimension 2m?, which we
interpret as a space of pairs of m x m matrices. The coordinates are: a;; and b;;
for i,5 € {1,...m}. By A we denote the matrix (a;;) and similarly for B and

(bi;)-
Given two m x m matrices A and B, by (A, B) we denote the point of the
vector space V', while by [A, B] we denote the point of the projective space P(V).

Sometimes, we will represent some linear maps V' — V and some 2-linear
forms V® V — C as 2m? x 2m? matrices. In such a case we will assume the
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coordinates on V' are given in the lexicographical order:
A11y -+« Q1m, A215 -« - -5 Ay, b117 R blm> b217 R bmm

Symplectic form w
On V we consider the standard symplectic form
w((A,B), (A, B")) =Y (aybl; — aj;by) = tr (A(B)" = A'B").  (VL1)
4,3
Further we set J to be the matrix of w:

J::M(w):{ 0 Idmz].

—1d,,2 0
Varieties Y, Xj,(m) and Xge(m, k)

We consider the following subvariety of P(V):
Y :={[4,B] € P(V) | AB" = B"A = \’1d,, for some A € C}. (VI.2)

The square at A\ seems to be irrelevant here, but it slightly simplifies the notation

in the proofs of theorem VI.4(b) and proposition VI.10(ii). Although it is not

essential for the content of this chapter, we note that Y is F-cointegrable.
Further we define two types of subvarieties of Y':

Xiny(m) := { [g, (g—l)T} eP(V) |detg = 1},
Xaeg(m, k) = {[A, Bl €P(V)|ABT = BTA=0, tk A<k, tkB<m— k:}

where k£ € 0,1,...m. The varieties Xges(m, k) have been also studied by [Str82|
and [MT99|. Xiu(m) (especially Xin(3)) is the main object of this chapter.

Automorphisms 9,

For any 1 € C* we let v, be the following linear automorphism of V:

Vu((4, B)) = (nA, p~' B).

Also the induced automorphism of P(V') will be written in the same way:

V(A B)) = [pA, u7'B].
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Groups G and é, Lie algebra g and their representation

We set G := GL,, x GL,, and let it act on V by:

(9,h) € G, g,h € GL,,, (A,B) €V
(g,h) - (A, B) := (¢"Ah, g 'B(h™H)").

This action preserves the symplectic form w.

We will mostly consider the restricted action of G := SL,, x SL,, < G.

We also set g := sl,,, x sl,,, to be the Lie algebra of G and we have the tangent
action of g on V:

(9,h) - (A, B) = (g" A+ Ah,—gB — Bh").
Though we denote the action of the groups G, G and the Lie algebra g by the

same - we hope it will not lead to any confusion. Also the induced action of G
and G on P(V) will be denoted by -.

Orbits ZNV™ and DEGY,

We define the following sets:

INY™ :z{ [g, (g‘l)T] eP(V)|detg = 1},
DEGY, :={[A. B] € B(V) | AB" = BTA=0, tkA =k, 1kB =1},
50 that Xin,(m) = ZNV™ and Xaeg(m, k) = DEG],, 4.

Clearly, if k + 1 > m, then DEG,", is empty, so whenever we are considering
Dé'ggfl we will assume k +1 < m.

Elementary matrices F;; and points p; and p,

Let E;; be the elementary m X m matrix with unit in the i*" row and the j
column and zeroes elsewhere.
We distinguish two points p; € DEGY, and p; € DEG:
b1 = [Emmao] and b2 = [0, Emm]

These points will be usually chosen as nice representatives of the closed orbits
DEQTO and DEQ&"I.
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Submatrices - extracting rows and columns

Assume A is an m x m matrix and I, J are two sets of indices of cardinality k
and [ respectively:

[:{117227alk|1§21<12<<Zk§m}’
J::{jhj%”’ajl‘1§j1<j2<...<jl§m},

Then we denote by A; ; the (m—Fk)x (m—I[) submatrix of A obtained by removing
rows of indices I and columns of indices J. Also for a set of indices I we denote
by I' the set of m — k indices complementary to I.

We will also use a simplified version of the above notation when we remove
only a single column and single row: A;; denotes the (m —1) x (m —1) submatrix
of A obtained by removing i-th row and j-th column, i.e. Aj; = Agy )

Also in the simplest situation where we remove only the last row and the last
column, we write A,,, so that A,, = Ay = Apny gmy-

V1.2 Main results

In this chapter we give a classification! of Legendrian subvarieties in P(V) that
are contained in Y.

Theorem VI.3. Let projective space P(V'), varieties Y, Xiny(m), Xaeg(m, k) and
automorphisms 1, be defined as in §VI.1. Assume X C P(V) is an irreducible
subvariety. Then X is Legendrian and contained in'Y if and only if X is one of
the following varieties:

1. X = ¢, (Xinv(m)) for some p € C* or
2. X = Xaeg(m, k) for some k € {0,1,...m}.

The idea of the proof of theorem VI.3 is based on the observation that every
Legendrian subvariety that is contained in Y must be invariant under the action
of the group G. This is explained in §VI.3. A proof of the theorem is presented
in §VI.4.1.

Also we analyse which of the above varieties appearing in 1. and 2. are smooth:

Theorem VI1.4. With the definition of Xin(m) as in §VI.1, the family X, (m)
contains the following varieties:

(a) Xiny(2) is a linear subspace.

1This problem was suggested by Sung Ho Wang.
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(b) Xin(3) is smooth, its Picard group is generated by a hyperplane section.
Moreover Xin(3) is a compactification of SL3 and it is isomorphic to a
hyperplane section of Grassmannian Gr(3,6). The connected component of
Aut(Xin(3)) is equal to G = SL3 x SL3 and Xi,,(3) is not a homogeneous

space.
(¢) Xiny(4) is the 15 dimensional spinor variety Sg.
(d) For m > 5, the variety Xin,(m) is singular.

A proof of the theorem is explained in §VI.4.3.

Variety Xi,(3) is an original example of [Buc07b|. Also it is the first described
example of a smooth non-homogeneous Legendrian variety of dimension bigger
than 2 (see §1.1.2). This example is very close to a homogeneous one, namely
it is isomorphic to a hyperplane section of Gr(3,6), a well known subadjoint
variety. So a natural question arises, whether general hyperplane sections of other
Legendrian varieties admit a Legendrian embedding. The answer is yes and we
explain it (as well as many conclusions from this surprisingly simple observation)
in chapter VII.

Theorem VI.5. With the definition of Xaeg(m) as in §VI.1, variety Xgeg(m, k)
is smooth if and only if k =0, k =m or (m,k) = (2,1). In the first two cases,
Xaeg(m, 0) and X geg(m, m) are linear spaces, while X geg(2,1) ~ P! xP*xP! C P7.

A proof of the theorem is presented in §VI.4.2.

VI.2.1 Generalisation: Representation theory and further
examples

The interpretation of theorem VI.4 (b) and (c) can be following: We take the
exceptional Legendrian variety Gr(3,6), slice it with a linear section and we get
a description, which generalised to matrices of bigger size, gives the bigger excep-
tional Legendrian variety Sg. A similar connection can be established between
other exceptional Legendrian varieties (see §1.1.2).

For instance, assume that V*¥™ is a vector space of dimension Q(mgrl), which
we interpret as the space of pairs of m x m symmetric matrices A, B. Now in
P(V=¥™) consider the subvariety X;”"(m), which is the closure of the following
set:

{[A, A7 e P(V*¥™)|A = AT and det A = 1}.

Theorem VI.6. All the varieties X;2""(m) are Legendrian and we have:

(a) X:P™(2) is a linear subspace.

mv
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(b) X.:™(3) is smooth and it is isomorphic to a hyperplane section of Lagran-

mv

gian Grassmannian Grp(3,6).

(¢) X:2"(4) is smooth and it is Grassmannian variety Gr(3,6).

mv

(d) For m > 5, the variety XY™ (m) is singular.

mv

The proof is exactly as the proof of theorem VI.4.

Similarly, we can take V**¢" to be a vector space of dimension 2(2;'1), which
we interpret as the space of pairs of 2m x 2m skew-symmetric matrices A, B. Now
in P(V**%) consider subvariety X:*¢“(m), which is the closure of the following
set:

{[A,—A7] € P(V*)|A = —AT and Pfaff A = 1}.

Theorem VI.7. All the varieties X3**“(m) are Legendrian and we have:

mv

a) Xzkew(2) is a linear subspace.
(a) P

mv

(b) Xgkew(3) is smooth and it is isomorphic to a hyperplane section of the spinor

mv

variety Sg.

(¢c) Xkew(4) is smooth and it is the 27 dimensional E; variety.

mv

(d) For m > 5, the variety X:k%(m) is singular.

Here the only difference is that we replace the determinants by the Pfaffians
of the appropriate submatrices and also for the previous cases we will be picking
some diagonal matrices as nice representatives. Since there is no non-zero skew-
symmetric diagonal matrix, we must modify our calculations a little bit, but there
is essentially no difference in the technique.

Prior to [BucO7b] neither X;“™(3) nor X3*¥(3) have been identified as smooth
Legendrian subvarieties.

Therefore we have established a connection between the subadjoint varieties
of the 4 exceptional groups F}, Fg, E7 and Eg. A similar connection was obtained
by |[LMO02|.

We note that m X m symmetric matrices, m X m matrices and 2m X 2m
skew-symmetric matrices naturally correspond to m xm Hermitian matrices with
coefficients in F®r C, where [ is the field of, respectively, real numbers R, complex
numbers C and quaternions H (see [LMO01] and references therein). An algebraic
relation (analogous to parts (c) of theorems VI.4 VI.6 and VI.7) between Lie
algebras of types Eg, E7 and Eg and 4 x 4 Hermitian matrices with coefficients
in F ®g C is described in [BK94|.
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V1.3 (G-action and its orbits
Recall the definition of Y in §VI.1.

The following polynomials are in the homogeneous ideal of Y (the indices i, j
below run through {1,...,m}, k is a summation index):

Z aikbik — Z alkblka (VIS&)
k=1 k=1

> awbie fori # 4, (VL.8h)
k=1

Z akibki — Z a’k‘lbkla (VISC)
k=1 k=1

Z ag;by; for i # j. (VI.8d)
k=1

These equations simply come from eliminating A from the defining equation
of Y see equation (VI.2).

For the statement and proof of the following proposition, recall our notation
of §VIL.1.

Proposition VI.9. Let X C P(V) be a Legendrian subvariety. If X is contained
in'Y, then X is preserved by the induced action of G on P(V).

Proof. Let Z(X); be as in the theorem IIL5 and define Z(Y ), analogously.
Clearly Z(Y')y C Z(X)3. Also let p be the map described in theorem I11.5. By

theorem III.5 it is enough to show that g C p <f(Y)2> or that the images of the
quadrics (VI.8a) (VI.8d) under p generate g.

We write out the details of the proof only for m = 2. There is no difference
between this case and the general one, except for the complexity of notation.

Let us take the quadric
Qi = Z airbjr = anbji + apbjo
k=1
for any 4,5 € {1,...,m} = {1,2}. Also let @;; be the 2m? x 2m? symmetric
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matrix corresponding to ¢;;. For instance:

00000030
00000O0TCO0 3
00 00O00O0O0O0
100000000
Q=14 000000 0
0000O00O0TO0O0
10000000
02 00000 0|

Choose an arbitrary (A, B) € V and at the moment we want to think of it
as of a single vertical 2m?-vector: (A, B) = [ai1, a12, a1, G2o, b11, b1a, bay, baa]”
that the following multiplication makes sense:

, SO

P(Q12) =2J-Q12- (A, B) =

0O 0 0 0 1000 0000O0OO0OT1FPO0 ai
0 0 0O 0 010O0 000O0O0OO0GO0OT1 a12
0o 0 0O 0 0010 000O0O0OO0OO0O® O a91
(0 0 0 0 0O0O01 000O0O0OO0OO0O® O azs |
-1 0 0 0 0000 0000O0O0O0OO 0 b |
0O -1 0 0 0000 0000O0O0O0OO 0 b12
0 0 -1 0 00 O0O 100 00O0O00O0 bay
| 0 0 0 =100 0O0f[01T00O0O0O0 0]/ b |
000000 0 O011T[ay]
0000O0OO0O O O a12
100000 O O a91
010000 0 0 ag |
|10 00O0O0O0 -1 0 bin |
0000O0OO0 0 -1 b12
0000O0OO0O O O bay
0000000 0 0 | /[ by |
~ 0 -
0
a1
o a2 back to the matrix notation (|: 0 0 :| |:—bgl —bgg :|) .
| by B an a2 |’ 0 0 B
_b22
0
- O -

T
. 0 1 a;p Q12 . 01 bll b12 _ T o
N (l 0 0 ] l A21  A22 } ’ l 00 ] [ bor ba }> - (P = Feb)
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Similar calculations show that:

2J'Qij : (A> B) = (Eiz;'Aa —EijB)-

Next in the ideal of Y we have the following quadrics: ¢;; for i # j (see
(VI.8b)) and ¢;; — q11 (see (VI.8a)). By taking images under p of the linear
combinations of those quadrics we can get an arbitrary traceless matrix g € sl,,
acting on V in the following way:

g-(A,B)=(9"A,—gB).
Exponentiate this action of sl,, to get the action of SL,,:
g-(A,B)=(9"A,g7'B).

This proves that the action of subgroup SL,, x 0 < G = SL,,, x SL,,, preserves

X as claimed in the proposition. The action of the other component 0 x SL,, is
calculated in the same way, but using quadrics (VI.8¢) (VI.8d).

O

VI1.3.1 Invariant subsets

Here we want to decompose Y into a union of some G-invariant subsets, most of
which are orbits.

Proposition VI.10.

(i) The sets INV™, 1, (INV™) and DEG,’, are G-invariant and they are all
contained in Y.

(i) Y is equal to the union of all Y, (ZNV™) (for p € C*) and all DEGY, (for
integers k,1 >0, k+1<m).

(iii) Every v, (INV™) is an orbit of the action of G. If m is odd, then IN'V™
is isomorphic (as algebraic variety) to SL,,. Otherwise if m is even, then

INV™ is isomorphic to (SL,,/Zs). In both cases
dim ¢, (ZNV™) = dimZNV™ = m? — 1.

Proof. The proof of part (i) is an explicit verification from the definitions in
§VI.1.

To prove part (ii), assume [A, B] is a point of Y, so ABT = BTA = \?1d,),.
First assume that the ranks of both matrices are maximal:

tkA=r1rkB=m.
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Then A must be non-zero and B = A2(A™1)T. Let d := (det A)~w so that

det(dA) =1
and let p := ﬁ. Then we have:
_ 2 (A-N\T| _ % -n\T| _
[4,B] = |4, (4™)"] = ld)\,d)\((dA) ) ]_

= [u(a), w7 (@)™ ] = v ([@a), (@)™)7]).

Therefore [A, B] € ¥, (ZNV™).
Next, if either of the ranks is not maximal:

rtkA<mor tkB <m,

then by (VL.2) we must have AB” = BTA = 0. So [A, B] € DEG], for k =1k A
and [ =1k B.

Now we prove (iii). The action of G' commutes with ),,:

(g> h) ’ ¢u([A’ B]) = %((Q,h) ’ [A> B])

So to prove ¢, (ZN'V™) is an orbit it is enough to prove that ZA'V™ is an orbit,
which follows from the definitions of the action and ZNV™.
We have the following epimorphic map:

SL,, — ZINV™
g — lg,(g7H"].

If [g1, (97 )] = [g2,(92)7], then we must have g; = agy and g; = a™'gy for
some a € C*. Hence o? = 1 and ¢; = +¢,. If m is odd and ¢g; € SL,,, then
—g1 & SL,, so g1 = g2. So ZN'V™ is either isomorphic to SL,, or to SL,,/Z, as
stated.

O

From proposition VI.10(ii) we conclude that Xj,,(m) is an equivariant com-
pactification of SL,, (if m is odd) or SL,,/Zs (if m is even). See |Tim03| and
references therein for the theory of equivariant compactifications. In the setup
of [Tim03, §8|, this is the compactification corresponding to the representation
W @& W*, where W is the standard representation of SL,,. Therefore some prop-
erties of Xj,,(m) could also be read from the general description of group com-
pactifications.

Proposition VI.11.
(i) The dimension of DEGy!, is (k+1)(2m—k—1)—1. In particular, if k+1 = m,

then the dimension is equal to m? — 1.
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(ii) DEGY, is an orbit of the action of G, unless m is even and k =1 = %m.

(i4) If m > 3, then there are exactly two closed orbits of the action of G: DEGT,
and DEG; .

Proof. Part (i) follows from [Str82, prop 2.10].

For part (ii) let [A, B] € DEG]", be any point. By Gaussian elimination and
elementary linear algebra, we can prove that there exists (g,h) € G such that
A", B'] :== (g, h) - [A, B] is a pair of diagonal matrices. Moreover, if k +1 < m,
then we can choose g and h such that:

A" = diag(1,...,1,0,...,0,0,...,0),
N—_——

k l m—k—l
B’ :=diag(0,...,0,1,...,1,0,...,0).
k ! k-l

Hence DEG)') = G - [A’, B'] and this finishes the proof in the case k +1 < m.
So assume k + | = m. Then we can choose (g, h) such that:

A" = diag(1,...,1,0,...,0),
— T

B’ := diag(0,...,0,d,...,d),
——

k 1
for some d € C*. If k # I, then set e := di% and let
g = diag(e',... e e ... e7F).
N——

k l

Clearly det(g¢’) = 1 and:

(¢, 1d,,) - [A', B] = |diag(e’,...,€",0,...,0),diag(0,...,0,de*, ... de*
k ! k !

where
k l
de¥ = dHF = drF = €.

So rescaling we get:

(¢',1d,,) - [A', B'] = |diag(1,...,1,0,...,0),diag(0,...,0,1,...,1)

k l k l

72



ALGEBRAIC LEGENDRIAN VARIETIES Chapter VI

and this finishes the proof of (ii).

For part (iii), denote by W; (respectively, W) the standard representation
of the first (respectively, the second) component of G = SL,, x SL,,. Then our
representation V' is isomorphic to (W, @ Wy) & (W ® W5). For m > 3 the

representation W; is not isomorphic to W} and therefore V' is a union of two

irreducible non-isomorphic representations, so there are exactly two closed orbits
of this action on P(V'). These orbits are simply DEGY, and DEGY, .
O

VI.3.2 Action of G

The action of G extends the action of G, but it does not preserve X, (m). So
we will only consider the action of G when speaking of KXaeg(m, k).

We have properties analogous to proposition VI.11 (ii) and (iii) but with no
exceptional cases:

Proposition VI.12.

(i) Every DEGY, is an orbit of the action ofé.

(i1) For every m there are exactly two closed orbits of the action of G: DEGY
and DEG; .

Proof. This is exactly as the proof of proposition VI.11 (ii) and (iii).

VI.4 Legendrian varieties in Y

In this section we prove the main results of the chapter.

VI1.4.1 Classification

We start by proving the theorem VI.3.

Proof. First assume X is Legendrian and contained in Y. If X contains a
point [A, B] where both A and B are invertible, then by proposition VI.9 it must
contain the orbit of [A, B], which by proposition VI.10(ii) and (iii) is equal to
Y (ZNV™) for some p € C*. But the dimension of X is m* — 1 which is exactly
the dimension of ¢, (ZN'V™) (see proposition VI.10(iii)), so

X = W = wu(Xinv(m))'
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On the other hand, if X does not contain any point [A, B] where both A
and B are invertible, then in fact X is contained in the locus Yy := {[A, B] :
ABT = BTA = 0}. This locus is just the union of all DEQ’,& and its irreducible
components are the closures of DEG)", . which are exactly Xqeg(m, k). So in
particular every irreducible component has dimension m? — 1 (see proposition
VI.11(i)) and hence X must be one of these components.

Therefore it remains to show that all these varieties are Legendrian.

The fact that Xge(m, k) is a Legendrian variety follows from |Str82, pp524—
525|. Strickland proves there that the affine cone over Xqes(m, k) (or W(k, m—k)
in the notation of [Str82]) is the closure of a conormal bundle. Conormal bundles
are classical examples of Lagrangian varieties (see example 11.6).

Since v, preserves the symplectic form w, it is enough to prove that Xi,,(m)
is Legendrian.

The group G acts symplectically on V' and the action has an open orbit on
Xiny(m)  see proposition VI.10 (iii). Thus the tangent spaces to the affine cone
over Xj,y(m) are Lagrangian if and only if just one tangent space at a point of
the open orbit is Lagrangian.

So we take [A, B] := [Id,,,Id,,]. Now the affine tangent space to Xj,,(m) at
[Id,,, Id,,] is the linear subspace of V' spanned by (Id,,, Id,,) and the image of the
tangent action of the Lie algebra g. We must prove that for every four traceless
matrices g, h, ¢', h’ we have:

w((g, k) - (Idm,Idy,), (¢',1') - (Id,1d,,)) =0 and (VI.13a)
w((Id,n, 1d,,), (g, h) - (Idy, Id,,)) = 0. (VI.13b)

Equality (VI.13a) is true without the assumption on the trace of the matrices:
w((g, k) - (Idm,Idy), (¢, 1) (Ids, Idn))
= w((g"+h (gD, (@) +H, —(g +()))
TEY (= (g7 R) ()T HR) + (g AT) (6 + ()T)) = 0.
For equality (VI.13b) we calculate:

w((Idmv Idm)? (gv h’) ' (Idm7 Idm))
_ w((ldm, Idy), (9" +h, —(g+1")) )
WEY (" h) —ta(g + A7) = 0,

Hence we have proved that the closure of ZN' V™ is Legendrian.
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VI1.4.2 Degenerate matrices

By [|Str82, prop. 1.3| the ideal of Xge(m, k) is generated by the coefficients of
ABT| the coefficients of BT A, the (k + 1) x (k 4 1)-minors of A and the (m —
k+ 1) x (m — k + 1)-minors of B. In short, we will say that the equations of
Xdeg(m, k) are given by:

ABT =0, B"A=0, 1k(A) <k, 1k(B) <m — k. (V1.14)
Lemma VI.15. Assumem > 2 and 1 <k <m —1. Then:

(i) The tangent cone to Xaeg(m, k) at py is a product of a linear space of di-
mension (2m — 2) and the affine cone over Xgeg(m — 1,k —1).

(i) The tangent cone to Xaeg(m, k) at py is a product of a linear space of di-
mension (2m — 2) and the affine cone of Xgeg(m — 1, k).

(11) Xaeg(m, k) is smooth at py if and only if k = 1.

(11°) Xaeg(m, k) is smooth at py if and only if k =m — 1.

Proof. We only prove (i) and (ii), while (i’) and (ii’) follow in the same way by
exchanging a;; and b;;. Consider equations (VI.14) of Xges(m, k) restricted to the
affine neighbourhood of p; obtained by substituting a,,,, = 1. Taking the lowest
degree part of these equations we get some of the equations of the tangent cone
at p; (recall our convention on the notation of submatrices — see §VI.1):

bim = bpmi = 0, ApBL =0, BLA,, =0,

kA, <k-11kB, <m-—k.

These equations define the product of the linear subspace A,, = B,, = 0, b;,,, =
bm; = 0 and the affine cone over Xgez(m — 1,k — 1) embedded in the set of those
pairs of matrices, whose last row and column are zero: a;, = tm; = 0, b = by =
0. So the variety defined by those equations is irreducible and its dimension is
equal to (m —1)* +2m — 2 = m? — 1 = dim Xgeg(m, k). Since this contains the
tangent cone we are interested in and by §1.3.8(1), they must coincide as claimed
in (i).
Next (ii) follows immediately, since for k = 1 the equations above reduce to
bim = bmi = 0, and Am =0

and hence the tangent cone is just the tangent space, so p; is a smooth point of
Xdeg(m, 1). Conversely, if £ > 1, then Xgeo(m — 1,k — 1) is not a linear space, so
by (i) the tangent cone is not a linear space either and X is singular at p;  see
§1.3.8(3).

U
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Now we can prove theorem VI.5:

Proof. It is obvious from the definition of Xges(m, k), that Xgeg(m,0) = {A =0}
and Xgeg(m, m) = {B = 0}, so these are indeed linear spaces.

Therefore assume 1 < k < m — 1. But Xge(m, k) is G invariant (see propo-
sition VI.12(i)) and so is its singular locus S. Hence Xg4es(m, k) is singular if and
only if S contains a closed orbit of G.

So Xdeg(m, k) is smooth, if and only if it is smooth at both p; and p, (see
proposition VI.12(ii)), which (by lemma (ii) and (ii’)) holds if and only if £ =1
and m = 2.

To finish the proof, it remains to verify what kind of variety is Xgee(2,1).
Consider the following map:

P! x P! x P! —P(V) ~ P’
[k, o], [1, val, (€1, &o] ¥— {51 ( faby - b ) 752( foVa  —[ali )]

Hol1 [olo —HiV2 s

Clearly this is the Segre embedding in appropriate coordinates. The image of this
embedding is contained in Xge.(2,1) (see equation (VI.14)) and since dimension
of Xeg(2,1) is equal to the dimension of P! x P! x P! we conclude the above map
gives an isomorphism of Xg,(2,1) and P! x P! x P

O

V1.4.3 Invertible matrices

We wish to determine some of the equations of Xj,,(m). Clearly the equations of
Y (see (VI.8)) are quadratic equations of Xj,,(m). To find other equations, we
recall that

Xin(m)i= { [on (7] € POV) [ detg =1,

However, for a matrix ¢ with determinant 1 we know that the entries of (g=1)T

consist of the appropriate minors (up to sign) of g. Therefore we get many
inhomogeneous equations satisfied by every pair (g, (¢7)) € V' (recall our con-
vention on the notation of submatrices  see §VIL.1):

det(A;j) = (=1)™b;; and ay = (—1)" det(By)
To make them homogeneous, multiply two such equations appropriately:
det(Aij)akl = (—1)i+j+k+lbij det(Bkl). (VIlG)

These are degree m equations, which are satisfied by the points of Xj,,(m) and
we state the following theorem:
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Theorem VI.17. Let m = 3. Then the quadratic equations (V1.8a)-(VI.8d)
and the cubic equations (VI.16) generate the ideal of Xiny(3). Moreover Xin(3)
15 smooth.

Proof. It is enough to prove that the scheme X defined by equations (VI.8a)
(VI.8d) and (VI.16) is smooth, because the reduced subscheme of X coincides
with Xinv(g)-

The scheme X is G invariant, hence as in the proof of theorem VI.5 and by
proposition VI.11(iii) it is enough to verify smoothness at p; and ps. Since we
have the additional symmetry here (exchanging a;;’s with b;;’s) it is enough to
verify the smoothness at p;.

Now we calculate the tangent space to X at p; by taking linear parts of the
equations evaluated at agz3 = 1. From (VL.8) we get that

b31 = by = bzz = baz = b1z = 0.

Now from equations (VI.16) for £ = [ = 3 and 7,j # 3 we get the following
evaluated equations:

Qyrjr — Qp3azj = FbijBs3
(where 4’ is either 1 or 2, which ever is different than ¢ and analogously for j') so
the linear part is just a;;; = 0. Hence by varying 7 and j we can get

a11 = a1z = A = agy = 0.

Therefore the tangent space has codimension at least 9, which is exactly the codi-
mension of X, (3) — see VI.10(iii). Hence X is smooth (in particular reduced)
and X = Xj.(3).

U

To describe X, (m) for m > 3 we must find more equations.
There is a more general version of the above property of an inverse of a matrix
with determinant 1, which is less commonly known.

Proposition VI.18.

(i) Assume A is a m x m matriz of determinant 1 and I,J are two sets of
indices, both of cardinality k (again recall our convention on indices and
submatrices  see §VI.1). Denote by B := (A=1)T. Then the appropriate
minors are equal (up to sign):

det A[’J = (—1)EI+EJ det B[/J/.

(ii) A coordinate free way to express these equalities is following: Assume W
15 a vector space of dimension m, [ is a linear automorphism of W and

ke{0,...,m}. Let \° f be the induced automorphism of N°W. If N* f =

Idmy, then:
N 7= NN )
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(i1i) Consider the induced action of G on the polynomials on V. Then the vector
space spanned by the set of equations of (i) for a fizved k is G invariant.

Proof. Part (ii) follows immediately from (i), since if A is a matrix of f, then
the terms of the matrices of the maps A" " f and A"(A"" f) are exactly the
appropriate minors of A and B.

Part (iii) follows easily from (ii).

As for (i), we only sketch the proof, leaving the details to the reader. Firstly,
reduce to the case when I and J are just {1,...k} and the determinant of A is
possibly +1 (which is where the sign shows up in the equality). Secondly if both
determinants det A; ; and det By ;» are zero, then the equality is clearly satisfied.
Otherwise assume for example det A; ; # 0. Then performing the appropriate
row and column operations we can change Ay ; into a diagonal matrix, Ay ; and
A,y into the zero matrices and all these operations can be done without changing
Bp y nor det Ay ;. Then the statement follows easily.

O

In particular we get:
Corollary VI1.19. Assume k, I and J are as in proposition VI.18(i).

(a) If m is even and k = Sm, then the equation
det A;y = (=1)>1+>7 det By g
15 homogeneous of degree %m and it is satisfied by points of Xin,(m).
(b) If0 <k < %m and l =m — 2k, then
(det A; ;)* = (det By y1)* - (an1biy + . . . + a1mbin)!
is a homogeneous equation of degree 2(m—k) satisfied by points of Xiny(m).

Proof. Clearly both equations are homogeneous. If det A =1 and B = (A~1)T
then the following equations are satisfied:

Y

det A; ; = (=1)*"**7 det By p, (V1.20)

1= (allbll + ... almblm)l (VIQl)

(equation (VI.20) follows from proposition VI.18(i) and (VI.21) follows from
ABT = 1d,,). Equation in (b) is just (V1.20) squared multiplied side-wise by
(VL.21).

So both equations in (a) and (b) are satisfied by every pair (4, (A™")") and
by homogeneity also by (AA, A(A™")T). Hence (a) and (b) hold on an open dense
subset of Xj,.(m), so also on whole Xj,,(m).

U

We know enough equations of Xj,,(m) to prove the theorem VI.4:
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Case m = 2 — linear subspace

Proof. To prove (a) just take the linear equations from corollary VI.19(a) for
k=1
aij = £byj,

where {i,i"} = {j, 7/} = {1,2}.

Case m = 3 — hyperplane section of Gr(3,6)

Proof. For (b), Xiuw(3) is smooth by theorem VI.17 and it is a compactification
of ZN'V? ~ SLj by proposition VI.10(i) and (iii).

Picard group of X;,,(3). The complement of the open orbit
D = Xy (3)\ZNV?

must be a union of some orbits of GG, each of them must have dimension smaller
than dim ZN'V? = 8. So by propositions VI.10(ii), (iii), VI.11 (i) and (ii) the only
candidates are Dé’gil, Dggg,l and DSQ?O. We claim they are all contained in
Xinv(3). It is enough to prove that DEGT, C X (3), since the other orbits are
in the closure of Dé'(]il. Take the curve in Xj,,(3) parametrised by:

t 0 t—1 0
0 0 , 0 0
0 ¢t 0 t

o = O
o = O

For t = 0 the curve meets DEQ‘E’J, which finishes the proof of the claim.

Since dimDSQil = 7 (see proposition VI.11(i)), D is a prime divisor. We
have Pic(SL3) = 0 and by [Har77, prop. I11.6.5(c)| the Picard group of X, (3) is
isomorphic to Z with the ample generator [D].

Next we check that D is linearly equivalent (as a divisor on X, (3)) to a
hyperplane section H of X, (3). Since we already know that Pic(Xj.(3)) =

Z - D], we must have H “ kD for some positive integer k. But there are lines
contained in Xj,,(3) (for example those contained in Dé'gio ~ P? x P?)2. So let
L C Xiu(3) be any line and we intersect:

1 1

D-L=-H-L=-.
k k

But the result must be an integer, so k = 1 as claimed.

2Actually, the reader could also easily find explicitly some lines (or even planes) which
intersect the open orbit and conclude that Xj,,(3) is covered by lines.
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Complete embedding. Since D itself is definitely not a hyperplane section of
Xinv(3), the conclusion is that the Legendrian embedding of Xj,,(3) is not given
by a complete linear system. The natural guess for a better embedding is the
following:

X' ::{[l,g,/\zg] €P18:P(C@V)|detg:1},

(we note that \>g = (¢71)7T for g with det g = 1) and one can verify that the
projection from the point [1,0,0] € P restricted to X’ gives an isomorphism
with Xin (3).

The Grassmannian Gr(3,6) in its Pliicker embedding can be described as the
closure of:

{[1,g,/\2g,/\3g} EPlg:P(C@V@CHgGMng}

and we immediately identify X’ as the section H := {/\3g = 1} of the Grass-
mannian.

Though it is not essential, we note that H(Og,6)) = 0 (see Kodaira vanish-
ing theorem |Laz04, thm 4.2.1]; alternatively, it follows from the fact that b; =0
for Grassmannians) and hence the above embedding of Xj,,(3) is given by the
complete linear system.

0
— the con-

Automorphism group. It remains to calculate Aut (X, (3))
nected component of the automorphism group.

The tangent Lie algebra of the group of automorphisms of a complex projec-
tive manifold is equal to the global sections of the tangent bundle, see theorem
A.7. A vector field on X, (3) is also a section of T'Gr(3,6)|x,,,(3) and we have

the following short exact sequence:

0 — TGr(3,6)(—1) — TGr(3,6) — TGr(3,6)

Xinv(g) - O

The homogeneous vector bundle TG7(3,6)(—1) is isomorphic to U* ® Q & N’ U,
where U is the universal subbundle in Gr(3,6)xCS and @ is the universal quotient
bundle. This bundle corresponds to an irreducible module of the parabolic sub-
group in SLg. Calculating explicitly its highest weight and applying Bott formula
|Ott95] we get that H'(TGr(3,6)(—1)) = 0. Hence every section of T' X, (3) ex-
tends to a section of TGr(3,6). In other words, if P < Aut(Gr(3,6)) ~ PGLg is
the subgroup preserving Xi,,(3) C Gr(3,6), then the restriction map

P — Aut (Xin(3))°
is epimorphic.
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The action of SLg on /\3 C" preserves the natural symplectic form w':

W' /\2 </\3(C6> — /\6(C6 ~ C.

Since the action of P on P (/\3 (CG) preserves the hyperplane H containing Xj,.(3),
it must also preserve HL'  i.e. P preserves [1,0,0,1] € P¥ = P(Ca V ¢ C).
Therefore P acts on the quotient H/(H*«") = V and hence the restriction map
factorises:

P — Aut(P(V), Xine(3))° = Aut(Xin(3))°.

By theorem I1V.2, group Aut(P(V), Xy (3))? is contained in the image of
Sp(V) — PGL(V), so by theorem II1.5, proposition V1.9 and theorem VI.17

Aut (]P)(V)a Xinv(g))o =G.

In particular X, (3) cannot be homogeneous as it contains more than one orbit

of the connected component of automorphism group.
O

We note that the fact that X, (3) is not homogeneous can be also proved
without calculating the automorphism group. Since Pic X, (3) ~ Z, it follows
from [LM04, thm. 11|, that X, (3) could only be one of the subadjoint varieties.
But none of them has Picard group Z and dimension 8.

Case m—4 — spinor variety Sg

Proof. To prove (¢) we only need to take 30 quadratic equations of Y as in (VL.8)
and 36 quadratic equations from corollary VI.19 (a). By proposition VI.18(iii)
the scheme X defined by those quadratic equations is G-invariant. As in the
proofs of theorems VI.5 and VI.17, we only check that X is smooth at p; and
p2 and conclude it is smooth everywhere, hence those equations indeed define
Xinv(4)'

Therefore Xj,,(4) is smooth, irreducible and its ideal is generated by quadrics,
so it falls into the classification of [Buc06, thm. 5.11]. Hence we have two choices
for Xi,,(4) whose dimension is 15: the product of a line and a quadric P! x Q4 or
the spinor variety Sg. The homogeneous ideal of polynomials vanishing on P! x
Q14 C P? is generated by dim(SLy x SO14) = 123 linearly independent quadratic
polynomials (see theorem IIL.5, alternatively, one can calculate the equations
explicitly see [Buc05, §7.2] ). So Xiu.(4), which by the above argument is
generated by only 66 quadratic equations, must be isomorphic to Sg.

O
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Case m> 5 — singular varieties

Proof. Finally we prove (d). We want to prove, that for m > 5 variety Xj,,(m)
is singular at p;. To do that, we calculate the reduced tangent cone
T := (TCp, Xiny(m)),

From equations (VI.8) we easily get the following linear and quadratic equations
of T (again we suggest to have a look at §VI.1):

bim = bmi =0, A,BL =BrA, =)\1d,,_,

for every ¢ € {1,...m} and some A € C*.

Next assume [ and J are two sets of indices, both of cardinality £ = [%mj
and such that neither I nor J contains m. Consider the equation of Xj,,(m) as
in corollary VI.19(b):

(det A[7J)2 = (det B[/7J/)2 . (anbn + ... almblm)l.

To get an equation of T, we evaluate at a,,,, = 1 and take the lowest degree part,
which is simply (det ((A,,)7.7))” = 0. Since T is reduced, by varying I and J we
get that:

1
kA, <m-1—-k—1= {im—‘ -2

and therefore also:
AnBY =Br A, =0.

Hence T is contained in the product of the linear space W := {4,, = 0, B = 0}

and the affine cone U over the union of Xyeg(m — 1, k) for k < [im] — 2. We

claim that 7 = W x U. By proposition VI.11(i), every component of W x U has
dimension 2m —2+ (m—1)* = m? — 1 = dim Xj,,,(m), so by §1.3.8(1) the tangent
cone must be a union of some of the components. Therefore to prove the claim
it is enough to find for every k < %mw — 2 a single element of DE Zf;bl_k_l that
is contained in the tangent cone.

So take o and 3 to be two strictly positive integers such that

az(%m—k‘—l)ﬁ

and consider the curve in P(V') with the following parametrisation:

diag{t®, ..., t*tT0 P 1} diag{t*tP, ... toTP e L 2Py
—— N———— N—— e ——
k m—k—1 k m—k—1
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It is easy to verify that this family is contained in ZNV™ for t # 0 and as t
converges to 0, it gives rise to a tangent vector (i.e. an element of the reduced
tangent cone - see point-wise definition in §1.3.8) that belongs to DE Zzl_k_l.
So indeed T = W x U, which for m > 5 contains more than 1 component,
hence cannot be a linear space. Therefore by §1.3.8(3) variety Xi,,(m) is singular

at p;.
U
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Hyperplane sections of Legendrian
subvarieties

The content of this chapter is partially published in [Buc07a].

The Legendrian variety Xj,,(3) constructed in chapter VI is isomorphic to a
hyperplane section of another Legendrian variety Gr(3,6). In this chapter we
prove that general hyperplane sections of other Legendrian varieties also admit a
Legendrian embedding. This gives numerous new examples of smooth Legendrian
subvarieties.

Theorem VII.1. Let X C P(V) be an irreducible Legendrian subvariety, which is
smooth or has only isolated singularities. Then a general hyperplane section of X
admits a Legendrian embedding into a projective space of appropriate dimension
via a specific subsystem of the linear system O(1).

More generally, assume X C P(V) is an irreducible Legendrian subvariety
with singular locus of dimension k and H C P(V') is a general hyperplane. Then
there exists a variety )Z'H whose singular locus has dimension at most k — 1 and
which has an open subset isomorphic to the smooth locus of X N H such that Xy
admits a Legendrian embedding.

The specific linear system and construction of )?H is described in §VII.1.1
and there we prove that the resulting variety is Legendrian. The proof that for
a general section the result has the required smoothness property is presented in
§VIIL.1.2.

This simple observation has quite strong consequences. Many researchers,
including Landsberg, Manivel, Wisniewski, Hwang and the author of this thesis,
believed that the structure of smooth Legendrian subvarieties in projective space
had to be somehow rigid at least in higher dimensions. So far the only non-
rational examples known were in dimensions 1 and 2 (see §1.1.2) and these were
also the only known to come in families. Already by a naive application of our
theorem to the subadjoint varieties we get many more examples with various
properties:
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Example VII.2. The following smooth varieties and families of smooth varieties
admit Legendrian embedding:

(a) a family of K3 surfaces of genus 9;
(b) three different types of surfaces of general type;

(¢) some Calabi-Yau 3-folds, some Calabi-Yau 5-folds and some Calabi-Yau
9-folds;

(d) some varieties of general type in dimensions 3, 4 (two families for every
dimension), 5,6,7 and 8 (one family per dimension);

(e) some Fano varieties, like the blow up of a quadric Q™ in a codimension 2
hyperplane section Q"2, a family of Del Pezzo surfaces of degree 4 and
others;

(f) infinitely many non-isomorphic, non-homogeneous Legendrian varieties in
every dimension arising as a codimension k linear section of P* x Q"*F,

Example (a) agrees with the prediction of |[LMO04, §2.3]. Examples (b) and
(d) give a partial answer to the question of a possible Kodaira dimension of a
Legendrian variety (also see [LMO04, §2.3]). Example (f) is a counterexample to
the naive expectation that Legendrian variety in a sufficiently high dimension
must be homogeneous.

We also note that our previous examples also arise in this way. Example (e)
for n = 2 is described in example V.5. Hyperplane sections of Gr(3,6), Gr(3,6),
Sg are studied in more details in chapter VI. Also non-homogeneous examples
of other authors, Bryant |Bry82|, Landsberg and Manivel |LM04| can be recon-
structed by theorem VII.1 from some varieties with only isolated singularities
(see §VIL.3).

A more refined construction, using the decomposable Legendrian varieties (see
§II1.1.2), makes a much bigger list of examples, including smooth Legendrian
varieties with maximal Kodaira dimension in every dimension or varieties with
arbitrary rank of Picard group. This is described in detail in §VII.2.

All the varieties arising from theorem VII.1 and our construction in subsection
VII.1.1 are embedded by a non-complete linear system. Therefore a natural
question arises: what are the smooth Legendrian varieties whose Legendrian
embedding is linearly normal. Another question is whether the construction can
be inverted. So for a given Legendrian but not linearly normal embedding of
some variety X, can we find a bigger Legendrian variety X, such that X is a
projection of a hyperplane section of X7

Building upon ideas of Bryant, Landsberg and Manivel we suggest a construc-
tion that provides some (but far from perfect) answer for the second question in
§VIL.3. In particular, we represent the example of Landsberg and Manivel as a
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hyperplane section of a 3-fold with only isolated singularities and the examples
of Bryant as hyperplane sections of surfaces with at most isolated singularities.

VII.1 Hyperplane section

VII.1.1 Construction

The idea of the construction is built on the concept of symplectic reduction (see
§11.1.3). Let H € P(V*) be a hyperplane in V. By

h:=HcCcV

we denote the w-perpendicular to H subspace of V', which in this case is a line
contained in H. We think of A both as a point in the projective space P(V') and
a line in V. We define

m:P(H)\{h} — P(H/h)

to be the projection map and for a given Legendrian subvariety X C P(V) we let
Xy = n(X N H).

We have the natural symplectic structure w’ on H/h determined by w (see
§I1.1.3). Also )?H is always Legendrian by proposition II.1 and lemma I.4.

Note that so far we have not used any smoothness condition on X.

VI1.1.2 Proof of smoothness

Hence to prove theorem VII.1 it is enough to prove that for a general H € P(V*),
the map 7 gives an isomorphism of the smooth locus of X N H onto its image,
an open subset in Xg.

For a variety Y C P™ we denote by o(Y') C P its secant variety, i.e., closure
of the union of all projective lines through y; and y,, where (y,y2) vary through
all pairs of different points of Y.

Lemma VIL.3. Let Y C P™, choose such a point y € P™ that y ¢ o(Y) and let
7 P™\{y} — P™! be the projection map.

(a) If Y is smooth, then m gives an isomorphism of Y and w(Y').

(b) In general, 7 is 1 to 1 and 7 is an isomorphism of the smooth part of Y onto
its image. In particular, the dimension of singular locus of Y is greater or
equal to the dimension of singular locus of w(Y).

Proof. See |[Har77, prop. 1V.3.4 and exercise IV.3.11(a)]. We only note that
if Y is smooth, then the secant variety o(Y) contains all the embedded tangent

spaces of Y. They arise when y, approaches y;.
O
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Now we can prove theorem VII.1:

Proof. By the lemma and the construction in §VIL.1.1 it is enough to prove that
there exists h € P(V) s.t. h ¢ o(X N hte).

Given two different points x; and 5 in a projective space we denote by (1, xs)
the projective line through x; and x5. Let

g(X) CX x X xP(V),
o(X) :={(z1,22,p)| p € (31, 22)},

so that 6(X) is the incidence variety for the secant variety of X. Obviously,
dim(6(X)) =2dim X + 1 = dim(P(V)) and 6(X) is irreducible. Also we let:

K(X) Co(X),
R(X) :={(x1, 22, h)| h € (x1,25) and x1, 29 € hiv},

N

so that the image of the projection of k(X)) onto the last coordinate is the locus
of ‘bad’ points. More precisely, for a point h € P(V) there exist (x1, z2) such that
(71,22, h) € k(X) if and only if h € o(X N hte).

We claim that the image of x(X) under the projection is not the whole P(V').
To see this note that the condition defining x(X), i.e., h € (z1,13), 1,79 € bt
is equivalent to h € (1, x2) and (21, x9) is an isotropic subspace of V. Now either
X is a linear subspace and then both the claim and the theorem are obvious or
there exist two points 1,9 € X such that w(2,23) # 0 where by ; we mean
some non-zero point in the line z; C V. Therefore x(X) is strictly contained in
7(X) and

dim(k(X)) < dim(6(X)) = dimP(V),

so the image of x(X) under the projection cannot be equal to P(V)!.
O

Corollary VIL.4. Let X C P(V) be an irreducible Legendrian subvariety whose
singular locus has dimension at most k — 1. Let ' be the contact distribution
on P(V) If H C P(V) is a general F-cointegrable linear subspace of codimension
k, then )?H = X N H 1s smooth and admits a Legendrian embedding via an
appropriate subsystem of linear system OX'H(I)'

O
We sketch some proofs of examples VII.2:

!The inequality on the dimensions, although simple, is essential for the proof. An analo-
gous construction for Lagrangian subvarieties in symplectic manifolds is known as symplectic
reduction (see §I1.1.3 for linear algebra baby version of this), but does not produce smooth
Lagrangian subvarieties.
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Proof. K3 surfaces of (a) arise as codimension 4 linear sections of Lagrangian
Grassmannian Grp(3,6). Since the canonical divisor Kg,,(36) = Ogr,(3.6)(—4)
(in other words Grp(3,6) is Fano of index 4), by the adjunction formula, the
canonical divisor of the section is indeed trivial. On the other hand, by [L.MO04,
prop. 9] it must have genus 9. Although we take quite special (F-cointegrable)
sections, they fall into the 19 dimensional family of Mukai’s K 3-surfaces of genus
9 [Muk88| and they form a 13 dimensional subfamily.

The other families of surfaces as in (b) arise as sections of the other exceptional
subadjoint varieties: Gr(3,6), S¢ and F;. They are all Fano of index 5, 10 and 18
respectively and their dimensions are 9, 15 and 27 hence taking successive linear
sections we get to Calabi-Yau manifolds as stated in (¢). Further the canonical
divisor is very ample, so we have examples of general type as stated in (b) and
(d).

The Fano varieties arise as intermediate steps, before coming down to the level
of Calabi-Yau manifolds. Also P! x Q™ is a subadjoint variety and its hyperplane
section is the blow up of a quadric ™ in a codimension 2 hyperplane section.
The Del Pezzo surfaces are the hyperplane sections of the blow up of Q? in a
conic curve.

O

VII.2 Linear sections of decomposable Legendrian
varieties

Assume m; and my are two positive integers, m; > ms. Let Vi ~ C?*™*2 and
Vy ~ C?™2+2 he two symplectic vector spaces, and let X; C P(V}) and X, C P(V3)
be two smooth, irreducible, non-degenerate, Legendrian subvarieties. In this
setup dim X; = m;. Consider the decomposable variety X; *x Xo C P(V} @ V5).
Clearly Sing(X; * X3) = X U X5, hence dim(Sing(X1 * Xg)) = my, while

dim(X; * X3) = mq +msg + 1.
Let L be the following line bundle on X; x Xo:
L:=0x, (1)K Ox,(-1).
Also let (X * X3)g be the smooth locus of X *« X,.

Lemma VIL.5. (X x X5)g is isomorphic to L°®, the total space of the C*-bundle
associated to L (see §1.3.7).

Proof. Let C* act on V; & V5 with weight —1 on V; and weight 1 on V5. Then
(Pi@ 1)\ (P(V) UP()) ) /C* = P(V) x P(13)
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and the quotient map:

.
(P(vi @ Vo) \ (P(Vi) UB(V2)) ) = B(VA) x B(V))

is a principal C*-bundle obtained by removing the zero section from the total
space of the line bundle Op(v,)xp(v3)(d1, d2) for some integers d; and dy. We have,

Pic(P(Vi @ 12) \ (P(Vi) UP(V2)) ) =PicP(Vi & V) = Z[Opwiena (1)
(by [Har77, prop. IL1.6.5(c)]).

On the other hand,

Pic (IP’(VI & V) \ (P(V3) L P(vg))) =Pic(P(V1) x P(Va))/ {Opwsyxp(va (i, da) )
(by lemma 1.6).

Moreover via the isomorphism

Pic(P(V1) x P(V2)) / {Opa)xpva) (d1, d2)) = Z[Opv, g1 (1)]

the class of line bundle Opv;a1s) (€1, €2) is mapped to Opyew)(e1 + e2). Hence
(dy,dy) = (1,—1) or (—1,1). In both cases the total spaces of the line bundles
are the same after removing the zero sections (the difference is only in the sign
of the weights of the C*-action, which we ignore at this point).

To finish the proof just note that:

(X1* Xp)o = (X1 % X2) N (P(Vl @ Vo) \ (P(V1) U P(‘/?)))

and the image of (X; * X3)o under the quotient map is equal to X; x X.

Hence by lemma 1.6 we have:
PiC(Xl X XQ) —» PlC(Xl * X2)0 = Cle * X2

and the kernel of the epimorphic map is generated by L. If L; € Pic X; and
Ly € Pic Xy, by [L; K L] we will denote a line bundle on (X; % X3)o which

represents the image of L; X Ly, under the epimorphic map.

Theorem VIIL.6. Let mq, mo, X1, X9 be as above. Let F' be the contact distri-
bution on P(Vy @ Va) and let H C P(Vy @ Va) be a general F-cointegrable linear
subspace of codimension my + 1. Then X := (X7 *x Xo) N H is smooth, admits a
Legendrian embedding and has the following properties:
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(a) deg X = deg X - deg Xs;
(b) Kx ~[Kx, X Kx,||x ® Ox(mq +1);
(¢c) We have the restriction map on the Picard groups:
i*: Pie(X; x X5)/ (L) — Pic X.
If mg > 3, then ©* is an isomorphism. If mqo = 2, then 1* is injective.
In particular, we have:
(d) If Kx, ~ Ox,(d1) and Kx, ~ Ox,(ds), then Kx ~ Ox(d; + dy +m; + 1);

(e) If Kx, ~ Ox,(d1) ® Ey and Kx, ~ Ox,(dy) ® Ey, where the E;’s are line
bundles corresponding to some effective divisors, then

KX ZOX(dl—i-dQ—l-ml—'—l)@E
for some E corresponding to an effective divisors;

(f) If mg > 3, Pic Xy = Z]|Ox, (1)], Pic Xy = Z|Ox,(1)] and either X, or X, is
simply connected (for example Fano), then Pic X = Z[Ox(1)].

Proof. Part (a) is immediate, since deg(X; * X5) = deg X; - deg Xo.

Part (b) follows from lemma VIL5, §1.3.7 and the adjunction formula (see
[Har77, prop. 11.8.20]).

Part (c¢) follows from |[RS06].
Parts (d) and (e) are immediate consequences of (b) and (c).
Finally, part (f) follows from (c) and from [Har77, ex. I111.12.6].

To conclude we give a further series of examples:

Example VII.7. Apply the theorem to both X, and Xy equal to the E;-variety.
As a result we get X which we denote by (E7)*2, a smooth Legendrian Fano
variety of dimension 27, Picard group generated by a hyperplane section and of
index 8. Now apply the theorem to X being the E;-variety again and X, = (E7)*2.
The result, (E;)*3 again has the Picard group generated by a hyperplane section
and K(pys = Oy (2), hence is very ample. Analogously we construct (E7)**
and combining this result with corollary VII.4, we get infinitely many families of
smooth Legendrian varieties of general type with Picard group generated by a very
ample class in every dimension d, where 3 < d < 27.

Example VIL.8. Let X; = P' x Q™! and Xy be arbitrary. If m; > 3 and
dim Xy > 3, then X has Picard group isomorphic to Pic Xo & Z. Hence we can
get a smooth Legendrian variety with arbitrarily big Picard rank.
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Example VIL.9. Let X; = X, = P! x Q™. Let the resulting X be called
(P! x Q™ Y*2. Then Ky, = Ox,(—m) ® E;, where E; is effective. Hence

K(]p1><me1)*2 = O(PIXmel)*Z(—m —+ 1) R F

for an effective E. Construct analogously (P x Q™~1)** by taking the section of
((]P)l % Qm—l)*(k_l)> " (]P)l % Qm—l>‘

We get that
K(PIXmel)*k - O(]}DIXmel)*k(_m - ]_ ‘I‘ k) ® E

and for k > m + 1 we get that the canonical divisor can be written as an ample
plus an effective, so it is big. Hence in every dimension, it is possible to construct
many smooth Legendrian varieties with the maximal Kodaira dimension.

VII.3 Extending Legendrian varieties

Our motivation is the example of Landsberg and Manivel |[LMO04, §4|, a Legen-
drian embedding of a Kummer K3 surface blown up in 12 points. It can be seen,
that this embedding is given by a codimension 1 linear system. We want to find a
Legendrian 3-fold in P” whose hyperplane section is this example. Unfortunately,
we are not able to find a smooth 3-fold with these properties, but we get one with
only isolated singularities.

We recall the setup for the construction of the example. Let W be a vector
space of dimension n 4 1. Let Z be any subvariety in P" = P(W).

Definition. We let Z* C P := P(W™*) be the closure of the set of hyperplanes
tangent to Z at some point:

Z*={HeP"|32€ ZT.ZCH}.
We say Z* is the dual variety to Z.

Also let Z € P(T*P") C P" x P" be the conormal variety, i.e., the closure
of the union of projectivised conormal spaces over smooth points of Z. Landsberg
and Manivel study in details an explicit birational map ¢ := @g, », : P(T*P") --»
P27~ which depends on a hyperplane Hy in P* and on a point py € Hy. After
Bryant |Bry82| they observe that ¢(Z) (if only makes sense) is always a Legen-
drian subvariety, but usually singular. Next they study conditions under which
©(Z) is smooth. In particular, they prove that the conditions are satisfied when
Z is a Kummer quartic surface in P? in general position with respect to py and
Hj, and this gives rise to their example.
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We want to modify the above construction just a little bit to obtain our 3-fold.
Instead of considering Z* as a subvariety in

PW) x P(W") = (W\{0}) x (W"\ {0})/C" x C*,
we consider a subvariety X in
P =P(W @ W*) = (W x W*)\ {0}/C*

such that the underlying affine cone of X in W x W* is the same as the underlying
affine pencil of Zf. In other words, we take X to be the closure of preimage of
Z% under the natural projection map:

p:P(W @ W*) --» P(W) x P(W7).

Both P(W) and P(W*) are naturally embedded into P(W @& W*). Let H
be a hyperplane in P(W & W*) which does not contain P(W) nor P(W*). Set
Hy :=P(W)N H and py to be the point in P(W) dual to P(W*) N H. Assume H
is chosen in such a way that pg € Hy.

Theorem VIL.10. Let X C P(W @& W*) ~ P! be a subvariety constructed
as above from any irreducible subvariety Z C P(W). On W & W* consider
the standard symplectic structure (see §I1.1.5) and on P(W & W*) consider the

associated contact structure. Also assume H, Hy and py are chosen as above.
Then:

(i) X is a Legendrian subvariety contained in the quadric p=* <IP’(T*IP’(W))>

(i1) Let )Z'H be the Legendrian variety in P?"~' constructed from X and H as in
§VIL1.1. Also consider the closure of ©m,p,(Z%) as in the construction of
[LMO04, §4]. Then Zhe two constructions agree, i.e., the closure pg, p,(Z*)

18 a component of Xp.

(111) The singular locus of X equal to the union of following:
on P(W) the singular points of Z,
on P(W*) the singular points of Z* and

outside P(W)UP(W™*) the preimage under p of the singular locus of the
conormal variety Z°.

Proof. For part (i) consider Z C W, the affine cone over Z C P(W). The
cotangent bundle to W is equal to W @& W*. Furthermore, by our definition
X C V, the affine cone over X C P(W @ W*) is the conormal variety of X, so a
Lagrangian subvariety (see example I1.6).
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For part (ii), we choose coordinates xg, x1, ..., x, on W and dual coordinates
v, %, ..., y" on W* such that in the induced coordinates on V' the hyperplane H
has the equation xqg—y™ = 0. Now restrict to the affine piece £y = y™ = 1 on both
H and P(W) x P(W*). We see explicitly, that the projection map H — P21

[173717"'7'Tn7y07"'7yn_171] = [y17"'7yn_17y0 _'Tnvxlw"vxn—lvl]

agrees with the map ¢ from [LMO04, §4].

To find the singularities of X on X NP(W) as in part (iii) note that X C
P(W @ W*) is invariant under the following action of C*:

t-|w,a] = [tw,t al.

In particular, points of X NIP(W) are fixed points of the action. So let [w,0] € X
and then T}, 0 X decomposes into the eigenspaces of the action:

Thwo X = T, (X NP(W)) & Tju (X N Fy) (VIL11)

where F, is the fibre of the projection p: (P(W & W*)\P(W*)) — P(W), F, :=
p~ (Jw]). Clearly the image of X under the projection p is Z, so the dimension of
a general fibre of p|x : X — Z is equal to dim X —dim Z = dim P(W) —dim Z =
codimp(yy Z. Therefore, since the dimension of the fibre can only grow at special
points, we have:

dim T, 0 (X N F,) > dim(X N F,) > codimpgyy Z. (VIL.12)

Also dpw,0)(p|x) : Thw,0 X — TjwZ maps T, o(X N F,) to 0 and Ti, 0 (X NP(W))
onto T}, Z. Therefore:

dim Ty, (X NP(W)) > dim Ty Z > dim Z. (VIL13)

Now assume [w, 0] is a smooth point of X. Then adding (VII.12) and (VII.13)
we get:

dim X = dim T[me
by (VIL.11

Y i Ty, (X 0 F) + dim Tl (X 0 P(W))
> codimpqyy Z + dim Z = dim P(W).

By (i) the dim X is equal to the dimP(W), so in (VII.12) and (VII.13) all the
inequalities are in fact equalities. In particular dim7},)Z = dim Z, so [w] is a
smooth point of Z.

Conversely, assume [w] is a smooth point of Z, then the tangent space

Two X = T2 ® Ny (Z C B(W)),

[w]
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therefore clearly [w, 0] is a smooth point of X.
Exactly the same argument shows that X is singular at a point [0,a] € X N
P(W*) if and only if Z* is singular at [a].
For the last part of (iii) it is enough to note that p is a locally trivial C*-bundle
when restricted to P(W @ W*)\ (P(W) U P(W*)).
U

Corollary VII.14. Given a Legendrian subvariety Z C P> e can take Z# =
Gro oo (Z) to construct a Legendrian subvariety in P(T*P"). Such a variety must
be the conormal variety to some variety Z C P" (see corollary II1.19). Let X C
P21 be the Legendrian variety constructed from Z as above. By theorem VII.10
(ii), a component of a hyperplane section of X can be projected onto Z.

Unfortunately, in the setup of the theorem X is almost always singular (see
§VII.4).

Example VII.15. If Z is a Kummer quartic surface in P3, then X is a 3-
fold with 32 isolated singular points (it follows from theorem VII.10(iii) because
the Kummer quartic surface has 16 singular points, it is isomorphic to its dual
and it has smooth conormal variety in P(T*P3)). Therefore by theorem VIIL.1 a
general hyperplane section of X is smooth and admits a Legendrian embedding.
By theorem VII. 10 the example of Landsberg and Manivel is a special case of this
hyperplane section. Even though the condition py € Hy is a closed condition, it
satisfies the generality conditions of theorem VII.1 and therefore this hyperplane
section consists of a unique smooth component that is projected isomorphically
onto Z.

Example VII1.16. Similarly, if Z is a curve in P? satisfying the generality condi-
tions of Bryant [Bry82, thm G/, then X is a surface with only isolated singulari-
ties and its hyperplane section projects isomorphically onto a Bryant’s Legendrian
curve.

VII.4 Smooth varieties with smooth dual

Furthermore we observe that a classical problem of classifying smooth varieties
with smooth dual variety can be expressed in terms of Legendrian varieties:

Corollary VII.17. Using the notation of the previous section, let Qw C P(W &
W*) be the quadric p=* (P(T*P(W))) — see VIL10(i). On W & W* consider
the standard symplectic structure (see §I1.1.5) and on P(W & W*) consider the
associated contact structure (see §I11.1).

(i) Let Z C P(W) be a smooth subvariety with Z* C P(W*) smooth. Let
X C P(W @ W*) be as in the above construction. Then X is a smooth
Legendrian variety contained in Q.
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(ii) Conversely, assume X C P(W @& W*) is irreducible, Legendrian and con-
tained in Qw. Let Z = X NP(W). Then Z* = X NP(W*) and the variety
arising from Z in the above construction is exactly X. Moreover, if X is
smooth, then Z and Z* are smooth.

We underline that although all the smooth quadrics of a given dimension are
projectively isomorphic, the classification of quadrics relatively to the contact
structure is more complicated. The quadric Qw can therefore be written as
ToYo + ... + Ty, = 0 in some symplectic coordinates xg,..., %, Yo, .., Yn ON
W @ W*. We note (without proof), that such quadric Qy determines uniquely
the pair of Lagrangian subspaces W and W*.

Proof. Part (i) follows immediately from theorem VII.10(i) and (iii).

To prove part (ii), consider p(X) C P(T*P(W)). By lemma 1.4 and proposi-
tion II.1 p(X) is Legendrian. By corollary II1.19, p(X) is a conormal variety to
some subvariety Z C P(W). The next thing to prove is that X coincides with
the variety constructed above from Z, i.e. that

X =p(p(X)).

Equivalently, it is enough to prove that X is C*-invariant. This is provided by
theorem II1.5 since the quadric Qyw produces exactly the required action. Finally,
it follows that Z = X NP(W). Moreover, p(X) is also the conormal variety to
Z* C P(W*) and hence Z* = X NP(W*). If X is in addition smooth, then Z
and Z* are smooth by theorem VII.10(iii).

U
smooth self-dual variety Z C P | the corresponding Legendrian
variety X C P?nt!
Q" Pl x Q™
Pt x P™ P! x Q*™
Gr(2,5) Gr(3,6)
Ss Se

Table VII.1: The known self-dual varieties and their corresponding Legendrian
varieties. Note that Q*" and P! x P™ lead to isomorphic Legendrian varieties.
Yet their embeddings in the distinguished quadrics are not isomorphic.

Therefore the classification of smooth varieties with smooth dual is equivalent
to the classification of pairs (X, Q), where Q C P?"*! is a quadric which can be
written as xoyo+. . .+x,y, = 01in some symplectic coordinates xq, ..., Tn, Yo, - - -, Yn
on C*™2 and X C P?"™! is a smooth Legendrian variety, which is contained in
@. So far the only known examples of smooth varieties with smooth dual are
the smooth self-dual varieties (see [Ein86]). From these we get some of the ho-
mogeneous Legendrian varieties (see table VII.1). Therefore we cannot hope to
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produce new examples of smooth Legendrian varieties in this way. What we hope
for is to classify the pairs (X, Q) as above and hence finish the classification of
smooth varieties with smooth dual.
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Appendix A

Vector fields, forms and
automorphisms

In the course of the main part of this dissertation, particularly in chapter III
we used some differential geometric facts, which we summarise in this appendix.
Although all these facts are standard or follow easily from the standard material,
we reproduce or at least sketch most of the proofs. We do this for the sake of
completeness of the material presented in the thesis and also because various
authors of textbooks use various notations and combining these one can get very
confused (at least this has happened to the author of this thesis).

A.1 Homogeneous differential forms and vector
fields

Let Y, Y’ be two complex manifolds and let ¢ : Y — Y be a holomorphic map.
For a k-form w € HO(Y,QFY), by ¢*w € HO(Y',Q"Y") we denote the pull-back
of w:

(" w)y(v1, ..., vk) == We(y) (Dyd(v1), . .., Dyd(vy)).
Now assume we have a C*-action on Y:

(t,y) — Ni(y).

We say that w € H°(Y, Q"Y' is homogeneous of weight wt(w) if
VteC* Nw =ty

For example, assume Y = A"™ = Spec(Clyi,...,y,]) and C* acts via ho-
motheties. We say w € QFA"™ is constant, if it is a C-linear combination of
dy;, A...Ady;, . Constant k forms are homogeneous of weight & (not of weight 0
as one could possibly expect). Conversely, if w € H°(A", Q*A™) is homogeneous
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of weight k. then it is constant, because every global form can be written as
Y firindyi Ao Ady;,. Since dy;, A .. Ady;, are already of weight k, it follows
that f;, _; are constant functions.
Let u € H°(Y,TY) be a vector field. We say u is homogeneous of weight
wt(p) if
DN\ p = "1y,

Lemma A.1. Let Y, Y’ be complex manifolds, both with a C*-action. Moreover
assume ¢ . Y' — 'Y is a C*-equivariant map, w € H°(Y,QFY) is a homogeneous
k-form for some k € {0,1,...,dimY} and p € H(Y,TY), v € H*(Y',TY") are
two homogeneous vector fields.

(i) w(p) is homogeneous and wt (w(p)) = wt(w) + wt(p);

(ii) ¢*w is homogeneous of weight wt(w) and Do(v) is homogeneous of weight
wi(v);

(i1i) dw is homogeneous of weight wt(w).

Proof. This is an immediate calculation. For instance (i):
A:(W(M))x(vla S >'Uk—1) = wkt(l‘)(,u> D)‘t(vl)a SR D)‘t(vk—l)) =

= (Nw)s (DAt (1), 01, -+ o, 1) = £ (1)) (01, ., v).

A.2 Vector fields and automorphisms

A.2.1 Vector fields, Lie bracket and distributions

Let Y be a complex manifold or a smooth algebraic variety, let F* C TY be a
corank 1 subbundle! and let # : TY — TY/F =: L be the quotient map, so that
the following sequence is exact:

0—F—TY X1 0.

Also assume U is an open subset. We say that a (possibly singular) subvariety
X C U with its smooth locus X is F-integrable if T'X is contained in F'.

'One could also consider F' to be a corank r subbundle for any r € {1...dimY}. Some
of the statements below can be generalised to any r (not necessary r = 1), but the proofs get
more complicated, especially in notation. We restrict our considerations to the » = 1 case, as
this is the only one used in the thesis.
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Proposition A.2. With the assumptions as above:

(i) dO gives a well defined map of Oy -modules:
2
dg: \ F— L.

We refer to this map as the twisted 2-form df.

(i) Assume p and v are two vector fields on U, both contained in F. Then
O([p, v])(y) = db,(1(y), v(y)). In particular 6([u, v])(y) does not depend on
the vector fields, but only on their values at y.

(iii) Again assume p and v are two vector fields on U, but now only v is con-
tained in F. Then again 0([p,v])(y) depends only on the value of v at
Yy, but not on the whole vector field. In other words the map of sheaves
F — L given by 9([u, ]) is Oy-linear and hence it determines a map of
vector bundles F' — L.

(iv) If X is F-integrable, then df|x, = 0. In particular if r = 1, then

zeX

1
dim X <rk F — 3 min (rk df,)

Proof. All the statements are analytically local, so it is enough to assume that
Y is a disc D** C C" with coordinates y1,...,ym, U =Y, y = 0 and that 0 is a
nowhere vanishing section of Q'Y @ L ~ Q'Y (the choice of the trivialisation of
L is of course not unique):

0=> Ady; =A-dy,

where the collection (A1, ..., A,,) (respectively (dyi, ..., dym)T) we denote by A
(respectively dy). Then:

F = {U € TD* | ZAidyi(v) = 0} .
To prove (i) note that:

df = dA; Ady; = dA A dy.

We must check that this does not depend on the choice of the trivialisation A of
L. So assume B is a different trivialisation, so there exists g : ¥ — GL(1) ~ C*
such that:

B=g-A.
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We must prove that dB A dy restricted to F' transforms in the same manner:
dBAdy=d(g-A)ANdy=(dg-A+g-dA)ANdy =

since Avglish on F (g ) dA) A dy

To prove (ii) let

=5 e A3
H : “’“ayk (A.3)
0

for some holomorphic functions p; and v,. Since p and v are contained in F' we

have:
ZAk,uk =0 and Z All/l =0.
k l

Therefore for every k or [ we have:

0Ay a,uk
— Uy = — Ap—; A5
Zk: Oy Hk Zk: "oy, (A.5)
(9Al al/l
—y = — A—. A5b
ZZ: Y . Zl: "Dy ( )
Since P p p
_ o 9 OV 9
hence:

We note that the above calculation is a special case of [KN96, prop. 1.3.11],
though the reader should be careful, as the notation in [KN96] is different than
ours and as a consequence a constant factor —2 is “missing” in our formula.
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The proof of (iii) is identical as the beginning of the proof of (ii).

Finally to prove (iv) just use (ii) and the fact that the Lie bracket of two
vector fields tangent to X must be tangent to X.
O

A.2.2 Automorphisms

Here we introduce the notation about several types of automorphisms of a mani-
fold Y and its subvariety X. Also we recall some standard properties and relations
between them.

Let Y be a complex manifold (or respectively, smooth algebraic variety) and
let U C Y be an open subset in analytic (or respectively, Zariski) topology. By
Aut"(U) (respectively, Aut®?(U)) we denote the group of holomorphic (respec-
tively, algebraic) automorphisms of U. By Aut®(U) we mean either Aut"(U) or
Aut®(U), whenever specifying is not necessary.

Assume that a complex Lie group (respectively, an algebraic group) G acts
on U, i.e. we have a group homomorphism G — Aut®*(U). Also let g be the Lie
algebra of G. By G° we denote the the connected component of identity in G.

An infinitesimal automorphism of U is a vector field p € H(U,TY).
Differentiating the action map G x U — U by the first coordinate we get the
induced map g x Y — TY or more precisely g — H°(U,TY). This map
preserves the Lie bracket (see [Akh95, thm in §1.7]) and if the action is faithful,
then it is injective (see [Akh95, thm in §1.5]).

The particular case is when G = C*. Then we get a map C — H°(U,TY)
and we set uc- to be the image of 1 € C under this map. We say uc+ is the
vector field related to the C*-action. Note that uc+ is homogeneous of weight
0.

The infinitesimal automorphisms make a sheaf TY of Lie algebras, which at
the same time is an Oy-module. The two structures are related by the following
Leibniz rule:

V€ H'(U,0y), Vv € HAU,TY) [fuv] = fluv] +df ). (A6)

The following theorem comparing infinitesimal, algebraic and holomorphic
automorphisms for a projective variety is well known and standard:

Theorem A.7. Let Y be a projective variety. Then:
(i) Aut"(Y) is a complex Lie group.
(i1) Every holomorphic automorphism of Y is algebraic and hence

Aut(Y) := Aut" (V) = Aut®™(Y).
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(i1i) By aut(Y') we denote the tangent Lie algebra to Aut(Y'). Every infinitesimal
automorphism s tangent to some 1-parameter subgroup of AuthOI(Y), S0
that aut(Y) = H(Y,TY).

Proof. Part (i) is proved in [Akh95, §2.3|. Part (ii) is a consequence of |Gri74,
thm IV.A|. Part (iii) is explained in [Akh95, prop. in §1.5 & cor. 1 in §1.8|.
U

Clearly H°(U, Oy) is a representation of G’ and hence also of g. We also have
the following Lie algebra action of the sheaf of infinitesimal automorphisms:

TYXOY — Oy
(b, f) = df (),

which is given by the derivation in the direction of the vector field.
The action of g on H°(U, Oy) is the composition

g — H'(UTY) — gl (H°(U,Oy)) .

Let X C Y be a subvariety. By Aut®(U, X) we denote the respective subgroup
of Aut®(U) preserving the intersection UNX. If Y is projective, then by aut(Y, X)
we mean the Lie algebra tangent to Aut®(Y, X). By aut™(U, X) we denote the
Lie algebra of infinitesimal automorphisms of U preserving X, i.e.:

aut™ (U, X) := {p e HOU,TY) |Vf e Z(X)ly (df)(n) € Z(X)|v},

where Z(X) <0 Oy is the sheaf of ideals of X.

Clearly, if G preserves X, then the image of g — H°(U,TY) is contained
in aut™ (U, X). Conversely, if the image is contained in aut™ (U, X), then the
action of the connected component G° preserves X.

Corollary A.8. IfY is projective, then aut™ (Y, X) = aut(Y, X).
L]

Moreover aut™ (-, X) makes in TY a subsheaf of Lie algebras and Oy-modules.

A.2.3 Distributions and automorphisms preserving them

If F CTY is a corank 1 vector subbundle (particularly a contact distribution -
see §1I1.2 for the definition), then by Aut%(U), autp(Y), aut®(U), Auth(U, X),
autp(Y, X) and aut® (U, X) we denote the appropriate automorphisms or in-
finitesimal automorphisms preserving F' and possibly the subvariety X.

For instance,

autp (U) = {u € HY(U,TY) | [u, F] C F}. (A.9)
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Also auti®® makes a sheaf of Lie algebras, but usually it is not an Oy-submodule
of TY. To see that take any pu € aut® (U) for U small enough. Assume for all
f € Oy (U) we have fu € aut™(U). Then by Leibniz rule (see equation A.6):

Vv e HYU,F) df(v)-pe H'(UF).
This can only happen if either:
o € HYUF) or
e F'=0,1i.e. Fis the rank 0 bundle.

We have seen that the first case does not happen if F' is a contact distribution
(unless p = 0, see theorem I11.151)). In fact, one can prove that it never happens
for all 4 € H°(U, F) (remember that U is small enough), unless F' = 0.

If G acts on U and preserves the distribution F, then the map g — H°(U,TY)
factors through aut® (U). Conversely, if G is connected, it acts on U and the map
g — HO(U, TY) factors through aut®!(U), then the action of G preserves F. As
a consequence we get:

Corollary A.10. IfY s projective and X C Y is a subvariety, then:
(i) autp(Y) = autitt (V)

(i1) autp(Y, X) = autidi (Y, X)

Proof. This follows from the above considerations and from theorem A.7.

Further, let L be the quotient bundle and € be the quotient map:

0—F—TY X1 —o.

If the action of G on U extended to TY |y preserves F, then in the obvious way
we get the induced action of G on the total spaces of L|; and L*|;. These
actions preserve the zero sections.

Let L*®* and R, be as in §1.3.7.

By analogy with above we want to define the action of aut’®’ on L*. In other
words, we define a special lifting of the vector fields from aut® C TY to vector
fields on L°.

First observe that the sheaf of Lie algebras aut™ acts on the sheaf L: if

s € H°(U, L), then choose an open subset V' C U small enough and any lifting
sty € HY(V,TY), O(spy) = s|ly and let u € auti® (U) act on HO(U, L) locally by

sl = (w-5)|v =0 ([sry, plv]) - (A11)
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By equation (A.9), this does not depend on the choice of spy and hence, by
elementary properties of sheaves, it glues uniquely to an element of H(U, L).
Hence we get a Lie algebra representation aut® (U) — gl (H°(U, L)).

Secondly, we can extend the action of auti® on the locally free sheaf L defined
in equation (A.11) to an action on Ry, by requesting that the action must satisfy
the Leibniz rule:

t,s € Ry, € auttt = p.(ts) = (u.t)s + t(p.s) (A.12)

— locally every section of L™ can be written as a sum of products of sections of
L (or their inverses, if m < 0).

Finally, we can extend this action to Ore, again requesting the Leibniz rule.
Eventually, we get the action, which we will call the induced action of aut®!
on L°*. The following property justifies the name:

Proposition A.13. If the action of G preserves F, then the tangent action to
the induced action of G on L®|y := m=1(U) is the composition of g — autiBi(U)
and the induced action of aut™t on L°.

O

For a fixed u € aut®(U), the induced map Op. 1) — Ovrelr1) is a
derivation, so it corresponds to a vector field i € H(7='(U), TL®), such that

V€O uf=df(j). (A.14)

By construction we also have Dr(f1) = p.

A.2.4 1-form 6°

With the notation and assumptions as in the previous sections, we have a canon-
ical isomorphism of line bundles 7 : 7*L — Ope: if y € Y, \ € Ly = 77 '(y),
l € L,, then we set
T(y, \, 1) :== (y, A\, A(D)).
We let ® := 7 o %0 o Dr:?

TL* 25 o TY =% 7L - Op..
Lemma A.15. For every u € aut™(U) the induced infinitesimal automorphism
i1 preserves 0%, i.e.:

L[L(H’) = lim

,}/[c(t)*e. _ 9. _ 0’
t—0 t

where Ly is the Lie derivative operator and vy(t) is the local 1-parameter group
of transformations of L® determined by [i.

In |Bea98]|, [LeB95] the authors denote 6® simply as 7*6, since the other maps are natural.
This is a bit confusing to some people (including the author of this thesis, but see also a
comment in [SCW04] about a small mistake in [KPSWO00]) and therefore we underline that 6°
is the composition of three maps.
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Proof. For the simplicity of notation assume ~;(¢) is a global transformation.
The following diagram of vector bundles is commutative:

TL. D W*TY 0 7T*L T OL'
lDfm(t) ‘(D”w (t) L’Yﬁ L) lw (t)xidc
TL® oY —— [ — O

Dm

where by D™, (t) we mean the automorphism of 7*7'Y", which is determined by
Dy,(t) : TY — TY and ~,(t) : L* — L similarly 47 *(¢) is determined by
Dvy,(t) : TY/F — TY/F and ~(t) : L* — L°. The composition of the whole
upper row is equal to #°. The composition of the left most vertical arrow and
the whole lower row is equal to v;(¢)*#°. Since the right arrow is the identity
on the second component Op. = L* x C and since the diagram is commutative,
both forms take the same values on every vector v € TL®, hence are equal and
the claim follows.

U

We also give a local description of #® and df#®. So now assume Y ~ D?™ and
let y1, ..., ym be some coordinates on Y. Let z be a linear coordinate on the fibre
of L* ~ Y x C*. This means that z determines a section of L which trivialises L
over D?™. So we can think of § as of a holomorphic 1-form on L*® depending only
on y;'s and dy;’s. Let (y, z9) be any point of L*® and let © be any vector tangent
to L* at (y,z9). We write o = v 4+ w, where v is the component tangent to Y,
while w is tangent to C*. Then:

(.y7zo)(@) = (7- om*f o Dﬂ-)y,Zo (@) = (7- o 71-*e)y,ZO (U) = Zo(ey(v)) =0 Qy(v)'
Or more concisely (in local coordinates)
0* = 20, (A.16)

and therefore
df® =d(20) = 2df + dz A 6. (A.17)

Since in this notation € is a homogeneous 1-form of weight 0 and wt(z) = 1,
6* and df°® are homogeneous forms of weight 1 (see §A.1).

In the above coordinates, the vector field uc+ related to the C*-action can be
expressed as follows:

_.9
Hex —Zaz-

Proposition A.18. Let Y be a complex manifold or smooth algebraic variety
and let L be a line bundle on'Y . Also let L® be the principal C*-bundle over Y
as in §1.3.7 and let uc- be the vector field on L® associated to the action of C*.
Finally, let w be a homogeneous closed 2-form on L® of weight 1. Then:
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(i) w=d(w(pc-));

(ii) There exists a unique twisted 1-form 6 : TY — L, such that w(uc~) = 6°,
where 0% is defined from 0 as above;

(iii) Moreover, w(uc+) is nowhere vanishing if and only if 0 is nowhere vanishing.
If this is the case, then w is non-degenerate if and only if df|p is non-
degenerate.

Proof. To prove (i) let z be a local coordinate linear on the fibres of 7 : L* — Y.
Since w is closed, locally it is exact, so

w=d(z¢ + gdz)
for some function g and 1-form ¢’, both homogeneous of weight 0. However,

d(z¢' + gdz) = d(z(¢' — dg)).

Set ¢ := ¢’ —dg, so that w = d(z¢). Note that although ¢’ and ¢ are not uniquely
determined, ¢ is the unique homogeneous 1-form of weight 0 such that w = d(z¢).
Then,

e = @) () o (+2) = (+2) o= o

Hence d(w (puc+)) = w, as claimed in (i).
To prove (ii), define € to be locally the form ¢ from the above argument. One
must verify that ¢ glues uniquely to a twisted 1-form 6 : TY — L.

Part (iii) follows from the local descriptions of #* and dé°, see (A.16) and
(A.17). For instance, if n = 3(dimY — 1), then:

(o) = (n+1)dz A O A (dO)"

Therefore df® is non-degenerate at a given point if and only if 6 does not vanish
at that point and df is non-degenerate on the kernel of 6.

O

Lemma A.19. Let X C Y be any subvariety and X, its smooth locus. Then

X is F-integrable if and only if d9® vanishes identically on the tangent space to
—1
™ (XQ)

Proof. First assume X is F-integrable. Then df vanishes on T (771(Xj)) by
proposition A.2(iv) and 6 vanishes by definition. Hence from the local description

of d6* (see equation (A.17)) we get the result.
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On the other hand if d6°®|p(-1(x,)) = 0, since
,u(c*|7r—1(X0) € HO (W_I(Xo),T (7T_1(X0))) y

then in particular

d6* (pe-, T (77'(Xo))) = 0.

But df® (uc+) = 0° (see proposition A.18(ii)), hence 7~'X is (7*F)-integrable
and therefore X is F-integrable.
O

For s € Ry, = m,Ore, by § € Ope we denote the lifting of s, i.e. s := 7 o7*s.
Hence we have two possibilities of lifting an infinitesimal automorphism p €
aut®! to an object on L*: either we lift it to a vector field ji (see (A.14)) or we lift

—_—

O(p) to function O(u). We will compare these two liftings and how they behave
with respect to the Lie bracket of vector fields in the following statements.

Lemma A.20. We have:

Vo € autt(U), p € HYU,TY)  0([u, v]) = d (9(@) ().

Proof. By (A.11):
([, v]) = v0(n)

—_— —_—

and hence 0([u,v]) = v.0(n). By (A.14), this is equal to d <9(,u)) (v).

Proposition A.21. If pu € aut® (U), then:

d (01)) = —(a6*) ().

Proof. The following proof is quoted from [Bea98, prop. 1.6]. Since L;(6°*) =0
(see lemma A.15), by [KN96, prop. 1.3.10(a)| we have:

(A0°) i) = —d(6*()).
On the other hand:
0°(t) =Tom™@oDm(fn) =Tom™ (O(n)) = 9/(\//1)

Combining the two equalities, we get the result.

O
Corollary A.22. If pu,v € aut®(U), then
Proof. This combines lemma A.20 and proposition A.21.

O
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