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Abstra
tReal Legendrian subvarieties are 
lassi
al obje
ts of di�erential geometry and
lassi
al me
hani
s and they have been studied sin
e antiquity (see [Arn74℄,[Sªa91℄ and referen
es therein). However, 
omplex Legendrian subvarieties aremu
h more rigid and have more ex
eptional properties. The most remarkable
ase is the Legendrian subvarieties of proje
tive spa
e and prior to the author'sresear
h only few smooth examples of these were known (see [Bry82℄, [LM04℄).Strong restri
tions on the topology of su
h varieties have been found and studiedby Landsberg and Manivel ([LM04℄).The results of this thesis are two fold:The �rst series of results is related to the automorphism group of any Legen-drian subvariety in any proje
tive 
onta
t manifold. The 
onne
ted 
omponent ofthis group (under suitable minor assumptions) is 
ompletely determined by these
tions of the distinguished line bundle on the 
onta
t manifold vanishing onthe Legendrian variety. Moreover its a
tion preserves the 
onta
t stru
ture. Therelation between the Lie algebra tangent to automorphisms and the se
tions isgiven by an expli
it formula (see also [LeB95℄, [Bea99℄). This extends the resultsof the author's MS
 thesis [Bu
03℄.The se
ond series of results is devoted to �nding new examples of smoothLegendrian subvarieties of proje
tive spa
e. The examples known previouslywere some homogeneous spa
es, many examples of 
urves and a family of surfa
esbirational to some K3 surfa
es. The 
ontribution of this thesis is in three steps:First we �nd an example of a smooth tori
 surfa
e. Next we �nd a smoothquasihomogeneous Fano 8-fold that admits a Legendrian embedding. Finally, werealise that both of these are spe
ial 
ases of a very general 
onstru
tion: a generalhyperplane se
tion of a smooth Legendrian variety, after a suitable proje
tion,is a smooth Legendrian variety of smaller dimension. By applying this result toknown examples and de
omposable Legendrian varieties, we 
onstru
t in�nitelymany new examples in every dimension, with various Pi
ard rank, 
anoni
aldegree, Kodaira dimension and other invariants.The original motivation for this resear
h 
omes from a 50 year old problemof giving 
ompa
t examples of quaternion-Kähler manifolds (see [Ber55℄, [LS94℄,[LeB95℄ and referen
es therein). Also Legendrian varieties are related to somealgebrai
 stru
tures (see [Muk98℄, [LM01℄, [LM02℄). A new potential appli
ationto 
lassi�
ation of smooth varieties with smooth dual arises from this thesis.keywords:Legendrian variety, 
omplex 
onta
t manifold, automorphism group;AMS Mathemati
al Subje
t Classi�
ation 2000:Primary: 14M99; Se
ondary: 53D10, 14L30, 53D20; 1



Stresz
zenieRze
zywiste rozmaito±
i legendrowskie stanowi¡ standardowy przedmiot ba-da« geometrii rózni
zkowej oraz me
haniki klasy
znej (zoba
z [Arn74℄, [Sªa91℄oraz odno±niki tam»e). W niniejszej pra
y badamy i
h geometro-algebrai
zny od-powiednik: zespolone podrozmaito±
i legendrowskie zespolony
h rozmaito±
i kon-taktowy
h. W porównaniu z rze
zywistymi, zespolone s¡ du»o bardziej sztywne imaj¡ bardziej wyj¡tkowe wªasno±
i. Najwa»niejszy przypadek to podrozmaito±
ilegendrowskie w zespolonej przestrzeni rzutowej � przed badaniami autora zna-ny
h byªo jedynie kilka gªadki
h przykªadów (zoba
z [Bry82℄, [LM04℄), a mo
neograni
zenia doty
z¡
e wªasno±
i topologi
zny
h taki
h rozmaito±
i zostaªy udo-wodnione przez Landsberga i Manivela [LM04℄.Wyniki bada« autora przedstawione w niniejszej pra
y s¡ dwojakie:Pierwsza seria wyników jest rozszerzeniem pra
y magisterskiej autora [Bu
03℄i doty
zy grupy automor�zmów dowolnej podrozmaito±
i legendrowskiej w dowol-nej rzutowej rozmaito±
i kontaktowej. Spójna skªadowa jedno±
i tej grupy (przyodpowiedni
h, maªo istotny
h zaªo»enia
h) jest 
aªkowi
ie wyzna
zona przez te
i�
ia wyró»nionej wi¡zki liniowiej na rozmaitos
i kontaktowej, które znikaj¡ naustalonej rozmaito±
i legendrowskiej. Co wi�
ej, dziaªanie tej skªadowej za
ho-wuje struktur� kontaktow¡. Powy»szy zwi¡zek mi�dzy 
i�
iami a algebr¡ Liegogrupy automor�zmów opisany jest konkretnie, przez zadany wzorem izomor�zm(zoba
z tak»e [LeB95℄, [Bea98℄).Pozostaªe wyniki doty
z¡ znajdowania nowy
h przykªadów gªadki
h podroz-maito±
i legendrowski
h w przestrzeni rzutowej. Przykªady, które byªy znanew
ze±niej to pewne przestrzenie jednorodne, li
zne przykªady krzywy
h i rodzinapowierz
hni biwymierny
h z pewnymi powierz
hniami K3. Wkªad niniejszejpra
y dzieli si� na trzy 
z�±
i: Najpierw znajdujemy przykªad gªadkiej legen-drowskiej tory
znej powierz
hni. Nast�pnie znajdujemy przykªad 8-wymiarowejgªadkiej rozmaito±
i Fano. Na konie
 pokazujemy, »e obydwa te przykªady s¡sz
zególnymi przypadkami bardzo ogólnej konstruk
ji: ogólne hiperpªaskie 
i�
ierozmaito±
i legendrowskiej, po odpowiednim zrzutowaniu, zadaje gªadk¡ rozma-ito±¢ legendrowsk¡ mniejszego wymiaru. Stosuj¡
 wielokrotnie powy»sze stwier-dzenie do znany
h przykªadów oraz do rozkªadalny
h rozmaito±
i legendrowski
h,otrzymujemy niesko«
zenie wiele nowy
h przykªadów w ka»dym wymiarze. Przy-kªady te ró»ni¡ si� od siebie mi�dzy innymi rang¡ grupy Pi
arda, stopniem dy-wizora kanoni
znego oraz wymiarem Kodairy.Inspira
j¡ dla tej pra
y jest 50-
io letni problem doty
z¡
y skonstruowaniazwarty
h przykªadów rozmaito±
i kwaternionowo-kählerowski
h (zoba
z [Ber55℄,[LS94℄, [LeB95℄ oraz odno±niki tam»e) oraz fakt, »e rozmaito±
i legendrowskies¡ powi¡zane z pewnymi obiektami algebrai
znymi (zoba
z [Muk98℄, [LM01℄,2



Algebrai
 Legendrian varieties[LM02℄). Konsekwen
j¡ tej pra
y mo»e by¢ kolejne i
h zastosowanie. Pokazu-jemy, »e problem klasy�ka
ji gªadki
h rozmaito±
i o gªadkiej rozmaito±
i dualnejjest równowa»ny klasy�ka
ji pewny
h rozmaito±
i legendrowski
h w przestrzenirzutowej.
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Chapter IIntrodu
tion
I.1 State of artThis thesis is devoted to study algebrai
 and geometri
 properties of Legendriansubvarieties. The main motivation for our resear
h 
omes from the 
lassi�
ationproblem of 
onta
t Fano manifolds1.I.1.1 Conta
t Fano manifolds and quaternion-Kähler man-ifoldsResults of Demailly [Dem02℄ and Kebekus, Peternell, Sommese and Wi±niewski[KPSW00℄ prove that if Y is a 
omplex proje
tive 
onta
t manifold, then either
Y is a Fano variety with se
ond Betti number b2 = 1 or Y is a proje
tivisationof the 
otangent bundle to some proje
tive manifold M .The following 
onje
ture would be an important 
lassi�
ation result in alge-brai
 geometry:Conje
ture I.1. If Y 2n+1 is a Fano 
omplex 
onta
t manifold, then Y is a homo-geneous variety whi
h is the unique 
losed orbit of the adjoint a
tion of a simpleLie group G on P(g) (where the g is the Lie algebra of G).The 
losed orbits appearing in the 
onje
ture are 
alled adjoint varieties.This 
onje
ture originated with a famous problem in Riemannian geometry.In 1955 Berger [Ber55℄ gave a list of all possible holonomy groups2 of simply
onne
ted Riemannian manifolds. The existen
e problem for all the 
ases has1A 
omplex manifold Y 2n+1 is 
alled a 
onta
t manifold if there exists a rank 2n ve
torsubbundle F ⊂ TY of the tangent bundle, su
h that the map F ⊗ F −→ TY/F determined bythe Lie bra
ket is nowhere degenerate (see 
hapter III for more details). A proje
tive varietyis Fano if its anti
anoni
al bundle is ample.2Given an m-dimensional Riemannian manifold M , the holonomy group of M is thesubgroup of orthogonal group O(TxM) generated by parallel translations along loops through
x. 7



Jarosªaw Bu
zy«skibeen solved lo
ally. Compa
t non-homogeneous examples with most of the possi-ble holonomy groups were 
onstru
ted, for instan
e the two ex
eptional 
ases G2and Spin7 were 
onstru
ted by D. Joy
e � see an ex
ellent review on the subje
t[Joy00℄. Sin
e then all the 
ases from Berger's list have been illustrated with 
om-pa
t non-homogeneous examples, with the unique ex
eption of the quaternion-Kähler manifolds3. Although there exist non-
ompa
t, non-homogeneous exam-ples, it is 
onje
tured that the 
ompa
t quaternion-Kähler manifolds must behomogeneous, at least assuming positivity (see [LeB95℄ and referen
es therein foran explanation of what positivity means and why it is reasonable to assume it).Conje
ture I.2 (LeBrun, Salamon). Let M4n be a positive quaternion-Kählermanifold. Then M is a homogeneous symmetri
 spa
e (more pre
isely, it is oneof the Wolf spa
es � see [Wol65℄).The relation between the two 
onje
tures is given by the 
onstru
tion of atwistor spa
e Y , an S2-bundle of 
omplex stru
tures on tangent spa
es to aquaternion-Kähler manifold M . If M is 
ompa
t and has positive s
alar 
urva-ture, then Y has a natural 
omplex stru
ture and is a 
onta
t Fano variety witha Kähler-Einstein metri
. In parti
ular, the twistor spa
e of a Wolf spa
e is anadjoint variety. Hen
e 
onje
ture I.1 implies 
onje
ture I.2. Conversely, LeBrun[LeB95℄ observed that if Y is a 
onta
t Fano manifold with Kähler-Einstein met-ri
, then it is a twistor spa
e of a quaternion-Kähler manifold.A number of attempts have been undertaken to prove the above 
onje
tures.They were proved in low dimension: for n = 1 by N. Hit
hin [Hit81℄ and Y. Ye[Ye94℄, n = 2 by Y.S. Poon and S.M. Salamon [PS91℄ and S. Druel [Dru98℄and 
onje
ture I.2 for n = 3 by H.&R. Herrera [HH02℄. Moreover A. Beauville,J. Wi±niewski, S. Kebekus, T. Peternell, A. Sommese, J.P. Demailly, C. LeBrun,J-M. Hwang and many other resear
hers have worked on this problem.Let Y 2n+1 be a 
onta
t Fano manifold not isomorphi
 to a proje
tive spa
e.Wi±niewski [Wi±00℄ and Kebekus [Keb01℄, [Keb05℄ have studied geometri
 prop-erties of 
onta
t lines4 and have proved that 
onta
t lines through a general pointbehave very mu
h like ordinary lines in a proje
tive spa
e. Moreover the union of
onta
t lines through any �xed point is a Legendrian subvariety5 in Y . In addi-tion, the variety X of tangent dire
tions to su
h lines through a general point is asmooth Legendrian subvariety in P2n−1. If Y is one of the adjoint varieties, then
X will be a homogeneous Legendrian subvariety 
alled a subadjoint variety(see [LM04℄, [Muk98℄). Proving that there is an embedding of Y into a proje
-tive spa
e whi
h maps 
onta
t lines to ordinary lines would imply 
onje
ture I.1.3A Riemannian 4n-dimensional manifold M is 
alled quaternion-Kähler if its holonomygroup is a subgroup of Sp(1) × Sp(n)/Z2.4A rational 
urve C ⊂ Y is a 
onta
t line if its interse
tion with the anti
anoni
al bundleis minimal possible, i.e. equal to n + 1.5A subvariety X ⊂ Y is Legendrian if it is maximally F -integrable � see 
hapter III forthe details.8



Algebrai
 Legendrian varieties Chapter IMoreover it is proved by Hong [Hon00℄, that if X is homogeneous, then so is Y .Therefore 
onta
t lines and parti
ularly the Legendrian varieties determined bythem are important obje
ts, useful in the study of 
onje
ture I.1.Liegroup Type Conta
t manifold
Y 2n+1

Legendrian vari-ety Xn−1
RemarksSLn+2 An+1 P(TPn+1) Pn−1 ⊔ Pn−1

⊂ P2n−1
b2(Y ) = 2Sp2n+2 Cn+1 P2n+1 ∅ ⊂ P2n−1 Y does not haveany 
onta
t linesSOn+4 Bn+3

2

or
Dn+4

2

GrO(2, n + 4) P1 × Qn−2

⊂ P2n−1
Y is the Grassman-nian of proje
tivelines on a quadri

Qn+2

G2 Grassmannian ofspe
ial lines on
Q5

P1 ⊂ P3 X is the twisted
ubi
 
urve
F4 an F4 variety GrL(3, 6) ⊂ P13

E6 an E6 variety Gr(3, 6) ⊂ P19

E7 an E7 variety S6 ⊂ P31 X is the spinor va-riety
E8 an E8 variety the E7 va-riety ⊂ P55Table I.1: Simple Lie groups together with the 
orresponding adjoint variety Yand its variety of tangent dire
tions to 
onta
t lines: the subadjoint variety X(listed in details also in �I.1.2).I.1.2 Legendrian subvarieties of proje
tive spa
ePrior to the author's resear
h the following were the only known examples ofsmooth Legendrian subvarieties of proje
tive spa
e (see [Bry82℄, [LM04℄):1) linear subspa
es;2) some homogeneous spa
es 
alled subadjoint varieties (see table I.1): theprodu
t of a line and a quadri
 P1 ×Qn−2 and �ve ex
eptional 
ases:

• twisted 
ubi
 
urve P1 ⊂ P3,
• Grassmannian GrL(3, 6) ⊂ P13 of Lagrangian subspa
es in C6,
• full Grassmannian Gr(3, 6) ⊂ P19, 9



Jarosªaw Bu
zy«ski
• spinor variety S6 ⊂ P31 (i.e. the homogeneous SO(12)-spa
e para-metrising the ve
tor subspa
es of dimension 6 
ontained in a non-degenerate quadrati
 
one in C12) and
• the 27-dimensionalE7-variety in P55 
orresponding to the marked root:;3) every smooth proje
tive 
urve admits a Legendrian embedding in P3 [Bry82℄;4) a family of smooth surfa
es birational to the Kummer K3-surfa
es [LM04℄.The subadjoint varieties are expe
ted to be the only homogeneous Legen-drian subvarieties in P2n−1 (a partial proof 
an be found in [LM04℄) and they arethe only symmetri
 Legendrian varieties. Also, they are the only smooth irre-du
ible Legendrian varieties whose ideal is generated by quadrati
 polynomials(see [Bu
06℄ or theorem III.5).The subadjoint varieties are strongly related to the group they arise from.Landsberg and Manivel [LM02℄ use the subadjoint varieties to reprove the 
lassi-�
ation of simple Lie groups by means of proje
tive geometry only. Also Mukai[Muk98℄ relates the symmetri
 Legendrian varieties with another algebrai
 stru
-ture: simple Jordan algebras. In [LM01℄ the authors give a uniform des
riptionof the ex
eptional 
ases (arising from F4, E6, E7 and E8).I.2 Main results and stru
ture of the thesisThe results of this thesis address two 
omplementary problems regarding Legen-drian varieties:

• write expli
it restri
tions on the properties of Legendrian varieties;
• give examples of smooth Legendrian varieties.We 
ontribute to the �rst problem by giving a very pre
ise understanding of theembedded automorphism group of a Legendrian variety. The se
ond problemis solved by proving that a general hyperplane se
tion of a smooth Legendrianvariety admits a Legendrian embedding.In our masters thesis [Bu
03℄, we prove that the quadrati
 part of the ideal of aLegendrian subvarietyX of proje
tive spa
e P2n−1 produ
es a 
onne
ted subgroupof proje
tive automorphisms of X. In [Bu
06℄ we improve this result by observingthat this group is a
tually the maximal 
onne
ted subgroup of automorphisms ofthe 
onta
t stru
ture on P2n−1 preserving the Legendrian subvariety (see theoremIII.5).In the present dissertation we extend this result further. Firstly, we repla
e

P2n−1 with an arbitrary 
onta
t manifold Y . Then the 
onne
ted 
omponent of10



Algebrai
 Legendrian varieties Chapter Ithe subgroup of Aut(Y ) that preserves both the 
onta
t stru
ture and a givenLegendrian subvariety X ⊂ Y , is 
ompletely determined by those se
tions of adistinguished line bundle L on Y that vanish onX. Se
ondly, we try to remove theassumption that the automorphisms preserve the 
onta
t stru
ture. By applyingthe results of [LeB95℄ and [Keb01℄ on the uniqueness of 
onta
t stru
tures we 
andeal with this problem for most proje
tive 
onta
t Fano manifolds (see 
orollaryIII.25). The remaining 
ases are the proje
tivised 
otangent bundles and theproje
tive spa
e. The �rst 
ase is not very interesting, as all the Legendriansubvarieties are 
lassi�ed for these 
onta
t manifolds (see 
orollary III.19). Onthe other hand the 
ase of proje
tive spa
e is the most important and interesting.It is des
ribed pre
isely in 
hapter IV. We prove there that a 
onne
ted group ofproje
tive automorphisms that preserve a smooth Legendrian variety ne
essarilypreserves the 
onta
t stru
ture. We also give 
ounterexamples to the analogousstatement without assuming smoothness and provide some eviden
e that our
ounterexamples are the only possible ones.Our methodology for �nding new examples of smooth Legendrian subvarietiesis the following. We pose questions of 
lassi�
ation of smooth Legendrian varietiessatisfying 
ertain additional 
onditions. For instan
e, we assume that the varietyis tori
 (see 
hapter V) or that it is 
ontained in a spe
i�
 F -
ointegrable variety(see 
hapter VI). In this way we produ
e a few new smooth examples in
ludinga tori
 surfa
e and a quasihomogeneous Fano 8-fold. Finally we prove that bothexamples are very 
lose to subadjoint varieties � ea
h of them is isomorphi
 toa hyperplane se
tion of a subadjoint variety. We generalise this and prove that ageneral hyperplane se
tion of a smooth Legendrian variety admits a Legendrianembedding into a smaller proje
tive spa
e.Se
tion I.3 is devoted to introdu
ing our notation and presenting some ele-mentary algebro-geometri
 fa
ts.Chapter II is a brief revision of symple
ti
 geometry that will be used inour dis
ussion of 
onta
t manifolds. Also some statements from [Bu
06℄ aregeneralised to this 
ontext.Chapter III 
ontains an independent review of lo
al geometry of 
onta
t man-ifolds, with emphasis on their in�nitesimal automorphisms. There we 
ompare(after [LeB95℄ and [Bea99℄) two natural Lie algebra stru
tures related to a 
on-ta
t manifold Y : the Lie bra
ket of ve
tor �elds and the Poisson bra
ket on thestru
ture sheaf of the symple
tisation of Y . We use this 
omparison to provethe �rst theorem on embedded automorphisms of Legendrian subvarieties. Thetheorem states that those automorphisms that preserve the 
onta
t stru
ture are
ompletely determined by the ideal of the variety.In 
hapters IV�VII we turn our attention to Legendrian subvarieties of pro-je
tive spa
e.In 
hapter IV we 
ontinue the topi
 of automorphisms of Legendrian varieties.We prove the se
ond theorem on embedded automorphisms of Legendrian sub-11
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zy«skivarieties, stating that under minor assumptions they must preserve the 
onta
tstru
ture. The results of this 
hapter are published in [Bu
07
℄.In 
hapter V we illustrate, in the 
ase of subvarieties of proje
tive spa
e, howto 
lassify tori
 Legendrian subvarieties. We give the list of all smooth 
ases,whi
h in
lude a new example: the proje
tive plane blown up in three linearlyindependent points. Also the results of that 
hapter are published in [Bu
07
℄.Chapter VI 
ontains the 
lassi�
ation of Legendrian varieties, whi
h are 
on-tained in a spe
i�
 F -
ointegrable variety. Another new example arises in thisway: the smooth quasihomogeneous 8-fold. Also we present two other variants ofthe 
onstru
tion, produ
ing a smooth 5-fold and a smooth 14-fold. The 
ontentsof that 
hapter will be published as [Bu
07b℄.Finally 
hapter VII des
ribes a Legendrian embedding of a hyperplane se
tionof a Legendrian variety. Also a variant of an inverse 
onstru
tion (i.e. to des
ribe abigger Legendrian variety from a given one, su
h that a hyperplane se
tion of thebig one is the original one) is presented and is applied to Bryant's, Landsberg'sand Manivel's examples of smooth Legendrian varieties. Parts of that 
hapterwill be published as [Bu
07a℄.Appendix A revises the di�erential geometri
 properties of in�nitesimal auto-morphisms that are ne
essary for 
hapter III, but 
an be expressed without anyexpli
it referen
e to the 
onta
t stru
ture.I.2.1 Open problemsKeeping in mind the elegant results sket
hed in �I.1 and having many new exam-ples of smooth Legendrian varieties (as well as families of su
h), several naturalquestions remain unanswered.New 
onta
t manifolds?Can we 
onstru
t a new example of a 
onta
t manifold, whose variety of tangentdire
tions to 
onta
t lines is one of the new Legendrian varieties (or is in thegiven family)? If 
onje
ture I.1 is true, then the answer is negative. If theanswer is negative, then what are the obstru
tions, i.e., what 
onditions should werequire on the Legendrian variety to make the re
onstru
tion of 
onta
t manifoldpossible?Further appli
ations to algebra?Can the new Legendrian varieties be used in a similar manner as the subadjoint
ases and will they prove themselves to be equally extraordinary varieties? The�rst tiny pie
e of eviden
e for this is explained in �VI.2.1. On the other hand, it isunlikely that su
h a big variety of examples 
an have analogous spe
ial properties.12



Algebrai
 Legendrian varieties Chapter ISelf-dual varieties?Another problem we want to mention here is a 
lassi
al question in algebrai
geometry: what are the smooth subvarieties of proje
tive spa
e, whose dual vari-ety6 is also smooth? So far the only examples of these are the self-dual varieties.Thanks to L. Ein [Ein86℄, the 
lassi�
ation of smooth self-dual varieties Z ⊂ Pmis known when 3 codimZ ≥ dimZ. In 
orollary VII.17 we prove that the prob-lem of 
lassifying smooth varieties with smooth dual 
an be expressed in termsof Legendrian varieties and possibly we 
an apply the te
hniques of Legendrianvarieties to �nish the 
lassi�
ation.Proje
tively and linearly normal Legendrian varieties?We dare to 
onje
ture:Conje
ture I.3. Let X ⊂ P(V ) be a smooth linearly normal7 Legendrian variety.Then X is one of the subadjoint varieties.In view of theorems VII.1 and VII.10, the 
lassi�
ation of linearly normal Le-gendrian varieties might be a ne
essary step towards a 
lassi�
ation of Legendrianvarieties.Furthermore, the 
onje
ture might also 
ontribute to the proof of 
onje
tureI.1. For instan
e assume 
onje
ture I.3 holds and Y is a 
onta
t Fano manifold,for whi
h the variety 
ut out by 
onta
t lines through a general point is normal.Then by applying the results of [Keb05℄ we get that the asso
iated Legendrianvariety X ⊂ P2n−1 is proje
tively normal8 and by the 
onje
ture and results of[Hon00℄ the manifold Y is an adjoint variety.The author is able to prove 
onje
ture I.3 if dimX = 1, but this is not anelegant argument nor does it have important appli
ations. We omit the proof hereuntil we manage to improve the argument or to generalise it to higher dimensions.I.3 Notation and elementary propertiesIn the present thesis we always work over the �eld of 
omplex numbers C.I.3.1 Ve
tor spa
es and proje
tivisationLet V be a ve
tor spa
e over C. By P(V ) we mean the naive proje
tivisation of
V , i.e. the quotient (V \{0})/C∗.6Given a subvariety Z ⊂ P(W ), the dual variety Z∗ ⊂ P(W ∗) is the 
losure of the set ofhyperplanes tangent to Z, see �VII.3 for details.7A subvariety X ⊂ Pm is linearly normal if it is embedded by a 
omplete linear system.8A subvariety X ⊂ Pm is proje
tively normal if its a�ne 
one is normal. If X is proje
-tively normal, then it is also linearly normal by [Har77, ex. II.5.14(d)℄ 13



Jarosªaw Bu
zy«skiIf v ∈ V \ {0}, then by [v] ∈ P(V ) we denote the line spanned by v.Analogously, if E is a ve
tor bundle, by P(E) we denote the naive proje
tivi-sation of E. Let s0 ⊂ E be the zero se
tion of E. If v ∈ E\s0, then by [v] ∈ P(E)we denote the line spanned by v in the appropriate �bre of E.I.3.2 Bilinear forms and their matri
esLet V be a 
omplex ve
tor spa
e of dimension m and f a bilinear form on V .Fix a basis B of V and let M(f) = M(f,B) be the m×m-matrix su
h that:
f(v, w) = vTM(f)w,where v and w are arbitrary 
olumn ve
tors of V . We say that M(f) is thematrix of f in the basis B.In parti
ular if ω is a symple
ti
 form (see �II.1.1), dimV = 2n and B is asymple
ti
 basis, then

J := M(ω,B) =

[
0 Idn

− Idn 0

]
.Moreover in su
h a 
ase J is also the matrix of the linear map ω̃:

ω̃ : V −→ V ∗

v 7−→ ω(v, ·)in the basis B on V and the dual basis on V ∗.Similarly, if q is a quadrati
 form on V , then we denote by M(q) = M(q,B)the matrix of q in the basis B:
q(v) = vTM(q)v.I.3.3 Complex and algebrai
 manifoldsOur main 
on
ern is with 
omplex proje
tive manifolds and varieties. This iswhere two 
ategories meet: 
omplex algebrai
 varieties and analyti
 spa
es (see[Gri74℄). Sin
e the author's origins lie in algebrai
 geometry, this thesis' intentionis to study algebrai
 Legendrian varieties. However, for some statements thereis no reason to limit to the algebrai
 
ase, so we state them also for the analyti
situation.So Y will be usually the ambient manifold (for example 
onta
t or symple
ti
manifold), either a 
omplex manifold or smooth algebrai
 variety. Some state-ments are lo
al for Y (in the analyti
 topology), hen
e it is enough to prove themfor Y ≃ D2n, where D2n ⊂ Cn is a 
omplex dis
.Our main interest is in X ⊂ Y , whi
h will be either an analyti
 subspa
e (if Yis a 
omplex manifold), or an algebrai
 subvariety (if Y is algebrai
). For short,will always say X ⊂ Y is a subvariety.14



Algebrai
 Legendrian varieties Chapter II.3.4 Ve
tor bundles, sheaves and se
tionsGiven an analyti
 spa
e or algebrai
 variety Y , we denote by OY both the stru
-ture sheaf (
onsisting of either holomorphi
 or algebrai
 fun
tions on Y in theappropriate analyti
 or Zariski topology) and the trivial line bundle. If X ⊂ Yis a subvariety, then by I(X) we mean the sheaf of ideals in OY de�ning X.Given a ve
tor bundle E on Y we will use the same letter E for the sheaf ofse
tions of E. To avoid 
onfusion and too many bra
kets (for example I(X)(U))given an open subset U ⊂ Y and a sheaf (or ve
tor bundle) F , we will write
H0(U,F) rather than F(U) to mean the value of the sheaf at the open subset
U (or se
tions of ve
tor bundle). By F|U we mean the sheaf (or ve
tor bundle)restri
tion of F to the open subset U .Where there 
an be no 
onfusion, given a sheaf F whi
h does not have anynatural ve
tor bundle stru
ture we will write s ∈ F to mean:

∃ an open U ⊂ Y with s ∈ H0(U,F).On the other hand, if E is a ve
tor bundle, then by v ∈ E, we mean that v is ave
tor in the bundle.Given a ve
tor bundle E, we denote by E∗ the dual ve
tor bundle:
E∗ := Hom(E,O).If θ : F −→ G is a map of sheaves or ve
tor bundles and s ∈ H0(U,F), thenby θ(s) we mean the image se
tion of G.I.3.5 DerivativesGiven a 
omplex manifold or smooth algebrai
 variety Y and a k-form θ ∈

H0(U,ΩkY ) by dθ we denote the exterior derivative of θ. This 
onvention isalso valid for 0-forms f ∈ OY = Ω0Y .By TY we mean the tangent ve
tor bundle. Nevertheless we keep in mind,that a ve
tor �eld µ ∈ H0(U, TY ) 
an also be interpreted as a derivation µ :
OY → OY . In parti
ular, we 
an de�ne the Lie bra
ket of two ve
tor �elds
µ, ν ∈ H0(U, TY ) as:

[µ, ν] = νµ − µν.This 
onvention is in agreement with [Arn74℄.Given a holomorphi
 or algebrai
 map φ : Y −→ Y ′, by Dφ we mean thederivative map:
Dφ : TY −→ φ∗TY ′.If θ ∈ H0(U,ΩkY ) and µ ∈ H0(U, TY ), then by θ(µ) we mean the 
ontra
ted

(k − 1)-form. For example, if θ = θ1 ∧ θ2 for 1-forms θi, then
θ(µ) = θ1(µ)θ2 − θ2(µ)θ1.The reader should also refer to �A.2.2 for the 
onvention on automorphismsand in�nitesimal automorphisms. 15
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zy«skiI.3.6 Submersion onto imageWe re
all the standard fa
t, that every algebrai
 map is generi
ally a submersionon the 
losure of the image.Lemma I.4. Let M and N be two algebrai
 varieties over an algebrai
ally 
losed�eld of 
hara
teristi
 0 and let p : M −→ N be a map su
h that N = p(M).Then for a general x ∈M , the derivative Dxp : TxM −→ Tp(x)N is surje
tive.Proof. See [Har77, thm III.10.6℄.
�As a 
orollary, we prove an easy proposition about subvarieties of produ
tmanifolds.Proposition I.5. Let S1 and S2 be two smooth algebrai
 varieties and let X ⊂

S1×S2 be a 
losed irredu
ible subvariety. Let Xi ⊂ Si be the 
losure of the imageof X under the proje
tion πi onto Si. Assume that for a Zariski open dense subsetof smooth points U ⊂ X we have that the tangent bundle to X de
omposes as
TX|U = (TX ∩ π∗

1TS1)|U ⊕ (TX ∩ π∗
2TS2)|U a sum of two ve
tor bundles. Then

X = X1 ×X2.Proof. Sin
e X is irredu
ible, so is X1 and X2 and 
learly X ⊂ X1 ×X2. So itis enough to prove that dimX1 + dimX2 = dimX = dimU . However, the maps
D(πi|U) are surje
tive onto TX ∩ π∗

i TSi and hen
e by lemma I.4:
dimX1 + dimX2 = rk(TX ∩ π∗

1TS1)|U + rk(TX ∩ π∗
2TS2)|U = rkTX|U = dimX.

�I.3.7 Line bundles and C∗-bundlesLet Y be 
omplex manifold or a smooth algebrai
 variety and let L be a linebundle on Y . By L• we denote the prin
ipal C∗-bundle over Y obtained as theline bundle L∗ with the zero se
tion removed. Let π be the proje
tion L• −→ Y .Let RL be the sheaf of graded OY -algebras ⊕m∈Z
Lm on Y . Given an opensubset U ⊂ Y the ring RL(U) 
onsists of all the algebrai
 fun
tions on π−1(U),i.e. RL = π∗OL• . Therefore

L• = SpecY RL.Moreover, H0(U,Lm) ⊂ H0(π−1(U),OL•) is the set of homogeneous fun
tions ofweight m (see �A.1).16



Algebrai
 Legendrian varieties Chapter ILemma I.6. Let Y be a smooth algebrai
 variety and let L be a line bundle on
Y . Then Pic(L•) ≃ Pic(Y )/〈L〉 and the map Pic(Y ) ։ Pic(L•) is indu
ed by theproje
tion π : L• −→ Y .Proof. The Pi
ard group of the total spa
e of L∗ is isomorphi
 to Pic Y andthe isomorphisms are given by the proje
tion and the zero se
tion s0 : Y −→ L∗.Further, s0(Y ) is a Cartier divisor linearly equivalent to any other rational se
tion
s : Y 99K L∗. Therefore s∗0(s0(Y )) = L∗ and hen
e by [Har77, prop. 6.5(
)℄ thefollowing sequen
e is exa
t:

Z −→ Pic Y
π∗

−→ Pic L• −→ 0
1 7−→ [L∗]

�The relative tangent bundle, i.e. ker (Dπ : TL• −→ π∗TY ) is trivialised by theve
tor �eld µC∗ related to the a
tion of C∗ (see �A.2.2) and hen
e we have theshort exa
t sequen
e:
0 −→ OL• −→ TL• −→ π∗TY −→ 0.In parti
ular KL• = π∗KY .I.3.8 Tangent 
oneWe re
all the notion of the tangent 
one and a few among many of its properties.For more details and the proofs we refer to [Har95, le
ture 20℄ and [Mum99,III.�3,�4℄.For an irredu
ible Noetherian s
heme X over C and a 
losed point x ∈ X we
onsider the lo
al ring OX,x and we let mx be the maximal ideal in OX,x. Let

R :=
∞⊕

i=0

(
mi

x/m
i+1
x

)
,where m0

x is just the whole of OX,x. Now we de�ne the tangent 
one TCxX at xto X to be SpecR.If X is a subs
heme of an a�ne spa
e Am (whi
h we will usually assumeto be an a�ne pie
e of a proje
tive spa
e), the tangent 
one at x to X 
an beunderstood as a subs
heme of Am. Its equations 
an be derived from the ideal of
X. For simpli
ity assume x = 0 ∈ Am and then the polynomials de�ning TC0Xare the lowest degree homogeneous parts of the polynomials in the ideal of X.Another interesting point-wise de�nition is that v ∈ TC0X is a 
losed pointif and only if there exists a holomorphi
 map ϕv from the dis
 Dt := {t ∈ C :17
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|t| < δ} to X, su
h that ϕv(0) = 0 and the �rst non-zero 
oe�
ient in the Taylorexpansion in t of ϕv(t) is v, i.e.:

ϕv : Dt −→ X
t 7→ tkv + tk+1vk+1 + . . .We list some of the properties of the tangent 
one, whi
h will be used freelyin the proofs:(1) The dimension of every 
omponent of TCxX is equal to the dimension of

X.(2) TCxX is naturally embedded in the Zariski tangent spa
e to X at x and
TCxX spans (as a s
heme) the tangent spa
e.(3) X is regular at x if and only if TCxX is equal (as a s
heme) to the tangentspa
e.

18



Chapter IIElementary symple
ti
 geometryWe introdu
e some elementary fa
ts from symple
ti
 geometry, having in mindthe needs of subsequent 
hapters. Most of this material is 
ontained in (or 
an beeasily dedu
ed from) 
lassi
al textbooks on symple
ti
 geometry, su
h as [MS98℄,although we rewrite this over the ground �eld C rather than R.II.1 Linear symple
ti
 geometryIn this se
tion we study linear algebra of ve
tor spa
e, whi
h has a symple
ti
form. Although it is elementary, it is very important for our 
onsiderations as ithas threefold appli
ation: Firstly, the 
ontent of this se
tion des
ribes the lo
albehaviour of symple
ti
 manifolds (see �II.2), parti
ularly the symple
tisationsof 
onta
t manifolds (see �III.2.1). Se
ondly, it des
ribes very mu
h of globalgeometry of proje
tive spa
e as a 
onta
t manifold (see III.12, but also lookthrough 
hapters IV�VII). Finally, it explains the �brewise behaviour of 
onta
tdistribution (see �III.2).II.1.1 Symple
ti
 ve
tor spa
eA symple
ti
 form on a ve
tor spa
e V is a non-degenerate skew-symmetri
 bi-linear form. So ω ∈
∧2 V ∗ is a symple
ti
 form if and only if
∀v ∈ V ∃w ∈ V su
h that ω(v, w) 6= 0or equivalently the map

ω̃ : V −→ V ∗

v 7−→ ω(v, ·)is an isomorphism.If a ve
tor spa
e V has a symple
ti
 form ω, we say that V (or (V, ω) ifspe
ifying the form is important) is a symple
ti
 ve
tor spa
e. In su
h a 
asethe dimension of V is even and there exists a basis v1, . . . , vn, w1, . . . , wn (where19
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n = 1

2
dimV ) of V su
h that ω(vi, wi) = 1, ω(vi, vj) = 0 and ω(vi, wj) = 0 for

i 6= j. Su
h a basis is 
alled a symple
ti
 basis.By ω∨ we denote the 
orresponding symple
ti
 form on V ∗:
ω∨ :=

(
ω̃−1

)∗
ω.Note that if v1, . . . , vn, w1, . . . , wn is a symple
ti
 basis of V and x1, . . . , xn,

y1, . . . , yn is the dual basis of V ∗, then x1, . . . , xn, y1, . . . , yn is a symple
ti
 basis of
V ∗. In su
h a 
ase x1, . . . , xn, y1, . . . , yn are also 
alled symple
ti
 
oordinateson V .II.1.2 Isotropi
, 
oisotropi
, Lagrangian and symple
ti
 sub-spa
esAssume V is a ve
tor spa
e of dimension 2n and ω is a symple
ti
 form on V . Nowsuppose W ⊂ V is a linear subspa
e. By W⊥ω we denote the ω perpendi
ular
omplement of W :

W⊥ω := {v ∈ V | ∀w ∈W ω(v, w) = 0} .Denote by π the natural proje
tion V ∗ →W ∗. We say that the subspa
e W is:isotropi
 ⇔ ω|W ≡ 0 ⇔ W ⊂ W⊥ω ⇔ ker π is 
o-isotropi
;
oisotropi
(or some-times 
alledinvolutive) ⇔ ω∨|ker π ≡ 0 ⇔ W ⊃ W⊥ω ⇔ ker π is iso-tropi
;Lagrangian ⇔ W is isotropi
or involutive and
dimW = n = 1

2
dimV

⇔ W = W⊥ω ⇔ ker π is La-grangian;symple
ti
 ⇔ ω|W is a symple
-ti
 form on W ⇔ W ∩W⊥ω = 0 ⇔ ker π issymple
ti
.II.1.3 Symple
ti
 redu
tion of ve
tor spa
eWith the assumptions as above let W ⊂ V be any linear subspa
e and let W ′ :=
W ∩W⊥ω . De�ne ω′ to be the following bilinear form on V ′ := W/W ′:for w1, w2 ∈W let ω′([w1], [w2]) := ω(w1, w2).Then (V ′, ω′) is a symple
ti
 ve
tor spa
e.The parti
ular 
ase we are mostly interested in is when W is a hyperplane ormore generally a 
oisotropi
 subspa
e.Note the following elementary properties of this 
onstru
tion:20
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 Legendrian varieties Chapter IIProposition II.1. For a subspa
e L ⊂ V let L′ be the image of L ∩W in V ′.(a) If L is isotropi
 (resp. 
oisotropi
 or Lagrangian) in V , then L′ is isotropi
(resp. 
oisotropi
 or Lagrangian) in V ′.(b) Conversely, ifW is 
oisotropi
, L ⊂W and L′ is isotropi
 (resp. 
oisotropi
or Lagrangian) in V ′, then L is isotropi
 (resp. 
oisotropi
 or Lagrangian)in V .
�II.1.4 Symple
ti
 automorphisms and weks-symple
ti
 ma-tri
esA linear automorphism ψ of a symple
ti
 ve
tor spa
e (V, ω) is 
alled a sym-ple
tomorphism if ψ∗ω = ω i.e.:

∀u, v ∈ V ω
(
ψ(u), ψ(v)

)
= ω

(
u, v
)
.We denote by Sp(V ) the group of all symple
tomorphisms of V and by sp(V ) itsLie algebra:

sp(V ) =
{
g ∈ End(V ) | ∀u, v ∈ V ω

(
u, g(v)

)
+ ω

(
g(u), v

)
= 0
}
.A linear automorphism ψ of V is 
alled a 
onformal symple
tomorphismif ψ∗ω = cω for some 
onstant c ∈ C∗. We denote by cSp(V ) the group of all
onformal symple
tomorphisms of V and by csp(V ) the tangent Lie algebra.Fix a basis B of V and note that a matrix g ∈ gl(V ) is in the symple
ti
algebra sp(V ) if and only if

gTJ + Jg = 0where J := M(ω,B). For the sake of 
hapter IV we also need to de�ne a 
om-plementary linear subspa
e to sp(V ):De�nition. A matrix g ∈ gl(V ) is weks-symple
ti
1 if and only if it satis�esthe equation:
gTJ − Jg = 0.The ve
tor spa
e of all weks-symple
ti
 matri
es will be denoted by wsp(V ) (eventhough it is not a Lie subalgebra of gl(V )).1A better name would be skew-symple
ti
 or anti-symple
ti
, but these are reserved for somedi�erent notions. 21



Jarosªaw Bu
zy«skiWe immediately see that a matrix is weks-symple
ti
 if and only if it 
orre-sponds to a linear endomorphism g, su
h that for every u, v ∈ V :
ω(gu, v)− ω(u, gv) = 0. (II.2)This is a 
oordinate free way to des
ribe wsp(V ).Assume that our basis B is symple
ti
. In parti
ular J2 = M(ω,B)2 = − Id2n.Remark II.3. For a matrix g ∈ gl(V ) we have:(a) g ∈ sp(V ) ⇐⇒ Jg is a symmetri
 matrix;(b) g ∈ wsp(V ) ⇐⇒ Jg is a skew-symmetri
 matrix.

�Note that if g ∈ gl(V ), then we 
an write:
g =

1

2
(g + JgTJ) +

1

2
(g − JgTJ)and the �rst 
omponent g+ := 1

2
(g + JgTJ) is in sp(V ), while the se
ond g− :=

1
2
(g−JgTJ) is in wsp(V ). Obviously, this de
omposition 
orresponds to express-ing the matrix Jg as a sum of symmetri
 and skew-symmetri
 matri
es.We list some properties of wsp(V ):Proposition II.4. Let g, h ∈ wsp(V ). The following properties are satis�ed:(i) Write the additive Jordan de
omposition for g:

g = gs + gnwhere gs is semisimple and gn is nilpotent. Then both gs ∈ wsp(V ) and
gn ∈ wsp(V ).(ii) For λ ∈ C, denote by Vλ the λ-eigenspa
e of g. For any λ1, λ2 ∈ C twodi�erent eigenvalues Vλ1

is ω-perpendi
ular to Vλ2
.(iii) If g is semisimple, then ea
h spa
e Vλ is symple
ti
.

�22



Algebrai
 Legendrian varieties Chapter IIII.1.5 Standard symple
ti
 stru
ture on W ⊕W ∗Let W be any �nite dimensional ve
tor spa
e. Set V := W ⊕W ∗ and there is a
anoni
al symple
ti
 form on V :
ω
(
(v, α), (w, β)

)
:= β(v) − α(w).If a1, . . . , an is any basis of W and λ1, . . . , λn is the dual basis of W ∗, then

a1, . . . , an, λ1, . . . , λnis a symple
ti
 basis of V . In parti
ular, we have the natural embedding
GL(W ) →֒ Sp(V )

A 7→ A⊕ (A−1)T .We note the following elementary lemma:Lemma II.5. Let L ⊂ W be any linear subspa
e. Then L⊕ ker(W ∗ → L∗) ⊂ Vis a Lagrangian subspa
e.
�II.2 Symple
ti
 manifolds and their subvarietiesSymple
ti
 manifolds will serve us to understand some geometri
 and algebrai
stru
tures of the symple
tisations of 
onta
t manifolds (see �III.2.1).A 
omplex manifold or a smooth 
omplex algebrai
 variety Y is a symple
ti
manifold if there exists a global 
losed holomorphi
 2-form ω ∈ H0(Ω2Y ), dω =

0 whi
h restri
ted to every �bre is a symple
ti
 form on the tangent spa
e. Inother words, ω∧n is a nowhere vanishing se
tion of KY = Ω2nY . The form ω is
alled a symple
ti
 form on Y .Similarly as in the 
ase of the ve
tor spa
e, the symple
ti
 form determinesan isomorphism:
ω̃ : TY

≃
−→ T ∗Y

v 7−→ ω(v, ·).The theory of 
ompa
t (or proje
tive) 
omplex symple
ti
 manifolds is welldeveloped and has a lot of beautiful results (see for example [Leh04℄, [Huy03℄ andreferen
es therein). Yet here we will only use some non-
ompa
t examples as atool for studying 
onta
t manifolds and we will only need a few of their basi
properties. Also some extensions of the symple
ti
 stru
ture to the singularitiesof Y are studied, but we are interested only in the 
ase where Y is smooth.23



Jarosªaw Bu
zy«skiII.2.1 Lagrangian and other subvarieties of a symple
ti
manifoldLet (Y, ω) be a symple
ti
 manifold. For a subvariety X ⊂ Y we say X isrespe
tively1) isotropi
,2) 
oisotropi
,3) Lagrangian,if and only if there exists an open dense subset U (equivalently, for any opendense subset U) of smooth points of X, su
h that for every x ∈ U the tangentspa
e TxX ⊂ TxY is respe
tively1) isotropi
,2) 
oisotropi
,3) Lagrangian.Or equivalently, for every x ∈ U the 
onormal spa
e N∗
xX ⊂ T ∗

xY is respe
tively1) 
oisotropi
,2) isotropi
,3) Lagrangian.Note that a subvariety is Lagrangian if and only if it is isotropi
 (or 
oisotro-pi
) and the dimension is equal to n.II.2.2 ExamplesThe following examples are important for our 
onsiderations, as they will appearas symple
tisations of proje
tive 
onta
t manifolds (see �III.2.1).The a�ne spa
eOur key example is the simplest possible: an a�ne spa
e of even dimension. Soassume (V, ω) is a symple
ti
 ve
tor spa
e of dimension 2n. Then take the a�nespa
e A2n of the same dimension, whose tangent spa
e at every point is V andglobally TA2n = A2n × V . Then ω trivially extends to the produ
t and it is asymple
ti
 form on A2n.By an abuse of notation, we will denote the a�ne spa
e by V as well (so inparti
ular a 0 is �xed in the a�ne spa
e and the a
tion of C∗ by homotheties is
hosen). In this setup, the form ω is homogeneous of weight 2 (see �A.1).24
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tsAssume Y1 and Y2 are two symple
ti
 manifolds with symple
ti
 forms ω1 and ω2respe
tively. Clearly Y1 × Y2 is a symple
ti
 manifold with the symple
ti
 form
p∗1ω1 + p∗2ω2, where the pi's are the appropriate proje
tions.Next, let Xi ⊂ Yi be two subvarieties. Both the Xi's are respe
tively1) isotropi
,2) 
oisotropi
,3) Lagrangian,if and only if the produ
t X1 ×X2 ⊂ Y1 × Y2 is respe
tively1) isotropi
2) 
oisotropi
,3) Lagrangian.Cotangent BundleLet M be a 
omplex manifold or a smooth algebrai
 variety of dimension n. Set
Y to be the total spa
e of the 
otangent ve
tor bundle T ∗M and let p : Y −→Mbe the proje
tion map. If x1, . . . , xn are lo
al 
oordinates on U ⊂ M , then
x1, . . . , xn, y1 = dx1, . . . , yn = dxn form the lo
al 
oordinates on Y |U . Then we
an set:

ω|U := dx1 ∧ dy1 + . . .+ dxn ∧ dyn ∈ H0(U,Ω2Y ),and these glue to a well de�ned symple
ti
 form ω ∈ H0(Y,Ω2Y ). This symple
ti
form is homogeneous of weight 1 with respe
t to the usual a
tion on the 
otangentspa
es.Sin
e for m ∈M , x ∈ T ∗
mM we have T(m,x)Y = TmM ⊕ T ∗

mM this example ofsymple
ti
 manifold, generalises the standard symple
ti
 stru
ture on W ⊕W ∗(see �II.1.5). The following example generalises lemma II.5:Example II.6. Let Z ⊂ M be any subvariety. De�ne Ẑ# ⊂ Y to be the 
onor-mal variety to Z, i.e. the 
losure of the union of 
onormal spa
es to smoothpoints of Z:
Ẑ# := N∗Z0/M.Then Ẑ# is a Lagrangian subvariety in Y .Proof. Let z ∈ Z be a smooth point and let x ∈ N∗

zZ0/M . Then one 
an
hoose appropriate lo
al 
oordinates on M around z and an appropriate lo
altrivialisation of the 
otangent bundle T ∗M , su
h that:
TxẐ

# = TzZ ⊕N∗
zZ0/M ⊂ TzM ⊕ T ∗

zM. 25



Jarosªaw Bu
zy«skiThis is a Lagrangian subspa
e by lemma II.5.
�Lemma II.7. Conversely, assume M is a smooth algebrai
 variety and Y is thetotal spa
e of T ∗M . Moreover assume X ⊂ Y is an irredu
ible 
losed Lagrangiansubvariety invariant under the C∗-a
tion on Y . If Z = p(X), then X = Ẑ#.Proof. Let x ∈ X be a general point and let z := p(x). So x is a point in T ∗

zMand
TxY = TzM ⊕ T ∗

zM.Sin
e X is C∗-invariant, under the above identi�
ation
(0, x) ∈ TxX ⊂ TxY.We want to prove that (0, x) ∈ N∗

zZ/M and this will follow if we prove TxX ∩
T ∗

zM = N∗
zZ/M .By lemma I.4 the map Dp : TxX −→ TzZ is surje
tive, so

TxX + T ∗
zM = TzZ ⊕ T ∗

zM.Sin
e X is Lagrangian, we also have the dual equality:
TxX ∩ T ∗

zM = (TxX)⊥ω ∩ (T ∗
zM)⊥ω

= (TxX + T ∗
zM)⊥ω

= (TzZ ⊕ T ∗
zM)⊥ω

= N∗
zZ/M.Hen
e TxX ∩ T ∗

zM = N∗
zZ/M as 
laimed and therefore x ∈ N∗

zZ/M . Sin
e xwas a general point of X and both X and Z were irredu
ible, we have X ⊂ Ẑ#and by dimension 
ounting X = Ẑ#.
�Adjoint and 
oadjoint orbitsLet G be a semisimple 
omplex Lie group and 
onsider the 
oadjoint a
tion onthe dual of its Lie algebra g∗. Let Y be an orbit of this a
tion. The tangent spa
eat ξ ∈ Y is naturally isomorphi
 to g/Z(ξ), where

Z(ξ) = {v ∈ g | ∀w ∈ g ξ([v, w]) = 0} .Here [v, w] denotes the Lie algebra operation in g. For v, w ∈ g let [v] and [w] bethe 
orresponding ve
tor �elds on Y determined by v and w. We de�ne:
ωξ([v], [w]) := ξ([v, w]).26
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 Legendrian varieties Chapter IIThen ω is a symple
ti
 form on Y , whi
h is 
alled the Kostant-Kirillov form, seefor instan
e [Bea98, (2.1)℄.Now assume G is simple and Y is invariant under homotheties (for instan
e Yis the unique minimal nonzero orbit � see [Bea98, prop. 2.2 and prop. 2.6℄). Thenthe a
tions of G and C∗ 
ommute (be
ause G a
ts on g∗ by linear automorphisms,
C∗ via homotheties and every linear map 
ommutes with a homothety). Thereforethe ve
tor �elds of the form [v] for some v ∈ g are homogeneous of weight 0 andhen
e:

(λ∗tω)ξ([v], [w]) = ωλt(ξ)([v], [w]) = tξ([v, w]) = tωξ([v], [w]).i.e. ω is homogeneous of weight 1.We 
an identify g∗ and g by Killing form (see [Hum75℄), so equally well we
an 
onsider adjoint orbits. Therefore if Y is as above, then it is isomorphi
 to a
C∗-bundle over an adjoint variety (see �I.1.1). More pre
isely Y is a symple
ti-sation (see �III.2.1) of the adjoint variety.Open subsetsLet (Y, ω) be a symple
ti
 manifold and let U be an open subset. Then (U, ω|U)is again a symple
ti
 manifold.II.3 Poisson bra
ketThe Poisson bra
ket is an important algebrai
 stru
ture of a symple
ti
 manifold.In 
orollary III.14 we observe that given a 
onta
t manifold and its symple
ti-sation, the Poisson bra
ket des
ents from the symple
tisation to a bra
ket on aspe
i�
 sheaf of rings on the 
onta
t manifold. Moreover, this des
ended stru
-ture is stri
tly related to the automorphisms of the 
onta
t manifold (see theoremIII.15).Let (Y, ω) be a symple
ti
 manifold and let OY be the sheaf of holomorphi
(or algebrai
) fun
tions on Y . Given f, g ∈ H0(U,OY ) let ξg ∈ H0(U, TY ) be theunique ve
tor �eld su
h that ω(ξg) = dg. Then we set:

{f, g} :=df(ξg),or equivalently:
{f, g} (x) :=ω∨

x (dgx, dfx).The bilinear skew-symmetri
 map {·, ·} : OY ×OY → OY is 
alled the Pois-son bra
ket. 27



Jarosªaw Bu
zy«skiLemma II.8. The Poisson bra
ket satis�es the Ja
obi identity and thereforemakes OY into a sheaf of Lie algebras. The 
ompatibility between the Poissonbra
ket and the standard ring multipli
ation on OY (U) is given by the followingLeibniz rule:
{fg, h} = f {g, h} + g {f, h} .Proof. See for example [Arn74, �40℄ � the proof is identi
al to the real 
ase.

�The Poisson bra
ket is determined by the symple
ti
 form and moreover it isde�ned lo
ally. Hen
e we have the following property:Proposition II.9. Assume (Y, ω) and (Y ′, ω′) are two symple
ti
 manifolds ofdimension 2n. Assume moreover, that we have a �nite 
overing map:
ψ : Y −→ Y ′su
h that ψ∗ω′ = ω. Then the Poisson stru
tures are 
ompatible: for f, g ∈ OY ′we have:

ψ∗{f, g} = {ψ∗f, ψ∗g}.

�Theorem II.10. Assume Y is a symple
ti
 manifold.(i) Suppose X ⊂ Y is a 
oisotropi
 subvariety. Then the sheaf of ideals I(X) ⊂
OY is a subalgebra with respe
t to the Poisson bra
ket.(ii) Conversely, suppose X ⊂ Y is a 
losed, generi
ally redu
ed subs
heme andthat I(X) is preserved by the Poisson bra
ket. Then the 
orrespondingvariety Xred is 
oisotropi
.Versions of the theorem 
an be found in [Cou95, 
hapter 11, prop. 2.4℄ and in[Bu
06, thm 4.2℄. We follow more or less the proof from [Bu
06℄:Proof. Let X0 be the lo
us of smooth points of X. We must show that

ω∨|N∗X0/Y ≡ 0 if and only if I(X) is a Lie subalgebra sheaf in OY .Suppose that x ∈ X0 is any point, U ⊂ Y is an open neighbourhood of x andthat f, g ∈ H0 (U, I(X)) are some fun
tions vanishing on X. Then dfx, dgx ∈
N∗X0/Y .If ω∨|N∗X0/Y ≡ 0, then

{f, g} (x) = ω∨
x (dgx, dfx) = 0,i.e. {f, g} |X0

= 0, so extending the equality to the 
losure of X0 we get
{f, g} ∈ H0 (U, I(X)) .28
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 Legendrian varieties Chapter IIHen
e I(X) is a Lie subalgebra.Conversely, if I(X) is a Lie subalgebra, then
ω∨(dgx, dfx) = {f, g} (x) = 0.Sin
e the map
H0 (U, I(X)) −→ N∗

xX0/Y
f 7−→ dfxis an epimorphism of ve
tor spa
es for ea
h x ∈ X0 and for U su�
iently small,we have ω|N∗X0/Y ≡ 0.

�II.3.1 Properties of Poisson bra
ketIn our 
onsiderations on 
onta
t manifolds and their various subvarieties we willneed the three lemmas that are explained in this subse
tion. These lemmas referto proposition II.10 � we have seen that there is a relation between 
oisotro-pi
 varieties and Lie subalgebras of OY that are ideals under the standard ringmultipli
ation.The �rst lemma 
laims that to test if an ideal is a subalgebra it is enough totest it on an appropriate open 
over of Y .Lemma II.11. Let Y be a symple
ti
 manifold and let I ⊳ OY be a 
oherentsheaf of ideals. In su
h a 
ase I is preserved by the Poisson bra
ket if and onlyif there exists an open 
over {Ui} of Y su
h that for ea
h i:
• if V ⊂ Ui is another open subset, then the fun
tions in H0(V,OY ) aredetermined by the fun
tions in H0(Ui,OY ) � this means that if Y is alge-brai
 variety (respe
tively, analyti
 spa
e), then the elements of H0(V,OY )
an all be written as quotients (respe
tively, Taylor series) of elements of
H0(Ui,OY ); su
h property holds for instan
e if Ui is a�ne or if Ui is bi-holomorphi
 to a disk D4n ⊂ C2n or it is biholomorphi
 to D4n−2 × C∗;

• and the ideal H0 (Ui, I) ⊳ H0 (Ui,OY ) is preserved by the Poisson bra
ket.Proof. One impli
ation is obvious, while the other follows from the Leibniz rule(see lemma II.8) and from elementary properties of 
oherent sheaves.
�The se
ond lemma asserts that for an isotropi
 subvariety X, only fun
tions
onstant on X 
an preserve I(X) by Poisson multipli
ation. 29



Jarosªaw Bu
zy«skiLemma II.12. Assume Y is a symple
ti
 manifold, X is a 
losed irredu
ibleisotropi
 subvariety. Let h ∈ H0 (Y,OY ) be any fun
tion su
h that
{
h|U , H

0
(
U, I(X)

)}
⊂ H0

(
U, I(X)

) for any open subset U ⊂ Y .Then h is 
onstant on X.Proof. Choose an arbitrary x ∈ X0, a small enough open neighbourhood U ⊂ Yof x, and take any f ∈ H0
(
U, I(X)

).Sin
e {h|U , f} ∈ H0
(
U, I(X)

):
0 = {h|U , f} (x) = ω(dfx, dhx),and sin
e U 
an be taken so small that {dfx | f ∈ H0

(
U, I(X)

)} span the 
onor-mal spa
e we have:
dhx ∈ (N∗

xX/Y )⊥ω
sin
e X is isotropi


⊂ N∗
xX/Y.So dh vanishes on TX0 and hen
e h is 
onstant on X.

�Lemma II.13. Assume Y is a symple
ti
 manifold, X is a 
losed irredu
ibleisotropi
 subvariety and S ⊂ X is a 
losed subvariety. If {I(S), I(X)} ⊂ I(S),then either S is 
ontained in the singular lo
us of X or X is Lagrangian and
S = X.Proof. The proof goes along the lines of the proof of [Bu
06, thm 5.8℄. Suppose
S is not 
ontained in the singular lo
us of X, so that a general point s ∈ S isa smooth point of both X and S. Let U ⊂ Y be an open neighbourhood of s.Then for all f ∈ H0 (U, I(S)) and g ∈ H0 (U, I(X))

0 = {f, g} (s) = ω(dfs, dgs), (II.14)so
N∗

sX/Y = span
{
(dg)s | g ∈ H0

(
U, I(X)

)}

⊆ (N∗
sS/Y )⊥ω by (II.14)

⊆ (N∗
sX/Y )⊥ω

⊆ N∗
sX/Y be
ause X is isotropi
.Therefore we have all in
lusions be
oming equalities and in parti
ular codimS =

codimX and hen
e S = X. Moreover (N∗
sX/Y )⊥ω = N∗

sX/Y , where s is ageneral point of X, so X is Lagrangian.
�30
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 Legendrian varieties Chapter IIII.3.2 Homogeneous symple
ti
 formLemma II.15. Assume (Y, ω) is a symple
ti
 manifold with a C∗-a
tion andthat ω is homogeneous. Let U ⊂ Y be a C∗-invariant open subset and let f, g ∈
H0(U,OY ) be some homogeneous fun
tions. Then {f, g} is homogeneous of weight
wt(f) + wt(g) − wt(ω).Proof. Let ξg ∈ H0(U, TY ) be su
h a ve
tor �eld, that ω(ξg) = dg. By lemmaA.1(i) we have wt(ξg) = wt(g) − wt(ω) and sin
e {f, g} = (df)(ξg), the 
laimfollows from lemma A.1(i)&(iii).

�II.3.3 Example: Veronese map of degree 2The following example is important for our 
onsiderations, as it proves that forthe 
onta
t manifold P2n−1, we 
an equally well 
onsider the Poisson stru
tureon ⊕i∈N
Symi C2n (as we do in [Bu
03℄ and [Bu
06℄) and the Poisson stru
tureon ⊕i∈2N
Symi C2n; as naturally will arise from the point of view of 
onta
tmanifolds � see �III.2.1. Also this example will be used to illustrate that every
onta
t stru
ture on P2n−1 
omes from a symple
ti
 stru
ture on C2n.Let (V, ω) be a symple
ti
 ve
tor spa
e. We let

C[V ] = C[x1, . . . x2n] =
⊕

i∈N

Symi V ∗be the 
oordinate ring of V . Also 
onsider
S := C[V ]even =

⊕

i∈2N

Symi V ∗and let Y ′ := SpecS \ {0}. Then we have the following Z2 
overing map:
ψ : V \ {0} −→ Y ′,whi
h is the restri
tion of the map indu
ed by S →֒ C[V ]. This is the underlyingmap of the se
ond Veronese embedding of P(V ). In the language of �I.3.7, wehave Y ′ =

(
OP(V )(2)

)• and V \ {0} =
(
OP(V )(1)

)•.The symple
ti
 form ω is Z2 invariant:
ω(−v,−w) = ω(v, w),hen
e it des
ents to a symple
ti
 form ω′ on Y ′, making Y ′ a symple
ti
 manifold,su
h that:

ψ∗ω′ = ω.The natural gradings on C[V ] and on S indu
e the a
tions of C∗ on V \ {0}and on Y ′ (note that the a
tion on Y ′ is not faithful, its kernel is Z2) and ψ isequivariant with respe
t to these a
tions. 31



Jarosªaw Bu
zy«skiCorollary II.16. With the setup as above, the form ω′ is homogeneous of weight
2 with respe
t to the C∗-a
tion des
ribed above, so it is of weight 1 with respe
t tothe faithful a
tion of C∗/Z2 ≃ C∗. Conversely, if ω′ is a homogeneous symple
ti
form on Y ′ of weight 2, then ψ∗ω′ is a 
onstant symple
ti
 form on V \ {0}.Proof. This follows from lemma A.1(ii) and the 
hara
terisation of 
onstantforms on an a�ne spa
e in �A.1.

�Corollary II.17. The Poisson bra
ket on S indu
ed by ω′ is the restri
tion ofthe Poisson bra
ket on C[V ] indu
ed by ω.Proof. This follows immediately from proposition II.9.
�We note that Y ′ is the minimal adjoint orbit (see �II.2.2) for the simple group

Sp2n. This simple Lie group and its minimal adjoint orbit have quite ex
eptionalbehaviour (see table I.1) and it is worth explain this in more detail.
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Chapter IIIConta
t geometryA proje
tive spa
e seems to be the most standard example of a proje
tive variety.Yet, as a 
onta
t manifold, the proje
tive spa
e of odd dimension is the mostex
eptional among ex
eptional examples. As a 
onsequen
e, the study of itsLegendrian subvarieties is quite 
ompli
ated and very interesting. We start our
onsiderations by introdu
ing this 
ase. Further we generalise to the other 
onta
tmanifolds.III.1 Proje
tive spa
e as a 
onta
t manifoldLet (V, ω) be a symple
ti
 ve
tor spa
e and let P(V ) be its naive proje
tivisation.Then for every [v] ∈ P(V ) the tangent spa
e T[v]P(V ) is naturally isomorphi
 tothe quotient V/[v]. Let F = FP(V ) ⊂ TP(V ) be a 
orank 1 ve
tor subbundlede�ned �brewise:
F[v] :=

(
[v]⊥ω

)
/[v].Also let L be the quotient line bundle, so that we have the following short exa
tsequen
e:

0 −→ F −→ TP(V )
θ

−→ L −→ 0.We say that F (respe
tively θ) is the 
onta
t distribution (respe
tively the
onta
t form) asso
iated with the symple
ti
 form ω.By �II.1.3 the ve
tor spa
e Fp 
arries a natural symple
ti
 stru
ture ωFp
. Byproposition A.2 (i) dθ gives a well de�ned twisted 2-form on F :

dθ :=
∧2

F −→ L.Proposition III.1. With an appropriate 
hoi
e of lo
al trivialisation of L, forevery p ∈ P(V ) one has ωFp
= (dθ)p. In parti
ular dθ is nowhere degenerate andit determines an isomorphism:

F ≃ F ∗ ⊗ L. 33



Jarosªaw Bu
zy«skiMoreover L ≃ OP(V )(2).Proof. See also [LeB95, Ex. 2.1℄.Let x1 . . . , xn, y1, . . . , yn be some symple
ti
 
oordinates on V . Then the ω-perpendi
ular spa
e to (a1, . . . , an, b1, . . . , bn) is given by the equation
b1x1 + . . .+ bnxn − a1y1 − . . .− anyn = 0.We look for a twisted 1-form θ on P(V ) whose kernel at ea
h point is exa
tly asabove. This is for instan
e satis�ed by

θ =
1

2
(−y1dx1 − . . .− yndxn + x1dy1 + . . .+ xndyn).The ambiguity is only in the 
hoi
e of the s
alar 
oe�
ient � we 
hoose 1

2
inorder to a
quire the right formula for dθ. Choose an a�ne pie
e U ⊂ P(V ), saywhere x1 = 1. On U we have

θ|U =
1

2
(−y2dx2 − . . .− yndxn + dy1 + x2dy2 + . . .+ xndyn)and then:

dθ|U = dx2 ∧ dy2 + . . .+ dxn ∧ dyn.On the other hand, �xing p ∈ U , p = [1, a2, . . . an, b1, . . . bn]:
Fp =

{
(x1, . . . , xn, y1, . . . , yn) ∈ V | b1x1 + b2x2 + . . . bnxn−

− y1 − a2y2 − . . .− anyn = 0
}/

[p].Therefore F is the image under the proje
tion V → V/[p] of:
F̂p :=

{
(0, x2, . . . , xn, a2y2 + . . .+ anyn − b2x2 − . . .− bnxn, y2, . . . yn) ∈ V

}and
ω|F̂p

= dx2 ∧ dy2 + . . .+ dxn ∧ dyn.To see that L ≃ OP(V )(2) take a se
tion of TP(V ), for instan
e x1
∂

∂x1
. Then

θ

(
x1

∂

∂x1

)
= −x1y1is a se
tion of L and hen
e L ≃ OP(V )(2).
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 Legendrian varieties Chapter IIIIII.1.1 Legendrian subvarieties of proje
tive spa
eAssume (V, ω) is a symple
ti
 ve
tor spa
e of dimension 2n.In our works [Bu
03℄, [Bu
06℄, [Bu
07
℄, [Bu
07b℄ and [Bu
07a℄ we �nd 
on-venient to use the following de�nition:De�nition. We say that a subvariety X ⊂ P(V ) is Legendrian if the a�ne
one X̂ ⊂ V is a Lagrangian subvariety (see �II.2.1).Yet the original de�nition is formulated in a slightly di�erent, but equivalentmanner:Proposition III.2. Let X ⊂ P(V ) be a subvariety. The following 
onditions areequivalent:
• X is Legendrian;
• X is FP(V )-integrable and it is of pure dimension n− 1.;Proof. If X is FP(V )-integrable, then X is Legendrian by propositions III.1 andA.2(iv). The other impli
ation is obvious.

�III.1.2 De
omposable and degenerate Legendrian subvari-etiesDe�nition. Let V1 and V2 be two symple
ti
 ve
tor spa
es and let X1 ⊂ P(V1)and X2 ⊂ P(V2) be two Legendrian subvarieties. Now assume V := V1 ⊕ V2 and
X := X1 ∗ X2 ⊂ P(V ), i.e. X is the join of X1 and X2 meaning the union ofall lines from X1 to X2. Now, 
learly, the a�ne 
one X̂ is the produ
t X̂1 × X̂2(where X̂i is the a�ne 
one of Xi), so by �II.2.2 X is Legendrian. In su
h asituation we say that X is a de
omposable Legendrian subvariety. We saythat a Legendrian subvariety in P(V ) is inde
omposable, if it is not of that formfor any non-trivial symple
ti
 de
omposition V = V1 ⊕ V2.The inde
omposable Legendrian subvarieties have more 
onsistent des
riptionof their proje
tive automorphisms group (see 
hapter IV). On the other hand,de
omposable Legendrian varieties (whi
h usually themselves are badly singular)will provide some very interesting families of examples of smooth Legendrianvarieties (see 
hapter VII).We say a subvariety of proje
tive spa
e is degenerate if it is 
ontained insome hyperplane. Otherwise, we say it is non-degenerate. The following easyproposition in some versions is well known. The presented version 
omes from[Bu
06, thm 3.4℄ but see also [LM04, prop. 17 (1)℄ or [Bu
03, tw. 3.16℄. 35
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zy«skiProposition III.3. Let X ⊂ P(V ) be a Legendrian subvariety. Then the follow-ing 
onditions are equivalent:(i) X is degenerate.(ii) There exists a symple
ti
 linear subspa
e W ′ ⊂ V of 
odimension 2, su
hthat X ′ = P(W ′)∩X is a Legendrian subvariety in P(W ′) and X is a 
oneover X ′.(iii) X is a 
one over some variety X ′.In parti
ular degenerate Legendrian subvarieties are de
omposable.
�We also quote [LM04, prop. 17 (2)℄:Proposition III.4. Let X ⊂ P(V ) be a smooth Legendrian variety. If X isnon-degenerate, then the tangent variety τ(X) ⊂ P(V ) and the dual variety1

X∗ ⊂ P(V ∗) are hypersurfa
es isomorphi
 via ω̃ : V → V ∗.We note that original formulation in [LM04℄ omits the smoothness assump-tion. Otherwise, the de
omposable Legendrian varieties are 
ounterexamples. Inthe proof the authors freely inter
hange the tangent variety τ(X) (whi
h by de�-nition is the union of the limits of se
ants through two points approa
hing a third�xed point) and the 
losure of the union of embedded tangent spa
es at smoothpoints. These are the same for X smooth. The tangent variety τ(X) is indeed ahypersurfa
e in the se
ant variety σ(X) whi
h for a non-degenerate Legendrianvariety is P(V ). The 
losure of the embedded tangent spa
es at smooth points isindeed isomorphi
 to X∗. The mistake does not in�uen
e any other result of thepaper, but the reader should be 
areful in applying the proposition.III.1.3 Quadri
sIn [Bu
06℄ we prove:Theorem III.5. Let X ⊂ P(V ) be a Legendrian subvariety. Consider the fol-lowing map ρ:
H0(OP(V )(2)) ≃ Sym2 V ∗ ∋ q =

(
x 7→ xTM(q)x

) ρ
7−→ 2J ·M(q) ∈ sp(V ).where M(q) is the matrix of q and J = M(ω). Let Ĩ(X)2 ⊂ Sym2 V ∗ be theve
tor spa
e of quadri
s 
ontaining X. Then:1Given a subvariety Z ⊂ P(V ), the dual variety is the 
losure of the set of hyperplanestangent to Z, see �VII.3 for details.36
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• ρ(Ĩ(X)2) is a Lie subalgebra of sp(V ) tangent to a 
losed subgroup

exp
(
ρ
(
Ĩ(X)2

))
< Sp(V ).

• We have the natural a
tion of Sp(V ) on P(V ). The group exp
(
ρ
(
Ĩ(X)2

))is the maximal 
onne
ted subgroup in Sp(V ) whi
h under this a
tion pre-serves X ⊂ P(V ).Proof. See [Bu
06, 
or. 4.4, 
or. 5.5, lem. 5.6℄.
�We skip the proof be
ause in �III.3 we generalise this theorem to Legendriansubvarieties of an arbitrary 
onta
t manifold. In 
hapter IV we prove that forsmooth X the group exp

(
ρ
(
Ĩ(X)2

)) is maximal also in PGL(V ).III.2 Conta
t manifoldsDe�nition. Let Y be a 
omplex manifold or smooth algebrai
 variety and �x ashort exa
t sequen
e
0 −→ F −→ TY

θ
−→ L −→ 0where F ⊂ TY is a 
orank 1 subbundle of the tangent bundle. We say that Y isa 
onta
t manifold if the twisted 2-form

dθ :
∧2

F −→ L(see proposition A.2(i)) is nowhere degenerate, so that dθy is a symple
ti
 formon Fy for every y ∈ Y . In su
h a 
ase F is 
alled the 
onta
t distribution on
Y and θ is the 
onta
t form on Y .Example III.6. By proposition III.1, the proje
tive spa
e with the 
onta
t dis-tribution asso
iated with a symple
ti
 form is a 
onta
t manifold.The following properties are standard, well known (see for instan
e [Bea98℄):Proposition III.7. We have the following properties of 
onta
t manifold Y :(i) The dimension of Y is odd.(ii) Let U ⊂ Y be an open subset, let µF ∈ H0(U, F ) be any se
tion and let

φµF
: F |U → L|U be a map of sheaves:

∀ν ∈ H0(U, F ) φµF
(ν) := θ

(
[µF , ν]

)
.Then φµF

is a map of OU -modules and the assignment µF 7→ φµF
is anisomorphism of OY -modules:

F ≃ F ∗ ⊗ L. 37



Jarosªaw Bu
zy«ski(iii) The 
anoni
al divisor KY is isomorphi
 to L⊗(−n−1). In parti
ular Y is aFano variety if and only if L is ample.Proof. We only prove (ii), the other parts follow easily. Map φµF
is a map of

OU -modules by A.2(iii). By A.2(ii) we have equality:
φµF

(ν) = dθ(µF , ν).Sin
e dθ is non-degenerate, it follows that µF 7→ φµF
is indeed an isomorphism.

�III.2.1 Symple
tisationThe following 
onstru
tion is standard � see for instan
e [Arn74℄, [KPSW00℄,[Bea98℄.Let L• be the prin
ipal C∗-bundle as in �I.3.7. In �A.2.3 and �A.2.4 westudy in detail the properties of L• and an extension of the twisted form θ to
L•. We have an equivalen
e between 
onta
t stru
tures on Y and symple
ti
homogeneous weight 1 stru
tures on L•:Theorem III.8. Let Y be a 
omplex manifold or smooth algebrai
 variety witha line bundle L and the prin
ipal C∗-bundle L• as in �I.3.7.

• If θ : TY −→ L is a 
onta
t form, then dθ• (see �A.2.4) is a homogeneoussymple
ti
 form on L• of weight 1.
• Conversely, assume ω is a symple
ti
 form on L•, whi
h is homogeneousof weight 1. Then there exists a unique 
onta
t form θ : TY −→ L on Y ,su
h that ω = dθ•.Proof. See proposition A.18.

�If (Y, F ) is a 
onta
t manifold, then the symple
ti
 manifold (L•, dθ•) fromthe theorem is 
alled the symple
tisation of (Y, F ).Using the theorem and �II.2.2 we have following examples of 
onta
t mani-folds:Example III.9. Let G be a simple group and let Y be the 
losed orbit in P(g).Then Y is a 
onta
t manifold (
ompare with 
onje
ture I.1).Example III.10. If Y ≃ P(T ∗M), then let L = OP(T ∗M)(1) and hen
e L• ≃
T ∗M\s0, where s0 is the zero se
tion and Y is a 
onta
t manifold.38
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onta
t Fano manifold, then
Y ≃ Proj

(
⊕

m∈N

H0(Y, Lm)

)
,

L• ≃ Spec

(
⊕

m∈N

H0(Y, Lm)

)
\ {0}where 0 is the point 
orresponding to the maximal ideal ⊕m≥1 H

0(Y, Lm) (see[Gro61, �2.3℄).
�Example III.12. If Y ≃ P(V ), then by proposition III.7(iii) we have L ≃

OP(V )(2). Therefore V \{0} is a 2 to 1 unrami�ed 
over of L•, see �II.3.3. Inparti
ular, from theorem III.8 and 
orollary II.16 we 
on
lude that every 
onta
tstru
ture on P(V ) is asso
iated to some 
onstant symple
ti
 form ω on V (see�III.1).By [KPSW00℄ 
ombined with [Dem02℄ every 
onta
t proje
tive manifold Yis either isomorphi
 to P(T ∗M) or it is Fano with b2 = 1. In the se
ond 
aseby proposition III.7(iii) and the Kobayashi-O
hiai 
hara
terisation of proje
tivespa
e [KO73℄ either Y ≃ P(V ) or PicY = Z[L].III.2.2 Conta
t automorphismsAutomorphisms of 
onta
t manifolds preserving the 
onta
t stru
ture were alsostudied by LeBrun [LeB95℄ and Beauville [Bea98℄. We use their methods to stateslightly more general results about in�nitesimal automorphisms. In the end weglobalise the automorphisms for proje
tive 
onta
t manifolds.Let Y be a 
onta
t manifold and let π : L• −→ Y be the symple
tisation asin �III.2.1. Also let RL be as in �I.3.7.Example III.13. If Y is a 
onta
t Fano manifold, then
H0(Y,RL) = H0(L•,OL•) =

(
⊕

m∈N

H0(Y, Lm)

)
.Sin
e Y = Proj

(
H0(Y,RL)

) (see example III.11), all the stru
ture of Y as well asits global and lo
al behaviour is determined by this ring of global se
tions. Hen
ein this 
ase whatever is stated below for the sheaf RL 
an be dedu
ed from theanalogous statement about H0(Y,RL) only. 39



Jarosªaw Bu
zy«skiCorollary III.14.(i) Let f, g ∈ OL• be two fun
tions on L• homogeneous with respe
t to thea
tion of C∗. Then {f, g} is also homogeneous and wt{f, g} = wt f+wt g−1(ii) The Poisson bra
ket des
ends to RL and determines a bilinear map:
H0(U,Lm1) ×H0(U,Lm2) −→ H0(U,Lm1+m2−1).Proof. This follows from 
orollary II.15. See also [LeB95, rem. 2.3℄.

�We will refer to the Lie algebra stru
ture on RL de�ned above also as Pois-son stru
ture and denote the bra
ket by {·, ·}. For s ∈ H0(U,L) let s̃ be the
orresponding element in H0 (π−1(U),L•) = RL(U).By 
orollary III.14 the invertible sheaf L has a Lie algebra stru
ture andit is 
ru
ial for our 
onsiderations, that it is isomorphi
 to the sheaf autinf
F ofin�nitesimal automorphisms of Y preserving F (see �A.2.3 for more details):

autinf
F (U) :=

{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F

}
.Theorem III.15. Let Y be a 
onta
t manifold, F be the 
onta
t distribution, θbe the 
onta
t form and let U ⊂ Y be an open subset. Using the notation of �A.2we have:1) TY = autinf

F ⊕ F as sheaves of Abelian groups.2) The map of sheaves θ|
aut

inf
F

: autinf
F −→ L maps isomorphi
ally the Lie algebrastru
ture of autinf

F onto the Lie algebra stru
ture of L given by the Poissonbra
ket.3) The following two Lie algebra representations of autinf
F on OL• are equal:

• The indu
ed representation of autinf
F on L• (see �A.2.3).

• The representation indu
ed by the adjoint representation:
µ ∈ autinf

F (U), f ∈ H0(U,OL•) =⇒ µ.f :=
{
θ̃(µ), f

}
.Proof. The following proof of 1) is taken from [Bea98, prop. 1.1℄, but see also[LeB95, prop. 2.1℄.To prove 1), take any µ ∈ H0(U, TY ) and 
onsider the map of sheaves:

F |U −→ L|U
ν 7−→ θ

(
[µ, ν]

)
.40
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 Legendrian varieties Chapter IIIBy proposition A.2(iii) the above map is a map of OY |U -modules, hen
e it is anelement of H0(U, F ∗⊗L). Let µF be the 
orresponding element of H0(U, F ) (seeproposition III.7(ii)). By the de�nition of the isomorphism F ∗ ⊗L ≃ F , we have
θ ([µF , ν]) = θ ([µ, ν])for every ν ∈ F |U , hen
e [µ− µF , ν] ∈ F |U . Therefore µ− µF ∈ autinf

F (U), so
µ = µF + (µ− µF )gives the required splitting.For 2) see also [Bea98, prop. 1.6℄ and [LeB95, rem. 2.3℄. By 1), the map θ|

aut
inf
Fis an isomorphism of sheaves of Abelian groups. So it is enough to prove that

θ|
aut

inf
F

preserves the Lie algebra stru
tures. For every µ, ν ∈ autinf
F (U) denote by

µ̆ and ν̆ the indu
ed in�nitesimal automorphisms of L• (see �A.2.3). We have:
{
θ̃(µ), θ̃(ν)

}
=(dθ•)∨

(
d
(
θ̃(ν)

)
, d
(
θ̃(µ)

))

=(dθ•)∨
(
dθ•(ν̆), dθ•(µ̆)

) by prop. A.21
=dθ• (ν̆, µ̆)

= ˜θ([µ, ν]) by 
or. A.22.Hen
e θ|
aut

inf
F

preserves the Lie algebra stru
tures.Part 3) is lo
al and sin
e both representations satisfy the Leibniz rule (seeequation (A.14) and lemma II.8), it is enough to 
he
k the equality for multi-pli
ative generators of OL• . Lo
ally, these might be taken for instan
e as se
tionsof L and so 3) follows from 2).
�We underline, that autinf

F , as a subsheaf of TY is not a OY -submodule (see�A.2.3). So in parti
ular the obtained splitting of the short exa
t sequen
e ofsheaves of Abelian groups
0 −→ F −→ TY

θ
−→ L −→ 0is not a splitting of ve
tor bundles.Turning to global situation assume Y is proje
tive and let Aut(Y ), AutF (Y )and aut(Y ), autF (Y ) denote, respe
tively, the group of automorphisms of Y ,the group of automorphisms of Y preserving the 
onta
t stru
ture and their Liealgebras.LeBrun [LeB95℄ and Kebekus [Keb01℄ observed that in the 
ase of proje
tive
onta
t Fano manifolds with Pi
ard group generated by L, the global se
tions of

L are isomorphi
 to aut(Y ): 41



Jarosªaw Bu
zy«skiCorollary III.16. Let Y be a proje
tive 
onta
t manifold with 
onta
t distribu-tion F .(i) Then θ maps isomorphi
ally autF (Y ) onto H0(Y, L).(ii) If moreover Y is Fano with Pic(Y ) = Z[L], then Aut(Y ) = AutF (Y ) andhen
e the Lie algebra H0(Y, L) is naturally isomorphi
 to aut(Y ).Proof. By 
orollary A.10 we have autF (Y ) = autinf
F (Y ), so (i) follows fromtheorem III.15 2).On the other hand (ii) follows from [Keb01, 
or. 4.5℄.

�III.3 Legendrian subvarieties in 
onta
t manifoldDe�nition. Let Y be a 
omplex 
onta
t manifold with a 
onta
t distribution F .A subvariety X ⊂ Y is Legendrian if X is F -integrable (i.e., TX ⊂ F ) and
2 dimX + 1 = dim Y (i.e., X has maximal possible dimension).If Y ≃ P2n+1, then the above de�nition agrees with the de�nition in �III.1.1by proposition III.2. In general, we have analogous properties with V repla
edby L•:Proposition III.17. Let Y be a 
onta
t manifold with a 
onta
t distribution
F ⊂ TY and with its symple
tisation π : L• → Y . Assume X ⊂ Y is a subvariety.Then:(a) X is F -integrable if and only if π−1(X) ⊂ L• is isotropi
.(b) X is Legendrian if and only if π−1(X) ⊂ L• is Lagrangian.Proof. Part (a) follows from lemma A.19 and part (b) follows from (a).

�In the 
ase of subvarieties of a symple
ti
 manifold, we have three importanttypes of subvarieties (isotropi
, Legendrian and 
oisotropi
). Also for subvarietiesof 
onta
t manifold in addition to F -integrable and Legendrian subvarieties, it isuseful to 
onsider the subvarieties 
orresponding to the 
oisotropi
 
ase:De�nition. In the setup of proposition III.17, we say that X is F -
ointegrableif π−1(X) ⊂ L• is 
oisotropi
.Example III.18. Assume X̃ ⊂ L• is irredu
ible and Lagrangian and let X bethe 
losure of π(X) ⊂ Y . Then X is F -
ointegrable. If moreover X̃ is not
C∗-invariant, then dimX = 1

2
(dimY + 1).42
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 Legendrian varieties Chapter IIICorollary III.19. If Y = P(T ∗M) for some smooth algebrai
 variety M and
X is an algebrai
 Legendrian subvariety, then X is the 
onormal variety Z# tosome algebrai
 subvariety Z ⊂M .Proof. It follows from proposition III.17, example III.10 and lemma II.7.

�Let RL = π∗OL• be the sheaf of rings on Y de�ned in I.3.7. For a subvariety
X ⊂ Y , let Ĩ(X) ⊳ RL be the sheaf of ideals generated by those lo
al se
tionsof Lm that vanish on X. Then:

π∗I
(
π−1(X)

)
= Ĩ(X) (III.20)where I (π−1(X)) ⊳ OL• is the ideal sheaf of π−1(X). In this 
ontext, themeaning of lemma II.11 is the following:Lemma III.21. With the notation as above, let I ⊳ OL• be a 
oherent sheaf ofideals. Then I is preserved by the Poisson bra
ket on OL• if and only if π∗I ispreserved by the Poisson bra
ket on RL.

�Hen
e we get the des
ription of F -
ointegrable subvarieties in terms of thePoisson bra
ket on RL:Proposition III.22. With the assumptions as above, a subvariety X ⊂ Y is
F -
ointegrable if and only if Ĩ(X) is preserved by the Poisson bra
ket on RL.Proof. The proposition 
ombines equation (III.20), theorem II.10 and lemmaIII.21.

�Given a subvariety X ⊂ Y , we de�ne autinf
F (·, X) to be the sheaf of Lie alge-bras of those in�nitesimal automorphisms of Y , whi
h preserve X and 
onta
tdistribution F (see also �A.2.3):

autinf
F (U,X) :=

{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F and

∀f ∈ I(X)|U (df)(µ) ∈ I(X)|U
}Further, let Ĩ(X)1 ⊂ L be the degree 1 part of the sheaf of homogeneous ideals

Ĩ(X). Sin
e L is a line bundle with the a
tion of autinf
F (see �A.2.3), 
hoosing alo
al trivialisation and using the gluing property of sheaves we 
an repla
e I(X)in the de�nition of autinf

F (·, X) with Ĩ(X)1:
autinf

F (U,X) =
{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F and

µ.Ĩ(X)1|U ⊂ Ĩ(X)1|U
} (III.23)43
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zy«skiwhere . denotes the indu
ed a
tion of autinf
F on L des
ribed in �A.2.3.The following theorem establishes a 
onne
tion between the in�nitesimal au-tomorphisms of a Legendrian variety and its ideal:Theorem III.24. Let Y be a 
onta
t manifold with a 
onta
t distribution F andlet θ : TY → L be the quotient map. Also let U ⊂ Y be an open subset. Assume

X ⊂ Y is an irredu
ible subvariety.A. If X is F -integrable, then θ (autinf
F (U,X)

)
⊂ H0

(
U, Ĩ(X)1

).B. If X is F -
ointegrable, then θ (autinf
F (U,X)

)
⊃ H0

(
U, Ĩ(X)1

).C. If X is Legendrian, then θ (autinf
F (U,X)

)
= H0

(
U, Ĩ(X)1

).Proof. In the 
ase of A, 
hoose arbitrary µ ∈ autinf
F (U,X). We must prove that

θ(µ) ∈ H0(U, Ĩ1(X)) or, equivalently, that
θ̃(µ) ∈ H0

(
π−1(U), I

(
π−1(X)

))(re
all that for a se
tion s ∈ H0(U,L) by s̃ we denote the 
orresponding elementin H0(π−1(U),OL•)).By (III.23) the a
tion of µ preserves Ĩ(X)|U and hen
e also I(π−1(X)
)
|π−1(U).By theorem III.15 3) this means that

{
θ̃(µ), I

(
π−1(X)

)
|π−1(U)

}
⊂ I

(
π−1(X)

)
|π−1(U).Moreover π−1(X) is isotropi
 by proposition III.17.By lemma II.12 fun
tion θ̃(µ) is 
onstant on π−1(X). But θ̃(µ) is also a

C∗-homogeneous fun
tion of weight 1, so it must vanish on π−1(X). Therefore
θ̃(µ) ∈ H0

(
π−1(U), I

(
π−1(X)

)) as 
laimed.To prove B let µ ∈ autinf
F (U) be an in�nitesimal automorphism su
h that

θ(µ) ∈ Ĩ(X)1. By proposition III.22
{
θ(µ), Ĩ(X)

}
⊂ Ĩ(X)so by theorem III.15 3) we have

µ.Ĩ(X) ⊂ Ĩ(X)(where . denotes the indu
ed representation of autinf
F on L•, see �A.2.3). Hen
eby equation (III.23) the in�nitesimal automorphism µ is 
ontained in autinf

F (U,X)and H0
(
U, Ĩ(X)1

)
⊂ θ

(
autinf

F (U,X)
) as 
laimed.44
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 Legendrian varieties Chapter IIIPart C is an immediate 
onsequen
e of A and B.
�The following 
orollary says that in the 
ase when Y is proje
tive also theglobal automorphisms of a Legendrian subvariety 
an be understood in terms ofthe ideal of the variety. In parti
ular, in (i), we generalise [Bu
03, wn. 4.3℄ or[Bu
06, 
or. 5.5 & lem. 5.6℄.Corollary III.25. Let Y be a proje
tive 
onta
t manifold, let F be the 
onta
tdistribution and let X be a Legendrian subvariety. Let aut(Y,X) (resp. autF (Y,X))be the Lie algebra of group of automorphisms of Y preserving X (resp. preserving

X and F ). Then:(i) θ(autF (Y,X)
)

= H0
(
Y, Ĩ(X)1

);(ii) If in addition PicY = Z[L], then θ (aut(Y,X)) = H0
(
Y, Ĩ(X)1

).Proof. It follows from 
orollary III.16 and theorem III.24C.
�In 
hapter IV we dis
uss the extension of 
orollary III.25(ii) to Y ≃ P2n+1.The following 
orollary generalises [Bu
06, thm 5.8℄:Corollary III.26. If Y is a proje
tive 
onta
t manifold and X ⊂ Y is an irre-du
ible Legendrian subvariety su
h that Ĩ(X) is generated by H0

(
Y, Ĩ(X)1

), then
AutF (Y,X) a
ts transitively on the smooth lo
us of X. In parti
ular, if X is inaddition smooth, then X is a homogeneous spa
e.Proof. If S ⊂ X,S 6= X is a 
losed subvariety invariant under the a
tion of
AutF (Y,X), then by theorem III.15 3) and by 
orollary III.25(i):

∀f ∈ H0
(
Y, Ĩ(X)1

) {
Ĩ(S), f

}
⊂ Ĩ(S).Hen
e by the Leibniz rule and sin
e Ĩ(X) is generated by H0

(
Y, Ĩ(X)1

), we have:
{
I
(
π−1(S)

)
, I
(
π−1(X)

)}
⊂ I

(
π−1(S)

)
.So by lemma II.13, variety S is 
ontained in the singular lo
us of X.Now let O ⊂ X be an orbit of a smooth point under the a
tion of AutF (Y,X).Then the 
losure O is not 
ontained in the singular lo
us so by above it must beequal to all of X. Moreover O \ O is a 
losed subset invariant under the a
tionand not equal to X, so it is 
ontained in the singular lo
us. So O is the wholesmooth lo
us of X.

�We 
on
lude this 
hapter by underlining that, unfortunately, the above resultsare proved only for automorphisms of Y , that preserve Legendrian subvariety X,not simply for automorphisms of X. 45



Chapter IVProje
tive automorphisms of aLegendrian varietyThe 
ontent of this 
hapter is published in [Bu
07
℄.We are interested in the following 
onje
ture:Conje
ture IV.1. Let X ⊂ P2n−1 be an irredu
ible inde
omposable Legendriansubvariety and let G < PGL2n be a 
onne
ted subgroup of linear automorphismspreserving X. Then G is 
ontained in the image of the natural map Sp2n →
PGL2n.It is quite natural to believe, that if a linear map preserves a form on abig number of linear subspa
es, then it a
tually preserves the form (at leastup to s
alar). With this approa
h, [JJ04, 
or. 6.4℄ proved the 
onje
ture inthe 
ase where the image of X under the Gauss map is non-degenerate in theGrassmannian of Lagrangian subspa
es in C2n. Unfortunately, this is not enough- for example P1 × Q1 ⊂ P5 has a degenerate image under the Gauss map andthis is one of the simplest examples of smooth Legendrian subvarieties.In �IV.2 we prove:Theorem IV.2. If X ⊂ P2n−1 is a smooth Legendrian subvariety whi
h is not alinear subspa
e and G < PGL2n is a 
onne
ted subgroup preserving X, then G is
ontained in the image of the natural map Sp2n → PGL2n.This theorem, 
ombined with 
orollary III.25 gives us a good understandingof the group of proje
tive automorphisms of a smooth Legendrian subvariety in
P2n−1.IV.1 Dis
ussion of assumptionsOne obvious remark is that homotheties a
t trivially on P(V ), but in generalare not symple
ti
 on V . Therefore, it is more 
onvenient to think of 
onformalsymple
tomorphisms (see �II.1.4).46
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lear, that if we hope for a positive answer to the question whether a pro-je
tive automorphism of a Legendrian subvariety ne
essarily preserves the 
onta
tstru
ture, then we must assume that our Legendrian variety is non-degenerate.Another natural assumption is that X is irredu
ible � one 
an also easilyprodu
e a 
ounterexample if we skip this assumption. Yet still this is not enough.Let X = X1 ∗X2 ⊂ P(V1 ⊕ V2) be a de
omposable Legendrian variety. Thenwe 
an a
t via λ1 IdV1
on V1 and via λ2 IdV2

on V2 - su
h an a
tion will preserve Xand in general it is not 
onformal symple
ti
. This explains why the assumptionsof our 
onje
ture IV.1 are ne
essary.IV.2 Preservation of 
onta
t stru
tureLetX ′ ⊂ P(V ) be an irredu
ible, inde
omposable Legendrian subvariety, letX bethe a�ne 
one over X ′ and X0 be the smooth lo
us of X. Assume that G is themaximal 
onne
ted subgroup in GL2n preserving X. Let g < gl2n be the Liealgebra tangent to G. To prove the 
onje
ture it would be enough to show that gis 
ontained in the Lie algebra csp2n tangent to 
onformal symple
tomorphisms,i.e. the Lie algebra spanned by sp2n and the identity matrix Id2n.Re
all from �II.1.4 the notion of weks-symple
ti
 matri
es.Theorem IV.3. With the above notation the following properties hold:I. The underlying ve
tor spa
e of g de
omposes into symple
ti
 and weks-symple
ti
 part:
g =

(
g ∩ sp(V )

)
⊕
(
g ∩ wsp(V )

)
.II. If g ∈ g ∩ wsp(V ), then g preserves every tangent spa
e to X:

∀x ∈ X0 g(TxX) ⊂ TxXand hen
e also
∀t ∈ C ∀x ∈ X0 Texp(tg)(x)X = exp(tg)(TxX) = TxX.III. If g ∈ g ∩ wsp(V ) is semisimple, then g = λ Id for some λ ∈ C.IV. Assume 0 6= g ∈ g ∩ wsp(V ) is nilpotent and let m ≥ 1 be an integersu
h that gm+1 = 0 and gm 6= 0. Then gm(X) is always non-zero and is
ontained in the singular lo
us of X. In parti
ular, X ′ is singular.In what follows we prove the four parts of theorem IV.3. 47
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zy«skiI. De
omposition into symple
ti
 and weks-symple
ti
 partProof. Take g ∈ g to be an arbitrary element. Then for every x ∈ X0 one has
g(x) ∈ TxXand therefore

0 = ω
(
g(x), x

)
= xT gTJx =

1

2
xT
(
gTJ − Jg

)
x.Hen
e the quadrati
 polynomial f(x) := xT (gTJ − Jg)x is identi
ally zero on

X and hen
e it is in the ideal of X. Therefore by maximality of G and theoremIII.5 the map J (gTJ − Jg
) is also in g. However,
J
(
gTJ − Jg

)
= JgTJ + g,so JgTJ ∈ g and both symple
ti
 and weks-symple
ti
 
omponents g+ and g−are in g.

�From the point of view of the 
onje
ture, the symple
ti
 part is �ne. We wouldonly need to prove that g− = λ Id. So from now on we assume g = g− ∈ wsp(V ).II. A
tion on tangent spa
eProof. Let γt := exp(tg) for t ∈ C. Then γt ∈ G and hen
e it a
ts on X. Choosea point x ∈ X0 and two tangent ve
tors in the same tangent spa
e u, v ∈ TxX.Then 
learly also γt(u) and γt(v) are 
ontained in one tangent spa
e, namely
Tγt(x)X. Hen
e:

0 =ω (γt(u), γt(v))

=ω
(
(Id2n +tg + . . .)u, (Id2n +tg + . . .)v

)

=ω(u, v) + t
(
ω(gu, v) + ω(u, gv)

)
+ t2(. . .).In parti
ular the part of the expression linear in t vanishes, hen
e ω(gu, v) +

ω(u, gv) = 0. Combining this with equation (II.2) we get that:
ω(gu, v) = ω(u, gv) = 0.However, this implies that gu ∈ (TxX)⊥ω = TxX. Therefore g preserves thetangent spa
e at every smooth point of X and hen
e also γt preserves that spa
e.

�48
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e G is an algebrai
 subgroup in GL(V ), hen
e g has the natural Jordande
omposition inherited from gl(V ), i.e. if we write the Jordan de
omposition for
g = gs +gn, then gs, gn ∈ g (see [Hum75, thm 15.3(b)℄). Therefore by propositionII.4(i), proving that for g ∈ g∩wsp(V ) we have gs = λ Id2n and gn = 0 would beenough to establish the 
onje
ture.Here we deal with the semisimple part.Proof. Argue by 
ontradi
tion. Let V1 be an arbitrary eigenspa
e of g andlet V2 be the sum of the other eigenspa
es. If g 6= λ Id2n, then both V1 and
V2 are non-zero and by proposition II.4(ii) and (iii) they are ω-perpendi
ular,
omplementary symple
ti
 subspa
es of V . Let x ∈ X0 be any point. Sin
e gpreserves TxX by part II it follows that TxX = (TxX∩V1)⊕(TxX∩V2). But thenboth (TxX∩Vi) ⊂ Vi are Lagrangian subspa
es, hen
e have 
onstant (independentof x) dimensions. Hen
e TxX0 = (TxX0∩V1)⊕ (TxX0∩V2) is a sum of two ve
torbundles and from proposition I.5 we get that X is a produ
t of two Lagrangiansubvarieties, 
ontradi
ting our assumption that X ′ is inde
omposable.

�IV. Nilpotent part � X ′ is singularLemma IV.4. Assume X ′ ⊂ P(V ) is any 
losed subvariety preserved by thea
tion of exp(tg) for some nilpotent endomorphism g ∈ gl(V ). If v is a point ofthe a�ne 
one over X ′ and m is an integer su
h that gm+1(v) = 0 and gm(v) 6= 0,then [gm(v)] ∈ P(V ) is in X ′.Proof. Point [gm(v)] ∈ P(V ) is just the limit of [exp(tg)(v)] as t goes to ∞.
�Lemma IV.5. Assume g ∈ gl(V ) is nilpotent and gm+1 = 0, gm 6= 0 for aninteger m ≥ 1. Let X ⊂ V be an a�ne 
one over some irredu
ible proje
tive sub-variety in P(V ), whi
h is preserved by the a
tion of exp(tg), but is not 
ontainedin the set of the �xed points. Assume that this a
tion preserves the tangent spa
e

TxX at every smooth point x of X. If there exists a non-zero ve
tor in V whi
his a smooth point of X 
ontained in gm(X), then X is a linear subspa
e.Proof. Step 0 - notation. We let Y to be the 
losure of gm(X), so in parti
ular
Y is irredu
ible. By lemma IV.4, we know that Y ⊂ X. Let y be a general pointof Y . Then by our assumptions y is a smooth point of both X and Y .Next denote by

Wy := (gm)−1(C∗y).You 
an think of Wy as union of those lines in V (or points in the proje
tivespa
e P(V )), whi
h under the a
tion of exp(tg) 
onverge to the line spanned by49



Jarosªaw Bu
zy«ski
y (or [y])1 as t goes to ∞ . We also note that the 
losure Wy is a linear subspa
espanned by an arbitrary element v ∈Wy and ker gm.Also we let Fy := Wy ∩X, so that:

Fy := (gm|X)−1(C∗y).Finally, v from now on will always denote an arbitrary point of Fy.Step 1 - tangent spa
e to X at points of Fy. Sin
e y is a smooth point of
X also Fy 
onsists of smooth points of X. This is be
ause the set of singularpoints is 
losed and exp(tg) invariant. By our assumptions exp(tg) preservesevery tangent spa
e to X and thus for every v ∈ Fy we have:

TvX = T 1

tm
exp(tg)(v)X = Tlimt→∞( 1

tm
exp(tg)(v)) = TyX.So the tangent spa
e to X is 
onstant over the Fy and in parti
ular Fy ⊂ TyX.Step 2 - dimensions of Y and Fy. From the de�nitions of Y and y and bystep 1 we get that for any point v ∈ Fy:

TyY = im(gm|TvX) = im(gm|TyX).Hen
e dimY = dimTyY = rk(gm|TyX).Sin
e y was a general point of Y , we have that:
dimY + dimFy = dimX + 1.So dimFy = dim ker(gm|TyX) + 1.Step 3 - the 
losure of Fy is a linear subspa
e. From the de�nition of Fy andstep 1 we know that Fy ⊂ TyX ∩Wy and

TyX ∩Wy = TyX ∩ span{v, ker gm} = span{v, ker(gm|TyX)}.Hen
e dimFy = dimTyX ∩Wy, so the 
losure of Fy is exa
tly TyX ∩Wy and
learly this 
losure is 
ontained in X. In parti
ular ker(gm|TyX) ⊂ X.Step 4 - Y is 
ontained in ker(gm|TyX). Let Z be X ∩ ker gm. By step 3 weknow that ker(gm|TyX) ⊂ Z. Now we 
al
ulate the lo
al dimension of Z at y:
dim ker(gm|TyX) ≤ dimy Z ≤ dimTyZ ≤ dim(TyX ∩ ker gm) = dim ker(gm|TyX).Sin
e the �rst and the last entries are identi
al, we must have all equalities.In parti
ular the lo
al dimension of Z at y is equal to the dimension of thetangent spa
e to Z at y. So y is a smooth point of Z and therefore there is a1This statement is not perfe
tly pre
ise, though it is true on an open dense subset. There aresome other lines, whi
h 
onverge to [y], namely those generated by v ∈ ker gm, but gk(v) = λyfor some k < m. We are not interested in those points.50
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omponent of Z passing through y, namely the linear spa
e ker(gm|TyX).Sin
e Y is 
ontained in Z (be
ause im gm ⊂ ker gm) and y ∈ Y , we must have
Y ⊂ ker(gm|TyX).Step 5 - vary y. Re
all, that by step 1 the tangent spa
e to X is the sameall over Fy. So also it is the same on every smooth point of X, whi
h falls intothe 
losure of Fy. But by step 4, Y is a subset of ker(gm|TyX), whi
h is in the
losure of Fy by step 3. So the tangent spa
e to X is the same for an open subsetof points in Y . Now apply again step 1 for di�erent y's in this open subset andwe get that X has 
onstant tangent spa
e on a dense open subset of X. This ispossible if and only if X is a linear subspa
e, whi
h 
ompletes the proof of thelemma.

�Now part IV of the theorem follows easily:Proof. By the assumptions of the theorem X is not 
ontained in any hyperplane,so in parti
ular X is not 
ontained in ker gm. So by lemma IV.4 the image gm(X)
ontains points other than 0. Next by lemma IV.5 and part II of the theorem,sin
e X 
annot be a linear subspa
e, there 
an be no smooth points of X in
gm(X).

�Smooth 
aseWe 
on
lude that parts I, III and IV of theorem IV.3 together with propositionII.4(i) and [Hum75, thm. 15.3(b)℄ imply theorem IV.2. We only note that asmooth Legendrian subvariety is either a linear subspa
e or it is inde
omposable.IV.3 Some 
ommentsConje
ture IV.1 is now redu
ed to the following spe
ial 
ase not 
overed bytheorem IV.3:Conje
ture IV.6. Let X ′ ⊂ P(V ) be an irredu
ible Legendrian subvariety. Let
g ∈ wsp(V ) be a nilpotent endomorphism and m be an integer su
h that gm 6= 0and gm+1 = 0. Assume that the a
tion of exp(tg) preserves X ′. Assume more-over, that X ′ is singular at points of the image of the rational map gm(X ′). Then
X ′ is de
omposable.We also note the improved relation between proje
tive automorphisms of aLegendrian subvariety and quadrati
 equations satis�ed by its points:Corollary IV.7. Let X ⊂ P(V ) be an irredu
ible Legendrian subvariety forwhi
h 
onje
ture IV.1 holds (for example X is smooth). If G < PGL(V ) is the51
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zy«skimaximal subgroup preserving X, then dimG = dim I2(X), where I2(X) is thespa
e of homogeneous quadrati
 polynomials vanishing on X.Proof. It follows immediately from the statement of the 
onje
ture and theoremIII.5.
�Finally, it is important to note, that theorem IV.3 part III does not implythat every torus a
ting on an inde
omposable, but singular Legendrian variety

X ′ is 
ontained in the image of Sp(V ). It only says that the interse
tion of su
ha torus with the weks-symple
ti
 part is always �nite. Therefore if there is anon-trivial torus a
ting on X ′, there is also some non-trivial 
onne
ted subgroupof Sp(V ) a
ting on X ′ and also some quadrati
 equations in the ideal of X ′.

52



Chapter VTori
 Legendrian subvarieties inproje
tive spa
eThe 
ontent of this 
hapter is published in [Bu
07
℄.We apply theorem IV.2 to 
lassify smooth tori
 Legendrian subvarieties. We
hoose appropriate 
oordinates to redu
e this problem to some 
ombinatori
s (forsurfa
e 
ase � see �V.2) and some elementary geometry of 
onvex bodies (forhigher dimensions � see �V.3). Eventually we get:Theorem V.1. Every smooth tori
 Legendrian subvariety in a proje
tive spa
eis isomorphi
 to one of the following:
• a linear subspa
e,
• P1 ×Q1 ⊂ P5,
• P1 ×Q2 ≃ P1 × P1 × P1 ⊂ P7

• or P2 blown up in three non-
olinear points.For proofs see 
orollaries V.7 and V.11. The linear subspa
e is not reallyinteresting, the produ
ts P1 × Q1 and P1 × Q2 are well known (see �I.1.2). Thelast 
ase of blow up was an original example of [Bu
07
℄.V.1 Classi�
ation of tori
 Legendrian varietiesWithin this 
hapter X is a tori
 subvariety of dimension n − 1 in a proje
tivespa
e of dimension 2n−1. We assume it is embedded tori
ally, so that the a
tionof T := (C∗)n−1 on X extends to an a
tion on the whole P2n−1, but we do notassume that the embedding is proje
tively normal. The notation is based on[Stu97℄ though we also use te
hniques of [Oda88℄. We would like to understandwhen X 
an be Legendrian with respe
t to some 
onta
t stru
ture on P2n−1 andin parti
ular, when it 
an be a smooth tori
 Legendrian variety. 53



Jarosªaw Bu
zy«skiThere are two reasons for 
onsidering non proje
tively normal tori
 varietieshere. The �rst one is that the new example we �nd is not proje
tively normal.The se
ond one is the 
onje
ture [Stu97, 
onj. 2.9℄, whi
h says that a smooth,tori
, proje
tively normal variety is de�ned by quadri
s. We do not expe
t toprodu
e a 
ounterexample to this 
onje
ture and on the other hand all smoothLegendrian varieties de�ned by quadri
s are known to be just the subadjointvarieties (see [Bu
06, thm.5.11℄).In addition we assume that either X is smooth or at least the following 
on-dition is satis�ed:(⋆) The a
tion of the torus T on P2n−1 preserves the standard 
onta
t stru
tureon P2n−1. In other words, the image of T → PGL2n is 
ontained in theimage of Sp2n → PGL2n.In the 
ase where X is smooth, the (⋆) 
ondition is always satis�ed by theoremIV.2. But for some statements below we do not need non-singularity, so we onlyassume (⋆).Theorem V.2. Let X ⊂ P2n−1 be a tori
 (in the above sense) non-degenerateLegendrian subvariety satisfying (⋆). Then there exists a 
hoi
e of symple
ti

oordinates on V and 
oprime integers a0 ≥ a1 ≥ . . . ≥ an−1 > 0 su
h that X isthe 
losure of the image of the following map:
T ∋ (t1, . . . , tn−1) 7→ [−a0t

a1

1 t
a2

2 . . . t
an−1

n−1 , a1t
a0

1 , a2t
a0

2 , . . . , an−1t
a0

n−1,

t−a1

1 t−a2

2 , . . . , t
−an−1

n−1 , t−a0

1 , t−a0

2 , . . . , t−a0

n−1] ∈ P2n−1.In other words, X is the 
losure of the orbit of a point
[−a0, a1, a2, . . . , an−1, 1, 1, . . . 1] ∈ P2n−1under the torus a
tion with weights

w0 := (a1, a2, . . . , an−1),

w1 := (a0, 0, . . . , 0), w2 := (0, a0, 0, . . . , 0), . . . , wn−1 := (0, . . . , 0, a0)and − w0,−w1, . . . ,−wn−1.Moreover every su
h X is a non-degenerate tori
 Legendrian subvariety.We are aware that for many 
hoi
es of the ai's from the theorem, the a
tionof the torus on X (and on P2n−1) is not faithful, so that for su
h examples abetter 
hoi
e of 
oordinates 
ould be made. However, we are willing to pay thepri
e of taking a quotient of T to get a uniform des
ription. One advantageof the des
ription given in the theorem is that a part of it is almost indepen-dent of the 
hoi
e of the ai's. This part is the (n− 1)-dimensional �o
tahedron�
conv{w1, . . . wn−1,−w1, . . .− wn−1} ⊂ Zn−1 ⊗ R.54



Algebrai
 Legendrian varieties Chapter VProof. Assume X is Legendrian with respe
t to a symple
ti
 form ω, that Xis non-degenerate, that the torus T a
ts on P2n−1 preserving X and satis�es (⋆).Repla
ing if ne
essary T by some 
overing we may assume that T → PGL2nfa
torises through a maximal torus TSp2n
⊂ Sp2n:

T → TSp2n
⊂ Sp2n → PGL2n.This implies, that for an appropriate symple
ti
 basis the variety X is the
losure of the image of the map T → P2n−1 given by:

T ∋ t 7→ [x0t
w0 , x1t

w1 . . . , xn−1t
wn−1 , t−w0, t−w1 . . . , t−wn−1] ∈ P2n−1where xi ∈ C, wi ∈ Zn−1 and for v = (v1, . . . vn−1) ∈ Zn−1 we let tv := tv1

1 . . . t
vn−1

n−1 .This means thatX is the 
losure of the T -orbit of the point1 [x0, . . . xn−1, 1, . . . , 1]where T a
ts with weights w0, . . . wn−1,−w0, . . . ,−wn−1.Sin
eX is non-degenerate, the weights are pairwise di�erent. Also the weightsare not 
ontained in any hyperplane in Zn−1 ⊗ R, be
ause the dimension of T isequal to the dimension of X and we assume X has an open orbit of the T -a
tion.So there exists exa
tly one (up to s
alar) linear relation:
−a0w0 + a1w1 + . . .+ an−1wn−1 = 0.We assume that the ai's are 
oprime integers. Permuting 
oordinates appropri-ately we 
an assume that |a0| ≥ |a1| ≥ . . . ≥ |an−1| ≥ 0. After a symple
ti

hange of 
oordinates, we 
an assume without loss of generality that all the ai'sare non negative by ex
hanging wi with −wi (and xi with − 1

xi
) if ne
essary.Clearly not all the ai's are zero so in parti
ular a0 > 0 and hen
e

w0 =
a1w1 + . . .+ an−1wn−1

a0
.Therefore, if we set ei := wi

a0
for i ∈ {1, . . . , n − 1}, the points ei form a basisof a latti
e M 
ontaining all wi's. The latti
e M might be �ner than the onegenerated by the wi's. Repla
ing again T by a �nite 
over, we 
an assume thatthe a
tion of T is expressible in the terms of weights in M . Then:

w0 = a1e1 + . . .+ an−1en−1,

w1 = a0e1,...,
wn−1 = a0en−1.1Note that usually one assumes that this point is just [1,. . . ,1℄. In our 
ase we would haveto 
onsider non-symple
ti
 
oordinates. We prefer to deal with a point with more 
ompli
ated
oordinates. 55



Jarosªaw Bu
zy«skiIt remains to prove three things: that an−1 > 0, that the xi's might be 
hosenas in the statement of the theorem and �nally that every su
h variety is a
tuallyLegendrian. We will do all three together.The torus a
ts symple
ti
ally on the proje
tive spa
e, thus the tangent spa
esto the a�ne 
one are Lagrangian if and only if just one tangent spa
e at a pointof the open orbit is Lagrangian. So take the point [x0, . . . xn−1, 1, . . . , 1]. Thea�ne tangent spa
e is spanned by the following ve
tors:
v :=( x0, x1, x2, . . . , xn−1, 1, 1, 1, . . . , 1),

u1 :=( x0a1,x1a0, 0, . . . , 0, −a1,−a0, 0, . . . , 0),

u2 :=( x0a2, 0,x2a0, . . . , 0, −a2, 0,−a0, . . . , 0),...
un−1 :=(x0an−1, 0, 0, . . . ,xn−1a0, −an−1, 0, 0, . . . ,−a0).Now the produ
ts are following:

ω(ui, uj) = 0;

ω(ui, v) = 2(x0ai + xia0).Therefore the linear spa
e spanned by v and the ui's is Lagrangian if and only if:
xi = −x0

ai

a0
.In parti
ular, sin
e xi 6= 0, the ai 
annot be zero either. After another 
onformalsymple
ti
 base 
hange, we 
an assume that x0 = −a0 and then xi = ai. On theother hand, the above equation is satis�ed for the variety in the theorem. Hen
ethe theorem is proved.

�Our next goal is to determine for whi
h values of the ai's the variety X issmooth. The 
urve 
ase is not interesting at all and also very easy, so we startfrom n = 3, i.e. Legendrian surfa
es.V.2 Smooth tori
 Legendrian surfa
esWe are interested in knowing when the tori
 proje
tive surfa
e with weights oftorus a
tion
w0 :=(a1, a2), w1 :=(a0, 0), w2 :=(0, a0),

−w0 =(−a1,−a2), −w1 =(−a0, 0), −w2 =(0,−a0)56
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Figure V.1: The two examples of weights giving smooth tori
 Legendrian surfa
es.is smooth. Our assumptions on the ai's are following:
a0 ≥ a1 ≥ a2 > 0 (V.3)and a0, a1, a2 are 
oprime integers.Example V.4. Let a0 = 2 and a1 = a2 = 1 (see �gure V.1). Then X is theprodu
t of P1 and a quadri
 plane 
urve Q1.Example V.5. Let a0 = a1 = a2 = 1 (see �gure V.1). Although the embeddingis not proje
tively normal (we la
k the weight (0, 0) in the middle), the image issmooth anyway. Then X is the blow up of P2 in three non-
olinear points.We will prove there is no other smooth example.We must 
onsider two 
ases (see �gure V.2): either a0 > a1 +a2 (whi
h meansthat w0 is in the interior of the square conv{w1, w2,−w1,−w2}) or a0 ≤ a1 + a2(so that w0 is outside or on the border of the square).Geometri
ally, 
ase a0 > a1+a2 means, that the normalisation ofX is P1×P1.It is just an easy expli
it veri�
ation that X is not smooth with these additionalweights in the interior.In the other 
ase, for a vertex v of the polytope

conv{w0, w1, w2,−w0,−w1,−w2},we de�ne the sublatti
e Mv to have the origin at v and to be generated by
{w0 − v, w1 − v, w2 − v,−w0 − v,−w1 − v,−w2 − v}.Sin
e X is smooth, for every vertex v the ve
tors of the edges meeting at vmust form a basis of Mv (
ompare with [Stu97, prop.2.4 & lemma 2.2℄). Inparti
ular, if v = −w2 (it is immediate from inequalities (V.3) that v is indeed avertex), then w2 − (−w2) = (0, 2a0) 
an be expressed as an integer 
ombination57
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0Figure V.2: Due to the inequalities a0 ≥ a1 > 0 and a0 ≥ a2 > 0, the weight w0 islo
ated somewhere in the grey square. The two 
ases we 
onsider are if w0 is also insidethe square conv{w1, w2,−w1,−w2} (left �gure) or it is outside (right �gure). In the se
ond
ase, a ne
essary 
ondition to get a smooth variety, is that the two bold ve
tors generate alatti
e 
ontaining all the weights. In parti
ular the dashed ve
tor 
an be obtained as an integer
ombination of the bold ones.of w1 + w2 = (a0, a0) and −w0 + w2 = (−a1, a0 − a2) (see the right hand side of�gure V.2). So write:

(0, 2a0) = k(a0, a0) + l(−a1, a0 − a2) (V.6)for some integers k and l. It is obvious that k and l must be stri
tly positive,sin
e w2 is in the 
one generated by w1 + w2 and −w0 + w2 with the vertex at
−w2. But then (sin
e a0 − a2 ≥ 0) from equation (V.6) on the se
ond 
oordinatewe get that either k = 1 or k = 2.If k = 1, then we easily get that:

{
a0 = la1

a0 = a1 + a2.Hen
e (l − 1)a1 = a2 and by inequalities (V.3) we get l = 2 and therefore (sin
ethe ai's are 
oprime) (a0, a1, a2) = (2, 1, 1), whi
h is example V.4.On the other hand, if k = 2, then
a0 = a2and hen
e by inequalities (V.3) and sin
e the ai's are 
oprime, we get (a0, a1, a2) =

(1, 1, 1), whi
h is example V.5.Corollary V.7. If X ⊂ P5 is smooth tori
 Legendrian surfa
e, then it is either
P1 ×Q1 or P2 blown up in three non-
olinear points or plane P2 ⊂ P5.

�58



Algebrai
 Legendrian varieties Chapter VV.3 Higher dimensional tori
 Legendrian varietiesIn this se
tion we assume that n ≥ 4. By means of the geometry of 
onvex bodieswe will prove there is only one smooth tori
 non-degenerate Legendrian varietyin dimension n− 1 = 3 and no more in higher dimensions. We use theorem V.2so that we have a tori
 variety with weights:
w0 := (a1, a2, . . . , an−1),

w1 := (a0, 0, . . . 0),...
wn−1 := (0, . . . 0, a0),

− w0,−w1, . . . ,−wn−1where the ai's are 
oprime positive integers with a0 ≥ a1 ≥ . . . ≥ an−1.

−w
0

w
1

w
0

w
3

w
2

Figure V.3: The smooth example in dimension 3: (a0, a1, a2, a3) = (1, 1, 1, 1).Example V.8. Let n = 4 and (a0, a1, a2, a3) = (1, 1, 1, 1). Then the related tori
variety is P1 × P1 × P1 (see �gure V.3).Further, let A be the polytope de�ned by the weights:
A := conv{w0, w1, . . . , wn−1,−w0,−w1, . . . ,−wn−1} ⊂ Zn−1 ⊗ R.Lemma V.9. Let I, J ⊂ {1, . . . , n−1} be two 
omplementary subsets of indexes.(a) Assume i1, i2 ∈ I and i1 6= i2. If

∣∣∣∣∣
∑

i∈I

ai −
∑

j∈J

aj

∣∣∣∣∣ < a0,then the interval (wi1, wi2) is an edge of A. 59



Jarosªaw Bu
zy«ski(b) Assume k ∈ I and l ∈ J . If
∑

i∈I

ai −
∑

j∈J

aj > a0,then both intervals (w0, wk) and (w0,−wl) are edges of A.(
) If k, l ∈ {1, . . . , n− 1} and k 6= l, then (wk,−wl) is an edge of A.Proof. Fix ǫ > 0 small enough, set α :=
∑

i∈I ai −
∑

j∈J aj and de�ne thefollowing hyperplanes in Zn−1 ⊗ R:
Ha :=

{
∑

i∈I

xi − (1 − ǫ)
∑

j∈J

xj = a0

}
,

Hb :=

{
(a0 − ak)

(
∑

i∈I

xi −
∑

j∈J

xj − α

)
+ (α− a0) (xk − ak) = 0

}
,

H ′
b :=

{
(a0 + al)

(
∑

i∈I

xi −
∑

j∈J

xj − α

)
+ (α− a0) (xl + al) = 0

}and Hc := {xk − xl = a0} .Assuming the inequality of (a), Ha ∩ A is equal to conv{wi | i ∈ I} and therest of A lies on one side of Ha. So Ha is a supporting hyperplane for the fa
e
conv{wi | i ∈ I}, whi
h is a simplex of dimension (#I − 1) and therefore all itsedges are also edges of A as 
laimed in (a).Next assume that the inequality of (b) holds. Then Hb (respe
tively H ′

b) is asupporting hyperplane for the edge (w0, wk) (respe
tively (w0,−wl)).Similarly, in the 
ase of (
), Hc is a supporting hyperplane for {wk,−wl}.
�Theorem V.10. Let X ⊂ P2n−1 be a tori
 non-degenerate Legendrian variety ofdimension n − 1 satisfying (⋆) (see page 54). If n ≥ 4 and normalisation of Xhas at most quotient singularities, then n = 4 and X = P1 × P1 × P1.Proof. Sin
e the normalisation of X has at most quotient singularities, it followsthat the polytope A is simple, i.e. every vertex has exa
tly n−1 edges (see [Ful93℄or [Oda88, �2.4, p. 102℄). We will prove this is impossible, unless n = 4 and

(a0, a1, a2, a3) = (1, 1, 1, 1).If w0 ∈ B := conv{w1, . . . , wn−1,−w1, . . .− wn−1}, then A is just equal to Band 
learly in su
h a 
ase every vertex of A has 2(n− 2) edges. Hen
e more than
n− 1 for n ≥ 4.60



Algebrai
 Legendrian varieties Chapter VThus from now on we 
an assume that a1 + . . . + an−1 > a0. So by lemmaV.9(b), (w0, wi) is an edge for every i ∈ {1, . . . , n− 1}.Choose any j ∈ {1, . . . , n− 1} and set I := {1, . . . , j − 1, j + 1, . . . , n− 1}.If either ∣∣∣∣∣

(
∑

i∈I

ai

)
− aj

∣∣∣∣∣ < a0 or
(
∑

i∈I

ai

)
− aj > a0,then using lemma V.9 we 
an 
ount the edges at either wi or w0 and see thatthere is always more than n− 1 of them. We note that aj −

(∑
i∈I ai

)
≥ a0 neverhappens due to our assumptions on the ai's.Therefore the remaining 
ase to 
onsider is

(
∑

i∈I

ai

)
− aj = a0,where the equality holds for every j ∈ {1, . . . , n− 1}. This implies:

a1 = a2 = . . . = an−1 =
1

n− 3
a0.Sin
e the ai's are positive integers and 
oprime, we must have

(a0, a1, . . . , an−1) = (n− 3, 1, . . . , 1)whi
h is exa
tly example V.8 for n = 4. Otherwise, if n ≥ 5 we 
an take
J := {j1, j2} for any two di�erent j1, j2 ∈ {1, . . . , n − 1} and set I to be the
omplement of J . Then #I ≥ 2 and by lemma V.9(a) and (
) there are too manyedges at the wi's.

�Corollary V.11. If X ⊂ P2n−1 is a smooth tori
 Legendrian subvariety and
n ≥ 4, then it is either a linear subspa
e or n = 4 and X = P1 × P1 × P1.

�
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Chapter VIExamples of quasihomogeneousLegendrian varietiesThe 
ontent of this 
hapter is published in [Bu
07b℄.We 
onstru
t a family of examples of Legendrian subvarieties in proje
tivespa
es. Although most of them are singular, a new example of a smooth Legen-drian variety in dimension 8 is in this family. The 8-fold has interesting properties:it is a 
ompa
ti�
ation of the spe
ial linear group, a Fano manifold of index 5and Pi
ard number 1 (see theorem VI.4(b)). Also we show how this 
onstru
tiongeneralises to give new smooth examples in dimensions 5 and 14 (see �VI.2.1).In �VI.1 we introdu
e the notation for this 
hapter. In �VI.2 we formulate theresults and make some 
omments on possible generalisations. In �VI.3 we studythe stru
ture of a group a
tion related to the problem. In �VI.4 we �nally provethe results.VI.1 Notation and de�nitionsFor this 
hapter we �x an integer m ≥ 2.Ve
tor spa
e VLet V be a ve
tor spa
e over 
omplex numbers C of dimension 2m2, whi
h weinterpret as a spa
e of pairs of m×m matri
es. The 
oordinates are: aij and bijfor i, j ∈ {1, . . .m}. By A we denote the matrix (aij) and similarly for B and
(bij).Given two m × m matri
es A and B, by (A,B) we denote the point of theve
tor spa
e V , while by [A,B] we denote the point of the proje
tive spa
e P(V ).Sometimes, we will represent some linear maps V −→ V and some 2-linearforms V ⊗ V −→ C as 2m2 × 2m2 matri
es. In su
h a 
ase we will assume the62



Algebrai
 Legendrian varieties Chapter VI
oordinates on V are given in the lexi
ographi
al order:
a11, . . . , a1m, a21, . . . , amm, b11, . . . , b1m, b21, . . . , bmm.Symple
ti
 form ωOn V we 
onsider the standard symple
ti
 form

ω
(
(A,B), (A′, B′)

)
:=
∑

i,j

(aijb
′
ij − a′ijbij) = tr

(
A(B′)T −A′BT

)
. (VI.1)Further we set J to be the matrix of ω:

J := M(ω) =

[
0 Idm2

− Idm2 0

]
.Varieties Y , Xinv(m) and Xdeg(m, k)We 
onsider the following subvariety of P(V ):

Y :=
{
[A,B] ∈ P(V ) | ABT = BTA = λ2 Idm for some λ ∈ C

}
. (VI.2)The square at λ seems to be irrelevant here, but it slightly simpli�es the notationin the proofs of theorem VI.4(b) and proposition VI.10(ii). Although it is notessential for the 
ontent of this 
hapter, we note that Y is F -
ointegrable.Further we de�ne two types of subvarieties of Y :

Xinv(m) :=

{[
g, (g−1)T

]
∈ P(V ) | det g = 1

}
,

Xdeg(m, k) :=
{

[A,B] ∈ P(V ) | ABT = BTA = 0, rkA ≤ k, rkB ≤ m− k
}
,where k ∈ 0, 1, . . .m. The varieties Xdeg(m, k) have been also studied by [Str82℄and [MT99℄. Xinv(m) (espe
ially Xinv(3)) is the main obje
t of this 
hapter.Automorphisms ψµFor any µ ∈ C∗ we let ψµ be the following linear automorphism of V :

ψµ

(
(A,B)

)
:= (µA, µ−1B).Also the indu
ed automorphism of P(V ) will be written in the same way:

ψµ

(
[A,B]

)
:= [µA, µ−1B]. 63



Jarosªaw Bu
zy«skiGroups G and G̃, Lie algebra g and their representationWe set G̃ := GLm ×GLm and let it a
t on V by:
(g, h) ∈ G̃, g, h ∈ GLm, (A,B) ∈ V

(g, h) · (A,B) := (gTAh, g−1B(h−1)T ).This a
tion preserves the symple
ti
 form ω.We will mostly 
onsider the restri
ted a
tion of G := SLm × SLm < G̃.We also set g := slm× slm to be the Lie algebra of G and we have the tangenta
tion of g on V :
(g, h) · (A,B) = (gTA+ Ah,−gB − BhT ).Though we denote the a
tion of the groups G, G̃ and the Lie algebra g by thesame · we hope it will not lead to any 
onfusion. Also the indu
ed a
tion of Gand G̃ on P(V ) will be denoted by ·.Orbits INVm and DEGm

k,lWe de�ne the following sets:
INVm :=

{[
g,
(
g−1
)T]

∈ P(V ) | det g = 1

}
,

DEGm
k,l :=

{
[A,B] ∈ P(V ) | ABT = BTA = 0, rkA = k, rkB = l

}
,so that Xinv(m) = INVm and Xdeg(m, k) = DEGm

k,m−k.Clearly, if k + l > m, then DEGm
k,l is empty, so whenever we are 
onsidering

DEGm
k,l we will assume k + l ≤ m.Elementary matri
es Eij and points p1 and p2Let Eij be the elementary m × m matrix with unit in the ith row and the jth
olumn and zeroes elsewhere.We distinguish two points p1 ∈ DEGm

1,0 and p2 ∈ DEGm
0,1:

p1 := [Emm, 0] and p2 := [0, Emm]These points will be usually 
hosen as ni
e representatives of the 
losed orbits
DEGm

1,0 and DEGm
0,1.64



Algebrai
 Legendrian varieties Chapter VISubmatri
es - extra
ting rows and 
olumnsAssume A is an m ×m matrix and I, J are two sets of indi
es of 
ardinality kand l respe
tively:
I := {i1, i2, . . . , ik | 1 ≤ i1 < i2 < . . . < ik ≤ m} ,

J := {j1, j2, . . . , jl | 1 ≤ j1 < j2 < . . . < jl ≤ m} .Then we denote by AI,J the (m−k)×(m−l) submatrix of A obtained by removingrows of indi
es I and 
olumns of indi
es J . Also for a set of indi
es I we denoteby I ′ the set of m− k indi
es 
omplementary to I.We will also use a simpli�ed version of the above notation when we removeonly a single 
olumn and single row: Aij denotes the (m−1)× (m−1) submatrixof A obtained by removing i-th row and j-th 
olumn, i.e. Aij = A{i},{j}Also in the simplest situation where we remove only the last row and the last
olumn, we write Am, so that Am = Amm = A{m},{m}.VI.2 Main resultsIn this 
hapter we give a 
lassi�
ation1 of Legendrian subvarieties in P(V ) thatare 
ontained in Y .Theorem VI.3. Let proje
tive spa
e P(V ), varieties Y , Xinv(m), Xdeg(m, k) andautomorphisms ψµ be de�ned as in �VI.1. Assume X ⊂ P(V ) is an irredu
iblesubvariety. Then X is Legendrian and 
ontained in Y if and only if X is one ofthe following varieties:1. X = ψµ(Xinv(m)) for some µ ∈ C∗ or2. X = Xdeg(m, k) for some k ∈ {0, 1, . . .m}.The idea of the proof of theorem VI.3 is based on the observation that everyLegendrian subvariety that is 
ontained in Y must be invariant under the a
tionof the group G. This is explained in �VI.3. A proof of the theorem is presentedin �VI.4.1.Also we analyse whi
h of the above varieties appearing in 1. and 2. are smooth:Theorem VI.4. With the de�nition of Xinv(m) as in �VI.1, the family Xinv(m)
ontains the following varieties:(a) Xinv(2) is a linear subspa
e.1This problem was suggested by Sung Ho Wang. 65



Jarosªaw Bu
zy«ski(b) Xinv(3) is smooth, its Pi
ard group is generated by a hyperplane se
tion.Moreover Xinv(3) is a 
ompa
ti�
ation of SL3 and it is isomorphi
 to ahyperplane se
tion of Grassmannian Gr(3, 6). The 
onne
ted 
omponent of
Aut(Xinv(3)) is equal to G = SL3 × SL3 and Xinv(3) is not a homogeneousspa
e.(
) Xinv(4) is the 15 dimensional spinor variety S6.(d) For m ≥ 5, the variety Xinv(m) is singular.A proof of the theorem is explained in �VI.4.3.VarietyXinv(3) is an original example of [Bu
07b℄. Also it is the �rst des
ribedexample of a smooth non-homogeneous Legendrian variety of dimension biggerthan 2 (see �I.1.2). This example is very 
lose to a homogeneous one, namelyit is isomorphi
 to a hyperplane se
tion of Gr(3, 6), a well known subadjointvariety. So a natural question arises, whether general hyperplane se
tions of otherLegendrian varieties admit a Legendrian embedding. The answer is yes and weexplain it (as well as many 
on
lusions from this surprisingly simple observation)in 
hapter VII.Theorem VI.5. With the de�nition of Xdeg(m) as in �VI.1, variety Xdeg(m, k)is smooth if and only if k = 0 , k = m or (m, k) = (2, 1). In the �rst two 
ases,

Xdeg(m, 0) and Xdeg(m,m) are linear spa
es, while Xdeg(2, 1) ≃ P1×P1×P1 ⊂ P7.A proof of the theorem is presented in �VI.4.2.VI.2.1 Generalisation: Representation theory and furtherexamplesThe interpretation of theorem VI.4 (b) and (
) 
an be following: We take theex
eptional Legendrian variety Gr(3, 6), sli
e it with a linear se
tion and we geta des
ription, whi
h generalised to matri
es of bigger size, gives the bigger ex
ep-tional Legendrian variety S6. A similar 
onne
tion 
an be established betweenother ex
eptional Legendrian varieties (see �I.1.2).For instan
e, assume that V sym is a ve
tor spa
e of dimension 2
(

m+1
2

), whi
hwe interpret as the spa
e of pairs of m × m symmetri
 matri
es A,B. Now in
P(V sym) 
onsider the subvariety Xsym

inv (m), whi
h is the 
losure of the followingset:
{[A,A−1] ∈ P(V sym)|A = AT and detA = 1}.Theorem VI.6. All the varieties Xsym

inv (m) are Legendrian and we have:(a) Xsym
inv (2) is a linear subspa
e.66



Algebrai
 Legendrian varieties Chapter VI(b) Xsym
inv (3) is smooth and it is isomorphi
 to a hyperplane se
tion of Lagran-gian Grassmannian GrL(3, 6).(
) Xsym
inv (4) is smooth and it is Grassmannian variety Gr(3, 6).(d) For m ≥ 5, the variety Xsym

inv (m) is singular.The proof is exa
tly as the proof of theorem VI.4.Similarly, we 
an take V skew to be a ve
tor spa
e of dimension 2
(
2m
2

), whi
hwe interpret as the spa
e of pairs of 2m×2m skew-symmetri
 matri
es A,B. Nowin P(V skew) 
onsider subvariety Xskew
inv (m), whi
h is the 
losure of the followingset:

{[A,−A−1] ∈ P(V skew)|A = −AT and Pfaff A = 1}.Theorem VI.7. All the varieties Xskew
inv (m) are Legendrian and we have:(a) Xskew

inv (2) is a linear subspa
e.(b) Xskew
inv (3) is smooth and it is isomorphi
 to a hyperplane se
tion of the spinorvariety S6.(
) Xskew
inv (4) is smooth and it is the 27 dimensional E7 variety.(d) For m ≥ 5, the variety Xskew

inv (m) is singular.Here the only di�eren
e is that we repla
e the determinants by the Pfa�ansof the appropriate submatri
es and also for the previous 
ases we will be pi
kingsome diagonal matri
es as ni
e representatives. Sin
e there is no non-zero skew-symmetri
 diagonal matrix, we must modify our 
al
ulations a little bit, but thereis essentially no di�eren
e in the te
hnique.Prior to [Bu
07b℄ neitherXsym
inv (3) norXskew

inv (3) have been identi�ed as smoothLegendrian subvarieties.Therefore we have established a 
onne
tion between the subadjoint varietiesof the 4 ex
eptional groups F4, E6, E7 and E8. A similar 
onne
tion was obtainedby [LM02℄.We note that m × m symmetri
 matri
es, m × m matri
es and 2m × 2mskew-symmetri
 matri
es naturally 
orrespond tom×m Hermitian matri
es with
oe�
ients in F⊗RC, where F is the �eld of, respe
tively, real numbers R, 
omplexnumbers C and quaternions H (see [LM01℄ and referen
es therein). An algebrai
relation (analogous to parts (
) of theorems VI.4 VI.6 and VI.7) between Liealgebras of types E6, E7 and E8 and 4 × 4 Hermitian matri
es with 
oe�
ientsin F ⊗R C is des
ribed in [BK94℄. 67



Jarosªaw Bu
zy«skiVI.3 G-a
tion and its orbitsRe
all the de�nition of Y in �VI.1.The following polynomials are in the homogeneous ideal of Y (the indi
es i, jbelow run through {1, . . . , m}, k is a summation index):
m∑

k=1

aikbik −
m∑

k=1

a1kb1k, (VI.8a)
m∑

k=1

aikbjk for i 6= j, (VI.8b)
m∑

k=1

akibki −
m∑

k=1

ak1bk1, (VI.8
)
m∑

k=1

akibkj for i 6= j. (VI.8d)These equations simply 
ome from eliminating λ from the de�ning equationof Y � see equation (VI.2).For the statement and proof of the following proposition, re
all our notationof �VI.1.Proposition VI.9. Let X ⊂ P(V ) be a Legendrian subvariety. If X is 
ontainedin Y , then X is preserved by the indu
ed a
tion of G on P(V ).Proof. Let Ĩ(X)2 be as in the theorem III.5 and de�ne Ĩ(Y )2 analogously.Clearly Ĩ(Y )2 ⊂ Ĩ(X)2. Also let ρ be the map des
ribed in theorem III.5. Bytheorem III.5 it is enough to show that g ⊂ ρ
(
Ĩ(Y )2

) or that the images of thequadri
s (VI.8a)�(VI.8d) under ρ generate g.We write out the details of the proof only for m = 2. There is no di�eren
ebetween this 
ase and the general one, ex
ept for the 
omplexity of notation.Let us take the quadri

qij :=

m∑

k=1

aikbjk = ai1bj1 + ai2bj2for any i, j ∈ {1, . . . , m} = {1, 2}. Also let Qij be the 2m2 × 2m2 symmetri
68
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orresponding to qij. For instan
e:
Q12 =




0 0 0 0 0 0 1
2

0
0 0 0 0 0 0 0 1

2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2

0 0 0 0 0 0 0
0 1

2
0 0 0 0 0 0




.

Choose an arbitrary (A,B) ∈ V and at the moment we want to think of itas of a single verti
al 2m2-ve
tor: (A,B) = [a11, a12, a21, a22, b11, b12, b21, b22]
T , sothat the following multipli
ation makes sense:

ρ(q12) = 2J ·Q12 · (A,B) =

=




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0







0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0







a11

a12

a21

a22

b11
b12
b21
b22




=

=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







a11

a12

a21

a22

b11
b12
b21
b22




=

=




0
0
a11

a12

−b21
−b22

0
0




ba
k to the matrix notation
=

([
0 0
a11 a12

]
,

[
−b21 −b22

0 0

])
=

=

([
0 1
0 0

]T [
a11 a12

a21 a22

]
, −

[
0 1
0 0

] [
b11 b12
b21 b22

])
= (ET

12A, −E12B).69
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zy«skiSimilar 
al
ulations show that:
2J ·Qij · (A,B) = (ET

ijA, −EijB).Next in the ideal of Y we have the following quadri
s: qij for i 6= j (see(VI.8b)) and qii − q11 (see (VI.8a)). By taking images under ρ of the linear
ombinations of those quadri
s we 
an get an arbitrary tra
eless matrix g ∈ slma
ting on V in the following way:
g · (A,B) = (gTA,−gB).Exponentiate this a
tion of slm to get the a
tion of SLm:
g · (A,B) = (gTA, g−1B).This proves that the a
tion of subgroup SLm×0 < G = SLm×SLm preserves

X as 
laimed in the proposition. The a
tion of the other 
omponent 0 × SLm is
al
ulated in the same way, but using quadri
s (VI.8
)�(VI.8d).
�VI.3.1 Invariant subsetsHere we want to de
ompose Y into a union of some G-invariant subsets, most ofwhi
h are orbits.Proposition VI.10.(i) The sets INVm, ψµ(INVm) and DEGm

k,l are G-invariant and they are all
ontained in Y .(ii) Y is equal to the union of all ψµ(INVm) (for µ ∈ C∗) and all DEGm
k,l (forintegers k, l ≥ 0, k + l ≤ m).(iii) Every ψµ(INVm) is an orbit of the a
tion of G. If m is odd, then INVmis isomorphi
 (as algebrai
 variety) to SLm. Otherwise if m is even, then

INVm is isomorphi
 to (SLm/Z2). In both 
ases
dimψµ(INVm) = dim INVm = m2 − 1.Proof. The proof of part (i) is an expli
it veri�
ation from the de�nitions in�VI.1.To prove part (ii), assume [A,B] is a point of Y , so ABT = BTA = λ2 Idm.First assume that the ranks of both matri
es are maximal:

rkA = rkB = m.70



Algebrai
 Legendrian varieties Chapter VIThen λ must be non-zero and B = λ2(A−1)T . Let d := (detA)−
1

m so that
det(dA) = 1and let µ := 1

dλ
. Then we have:

[A,B] =
[
A, λ2

(
A−1

)T]
=

[
dA

dλ
, dλ

(
(dA)−1

)T
]

=

=
[
µ(dA), µ−1

(
(dA)−1

)T]
= ψµ

([
(dA),

(
(dA)−1

)T])
.Therefore [A,B] ∈ ψµ(INVm).Next, if either of the ranks is not maximal:

rkA < m or rkB < m,then by (VI.2) we must have ABT = BTA = 0. So [A,B] ∈ DEGm
k,l for k = rkAand l = rkB.Now we prove (iii). The a
tion of G 
ommutes with ψµ:

(g, h) · ψµ

(
[A,B]

)
= ψµ

(
(g, h) · [A,B]

)
.So to prove ψµ(INVm) is an orbit it is enough to prove that INVm is an orbit,whi
h follows from the de�nitions of the a
tion and INVm.We have the following epimorphi
 map:

SLm −→ INVm

g 7−→ [g, (g−1)T ].If [g1, (g
−1
1 )T ] = [g2, (g

−1
2 )T ], then we must have g1 = αg2 and g1 = α−1g2 forsome α ∈ C∗. Hen
e α2 = 1 and g1 = ±g2. If m is odd and g1 ∈ SLm, then

−g1 /∈ SLm so g1 = g2. So INVm is either isomorphi
 to SLm or to SLm/Z2 asstated.
�From proposition VI.10(ii) we 
on
lude that Xinv(m) is an equivariant 
om-pa
ti�
ation of SLm (if m is odd) or SLm/Z2 (if m is even). See [Tim03℄ andreferen
es therein for the theory of equivariant 
ompa
ti�
ations. In the setupof [Tim03, �8℄, this is the 
ompa
ti�
ation 
orresponding to the representation

W ⊕W ∗, where W is the standard representation of SLm. Therefore some prop-erties of Xinv(m) 
ould also be read from the general des
ription of group 
om-pa
ti�
ations.Proposition VI.11.(i) The dimension of DEGm
k,l is (k+l)(2m−k−l)−1. In parti
ular, if k+l = m,then the dimension is equal to m2 − 1. 71



Jarosªaw Bu
zy«ski(ii) DEGm
k,l is an orbit of the a
tion of G, unless m is even and k = l = 1

2
m.(iii) If m ≥ 3, then there are exa
tly two 
losed orbits of the a
tion of G: DEGm

1,0and DEGm
0,1.Proof. Part (i) follows from [Str82, prop 2.10℄.For part (ii) let [A,B] ∈ DEGm

k,l be any point. By Gaussian elimination andelementary linear algebra, we 
an prove that there exists (g, h) ∈ G su
h that
[A′, B′] := (g, h) · [A,B] is a pair of diagonal matri
es. Moreover, if k + l < m,then we 
an 
hoose g and h su
h that:

A′ := diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
m−k−l

),

B′ := diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
m−k−l

).Hen
e DEGm
k,l = G · [A′, B′] and this �nishes the proof in the 
ase k + l < m.So assume k + l = m. Then we 
an 
hoose (g, h) su
h that:

A′ := diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

),

B′ := diag(0, . . . , 0︸ ︷︷ ︸
k

, d, . . . , d︸ ︷︷ ︸
l

),for some d ∈ C∗. If k 6= l, then set e := d
1

l−k and let
g′ := diag(el, . . . , el

︸ ︷︷ ︸
k

, e−k, . . . , e−k

︸ ︷︷ ︸
l

).Clearly det(g′) = 1 and:
(g′, Idm) · [A′, B′] =


diag(el, . . . , el

︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

), diag(0, . . . , 0︸ ︷︷ ︸
k

, dek, . . . , dek

︸ ︷︷ ︸
l

)


where

dek = d1+ k
l−k = d

l
l−k = el.So res
aling we get:

(g′, Idm) · [A′, B′] =


diag(1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
l

), diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

)


72
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 Legendrian varieties Chapter VIand this �nishes the proof of (ii).For part (iii), denote by W1 (respe
tively, W2) the standard representationof the �rst (respe
tively, the se
ond) 
omponent of G = SLm × SLm. Then ourrepresentation V is isomorphi
 to (W1 ⊗ W2) ⊕ (W ∗
1 ⊗ W ∗

2 ). For m ≥ 3 therepresentation Wi is not isomorphi
 to W ∗
i and therefore V is a union of twoirredu
ible non-isomorphi
 representations, so there are exa
tly two 
losed orbitsof this a
tion on P(V ). These orbits are simply DEGm

1,0 and DEGm
0,1.

�VI.3.2 A
tion of G̃The a
tion of G̃ extends the a
tion of G, but it does not preserve Xinv(m). Sowe will only 
onsider the a
tion of G̃ when speaking of Xdeg(m, k).We have properties analogous to proposition VI.11 (ii) and (iii) but with noex
eptional 
ases:Proposition VI.12.(i) Every DEGm
k,l is an orbit of the a
tion of G̃.(ii) For every m there are exa
tly two 
losed orbits of the a
tion of G̃: DEGm

1,0and DEGm
0,1.Proof. This is exa
tly as the proof of proposition VI.11 (ii) and (iii).

�VI.4 Legendrian varieties in YIn this se
tion we prove the main results of the 
hapter.VI.4.1 Classi�
ationWe start by proving the theorem VI.3.Proof. First assume X is Legendrian and 
ontained in Y . If X 
ontains apoint [A,B] where both A and B are invertible, then by proposition VI.9 it must
ontain the orbit of [A,B], whi
h by proposition VI.10(ii) and (iii) is equal to
ψµ(INVm) for some µ ∈ C∗. But the dimension of X is m2 − 1 whi
h is exa
tlythe dimension of ψµ(INVm) (see proposition VI.10(iii)), so

X = ψµ(INVm) = ψµ(Xinv(m)). 73



Jarosªaw Bu
zy«skiOn the other hand, if X does not 
ontain any point [A,B] where both Aand B are invertible, then in fa
t X is 
ontained in the lo
us Y0 := {[A,B] :
ABT = BTA = 0}. This lo
us is just the union of all DEGm

k,l and its irredu
ible
omponents are the 
losures of DEGm
k,m−k, whi
h are exa
tly Xdeg(m, k). So inparti
ular every irredu
ible 
omponent has dimension m2 − 1 (see propositionVI.11(i)) and hen
e X must be one of these 
omponents.Therefore it remains to show that all these varieties are Legendrian.The fa
t that Xdeg(m, k) is a Legendrian variety follows from [Str82, pp524�525℄. Stri
kland proves there that the a�ne 
one over Xdeg(m, k) (orW (k,m−k)in the notation of [Str82℄) is the 
losure of a 
onormal bundle. Conormal bundlesare 
lassi
al examples of Lagrangian varieties (see example II.6).Sin
e ψµ preserves the symple
ti
 form ω, it is enough to prove that Xinv(m)is Legendrian.The group G a
ts symple
ti
ally on V and the a
tion has an open orbit on

Xinv(m) � see proposition VI.10 (iii). Thus the tangent spa
es to the a�ne 
oneover Xinv(m) are Lagrangian if and only if just one tangent spa
e at a point ofthe open orbit is Lagrangian.So we take [A,B] := [Idm, Idm]. Now the a�ne tangent spa
e to Xinv(m) at
[Idm, Idm] is the linear subspa
e of V spanned by (Idm, Idm) and the image of thetangent a
tion of the Lie algebra g. We must prove that for every four tra
elessmatri
es g, h, g′, h′ we have:

ω
(
(g, h) · (Idm, Idm), (g′, h′) · (Idm, Idm)

)
= 0 and (VI.13a)

ω
(
(Idm, Idm), (g, h) · (Idm, Idm)

)
= 0. (VI.13b)Equality (VI.13a) is true without the assumption on the tra
e of the matri
es:

ω
(
(g, h) · (Idm, Idm), (g′, h′) · (Idm, Idm)

)

= ω
((
gT + h, −(g + hT )

)
,
(
(g′)T + h′, −(g′ + (h′)T )

) )by (VI.1)
= tr

(
−
(
gT + h

) (
(g′)T + h′

)
+
(
g + hT

) (
g′ + (h′)T

) )
= 0.For equality (VI.13b) we 
al
ulate:

ω
(
(Idm, Idm), (g, h) · (Idm, Idm)

)

= ω
(
(Idm, Idm),

(
gT + h, −(g + hT )

) )by (VI.1)
= − tr(gT + h) − tr(g + hT ) = 0.Hen
e we have proved that the 
losure of INVm is Legendrian.
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Algebrai
 Legendrian varieties Chapter VIVI.4.2 Degenerate matri
esBy [Str82, prop. 1.3℄ the ideal of Xdeg(m, k) is generated by the 
oe�
ients of
ABT , the 
oe�
ients of BTA, the (k + 1) × (k + 1)-minors of A and the (m −
k + 1) × (m − k + 1)-minors of B. In short, we will say that the equations of
Xdeg(m, k) are given by:

ABT = 0, BTA = 0, rk(A) ≤ k, rk(B) ≤ m− k. (VI.14)Lemma VI.15. Assume m ≥ 2 and 1 ≤ k ≤ m− 1. Then:(i) The tangent 
one to Xdeg(m, k) at p1 is a produ
t of a linear spa
e of di-mension (2m− 2) and the a�ne 
one over Xdeg(m− 1, k − 1).(i') The tangent 
one to Xdeg(m, k) at p2 is a produ
t of a linear spa
e of di-mension (2m− 2) and the a�ne 
one of Xdeg(m− 1, k).(ii) Xdeg(m, k) is smooth at p1 if and only if k = 1.(ii') Xdeg(m, k) is smooth at p2 if and only if k = m− 1.Proof. We only prove (i) and (ii), while (i') and (ii') follow in the same way byex
hanging aij and bij . Consider equations (VI.14) of Xdeg(m, k) restri
ted to thea�ne neighbourhood of p1 obtained by substituting amm = 1. Taking the lowestdegree part of these equations we get some of the equations of the tangent 
oneat p1 (re
all our 
onvention on the notation of submatri
es � see �VI.1):
bim = bmi = 0, AmB

T
m = 0, BT

mAm = 0,

rkAm ≤ k − 1, rkBm ≤ m− k.These equations de�ne the produ
t of the linear subspa
e Am = Bm = 0, bim =
bmi = 0 and the a�ne 
one over Xdeg(m− 1, k− 1) embedded in the set of thosepairs of matri
es, whose last row and 
olumn are zero: aim = ami = 0, bim = bmi =
0. So the variety de�ned by those equations is irredu
ible and its dimension isequal to (m− 1)2 + 2m− 2 = m2 − 1 = dimXdeg(m, k). Sin
e this 
ontains thetangent 
one we are interested in and by �I.3.8(1), they must 
oin
ide as 
laimedin (i).Next (ii) follows immediately, sin
e for k = 1 the equations above redu
e to

bim = bmi = 0, and Am = 0and hen
e the tangent 
one is just the tangent spa
e, so p1 is a smooth point of
Xdeg(m, 1). Conversely, if k > 1, then Xdeg(m− 1, k− 1) is not a linear spa
e, soby (i) the tangent 
one is not a linear spa
e either and X is singular at p1 � see�I.3.8(3).
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Jarosªaw Bu
zy«skiNow we 
an prove theorem VI.5:Proof. It is obvious from the de�nition ofXdeg(m, k), thatXdeg(m, 0) = {A = 0}and Xdeg(m,m) = {B = 0}, so these are indeed linear spa
es.Therefore assume 1 ≤ k ≤ m − 1. But Xdeg(m, k) is G̃ invariant (see propo-sition VI.12(i)) and so is its singular lo
us S. Hen
e Xdeg(m, k) is singular if andonly if S 
ontains a 
losed orbit of G̃.So Xdeg(m, k) is smooth, if and only if it is smooth at both p1 and p2 (seeproposition VI.12(ii)), whi
h (by lemma (ii) and (ii')) holds if and only if k = 1and m = 2.To �nish the proof, it remains to verify what kind of variety is Xdeg(2, 1).Consider the following map:
P1 × P1 × P1 −→P(V ) ≃ P7

[µ1, µ2], [ν1, ν2], [ξ1, ξ2] 7−→

[
ξ1

(
µ1ν1 µ1ν2

µ2ν1 µ2ν2

)
, ξ2

(
µ2ν2 −µ2ν1

−µ1ν2 µ1ν1

)]Clearly this is the Segre embedding in appropriate 
oordinates. The image of thisembedding is 
ontained in Xdeg(2, 1) (see equation (VI.14)) and sin
e dimensionof Xdeg(2, 1) is equal to the dimension of P1×P1×P1 we 
on
lude the above mapgives an isomorphism of Xdeg(2, 1) and P1 × P1 × P1.
�VI.4.3 Invertible matri
esWe wish to determine some of the equations of Xinv(m). Clearly the equations of

Y (see (VI.8)) are quadrati
 equations of Xinv(m). To �nd other equations, were
all that
Xinv(m) :=

{[
g, (g−1)T

]
∈ P(V ) | det g = 1

}
.However, for a matrix g with determinant 1 we know that the entries of (g−1)T
onsist of the appropriate minors (up to sign) of g. Therefore we get manyinhomogeneous equations satis�ed by every pair (g, (g−1)T

)
∈ V (re
all our 
on-vention on the notation of submatri
es � see �VI.1):

det(Aij) = (−1)i+jbij and akl = (−1)k+l det(Bkl)To make them homogeneous, multiply two su
h equations appropriately:
det(Aij)akl = (−1)i+j+k+lbij det(Bkl). (VI.16)These are degree m equations, whi
h are satis�ed by the points of Xinv(m) andwe state the following theorem:76
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 Legendrian varieties Chapter VITheorem VI.17. Let m = 3. Then the quadrati
 equations (VI.8a)�(VI.8d)and the 
ubi
 equations (VI.16) generate the ideal of Xinv(3). Moreover Xinv(3)is smooth.Proof. It is enough to prove that the s
heme X de�ned by equations (VI.8a)�(VI.8d) and (VI.16) is smooth, be
ause the redu
ed subs
heme of X 
oin
ideswith Xinv(3).The s
heme X is G invariant, hen
e as in the proof of theorem VI.5 and byproposition VI.11(iii) it is enough to verify smoothness at p1 and p2. Sin
e wehave the additional symmetry here (ex
hanging aij 's with bij 's) it is enough toverify the smoothness at p1.Now we 
al
ulate the tangent spa
e to X at p1 by taking linear parts of theequations evaluated at a33 = 1. From (VI.8) we get that
b31 = b32 = b33 = b23 = b13 = 0.Now from equations (VI.16) for k = l = 3 and i, j 6= 3 we get the followingevaluated equations:

ai′j′ − ai′3a3j′ = ±bijB33(where i′ is either 1 or 2, whi
h ever is di�erent than i and analogously for j′) sothe linear part is just ai′j′ = 0. Hen
e by varying i and j we 
an get
a11 = a12 = a21 = a22 = 0.Therefore the tangent spa
e has 
odimension at least 9, whi
h is exa
tly the 
odi-mension of Xinv(3) � see VI.10(iii). Hen
e X is smooth (in parti
ular redu
ed)and X = Xinv(3).

�To des
ribe Xinv(m) for m > 3 we must �nd more equations.There is a more general version of the above property of an inverse of a matrixwith determinant 1, whi
h is less 
ommonly known.Proposition VI.18.(i) Assume A is a m × m matrix of determinant 1 and I, J are two sets ofindi
es, both of 
ardinality k (again re
all our 
onvention on indi
es andsubmatri
es � see �VI.1). Denote by B := (A−1)T . Then the appropriateminors are equal (up to sign):
detAI,J = (−1)ΣI+ΣJ detBI′,J ′.(ii) A 
oordinate free way to express these equalities is following: Assume Wis a ve
tor spa
e of dimension m, f is a linear automorphism of W and

k ∈ {0, . . . , m}. Let ∧k f be the indu
ed automorphism of ∧k W . If ∧m f =
IdVm W , then: ∧m−k

f =
∧k (∧m−1

f
)
. 77



Jarosªaw Bu
zy«ski(iii) Consider the indu
ed a
tion of G on the polynomials on V . Then the ve
torspa
e spanned by the set of equations of (i) for a �xed k is G invariant.Proof. Part (ii) follows immediately from (i), sin
e if A is a matrix of f , thenthe terms of the matri
es of the maps ∧m−k f and ∧k(
∧m−1 f) are exa
tly theappropriate minors of A and B.Part (iii) follows easily from (ii).As for (i), we only sket
h the proof, leaving the details to the reader. Firstly,redu
e to the 
ase when I and J are just {1, . . . k} and the determinant of A ispossibly ±1 (whi
h is where the sign shows up in the equality). Se
ondly if bothdeterminants detAI,J and detBI′,J ′ are zero, then the equality is 
learly satis�ed.Otherwise assume for example detAI,J 6= 0. Then performing the appropriaterow and 
olumn operations we 
an 
hange AI,J into a diagonal matrix, AI′,J and

AI,J ′ into the zero matri
es and all these operations 
an be done without 
hanging
BI′,J ′ nor detAI,J . Then the statement follows easily.

�In parti
ular we get:Corollary VI.19. Assume k, I and J are as in proposition VI.18(i).(a) If m is even and k = 1
2
m, then the equation

detAI,J = (−1)ΣI+ΣJ detBI′,J ′is homogeneous of degree 1
2
m and it is satis�ed by points of Xinv(m).(b) If 0 ≤ k < 1

2
m and l = m− 2k, then
(detAI,J)2 = (detBI′,J ′)2 · (a11b11 + . . .+ a1mb1m)lis a homogeneous equation of degree 2(m−k) satis�ed by points of Xinv(m).Proof. Clearly both equations are homogeneous. If detA = 1 and B = (A−1)T ,then the following equations are satis�ed:

detAI,J = (−1)ΣI+ΣJ detBI′,J ′, (VI.20)
1 = (a11b11 + . . . a1mb1m)l (VI.21)(equation (VI.20) follows from proposition VI.18(i) and (VI.21) follows from

ABT = Idm). Equation in (b) is just (VI.20) squared multiplied side-wise by(VI.21).So both equations in (a) and (b) are satis�ed by every pair (A, (A−1)T
) andby homogeneity also by (λA, λ(A−1)T

). Hen
e (a) and (b) hold on an open densesubset of Xinv(m), so also on whole Xinv(m).
�We know enough equations of Xinv(m) to prove the theorem VI.4:78
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 Legendrian varieties Chapter VICase m = 2 � linear subspa
eProof. To prove (a) just take the linear equations from 
orollary VI.19(a) for
k = 1:

aij = ±bi′j′,where {i, i′} = {j, j′} = {1, 2}.
�Case m = 3 � hyperplane se
tion of Gr(3, 6)Proof. For (b), Xinv(3) is smooth by theorem VI.17 and it is a 
ompa
ti�
ationof INV3 ≃ SL3 by proposition VI.10(i) and (iii).Pi
ard group of Xinv(3). The 
omplement of the open orbit

D := Xinv(3)\INV3must be a union of some orbits of G, ea
h of them must have dimension smallerthan dim INV3 = 8. So by propositions VI.10(ii), (iii), VI.11 (i) and (ii) the only
andidates are DEG3
1,1, DEG3

0,1 and DEG3
1,0. We 
laim they are all 
ontained in

Xinv(3). It is enough to prove that DEG3
1,1 ⊂ Xinv(3), sin
e the other orbits arein the 
losure of DEG3

1,1. Take the 
urve in Xinv(3) parametrised by:





t 0 0
0 1 0
0 0 t−1


 ,




t−1 0 0
0 1 0
0 0 t




 .For t = 0 the 
urve meets DEG3

1,1, whi
h �nishes the proof of the 
laim.Sin
e dimDEG3
1,1 = 7 (see proposition VI.11(i)), D is a prime divisor. Wehave Pic(SL3) = 0 and by [Har77, prop. II.6.5(
)℄ the Pi
ard group of Xinv(3) isisomorphi
 to Z with the ample generator [D].Next we 
he
k that D is linearly equivalent (as a divisor on Xinv(3)) to ahyperplane se
tion H of Xinv(3). Sin
e we already know that Pic(Xinv(3)) =

Z · [D], we must have H lin
∼ kD for some positive integer k. But there are lines
ontained in Xinv(3) (for example those 
ontained in DEG3

1,0 ≃ P2 × P2)2. So let
L ⊂ Xinv(3) be any line and we interse
t:

D · L =
1

k
H · L =

1

k
.But the result must be an integer, so k = 1 as 
laimed.2A
tually, the reader 
ould also easily �nd expli
itly some lines (or even planes) whi
hinterse
t the open orbit and 
on
lude that Xinv(3) is 
overed by lines. 79
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zy«skiComplete embedding. Sin
e D itself is de�nitely not a hyperplane se
tion of
Xinv(3), the 
on
lusion is that the Legendrian embedding of Xinv(3) is not givenby a 
omplete linear system. The natural guess for a better embedding is thefollowing:

X ′ :=

{[
1, g,

∧2
g
]
∈ P18 = P(C ⊕ V ) | det g = 1

}
,(we note that ∧2 g = (g−1)T for g with det g = 1) and one 
an verify that theproje
tion from the point [1, 0, 0] ∈ P18 restri
ted to X ′ gives an isomorphismwith Xinv(3).The Grassmannian Gr(3, 6) in its Plü
ker embedding 
an be des
ribed as the
losure of:

{[
1, g,

∧2
g,
∧3

g
]
∈ P19 = P(C ⊕ V ⊕ C) | g ∈M3×3

}and we immediately identify X ′ as the se
tion H :=
{∧3 g = 1

} of the Grass-mannian.Though it is not essential, we note that H1(OGr(3,6)) = 0 (see Kodaira vanish-ing theorem [Laz04, thm 4.2.1℄; alternatively, it follows from the fa
t that b1 = 0for Grassmannians) and hen
e the above embedding of Xinv(3) is given by the
omplete linear system.Automorphism group. It remains to 
al
ulate Aut (Xinv(3))0 � the 
on-ne
ted 
omponent of the automorphism group.The tangent Lie algebra of the group of automorphisms of a 
omplex proje
-tive manifold is equal to the global se
tions of the tangent bundle, see theoremA.7. A ve
tor �eld on Xinv(3) is also a se
tion of TGr(3, 6)|Xinv(3) and we havethe following short exa
t sequen
e:
0 −→ TGr(3, 6)(−1) −→ TGr(3, 6) −→ TGr(3, 6)|Xinv(3) −→ 0The homogeneous ve
tor bundle TGr(3, 6)(−1) is isomorphi
 to U∗ ⊗Q⊗

∧3 U ,where U is the universal subbundle inGr(3, 6)×C6 andQ is the universal quotientbundle. This bundle 
orresponds to an irredu
ible module of the paraboli
 sub-group in SL6. Cal
ulating expli
itly its highest weight and applying Bott formula[Ott95℄ we get that H1
(
TGr(3, 6)(−1)

)
= 0. Hen
e every se
tion of TXinv(3) ex-tends to a se
tion of TGr(3, 6). In other words, if P < Aut(Gr(3, 6)) ≃ PGL6 isthe subgroup preserving Xinv(3) ⊂ Gr(3, 6), then the restri
tion map

P −→ Aut (Xinv(3))0is epimorphi
.80



Algebrai
 Legendrian varieties Chapter VIThe a
tion of SL6 on ∧3
C6 preserves the natural symple
ti
 form ω′:

ω′ :
∧2 (∧3

C6
)
−→

∧6
C6 ≃ C.Sin
e the a
tion of P on P

(∧3
C6
) preserves the hyperplaneH 
ontainingXinv(3),it must also preserve H⊥ω′ , i.e. P preserves [1, 0, 0, 1] ∈ P19 = P(C ⊕ V ⊕ C).Therefore P a
ts on the quotient H/(H⊥ω′) = V and hen
e the restri
tion mapfa
torises:

P −→ Aut(P(V ), Xinv(3))0
։ Aut(Xinv(3))0.By theorem IV.2, group Aut(P(V ), Xinv(3))0 is 
ontained in the image of

Sp(V ) → PGL(V ), so by theorem III.5, proposition VI.9 and theorem VI.17
Aut (P(V ), Xinv(3))0 = G.In parti
ular Xinv(3) 
annot be homogeneous as it 
ontains more than one orbitof the 
onne
ted 
omponent of automorphism group.

�We note that the fa
t that Xinv(3) is not homogeneous 
an be also provedwithout 
al
ulating the automorphism group. Sin
e PicXinv(3) ≃ Z, it followsfrom [LM04, thm. 11℄, that Xinv(3) 
ould only be one of the subadjoint varieties.But none of them has Pi
ard group Z and dimension 8.Case m=4 � spinor variety S6Proof. To prove (
) we only need to take 30 quadrati
 equations of Y as in (VI.8)and 36 quadrati
 equations from 
orollary VI.19 (a). By proposition VI.18(iii)the s
heme X de�ned by those quadrati
 equations is G-invariant. As in theproofs of theorems VI.5 and VI.17, we only 
he
k that X is smooth at p1 and
p2 and 
on
lude it is smooth everywhere, hen
e those equations indeed de�ne
Xinv(4).Therefore Xinv(4) is smooth, irredu
ible and its ideal is generated by quadri
s,so it falls into the 
lassi�
ation of [Bu
06, thm. 5.11℄. Hen
e we have two 
hoi
esfor Xinv(4) whose dimension is 15: the produ
t of a line and a quadri
 P1×Q14 orthe spinor variety S6. The homogeneous ideal of polynomials vanishing on P1 ×
Q14 ⊂ P31 is generated by dim(SL2×SO16) = 123 linearly independent quadrati
polynomials (see theorem III.5, alternatively, one 
an 
al
ulate the equationsexpli
itly � see [Bu
05, �7.2℄ ). So Xinv(4), whi
h by the above argument isgenerated by only 66 quadrati
 equations, must be isomorphi
 to S6.
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Jarosªaw Bu
zy«skiCase m≥ 5 � singular varietiesProof. Finally we prove (d). We want to prove, that for m ≥ 5 variety Xinv(m)is singular at p1. To do that, we 
al
ulate the redu
ed tangent 
one
T :=

(
TCp1

Xinv(m)
)

red
.From equations (VI.8) we easily get the following linear and quadrati
 equationsof T (again we suggest to have a look at �VI.1):

bim = bmi = 0, AmB
T
m = BT

mAm = λ2 Idm−1for every i ∈ {1, . . .m} and some λ ∈ C∗.Next assume I and J are two sets of indi
es, both of 
ardinality k =
⌊

1
2
m
⌋and su
h that neither I nor J 
ontains m. Consider the equation of Xinv(m) asin 
orollary VI.19(b):

(detAI,J)2 = (detBI′,J ′)2 · (a11b11 + . . . a1mb1m)l.To get an equation of T , we evaluate at amm = 1 and take the lowest degree part,whi
h is simply (det ((Am)I,J))2 = 0. Sin
e T is redu
ed, by varying I and J weget that:
rkAm ≤ m− 1 − k − 1 =

⌈
1

2
m

⌉
− 2and therefore also:

AmB
T
m = BT

mAm = 0.Hen
e T is 
ontained in the produ
t of the linear spa
eW := {Am = 0, B = 0}and the a�ne 
one Û over the union of Xdeg(m − 1, k) for k ≤
⌈

1
2
m
⌉
− 2. We
laim that T = W × Û . By proposition VI.11(i), every 
omponent of W × Û hasdimension 2m−2+(m−1)2 = m2−1 = dimXinv(m), so by �I.3.8(1) the tangent
one must be a union of some of the 
omponents. Therefore to prove the 
laimit is enough to �nd for every k ≤

⌈
1
2
m
⌉
− 2 a single element of DEGm−1

k,m−k−1 thatis 
ontained in the tangent 
one.So take α and β to be two stri
tly positive integers su
h that
α =

(
1

2
m− k − 1

)
βand 
onsider the 
urve in P(V ) with the following parametrisation:


diag{tα, . . . , tα︸ ︷︷ ︸

k

, tα+β, . . . , tα+β

︸ ︷︷ ︸
m−k−1

, 1}, diag{tα+β, . . . , tα+β

︸ ︷︷ ︸
k

, tα, . . . , tα︸ ︷︷ ︸
m−k−1

, t2α+β}


 .82



Algebrai
 Legendrian varieties Chapter VIIt is easy to verify that this family is 
ontained in INVm for t 6= 0 and as t
onverges to 0, it gives rise to a tangent ve
tor (i.e. an element of the redu
edtangent 
one - see point-wise de�nition in �I.3.8) that belongs to DEGm−1
k,m−k−1.So indeed T = W × Û , whi
h for m ≥ 5 
ontains more than 1 
omponent,hen
e 
annot be a linear spa
e. Therefore by �I.3.8(3) variety Xinv(m) is singularat p1.

�
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Chapter VIIHyperplane se
tions of LegendriansubvarietiesThe 
ontent of this 
hapter is partially published in [Bu
07a℄.The Legendrian variety Xinv(3) 
onstru
ted in 
hapter VI is isomorphi
 to ahyperplane se
tion of another Legendrian variety Gr(3, 6). In this 
hapter weprove that general hyperplane se
tions of other Legendrian varieties also admit aLegendrian embedding. This gives numerous new examples of smooth Legendriansubvarieties.Theorem VII.1. Let X ⊂ P(V ) be an irredu
ible Legendrian subvariety, whi
h issmooth or has only isolated singularities. Then a general hyperplane se
tion of Xadmits a Legendrian embedding into a proje
tive spa
e of appropriate dimensionvia a spe
i�
 subsystem of the linear system O(1).More generally, assume X ⊂ P(V ) is an irredu
ible Legendrian subvarietywith singular lo
us of dimension k and H ⊂ P(V ) is a general hyperplane. Thenthere exists a variety X̃H whose singular lo
us has dimension at most k − 1 andwhi
h has an open subset isomorphi
 to the smooth lo
us of X ∩H su
h that X̃Hadmits a Legendrian embedding.The spe
i�
 linear system and 
onstru
tion of X̃H is des
ribed in �VII.1.1and there we prove that the resulting variety is Legendrian. The proof that fora general se
tion the result has the required smoothness property is presented in�VII.1.2.This simple observation has quite strong 
onsequen
es. Many resear
hers,in
luding Landsberg, Manivel, Wi±niewski, Hwang and the author of this thesis,believed that the stru
ture of smooth Legendrian subvarieties in proje
tive spa
ehad to be somehow rigid at least in higher dimensions. So far the only non-rational examples known were in dimensions 1 and 2 (see �I.1.2) and these werealso the only known to 
ome in families. Already by a naive appli
ation of ourtheorem to the subadjoint varieties we get many more examples with variousproperties:84



Algebrai
 Legendrian varieties Chapter VIIExample VII.2. The following smooth varieties and families of smooth varietiesadmit Legendrian embedding:(a) a family of K3 surfa
es of genus 9;(b) three di�erent types of surfa
es of general type;(
) some Calabi-Yau 3-folds, some Calabi-Yau 5-folds and some Calabi-Yau9-folds;(d) some varieties of general type in dimensions 3, 4 (two families for everydimension), 5,6,7 and 8 (one family per dimension);(e) some Fano varieties, like the blow up of a quadri
 Qn in a 
odimension 2hyperplane se
tion Qn−2, a family of Del Pezzo surfa
es of degree 4 andothers;(f) in�nitely many non-isomorphi
, non-homogeneous Legendrian varieties inevery dimension arising as a 
odimension k linear se
tion of P1 ×Qn+k.Example (a) agrees with the predi
tion of [LM04, �2.3℄. Examples (b) and(d) give a partial answer to the question of a possible Kodaira dimension of aLegendrian variety (also see [LM04, �2.3℄). Example (f) is a 
ounterexample tothe naive expe
tation that Legendrian variety in a su�
iently high dimensionmust be homogeneous.We also note that our previous examples also arise in this way. Example (e)for n = 2 is des
ribed in example V.5. Hyperplane se
tions of Gr(3, 6), GrL(3, 6),
S6 are studied in more details in 
hapter VI. Also non-homogeneous examplesof other authors, Bryant [Bry82℄, Landsberg and Manivel [LM04℄ 
an be re
on-stru
ted by theorem VII.1 from some varieties with only isolated singularities(see �VII.3).A more re�ned 
onstru
tion, using the de
omposable Legendrian varieties (see�III.1.2), makes a mu
h bigger list of examples, in
luding smooth Legendrianvarieties with maximal Kodaira dimension in every dimension or varieties witharbitrary rank of Pi
ard group. This is des
ribed in detail in �VII.2.All the varieties arising from theorem VII.1 and our 
onstru
tion in subse
tionVII.1.1 are embedded by a non-
omplete linear system. Therefore a naturalquestion arises: what are the smooth Legendrian varieties whose Legendrianembedding is linearly normal. Another question is whether the 
onstru
tion 
anbe inverted. So for a given Legendrian but not linearly normal embedding ofsome variety X̃, 
an we �nd a bigger Legendrian variety X, su
h that X̃ is aproje
tion of a hyperplane se
tion of X?Building upon ideas of Bryant, Landsberg and Manivel we suggest a 
onstru
-tion that provides some (but far from perfe
t) answer for the se
ond question in�VII.3. In parti
ular, we represent the example of Landsberg and Manivel as a85



Jarosªaw Bu
zy«skihyperplane se
tion of a 3-fold with only isolated singularities and the examplesof Bryant as hyperplane se
tions of surfa
es with at most isolated singularities.VII.1 Hyperplane se
tionVII.1.1 Constru
tionThe idea of the 
onstru
tion is built on the 
on
ept of symple
ti
 redu
tion (see�II.1.3). Let H ∈ P(V ∗) be a hyperplane in V . By
h := H⊥ω ⊂ Vwe denote the ω-perpendi
ular to H subspa
e of V , whi
h in this 
ase is a line
ontained in H . We think of h both as a point in the proje
tive spa
e P(V ) anda line in V . We de�ne

π : P(H)\{h} −→ P(H/h)to be the proje
tion map and for a given Legendrian subvariety X ⊂ P(V ) we let
X̃H := π(X ∩H).We have the natural symple
ti
 stru
ture ω′ on H/h determined by ω (see�II.1.3). Also X̃H is always Legendrian by proposition II.1 and lemma I.4.Note that so far we have not used any smoothness 
ondition on X.VII.1.2 Proof of smoothnessHen
e to prove theorem VII.1 it is enough to prove that for a general H ∈ P(V ∗),the map π gives an isomorphism of the smooth lo
us of X ∩ H onto its image,an open subset in X̃H .For a variety Y ⊂ Pm we denote by σ(Y ) ⊂ Pm its se
ant variety, i.e., 
losureof the union of all proje
tive lines through y1 and y2, where (y1, y2) vary throughall pairs of di�erent points of Y .Lemma VII.3. Let Y ⊂ Pm, 
hoose su
h a point y ∈ Pm that y /∈ σ(Y ) and let
π : Pm\{y} −→ Pm−1 be the proje
tion map.(a) If Y is smooth, then π gives an isomorphism of Y and π(Y ).(b) In general, π is 1 to 1 and π is an isomorphism of the smooth part of Y ontoits image. In parti
ular, the dimension of singular lo
us of Y is greater orequal to the dimension of singular lo
us of π(Y ).Proof. See [Har77, prop. IV.3.4 and exer
ise IV.3.11(a)℄. We only note thatif Y is smooth, then the se
ant variety σ(Y ) 
ontains all the embedded tangentspa
es of Y . They arise when y2 approa
hes y1.
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Algebrai
 Legendrian varieties Chapter VIINow we 
an prove theorem VII.1:Proof. By the lemma and the 
onstru
tion in �VII.1.1 it is enough to prove thatthere exists h ∈ P(V ) s.t. h /∈ σ(X ∩ h⊥ω).Given two di�erent points x1 and x2 in a proje
tive spa
e we denote by 〈x1, x2〉the proje
tive line through x1 and x2. Let
σ̃(X) ⊂X ×X × P(V ),

σ̃(X) :={(x1, x2, p)| p ∈ 〈x1, x2〉},so that σ̃(X) is the in
iden
e variety for the se
ant variety of X. Obviously,
dim(σ̃(X)) = 2 dimX + 1 = dim(P(V )) and σ̃(X) is irredu
ible. Also we let:

κ(X) ⊂σ̃(X),

κ(X) :={(x1, x2, h)| h ∈ 〈x1, x2〉 and x1, x2 ∈ h⊥ω},so that the image of the proje
tion of κ(X) onto the last 
oordinate is the lo
usof `bad' points. More pre
isely, for a point h ∈ P(V ) there exist (x1, x2) su
h that
(x1, x2, h) ∈ κ(X) if and only if h ∈ σ(X ∩ h⊥ω).We 
laim that the image of κ(X) under the proje
tion is not the whole P(V ).To see this note that the 
ondition de�ning κ(X), i.e., h ∈ 〈x1, x2〉, x1, x2 ∈ h⊥ωis equivalent to h ∈ 〈x1, x2〉 and 〈x1, x2〉 is an isotropi
 subspa
e of V . Now either
X is a linear subspa
e and then both the 
laim and the theorem are obvious orthere exist two points x1, x2 ∈ X su
h that ω(x̂1, x̂2) 6= 0 where by x̂i we meansome non-zero point in the line xi ⊂ V . Therefore κ(X) is stri
tly 
ontained in
σ̃(X) and

dim(κ(X)) < dim(σ̃(X)) = dim P(V ),so the image of κ(X) under the proje
tion 
annot be equal to P(V )1.
�Corollary VII.4. Let X ⊂ P(V ) be an irredu
ible Legendrian subvariety whosesingular lo
us has dimension at most k − 1. Let F be the 
onta
t distributionon P(V ) If H ⊂ P(V ) is a general F -
ointegrable linear subspa
e of 
odimension

k, then X̃H := X ∩ H is smooth and admits a Legendrian embedding via anappropriate subsystem of linear system O eXH
(1).

�We sket
h some proofs of examples VII.2:1The inequality on the dimensions, although simple, is essential for the proof. An analo-gous 
onstru
tion for Lagrangian subvarieties in symple
ti
 manifolds is known as symple
ti
redu
tion (see �II.1.3 for linear algebra baby version of this), but does not produ
e smoothLagrangian subvarieties. 87



Jarosªaw Bu
zy«skiProof. K3 surfa
es of (a) arise as 
odimension 4 linear se
tions of LagrangianGrassmannian GrL(3, 6). Sin
e the 
anoni
al divisor KGrL(3,6) = OGrL(3,6)(−4)(in other words GrL(3, 6) is Fano of index 4), by the adjun
tion formula, the
anoni
al divisor of the se
tion is indeed trivial. On the other hand, by [LM04,prop. 9℄ it must have genus 9. Although we take quite spe
ial (F-
ointegrable)se
tions, they fall into the 19 dimensional family of Mukai's K3-surfa
es of genus9 [Muk88℄ and they form a 13 dimensional subfamily.The other families of surfa
es as in (b) arise as se
tions of the other ex
eptionalsubadjoint varieties: Gr(3, 6), S6 and E7. They are all Fano of index 5, 10 and 18respe
tively and their dimensions are 9, 15 and 27 hen
e taking su

essive linearse
tions we get to Calabi-Yau manifolds as stated in (
). Further the 
anoni
aldivisor is very ample, so we have examples of general type as stated in (b) and(d).The Fano varieties arise as intermediate steps, before 
oming down to the levelof Calabi-Yau manifolds. Also P1 ×Qn is a subadjoint variety and its hyperplanese
tion is the blow up of a quadri
 Qn in a 
odimension 2 hyperplane se
tion.The Del Pezzo surfa
es are the hyperplane se
tions of the blow up of Q3 in a
oni
 
urve.
�VII.2 Linear se
tions of de
omposable LegendrianvarietiesAssume m1 and m2 are two positive integers, m1 ≥ m2. Let V1 ≃ C2m1+2 and

V2 ≃ C2m2+2 be two symple
ti
 ve
tor spa
es, and letX1 ⊂ P(V1) and X2 ⊂ P(V2)be two smooth, irredu
ible, non-degenerate, Legendrian subvarieties. In thissetup dimXi = mi. Consider the de
omposable variety X1 ∗ X2 ⊂ P(V1 ⊕ V2).Clearly Sing(X1 ∗X2) = X1 ⊔X2, hen
e dim
(
Sing(X1 ∗X2)

)
= m1, while

dim(X1 ∗X2) = m1 +m2 + 1.Let L be the following line bundle on X1 ×X2:
L := OX1

(1) ⊠ OX2
(−1).Also let (X1 ∗X2)0 be the smooth lo
us of X1 ∗X2.Lemma VII.5. (X1 ∗X2)0 is isomorphi
 to L•, the total spa
e of the C∗-bundleasso
iated to L (see �I.3.7).Proof. Let C∗ a
t on V1 ⊕ V2 with weight −1 on V1 and weight 1 on V2. Then

(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))/
C∗ = P(V1) × P(V2)88



Algebrai
 Legendrian varieties Chapter VIIand the quotient map:
(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))
/

C∗

−→ P(V1) × P(V2)is a prin
ipal C∗-bundle obtained by removing the zero se
tion from the totalspa
e of the line bundle OP(V1)×P(V2)(d1, d2) for some integers d1 and d2. We have,
Pic
(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))
=Pic P(V1 ⊕ V2) = Z[OP(V1⊕V2)(1)](by [Har77, prop. II.6.5(
)℄).On the other hand,

Pic
(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))
=Pic

(
P(V1) × P(V2)

)/ 〈
OP(V1)×P(V2)(d1, d2)

〉(by lemma I.6).Moreover via the isomorphism
Pic
(
P(V1) × P(V2)

)/ 〈
OP(V1)×P(V2)(d1, d2)

〉
≃ Z[OP(V1⊕V2)(1)]the 
lass of line bundle OP(V1⊕V2)(e1, e2) is mapped to OP(V1⊕V2)(e1 + e2). Hen
e

(d1, d2) = (1,−1) or (−1, 1). In both 
ases the total spa
es of the line bundlesare the same after removing the zero se
tions (the di�eren
e is only in the signof the weights of the C∗-a
tion, whi
h we ignore at this point).To �nish the proof just note that:
(X1 ∗X2)0 = (X1 ∗X2) ∩

(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))and the image of (X1 ∗X2)0 under the quotient map is equal to X1 ×X2.
�Hen
e by lemma I.6 we have:

Pic(X1 ×X2) ։ Pic(X1 ∗X2)0 = ClX1 ∗X2and the kernel of the epimorphi
 map is generated by L. If L1 ∈ PicX1 and
L2 ∈ PicX2, by [L1 ⊠ L2] we will denote a line bundle on (X1 ∗ X2)0 whi
hrepresents the image of L1 ⊠ L2 under the epimorphi
 map.Theorem VII.6. Let m1, m2, X1, X2 be as above. Let F be the 
onta
t distri-bution on P(V1 ⊕ V2) and let H ⊂ P(V1 ⊕ V2) be a general F -
ointegrable linearsubspa
e of 
odimension m1 + 1. Then X := (X1 ∗X2) ∩H is smooth, admits aLegendrian embedding and has the following properties: 89



Jarosªaw Bu
zy«ski(a) degX = degX1 · degX2;(b) KX ≃ [KX1
⊠KX2

]|X ⊗OX(m1 + 1);(
) We have the restri
tion map on the Pi
ard groups:
i∗ : Pic(X1 ×X2)

/
〈L〉 −→ PicX.If m2 ≥ 3, then i∗ is an isomorphism. If m2 = 2, then i∗ is inje
tive.In parti
ular, we have:(d) If KX1

≃ OX1
(d1) and KX2

≃ OX2
(d2), then KX ≃ OX(d1 + d2 +m1 + 1);(e) If KX1

≃ OX1
(d1) ⊗ E1 and KX2

≃ OX2
(d2) ⊗ E2, where the Ei's are linebundles 
orresponding to some e�e
tive divisors, then

KX ≃ OX(d1 + d2 +m1 + 1) ⊗ Efor some E 
orresponding to an e�e
tive divisors;(f) If m2 ≥ 3, PicX1 = Z[OX1
(1)], PicX2 = Z[OX2

(1)] and either X1 or X2 issimply 
onne
ted (for example Fano), then PicX = Z[OX(1)].Proof. Part (a) is immediate, sin
e deg(X1 ∗X2) = degX1 · degX2.Part (b) follows from lemma VII.5, �I.3.7 and the adjun
tion formula (see[Har77, prop. II.8.20℄).Part (
) follows from [RS06℄.Parts (d) and (e) are immediate 
onsequen
es of (b) and (
).Finally, part (f) follows from (
) and from [Har77, ex. III.12.6℄.
�To 
on
lude we give a further series of examples:Example VII.7. Apply the theorem to both X1 and X2 equal to the E7-variety.As a result we get X whi
h we denote by (E7)

∗2, a smooth Legendrian Fanovariety of dimension 27, Pi
ard group generated by a hyperplane se
tion and ofindex 8. Now apply the theorem to X1 being the E7-variety again andX2 = (E7)
∗2.The result, (E7)

∗3 again has the Pi
ard group generated by a hyperplane se
tionand K(E7)∗3 = O(E7)∗3(2), hen
e is very ample. Analogously we 
onstru
t (E7)
∗kand 
ombining this result with 
orollary VII.4, we get in�nitely many families ofsmooth Legendrian varieties of general type with Pi
ard group generated by a veryample 
lass in every dimension d, where 3 ≤ d ≤ 27.Example VII.8. Let X1 = P1 × Qm1−1 and X2 be arbitrary. If m1 ≥ 3 and

dimX2 ≥ 3, then X has Pi
ard group isomorphi
 to PicX2 ⊕ Z. Hen
e we 
anget a smooth Legendrian variety with arbitrarily big Pi
ard rank.90



Algebrai
 Legendrian varieties Chapter VIIExample VII.9. Let X1 = X2 = P1 × Qm−1. Let the resulting X be 
alled
(P1 ×Qm−1)∗2. Then KXi

= OXi
(−m) ⊗Ei, where Ei is e�e
tive. Hen
e

K(P1×Qm−1)∗2 = O(P1×Qm−1)∗2(−m+ 1) ⊗Efor an e�e
tive E. Constru
t analogously (P1 ×Qm−1)∗k by taking the se
tion of
((

P1 ×Qm−1
)∗(k−1)

)
∗
(
P1 ×Qm−1

)
.We get that

K(P1×Qm−1)∗k = O(P1×Qm−1)∗k(−m− 1 + k) ⊗ Eand for k > m + 1 we get that the 
anoni
al divisor 
an be written as an ampleplus an e�e
tive, so it is big. Hen
e in every dimension, it is possible to 
onstru
tmany smooth Legendrian varieties with the maximal Kodaira dimension.VII.3 Extending Legendrian varietiesOur motivation is the example of Landsberg and Manivel [LM04, �4℄, a Legen-drian embedding of a Kummer K3 surfa
e blown up in 12 points. It 
an be seen,that this embedding is given by a 
odimension 1 linear system. We want to �nd aLegendrian 3-fold in P7 whose hyperplane se
tion is this example. Unfortunately,we are not able to �nd a smooth 3-fold with these properties, but we get one withonly isolated singularities.We re
all the setup for the 
onstru
tion of the example. Let W be a ve
torspa
e of dimension n+ 1. Let Z be any subvariety in Pn = P(W ).De�nition. We let Z∗ ⊂ P̌n := P(W ∗) be the 
losure of the set of hyperplanestangent to Z at some point:
Z∗ :=

{
H ∈ P̌n | ∃z ∈ Z TzZ ⊂ H

}
.We say Z∗ is the dual variety to Z.Also let Z♯ ⊂ P(T ∗Pn) ⊂ Pn × P̌n be the 
onormal variety, i.e., the 
losureof the union of proje
tivised 
onormal spa
es over smooth points of Z. Landsbergand Manivel study in details an expli
it birational map ϕ := ϕH0,p0

: P(T ∗Pn) 99K

P2n−1 whi
h depends on a hyperplane H0 in Pn and on a point p0 ∈ H0. AfterBryant [Bry82℄ they observe that ϕ(Z) (if only makes sense) is always a Legen-drian subvariety, but usually singular. Next they study 
onditions under whi
h
ϕ(Z) is smooth. In parti
ular, they prove that the 
onditions are satis�ed when
Z is a Kummer quarti
 surfa
e in P3 in general position with respe
t to p0 and
H0 and this gives rise to their example. 91



Jarosªaw Bu
zy«skiWe want to modify the above 
onstru
tion just a little bit to obtain our 3-fold.Instead of 
onsidering Z♯ as a subvariety in
P(W ) × P(W ∗) = (W \ {0}) × (W ∗ \ {0})/C∗ × C∗,we 
onsider a subvariety X in

P2n+1 = P(W ⊕W ∗) = (W ×W ∗) \ {0}/C∗su
h that the underlying a�ne 
one ofX inW×W ∗ is the same as the underlyinga�ne pen
il of Z♯. In other words, we take X to be the 
losure of preimage of
Z♯ under the natural proje
tion map:

p : P(W ⊕W ∗) 99K P(W ) × P(W ∗).Both P(W ) and P(W ∗) are naturally embedded into P(W ⊕ W ∗). Let Hbe a hyperplane in P(W ⊕W ∗) whi
h does not 
ontain P(W ) nor P(W ∗). Set
H0 := P(W )∩H and p0 to be the point in P(W ) dual to P(W ∗)∩H . Assume His 
hosen in su
h a way that p0 ∈ H0.Theorem VII.10. Let X ⊂ P(W ⊕W ∗) ≃ P2n+1 be a subvariety 
onstru
tedas above from any irredu
ible subvariety Z ⊂ P(W ). On W ⊕ W ∗ 
onsiderthe standard symple
ti
 stru
ture (see �II.1.5) and on P(W ⊕W ∗) 
onsider theasso
iated 
onta
t stru
ture. Also assume H, H0 and p0 are 
hosen as above.Then:(i) X is a Legendrian subvariety 
ontained in the quadri
 p−1

(
P
(
T ∗P(W )

)).(ii) Let X̃H be the Legendrian variety in P2n−1 
onstru
ted from X and H as in�VII.1.1. Also 
onsider the 
losure of ϕH0,p0
(Z♯) as in the 
onstru
tion of[LM04, �4℄. Then the two 
onstru
tions agree, i.e., the 
losure ϕH0,p0

(Z♯)is a 
omponent of X̃H .(iii) The singular lo
us of X equal to the union of following:on P(W ) the singular points of Z,on P(W ∗) the singular points of Z∗ andoutside P(W )∪P(W ∗) the preimage under p of the singular lo
us of the
onormal variety Z♯.Proof. For part (i) 
onsider Ẑ ⊂ W , the a�ne 
one over Z ⊂ P(W ). The
otangent bundle to W is equal to W ⊕ W ∗. Furthermore, by our de�nition
X̂ ⊂ V , the a�ne 
one over X ⊂ P(W ⊕W ∗) is the 
onormal variety of X̂, so aLagrangian subvariety (see example II.6).92



Algebrai
 Legendrian varieties Chapter VIIFor part (ii), we 
hoose 
oordinates x0, x1, . . . , xn on W and dual 
oordinates
y0, y1, . . . , yn onW ∗ su
h that in the indu
ed 
oordinates on V the hyperplane Hhas the equation x0−yn = 0. Now restri
t to the a�ne pie
e x0 = yn = 1 on both
H and P(W ) × P(W ∗). We see expli
itly, that the proje
tion map H → P2n−1

[1, x1, . . . , xn, y
0, . . . , yn−1, 1] 7→ [y1, . . . , yn−1, y0 − xn, x1, . . . , xn−1, 1]agrees with the map ϕ from [LM04, �4℄.To �nd the singularities of X on X ∩ P(W ) as in part (iii) note that X ⊂

P(W ⊕W ∗) is invariant under the following a
tion of C∗:
t · [w, α] := [tw, t−1α].In parti
ular, points of X ∩P(W ) are �xed points of the a
tion. So let [w, 0] ∈ Xand then T[w,0]X de
omposes into the eigenspa
es of the a
tion:

T[w,0]X = T[w,0](X ∩ P(W )) ⊕ T[w,0](X ∩ Fw) (VII.11)where Fw is the �bre of the proje
tion ρ : (P(W ⊕W ∗)\P(W ∗)) → P(W ), Fw :=
ρ−1([w]). Clearly the image of X under the proje
tion ρ is Z, so the dimension ofa general �bre of ρ|X : X → Z is equal to dimX−dimZ = dim P(W )−dimZ =
codimP(W ) Z. Therefore, sin
e the dimension of the �bre 
an only grow at spe
ialpoints, we have:

dimT[w,0](X ∩ Fw) ≥ dim(X ∩ Fw) ≥ codimP(W ) Z. (VII.12)Also d[w,0](ρ|X) : T[w,0]X → T[w]Z maps T[w,0](X ∩Fw) to 0 and T[w,0](X ∩ P(W ))onto T[w]Z. Therefore:
dim T[w,0](X ∩ P(W )) ≥ dimT[w]Z ≥ dimZ. (VII.13)Now assume [w, 0] is a smooth point of X. Then adding (VII.12) and (VII.13)we get:

dimX = dimT[w,0]Xby (VII.11)
= dimT[w,0](X ∩ Fw) + dimT[w,0](X ∩ P(W ))

≥ codimP(W ) Z + dimZ = dim P(W ).By (i) the dimX is equal to the dim P(W ), so in (VII.12) and (VII.13) all theinequalities are in fa
t equalities. In parti
ular dimT[w]Z = dimZ, so [w] is asmooth point of Z.Conversely, assume [w] is a smooth point of Z, then the tangent spa
e
T[w,0]X = T[w]Z ⊕N∗

[w](Z ⊂ P(W )), 93



Jarosªaw Bu
zy«skitherefore 
learly [w, 0] is a smooth point of X.Exa
tly the same argument shows that X is singular at a point [0, α] ∈ X ∩
P(W ∗) if and only if Z∗ is singular at [α].For the last part of (iii) it is enough to note that p is a lo
ally trivial C∗-bundlewhen restri
ted to P(W ⊕W ∗)\ (P(W ) ∪ P(W ∗)).

�Corollary VII.14. Given a Legendrian subvariety Z̃ ⊂ P2n−1 we 
an take Z# :=
φ−1

H0,p0
(Z̃) to 
onstru
t a Legendrian subvariety in P(T ∗Pn). Su
h a variety mustbe the 
onormal variety to some variety Z ⊂ Pn (see 
orollary III.19). Let X ⊂

P2n+1 be the Legendrian variety 
onstru
ted from Z as above. By theorem VII.10(ii), a 
omponent of a hyperplane se
tion of X 
an be proje
ted onto Z̃.Unfortunately, in the setup of the theorem X is almost always singular (see�VII.4).Example VII.15. If Z is a Kummer quarti
 surfa
e in P3, then X is a 3-fold with 32 isolated singular points (it follows from theorem VII.10(iii) be
ausethe Kummer quarti
 surfa
e has 16 singular points, it is isomorphi
 to its dualand it has smooth 
onormal variety in P(T ∗P3)). Therefore by theorem VII.1 ageneral hyperplane se
tion of X is smooth and admits a Legendrian embedding.By theorem VII.10 the example of Landsberg and Manivel is a spe
ial 
ase of thishyperplane se
tion. Even though the 
ondition p0 ∈ H0 is a 
losed 
ondition, itsatis�es the generality 
onditions of theorem VII.1 and therefore this hyperplanese
tion 
onsists of a unique smooth 
omponent that is proje
ted isomorphi
allyonto Z̃.Example VII.16. Similarly, if Z is a 
urve in P2 satisfying the generality 
ondi-tions of Bryant [Bry82, thm G℄, then X is a surfa
e with only isolated singulari-ties and its hyperplane se
tion proje
ts isomorphi
ally onto a Bryant's Legendrian
urve.VII.4 Smooth varieties with smooth dualFurthermore we observe that a 
lassi
al problem of 
lassifying smooth varietieswith smooth dual variety 
an be expressed in terms of Legendrian varieties:Corollary VII.17. Using the notation of the previous se
tion, let QW ⊂ P(W ⊕
W ∗) be the quadri
 p−1 (P(T ∗P(W ))) � see VII.10(i). On W ⊕ W ∗ 
onsiderthe standard symple
ti
 stru
ture (see �II.1.5) and on P(W ⊕W ∗) 
onsider theasso
iated 
onta
t stru
ture (see �III.1).(i) Let Z ⊂ P(W ) be a smooth subvariety with Z∗ ⊂ P(W ∗) smooth. Let

X ⊂ P(W ⊕ W ∗) be as in the above 
onstru
tion. Then X is a smoothLegendrian variety 
ontained in QW .94



Algebrai
 Legendrian varieties Chapter VII(ii) Conversely, assume X ⊂ P(W ⊕W ∗) is irredu
ible, Legendrian and 
on-tained in QW . Let Z = X ∩ P(W ). Then Z∗ = X ∩ P(W ∗) and the varietyarising from Z in the above 
onstru
tion is exa
tly X. Moreover, if X issmooth, then Z and Z∗ are smooth.We underline that although all the smooth quadri
s of a given dimension areproje
tively isomorphi
, the 
lassi�
ation of quadri
s relatively to the 
onta
tstru
ture is more 
ompli
ated. The quadri
 QW 
an therefore be written as
x0y0 + . . . + xnyn = 0 in some symple
ti
 
oordinates x0, . . . , xn, y0, . . . , yn on
W ⊕W ∗. We note (without proof), that su
h quadri
 QW determines uniquelythe pair of Lagrangian subspa
es W and W ∗.Proof. Part (i) follows immediately from theorem VII.10(i) and (iii).To prove part (ii), 
onsider p(X) ⊂ P(T ∗P(W )). By lemma I.4 and proposi-tion II.1 p(X) is Legendrian. By 
orollary III.19, p(X) is a 
onormal variety tosome subvariety Z ⊂ P(W ). The next thing to prove is that X 
oin
ides withthe variety 
onstru
ted above from Z, i.e. that

X = p−1
(
p(X)

)
.Equivalently, it is enough to prove that X is C∗-invariant. This is provided bytheorem III.5 sin
e the quadri
 QW produ
es exa
tly the required a
tion. Finally,it follows that Z = X ∩ P(W ). Moreover, p(X) is also the 
onormal variety to

Z∗ ⊂ P(W ∗) and hen
e Z∗ = X ∩ P(W ∗). If X is in addition smooth, then Zand Z∗ are smooth by theorem VII.10(iii).
�smooth self-dual variety Z ⊂ Pn the 
orresponding Legendrianvariety X ⊂ P2n+1

Qm P1 ×Qm

P1 × Pm P1 ×Q2m

Gr(2, 5) Gr(3, 6)
S5 S6Table VII.1: The known self-dual varieties and their 
orresponding Legendrianvarieties. Note that Q2m and P1 × Pm lead to isomorphi
 Legendrian varieties.Yet their embeddings in the distinguished quadri
s are not isomorphi
.Therefore the 
lassi�
ation of smooth varieties with smooth dual is equivalentto the 
lassi�
ation of pairs (X,Q), where Q ⊂ P2n+1 is a quadri
 whi
h 
an bewritten as x0y0+. . .+xnyn = 0 in some symple
ti
 
oordinates x0, . . . , xn, y0, . . . , ynon C2n+2 and X ⊂ P2n+1 is a smooth Legendrian variety, whi
h is 
ontained in
Q. So far the only known examples of smooth varieties with smooth dual arethe smooth self-dual varieties (see [Ein86℄). From these we get some of the ho-mogeneous Legendrian varieties (see table VII.1). Therefore we 
annot hope to95



Jarosªaw Bu
zy«skiprodu
e new examples of smooth Legendrian varieties in this way. What we hopefor is to 
lassify the pairs (X,Q) as above and hen
e �nish the 
lassi�
ation ofsmooth varieties with smooth dual.
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Appendix AVe
tor �elds, forms andautomorphismsIn the 
ourse of the main part of this dissertation, parti
ularly in 
hapter IIIwe used some di�erential geometri
 fa
ts, whi
h we summarise in this appendix.Although all these fa
ts are standard or follow easily from the standard material,we reprodu
e or at least sket
h most of the proofs. We do this for the sake of
ompleteness of the material presented in the thesis and also be
ause variousauthors of textbooks use various notations and 
ombining these one 
an get very
onfused (at least this has happened to the author of this thesis).A.1 Homogeneous di�erential forms and ve
tor�eldsLet Y , Y ′ be two 
omplex manifolds and let φ : Y ′ −→ Y be a holomorphi
 map.For a k-form ω ∈ H0(Y,ΩkY ), by φ∗ω ∈ H0(Y ′,ΩkY ′) we denote the pull-ba
kof ω:
(φ∗ω)y(v1, . . . , vk) := ωφ(y)

(
Dyφ(v1), . . . ,Dyφ(vk)

)
.Now assume we have a C∗-a
tion on Y :

(t, y) 7−→ λt(y).We say that ω ∈ H0(Y,ΩkY ) is homogeneous of weight wt(ω) if
∀t ∈ C∗ λ∗tω = twt(ω)ω.For example, assume Y = An = Spec(C[y1, . . . , yn]) and C∗ a
ts via ho-motheties. We say ω ∈ ΩkAn is 
onstant, if it is a C-linear 
ombination of

dyi1 ∧ . . .∧ dyik . Constant k forms are homogeneous of weight k (not of weight 0as one 
ould possibly expe
t). Conversely, if ω ∈ H0(An,ΩkAn) is homogeneous97



Jarosªaw Bu
zy«skiof weight k, then it is 
onstant, be
ause every global form 
an be written as∑
fi1,...,ikdyi1 ∧ . . .∧dyik . Sin
e dyi1 ∧ . . .∧dyik are already of weight k, it followsthat fi1,...,ik are 
onstant fun
tions.Let µ ∈ H0(Y, TY ) be a ve
tor �eld. We say µ is homogeneous of weight

wt(µ) if
Dλt−1µ = twt(µ)µ.Lemma A.1. Let Y , Y ′ be 
omplex manifolds, both with a C∗-a
tion. Moreoverassume φ : Y ′ −→ Y is a C∗-equivariant map, ω ∈ H0(Y,ΩkY ) is a homogeneous

k-form for some k ∈ {0, 1, . . . , dimY } and µ ∈ H0(Y, TY ), ν ∈ H0(Y ′, TY ′) aretwo homogeneous ve
tor �elds.(i) ω(µ) is homogeneous and wt
(
ω(µ)

)
= wt(ω) + wt(µ);(ii) φ∗ω is homogeneous of weight wt(ω) and Dφ(ν) is homogeneous of weight

wt(ν);(iii) dω is homogeneous of weight wt(ω).Proof. This is an immediate 
al
ulation. For instan
e (i):
λ∗t (ω(µ))x(v1, . . . , vk−1) = ωλt(x)(µ,Dλt(v1), . . . ,Dλt(vk−1)) =

= (λ∗tω)x(Dλt−1(µ), v1, . . . , vk−1) = twt(ω)twt(µ)(ω(µ))x(v1, . . . , vk−1).

�A.2 Ve
tor �elds and automorphismsA.2.1 Ve
tor �elds, Lie bra
ket and distributionsLet Y be a 
omplex manifold or a smooth algebrai
 variety, let F ⊂ TY be a
orank 1 subbundle1 and let θ : TY → TY/F =: L be the quotient map, so thatthe following sequen
e is exa
t:
0 −→ F −→ TY

θ
−→ L −→ 0.Also assume U is an open subset. We say that a (possibly singular) subvariety

X ⊂ U with its smooth lo
us X0 is F -integrable if TX0 is 
ontained in F .1One 
ould also 
onsider F to be a 
orank r subbundle for any r ∈ {1 . . .dim Y }. Someof the statements below 
an be generalised to any r (not ne
essary r = 1), but the proofs getmore 
ompli
ated, espe
ially in notation. We restri
t our 
onsiderations to the r = 1 
ase, asthis is the only one used in the thesis.98



Algebrai
 Legendrian varieties Appendix AProposition A.2. With the assumptions as above:(i) dθ gives a well de�ned map of OY -modules:
dθ :

∧2
F −→ L.We refer to this map as the twisted 2-form dθ.(ii) Assume µ and ν are two ve
tor �elds on U , both 
ontained in F . Then

θ([µ, ν])(y) = dθy(µ(y), ν(y)). In parti
ular θ([µ, ν])(y) does not depend onthe ve
tor �elds, but only on their values at y.(iii) Again assume µ and ν are two ve
tor �elds on U , but now only ν is 
on-tained in F . Then again θ([µ, ν])(y) depends only on the value of ν at
y, but not on the whole ve
tor �eld. In other words the map of sheaves
F −→ L given by θ([µ, ·]) is OY -linear and hen
e it determines a map ofve
tor bundles F −→ L.(iv) If X is F -integrable, then dθ|X0

≡ 0. In parti
ular if r = 1, then
dimX ≤ rkF −

1

2
min
x∈X

(rk dθx)Proof. All the statements are analyti
ally lo
al, so it is enough to assume that
Y is a dis
 D2n ⊂ Cn with 
oordinates y1, . . . , ym, U = Y , y = 0 and that θ is anowhere vanishing se
tion of Ω1Y ⊗ L ≃ Ω1Y (the 
hoi
e of the trivialisation of
L is of 
ourse not unique):

θ =
∑

i

Aidyi = A · dy,where the 
olle
tion (A1, . . . , Am) (respe
tively (dy1, . . . , dym)T ) we denote by A(respe
tively dy). Then:
F :=

{
v ∈ TD2n |

∑

i

Aidyi(v) = 0

}
.To prove (i) note that:

dθ =
∑

i

dAi ∧ dyi = dA ∧ dy.We must 
he
k that this does not depend on the 
hoi
e of the trivialisation A of
L. So assume B is a di�erent trivialisation, so there exists g : Y −→ GL(1) ≃ C∗su
h that:

B = g · A. 99



Jarosªaw Bu
zy«skiWe must prove that dB ∧ dy restri
ted to F transforms in the same manner:
dB ∧ dy = d(g · A) ∧ dy = (dg · A + g · dA) ∧ dy =sin
e A vanish on F

= (g · dA) ∧ dy.To prove (ii) let
µ =

∑

k

µk
∂

∂yk

, (A.3)
ν =

∑

k

νk
∂

∂yk
(A.4)for some holomorphi
 fun
tions µk and νk. Sin
e µ and ν are 
ontained in F wehave: ∑

k

Akµk = 0 and ∑

l

Alνl = 0.Therefore for every k or l we have:
∑

k

∂Ak

∂yl
µk = −

∑

k

Ak
∂µk

∂yl
; (A.5a)

∑

l

∂Al

∂yk

νl = −
∑

l

Al
∂νl

∂yk

. (A.5b)Sin
e
[µ, ν] =

∑

k,l

(
νk
∂µl

∂yk

∂

∂yl
− µl

∂νk

∂yl

∂

∂yk

)
,hen
e:

θ([µ, ν]) =
∑

k,l

(
Alνk

∂µl

∂yk

− Akµl
∂νk

∂yl

)
=by (A.5)

=
∑

k,l

(
−
∂Al

∂yk
µlνk +

∂Ak

∂yl
µlνk

)
=

=
∑

k,l

(
∂Al

∂yk
(µkνl − µlνk)

)
=

=
∑

k,l

(
∂Al

∂yk
(dyk ∧ dyl) (µ, ν)

)
=

= dθ (µ, ν) .We note that the above 
al
ulation is a spe
ial 
ase of [KN96, prop. I.3.11℄,though the reader should be 
areful, as the notation in [KN96℄ is di�erent thanours and as a 
onsequen
e a 
onstant fa
tor −2 is �missing� in our formula.100



Algebrai
 Legendrian varieties Appendix AThe proof of (iii) is identi
al as the beginning of the proof of (ii).Finally to prove (iv) just use (ii) and the fa
t that the Lie bra
ket of twove
tor �elds tangent to X must be tangent to X.
�A.2.2 AutomorphismsHere we introdu
e the notation about several types of automorphisms of a mani-fold Y and its subvarietyX. Also we re
all some standard properties and relationsbetween them.Let Y be a 
omplex manifold (or respe
tively, smooth algebrai
 variety) andlet U ⊂ Y be an open subset in analyti
 (or respe
tively, Zariski) topology. By

Authol(U) (respe
tively, Autalg(U)) we denote the group of holomorphi
 (respe
-tively, algebrai
) automorphisms of U . By Aut•(U) we mean either Authol(U) or
Autalg(U), whenever spe
ifying is not ne
essary.Assume that a 
omplex Lie group (respe
tively, an algebrai
 group) G a
tson U , i.e. we have a group homomorphism G −→ Aut•(U). Also let g be the Liealgebra of G. By G0 we denote the the 
onne
ted 
omponent of identity in G.An in�nitesimal automorphism of U is a ve
tor �eld µ ∈ H0(U, TY ).Di�erentiating the a
tion map G × U −→ U by the �rst 
oordinate we get theindu
ed map g × Y −→ TY or more pre
isely g −→ H0(U, TY ). This mappreserves the Lie bra
ket (see [Akh95, thm in �1.7℄) and if the a
tion is faithful,then it is inje
tive (see [Akh95, thm in �1.5℄).The parti
ular 
ase is when G = C∗. Then we get a map C −→ H0(U, TY )and we set µC∗ to be the image of 1 ∈ C under this map. We say µC∗ is theve
tor �eld related to the C∗-a
tion. Note that µC∗ is homogeneous of weight
0. The in�nitesimal automorphisms make a sheaf TY of Lie algebras, whi
h atthe same time is an OY -module. The two stru
tures are related by the followingLeibniz rule:

∀f ∈ H0(U,OY ), ∀µ, ν ∈ H0(U, TY ) [fµ, ν] = f [µ, ν] + df(ν)µ. (A.6)The following theorem 
omparing in�nitesimal, algebrai
 and holomorphi
automorphisms for a proje
tive variety is well known and standard:Theorem A.7. Let Y be a proje
tive variety. Then:(i) Authol(Y ) is a 
omplex Lie group.(ii) Every holomorphi
 automorphism of Y is algebrai
 and hen
e
Aut(Y ) := Authol(Y ) = Autalg(Y ). 101



Jarosªaw Bu
zy«ski(iii) By aut(Y ) we denote the tangent Lie algebra to Aut(Y ). Every in�nitesimalautomorphism is tangent to some 1-parameter subgroup of Authol(Y ), sothat aut(Y ) = H0(Y, TY ).Proof. Part (i) is proved in [Akh95, �2.3℄. Part (ii) is a 
onsequen
e of [Gri74,thm IV.A℄. Part (iii) is explained in [Akh95, prop. in �1.5 & 
or. 1 in �1.8℄.
�Clearly H0(U,OY ) is a representation of G and hen
e also of g. We also havethe following Lie algebra a
tion of the sheaf of in�nitesimal automorphisms:

TY ×OY −→ OY

(µ, f) 7→ df(µ),whi
h is given by the derivation in the dire
tion of the ve
tor �eld.The a
tion of g on H0(U,OY ) is the 
omposition
g −→ H0(U, TY ) −→ gl

(
H0(U,OY )

)
.Let X ⊂ Y be a subvariety. By Aut•(U,X) we denote the respe
tive subgroupof Aut•(U) preserving the interse
tion U∩X. If Y is proje
tive, then by aut(Y,X)we mean the Lie algebra tangent to Aut•(Y,X). By autinf(U,X) we denote theLie algebra of in�nitesimal automorphisms of U preserving X, i.e.:

autinf(U,X) :=
{
µ ∈ H0(U, TY ) | ∀f ∈ I(X)|U (df)(µ) ∈ I(X)|U

}
,where I(X) ⊳ OY is the sheaf of ideals of X.Clearly, if G preserves X, then the image of g −→ H0(U, TY ) is 
ontainedin autinf(U,X). Conversely, if the image is 
ontained in autinf(U,X), then thea
tion of the 
onne
ted 
omponent G0 preserves X.Corollary A.8. If Y is proje
tive, then autinf(Y,X) = aut(Y,X).

�Moreover autinf(·, X) makes in TY a subsheaf of Lie algebras andOY -modules.A.2.3 Distributions and automorphisms preserving themIf F ⊂ TY is a 
orank 1 ve
tor subbundle (parti
ularly a 
onta
t distribution -see �III.2 for the de�nition), then by Aut•F (U), autF (Y ), autinf
F (U), Aut•F (U,X),

autF (Y,X) and autinf
F (U,X) we denote the appropriate automorphisms or in-�nitesimal automorphisms preserving F and possibly the subvariety X.For instan
e,

autinf
F (U) =

{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F

}
. (A.9)102
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F makes a sheaf of Lie algebras, but usually it is not anOY -submoduleof TY . To see that take any µ ∈ autinf

F (U) for U small enough. Assume for all
f ∈ OY (U) we have fµ ∈ autinf

F (U). Then by Leibniz rule (see equation A.6):
∀ν ∈ H0(U, F ) df(ν) · µ ∈ H0(U, F ).This 
an only happen if either:

• µ ∈ H0(U, F ) or
• F = 0, i.e. F is the rank 0 bundle.We have seen that the �rst 
ase does not happen if F is a 
onta
t distribution(unless µ = 0, see theorem III.151)). In fa
t, one 
an prove that it never happensfor all µ ∈ H0(U, F ) (remember that U is small enough), unless F = 0.If G a
ts on U and preserves the distribution F , then the map g → H0(U, TY )fa
tors through autinf

F (U). Conversely, if G is 
onne
ted, it a
ts on U and the map
g → H0(U, TY ) fa
tors through autinf

F (U), then the a
tion of G preserves F . Asa 
onsequen
e we get:Corollary A.10. If Y is proje
tive and X ⊂ Y is a subvariety, then:(i) autF (Y ) = autinf
F (Y )(ii) autF (Y,X) = autinf

F (Y,X)Proof. This follows from the above 
onsiderations and from theorem A.7.
�Further, let L be the quotient bundle and θ be the quotient map:

0 −→ F −→ TY
θ

−→ L −→ 0.If the a
tion of G on U extended to TY |U preserves F , then in the obvious waywe get the indu
ed a
tion of G on the total spa
es of L|U and L∗|U . Thesea
tions preserve the zero se
tions.Let L• and RL be as in �I.3.7.By analogy with above we want to de�ne the a
tion of autinf
F on L•. In otherwords, we de�ne a spe
ial lifting of the ve
tor �elds from autinf
F ⊂ TY to ve
tor�elds on L•.First observe that the sheaf of Lie algebras autinf

F a
ts on the sheaf L: if
s ∈ H0(U,L), then 
hoose an open subset V ⊂ U small enough and any lifting
sTY ∈ H0(V, TY ), θ(sTY ) = s|V and let µ ∈ autinf

F (U) a
t on H0(U,L) lo
ally by
s|V 7→ (µ.s)|V := θ ([sTY , µ|V ]) . (A.11)103



Jarosªaw Bu
zy«skiBy equation (A.9), this does not depend on the 
hoi
e of sTY and hen
e, byelementary properties of sheaves, it glues uniquely to an element of H0(U,L).Hen
e we get a Lie algebra representation autinf
F (U) −→ gl (H0(U,L)).Se
ondly, we 
an extend the a
tion of autinf

F on the lo
ally free sheaf L de�nedin equation (A.11) to an a
tion on RL, by requesting that the a
tion must satisfythe Leibniz rule:
t, s ∈ RL, µ ∈ autinf

F =⇒ µ.(ts) = (µ.t)s+ t(µ.s) (A.12)� lo
ally every se
tion of Lm 
an be written as a sum of produ
ts of se
tions of
L (or their inverses, if m < 0).Finally, we 
an extend this a
tion to OL• , again requesting the Leibniz rule.Eventually, we get the a
tion, whi
h we will 
all the indu
ed a
tion of autinf

Fon L•. The following property justi�es the name:Proposition A.13. If the a
tion of G preserves F , then the tangent a
tion tothe indu
ed a
tion of G on L•|U := π−1(U) is the 
omposition of g −→ autinf
F (U)and the indu
ed a
tion of autinf

F on L•.
�For a �xed µ ∈ autinf

F (U), the indu
ed map OL• |π−1(U) −→ OL•|π−1(U) is aderivation, so it 
orresponds to a ve
tor �eld µ̆ ∈ H0(π−1(U), TL•), su
h that
∀f ∈ OL• µ.f = df(µ̆). (A.14)By 
onstru
tion we also have Dπ(µ̆) = µ.A.2.4 1-form θ•With the notation and assumptions as in the previous se
tions, we have a 
anon-i
al isomorphism of line bundles τ : π∗L

≃
−→ OL• : if y ∈ Y , λ ∈ L•

y = π−1(y),
l ∈ Ly, then we set

τ(y, λ, l) := (y, λ, λ(l)).We let θ• := τ ◦ π∗θ ◦ Dπ:2
TL• Dπ

−→ π∗TY
π∗θ
−→ π∗L

τ
−→ OL• .Lemma A.15. For every µ ∈ autinf

F (U) the indu
ed in�nitesimal automorphism
µ̆ preserves θ•, i.e.:

Lµ̆(θ•) := lim
t→0

γµ̆(t)
∗θ• − θ•

t
= 0,where Lµ̆ is the Lie derivative operator and γµ̆(t) is the lo
al 1-parameter groupof transformations of L• determined by µ̆.2In [Bea98℄, [LeB95℄ the authors denote θ• simply as π∗θ, sin
e the other maps are natural.This is a bit 
onfusing to some people (in
luding the author of this thesis, but see also a
omment in [SCW04℄ about a small mistake in [KPSW00℄) and therefore we underline that θ•is the 
omposition of three maps.104
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 Legendrian varieties Appendix AProof. For the simpli
ity of notation assume γµ̆(t) is a global transformation.The following diagram of ve
tor bundles is 
ommutative:
TL• Dπ

//

Dγµ̆(t)

��

π∗TY
π∗θ

//

Dπγµ(t)

��

π∗L
τ

//

γπ∗L
µ (t)

��

OL•

γµ̆(t)×idC

��

TL• Dπ
// π∗TY

π∗θ
// π∗L

τ
// OL•where by Dπγµ(t) we mean the automorphism of π∗TY , whi
h is determined by

Dγµ(t) : TY → TY and γµ̆(t) : L• → L•; similarly γπ∗L
µ (t) is determined by

Dγµ(t) : TY/F → TY/F and γµ̆(t) : L• → L•. The 
omposition of the wholeupper row is equal to θ•. The 
omposition of the left most verti
al arrow andthe whole lower row is equal to γµ̆(t)∗θ•. Sin
e the right arrow is the identityon the se
ond 
omponent OL• = L• × C and sin
e the diagram is 
ommutative,both forms take the same values on every ve
tor v ∈ TL•, hen
e are equal andthe 
laim follows.
�We also give a lo
al des
ription of θ• and dθ•. So now assume Y ≃ D2m andlet y1, . . . , ym be some 
oordinates on Y . Let z be a linear 
oordinate on the �breof L• ≃ Y ×C∗. This means that z determines a se
tion of L whi
h trivialises Lover D2m. So we 
an think of θ as of a holomorphi
 1-form on L• depending onlyon yi's and dyi's. Let (y, z0) be any point of L• and let v̄ be any ve
tor tangentto L• at (y, z0). We write v̄ = v + w, where v is the 
omponent tangent to Y ,while w is tangent to C∗. Then:

θ•(y,z0)(v̄) = (τ ◦ π∗θ ◦ Dπ)y,z0
(v̄) = (τ ◦ π∗θ)y,z0

(v) = z0(θy(v)) = z0 · θy(v).Or more 
on
isely (in lo
al 
oordinates)
θ• = zθ, (A.16)and therefore

dθ• = d (zθ) = zdθ + dz ∧ θ. (A.17)Sin
e in this notation θ is a homogeneous 1-form of weight 0 and wt(z) = 1,
θ• and dθ• are homogeneous forms of weight 1 (see �A.1).In the above 
oordinates, the ve
tor �eld µC∗ related to the C∗-a
tion 
an beexpressed as follows:

µC∗ = z
∂

∂z
.Proposition A.18. Let Y be a 
omplex manifold or smooth algebrai
 varietyand let L be a line bundle on Y . Also let L• be the prin
ipal C∗-bundle over Yas in �I.3.7 and let µC∗ be the ve
tor �eld on L• asso
iated to the a
tion of C∗.Finally, let ω be a homogeneous 
losed 2-form on L• of weight 1. Then: 105



Jarosªaw Bu
zy«ski(i) ω = d
(
ω(µC∗)

);(ii) There exists a unique twisted 1-form θ : TY −→ L, su
h that ω(µC∗) = θ•,where θ• is de�ned from θ as above;(iii) Moreover, ω(µC∗) is nowhere vanishing if and only if θ is nowhere vanishing.If this is the 
ase, then ω is non-degenerate if and only if dθ|F is non-degenerate.Proof. To prove (i) let z be a lo
al 
oordinate linear on the �bres of π : L• → Y .Sin
e ω is 
losed, lo
ally it is exa
t, so
ω = d(zφ′ + gdz)for some fun
tion g and 1-form φ′, both homogeneous of weight 0. However,

d(zφ′ + gdz) = d
(
z(φ′ − dg)

)
.Set φ := φ′−dg, so that ω = d(zφ). Note that although φ′ and g are not uniquelydetermined, φ is the unique homogeneous 1-form of weight 0 su
h that ω = d(zφ).Then,

ω (µC∗) = (dz ∧ φ)

(
z
∂

∂z

)
+ zdφ

(
z
∂

∂z

)
= dz

(
z
∂

∂z

)
· φ = zφ.Hen
e d

(
ω (µC∗)

)
= ω, as 
laimed in (i).To prove (ii), de�ne θ to be lo
ally the form φ from the above argument. Onemust verify that φ glues uniquely to a twisted 1-form θ : TY −→ L.Part (iii) follows from the lo
al des
riptions of θ• and dθ•, see (A.16) and(A.17). For instan
e, if n = 1

2
(dimY − 1), then:

(dθ•)∧
n+1

= (n+ 1)dz ∧ θ ∧ (dθ)∧
n

.Therefore dθ• is non-degenerate at a given point if and only if θ does not vanishat that point and dθ is non-degenerate on the kernel of θ.
�Lemma A.19. Let X ⊂ Y be any subvariety and X0 its smooth lo
us. Then

X is F -integrable if and only if dθ• vanishes identi
ally on the tangent spa
e to
π−1(X0).Proof. First assume X is F -integrable. Then dθ vanishes on T (π−1(X0)) byproposition A.2(iv) and θ vanishes by de�nition. Hen
e from the lo
al des
riptionof dθ• (see equation (A.17)) we get the result.106



Algebrai
 Legendrian varieties Appendix AOn the other hand if dθ•|T (π−1(X0)) ≡ 0, sin
e
µC∗|π−1(X0) ∈ H0

(
π−1(X0), T

(
π−1(X0)

))
,then in parti
ular

dθ•
(
µC∗, T

(
π−1(X0)

))
≡ 0.But dθ• (µC∗) = θ• (see proposition A.18(ii)), hen
e π−1X is (π∗F )-integrableand therefore X is F -integrable.

�For s ∈ RL = π∗OL• , by s̃ ∈ OL• we denote the lifting of s, i.e. s̃ := τ ◦ π∗s.Hen
e we have two possibilities of lifting an in�nitesimal automorphism µ ∈
autinf

F to an obje
t on L•: either we lift it to a ve
tor �eld µ̆ (see (A.14)) or we lift
θ(µ) to fun
tion θ̃(µ). We will 
ompare these two liftings and how they behavewith respe
t to the Lie bra
ket of ve
tor �elds in the following statements.Lemma A.20. We have:

∀ν ∈ autinf
F (U), µ ∈ H0(U, TY ) ˜θ([µ, ν]) = d

(
θ̃(µ)

)
(ν̆).Proof. By (A.11):

θ([µ, ν]) = ν.θ(µ)and hen
e ˜θ([µ, ν]) = ν.θ̃(µ). By (A.14), this is equal to d
(
θ̃(µ)

)
(ν̆).

�Proposition A.21. If µ ∈ autinf
F (U), then:

d
(
θ̃(µ)

)
= −(dθ•)(µ̆).Proof. The following proof is quoted from [Bea98, prop. 1.6℄. Sin
e Lµ̆(θ•) = 0(see lemma A.15), by [KN96, prop. I.3.10(a)℄ we have:

(dθ•)(µ̆) = −d
(
θ•(µ̆)

)
.On the other hand:

θ•(µ̆) = τ ◦ π∗θ ◦ Dπ(µ̆) = τ ◦ π∗ (θ(µ)) = θ̃(µ).Combining the two equalities, we get the result.
�Corollary A.22. If µ, ν ∈ autinf

F (U), then
˜θ([µ, ν]) = −(dθ•)(µ̆, ν̆).Proof. This 
ombines lemma A.20 and proposition A.21.
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