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AbstratReal Legendrian subvarieties are lassial objets of di�erential geometry andlassial mehanis and they have been studied sine antiquity (see [Arn74℄,[Sªa91℄ and referenes therein). However, omplex Legendrian subvarieties aremuh more rigid and have more exeptional properties. The most remarkablease is the Legendrian subvarieties of projetive spae and prior to the author'sresearh only few smooth examples of these were known (see [Bry82℄, [LM04℄).Strong restritions on the topology of suh varieties have been found and studiedby Landsberg and Manivel ([LM04℄).The results of this thesis are two fold:The �rst series of results is related to the automorphism group of any Legen-drian subvariety in any projetive ontat manifold. The onneted omponent ofthis group (under suitable minor assumptions) is ompletely determined by thesetions of the distinguished line bundle on the ontat manifold vanishing onthe Legendrian variety. Moreover its ation preserves the ontat struture. Therelation between the Lie algebra tangent to automorphisms and the setions isgiven by an expliit formula (see also [LeB95℄, [Bea99℄). This extends the resultsof the author's MS thesis [Bu03℄.The seond series of results is devoted to �nding new examples of smoothLegendrian subvarieties of projetive spae. The examples known previouslywere some homogeneous spaes, many examples of urves and a family of surfaesbirational to some K3 surfaes. The ontribution of this thesis is in three steps:First we �nd an example of a smooth tori surfae. Next we �nd a smoothquasihomogeneous Fano 8-fold that admits a Legendrian embedding. Finally, werealise that both of these are speial ases of a very general onstrution: a generalhyperplane setion of a smooth Legendrian variety, after a suitable projetion,is a smooth Legendrian variety of smaller dimension. By applying this result toknown examples and deomposable Legendrian varieties, we onstrut in�nitelymany new examples in every dimension, with various Piard rank, anonialdegree, Kodaira dimension and other invariants.The original motivation for this researh omes from a 50 year old problemof giving ompat examples of quaternion-Kähler manifolds (see [Ber55℄, [LS94℄,[LeB95℄ and referenes therein). Also Legendrian varieties are related to somealgebrai strutures (see [Muk98℄, [LM01℄, [LM02℄). A new potential appliationto lassi�ation of smooth varieties with smooth dual arises from this thesis.keywords:Legendrian variety, omplex ontat manifold, automorphism group;AMS Mathematial Subjet Classi�ation 2000:Primary: 14M99; Seondary: 53D10, 14L30, 53D20; 1



StreszzenieRzezywiste rozmaito±i legendrowskie stanowi¡ standardowy przedmiot ba-da« geometrii róznizkowej oraz mehaniki klasyznej (zobaz [Arn74℄, [Sªa91℄oraz odno±niki tam»e). W niniejszej pray badamy ih geometro-algebraizny od-powiednik: zespolone podrozmaito±i legendrowskie zespolonyh rozmaito±i kon-taktowyh. W porównaniu z rzezywistymi, zespolone s¡ du»o bardziej sztywne imaj¡ bardziej wyj¡tkowe wªasno±i. Najwa»niejszy przypadek to podrozmaito±ilegendrowskie w zespolonej przestrzeni rzutowej � przed badaniami autora zna-nyh byªo jedynie kilka gªadkih przykªadów (zobaz [Bry82℄, [LM04℄), a moneogranizenia dotyz¡e wªasno±i topologiznyh takih rozmaito±i zostaªy udo-wodnione przez Landsberga i Manivela [LM04℄.Wyniki bada« autora przedstawione w niniejszej pray s¡ dwojakie:Pierwsza seria wyników jest rozszerzeniem pray magisterskiej autora [Bu03℄i dotyzy grupy automor�zmów dowolnej podrozmaito±i legendrowskiej w dowol-nej rzutowej rozmaito±i kontaktowej. Spójna skªadowa jedno±i tej grupy (przyodpowiednih, maªo istotnyh zaªo»eniah) jest aªkowiie wyznazona przez tei�ia wyró»nionej wi¡zki liniowiej na rozmaitosi kontaktowej, które znikaj¡ naustalonej rozmaito±i legendrowskiej. Co wi�ej, dziaªanie tej skªadowej zaho-wuje struktur� kontaktow¡. Powy»szy zwi¡zek mi�dzy i�iami a algebr¡ Liegogrupy automor�zmów opisany jest konkretnie, przez zadany wzorem izomor�zm(zobaz tak»e [LeB95℄, [Bea98℄).Pozostaªe wyniki dotyz¡ znajdowania nowyh przykªadów gªadkih podroz-maito±i legendrowskih w przestrzeni rzutowej. Przykªady, które byªy znanewze±niej to pewne przestrzenie jednorodne, lizne przykªady krzywyh i rodzinapowierzhni biwymiernyh z pewnymi powierzhniami K3. Wkªad niniejszejpray dzieli si� na trzy z�±i: Najpierw znajdujemy przykªad gªadkiej legen-drowskiej toryznej powierzhni. Nast�pnie znajdujemy przykªad 8-wymiarowejgªadkiej rozmaito±i Fano. Na konie pokazujemy, »e obydwa te przykªady s¡szzególnymi przypadkami bardzo ogólnej konstrukji: ogólne hiperpªaskie i�ierozmaito±i legendrowskiej, po odpowiednim zrzutowaniu, zadaje gªadk¡ rozma-ito±¢ legendrowsk¡ mniejszego wymiaru. Stosuj¡ wielokrotnie powy»sze stwier-dzenie do znanyh przykªadów oraz do rozkªadalnyh rozmaito±i legendrowskih,otrzymujemy niesko«zenie wiele nowyh przykªadów w ka»dym wymiarze. Przy-kªady te ró»ni¡ si� od siebie mi�dzy innymi rang¡ grupy Piarda, stopniem dy-wizora kanoniznego oraz wymiarem Kodairy.Inspiraj¡ dla tej pray jest 50-io letni problem dotyz¡y skonstruowaniazwartyh przykªadów rozmaito±i kwaternionowo-kählerowskih (zobaz [Ber55℄,[LS94℄, [LeB95℄ oraz odno±niki tam»e) oraz fakt, »e rozmaito±i legendrowskies¡ powi¡zane z pewnymi obiektami algebraiznymi (zobaz [Muk98℄, [LM01℄,2



Algebrai Legendrian varieties[LM02℄). Konsekwenj¡ tej pray mo»e by¢ kolejne ih zastosowanie. Pokazu-jemy, »e problem klasy�kaji gªadkih rozmaito±i o gªadkiej rozmaito±i dualnejjest równowa»ny klasy�kaji pewnyh rozmaito±i legendrowskih w przestrzenirzutowej.
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Chapter IIntrodution
I.1 State of artThis thesis is devoted to study algebrai and geometri properties of Legendriansubvarieties. The main motivation for our researh omes from the lassi�ationproblem of ontat Fano manifolds1.I.1.1 Contat Fano manifolds and quaternion-Kähler man-ifoldsResults of Demailly [Dem02℄ and Kebekus, Peternell, Sommese and Wi±niewski[KPSW00℄ prove that if Y is a omplex projetive ontat manifold, then either
Y is a Fano variety with seond Betti number b2 = 1 or Y is a projetivisationof the otangent bundle to some projetive manifold M .The following onjeture would be an important lassi�ation result in alge-brai geometry:Conjeture I.1. If Y 2n+1 is a Fano omplex ontat manifold, then Y is a homo-geneous variety whih is the unique losed orbit of the adjoint ation of a simpleLie group G on P(g) (where the g is the Lie algebra of G).The losed orbits appearing in the onjeture are alled adjoint varieties.This onjeture originated with a famous problem in Riemannian geometry.In 1955 Berger [Ber55℄ gave a list of all possible holonomy groups2 of simplyonneted Riemannian manifolds. The existene problem for all the ases has1A omplex manifold Y 2n+1 is alled a ontat manifold if there exists a rank 2n vetorsubbundle F ⊂ TY of the tangent bundle, suh that the map F ⊗ F −→ TY/F determined bythe Lie braket is nowhere degenerate (see hapter III for more details). A projetive varietyis Fano if its antianonial bundle is ample.2Given an m-dimensional Riemannian manifold M , the holonomy group of M is thesubgroup of orthogonal group O(TxM) generated by parallel translations along loops through
x. 7



Jarosªaw Buzy«skibeen solved loally. Compat non-homogeneous examples with most of the possi-ble holonomy groups were onstruted, for instane the two exeptional ases G2and Spin7 were onstruted by D. Joye � see an exellent review on the subjet[Joy00℄. Sine then all the ases from Berger's list have been illustrated with om-pat non-homogeneous examples, with the unique exeption of the quaternion-Kähler manifolds3. Although there exist non-ompat, non-homogeneous exam-ples, it is onjetured that the ompat quaternion-Kähler manifolds must behomogeneous, at least assuming positivity (see [LeB95℄ and referenes therein foran explanation of what positivity means and why it is reasonable to assume it).Conjeture I.2 (LeBrun, Salamon). Let M4n be a positive quaternion-Kählermanifold. Then M is a homogeneous symmetri spae (more preisely, it is oneof the Wolf spaes � see [Wol65℄).The relation between the two onjetures is given by the onstrution of atwistor spae Y , an S2-bundle of omplex strutures on tangent spaes to aquaternion-Kähler manifold M . If M is ompat and has positive salar urva-ture, then Y has a natural omplex struture and is a ontat Fano variety witha Kähler-Einstein metri. In partiular, the twistor spae of a Wolf spae is anadjoint variety. Hene onjeture I.1 implies onjeture I.2. Conversely, LeBrun[LeB95℄ observed that if Y is a ontat Fano manifold with Kähler-Einstein met-ri, then it is a twistor spae of a quaternion-Kähler manifold.A number of attempts have been undertaken to prove the above onjetures.They were proved in low dimension: for n = 1 by N. Hithin [Hit81℄ and Y. Ye[Ye94℄, n = 2 by Y.S. Poon and S.M. Salamon [PS91℄ and S. Druel [Dru98℄and onjeture I.2 for n = 3 by H.&R. Herrera [HH02℄. Moreover A. Beauville,J. Wi±niewski, S. Kebekus, T. Peternell, A. Sommese, J.P. Demailly, C. LeBrun,J-M. Hwang and many other researhers have worked on this problem.Let Y 2n+1 be a ontat Fano manifold not isomorphi to a projetive spae.Wi±niewski [Wi±00℄ and Kebekus [Keb01℄, [Keb05℄ have studied geometri prop-erties of ontat lines4 and have proved that ontat lines through a general pointbehave very muh like ordinary lines in a projetive spae. Moreover the union ofontat lines through any �xed point is a Legendrian subvariety5 in Y . In addi-tion, the variety X of tangent diretions to suh lines through a general point is asmooth Legendrian subvariety in P2n−1. If Y is one of the adjoint varieties, then
X will be a homogeneous Legendrian subvariety alled a subadjoint variety(see [LM04℄, [Muk98℄). Proving that there is an embedding of Y into a proje-tive spae whih maps ontat lines to ordinary lines would imply onjeture I.1.3A Riemannian 4n-dimensional manifold M is alled quaternion-Kähler if its holonomygroup is a subgroup of Sp(1) × Sp(n)/Z2.4A rational urve C ⊂ Y is a ontat line if its intersetion with the antianonial bundleis minimal possible, i.e. equal to n + 1.5A subvariety X ⊂ Y is Legendrian if it is maximally F -integrable � see hapter III forthe details.8



Algebrai Legendrian varieties Chapter IMoreover it is proved by Hong [Hon00℄, that if X is homogeneous, then so is Y .Therefore ontat lines and partiularly the Legendrian varieties determined bythem are important objets, useful in the study of onjeture I.1.Liegroup Type Contat manifold
Y 2n+1

Legendrian vari-ety Xn−1
RemarksSLn+2 An+1 P(TPn+1) Pn−1 ⊔ Pn−1

⊂ P2n−1
b2(Y ) = 2Sp2n+2 Cn+1 P2n+1 ∅ ⊂ P2n−1 Y does not haveany ontat linesSOn+4 Bn+3

2

or
Dn+4

2

GrO(2, n + 4) P1 × Qn−2

⊂ P2n−1
Y is the Grassman-nian of projetivelines on a quadri
Qn+2

G2 Grassmannian ofspeial lines on
Q5

P1 ⊂ P3 X is the twistedubi urve
F4 an F4 variety GrL(3, 6) ⊂ P13

E6 an E6 variety Gr(3, 6) ⊂ P19

E7 an E7 variety S6 ⊂ P31 X is the spinor va-riety
E8 an E8 variety the E7 va-riety ⊂ P55Table I.1: Simple Lie groups together with the orresponding adjoint variety Yand its variety of tangent diretions to ontat lines: the subadjoint variety X(listed in details also in �I.1.2).I.1.2 Legendrian subvarieties of projetive spaePrior to the author's researh the following were the only known examples ofsmooth Legendrian subvarieties of projetive spae (see [Bry82℄, [LM04℄):1) linear subspaes;2) some homogeneous spaes alled subadjoint varieties (see table I.1): theprodut of a line and a quadri P1 ×Qn−2 and �ve exeptional ases:

• twisted ubi urve P1 ⊂ P3,
• Grassmannian GrL(3, 6) ⊂ P13 of Lagrangian subspaes in C6,
• full Grassmannian Gr(3, 6) ⊂ P19, 9



Jarosªaw Buzy«ski
• spinor variety S6 ⊂ P31 (i.e. the homogeneous SO(12)-spae para-metrising the vetor subspaes of dimension 6 ontained in a non-degenerate quadrati one in C12) and
• the 27-dimensionalE7-variety in P55 orresponding to the marked root:;3) every smooth projetive urve admits a Legendrian embedding in P3 [Bry82℄;4) a family of smooth surfaes birational to the Kummer K3-surfaes [LM04℄.The subadjoint varieties are expeted to be the only homogeneous Legen-drian subvarieties in P2n−1 (a partial proof an be found in [LM04℄) and they arethe only symmetri Legendrian varieties. Also, they are the only smooth irre-duible Legendrian varieties whose ideal is generated by quadrati polynomials(see [Bu06℄ or theorem III.5).The subadjoint varieties are strongly related to the group they arise from.Landsberg and Manivel [LM02℄ use the subadjoint varieties to reprove the lassi-�ation of simple Lie groups by means of projetive geometry only. Also Mukai[Muk98℄ relates the symmetri Legendrian varieties with another algebrai stru-ture: simple Jordan algebras. In [LM01℄ the authors give a uniform desriptionof the exeptional ases (arising from F4, E6, E7 and E8).I.2 Main results and struture of the thesisThe results of this thesis address two omplementary problems regarding Legen-drian varieties:

• write expliit restritions on the properties of Legendrian varieties;
• give examples of smooth Legendrian varieties.We ontribute to the �rst problem by giving a very preise understanding of theembedded automorphism group of a Legendrian variety. The seond problemis solved by proving that a general hyperplane setion of a smooth Legendrianvariety admits a Legendrian embedding.In our masters thesis [Bu03℄, we prove that the quadrati part of the ideal of aLegendrian subvarietyX of projetive spae P2n−1 produes a onneted subgroupof projetive automorphisms of X. In [Bu06℄ we improve this result by observingthat this group is atually the maximal onneted subgroup of automorphisms ofthe ontat struture on P2n−1 preserving the Legendrian subvariety (see theoremIII.5).In the present dissertation we extend this result further. Firstly, we replae

P2n−1 with an arbitrary ontat manifold Y . Then the onneted omponent of10



Algebrai Legendrian varieties Chapter Ithe subgroup of Aut(Y ) that preserves both the ontat struture and a givenLegendrian subvariety X ⊂ Y , is ompletely determined by those setions of adistinguished line bundle L on Y that vanish onX. Seondly, we try to remove theassumption that the automorphisms preserve the ontat struture. By applyingthe results of [LeB95℄ and [Keb01℄ on the uniqueness of ontat strutures we andeal with this problem for most projetive ontat Fano manifolds (see orollaryIII.25). The remaining ases are the projetivised otangent bundles and theprojetive spae. The �rst ase is not very interesting, as all the Legendriansubvarieties are lassi�ed for these ontat manifolds (see orollary III.19). Onthe other hand the ase of projetive spae is the most important and interesting.It is desribed preisely in hapter IV. We prove there that a onneted group ofprojetive automorphisms that preserve a smooth Legendrian variety neessarilypreserves the ontat struture. We also give ounterexamples to the analogousstatement without assuming smoothness and provide some evidene that ourounterexamples are the only possible ones.Our methodology for �nding new examples of smooth Legendrian subvarietiesis the following. We pose questions of lassi�ation of smooth Legendrian varietiessatisfying ertain additional onditions. For instane, we assume that the varietyis tori (see hapter V) or that it is ontained in a spei� F -ointegrable variety(see hapter VI). In this way we produe a few new smooth examples inludinga tori surfae and a quasihomogeneous Fano 8-fold. Finally we prove that bothexamples are very lose to subadjoint varieties � eah of them is isomorphi toa hyperplane setion of a subadjoint variety. We generalise this and prove that ageneral hyperplane setion of a smooth Legendrian variety admits a Legendrianembedding into a smaller projetive spae.Setion I.3 is devoted to introduing our notation and presenting some ele-mentary algebro-geometri fats.Chapter II is a brief revision of sympleti geometry that will be used inour disussion of ontat manifolds. Also some statements from [Bu06℄ aregeneralised to this ontext.Chapter III ontains an independent review of loal geometry of ontat man-ifolds, with emphasis on their in�nitesimal automorphisms. There we ompare(after [LeB95℄ and [Bea99℄) two natural Lie algebra strutures related to a on-tat manifold Y : the Lie braket of vetor �elds and the Poisson braket on thestruture sheaf of the sympletisation of Y . We use this omparison to provethe �rst theorem on embedded automorphisms of Legendrian subvarieties. Thetheorem states that those automorphisms that preserve the ontat struture areompletely determined by the ideal of the variety.In hapters IV�VII we turn our attention to Legendrian subvarieties of pro-jetive spae.In hapter IV we ontinue the topi of automorphisms of Legendrian varieties.We prove the seond theorem on embedded automorphisms of Legendrian sub-11



Jarosªaw Buzy«skivarieties, stating that under minor assumptions they must preserve the ontatstruture. The results of this hapter are published in [Bu07℄.In hapter V we illustrate, in the ase of subvarieties of projetive spae, howto lassify tori Legendrian subvarieties. We give the list of all smooth ases,whih inlude a new example: the projetive plane blown up in three linearlyindependent points. Also the results of that hapter are published in [Bu07℄.Chapter VI ontains the lassi�ation of Legendrian varieties, whih are on-tained in a spei� F -ointegrable variety. Another new example arises in thisway: the smooth quasihomogeneous 8-fold. Also we present two other variants ofthe onstrution, produing a smooth 5-fold and a smooth 14-fold. The ontentsof that hapter will be published as [Bu07b℄.Finally hapter VII desribes a Legendrian embedding of a hyperplane setionof a Legendrian variety. Also a variant of an inverse onstrution (i.e. to desribe abigger Legendrian variety from a given one, suh that a hyperplane setion of thebig one is the original one) is presented and is applied to Bryant's, Landsberg'sand Manivel's examples of smooth Legendrian varieties. Parts of that hapterwill be published as [Bu07a℄.Appendix A revises the di�erential geometri properties of in�nitesimal auto-morphisms that are neessary for hapter III, but an be expressed without anyexpliit referene to the ontat struture.I.2.1 Open problemsKeeping in mind the elegant results skethed in �I.1 and having many new exam-ples of smooth Legendrian varieties (as well as families of suh), several naturalquestions remain unanswered.New ontat manifolds?Can we onstrut a new example of a ontat manifold, whose variety of tangentdiretions to ontat lines is one of the new Legendrian varieties (or is in thegiven family)? If onjeture I.1 is true, then the answer is negative. If theanswer is negative, then what are the obstrutions, i.e., what onditions should werequire on the Legendrian variety to make the reonstrution of ontat manifoldpossible?Further appliations to algebra?Can the new Legendrian varieties be used in a similar manner as the subadjointases and will they prove themselves to be equally extraordinary varieties? The�rst tiny piee of evidene for this is explained in �VI.2.1. On the other hand, it isunlikely that suh a big variety of examples an have analogous speial properties.12



Algebrai Legendrian varieties Chapter ISelf-dual varieties?Another problem we want to mention here is a lassial question in algebraigeometry: what are the smooth subvarieties of projetive spae, whose dual vari-ety6 is also smooth? So far the only examples of these are the self-dual varieties.Thanks to L. Ein [Ein86℄, the lassi�ation of smooth self-dual varieties Z ⊂ Pmis known when 3 codimZ ≥ dimZ. In orollary VII.17 we prove that the prob-lem of lassifying smooth varieties with smooth dual an be expressed in termsof Legendrian varieties and possibly we an apply the tehniques of Legendrianvarieties to �nish the lassi�ation.Projetively and linearly normal Legendrian varieties?We dare to onjeture:Conjeture I.3. Let X ⊂ P(V ) be a smooth linearly normal7 Legendrian variety.Then X is one of the subadjoint varieties.In view of theorems VII.1 and VII.10, the lassi�ation of linearly normal Le-gendrian varieties might be a neessary step towards a lassi�ation of Legendrianvarieties.Furthermore, the onjeture might also ontribute to the proof of onjetureI.1. For instane assume onjeture I.3 holds and Y is a ontat Fano manifold,for whih the variety ut out by ontat lines through a general point is normal.Then by applying the results of [Keb05℄ we get that the assoiated Legendrianvariety X ⊂ P2n−1 is projetively normal8 and by the onjeture and results of[Hon00℄ the manifold Y is an adjoint variety.The author is able to prove onjeture I.3 if dimX = 1, but this is not anelegant argument nor does it have important appliations. We omit the proof hereuntil we manage to improve the argument or to generalise it to higher dimensions.I.3 Notation and elementary propertiesIn the present thesis we always work over the �eld of omplex numbers C.I.3.1 Vetor spaes and projetivisationLet V be a vetor spae over C. By P(V ) we mean the naive projetivisation of
V , i.e. the quotient (V \{0})/C∗.6Given a subvariety Z ⊂ P(W ), the dual variety Z∗ ⊂ P(W ∗) is the losure of the set ofhyperplanes tangent to Z, see �VII.3 for details.7A subvariety X ⊂ Pm is linearly normal if it is embedded by a omplete linear system.8A subvariety X ⊂ Pm is projetively normal if its a�ne one is normal. If X is proje-tively normal, then it is also linearly normal by [Har77, ex. II.5.14(d)℄ 13



Jarosªaw Buzy«skiIf v ∈ V \ {0}, then by [v] ∈ P(V ) we denote the line spanned by v.Analogously, if E is a vetor bundle, by P(E) we denote the naive projetivi-sation of E. Let s0 ⊂ E be the zero setion of E. If v ∈ E\s0, then by [v] ∈ P(E)we denote the line spanned by v in the appropriate �bre of E.I.3.2 Bilinear forms and their matriesLet V be a omplex vetor spae of dimension m and f a bilinear form on V .Fix a basis B of V and let M(f) = M(f,B) be the m×m-matrix suh that:
f(v, w) = vTM(f)w,where v and w are arbitrary olumn vetors of V . We say that M(f) is thematrix of f in the basis B.In partiular if ω is a sympleti form (see �II.1.1), dimV = 2n and B is asympleti basis, then

J := M(ω,B) =

[
0 Idn

− Idn 0

]
.Moreover in suh a ase J is also the matrix of the linear map ω̃:

ω̃ : V −→ V ∗

v 7−→ ω(v, ·)in the basis B on V and the dual basis on V ∗.Similarly, if q is a quadrati form on V , then we denote by M(q) = M(q,B)the matrix of q in the basis B:
q(v) = vTM(q)v.I.3.3 Complex and algebrai manifoldsOur main onern is with omplex projetive manifolds and varieties. This iswhere two ategories meet: omplex algebrai varieties and analyti spaes (see[Gri74℄). Sine the author's origins lie in algebrai geometry, this thesis' intentionis to study algebrai Legendrian varieties. However, for some statements thereis no reason to limit to the algebrai ase, so we state them also for the analytisituation.So Y will be usually the ambient manifold (for example ontat or sympletimanifold), either a omplex manifold or smooth algebrai variety. Some state-ments are loal for Y (in the analyti topology), hene it is enough to prove themfor Y ≃ D2n, where D2n ⊂ Cn is a omplex dis.Our main interest is in X ⊂ Y , whih will be either an analyti subspae (if Yis a omplex manifold), or an algebrai subvariety (if Y is algebrai). For short,will always say X ⊂ Y is a subvariety.14



Algebrai Legendrian varieties Chapter II.3.4 Vetor bundles, sheaves and setionsGiven an analyti spae or algebrai variety Y , we denote by OY both the stru-ture sheaf (onsisting of either holomorphi or algebrai funtions on Y in theappropriate analyti or Zariski topology) and the trivial line bundle. If X ⊂ Yis a subvariety, then by I(X) we mean the sheaf of ideals in OY de�ning X.Given a vetor bundle E on Y we will use the same letter E for the sheaf ofsetions of E. To avoid onfusion and too many brakets (for example I(X)(U))given an open subset U ⊂ Y and a sheaf (or vetor bundle) F , we will write
H0(U,F) rather than F(U) to mean the value of the sheaf at the open subset
U (or setions of vetor bundle). By F|U we mean the sheaf (or vetor bundle)restrition of F to the open subset U .Where there an be no onfusion, given a sheaf F whih does not have anynatural vetor bundle struture we will write s ∈ F to mean:

∃ an open U ⊂ Y with s ∈ H0(U,F).On the other hand, if E is a vetor bundle, then by v ∈ E, we mean that v is avetor in the bundle.Given a vetor bundle E, we denote by E∗ the dual vetor bundle:
E∗ := Hom(E,O).If θ : F −→ G is a map of sheaves or vetor bundles and s ∈ H0(U,F), thenby θ(s) we mean the image setion of G.I.3.5 DerivativesGiven a omplex manifold or smooth algebrai variety Y and a k-form θ ∈

H0(U,ΩkY ) by dθ we denote the exterior derivative of θ. This onvention isalso valid for 0-forms f ∈ OY = Ω0Y .By TY we mean the tangent vetor bundle. Nevertheless we keep in mind,that a vetor �eld µ ∈ H0(U, TY ) an also be interpreted as a derivation µ :
OY → OY . In partiular, we an de�ne the Lie braket of two vetor �elds
µ, ν ∈ H0(U, TY ) as:

[µ, ν] = νµ − µν.This onvention is in agreement with [Arn74℄.Given a holomorphi or algebrai map φ : Y −→ Y ′, by Dφ we mean thederivative map:
Dφ : TY −→ φ∗TY ′.If θ ∈ H0(U,ΩkY ) and µ ∈ H0(U, TY ), then by θ(µ) we mean the ontrated

(k − 1)-form. For example, if θ = θ1 ∧ θ2 for 1-forms θi, then
θ(µ) = θ1(µ)θ2 − θ2(µ)θ1.The reader should also refer to �A.2.2 for the onvention on automorphismsand in�nitesimal automorphisms. 15



Jarosªaw Buzy«skiI.3.6 Submersion onto imageWe reall the standard fat, that every algebrai map is generially a submersionon the losure of the image.Lemma I.4. Let M and N be two algebrai varieties over an algebraially losed�eld of harateristi 0 and let p : M −→ N be a map suh that N = p(M).Then for a general x ∈M , the derivative Dxp : TxM −→ Tp(x)N is surjetive.Proof. See [Har77, thm III.10.6℄.
�As a orollary, we prove an easy proposition about subvarieties of produtmanifolds.Proposition I.5. Let S1 and S2 be two smooth algebrai varieties and let X ⊂

S1×S2 be a losed irreduible subvariety. Let Xi ⊂ Si be the losure of the imageof X under the projetion πi onto Si. Assume that for a Zariski open dense subsetof smooth points U ⊂ X we have that the tangent bundle to X deomposes as
TX|U = (TX ∩ π∗

1TS1)|U ⊕ (TX ∩ π∗
2TS2)|U a sum of two vetor bundles. Then

X = X1 ×X2.Proof. Sine X is irreduible, so is X1 and X2 and learly X ⊂ X1 ×X2. So itis enough to prove that dimX1 + dimX2 = dimX = dimU . However, the maps
D(πi|U) are surjetive onto TX ∩ π∗

i TSi and hene by lemma I.4:
dimX1 + dimX2 = rk(TX ∩ π∗

1TS1)|U + rk(TX ∩ π∗
2TS2)|U = rkTX|U = dimX.

�I.3.7 Line bundles and C∗-bundlesLet Y be omplex manifold or a smooth algebrai variety and let L be a linebundle on Y . By L• we denote the prinipal C∗-bundle over Y obtained as theline bundle L∗ with the zero setion removed. Let π be the projetion L• −→ Y .Let RL be the sheaf of graded OY -algebras ⊕m∈Z
Lm on Y . Given an opensubset U ⊂ Y the ring RL(U) onsists of all the algebrai funtions on π−1(U),i.e. RL = π∗OL• . Therefore

L• = SpecY RL.Moreover, H0(U,Lm) ⊂ H0(π−1(U),OL•) is the set of homogeneous funtions ofweight m (see �A.1).16



Algebrai Legendrian varieties Chapter ILemma I.6. Let Y be a smooth algebrai variety and let L be a line bundle on
Y . Then Pic(L•) ≃ Pic(Y )/〈L〉 and the map Pic(Y ) ։ Pic(L•) is indued by theprojetion π : L• −→ Y .Proof. The Piard group of the total spae of L∗ is isomorphi to Pic Y andthe isomorphisms are given by the projetion and the zero setion s0 : Y −→ L∗.Further, s0(Y ) is a Cartier divisor linearly equivalent to any other rational setion
s : Y 99K L∗. Therefore s∗0(s0(Y )) = L∗ and hene by [Har77, prop. 6.5()℄ thefollowing sequene is exat:

Z −→ Pic Y
π∗

−→ Pic L• −→ 0
1 7−→ [L∗]

�The relative tangent bundle, i.e. ker (Dπ : TL• −→ π∗TY ) is trivialised by thevetor �eld µC∗ related to the ation of C∗ (see �A.2.2) and hene we have theshort exat sequene:
0 −→ OL• −→ TL• −→ π∗TY −→ 0.In partiular KL• = π∗KY .I.3.8 Tangent oneWe reall the notion of the tangent one and a few among many of its properties.For more details and the proofs we refer to [Har95, leture 20℄ and [Mum99,III.�3,�4℄.For an irreduible Noetherian sheme X over C and a losed point x ∈ X weonsider the loal ring OX,x and we let mx be the maximal ideal in OX,x. Let

R :=
∞⊕

i=0

(
mi

x/m
i+1
x

)
,where m0

x is just the whole of OX,x. Now we de�ne the tangent one TCxX at xto X to be SpecR.If X is a subsheme of an a�ne spae Am (whih we will usually assumeto be an a�ne piee of a projetive spae), the tangent one at x to X an beunderstood as a subsheme of Am. Its equations an be derived from the ideal of
X. For simpliity assume x = 0 ∈ Am and then the polynomials de�ning TC0Xare the lowest degree homogeneous parts of the polynomials in the ideal of X.Another interesting point-wise de�nition is that v ∈ TC0X is a losed pointif and only if there exists a holomorphi map ϕv from the dis Dt := {t ∈ C :17



Jarosªaw Buzy«ski
|t| < δ} to X, suh that ϕv(0) = 0 and the �rst non-zero oe�ient in the Taylorexpansion in t of ϕv(t) is v, i.e.:

ϕv : Dt −→ X
t 7→ tkv + tk+1vk+1 + . . .We list some of the properties of the tangent one, whih will be used freelyin the proofs:(1) The dimension of every omponent of TCxX is equal to the dimension of

X.(2) TCxX is naturally embedded in the Zariski tangent spae to X at x and
TCxX spans (as a sheme) the tangent spae.(3) X is regular at x if and only if TCxX is equal (as a sheme) to the tangentspae.

18



Chapter IIElementary sympleti geometryWe introdue some elementary fats from sympleti geometry, having in mindthe needs of subsequent hapters. Most of this material is ontained in (or an beeasily dedued from) lassial textbooks on sympleti geometry, suh as [MS98℄,although we rewrite this over the ground �eld C rather than R.II.1 Linear sympleti geometryIn this setion we study linear algebra of vetor spae, whih has a sympletiform. Although it is elementary, it is very important for our onsiderations as ithas threefold appliation: Firstly, the ontent of this setion desribes the loalbehaviour of sympleti manifolds (see �II.2), partiularly the sympletisationsof ontat manifolds (see �III.2.1). Seondly, it desribes very muh of globalgeometry of projetive spae as a ontat manifold (see III.12, but also lookthrough hapters IV�VII). Finally, it explains the �brewise behaviour of ontatdistribution (see �III.2).II.1.1 Sympleti vetor spaeA sympleti form on a vetor spae V is a non-degenerate skew-symmetri bi-linear form. So ω ∈
∧2 V ∗ is a sympleti form if and only if
∀v ∈ V ∃w ∈ V suh that ω(v, w) 6= 0or equivalently the map

ω̃ : V −→ V ∗

v 7−→ ω(v, ·)is an isomorphism.If a vetor spae V has a sympleti form ω, we say that V (or (V, ω) ifspeifying the form is important) is a sympleti vetor spae. In suh a asethe dimension of V is even and there exists a basis v1, . . . , vn, w1, . . . , wn (where19



Jarosªaw Buzy«ski
n = 1

2
dimV ) of V suh that ω(vi, wi) = 1, ω(vi, vj) = 0 and ω(vi, wj) = 0 for

i 6= j. Suh a basis is alled a sympleti basis.By ω∨ we denote the orresponding sympleti form on V ∗:
ω∨ :=

(
ω̃−1

)∗
ω.Note that if v1, . . . , vn, w1, . . . , wn is a sympleti basis of V and x1, . . . , xn,

y1, . . . , yn is the dual basis of V ∗, then x1, . . . , xn, y1, . . . , yn is a sympleti basis of
V ∗. In suh a ase x1, . . . , xn, y1, . . . , yn are also alled sympleti oordinateson V .II.1.2 Isotropi, oisotropi, Lagrangian and sympleti sub-spaesAssume V is a vetor spae of dimension 2n and ω is a sympleti form on V . Nowsuppose W ⊂ V is a linear subspae. By W⊥ω we denote the ω perpendiularomplement of W :

W⊥ω := {v ∈ V | ∀w ∈W ω(v, w) = 0} .Denote by π the natural projetion V ∗ →W ∗. We say that the subspae W is:isotropi ⇔ ω|W ≡ 0 ⇔ W ⊂ W⊥ω ⇔ ker π is o-isotropi;oisotropi(or some-times alledinvolutive) ⇔ ω∨|ker π ≡ 0 ⇔ W ⊃ W⊥ω ⇔ ker π is iso-tropi;Lagrangian ⇔ W is isotropior involutive and
dimW = n = 1

2
dimV

⇔ W = W⊥ω ⇔ ker π is La-grangian;sympleti ⇔ ω|W is a symple-ti form on W ⇔ W ∩W⊥ω = 0 ⇔ ker π issympleti.II.1.3 Sympleti redution of vetor spaeWith the assumptions as above let W ⊂ V be any linear subspae and let W ′ :=
W ∩W⊥ω . De�ne ω′ to be the following bilinear form on V ′ := W/W ′:for w1, w2 ∈W let ω′([w1], [w2]) := ω(w1, w2).Then (V ′, ω′) is a sympleti vetor spae.The partiular ase we are mostly interested in is when W is a hyperplane ormore generally a oisotropi subspae.Note the following elementary properties of this onstrution:20



Algebrai Legendrian varieties Chapter IIProposition II.1. For a subspae L ⊂ V let L′ be the image of L ∩W in V ′.(a) If L is isotropi (resp. oisotropi or Lagrangian) in V , then L′ is isotropi(resp. oisotropi or Lagrangian) in V ′.(b) Conversely, ifW is oisotropi, L ⊂W and L′ is isotropi (resp. oisotropior Lagrangian) in V ′, then L is isotropi (resp. oisotropi or Lagrangian)in V .
�II.1.4 Sympleti automorphisms and weks-sympleti ma-triesA linear automorphism ψ of a sympleti vetor spae (V, ω) is alled a sym-pletomorphism if ψ∗ω = ω i.e.:

∀u, v ∈ V ω
(
ψ(u), ψ(v)

)
= ω

(
u, v
)
.We denote by Sp(V ) the group of all sympletomorphisms of V and by sp(V ) itsLie algebra:

sp(V ) =
{
g ∈ End(V ) | ∀u, v ∈ V ω

(
u, g(v)

)
+ ω

(
g(u), v

)
= 0
}
.A linear automorphism ψ of V is alled a onformal sympletomorphismif ψ∗ω = cω for some onstant c ∈ C∗. We denote by cSp(V ) the group of allonformal sympletomorphisms of V and by csp(V ) the tangent Lie algebra.Fix a basis B of V and note that a matrix g ∈ gl(V ) is in the sympletialgebra sp(V ) if and only if

gTJ + Jg = 0where J := M(ω,B). For the sake of hapter IV we also need to de�ne a om-plementary linear subspae to sp(V ):De�nition. A matrix g ∈ gl(V ) is weks-sympleti1 if and only if it satis�esthe equation:
gTJ − Jg = 0.The vetor spae of all weks-sympleti matries will be denoted by wsp(V ) (eventhough it is not a Lie subalgebra of gl(V )).1A better name would be skew-sympleti or anti-sympleti, but these are reserved for somedi�erent notions. 21



Jarosªaw Buzy«skiWe immediately see that a matrix is weks-sympleti if and only if it orre-sponds to a linear endomorphism g, suh that for every u, v ∈ V :
ω(gu, v)− ω(u, gv) = 0. (II.2)This is a oordinate free way to desribe wsp(V ).Assume that our basis B is sympleti. In partiular J2 = M(ω,B)2 = − Id2n.Remark II.3. For a matrix g ∈ gl(V ) we have:(a) g ∈ sp(V ) ⇐⇒ Jg is a symmetri matrix;(b) g ∈ wsp(V ) ⇐⇒ Jg is a skew-symmetri matrix.

�Note that if g ∈ gl(V ), then we an write:
g =

1

2
(g + JgTJ) +

1

2
(g − JgTJ)and the �rst omponent g+ := 1

2
(g + JgTJ) is in sp(V ), while the seond g− :=

1
2
(g−JgTJ) is in wsp(V ). Obviously, this deomposition orresponds to express-ing the matrix Jg as a sum of symmetri and skew-symmetri matries.We list some properties of wsp(V ):Proposition II.4. Let g, h ∈ wsp(V ). The following properties are satis�ed:(i) Write the additive Jordan deomposition for g:

g = gs + gnwhere gs is semisimple and gn is nilpotent. Then both gs ∈ wsp(V ) and
gn ∈ wsp(V ).(ii) For λ ∈ C, denote by Vλ the λ-eigenspae of g. For any λ1, λ2 ∈ C twodi�erent eigenvalues Vλ1

is ω-perpendiular to Vλ2
.(iii) If g is semisimple, then eah spae Vλ is sympleti.

�22



Algebrai Legendrian varieties Chapter IIII.1.5 Standard sympleti struture on W ⊕W ∗Let W be any �nite dimensional vetor spae. Set V := W ⊕W ∗ and there is aanonial sympleti form on V :
ω
(
(v, α), (w, β)

)
:= β(v) − α(w).If a1, . . . , an is any basis of W and λ1, . . . , λn is the dual basis of W ∗, then

a1, . . . , an, λ1, . . . , λnis a sympleti basis of V . In partiular, we have the natural embedding
GL(W ) →֒ Sp(V )

A 7→ A⊕ (A−1)T .We note the following elementary lemma:Lemma II.5. Let L ⊂ W be any linear subspae. Then L⊕ ker(W ∗ → L∗) ⊂ Vis a Lagrangian subspae.
�II.2 Sympleti manifolds and their subvarietiesSympleti manifolds will serve us to understand some geometri and algebraistrutures of the sympletisations of ontat manifolds (see �III.2.1).A omplex manifold or a smooth omplex algebrai variety Y is a sympletimanifold if there exists a global losed holomorphi 2-form ω ∈ H0(Ω2Y ), dω =

0 whih restrited to every �bre is a sympleti form on the tangent spae. Inother words, ω∧n is a nowhere vanishing setion of KY = Ω2nY . The form ω isalled a sympleti form on Y .Similarly as in the ase of the vetor spae, the sympleti form determinesan isomorphism:
ω̃ : TY

≃
−→ T ∗Y

v 7−→ ω(v, ·).The theory of ompat (or projetive) omplex sympleti manifolds is welldeveloped and has a lot of beautiful results (see for example [Leh04℄, [Huy03℄ andreferenes therein). Yet here we will only use some non-ompat examples as atool for studying ontat manifolds and we will only need a few of their basiproperties. Also some extensions of the sympleti struture to the singularitiesof Y are studied, but we are interested only in the ase where Y is smooth.23



Jarosªaw Buzy«skiII.2.1 Lagrangian and other subvarieties of a sympletimanifoldLet (Y, ω) be a sympleti manifold. For a subvariety X ⊂ Y we say X isrespetively1) isotropi,2) oisotropi,3) Lagrangian,if and only if there exists an open dense subset U (equivalently, for any opendense subset U) of smooth points of X, suh that for every x ∈ U the tangentspae TxX ⊂ TxY is respetively1) isotropi,2) oisotropi,3) Lagrangian.Or equivalently, for every x ∈ U the onormal spae N∗
xX ⊂ T ∗

xY is respetively1) oisotropi,2) isotropi,3) Lagrangian.Note that a subvariety is Lagrangian if and only if it is isotropi (or oisotro-pi) and the dimension is equal to n.II.2.2 ExamplesThe following examples are important for our onsiderations, as they will appearas sympletisations of projetive ontat manifolds (see �III.2.1).The a�ne spaeOur key example is the simplest possible: an a�ne spae of even dimension. Soassume (V, ω) is a sympleti vetor spae of dimension 2n. Then take the a�nespae A2n of the same dimension, whose tangent spae at every point is V andglobally TA2n = A2n × V . Then ω trivially extends to the produt and it is asympleti form on A2n.By an abuse of notation, we will denote the a�ne spae by V as well (so inpartiular a 0 is �xed in the a�ne spae and the ation of C∗ by homotheties ishosen). In this setup, the form ω is homogeneous of weight 2 (see �A.1).24



Algebrai Legendrian varieties Chapter IIProdutsAssume Y1 and Y2 are two sympleti manifolds with sympleti forms ω1 and ω2respetively. Clearly Y1 × Y2 is a sympleti manifold with the sympleti form
p∗1ω1 + p∗2ω2, where the pi's are the appropriate projetions.Next, let Xi ⊂ Yi be two subvarieties. Both the Xi's are respetively1) isotropi,2) oisotropi,3) Lagrangian,if and only if the produt X1 ×X2 ⊂ Y1 × Y2 is respetively1) isotropi2) oisotropi,3) Lagrangian.Cotangent BundleLet M be a omplex manifold or a smooth algebrai variety of dimension n. Set
Y to be the total spae of the otangent vetor bundle T ∗M and let p : Y −→Mbe the projetion map. If x1, . . . , xn are loal oordinates on U ⊂ M , then
x1, . . . , xn, y1 = dx1, . . . , yn = dxn form the loal oordinates on Y |U . Then wean set:

ω|U := dx1 ∧ dy1 + . . .+ dxn ∧ dyn ∈ H0(U,Ω2Y ),and these glue to a well de�ned sympleti form ω ∈ H0(Y,Ω2Y ). This sympletiform is homogeneous of weight 1 with respet to the usual ation on the otangentspaes.Sine for m ∈M , x ∈ T ∗
mM we have T(m,x)Y = TmM ⊕ T ∗

mM this example ofsympleti manifold, generalises the standard sympleti struture on W ⊕W ∗(see �II.1.5). The following example generalises lemma II.5:Example II.6. Let Z ⊂ M be any subvariety. De�ne Ẑ# ⊂ Y to be the onor-mal variety to Z, i.e. the losure of the union of onormal spaes to smoothpoints of Z:
Ẑ# := N∗Z0/M.Then Ẑ# is a Lagrangian subvariety in Y .Proof. Let z ∈ Z be a smooth point and let x ∈ N∗

zZ0/M . Then one anhoose appropriate loal oordinates on M around z and an appropriate loaltrivialisation of the otangent bundle T ∗M , suh that:
TxẐ

# = TzZ ⊕N∗
zZ0/M ⊂ TzM ⊕ T ∗

zM. 25



Jarosªaw Buzy«skiThis is a Lagrangian subspae by lemma II.5.
�Lemma II.7. Conversely, assume M is a smooth algebrai variety and Y is thetotal spae of T ∗M . Moreover assume X ⊂ Y is an irreduible losed Lagrangiansubvariety invariant under the C∗-ation on Y . If Z = p(X), then X = Ẑ#.Proof. Let x ∈ X be a general point and let z := p(x). So x is a point in T ∗

zMand
TxY = TzM ⊕ T ∗

zM.Sine X is C∗-invariant, under the above identi�ation
(0, x) ∈ TxX ⊂ TxY.We want to prove that (0, x) ∈ N∗

zZ/M and this will follow if we prove TxX ∩
T ∗

zM = N∗
zZ/M .By lemma I.4 the map Dp : TxX −→ TzZ is surjetive, so

TxX + T ∗
zM = TzZ ⊕ T ∗

zM.Sine X is Lagrangian, we also have the dual equality:
TxX ∩ T ∗

zM = (TxX)⊥ω ∩ (T ∗
zM)⊥ω

= (TxX + T ∗
zM)⊥ω

= (TzZ ⊕ T ∗
zM)⊥ω

= N∗
zZ/M.Hene TxX ∩ T ∗

zM = N∗
zZ/M as laimed and therefore x ∈ N∗

zZ/M . Sine xwas a general point of X and both X and Z were irreduible, we have X ⊂ Ẑ#and by dimension ounting X = Ẑ#.
�Adjoint and oadjoint orbitsLet G be a semisimple omplex Lie group and onsider the oadjoint ation onthe dual of its Lie algebra g∗. Let Y be an orbit of this ation. The tangent spaeat ξ ∈ Y is naturally isomorphi to g/Z(ξ), where

Z(ξ) = {v ∈ g | ∀w ∈ g ξ([v, w]) = 0} .Here [v, w] denotes the Lie algebra operation in g. For v, w ∈ g let [v] and [w] bethe orresponding vetor �elds on Y determined by v and w. We de�ne:
ωξ([v], [w]) := ξ([v, w]).26



Algebrai Legendrian varieties Chapter IIThen ω is a sympleti form on Y , whih is alled the Kostant-Kirillov form, seefor instane [Bea98, (2.1)℄.Now assume G is simple and Y is invariant under homotheties (for instane Yis the unique minimal nonzero orbit � see [Bea98, prop. 2.2 and prop. 2.6℄). Thenthe ations of G and C∗ ommute (beause G ats on g∗ by linear automorphisms,
C∗ via homotheties and every linear map ommutes with a homothety). Thereforethe vetor �elds of the form [v] for some v ∈ g are homogeneous of weight 0 andhene:

(λ∗tω)ξ([v], [w]) = ωλt(ξ)([v], [w]) = tξ([v, w]) = tωξ([v], [w]).i.e. ω is homogeneous of weight 1.We an identify g∗ and g by Killing form (see [Hum75℄), so equally well wean onsider adjoint orbits. Therefore if Y is as above, then it is isomorphi to a
C∗-bundle over an adjoint variety (see �I.1.1). More preisely Y is a sympleti-sation (see �III.2.1) of the adjoint variety.Open subsetsLet (Y, ω) be a sympleti manifold and let U be an open subset. Then (U, ω|U)is again a sympleti manifold.II.3 Poisson braketThe Poisson braket is an important algebrai struture of a sympleti manifold.In orollary III.14 we observe that given a ontat manifold and its sympleti-sation, the Poisson braket desents from the sympletisation to a braket on aspei� sheaf of rings on the ontat manifold. Moreover, this desended stru-ture is stritly related to the automorphisms of the ontat manifold (see theoremIII.15).Let (Y, ω) be a sympleti manifold and let OY be the sheaf of holomorphi(or algebrai) funtions on Y . Given f, g ∈ H0(U,OY ) let ξg ∈ H0(U, TY ) be theunique vetor �eld suh that ω(ξg) = dg. Then we set:

{f, g} :=df(ξg),or equivalently:
{f, g} (x) :=ω∨

x (dgx, dfx).The bilinear skew-symmetri map {·, ·} : OY ×OY → OY is alled the Pois-son braket. 27



Jarosªaw Buzy«skiLemma II.8. The Poisson braket satis�es the Jaobi identity and thereforemakes OY into a sheaf of Lie algebras. The ompatibility between the Poissonbraket and the standard ring multipliation on OY (U) is given by the followingLeibniz rule:
{fg, h} = f {g, h} + g {f, h} .Proof. See for example [Arn74, �40℄ � the proof is idential to the real ase.

�The Poisson braket is determined by the sympleti form and moreover it isde�ned loally. Hene we have the following property:Proposition II.9. Assume (Y, ω) and (Y ′, ω′) are two sympleti manifolds ofdimension 2n. Assume moreover, that we have a �nite overing map:
ψ : Y −→ Y ′suh that ψ∗ω′ = ω. Then the Poisson strutures are ompatible: for f, g ∈ OY ′we have:

ψ∗{f, g} = {ψ∗f, ψ∗g}.

�Theorem II.10. Assume Y is a sympleti manifold.(i) Suppose X ⊂ Y is a oisotropi subvariety. Then the sheaf of ideals I(X) ⊂
OY is a subalgebra with respet to the Poisson braket.(ii) Conversely, suppose X ⊂ Y is a losed, generially redued subsheme andthat I(X) is preserved by the Poisson braket. Then the orrespondingvariety Xred is oisotropi.Versions of the theorem an be found in [Cou95, hapter 11, prop. 2.4℄ and in[Bu06, thm 4.2℄. We follow more or less the proof from [Bu06℄:Proof. Let X0 be the lous of smooth points of X. We must show that

ω∨|N∗X0/Y ≡ 0 if and only if I(X) is a Lie subalgebra sheaf in OY .Suppose that x ∈ X0 is any point, U ⊂ Y is an open neighbourhood of x andthat f, g ∈ H0 (U, I(X)) are some funtions vanishing on X. Then dfx, dgx ∈
N∗X0/Y .If ω∨|N∗X0/Y ≡ 0, then

{f, g} (x) = ω∨
x (dgx, dfx) = 0,i.e. {f, g} |X0

= 0, so extending the equality to the losure of X0 we get
{f, g} ∈ H0 (U, I(X)) .28



Algebrai Legendrian varieties Chapter IIHene I(X) is a Lie subalgebra.Conversely, if I(X) is a Lie subalgebra, then
ω∨(dgx, dfx) = {f, g} (x) = 0.Sine the map
H0 (U, I(X)) −→ N∗

xX0/Y
f 7−→ dfxis an epimorphism of vetor spaes for eah x ∈ X0 and for U su�iently small,we have ω|N∗X0/Y ≡ 0.

�II.3.1 Properties of Poisson braketIn our onsiderations on ontat manifolds and their various subvarieties we willneed the three lemmas that are explained in this subsetion. These lemmas referto proposition II.10 � we have seen that there is a relation between oisotro-pi varieties and Lie subalgebras of OY that are ideals under the standard ringmultipliation.The �rst lemma laims that to test if an ideal is a subalgebra it is enough totest it on an appropriate open over of Y .Lemma II.11. Let Y be a sympleti manifold and let I ⊳ OY be a oherentsheaf of ideals. In suh a ase I is preserved by the Poisson braket if and onlyif there exists an open over {Ui} of Y suh that for eah i:
• if V ⊂ Ui is another open subset, then the funtions in H0(V,OY ) aredetermined by the funtions in H0(Ui,OY ) � this means that if Y is alge-brai variety (respetively, analyti spae), then the elements of H0(V,OY )an all be written as quotients (respetively, Taylor series) of elements of
H0(Ui,OY ); suh property holds for instane if Ui is a�ne or if Ui is bi-holomorphi to a disk D4n ⊂ C2n or it is biholomorphi to D4n−2 × C∗;

• and the ideal H0 (Ui, I) ⊳ H0 (Ui,OY ) is preserved by the Poisson braket.Proof. One impliation is obvious, while the other follows from the Leibniz rule(see lemma II.8) and from elementary properties of oherent sheaves.
�The seond lemma asserts that for an isotropi subvariety X, only funtionsonstant on X an preserve I(X) by Poisson multipliation. 29



Jarosªaw Buzy«skiLemma II.12. Assume Y is a sympleti manifold, X is a losed irreduibleisotropi subvariety. Let h ∈ H0 (Y,OY ) be any funtion suh that
{
h|U , H

0
(
U, I(X)

)}
⊂ H0

(
U, I(X)

) for any open subset U ⊂ Y .Then h is onstant on X.Proof. Choose an arbitrary x ∈ X0, a small enough open neighbourhood U ⊂ Yof x, and take any f ∈ H0
(
U, I(X)

).Sine {h|U , f} ∈ H0
(
U, I(X)

):
0 = {h|U , f} (x) = ω(dfx, dhx),and sine U an be taken so small that {dfx | f ∈ H0

(
U, I(X)

)} span the onor-mal spae we have:
dhx ∈ (N∗

xX/Y )⊥ω
sine X is isotropi

⊂ N∗
xX/Y.So dh vanishes on TX0 and hene h is onstant on X.

�Lemma II.13. Assume Y is a sympleti manifold, X is a losed irreduibleisotropi subvariety and S ⊂ X is a losed subvariety. If {I(S), I(X)} ⊂ I(S),then either S is ontained in the singular lous of X or X is Lagrangian and
S = X.Proof. The proof goes along the lines of the proof of [Bu06, thm 5.8℄. Suppose
S is not ontained in the singular lous of X, so that a general point s ∈ S isa smooth point of both X and S. Let U ⊂ Y be an open neighbourhood of s.Then for all f ∈ H0 (U, I(S)) and g ∈ H0 (U, I(X))

0 = {f, g} (s) = ω(dfs, dgs), (II.14)so
N∗

sX/Y = span
{
(dg)s | g ∈ H0

(
U, I(X)

)}

⊆ (N∗
sS/Y )⊥ω by (II.14)

⊆ (N∗
sX/Y )⊥ω

⊆ N∗
sX/Y beause X is isotropi.Therefore we have all inlusions beoming equalities and in partiular codimS =

codimX and hene S = X. Moreover (N∗
sX/Y )⊥ω = N∗

sX/Y , where s is ageneral point of X, so X is Lagrangian.
�30



Algebrai Legendrian varieties Chapter IIII.3.2 Homogeneous sympleti formLemma II.15. Assume (Y, ω) is a sympleti manifold with a C∗-ation andthat ω is homogeneous. Let U ⊂ Y be a C∗-invariant open subset and let f, g ∈
H0(U,OY ) be some homogeneous funtions. Then {f, g} is homogeneous of weight
wt(f) + wt(g) − wt(ω).Proof. Let ξg ∈ H0(U, TY ) be suh a vetor �eld, that ω(ξg) = dg. By lemmaA.1(i) we have wt(ξg) = wt(g) − wt(ω) and sine {f, g} = (df)(ξg), the laimfollows from lemma A.1(i)&(iii).

�II.3.3 Example: Veronese map of degree 2The following example is important for our onsiderations, as it proves that forthe ontat manifold P2n−1, we an equally well onsider the Poisson strutureon ⊕i∈N
Symi C2n (as we do in [Bu03℄ and [Bu06℄) and the Poisson strutureon ⊕i∈2N
Symi C2n; as naturally will arise from the point of view of ontatmanifolds � see �III.2.1. Also this example will be used to illustrate that everyontat struture on P2n−1 omes from a sympleti struture on C2n.Let (V, ω) be a sympleti vetor spae. We let

C[V ] = C[x1, . . . x2n] =
⊕

i∈N

Symi V ∗be the oordinate ring of V . Also onsider
S := C[V ]even =

⊕

i∈2N

Symi V ∗and let Y ′ := SpecS \ {0}. Then we have the following Z2 overing map:
ψ : V \ {0} −→ Y ′,whih is the restrition of the map indued by S →֒ C[V ]. This is the underlyingmap of the seond Veronese embedding of P(V ). In the language of �I.3.7, wehave Y ′ =

(
OP(V )(2)

)• and V \ {0} =
(
OP(V )(1)

)•.The sympleti form ω is Z2 invariant:
ω(−v,−w) = ω(v, w),hene it desents to a sympleti form ω′ on Y ′, making Y ′ a sympleti manifold,suh that:

ψ∗ω′ = ω.The natural gradings on C[V ] and on S indue the ations of C∗ on V \ {0}and on Y ′ (note that the ation on Y ′ is not faithful, its kernel is Z2) and ψ isequivariant with respet to these ations. 31



Jarosªaw Buzy«skiCorollary II.16. With the setup as above, the form ω′ is homogeneous of weight
2 with respet to the C∗-ation desribed above, so it is of weight 1 with respet tothe faithful ation of C∗/Z2 ≃ C∗. Conversely, if ω′ is a homogeneous sympletiform on Y ′ of weight 2, then ψ∗ω′ is a onstant sympleti form on V \ {0}.Proof. This follows from lemma A.1(ii) and the haraterisation of onstantforms on an a�ne spae in �A.1.

�Corollary II.17. The Poisson braket on S indued by ω′ is the restrition ofthe Poisson braket on C[V ] indued by ω.Proof. This follows immediately from proposition II.9.
�We note that Y ′ is the minimal adjoint orbit (see �II.2.2) for the simple group

Sp2n. This simple Lie group and its minimal adjoint orbit have quite exeptionalbehaviour (see table I.1) and it is worth explain this in more detail.

32



Chapter IIIContat geometryA projetive spae seems to be the most standard example of a projetive variety.Yet, as a ontat manifold, the projetive spae of odd dimension is the mostexeptional among exeptional examples. As a onsequene, the study of itsLegendrian subvarieties is quite ompliated and very interesting. We start ouronsiderations by introduing this ase. Further we generalise to the other ontatmanifolds.III.1 Projetive spae as a ontat manifoldLet (V, ω) be a sympleti vetor spae and let P(V ) be its naive projetivisation.Then for every [v] ∈ P(V ) the tangent spae T[v]P(V ) is naturally isomorphi tothe quotient V/[v]. Let F = FP(V ) ⊂ TP(V ) be a orank 1 vetor subbundlede�ned �brewise:
F[v] :=

(
[v]⊥ω

)
/[v].Also let L be the quotient line bundle, so that we have the following short exatsequene:

0 −→ F −→ TP(V )
θ

−→ L −→ 0.We say that F (respetively θ) is the ontat distribution (respetively theontat form) assoiated with the sympleti form ω.By �II.1.3 the vetor spae Fp arries a natural sympleti struture ωFp
. Byproposition A.2 (i) dθ gives a well de�ned twisted 2-form on F :

dθ :=
∧2

F −→ L.Proposition III.1. With an appropriate hoie of loal trivialisation of L, forevery p ∈ P(V ) one has ωFp
= (dθ)p. In partiular dθ is nowhere degenerate andit determines an isomorphism:

F ≃ F ∗ ⊗ L. 33



Jarosªaw Buzy«skiMoreover L ≃ OP(V )(2).Proof. See also [LeB95, Ex. 2.1℄.Let x1 . . . , xn, y1, . . . , yn be some sympleti oordinates on V . Then the ω-perpendiular spae to (a1, . . . , an, b1, . . . , bn) is given by the equation
b1x1 + . . .+ bnxn − a1y1 − . . .− anyn = 0.We look for a twisted 1-form θ on P(V ) whose kernel at eah point is exatly asabove. This is for instane satis�ed by

θ =
1

2
(−y1dx1 − . . .− yndxn + x1dy1 + . . .+ xndyn).The ambiguity is only in the hoie of the salar oe�ient � we hoose 1

2
inorder to aquire the right formula for dθ. Choose an a�ne piee U ⊂ P(V ), saywhere x1 = 1. On U we have

θ|U =
1

2
(−y2dx2 − . . .− yndxn + dy1 + x2dy2 + . . .+ xndyn)and then:

dθ|U = dx2 ∧ dy2 + . . .+ dxn ∧ dyn.On the other hand, �xing p ∈ U , p = [1, a2, . . . an, b1, . . . bn]:
Fp =

{
(x1, . . . , xn, y1, . . . , yn) ∈ V | b1x1 + b2x2 + . . . bnxn−

− y1 − a2y2 − . . .− anyn = 0
}/

[p].Therefore F is the image under the projetion V → V/[p] of:
F̂p :=

{
(0, x2, . . . , xn, a2y2 + . . .+ anyn − b2x2 − . . .− bnxn, y2, . . . yn) ∈ V

}and
ω|F̂p

= dx2 ∧ dy2 + . . .+ dxn ∧ dyn.To see that L ≃ OP(V )(2) take a setion of TP(V ), for instane x1
∂

∂x1
. Then

θ

(
x1

∂

∂x1

)
= −x1y1is a setion of L and hene L ≃ OP(V )(2).

�34



Algebrai Legendrian varieties Chapter IIIIII.1.1 Legendrian subvarieties of projetive spaeAssume (V, ω) is a sympleti vetor spae of dimension 2n.In our works [Bu03℄, [Bu06℄, [Bu07℄, [Bu07b℄ and [Bu07a℄ we �nd on-venient to use the following de�nition:De�nition. We say that a subvariety X ⊂ P(V ) is Legendrian if the a�neone X̂ ⊂ V is a Lagrangian subvariety (see �II.2.1).Yet the original de�nition is formulated in a slightly di�erent, but equivalentmanner:Proposition III.2. Let X ⊂ P(V ) be a subvariety. The following onditions areequivalent:
• X is Legendrian;
• X is FP(V )-integrable and it is of pure dimension n− 1.;Proof. If X is FP(V )-integrable, then X is Legendrian by propositions III.1 andA.2(iv). The other impliation is obvious.

�III.1.2 Deomposable and degenerate Legendrian subvari-etiesDe�nition. Let V1 and V2 be two sympleti vetor spaes and let X1 ⊂ P(V1)and X2 ⊂ P(V2) be two Legendrian subvarieties. Now assume V := V1 ⊕ V2 and
X := X1 ∗ X2 ⊂ P(V ), i.e. X is the join of X1 and X2 meaning the union ofall lines from X1 to X2. Now, learly, the a�ne one X̂ is the produt X̂1 × X̂2(where X̂i is the a�ne one of Xi), so by �II.2.2 X is Legendrian. In suh asituation we say that X is a deomposable Legendrian subvariety. We saythat a Legendrian subvariety in P(V ) is indeomposable, if it is not of that formfor any non-trivial sympleti deomposition V = V1 ⊕ V2.The indeomposable Legendrian subvarieties have more onsistent desriptionof their projetive automorphisms group (see hapter IV). On the other hand,deomposable Legendrian varieties (whih usually themselves are badly singular)will provide some very interesting families of examples of smooth Legendrianvarieties (see hapter VII).We say a subvariety of projetive spae is degenerate if it is ontained insome hyperplane. Otherwise, we say it is non-degenerate. The following easyproposition in some versions is well known. The presented version omes from[Bu06, thm 3.4℄ but see also [LM04, prop. 17 (1)℄ or [Bu03, tw. 3.16℄. 35



Jarosªaw Buzy«skiProposition III.3. Let X ⊂ P(V ) be a Legendrian subvariety. Then the follow-ing onditions are equivalent:(i) X is degenerate.(ii) There exists a sympleti linear subspae W ′ ⊂ V of odimension 2, suhthat X ′ = P(W ′)∩X is a Legendrian subvariety in P(W ′) and X is a oneover X ′.(iii) X is a one over some variety X ′.In partiular degenerate Legendrian subvarieties are deomposable.
�We also quote [LM04, prop. 17 (2)℄:Proposition III.4. Let X ⊂ P(V ) be a smooth Legendrian variety. If X isnon-degenerate, then the tangent variety τ(X) ⊂ P(V ) and the dual variety1

X∗ ⊂ P(V ∗) are hypersurfaes isomorphi via ω̃ : V → V ∗.We note that original formulation in [LM04℄ omits the smoothness assump-tion. Otherwise, the deomposable Legendrian varieties are ounterexamples. Inthe proof the authors freely interhange the tangent variety τ(X) (whih by de�-nition is the union of the limits of seants through two points approahing a third�xed point) and the losure of the union of embedded tangent spaes at smoothpoints. These are the same for X smooth. The tangent variety τ(X) is indeed ahypersurfae in the seant variety σ(X) whih for a non-degenerate Legendrianvariety is P(V ). The losure of the embedded tangent spaes at smooth points isindeed isomorphi to X∗. The mistake does not in�uene any other result of thepaper, but the reader should be areful in applying the proposition.III.1.3 QuadrisIn [Bu06℄ we prove:Theorem III.5. Let X ⊂ P(V ) be a Legendrian subvariety. Consider the fol-lowing map ρ:
H0(OP(V )(2)) ≃ Sym2 V ∗ ∋ q =

(
x 7→ xTM(q)x

) ρ
7−→ 2J ·M(q) ∈ sp(V ).where M(q) is the matrix of q and J = M(ω). Let Ĩ(X)2 ⊂ Sym2 V ∗ be thevetor spae of quadris ontaining X. Then:1Given a subvariety Z ⊂ P(V ), the dual variety is the losure of the set of hyperplanestangent to Z, see �VII.3 for details.36



Algebrai Legendrian varieties Chapter III
• ρ(Ĩ(X)2) is a Lie subalgebra of sp(V ) tangent to a losed subgroup

exp
(
ρ
(
Ĩ(X)2

))
< Sp(V ).

• We have the natural ation of Sp(V ) on P(V ). The group exp
(
ρ
(
Ĩ(X)2

))is the maximal onneted subgroup in Sp(V ) whih under this ation pre-serves X ⊂ P(V ).Proof. See [Bu06, or. 4.4, or. 5.5, lem. 5.6℄.
�We skip the proof beause in �III.3 we generalise this theorem to Legendriansubvarieties of an arbitrary ontat manifold. In hapter IV we prove that forsmooth X the group exp

(
ρ
(
Ĩ(X)2

)) is maximal also in PGL(V ).III.2 Contat manifoldsDe�nition. Let Y be a omplex manifold or smooth algebrai variety and �x ashort exat sequene
0 −→ F −→ TY

θ
−→ L −→ 0where F ⊂ TY is a orank 1 subbundle of the tangent bundle. We say that Y isa ontat manifold if the twisted 2-form

dθ :
∧2

F −→ L(see proposition A.2(i)) is nowhere degenerate, so that dθy is a sympleti formon Fy for every y ∈ Y . In suh a ase F is alled the ontat distribution on
Y and θ is the ontat form on Y .Example III.6. By proposition III.1, the projetive spae with the ontat dis-tribution assoiated with a sympleti form is a ontat manifold.The following properties are standard, well known (see for instane [Bea98℄):Proposition III.7. We have the following properties of ontat manifold Y :(i) The dimension of Y is odd.(ii) Let U ⊂ Y be an open subset, let µF ∈ H0(U, F ) be any setion and let

φµF
: F |U → L|U be a map of sheaves:

∀ν ∈ H0(U, F ) φµF
(ν) := θ

(
[µF , ν]

)
.Then φµF

is a map of OU -modules and the assignment µF 7→ φµF
is anisomorphism of OY -modules:

F ≃ F ∗ ⊗ L. 37



Jarosªaw Buzy«ski(iii) The anonial divisor KY is isomorphi to L⊗(−n−1). In partiular Y is aFano variety if and only if L is ample.Proof. We only prove (ii), the other parts follow easily. Map φµF
is a map of

OU -modules by A.2(iii). By A.2(ii) we have equality:
φµF

(ν) = dθ(µF , ν).Sine dθ is non-degenerate, it follows that µF 7→ φµF
is indeed an isomorphism.

�III.2.1 SympletisationThe following onstrution is standard � see for instane [Arn74℄, [KPSW00℄,[Bea98℄.Let L• be the prinipal C∗-bundle as in �I.3.7. In �A.2.3 and �A.2.4 westudy in detail the properties of L• and an extension of the twisted form θ to
L•. We have an equivalene between ontat strutures on Y and sympletihomogeneous weight 1 strutures on L•:Theorem III.8. Let Y be a omplex manifold or smooth algebrai variety witha line bundle L and the prinipal C∗-bundle L• as in �I.3.7.

• If θ : TY −→ L is a ontat form, then dθ• (see �A.2.4) is a homogeneoussympleti form on L• of weight 1.
• Conversely, assume ω is a sympleti form on L•, whih is homogeneousof weight 1. Then there exists a unique ontat form θ : TY −→ L on Y ,suh that ω = dθ•.Proof. See proposition A.18.

�If (Y, F ) is a ontat manifold, then the sympleti manifold (L•, dθ•) fromthe theorem is alled the sympletisation of (Y, F ).Using the theorem and �II.2.2 we have following examples of ontat mani-folds:Example III.9. Let G be a simple group and let Y be the losed orbit in P(g).Then Y is a ontat manifold (ompare with onjeture I.1).Example III.10. If Y ≃ P(T ∗M), then let L = OP(T ∗M)(1) and hene L• ≃
T ∗M\s0, where s0 is the zero setion and Y is a ontat manifold.38



Algebrai Legendrian varieties Chapter IIIExample III.11. If Y is a ontat Fano manifold, then
Y ≃ Proj

(
⊕

m∈N

H0(Y, Lm)

)
,

L• ≃ Spec

(
⊕

m∈N

H0(Y, Lm)

)
\ {0}where 0 is the point orresponding to the maximal ideal ⊕m≥1 H

0(Y, Lm) (see[Gro61, �2.3℄).
�Example III.12. If Y ≃ P(V ), then by proposition III.7(iii) we have L ≃

OP(V )(2). Therefore V \{0} is a 2 to 1 unrami�ed over of L•, see �II.3.3. Inpartiular, from theorem III.8 and orollary II.16 we onlude that every ontatstruture on P(V ) is assoiated to some onstant sympleti form ω on V (see�III.1).By [KPSW00℄ ombined with [Dem02℄ every ontat projetive manifold Yis either isomorphi to P(T ∗M) or it is Fano with b2 = 1. In the seond aseby proposition III.7(iii) and the Kobayashi-Ohiai haraterisation of projetivespae [KO73℄ either Y ≃ P(V ) or PicY = Z[L].III.2.2 Contat automorphismsAutomorphisms of ontat manifolds preserving the ontat struture were alsostudied by LeBrun [LeB95℄ and Beauville [Bea98℄. We use their methods to stateslightly more general results about in�nitesimal automorphisms. In the end weglobalise the automorphisms for projetive ontat manifolds.Let Y be a ontat manifold and let π : L• −→ Y be the sympletisation asin �III.2.1. Also let RL be as in �I.3.7.Example III.13. If Y is a ontat Fano manifold, then
H0(Y,RL) = H0(L•,OL•) =

(
⊕

m∈N

H0(Y, Lm)

)
.Sine Y = Proj

(
H0(Y,RL)

) (see example III.11), all the struture of Y as well asits global and loal behaviour is determined by this ring of global setions. Henein this ase whatever is stated below for the sheaf RL an be dedued from theanalogous statement about H0(Y,RL) only. 39



Jarosªaw Buzy«skiCorollary III.14.(i) Let f, g ∈ OL• be two funtions on L• homogeneous with respet to theation of C∗. Then {f, g} is also homogeneous and wt{f, g} = wt f+wt g−1(ii) The Poisson braket desends to RL and determines a bilinear map:
H0(U,Lm1) ×H0(U,Lm2) −→ H0(U,Lm1+m2−1).Proof. This follows from orollary II.15. See also [LeB95, rem. 2.3℄.

�We will refer to the Lie algebra struture on RL de�ned above also as Pois-son struture and denote the braket by {·, ·}. For s ∈ H0(U,L) let s̃ be theorresponding element in H0 (π−1(U),L•) = RL(U).By orollary III.14 the invertible sheaf L has a Lie algebra struture andit is ruial for our onsiderations, that it is isomorphi to the sheaf autinf
F ofin�nitesimal automorphisms of Y preserving F (see �A.2.3 for more details):

autinf
F (U) :=

{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F

}
.Theorem III.15. Let Y be a ontat manifold, F be the ontat distribution, θbe the ontat form and let U ⊂ Y be an open subset. Using the notation of �A.2we have:1) TY = autinf

F ⊕ F as sheaves of Abelian groups.2) The map of sheaves θ|
aut

inf
F

: autinf
F −→ L maps isomorphially the Lie algebrastruture of autinf

F onto the Lie algebra struture of L given by the Poissonbraket.3) The following two Lie algebra representations of autinf
F on OL• are equal:

• The indued representation of autinf
F on L• (see �A.2.3).

• The representation indued by the adjoint representation:
µ ∈ autinf

F (U), f ∈ H0(U,OL•) =⇒ µ.f :=
{
θ̃(µ), f

}
.Proof. The following proof of 1) is taken from [Bea98, prop. 1.1℄, but see also[LeB95, prop. 2.1℄.To prove 1), take any µ ∈ H0(U, TY ) and onsider the map of sheaves:

F |U −→ L|U
ν 7−→ θ

(
[µ, ν]

)
.40



Algebrai Legendrian varieties Chapter IIIBy proposition A.2(iii) the above map is a map of OY |U -modules, hene it is anelement of H0(U, F ∗⊗L). Let µF be the orresponding element of H0(U, F ) (seeproposition III.7(ii)). By the de�nition of the isomorphism F ∗ ⊗L ≃ F , we have
θ ([µF , ν]) = θ ([µ, ν])for every ν ∈ F |U , hene [µ− µF , ν] ∈ F |U . Therefore µ− µF ∈ autinf

F (U), so
µ = µF + (µ− µF )gives the required splitting.For 2) see also [Bea98, prop. 1.6℄ and [LeB95, rem. 2.3℄. By 1), the map θ|

aut
inf
Fis an isomorphism of sheaves of Abelian groups. So it is enough to prove that

θ|
aut

inf
F

preserves the Lie algebra strutures. For every µ, ν ∈ autinf
F (U) denote by

µ̆ and ν̆ the indued in�nitesimal automorphisms of L• (see �A.2.3). We have:
{
θ̃(µ), θ̃(ν)

}
=(dθ•)∨

(
d
(
θ̃(ν)

)
, d
(
θ̃(µ)

))

=(dθ•)∨
(
dθ•(ν̆), dθ•(µ̆)

) by prop. A.21
=dθ• (ν̆, µ̆)

= ˜θ([µ, ν]) by or. A.22.Hene θ|
aut

inf
F

preserves the Lie algebra strutures.Part 3) is loal and sine both representations satisfy the Leibniz rule (seeequation (A.14) and lemma II.8), it is enough to hek the equality for multi-pliative generators of OL• . Loally, these might be taken for instane as setionsof L and so 3) follows from 2).
�We underline, that autinf

F , as a subsheaf of TY is not a OY -submodule (see�A.2.3). So in partiular the obtained splitting of the short exat sequene ofsheaves of Abelian groups
0 −→ F −→ TY

θ
−→ L −→ 0is not a splitting of vetor bundles.Turning to global situation assume Y is projetive and let Aut(Y ), AutF (Y )and aut(Y ), autF (Y ) denote, respetively, the group of automorphisms of Y ,the group of automorphisms of Y preserving the ontat struture and their Liealgebras.LeBrun [LeB95℄ and Kebekus [Keb01℄ observed that in the ase of projetiveontat Fano manifolds with Piard group generated by L, the global setions of

L are isomorphi to aut(Y ): 41



Jarosªaw Buzy«skiCorollary III.16. Let Y be a projetive ontat manifold with ontat distribu-tion F .(i) Then θ maps isomorphially autF (Y ) onto H0(Y, L).(ii) If moreover Y is Fano with Pic(Y ) = Z[L], then Aut(Y ) = AutF (Y ) andhene the Lie algebra H0(Y, L) is naturally isomorphi to aut(Y ).Proof. By orollary A.10 we have autF (Y ) = autinf
F (Y ), so (i) follows fromtheorem III.15 2).On the other hand (ii) follows from [Keb01, or. 4.5℄.

�III.3 Legendrian subvarieties in ontat manifoldDe�nition. Let Y be a omplex ontat manifold with a ontat distribution F .A subvariety X ⊂ Y is Legendrian if X is F -integrable (i.e., TX ⊂ F ) and
2 dimX + 1 = dim Y (i.e., X has maximal possible dimension).If Y ≃ P2n+1, then the above de�nition agrees with the de�nition in �III.1.1by proposition III.2. In general, we have analogous properties with V replaedby L•:Proposition III.17. Let Y be a ontat manifold with a ontat distribution
F ⊂ TY and with its sympletisation π : L• → Y . Assume X ⊂ Y is a subvariety.Then:(a) X is F -integrable if and only if π−1(X) ⊂ L• is isotropi.(b) X is Legendrian if and only if π−1(X) ⊂ L• is Lagrangian.Proof. Part (a) follows from lemma A.19 and part (b) follows from (a).

�In the ase of subvarieties of a sympleti manifold, we have three importanttypes of subvarieties (isotropi, Legendrian and oisotropi). Also for subvarietiesof ontat manifold in addition to F -integrable and Legendrian subvarieties, it isuseful to onsider the subvarieties orresponding to the oisotropi ase:De�nition. In the setup of proposition III.17, we say that X is F -ointegrableif π−1(X) ⊂ L• is oisotropi.Example III.18. Assume X̃ ⊂ L• is irreduible and Lagrangian and let X bethe losure of π(X) ⊂ Y . Then X is F -ointegrable. If moreover X̃ is not
C∗-invariant, then dimX = 1

2
(dimY + 1).42



Algebrai Legendrian varieties Chapter IIICorollary III.19. If Y = P(T ∗M) for some smooth algebrai variety M and
X is an algebrai Legendrian subvariety, then X is the onormal variety Z# tosome algebrai subvariety Z ⊂M .Proof. It follows from proposition III.17, example III.10 and lemma II.7.

�Let RL = π∗OL• be the sheaf of rings on Y de�ned in I.3.7. For a subvariety
X ⊂ Y , let Ĩ(X) ⊳ RL be the sheaf of ideals generated by those loal setionsof Lm that vanish on X. Then:

π∗I
(
π−1(X)

)
= Ĩ(X) (III.20)where I (π−1(X)) ⊳ OL• is the ideal sheaf of π−1(X). In this ontext, themeaning of lemma II.11 is the following:Lemma III.21. With the notation as above, let I ⊳ OL• be a oherent sheaf ofideals. Then I is preserved by the Poisson braket on OL• if and only if π∗I ispreserved by the Poisson braket on RL.

�Hene we get the desription of F -ointegrable subvarieties in terms of thePoisson braket on RL:Proposition III.22. With the assumptions as above, a subvariety X ⊂ Y is
F -ointegrable if and only if Ĩ(X) is preserved by the Poisson braket on RL.Proof. The proposition ombines equation (III.20), theorem II.10 and lemmaIII.21.

�Given a subvariety X ⊂ Y , we de�ne autinf
F (·, X) to be the sheaf of Lie alge-bras of those in�nitesimal automorphisms of Y , whih preserve X and ontatdistribution F (see also �A.2.3):

autinf
F (U,X) :=

{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F and

∀f ∈ I(X)|U (df)(µ) ∈ I(X)|U
}Further, let Ĩ(X)1 ⊂ L be the degree 1 part of the sheaf of homogeneous ideals

Ĩ(X). Sine L is a line bundle with the ation of autinf
F (see �A.2.3), hoosing aloal trivialisation and using the gluing property of sheaves we an replae I(X)in the de�nition of autinf

F (·, X) with Ĩ(X)1:
autinf

F (U,X) =
{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F and

µ.Ĩ(X)1|U ⊂ Ĩ(X)1|U
} (III.23)43



Jarosªaw Buzy«skiwhere . denotes the indued ation of autinf
F on L desribed in �A.2.3.The following theorem establishes a onnetion between the in�nitesimal au-tomorphisms of a Legendrian variety and its ideal:Theorem III.24. Let Y be a ontat manifold with a ontat distribution F andlet θ : TY → L be the quotient map. Also let U ⊂ Y be an open subset. Assume

X ⊂ Y is an irreduible subvariety.A. If X is F -integrable, then θ (autinf
F (U,X)

)
⊂ H0

(
U, Ĩ(X)1

).B. If X is F -ointegrable, then θ (autinf
F (U,X)

)
⊃ H0

(
U, Ĩ(X)1

).C. If X is Legendrian, then θ (autinf
F (U,X)

)
= H0

(
U, Ĩ(X)1

).Proof. In the ase of A, hoose arbitrary µ ∈ autinf
F (U,X). We must prove that

θ(µ) ∈ H0(U, Ĩ1(X)) or, equivalently, that
θ̃(µ) ∈ H0

(
π−1(U), I

(
π−1(X)

))(reall that for a setion s ∈ H0(U,L) by s̃ we denote the orresponding elementin H0(π−1(U),OL•)).By (III.23) the ation of µ preserves Ĩ(X)|U and hene also I(π−1(X)
)
|π−1(U).By theorem III.15 3) this means that

{
θ̃(µ), I

(
π−1(X)

)
|π−1(U)

}
⊂ I

(
π−1(X)

)
|π−1(U).Moreover π−1(X) is isotropi by proposition III.17.By lemma II.12 funtion θ̃(µ) is onstant on π−1(X). But θ̃(µ) is also a

C∗-homogeneous funtion of weight 1, so it must vanish on π−1(X). Therefore
θ̃(µ) ∈ H0

(
π−1(U), I

(
π−1(X)

)) as laimed.To prove B let µ ∈ autinf
F (U) be an in�nitesimal automorphism suh that

θ(µ) ∈ Ĩ(X)1. By proposition III.22
{
θ(µ), Ĩ(X)

}
⊂ Ĩ(X)so by theorem III.15 3) we have

µ.Ĩ(X) ⊂ Ĩ(X)(where . denotes the indued representation of autinf
F on L•, see �A.2.3). Heneby equation (III.23) the in�nitesimal automorphism µ is ontained in autinf

F (U,X)and H0
(
U, Ĩ(X)1

)
⊂ θ

(
autinf

F (U,X)
) as laimed.44



Algebrai Legendrian varieties Chapter IIIPart C is an immediate onsequene of A and B.
�The following orollary says that in the ase when Y is projetive also theglobal automorphisms of a Legendrian subvariety an be understood in terms ofthe ideal of the variety. In partiular, in (i), we generalise [Bu03, wn. 4.3℄ or[Bu06, or. 5.5 & lem. 5.6℄.Corollary III.25. Let Y be a projetive ontat manifold, let F be the ontatdistribution and let X be a Legendrian subvariety. Let aut(Y,X) (resp. autF (Y,X))be the Lie algebra of group of automorphisms of Y preserving X (resp. preserving

X and F ). Then:(i) θ(autF (Y,X)
)

= H0
(
Y, Ĩ(X)1

);(ii) If in addition PicY = Z[L], then θ (aut(Y,X)) = H0
(
Y, Ĩ(X)1

).Proof. It follows from orollary III.16 and theorem III.24C.
�In hapter IV we disuss the extension of orollary III.25(ii) to Y ≃ P2n+1.The following orollary generalises [Bu06, thm 5.8℄:Corollary III.26. If Y is a projetive ontat manifold and X ⊂ Y is an irre-duible Legendrian subvariety suh that Ĩ(X) is generated by H0

(
Y, Ĩ(X)1

), then
AutF (Y,X) ats transitively on the smooth lous of X. In partiular, if X is inaddition smooth, then X is a homogeneous spae.Proof. If S ⊂ X,S 6= X is a losed subvariety invariant under the ation of
AutF (Y,X), then by theorem III.15 3) and by orollary III.25(i):

∀f ∈ H0
(
Y, Ĩ(X)1

) {
Ĩ(S), f

}
⊂ Ĩ(S).Hene by the Leibniz rule and sine Ĩ(X) is generated by H0

(
Y, Ĩ(X)1

), we have:
{
I
(
π−1(S)

)
, I
(
π−1(X)

)}
⊂ I

(
π−1(S)

)
.So by lemma II.13, variety S is ontained in the singular lous of X.Now let O ⊂ X be an orbit of a smooth point under the ation of AutF (Y,X).Then the losure O is not ontained in the singular lous so by above it must beequal to all of X. Moreover O \ O is a losed subset invariant under the ationand not equal to X, so it is ontained in the singular lous. So O is the wholesmooth lous of X.

�We onlude this hapter by underlining that, unfortunately, the above resultsare proved only for automorphisms of Y , that preserve Legendrian subvariety X,not simply for automorphisms of X. 45



Chapter IVProjetive automorphisms of aLegendrian varietyThe ontent of this hapter is published in [Bu07℄.We are interested in the following onjeture:Conjeture IV.1. Let X ⊂ P2n−1 be an irreduible indeomposable Legendriansubvariety and let G < PGL2n be a onneted subgroup of linear automorphismspreserving X. Then G is ontained in the image of the natural map Sp2n →
PGL2n.It is quite natural to believe, that if a linear map preserves a form on abig number of linear subspaes, then it atually preserves the form (at leastup to salar). With this approah, [JJ04, or. 6.4℄ proved the onjeture inthe ase where the image of X under the Gauss map is non-degenerate in theGrassmannian of Lagrangian subspaes in C2n. Unfortunately, this is not enough- for example P1 × Q1 ⊂ P5 has a degenerate image under the Gauss map andthis is one of the simplest examples of smooth Legendrian subvarieties.In �IV.2 we prove:Theorem IV.2. If X ⊂ P2n−1 is a smooth Legendrian subvariety whih is not alinear subspae and G < PGL2n is a onneted subgroup preserving X, then G isontained in the image of the natural map Sp2n → PGL2n.This theorem, ombined with orollary III.25 gives us a good understandingof the group of projetive automorphisms of a smooth Legendrian subvariety in
P2n−1.IV.1 Disussion of assumptionsOne obvious remark is that homotheties at trivially on P(V ), but in generalare not sympleti on V . Therefore, it is more onvenient to think of onformalsympletomorphisms (see �II.1.4).46



Algebrai Legendrian varieties Chapter IVIt is lear, that if we hope for a positive answer to the question whether a pro-jetive automorphism of a Legendrian subvariety neessarily preserves the ontatstruture, then we must assume that our Legendrian variety is non-degenerate.Another natural assumption is that X is irreduible � one an also easilyprodue a ounterexample if we skip this assumption. Yet still this is not enough.Let X = X1 ∗X2 ⊂ P(V1 ⊕ V2) be a deomposable Legendrian variety. Thenwe an at via λ1 IdV1
on V1 and via λ2 IdV2

on V2 - suh an ation will preserve Xand in general it is not onformal sympleti. This explains why the assumptionsof our onjeture IV.1 are neessary.IV.2 Preservation of ontat strutureLetX ′ ⊂ P(V ) be an irreduible, indeomposable Legendrian subvariety, letX bethe a�ne one over X ′ and X0 be the smooth lous of X. Assume that G is themaximal onneted subgroup in GL2n preserving X. Let g < gl2n be the Liealgebra tangent to G. To prove the onjeture it would be enough to show that gis ontained in the Lie algebra csp2n tangent to onformal sympletomorphisms,i.e. the Lie algebra spanned by sp2n and the identity matrix Id2n.Reall from �II.1.4 the notion of weks-sympleti matries.Theorem IV.3. With the above notation the following properties hold:I. The underlying vetor spae of g deomposes into sympleti and weks-sympleti part:
g =

(
g ∩ sp(V )

)
⊕
(
g ∩ wsp(V )

)
.II. If g ∈ g ∩ wsp(V ), then g preserves every tangent spae to X:

∀x ∈ X0 g(TxX) ⊂ TxXand hene also
∀t ∈ C ∀x ∈ X0 Texp(tg)(x)X = exp(tg)(TxX) = TxX.III. If g ∈ g ∩ wsp(V ) is semisimple, then g = λ Id for some λ ∈ C.IV. Assume 0 6= g ∈ g ∩ wsp(V ) is nilpotent and let m ≥ 1 be an integersuh that gm+1 = 0 and gm 6= 0. Then gm(X) is always non-zero and isontained in the singular lous of X. In partiular, X ′ is singular.In what follows we prove the four parts of theorem IV.3. 47



Jarosªaw Buzy«skiI. Deomposition into sympleti and weks-sympleti partProof. Take g ∈ g to be an arbitrary element. Then for every x ∈ X0 one has
g(x) ∈ TxXand therefore

0 = ω
(
g(x), x

)
= xT gTJx =

1

2
xT
(
gTJ − Jg

)
x.Hene the quadrati polynomial f(x) := xT (gTJ − Jg)x is identially zero on

X and hene it is in the ideal of X. Therefore by maximality of G and theoremIII.5 the map J (gTJ − Jg
) is also in g. However,
J
(
gTJ − Jg

)
= JgTJ + g,so JgTJ ∈ g and both sympleti and weks-sympleti omponents g+ and g−are in g.

�From the point of view of the onjeture, the sympleti part is �ne. We wouldonly need to prove that g− = λ Id. So from now on we assume g = g− ∈ wsp(V ).II. Ation on tangent spaeProof. Let γt := exp(tg) for t ∈ C. Then γt ∈ G and hene it ats on X. Choosea point x ∈ X0 and two tangent vetors in the same tangent spae u, v ∈ TxX.Then learly also γt(u) and γt(v) are ontained in one tangent spae, namely
Tγt(x)X. Hene:

0 =ω (γt(u), γt(v))

=ω
(
(Id2n +tg + . . .)u, (Id2n +tg + . . .)v

)

=ω(u, v) + t
(
ω(gu, v) + ω(u, gv)

)
+ t2(. . .).In partiular the part of the expression linear in t vanishes, hene ω(gu, v) +

ω(u, gv) = 0. Combining this with equation (II.2) we get that:
ω(gu, v) = ω(u, gv) = 0.However, this implies that gu ∈ (TxX)⊥ω = TxX. Therefore g preserves thetangent spae at every smooth point of X and hene also γt preserves that spae.

�48



Algebrai Legendrian varieties Chapter IVIII. Semisimple partSine G is an algebrai subgroup in GL(V ), hene g has the natural Jordandeomposition inherited from gl(V ), i.e. if we write the Jordan deomposition for
g = gs +gn, then gs, gn ∈ g (see [Hum75, thm 15.3(b)℄). Therefore by propositionII.4(i), proving that for g ∈ g∩wsp(V ) we have gs = λ Id2n and gn = 0 would beenough to establish the onjeture.Here we deal with the semisimple part.Proof. Argue by ontradition. Let V1 be an arbitrary eigenspae of g andlet V2 be the sum of the other eigenspaes. If g 6= λ Id2n, then both V1 and
V2 are non-zero and by proposition II.4(ii) and (iii) they are ω-perpendiular,omplementary sympleti subspaes of V . Let x ∈ X0 be any point. Sine gpreserves TxX by part II it follows that TxX = (TxX∩V1)⊕(TxX∩V2). But thenboth (TxX∩Vi) ⊂ Vi are Lagrangian subspaes, hene have onstant (independentof x) dimensions. Hene TxX0 = (TxX0∩V1)⊕ (TxX0∩V2) is a sum of two vetorbundles and from proposition I.5 we get that X is a produt of two Lagrangiansubvarieties, ontraditing our assumption that X ′ is indeomposable.

�IV. Nilpotent part � X ′ is singularLemma IV.4. Assume X ′ ⊂ P(V ) is any losed subvariety preserved by theation of exp(tg) for some nilpotent endomorphism g ∈ gl(V ). If v is a point ofthe a�ne one over X ′ and m is an integer suh that gm+1(v) = 0 and gm(v) 6= 0,then [gm(v)] ∈ P(V ) is in X ′.Proof. Point [gm(v)] ∈ P(V ) is just the limit of [exp(tg)(v)] as t goes to ∞.
�Lemma IV.5. Assume g ∈ gl(V ) is nilpotent and gm+1 = 0, gm 6= 0 for aninteger m ≥ 1. Let X ⊂ V be an a�ne one over some irreduible projetive sub-variety in P(V ), whih is preserved by the ation of exp(tg), but is not ontainedin the set of the �xed points. Assume that this ation preserves the tangent spae

TxX at every smooth point x of X. If there exists a non-zero vetor in V whihis a smooth point of X ontained in gm(X), then X is a linear subspae.Proof. Step 0 - notation. We let Y to be the losure of gm(X), so in partiular
Y is irreduible. By lemma IV.4, we know that Y ⊂ X. Let y be a general pointof Y . Then by our assumptions y is a smooth point of both X and Y .Next denote by

Wy := (gm)−1(C∗y).You an think of Wy as union of those lines in V (or points in the projetivespae P(V )), whih under the ation of exp(tg) onverge to the line spanned by49



Jarosªaw Buzy«ski
y (or [y])1 as t goes to ∞ . We also note that the losure Wy is a linear subspaespanned by an arbitrary element v ∈Wy and ker gm.Also we let Fy := Wy ∩X, so that:

Fy := (gm|X)−1(C∗y).Finally, v from now on will always denote an arbitrary point of Fy.Step 1 - tangent spae to X at points of Fy. Sine y is a smooth point of
X also Fy onsists of smooth points of X. This is beause the set of singularpoints is losed and exp(tg) invariant. By our assumptions exp(tg) preservesevery tangent spae to X and thus for every v ∈ Fy we have:

TvX = T 1

tm
exp(tg)(v)X = Tlimt→∞( 1

tm
exp(tg)(v)) = TyX.So the tangent spae to X is onstant over the Fy and in partiular Fy ⊂ TyX.Step 2 - dimensions of Y and Fy. From the de�nitions of Y and y and bystep 1 we get that for any point v ∈ Fy:

TyY = im(gm|TvX) = im(gm|TyX).Hene dimY = dimTyY = rk(gm|TyX).Sine y was a general point of Y , we have that:
dimY + dimFy = dimX + 1.So dimFy = dim ker(gm|TyX) + 1.Step 3 - the losure of Fy is a linear subspae. From the de�nition of Fy andstep 1 we know that Fy ⊂ TyX ∩Wy and

TyX ∩Wy = TyX ∩ span{v, ker gm} = span{v, ker(gm|TyX)}.Hene dimFy = dimTyX ∩Wy, so the losure of Fy is exatly TyX ∩Wy andlearly this losure is ontained in X. In partiular ker(gm|TyX) ⊂ X.Step 4 - Y is ontained in ker(gm|TyX). Let Z be X ∩ ker gm. By step 3 weknow that ker(gm|TyX) ⊂ Z. Now we alulate the loal dimension of Z at y:
dim ker(gm|TyX) ≤ dimy Z ≤ dimTyZ ≤ dim(TyX ∩ ker gm) = dim ker(gm|TyX).Sine the �rst and the last entries are idential, we must have all equalities.In partiular the loal dimension of Z at y is equal to the dimension of thetangent spae to Z at y. So y is a smooth point of Z and therefore there is a1This statement is not perfetly preise, though it is true on an open dense subset. There aresome other lines, whih onverge to [y], namely those generated by v ∈ ker gm, but gk(v) = λyfor some k < m. We are not interested in those points.50



Algebrai Legendrian varieties Chapter IVunique omponent of Z passing through y, namely the linear spae ker(gm|TyX).Sine Y is ontained in Z (beause im gm ⊂ ker gm) and y ∈ Y , we must have
Y ⊂ ker(gm|TyX).Step 5 - vary y. Reall, that by step 1 the tangent spae to X is the sameall over Fy. So also it is the same on every smooth point of X, whih falls intothe losure of Fy. But by step 4, Y is a subset of ker(gm|TyX), whih is in thelosure of Fy by step 3. So the tangent spae to X is the same for an open subsetof points in Y . Now apply again step 1 for di�erent y's in this open subset andwe get that X has onstant tangent spae on a dense open subset of X. This ispossible if and only if X is a linear subspae, whih ompletes the proof of thelemma.

�Now part IV of the theorem follows easily:Proof. By the assumptions of the theorem X is not ontained in any hyperplane,so in partiular X is not ontained in ker gm. So by lemma IV.4 the image gm(X)ontains points other than 0. Next by lemma IV.5 and part II of the theorem,sine X annot be a linear subspae, there an be no smooth points of X in
gm(X).

�Smooth aseWe onlude that parts I, III and IV of theorem IV.3 together with propositionII.4(i) and [Hum75, thm. 15.3(b)℄ imply theorem IV.2. We only note that asmooth Legendrian subvariety is either a linear subspae or it is indeomposable.IV.3 Some ommentsConjeture IV.1 is now redued to the following speial ase not overed bytheorem IV.3:Conjeture IV.6. Let X ′ ⊂ P(V ) be an irreduible Legendrian subvariety. Let
g ∈ wsp(V ) be a nilpotent endomorphism and m be an integer suh that gm 6= 0and gm+1 = 0. Assume that the ation of exp(tg) preserves X ′. Assume more-over, that X ′ is singular at points of the image of the rational map gm(X ′). Then
X ′ is deomposable.We also note the improved relation between projetive automorphisms of aLegendrian subvariety and quadrati equations satis�ed by its points:Corollary IV.7. Let X ⊂ P(V ) be an irreduible Legendrian subvariety forwhih onjeture IV.1 holds (for example X is smooth). If G < PGL(V ) is the51



Jarosªaw Buzy«skimaximal subgroup preserving X, then dimG = dim I2(X), where I2(X) is thespae of homogeneous quadrati polynomials vanishing on X.Proof. It follows immediately from the statement of the onjeture and theoremIII.5.
�Finally, it is important to note, that theorem IV.3 part III does not implythat every torus ating on an indeomposable, but singular Legendrian variety

X ′ is ontained in the image of Sp(V ). It only says that the intersetion of suha torus with the weks-sympleti part is always �nite. Therefore if there is anon-trivial torus ating on X ′, there is also some non-trivial onneted subgroupof Sp(V ) ating on X ′ and also some quadrati equations in the ideal of X ′.
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Chapter VTori Legendrian subvarieties inprojetive spaeThe ontent of this hapter is published in [Bu07℄.We apply theorem IV.2 to lassify smooth tori Legendrian subvarieties. Wehoose appropriate oordinates to redue this problem to some ombinatoris (forsurfae ase � see �V.2) and some elementary geometry of onvex bodies (forhigher dimensions � see �V.3). Eventually we get:Theorem V.1. Every smooth tori Legendrian subvariety in a projetive spaeis isomorphi to one of the following:
• a linear subspae,
• P1 ×Q1 ⊂ P5,
• P1 ×Q2 ≃ P1 × P1 × P1 ⊂ P7

• or P2 blown up in three non-olinear points.For proofs see orollaries V.7 and V.11. The linear subspae is not reallyinteresting, the produts P1 × Q1 and P1 × Q2 are well known (see �I.1.2). Thelast ase of blow up was an original example of [Bu07℄.V.1 Classi�ation of tori Legendrian varietiesWithin this hapter X is a tori subvariety of dimension n − 1 in a projetivespae of dimension 2n−1. We assume it is embedded torially, so that the ationof T := (C∗)n−1 on X extends to an ation on the whole P2n−1, but we do notassume that the embedding is projetively normal. The notation is based on[Stu97℄ though we also use tehniques of [Oda88℄. We would like to understandwhen X an be Legendrian with respet to some ontat struture on P2n−1 andin partiular, when it an be a smooth tori Legendrian variety. 53



Jarosªaw Buzy«skiThere are two reasons for onsidering non projetively normal tori varietieshere. The �rst one is that the new example we �nd is not projetively normal.The seond one is the onjeture [Stu97, onj. 2.9℄, whih says that a smooth,tori, projetively normal variety is de�ned by quadris. We do not expet toprodue a ounterexample to this onjeture and on the other hand all smoothLegendrian varieties de�ned by quadris are known to be just the subadjointvarieties (see [Bu06, thm.5.11℄).In addition we assume that either X is smooth or at least the following on-dition is satis�ed:(⋆) The ation of the torus T on P2n−1 preserves the standard ontat strutureon P2n−1. In other words, the image of T → PGL2n is ontained in theimage of Sp2n → PGL2n.In the ase where X is smooth, the (⋆) ondition is always satis�ed by theoremIV.2. But for some statements below we do not need non-singularity, so we onlyassume (⋆).Theorem V.2. Let X ⊂ P2n−1 be a tori (in the above sense) non-degenerateLegendrian subvariety satisfying (⋆). Then there exists a hoie of sympletioordinates on V and oprime integers a0 ≥ a1 ≥ . . . ≥ an−1 > 0 suh that X isthe losure of the image of the following map:
T ∋ (t1, . . . , tn−1) 7→ [−a0t

a1

1 t
a2

2 . . . t
an−1

n−1 , a1t
a0

1 , a2t
a0

2 , . . . , an−1t
a0

n−1,

t−a1

1 t−a2

2 , . . . , t
−an−1

n−1 , t−a0

1 , t−a0

2 , . . . , t−a0

n−1] ∈ P2n−1.In other words, X is the losure of the orbit of a point
[−a0, a1, a2, . . . , an−1, 1, 1, . . . 1] ∈ P2n−1under the torus ation with weights

w0 := (a1, a2, . . . , an−1),

w1 := (a0, 0, . . . , 0), w2 := (0, a0, 0, . . . , 0), . . . , wn−1 := (0, . . . , 0, a0)and − w0,−w1, . . . ,−wn−1.Moreover every suh X is a non-degenerate tori Legendrian subvariety.We are aware that for many hoies of the ai's from the theorem, the ationof the torus on X (and on P2n−1) is not faithful, so that for suh examples abetter hoie of oordinates ould be made. However, we are willing to pay theprie of taking a quotient of T to get a uniform desription. One advantageof the desription given in the theorem is that a part of it is almost indepen-dent of the hoie of the ai's. This part is the (n− 1)-dimensional �otahedron�
conv{w1, . . . wn−1,−w1, . . .− wn−1} ⊂ Zn−1 ⊗ R.54



Algebrai Legendrian varieties Chapter VProof. Assume X is Legendrian with respet to a sympleti form ω, that Xis non-degenerate, that the torus T ats on P2n−1 preserving X and satis�es (⋆).Replaing if neessary T by some overing we may assume that T → PGL2nfatorises through a maximal torus TSp2n
⊂ Sp2n:

T → TSp2n
⊂ Sp2n → PGL2n.This implies, that for an appropriate sympleti basis the variety X is thelosure of the image of the map T → P2n−1 given by:

T ∋ t 7→ [x0t
w0 , x1t

w1 . . . , xn−1t
wn−1 , t−w0, t−w1 . . . , t−wn−1] ∈ P2n−1where xi ∈ C, wi ∈ Zn−1 and for v = (v1, . . . vn−1) ∈ Zn−1 we let tv := tv1

1 . . . t
vn−1

n−1 .This means thatX is the losure of the T -orbit of the point1 [x0, . . . xn−1, 1, . . . , 1]where T ats with weights w0, . . . wn−1,−w0, . . . ,−wn−1.SineX is non-degenerate, the weights are pairwise di�erent. Also the weightsare not ontained in any hyperplane in Zn−1 ⊗ R, beause the dimension of T isequal to the dimension of X and we assume X has an open orbit of the T -ation.So there exists exatly one (up to salar) linear relation:
−a0w0 + a1w1 + . . .+ an−1wn−1 = 0.We assume that the ai's are oprime integers. Permuting oordinates appropri-ately we an assume that |a0| ≥ |a1| ≥ . . . ≥ |an−1| ≥ 0. After a sympletihange of oordinates, we an assume without loss of generality that all the ai'sare non negative by exhanging wi with −wi (and xi with − 1

xi
) if neessary.Clearly not all the ai's are zero so in partiular a0 > 0 and hene

w0 =
a1w1 + . . .+ an−1wn−1

a0
.Therefore, if we set ei := wi

a0
for i ∈ {1, . . . , n − 1}, the points ei form a basisof a lattie M ontaining all wi's. The lattie M might be �ner than the onegenerated by the wi's. Replaing again T by a �nite over, we an assume thatthe ation of T is expressible in the terms of weights in M . Then:

w0 = a1e1 + . . .+ an−1en−1,

w1 = a0e1,...,
wn−1 = a0en−1.1Note that usually one assumes that this point is just [1,. . . ,1℄. In our ase we would haveto onsider non-sympleti oordinates. We prefer to deal with a point with more ompliatedoordinates. 55



Jarosªaw Buzy«skiIt remains to prove three things: that an−1 > 0, that the xi's might be hosenas in the statement of the theorem and �nally that every suh variety is atuallyLegendrian. We will do all three together.The torus ats sympletially on the projetive spae, thus the tangent spaesto the a�ne one are Lagrangian if and only if just one tangent spae at a pointof the open orbit is Lagrangian. So take the point [x0, . . . xn−1, 1, . . . , 1]. Thea�ne tangent spae is spanned by the following vetors:
v :=( x0, x1, x2, . . . , xn−1, 1, 1, 1, . . . , 1),

u1 :=( x0a1,x1a0, 0, . . . , 0, −a1,−a0, 0, . . . , 0),

u2 :=( x0a2, 0,x2a0, . . . , 0, −a2, 0,−a0, . . . , 0),...
un−1 :=(x0an−1, 0, 0, . . . ,xn−1a0, −an−1, 0, 0, . . . ,−a0).Now the produts are following:

ω(ui, uj) = 0;

ω(ui, v) = 2(x0ai + xia0).Therefore the linear spae spanned by v and the ui's is Lagrangian if and only if:
xi = −x0

ai

a0
.In partiular, sine xi 6= 0, the ai annot be zero either. After another onformalsympleti base hange, we an assume that x0 = −a0 and then xi = ai. On theother hand, the above equation is satis�ed for the variety in the theorem. Henethe theorem is proved.

�Our next goal is to determine for whih values of the ai's the variety X issmooth. The urve ase is not interesting at all and also very easy, so we startfrom n = 3, i.e. Legendrian surfaes.V.2 Smooth tori Legendrian surfaesWe are interested in knowing when the tori projetive surfae with weights oftorus ation
w0 :=(a1, a2), w1 :=(a0, 0), w2 :=(0, a0),

−w0 =(−a1,−a2), −w1 =(−a0, 0), −w2 =(0,−a0)56



Algebrai Legendrian varieties Chapter V
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Figure V.1: The two examples of weights giving smooth tori Legendrian surfaes.is smooth. Our assumptions on the ai's are following:
a0 ≥ a1 ≥ a2 > 0 (V.3)and a0, a1, a2 are oprime integers.Example V.4. Let a0 = 2 and a1 = a2 = 1 (see �gure V.1). Then X is theprodut of P1 and a quadri plane urve Q1.Example V.5. Let a0 = a1 = a2 = 1 (see �gure V.1). Although the embeddingis not projetively normal (we lak the weight (0, 0) in the middle), the image issmooth anyway. Then X is the blow up of P2 in three non-olinear points.We will prove there is no other smooth example.We must onsider two ases (see �gure V.2): either a0 > a1 +a2 (whih meansthat w0 is in the interior of the square conv{w1, w2,−w1,−w2}) or a0 ≤ a1 + a2(so that w0 is outside or on the border of the square).Geometrially, ase a0 > a1+a2 means, that the normalisation ofX is P1×P1.It is just an easy expliit veri�ation that X is not smooth with these additionalweights in the interior.In the other ase, for a vertex v of the polytope

conv{w0, w1, w2,−w0,−w1,−w2},we de�ne the sublattie Mv to have the origin at v and to be generated by
{w0 − v, w1 − v, w2 − v,−w0 − v,−w1 − v,−w2 − v}.Sine X is smooth, for every vertex v the vetors of the edges meeting at vmust form a basis of Mv (ompare with [Stu97, prop.2.4 & lemma 2.2℄). Inpartiular, if v = −w2 (it is immediate from inequalities (V.3) that v is indeed avertex), then w2 − (−w2) = (0, 2a0) an be expressed as an integer ombination57



Jarosªaw Buzy«ski
w
1

w
0

w
2

−w
1

−w
0

−w
2

−w
2

w
1

w
0

w
2

−w
1

−w
0Figure V.2: Due to the inequalities a0 ≥ a1 > 0 and a0 ≥ a2 > 0, the weight w0 isloated somewhere in the grey square. The two ases we onsider are if w0 is also insidethe square conv{w1, w2,−w1,−w2} (left �gure) or it is outside (right �gure). In the seondase, a neessary ondition to get a smooth variety, is that the two bold vetors generate alattie ontaining all the weights. In partiular the dashed vetor an be obtained as an integerombination of the bold ones.of w1 + w2 = (a0, a0) and −w0 + w2 = (−a1, a0 − a2) (see the right hand side of�gure V.2). So write:

(0, 2a0) = k(a0, a0) + l(−a1, a0 − a2) (V.6)for some integers k and l. It is obvious that k and l must be stritly positive,sine w2 is in the one generated by w1 + w2 and −w0 + w2 with the vertex at
−w2. But then (sine a0 − a2 ≥ 0) from equation (V.6) on the seond oordinatewe get that either k = 1 or k = 2.If k = 1, then we easily get that:

{
a0 = la1

a0 = a1 + a2.Hene (l − 1)a1 = a2 and by inequalities (V.3) we get l = 2 and therefore (sinethe ai's are oprime) (a0, a1, a2) = (2, 1, 1), whih is example V.4.On the other hand, if k = 2, then
a0 = a2and hene by inequalities (V.3) and sine the ai's are oprime, we get (a0, a1, a2) =

(1, 1, 1), whih is example V.5.Corollary V.7. If X ⊂ P5 is smooth tori Legendrian surfae, then it is either
P1 ×Q1 or P2 blown up in three non-olinear points or plane P2 ⊂ P5.
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Algebrai Legendrian varieties Chapter VV.3 Higher dimensional tori Legendrian varietiesIn this setion we assume that n ≥ 4. By means of the geometry of onvex bodieswe will prove there is only one smooth tori non-degenerate Legendrian varietyin dimension n− 1 = 3 and no more in higher dimensions. We use theorem V.2so that we have a tori variety with weights:
w0 := (a1, a2, . . . , an−1),

w1 := (a0, 0, . . . 0),...
wn−1 := (0, . . . 0, a0),

− w0,−w1, . . . ,−wn−1where the ai's are oprime positive integers with a0 ≥ a1 ≥ . . . ≥ an−1.
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Figure V.3: The smooth example in dimension 3: (a0, a1, a2, a3) = (1, 1, 1, 1).Example V.8. Let n = 4 and (a0, a1, a2, a3) = (1, 1, 1, 1). Then the related torivariety is P1 × P1 × P1 (see �gure V.3).Further, let A be the polytope de�ned by the weights:
A := conv{w0, w1, . . . , wn−1,−w0,−w1, . . . ,−wn−1} ⊂ Zn−1 ⊗ R.Lemma V.9. Let I, J ⊂ {1, . . . , n−1} be two omplementary subsets of indexes.(a) Assume i1, i2 ∈ I and i1 6= i2. If

∣∣∣∣∣
∑

i∈I

ai −
∑

j∈J

aj

∣∣∣∣∣ < a0,then the interval (wi1, wi2) is an edge of A. 59



Jarosªaw Buzy«ski(b) Assume k ∈ I and l ∈ J . If
∑

i∈I

ai −
∑

j∈J

aj > a0,then both intervals (w0, wk) and (w0,−wl) are edges of A.() If k, l ∈ {1, . . . , n− 1} and k 6= l, then (wk,−wl) is an edge of A.Proof. Fix ǫ > 0 small enough, set α :=
∑

i∈I ai −
∑

j∈J aj and de�ne thefollowing hyperplanes in Zn−1 ⊗ R:
Ha :=

{
∑

i∈I

xi − (1 − ǫ)
∑

j∈J

xj = a0

}
,

Hb :=

{
(a0 − ak)

(
∑

i∈I

xi −
∑

j∈J

xj − α

)
+ (α− a0) (xk − ak) = 0

}
,

H ′
b :=

{
(a0 + al)

(
∑

i∈I

xi −
∑

j∈J

xj − α

)
+ (α− a0) (xl + al) = 0

}and Hc := {xk − xl = a0} .Assuming the inequality of (a), Ha ∩ A is equal to conv{wi | i ∈ I} and therest of A lies on one side of Ha. So Ha is a supporting hyperplane for the fae
conv{wi | i ∈ I}, whih is a simplex of dimension (#I − 1) and therefore all itsedges are also edges of A as laimed in (a).Next assume that the inequality of (b) holds. Then Hb (respetively H ′

b) is asupporting hyperplane for the edge (w0, wk) (respetively (w0,−wl)).Similarly, in the ase of (), Hc is a supporting hyperplane for {wk,−wl}.
�Theorem V.10. Let X ⊂ P2n−1 be a tori non-degenerate Legendrian variety ofdimension n − 1 satisfying (⋆) (see page 54). If n ≥ 4 and normalisation of Xhas at most quotient singularities, then n = 4 and X = P1 × P1 × P1.Proof. Sine the normalisation of X has at most quotient singularities, it followsthat the polytope A is simple, i.e. every vertex has exatly n−1 edges (see [Ful93℄or [Oda88, �2.4, p. 102℄). We will prove this is impossible, unless n = 4 and

(a0, a1, a2, a3) = (1, 1, 1, 1).If w0 ∈ B := conv{w1, . . . , wn−1,−w1, . . .− wn−1}, then A is just equal to Band learly in suh a ase every vertex of A has 2(n− 2) edges. Hene more than
n− 1 for n ≥ 4.60



Algebrai Legendrian varieties Chapter VThus from now on we an assume that a1 + . . . + an−1 > a0. So by lemmaV.9(b), (w0, wi) is an edge for every i ∈ {1, . . . , n− 1}.Choose any j ∈ {1, . . . , n− 1} and set I := {1, . . . , j − 1, j + 1, . . . , n− 1}.If either ∣∣∣∣∣

(
∑

i∈I

ai

)
− aj

∣∣∣∣∣ < a0 or
(
∑

i∈I

ai

)
− aj > a0,then using lemma V.9 we an ount the edges at either wi or w0 and see thatthere is always more than n− 1 of them. We note that aj −

(∑
i∈I ai

)
≥ a0 neverhappens due to our assumptions on the ai's.Therefore the remaining ase to onsider is

(
∑

i∈I

ai

)
− aj = a0,where the equality holds for every j ∈ {1, . . . , n− 1}. This implies:

a1 = a2 = . . . = an−1 =
1

n− 3
a0.Sine the ai's are positive integers and oprime, we must have

(a0, a1, . . . , an−1) = (n− 3, 1, . . . , 1)whih is exatly example V.8 for n = 4. Otherwise, if n ≥ 5 we an take
J := {j1, j2} for any two di�erent j1, j2 ∈ {1, . . . , n − 1} and set I to be theomplement of J . Then #I ≥ 2 and by lemma V.9(a) and () there are too manyedges at the wi's.

�Corollary V.11. If X ⊂ P2n−1 is a smooth tori Legendrian subvariety and
n ≥ 4, then it is either a linear subspae or n = 4 and X = P1 × P1 × P1.

�
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Chapter VIExamples of quasihomogeneousLegendrian varietiesThe ontent of this hapter is published in [Bu07b℄.We onstrut a family of examples of Legendrian subvarieties in projetivespaes. Although most of them are singular, a new example of a smooth Legen-drian variety in dimension 8 is in this family. The 8-fold has interesting properties:it is a ompati�ation of the speial linear group, a Fano manifold of index 5and Piard number 1 (see theorem VI.4(b)). Also we show how this onstrutiongeneralises to give new smooth examples in dimensions 5 and 14 (see �VI.2.1).In �VI.1 we introdue the notation for this hapter. In �VI.2 we formulate theresults and make some omments on possible generalisations. In �VI.3 we studythe struture of a group ation related to the problem. In �VI.4 we �nally provethe results.VI.1 Notation and de�nitionsFor this hapter we �x an integer m ≥ 2.Vetor spae VLet V be a vetor spae over omplex numbers C of dimension 2m2, whih weinterpret as a spae of pairs of m×m matries. The oordinates are: aij and bijfor i, j ∈ {1, . . .m}. By A we denote the matrix (aij) and similarly for B and
(bij).Given two m × m matries A and B, by (A,B) we denote the point of thevetor spae V , while by [A,B] we denote the point of the projetive spae P(V ).Sometimes, we will represent some linear maps V −→ V and some 2-linearforms V ⊗ V −→ C as 2m2 × 2m2 matries. In suh a ase we will assume the62



Algebrai Legendrian varieties Chapter VIoordinates on V are given in the lexiographial order:
a11, . . . , a1m, a21, . . . , amm, b11, . . . , b1m, b21, . . . , bmm.Sympleti form ωOn V we onsider the standard sympleti form

ω
(
(A,B), (A′, B′)

)
:=
∑

i,j

(aijb
′
ij − a′ijbij) = tr

(
A(B′)T −A′BT

)
. (VI.1)Further we set J to be the matrix of ω:

J := M(ω) =

[
0 Idm2

− Idm2 0

]
.Varieties Y , Xinv(m) and Xdeg(m, k)We onsider the following subvariety of P(V ):

Y :=
{
[A,B] ∈ P(V ) | ABT = BTA = λ2 Idm for some λ ∈ C

}
. (VI.2)The square at λ seems to be irrelevant here, but it slightly simpli�es the notationin the proofs of theorem VI.4(b) and proposition VI.10(ii). Although it is notessential for the ontent of this hapter, we note that Y is F -ointegrable.Further we de�ne two types of subvarieties of Y :

Xinv(m) :=

{[
g, (g−1)T

]
∈ P(V ) | det g = 1

}
,

Xdeg(m, k) :=
{

[A,B] ∈ P(V ) | ABT = BTA = 0, rkA ≤ k, rkB ≤ m− k
}
,where k ∈ 0, 1, . . .m. The varieties Xdeg(m, k) have been also studied by [Str82℄and [MT99℄. Xinv(m) (espeially Xinv(3)) is the main objet of this hapter.Automorphisms ψµFor any µ ∈ C∗ we let ψµ be the following linear automorphism of V :

ψµ

(
(A,B)

)
:= (µA, µ−1B).Also the indued automorphism of P(V ) will be written in the same way:

ψµ

(
[A,B]

)
:= [µA, µ−1B]. 63



Jarosªaw Buzy«skiGroups G and G̃, Lie algebra g and their representationWe set G̃ := GLm ×GLm and let it at on V by:
(g, h) ∈ G̃, g, h ∈ GLm, (A,B) ∈ V

(g, h) · (A,B) := (gTAh, g−1B(h−1)T ).This ation preserves the sympleti form ω.We will mostly onsider the restrited ation of G := SLm × SLm < G̃.We also set g := slm× slm to be the Lie algebra of G and we have the tangentation of g on V :
(g, h) · (A,B) = (gTA+ Ah,−gB − BhT ).Though we denote the ation of the groups G, G̃ and the Lie algebra g by thesame · we hope it will not lead to any onfusion. Also the indued ation of Gand G̃ on P(V ) will be denoted by ·.Orbits INVm and DEGm

k,lWe de�ne the following sets:
INVm :=

{[
g,
(
g−1
)T]

∈ P(V ) | det g = 1

}
,

DEGm
k,l :=

{
[A,B] ∈ P(V ) | ABT = BTA = 0, rkA = k, rkB = l

}
,so that Xinv(m) = INVm and Xdeg(m, k) = DEGm

k,m−k.Clearly, if k + l > m, then DEGm
k,l is empty, so whenever we are onsidering

DEGm
k,l we will assume k + l ≤ m.Elementary matries Eij and points p1 and p2Let Eij be the elementary m × m matrix with unit in the ith row and the jtholumn and zeroes elsewhere.We distinguish two points p1 ∈ DEGm

1,0 and p2 ∈ DEGm
0,1:

p1 := [Emm, 0] and p2 := [0, Emm]These points will be usually hosen as nie representatives of the losed orbits
DEGm

1,0 and DEGm
0,1.64



Algebrai Legendrian varieties Chapter VISubmatries - extrating rows and olumnsAssume A is an m ×m matrix and I, J are two sets of indies of ardinality kand l respetively:
I := {i1, i2, . . . , ik | 1 ≤ i1 < i2 < . . . < ik ≤ m} ,

J := {j1, j2, . . . , jl | 1 ≤ j1 < j2 < . . . < jl ≤ m} .Then we denote by AI,J the (m−k)×(m−l) submatrix of A obtained by removingrows of indies I and olumns of indies J . Also for a set of indies I we denoteby I ′ the set of m− k indies omplementary to I.We will also use a simpli�ed version of the above notation when we removeonly a single olumn and single row: Aij denotes the (m−1)× (m−1) submatrixof A obtained by removing i-th row and j-th olumn, i.e. Aij = A{i},{j}Also in the simplest situation where we remove only the last row and the lastolumn, we write Am, so that Am = Amm = A{m},{m}.VI.2 Main resultsIn this hapter we give a lassi�ation1 of Legendrian subvarieties in P(V ) thatare ontained in Y .Theorem VI.3. Let projetive spae P(V ), varieties Y , Xinv(m), Xdeg(m, k) andautomorphisms ψµ be de�ned as in �VI.1. Assume X ⊂ P(V ) is an irreduiblesubvariety. Then X is Legendrian and ontained in Y if and only if X is one ofthe following varieties:1. X = ψµ(Xinv(m)) for some µ ∈ C∗ or2. X = Xdeg(m, k) for some k ∈ {0, 1, . . .m}.The idea of the proof of theorem VI.3 is based on the observation that everyLegendrian subvariety that is ontained in Y must be invariant under the ationof the group G. This is explained in �VI.3. A proof of the theorem is presentedin �VI.4.1.Also we analyse whih of the above varieties appearing in 1. and 2. are smooth:Theorem VI.4. With the de�nition of Xinv(m) as in �VI.1, the family Xinv(m)ontains the following varieties:(a) Xinv(2) is a linear subspae.1This problem was suggested by Sung Ho Wang. 65



Jarosªaw Buzy«ski(b) Xinv(3) is smooth, its Piard group is generated by a hyperplane setion.Moreover Xinv(3) is a ompati�ation of SL3 and it is isomorphi to ahyperplane setion of Grassmannian Gr(3, 6). The onneted omponent of
Aut(Xinv(3)) is equal to G = SL3 × SL3 and Xinv(3) is not a homogeneousspae.() Xinv(4) is the 15 dimensional spinor variety S6.(d) For m ≥ 5, the variety Xinv(m) is singular.A proof of the theorem is explained in �VI.4.3.VarietyXinv(3) is an original example of [Bu07b℄. Also it is the �rst desribedexample of a smooth non-homogeneous Legendrian variety of dimension biggerthan 2 (see �I.1.2). This example is very lose to a homogeneous one, namelyit is isomorphi to a hyperplane setion of Gr(3, 6), a well known subadjointvariety. So a natural question arises, whether general hyperplane setions of otherLegendrian varieties admit a Legendrian embedding. The answer is yes and weexplain it (as well as many onlusions from this surprisingly simple observation)in hapter VII.Theorem VI.5. With the de�nition of Xdeg(m) as in �VI.1, variety Xdeg(m, k)is smooth if and only if k = 0 , k = m or (m, k) = (2, 1). In the �rst two ases,

Xdeg(m, 0) and Xdeg(m,m) are linear spaes, while Xdeg(2, 1) ≃ P1×P1×P1 ⊂ P7.A proof of the theorem is presented in �VI.4.2.VI.2.1 Generalisation: Representation theory and furtherexamplesThe interpretation of theorem VI.4 (b) and () an be following: We take theexeptional Legendrian variety Gr(3, 6), slie it with a linear setion and we geta desription, whih generalised to matries of bigger size, gives the bigger exep-tional Legendrian variety S6. A similar onnetion an be established betweenother exeptional Legendrian varieties (see �I.1.2).For instane, assume that V sym is a vetor spae of dimension 2
(

m+1
2

), whihwe interpret as the spae of pairs of m × m symmetri matries A,B. Now in
P(V sym) onsider the subvariety Xsym

inv (m), whih is the losure of the followingset:
{[A,A−1] ∈ P(V sym)|A = AT and detA = 1}.Theorem VI.6. All the varieties Xsym

inv (m) are Legendrian and we have:(a) Xsym
inv (2) is a linear subspae.66



Algebrai Legendrian varieties Chapter VI(b) Xsym
inv (3) is smooth and it is isomorphi to a hyperplane setion of Lagran-gian Grassmannian GrL(3, 6).() Xsym
inv (4) is smooth and it is Grassmannian variety Gr(3, 6).(d) For m ≥ 5, the variety Xsym

inv (m) is singular.The proof is exatly as the proof of theorem VI.4.Similarly, we an take V skew to be a vetor spae of dimension 2
(
2m
2

), whihwe interpret as the spae of pairs of 2m×2m skew-symmetri matries A,B. Nowin P(V skew) onsider subvariety Xskew
inv (m), whih is the losure of the followingset:

{[A,−A−1] ∈ P(V skew)|A = −AT and Pfaff A = 1}.Theorem VI.7. All the varieties Xskew
inv (m) are Legendrian and we have:(a) Xskew

inv (2) is a linear subspae.(b) Xskew
inv (3) is smooth and it is isomorphi to a hyperplane setion of the spinorvariety S6.() Xskew
inv (4) is smooth and it is the 27 dimensional E7 variety.(d) For m ≥ 5, the variety Xskew

inv (m) is singular.Here the only di�erene is that we replae the determinants by the Pfa�ansof the appropriate submatries and also for the previous ases we will be pikingsome diagonal matries as nie representatives. Sine there is no non-zero skew-symmetri diagonal matrix, we must modify our alulations a little bit, but thereis essentially no di�erene in the tehnique.Prior to [Bu07b℄ neitherXsym
inv (3) norXskew

inv (3) have been identi�ed as smoothLegendrian subvarieties.Therefore we have established a onnetion between the subadjoint varietiesof the 4 exeptional groups F4, E6, E7 and E8. A similar onnetion was obtainedby [LM02℄.We note that m × m symmetri matries, m × m matries and 2m × 2mskew-symmetri matries naturally orrespond tom×m Hermitian matries withoe�ients in F⊗RC, where F is the �eld of, respetively, real numbers R, omplexnumbers C and quaternions H (see [LM01℄ and referenes therein). An algebrairelation (analogous to parts () of theorems VI.4 VI.6 and VI.7) between Liealgebras of types E6, E7 and E8 and 4 × 4 Hermitian matries with oe�ientsin F ⊗R C is desribed in [BK94℄. 67



Jarosªaw Buzy«skiVI.3 G-ation and its orbitsReall the de�nition of Y in �VI.1.The following polynomials are in the homogeneous ideal of Y (the indies i, jbelow run through {1, . . . , m}, k is a summation index):
m∑

k=1

aikbik −
m∑

k=1

a1kb1k, (VI.8a)
m∑

k=1

aikbjk for i 6= j, (VI.8b)
m∑

k=1

akibki −
m∑

k=1

ak1bk1, (VI.8)
m∑

k=1

akibkj for i 6= j. (VI.8d)These equations simply ome from eliminating λ from the de�ning equationof Y � see equation (VI.2).For the statement and proof of the following proposition, reall our notationof �VI.1.Proposition VI.9. Let X ⊂ P(V ) be a Legendrian subvariety. If X is ontainedin Y , then X is preserved by the indued ation of G on P(V ).Proof. Let Ĩ(X)2 be as in the theorem III.5 and de�ne Ĩ(Y )2 analogously.Clearly Ĩ(Y )2 ⊂ Ĩ(X)2. Also let ρ be the map desribed in theorem III.5. Bytheorem III.5 it is enough to show that g ⊂ ρ
(
Ĩ(Y )2

) or that the images of thequadris (VI.8a)�(VI.8d) under ρ generate g.We write out the details of the proof only for m = 2. There is no di�erenebetween this ase and the general one, exept for the omplexity of notation.Let us take the quadri
qij :=

m∑

k=1

aikbjk = ai1bj1 + ai2bj2for any i, j ∈ {1, . . . , m} = {1, 2}. Also let Qij be the 2m2 × 2m2 symmetri68



Algebrai Legendrian varieties Chapter VImatrix orresponding to qij. For instane:
Q12 =




0 0 0 0 0 0 1
2

0
0 0 0 0 0 0 0 1

2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2

0 0 0 0 0 0 0
0 1

2
0 0 0 0 0 0




.

Choose an arbitrary (A,B) ∈ V and at the moment we want to think of itas of a single vertial 2m2-vetor: (A,B) = [a11, a12, a21, a22, b11, b12, b21, b22]
T , sothat the following multipliation makes sense:

ρ(q12) = 2J ·Q12 · (A,B) =

=




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0







0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0







a11

a12

a21

a22

b11
b12
b21
b22




=

=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







a11

a12

a21

a22

b11
b12
b21
b22




=

=




0
0
a11

a12

−b21
−b22

0
0




bak to the matrix notation
=

([
0 0
a11 a12

]
,

[
−b21 −b22

0 0

])
=

=

([
0 1
0 0

]T [
a11 a12

a21 a22

]
, −

[
0 1
0 0

] [
b11 b12
b21 b22

])
= (ET

12A, −E12B).69



Jarosªaw Buzy«skiSimilar alulations show that:
2J ·Qij · (A,B) = (ET

ijA, −EijB).Next in the ideal of Y we have the following quadris: qij for i 6= j (see(VI.8b)) and qii − q11 (see (VI.8a)). By taking images under ρ of the linearombinations of those quadris we an get an arbitrary traeless matrix g ∈ slmating on V in the following way:
g · (A,B) = (gTA,−gB).Exponentiate this ation of slm to get the ation of SLm:
g · (A,B) = (gTA, g−1B).This proves that the ation of subgroup SLm×0 < G = SLm×SLm preserves

X as laimed in the proposition. The ation of the other omponent 0 × SLm isalulated in the same way, but using quadris (VI.8)�(VI.8d).
�VI.3.1 Invariant subsetsHere we want to deompose Y into a union of some G-invariant subsets, most ofwhih are orbits.Proposition VI.10.(i) The sets INVm, ψµ(INVm) and DEGm

k,l are G-invariant and they are allontained in Y .(ii) Y is equal to the union of all ψµ(INVm) (for µ ∈ C∗) and all DEGm
k,l (forintegers k, l ≥ 0, k + l ≤ m).(iii) Every ψµ(INVm) is an orbit of the ation of G. If m is odd, then INVmis isomorphi (as algebrai variety) to SLm. Otherwise if m is even, then

INVm is isomorphi to (SLm/Z2). In both ases
dimψµ(INVm) = dim INVm = m2 − 1.Proof. The proof of part (i) is an expliit veri�ation from the de�nitions in�VI.1.To prove part (ii), assume [A,B] is a point of Y , so ABT = BTA = λ2 Idm.First assume that the ranks of both matries are maximal:

rkA = rkB = m.70



Algebrai Legendrian varieties Chapter VIThen λ must be non-zero and B = λ2(A−1)T . Let d := (detA)−
1

m so that
det(dA) = 1and let µ := 1

dλ
. Then we have:

[A,B] =
[
A, λ2

(
A−1

)T]
=

[
dA

dλ
, dλ

(
(dA)−1

)T
]

=

=
[
µ(dA), µ−1

(
(dA)−1

)T]
= ψµ

([
(dA),

(
(dA)−1

)T])
.Therefore [A,B] ∈ ψµ(INVm).Next, if either of the ranks is not maximal:

rkA < m or rkB < m,then by (VI.2) we must have ABT = BTA = 0. So [A,B] ∈ DEGm
k,l for k = rkAand l = rkB.Now we prove (iii). The ation of G ommutes with ψµ:

(g, h) · ψµ

(
[A,B]

)
= ψµ

(
(g, h) · [A,B]

)
.So to prove ψµ(INVm) is an orbit it is enough to prove that INVm is an orbit,whih follows from the de�nitions of the ation and INVm.We have the following epimorphi map:

SLm −→ INVm

g 7−→ [g, (g−1)T ].If [g1, (g
−1
1 )T ] = [g2, (g

−1
2 )T ], then we must have g1 = αg2 and g1 = α−1g2 forsome α ∈ C∗. Hene α2 = 1 and g1 = ±g2. If m is odd and g1 ∈ SLm, then

−g1 /∈ SLm so g1 = g2. So INVm is either isomorphi to SLm or to SLm/Z2 asstated.
�From proposition VI.10(ii) we onlude that Xinv(m) is an equivariant om-pati�ation of SLm (if m is odd) or SLm/Z2 (if m is even). See [Tim03℄ andreferenes therein for the theory of equivariant ompati�ations. In the setupof [Tim03, �8℄, this is the ompati�ation orresponding to the representation

W ⊕W ∗, where W is the standard representation of SLm. Therefore some prop-erties of Xinv(m) ould also be read from the general desription of group om-pati�ations.Proposition VI.11.(i) The dimension of DEGm
k,l is (k+l)(2m−k−l)−1. In partiular, if k+l = m,then the dimension is equal to m2 − 1. 71



Jarosªaw Buzy«ski(ii) DEGm
k,l is an orbit of the ation of G, unless m is even and k = l = 1

2
m.(iii) If m ≥ 3, then there are exatly two losed orbits of the ation of G: DEGm

1,0and DEGm
0,1.Proof. Part (i) follows from [Str82, prop 2.10℄.For part (ii) let [A,B] ∈ DEGm

k,l be any point. By Gaussian elimination andelementary linear algebra, we an prove that there exists (g, h) ∈ G suh that
[A′, B′] := (g, h) · [A,B] is a pair of diagonal matries. Moreover, if k + l < m,then we an hoose g and h suh that:

A′ := diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
m−k−l

),

B′ := diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
m−k−l

).Hene DEGm
k,l = G · [A′, B′] and this �nishes the proof in the ase k + l < m.So assume k + l = m. Then we an hoose (g, h) suh that:

A′ := diag(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

),

B′ := diag(0, . . . , 0︸ ︷︷ ︸
k

, d, . . . , d︸ ︷︷ ︸
l

),for some d ∈ C∗. If k 6= l, then set e := d
1

l−k and let
g′ := diag(el, . . . , el

︸ ︷︷ ︸
k

, e−k, . . . , e−k

︸ ︷︷ ︸
l

).Clearly det(g′) = 1 and:
(g′, Idm) · [A′, B′] =


diag(el, . . . , el

︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
l

), diag(0, . . . , 0︸ ︷︷ ︸
k

, dek, . . . , dek

︸ ︷︷ ︸
l

)


where

dek = d1+ k
l−k = d

l
l−k = el.So resaling we get:

(g′, Idm) · [A′, B′] =


diag(1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
l

), diag(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
l

)


72



Algebrai Legendrian varieties Chapter VIand this �nishes the proof of (ii).For part (iii), denote by W1 (respetively, W2) the standard representationof the �rst (respetively, the seond) omponent of G = SLm × SLm. Then ourrepresentation V is isomorphi to (W1 ⊗ W2) ⊕ (W ∗
1 ⊗ W ∗

2 ). For m ≥ 3 therepresentation Wi is not isomorphi to W ∗
i and therefore V is a union of twoirreduible non-isomorphi representations, so there are exatly two losed orbitsof this ation on P(V ). These orbits are simply DEGm

1,0 and DEGm
0,1.

�VI.3.2 Ation of G̃The ation of G̃ extends the ation of G, but it does not preserve Xinv(m). Sowe will only onsider the ation of G̃ when speaking of Xdeg(m, k).We have properties analogous to proposition VI.11 (ii) and (iii) but with noexeptional ases:Proposition VI.12.(i) Every DEGm
k,l is an orbit of the ation of G̃.(ii) For every m there are exatly two losed orbits of the ation of G̃: DEGm

1,0and DEGm
0,1.Proof. This is exatly as the proof of proposition VI.11 (ii) and (iii).

�VI.4 Legendrian varieties in YIn this setion we prove the main results of the hapter.VI.4.1 Classi�ationWe start by proving the theorem VI.3.Proof. First assume X is Legendrian and ontained in Y . If X ontains apoint [A,B] where both A and B are invertible, then by proposition VI.9 it mustontain the orbit of [A,B], whih by proposition VI.10(ii) and (iii) is equal to
ψµ(INVm) for some µ ∈ C∗. But the dimension of X is m2 − 1 whih is exatlythe dimension of ψµ(INVm) (see proposition VI.10(iii)), so

X = ψµ(INVm) = ψµ(Xinv(m)). 73



Jarosªaw Buzy«skiOn the other hand, if X does not ontain any point [A,B] where both Aand B are invertible, then in fat X is ontained in the lous Y0 := {[A,B] :
ABT = BTA = 0}. This lous is just the union of all DEGm

k,l and its irreduibleomponents are the losures of DEGm
k,m−k, whih are exatly Xdeg(m, k). So inpartiular every irreduible omponent has dimension m2 − 1 (see propositionVI.11(i)) and hene X must be one of these omponents.Therefore it remains to show that all these varieties are Legendrian.The fat that Xdeg(m, k) is a Legendrian variety follows from [Str82, pp524�525℄. Strikland proves there that the a�ne one over Xdeg(m, k) (orW (k,m−k)in the notation of [Str82℄) is the losure of a onormal bundle. Conormal bundlesare lassial examples of Lagrangian varieties (see example II.6).Sine ψµ preserves the sympleti form ω, it is enough to prove that Xinv(m)is Legendrian.The group G ats sympletially on V and the ation has an open orbit on

Xinv(m) � see proposition VI.10 (iii). Thus the tangent spaes to the a�ne oneover Xinv(m) are Lagrangian if and only if just one tangent spae at a point ofthe open orbit is Lagrangian.So we take [A,B] := [Idm, Idm]. Now the a�ne tangent spae to Xinv(m) at
[Idm, Idm] is the linear subspae of V spanned by (Idm, Idm) and the image of thetangent ation of the Lie algebra g. We must prove that for every four traelessmatries g, h, g′, h′ we have:

ω
(
(g, h) · (Idm, Idm), (g′, h′) · (Idm, Idm)

)
= 0 and (VI.13a)

ω
(
(Idm, Idm), (g, h) · (Idm, Idm)

)
= 0. (VI.13b)Equality (VI.13a) is true without the assumption on the trae of the matries:

ω
(
(g, h) · (Idm, Idm), (g′, h′) · (Idm, Idm)

)

= ω
((
gT + h, −(g + hT )

)
,
(
(g′)T + h′, −(g′ + (h′)T )

) )by (VI.1)
= tr

(
−
(
gT + h

) (
(g′)T + h′

)
+
(
g + hT

) (
g′ + (h′)T

) )
= 0.For equality (VI.13b) we alulate:

ω
(
(Idm, Idm), (g, h) · (Idm, Idm)

)

= ω
(
(Idm, Idm),

(
gT + h, −(g + hT )

) )by (VI.1)
= − tr(gT + h) − tr(g + hT ) = 0.Hene we have proved that the losure of INVm is Legendrian.
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Algebrai Legendrian varieties Chapter VIVI.4.2 Degenerate matriesBy [Str82, prop. 1.3℄ the ideal of Xdeg(m, k) is generated by the oe�ients of
ABT , the oe�ients of BTA, the (k + 1) × (k + 1)-minors of A and the (m −
k + 1) × (m − k + 1)-minors of B. In short, we will say that the equations of
Xdeg(m, k) are given by:

ABT = 0, BTA = 0, rk(A) ≤ k, rk(B) ≤ m− k. (VI.14)Lemma VI.15. Assume m ≥ 2 and 1 ≤ k ≤ m− 1. Then:(i) The tangent one to Xdeg(m, k) at p1 is a produt of a linear spae of di-mension (2m− 2) and the a�ne one over Xdeg(m− 1, k − 1).(i') The tangent one to Xdeg(m, k) at p2 is a produt of a linear spae of di-mension (2m− 2) and the a�ne one of Xdeg(m− 1, k).(ii) Xdeg(m, k) is smooth at p1 if and only if k = 1.(ii') Xdeg(m, k) is smooth at p2 if and only if k = m− 1.Proof. We only prove (i) and (ii), while (i') and (ii') follow in the same way byexhanging aij and bij . Consider equations (VI.14) of Xdeg(m, k) restrited to thea�ne neighbourhood of p1 obtained by substituting amm = 1. Taking the lowestdegree part of these equations we get some of the equations of the tangent oneat p1 (reall our onvention on the notation of submatries � see �VI.1):
bim = bmi = 0, AmB

T
m = 0, BT

mAm = 0,

rkAm ≤ k − 1, rkBm ≤ m− k.These equations de�ne the produt of the linear subspae Am = Bm = 0, bim =
bmi = 0 and the a�ne one over Xdeg(m− 1, k− 1) embedded in the set of thosepairs of matries, whose last row and olumn are zero: aim = ami = 0, bim = bmi =
0. So the variety de�ned by those equations is irreduible and its dimension isequal to (m− 1)2 + 2m− 2 = m2 − 1 = dimXdeg(m, k). Sine this ontains thetangent one we are interested in and by �I.3.8(1), they must oinide as laimedin (i).Next (ii) follows immediately, sine for k = 1 the equations above redue to

bim = bmi = 0, and Am = 0and hene the tangent one is just the tangent spae, so p1 is a smooth point of
Xdeg(m, 1). Conversely, if k > 1, then Xdeg(m− 1, k− 1) is not a linear spae, soby (i) the tangent one is not a linear spae either and X is singular at p1 � see�I.3.8(3).
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Jarosªaw Buzy«skiNow we an prove theorem VI.5:Proof. It is obvious from the de�nition ofXdeg(m, k), thatXdeg(m, 0) = {A = 0}and Xdeg(m,m) = {B = 0}, so these are indeed linear spaes.Therefore assume 1 ≤ k ≤ m − 1. But Xdeg(m, k) is G̃ invariant (see propo-sition VI.12(i)) and so is its singular lous S. Hene Xdeg(m, k) is singular if andonly if S ontains a losed orbit of G̃.So Xdeg(m, k) is smooth, if and only if it is smooth at both p1 and p2 (seeproposition VI.12(ii)), whih (by lemma (ii) and (ii')) holds if and only if k = 1and m = 2.To �nish the proof, it remains to verify what kind of variety is Xdeg(2, 1).Consider the following map:
P1 × P1 × P1 −→P(V ) ≃ P7

[µ1, µ2], [ν1, ν2], [ξ1, ξ2] 7−→

[
ξ1

(
µ1ν1 µ1ν2

µ2ν1 µ2ν2

)
, ξ2

(
µ2ν2 −µ2ν1

−µ1ν2 µ1ν1

)]Clearly this is the Segre embedding in appropriate oordinates. The image of thisembedding is ontained in Xdeg(2, 1) (see equation (VI.14)) and sine dimensionof Xdeg(2, 1) is equal to the dimension of P1×P1×P1 we onlude the above mapgives an isomorphism of Xdeg(2, 1) and P1 × P1 × P1.
�VI.4.3 Invertible matriesWe wish to determine some of the equations of Xinv(m). Clearly the equations of

Y (see (VI.8)) are quadrati equations of Xinv(m). To �nd other equations, wereall that
Xinv(m) :=

{[
g, (g−1)T

]
∈ P(V ) | det g = 1

}
.However, for a matrix g with determinant 1 we know that the entries of (g−1)Tonsist of the appropriate minors (up to sign) of g. Therefore we get manyinhomogeneous equations satis�ed by every pair (g, (g−1)T

)
∈ V (reall our on-vention on the notation of submatries � see �VI.1):

det(Aij) = (−1)i+jbij and akl = (−1)k+l det(Bkl)To make them homogeneous, multiply two suh equations appropriately:
det(Aij)akl = (−1)i+j+k+lbij det(Bkl). (VI.16)These are degree m equations, whih are satis�ed by the points of Xinv(m) andwe state the following theorem:76



Algebrai Legendrian varieties Chapter VITheorem VI.17. Let m = 3. Then the quadrati equations (VI.8a)�(VI.8d)and the ubi equations (VI.16) generate the ideal of Xinv(3). Moreover Xinv(3)is smooth.Proof. It is enough to prove that the sheme X de�ned by equations (VI.8a)�(VI.8d) and (VI.16) is smooth, beause the redued subsheme of X oinideswith Xinv(3).The sheme X is G invariant, hene as in the proof of theorem VI.5 and byproposition VI.11(iii) it is enough to verify smoothness at p1 and p2. Sine wehave the additional symmetry here (exhanging aij 's with bij 's) it is enough toverify the smoothness at p1.Now we alulate the tangent spae to X at p1 by taking linear parts of theequations evaluated at a33 = 1. From (VI.8) we get that
b31 = b32 = b33 = b23 = b13 = 0.Now from equations (VI.16) for k = l = 3 and i, j 6= 3 we get the followingevaluated equations:

ai′j′ − ai′3a3j′ = ±bijB33(where i′ is either 1 or 2, whih ever is di�erent than i and analogously for j′) sothe linear part is just ai′j′ = 0. Hene by varying i and j we an get
a11 = a12 = a21 = a22 = 0.Therefore the tangent spae has odimension at least 9, whih is exatly the odi-mension of Xinv(3) � see VI.10(iii). Hene X is smooth (in partiular redued)and X = Xinv(3).

�To desribe Xinv(m) for m > 3 we must �nd more equations.There is a more general version of the above property of an inverse of a matrixwith determinant 1, whih is less ommonly known.Proposition VI.18.(i) Assume A is a m × m matrix of determinant 1 and I, J are two sets ofindies, both of ardinality k (again reall our onvention on indies andsubmatries � see �VI.1). Denote by B := (A−1)T . Then the appropriateminors are equal (up to sign):
detAI,J = (−1)ΣI+ΣJ detBI′,J ′.(ii) A oordinate free way to express these equalities is following: Assume Wis a vetor spae of dimension m, f is a linear automorphism of W and

k ∈ {0, . . . , m}. Let ∧k f be the indued automorphism of ∧k W . If ∧m f =
IdVm W , then: ∧m−k

f =
∧k (∧m−1

f
)
. 77



Jarosªaw Buzy«ski(iii) Consider the indued ation of G on the polynomials on V . Then the vetorspae spanned by the set of equations of (i) for a �xed k is G invariant.Proof. Part (ii) follows immediately from (i), sine if A is a matrix of f , thenthe terms of the matries of the maps ∧m−k f and ∧k(
∧m−1 f) are exatly theappropriate minors of A and B.Part (iii) follows easily from (ii).As for (i), we only sketh the proof, leaving the details to the reader. Firstly,redue to the ase when I and J are just {1, . . . k} and the determinant of A ispossibly ±1 (whih is where the sign shows up in the equality). Seondly if bothdeterminants detAI,J and detBI′,J ′ are zero, then the equality is learly satis�ed.Otherwise assume for example detAI,J 6= 0. Then performing the appropriaterow and olumn operations we an hange AI,J into a diagonal matrix, AI′,J and

AI,J ′ into the zero matries and all these operations an be done without hanging
BI′,J ′ nor detAI,J . Then the statement follows easily.

�In partiular we get:Corollary VI.19. Assume k, I and J are as in proposition VI.18(i).(a) If m is even and k = 1
2
m, then the equation

detAI,J = (−1)ΣI+ΣJ detBI′,J ′is homogeneous of degree 1
2
m and it is satis�ed by points of Xinv(m).(b) If 0 ≤ k < 1

2
m and l = m− 2k, then
(detAI,J)2 = (detBI′,J ′)2 · (a11b11 + . . .+ a1mb1m)lis a homogeneous equation of degree 2(m−k) satis�ed by points of Xinv(m).Proof. Clearly both equations are homogeneous. If detA = 1 and B = (A−1)T ,then the following equations are satis�ed:

detAI,J = (−1)ΣI+ΣJ detBI′,J ′, (VI.20)
1 = (a11b11 + . . . a1mb1m)l (VI.21)(equation (VI.20) follows from proposition VI.18(i) and (VI.21) follows from

ABT = Idm). Equation in (b) is just (VI.20) squared multiplied side-wise by(VI.21).So both equations in (a) and (b) are satis�ed by every pair (A, (A−1)T
) andby homogeneity also by (λA, λ(A−1)T

). Hene (a) and (b) hold on an open densesubset of Xinv(m), so also on whole Xinv(m).
�We know enough equations of Xinv(m) to prove the theorem VI.4:78



Algebrai Legendrian varieties Chapter VICase m = 2 � linear subspaeProof. To prove (a) just take the linear equations from orollary VI.19(a) for
k = 1:

aij = ±bi′j′,where {i, i′} = {j, j′} = {1, 2}.
�Case m = 3 � hyperplane setion of Gr(3, 6)Proof. For (b), Xinv(3) is smooth by theorem VI.17 and it is a ompati�ationof INV3 ≃ SL3 by proposition VI.10(i) and (iii).Piard group of Xinv(3). The omplement of the open orbit

D := Xinv(3)\INV3must be a union of some orbits of G, eah of them must have dimension smallerthan dim INV3 = 8. So by propositions VI.10(ii), (iii), VI.11 (i) and (ii) the onlyandidates are DEG3
1,1, DEG3

0,1 and DEG3
1,0. We laim they are all ontained in

Xinv(3). It is enough to prove that DEG3
1,1 ⊂ Xinv(3), sine the other orbits arein the losure of DEG3

1,1. Take the urve in Xinv(3) parametrised by:





t 0 0
0 1 0
0 0 t−1


 ,




t−1 0 0
0 1 0
0 0 t




 .For t = 0 the urve meets DEG3

1,1, whih �nishes the proof of the laim.Sine dimDEG3
1,1 = 7 (see proposition VI.11(i)), D is a prime divisor. Wehave Pic(SL3) = 0 and by [Har77, prop. II.6.5()℄ the Piard group of Xinv(3) isisomorphi to Z with the ample generator [D].Next we hek that D is linearly equivalent (as a divisor on Xinv(3)) to ahyperplane setion H of Xinv(3). Sine we already know that Pic(Xinv(3)) =

Z · [D], we must have H lin
∼ kD for some positive integer k. But there are linesontained in Xinv(3) (for example those ontained in DEG3

1,0 ≃ P2 × P2)2. So let
L ⊂ Xinv(3) be any line and we interset:

D · L =
1

k
H · L =

1

k
.But the result must be an integer, so k = 1 as laimed.2Atually, the reader ould also easily �nd expliitly some lines (or even planes) whihinterset the open orbit and onlude that Xinv(3) is overed by lines. 79



Jarosªaw Buzy«skiComplete embedding. Sine D itself is de�nitely not a hyperplane setion of
Xinv(3), the onlusion is that the Legendrian embedding of Xinv(3) is not givenby a omplete linear system. The natural guess for a better embedding is thefollowing:

X ′ :=

{[
1, g,

∧2
g
]
∈ P18 = P(C ⊕ V ) | det g = 1

}
,(we note that ∧2 g = (g−1)T for g with det g = 1) and one an verify that theprojetion from the point [1, 0, 0] ∈ P18 restrited to X ′ gives an isomorphismwith Xinv(3).The Grassmannian Gr(3, 6) in its Plüker embedding an be desribed as thelosure of:

{[
1, g,

∧2
g,
∧3

g
]
∈ P19 = P(C ⊕ V ⊕ C) | g ∈M3×3

}and we immediately identify X ′ as the setion H :=
{∧3 g = 1

} of the Grass-mannian.Though it is not essential, we note that H1(OGr(3,6)) = 0 (see Kodaira vanish-ing theorem [Laz04, thm 4.2.1℄; alternatively, it follows from the fat that b1 = 0for Grassmannians) and hene the above embedding of Xinv(3) is given by theomplete linear system.Automorphism group. It remains to alulate Aut (Xinv(3))0 � the on-neted omponent of the automorphism group.The tangent Lie algebra of the group of automorphisms of a omplex proje-tive manifold is equal to the global setions of the tangent bundle, see theoremA.7. A vetor �eld on Xinv(3) is also a setion of TGr(3, 6)|Xinv(3) and we havethe following short exat sequene:
0 −→ TGr(3, 6)(−1) −→ TGr(3, 6) −→ TGr(3, 6)|Xinv(3) −→ 0The homogeneous vetor bundle TGr(3, 6)(−1) is isomorphi to U∗ ⊗Q⊗

∧3 U ,where U is the universal subbundle inGr(3, 6)×C6 andQ is the universal quotientbundle. This bundle orresponds to an irreduible module of the paraboli sub-group in SL6. Calulating expliitly its highest weight and applying Bott formula[Ott95℄ we get that H1
(
TGr(3, 6)(−1)

)
= 0. Hene every setion of TXinv(3) ex-tends to a setion of TGr(3, 6). In other words, if P < Aut(Gr(3, 6)) ≃ PGL6 isthe subgroup preserving Xinv(3) ⊂ Gr(3, 6), then the restrition map

P −→ Aut (Xinv(3))0is epimorphi.80



Algebrai Legendrian varieties Chapter VIThe ation of SL6 on ∧3
C6 preserves the natural sympleti form ω′:

ω′ :
∧2 (∧3

C6
)
−→

∧6
C6 ≃ C.Sine the ation of P on P

(∧3
C6
) preserves the hyperplaneH ontainingXinv(3),it must also preserve H⊥ω′ , i.e. P preserves [1, 0, 0, 1] ∈ P19 = P(C ⊕ V ⊕ C).Therefore P ats on the quotient H/(H⊥ω′) = V and hene the restrition mapfatorises:

P −→ Aut(P(V ), Xinv(3))0
։ Aut(Xinv(3))0.By theorem IV.2, group Aut(P(V ), Xinv(3))0 is ontained in the image of

Sp(V ) → PGL(V ), so by theorem III.5, proposition VI.9 and theorem VI.17
Aut (P(V ), Xinv(3))0 = G.In partiular Xinv(3) annot be homogeneous as it ontains more than one orbitof the onneted omponent of automorphism group.

�We note that the fat that Xinv(3) is not homogeneous an be also provedwithout alulating the automorphism group. Sine PicXinv(3) ≃ Z, it followsfrom [LM04, thm. 11℄, that Xinv(3) ould only be one of the subadjoint varieties.But none of them has Piard group Z and dimension 8.Case m=4 � spinor variety S6Proof. To prove () we only need to take 30 quadrati equations of Y as in (VI.8)and 36 quadrati equations from orollary VI.19 (a). By proposition VI.18(iii)the sheme X de�ned by those quadrati equations is G-invariant. As in theproofs of theorems VI.5 and VI.17, we only hek that X is smooth at p1 and
p2 and onlude it is smooth everywhere, hene those equations indeed de�ne
Xinv(4).Therefore Xinv(4) is smooth, irreduible and its ideal is generated by quadris,so it falls into the lassi�ation of [Bu06, thm. 5.11℄. Hene we have two hoiesfor Xinv(4) whose dimension is 15: the produt of a line and a quadri P1×Q14 orthe spinor variety S6. The homogeneous ideal of polynomials vanishing on P1 ×
Q14 ⊂ P31 is generated by dim(SL2×SO16) = 123 linearly independent quadratipolynomials (see theorem III.5, alternatively, one an alulate the equationsexpliitly � see [Bu05, �7.2℄ ). So Xinv(4), whih by the above argument isgenerated by only 66 quadrati equations, must be isomorphi to S6.
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Jarosªaw Buzy«skiCase m≥ 5 � singular varietiesProof. Finally we prove (d). We want to prove, that for m ≥ 5 variety Xinv(m)is singular at p1. To do that, we alulate the redued tangent one
T :=

(
TCp1

Xinv(m)
)

red
.From equations (VI.8) we easily get the following linear and quadrati equationsof T (again we suggest to have a look at �VI.1):

bim = bmi = 0, AmB
T
m = BT

mAm = λ2 Idm−1for every i ∈ {1, . . .m} and some λ ∈ C∗.Next assume I and J are two sets of indies, both of ardinality k =
⌊

1
2
m
⌋and suh that neither I nor J ontains m. Consider the equation of Xinv(m) asin orollary VI.19(b):

(detAI,J)2 = (detBI′,J ′)2 · (a11b11 + . . . a1mb1m)l.To get an equation of T , we evaluate at amm = 1 and take the lowest degree part,whih is simply (det ((Am)I,J))2 = 0. Sine T is redued, by varying I and J weget that:
rkAm ≤ m− 1 − k − 1 =

⌈
1

2
m

⌉
− 2and therefore also:

AmB
T
m = BT

mAm = 0.Hene T is ontained in the produt of the linear spaeW := {Am = 0, B = 0}and the a�ne one Û over the union of Xdeg(m − 1, k) for k ≤
⌈

1
2
m
⌉
− 2. Welaim that T = W × Û . By proposition VI.11(i), every omponent of W × Û hasdimension 2m−2+(m−1)2 = m2−1 = dimXinv(m), so by �I.3.8(1) the tangentone must be a union of some of the omponents. Therefore to prove the laimit is enough to �nd for every k ≤

⌈
1
2
m
⌉
− 2 a single element of DEGm−1

k,m−k−1 thatis ontained in the tangent one.So take α and β to be two stritly positive integers suh that
α =

(
1

2
m− k − 1

)
βand onsider the urve in P(V ) with the following parametrisation:


diag{tα, . . . , tα︸ ︷︷ ︸

k

, tα+β, . . . , tα+β

︸ ︷︷ ︸
m−k−1

, 1}, diag{tα+β, . . . , tα+β

︸ ︷︷ ︸
k

, tα, . . . , tα︸ ︷︷ ︸
m−k−1

, t2α+β}
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Algebrai Legendrian varieties Chapter VIIt is easy to verify that this family is ontained in INVm for t 6= 0 and as tonverges to 0, it gives rise to a tangent vetor (i.e. an element of the reduedtangent one - see point-wise de�nition in �I.3.8) that belongs to DEGm−1
k,m−k−1.So indeed T = W × Û , whih for m ≥ 5 ontains more than 1 omponent,hene annot be a linear spae. Therefore by �I.3.8(3) variety Xinv(m) is singularat p1.

�
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Chapter VIIHyperplane setions of LegendriansubvarietiesThe ontent of this hapter is partially published in [Bu07a℄.The Legendrian variety Xinv(3) onstruted in hapter VI is isomorphi to ahyperplane setion of another Legendrian variety Gr(3, 6). In this hapter weprove that general hyperplane setions of other Legendrian varieties also admit aLegendrian embedding. This gives numerous new examples of smooth Legendriansubvarieties.Theorem VII.1. Let X ⊂ P(V ) be an irreduible Legendrian subvariety, whih issmooth or has only isolated singularities. Then a general hyperplane setion of Xadmits a Legendrian embedding into a projetive spae of appropriate dimensionvia a spei� subsystem of the linear system O(1).More generally, assume X ⊂ P(V ) is an irreduible Legendrian subvarietywith singular lous of dimension k and H ⊂ P(V ) is a general hyperplane. Thenthere exists a variety X̃H whose singular lous has dimension at most k − 1 andwhih has an open subset isomorphi to the smooth lous of X ∩H suh that X̃Hadmits a Legendrian embedding.The spei� linear system and onstrution of X̃H is desribed in �VII.1.1and there we prove that the resulting variety is Legendrian. The proof that fora general setion the result has the required smoothness property is presented in�VII.1.2.This simple observation has quite strong onsequenes. Many researhers,inluding Landsberg, Manivel, Wi±niewski, Hwang and the author of this thesis,believed that the struture of smooth Legendrian subvarieties in projetive spaehad to be somehow rigid at least in higher dimensions. So far the only non-rational examples known were in dimensions 1 and 2 (see �I.1.2) and these werealso the only known to ome in families. Already by a naive appliation of ourtheorem to the subadjoint varieties we get many more examples with variousproperties:84



Algebrai Legendrian varieties Chapter VIIExample VII.2. The following smooth varieties and families of smooth varietiesadmit Legendrian embedding:(a) a family of K3 surfaes of genus 9;(b) three di�erent types of surfaes of general type;() some Calabi-Yau 3-folds, some Calabi-Yau 5-folds and some Calabi-Yau9-folds;(d) some varieties of general type in dimensions 3, 4 (two families for everydimension), 5,6,7 and 8 (one family per dimension);(e) some Fano varieties, like the blow up of a quadri Qn in a odimension 2hyperplane setion Qn−2, a family of Del Pezzo surfaes of degree 4 andothers;(f) in�nitely many non-isomorphi, non-homogeneous Legendrian varieties inevery dimension arising as a odimension k linear setion of P1 ×Qn+k.Example (a) agrees with the predition of [LM04, �2.3℄. Examples (b) and(d) give a partial answer to the question of a possible Kodaira dimension of aLegendrian variety (also see [LM04, �2.3℄). Example (f) is a ounterexample tothe naive expetation that Legendrian variety in a su�iently high dimensionmust be homogeneous.We also note that our previous examples also arise in this way. Example (e)for n = 2 is desribed in example V.5. Hyperplane setions of Gr(3, 6), GrL(3, 6),
S6 are studied in more details in hapter VI. Also non-homogeneous examplesof other authors, Bryant [Bry82℄, Landsberg and Manivel [LM04℄ an be reon-struted by theorem VII.1 from some varieties with only isolated singularities(see �VII.3).A more re�ned onstrution, using the deomposable Legendrian varieties (see�III.1.2), makes a muh bigger list of examples, inluding smooth Legendrianvarieties with maximal Kodaira dimension in every dimension or varieties witharbitrary rank of Piard group. This is desribed in detail in �VII.2.All the varieties arising from theorem VII.1 and our onstrution in subsetionVII.1.1 are embedded by a non-omplete linear system. Therefore a naturalquestion arises: what are the smooth Legendrian varieties whose Legendrianembedding is linearly normal. Another question is whether the onstrution anbe inverted. So for a given Legendrian but not linearly normal embedding ofsome variety X̃, an we �nd a bigger Legendrian variety X, suh that X̃ is aprojetion of a hyperplane setion of X?Building upon ideas of Bryant, Landsberg and Manivel we suggest a onstru-tion that provides some (but far from perfet) answer for the seond question in�VII.3. In partiular, we represent the example of Landsberg and Manivel as a85



Jarosªaw Buzy«skihyperplane setion of a 3-fold with only isolated singularities and the examplesof Bryant as hyperplane setions of surfaes with at most isolated singularities.VII.1 Hyperplane setionVII.1.1 ConstrutionThe idea of the onstrution is built on the onept of sympleti redution (see�II.1.3). Let H ∈ P(V ∗) be a hyperplane in V . By
h := H⊥ω ⊂ Vwe denote the ω-perpendiular to H subspae of V , whih in this ase is a lineontained in H . We think of h both as a point in the projetive spae P(V ) anda line in V . We de�ne

π : P(H)\{h} −→ P(H/h)to be the projetion map and for a given Legendrian subvariety X ⊂ P(V ) we let
X̃H := π(X ∩H).We have the natural sympleti struture ω′ on H/h determined by ω (see�II.1.3). Also X̃H is always Legendrian by proposition II.1 and lemma I.4.Note that so far we have not used any smoothness ondition on X.VII.1.2 Proof of smoothnessHene to prove theorem VII.1 it is enough to prove that for a general H ∈ P(V ∗),the map π gives an isomorphism of the smooth lous of X ∩ H onto its image,an open subset in X̃H .For a variety Y ⊂ Pm we denote by σ(Y ) ⊂ Pm its seant variety, i.e., losureof the union of all projetive lines through y1 and y2, where (y1, y2) vary throughall pairs of di�erent points of Y .Lemma VII.3. Let Y ⊂ Pm, hoose suh a point y ∈ Pm that y /∈ σ(Y ) and let
π : Pm\{y} −→ Pm−1 be the projetion map.(a) If Y is smooth, then π gives an isomorphism of Y and π(Y ).(b) In general, π is 1 to 1 and π is an isomorphism of the smooth part of Y ontoits image. In partiular, the dimension of singular lous of Y is greater orequal to the dimension of singular lous of π(Y ).Proof. See [Har77, prop. IV.3.4 and exerise IV.3.11(a)℄. We only note thatif Y is smooth, then the seant variety σ(Y ) ontains all the embedded tangentspaes of Y . They arise when y2 approahes y1.
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Algebrai Legendrian varieties Chapter VIINow we an prove theorem VII.1:Proof. By the lemma and the onstrution in �VII.1.1 it is enough to prove thatthere exists h ∈ P(V ) s.t. h /∈ σ(X ∩ h⊥ω).Given two di�erent points x1 and x2 in a projetive spae we denote by 〈x1, x2〉the projetive line through x1 and x2. Let
σ̃(X) ⊂X ×X × P(V ),

σ̃(X) :={(x1, x2, p)| p ∈ 〈x1, x2〉},so that σ̃(X) is the inidene variety for the seant variety of X. Obviously,
dim(σ̃(X)) = 2 dimX + 1 = dim(P(V )) and σ̃(X) is irreduible. Also we let:

κ(X) ⊂σ̃(X),

κ(X) :={(x1, x2, h)| h ∈ 〈x1, x2〉 and x1, x2 ∈ h⊥ω},so that the image of the projetion of κ(X) onto the last oordinate is the lousof `bad' points. More preisely, for a point h ∈ P(V ) there exist (x1, x2) suh that
(x1, x2, h) ∈ κ(X) if and only if h ∈ σ(X ∩ h⊥ω).We laim that the image of κ(X) under the projetion is not the whole P(V ).To see this note that the ondition de�ning κ(X), i.e., h ∈ 〈x1, x2〉, x1, x2 ∈ h⊥ωis equivalent to h ∈ 〈x1, x2〉 and 〈x1, x2〉 is an isotropi subspae of V . Now either
X is a linear subspae and then both the laim and the theorem are obvious orthere exist two points x1, x2 ∈ X suh that ω(x̂1, x̂2) 6= 0 where by x̂i we meansome non-zero point in the line xi ⊂ V . Therefore κ(X) is stritly ontained in
σ̃(X) and

dim(κ(X)) < dim(σ̃(X)) = dim P(V ),so the image of κ(X) under the projetion annot be equal to P(V )1.
�Corollary VII.4. Let X ⊂ P(V ) be an irreduible Legendrian subvariety whosesingular lous has dimension at most k − 1. Let F be the ontat distributionon P(V ) If H ⊂ P(V ) is a general F -ointegrable linear subspae of odimension

k, then X̃H := X ∩ H is smooth and admits a Legendrian embedding via anappropriate subsystem of linear system O eXH
(1).

�We sketh some proofs of examples VII.2:1The inequality on the dimensions, although simple, is essential for the proof. An analo-gous onstrution for Lagrangian subvarieties in sympleti manifolds is known as sympletiredution (see �II.1.3 for linear algebra baby version of this), but does not produe smoothLagrangian subvarieties. 87



Jarosªaw Buzy«skiProof. K3 surfaes of (a) arise as odimension 4 linear setions of LagrangianGrassmannian GrL(3, 6). Sine the anonial divisor KGrL(3,6) = OGrL(3,6)(−4)(in other words GrL(3, 6) is Fano of index 4), by the adjuntion formula, theanonial divisor of the setion is indeed trivial. On the other hand, by [LM04,prop. 9℄ it must have genus 9. Although we take quite speial (F-ointegrable)setions, they fall into the 19 dimensional family of Mukai's K3-surfaes of genus9 [Muk88℄ and they form a 13 dimensional subfamily.The other families of surfaes as in (b) arise as setions of the other exeptionalsubadjoint varieties: Gr(3, 6), S6 and E7. They are all Fano of index 5, 10 and 18respetively and their dimensions are 9, 15 and 27 hene taking suessive linearsetions we get to Calabi-Yau manifolds as stated in (). Further the anonialdivisor is very ample, so we have examples of general type as stated in (b) and(d).The Fano varieties arise as intermediate steps, before oming down to the levelof Calabi-Yau manifolds. Also P1 ×Qn is a subadjoint variety and its hyperplanesetion is the blow up of a quadri Qn in a odimension 2 hyperplane setion.The Del Pezzo surfaes are the hyperplane setions of the blow up of Q3 in aoni urve.
�VII.2 Linear setions of deomposable LegendrianvarietiesAssume m1 and m2 are two positive integers, m1 ≥ m2. Let V1 ≃ C2m1+2 and

V2 ≃ C2m2+2 be two sympleti vetor spaes, and letX1 ⊂ P(V1) and X2 ⊂ P(V2)be two smooth, irreduible, non-degenerate, Legendrian subvarieties. In thissetup dimXi = mi. Consider the deomposable variety X1 ∗ X2 ⊂ P(V1 ⊕ V2).Clearly Sing(X1 ∗X2) = X1 ⊔X2, hene dim
(
Sing(X1 ∗X2)

)
= m1, while

dim(X1 ∗X2) = m1 +m2 + 1.Let L be the following line bundle on X1 ×X2:
L := OX1

(1) ⊠ OX2
(−1).Also let (X1 ∗X2)0 be the smooth lous of X1 ∗X2.Lemma VII.5. (X1 ∗X2)0 is isomorphi to L•, the total spae of the C∗-bundleassoiated to L (see �I.3.7).Proof. Let C∗ at on V1 ⊕ V2 with weight −1 on V1 and weight 1 on V2. Then

(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))/
C∗ = P(V1) × P(V2)88



Algebrai Legendrian varieties Chapter VIIand the quotient map:
(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))
/

C∗

−→ P(V1) × P(V2)is a prinipal C∗-bundle obtained by removing the zero setion from the totalspae of the line bundle OP(V1)×P(V2)(d1, d2) for some integers d1 and d2. We have,
Pic
(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))
=Pic P(V1 ⊕ V2) = Z[OP(V1⊕V2)(1)](by [Har77, prop. II.6.5()℄).On the other hand,

Pic
(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))
=Pic

(
P(V1) × P(V2)

)/ 〈
OP(V1)×P(V2)(d1, d2)

〉(by lemma I.6).Moreover via the isomorphism
Pic
(
P(V1) × P(V2)

)/ 〈
OP(V1)×P(V2)(d1, d2)

〉
≃ Z[OP(V1⊕V2)(1)]the lass of line bundle OP(V1⊕V2)(e1, e2) is mapped to OP(V1⊕V2)(e1 + e2). Hene

(d1, d2) = (1,−1) or (−1, 1). In both ases the total spaes of the line bundlesare the same after removing the zero setions (the di�erene is only in the signof the weights of the C∗-ation, whih we ignore at this point).To �nish the proof just note that:
(X1 ∗X2)0 = (X1 ∗X2) ∩

(
P(V1 ⊕ V2) \

(
P(V1) ⊔ P(V2)

))and the image of (X1 ∗X2)0 under the quotient map is equal to X1 ×X2.
�Hene by lemma I.6 we have:

Pic(X1 ×X2) ։ Pic(X1 ∗X2)0 = ClX1 ∗X2and the kernel of the epimorphi map is generated by L. If L1 ∈ PicX1 and
L2 ∈ PicX2, by [L1 ⊠ L2] we will denote a line bundle on (X1 ∗ X2)0 whihrepresents the image of L1 ⊠ L2 under the epimorphi map.Theorem VII.6. Let m1, m2, X1, X2 be as above. Let F be the ontat distri-bution on P(V1 ⊕ V2) and let H ⊂ P(V1 ⊕ V2) be a general F -ointegrable linearsubspae of odimension m1 + 1. Then X := (X1 ∗X2) ∩H is smooth, admits aLegendrian embedding and has the following properties: 89



Jarosªaw Buzy«ski(a) degX = degX1 · degX2;(b) KX ≃ [KX1
⊠KX2

]|X ⊗OX(m1 + 1);() We have the restrition map on the Piard groups:
i∗ : Pic(X1 ×X2)

/
〈L〉 −→ PicX.If m2 ≥ 3, then i∗ is an isomorphism. If m2 = 2, then i∗ is injetive.In partiular, we have:(d) If KX1

≃ OX1
(d1) and KX2

≃ OX2
(d2), then KX ≃ OX(d1 + d2 +m1 + 1);(e) If KX1

≃ OX1
(d1) ⊗ E1 and KX2

≃ OX2
(d2) ⊗ E2, where the Ei's are linebundles orresponding to some e�etive divisors, then

KX ≃ OX(d1 + d2 +m1 + 1) ⊗ Efor some E orresponding to an e�etive divisors;(f) If m2 ≥ 3, PicX1 = Z[OX1
(1)], PicX2 = Z[OX2

(1)] and either X1 or X2 issimply onneted (for example Fano), then PicX = Z[OX(1)].Proof. Part (a) is immediate, sine deg(X1 ∗X2) = degX1 · degX2.Part (b) follows from lemma VII.5, �I.3.7 and the adjuntion formula (see[Har77, prop. II.8.20℄).Part () follows from [RS06℄.Parts (d) and (e) are immediate onsequenes of (b) and ().Finally, part (f) follows from () and from [Har77, ex. III.12.6℄.
�To onlude we give a further series of examples:Example VII.7. Apply the theorem to both X1 and X2 equal to the E7-variety.As a result we get X whih we denote by (E7)

∗2, a smooth Legendrian Fanovariety of dimension 27, Piard group generated by a hyperplane setion and ofindex 8. Now apply the theorem to X1 being the E7-variety again andX2 = (E7)
∗2.The result, (E7)

∗3 again has the Piard group generated by a hyperplane setionand K(E7)∗3 = O(E7)∗3(2), hene is very ample. Analogously we onstrut (E7)
∗kand ombining this result with orollary VII.4, we get in�nitely many families ofsmooth Legendrian varieties of general type with Piard group generated by a veryample lass in every dimension d, where 3 ≤ d ≤ 27.Example VII.8. Let X1 = P1 × Qm1−1 and X2 be arbitrary. If m1 ≥ 3 and

dimX2 ≥ 3, then X has Piard group isomorphi to PicX2 ⊕ Z. Hene we anget a smooth Legendrian variety with arbitrarily big Piard rank.90



Algebrai Legendrian varieties Chapter VIIExample VII.9. Let X1 = X2 = P1 × Qm−1. Let the resulting X be alled
(P1 ×Qm−1)∗2. Then KXi

= OXi
(−m) ⊗Ei, where Ei is e�etive. Hene

K(P1×Qm−1)∗2 = O(P1×Qm−1)∗2(−m+ 1) ⊗Efor an e�etive E. Construt analogously (P1 ×Qm−1)∗k by taking the setion of
((

P1 ×Qm−1
)∗(k−1)

)
∗
(
P1 ×Qm−1

)
.We get that

K(P1×Qm−1)∗k = O(P1×Qm−1)∗k(−m− 1 + k) ⊗ Eand for k > m + 1 we get that the anonial divisor an be written as an ampleplus an e�etive, so it is big. Hene in every dimension, it is possible to onstrutmany smooth Legendrian varieties with the maximal Kodaira dimension.VII.3 Extending Legendrian varietiesOur motivation is the example of Landsberg and Manivel [LM04, �4℄, a Legen-drian embedding of a Kummer K3 surfae blown up in 12 points. It an be seen,that this embedding is given by a odimension 1 linear system. We want to �nd aLegendrian 3-fold in P7 whose hyperplane setion is this example. Unfortunately,we are not able to �nd a smooth 3-fold with these properties, but we get one withonly isolated singularities.We reall the setup for the onstrution of the example. Let W be a vetorspae of dimension n+ 1. Let Z be any subvariety in Pn = P(W ).De�nition. We let Z∗ ⊂ P̌n := P(W ∗) be the losure of the set of hyperplanestangent to Z at some point:
Z∗ :=

{
H ∈ P̌n | ∃z ∈ Z TzZ ⊂ H

}
.We say Z∗ is the dual variety to Z.Also let Z♯ ⊂ P(T ∗Pn) ⊂ Pn × P̌n be the onormal variety, i.e., the losureof the union of projetivised onormal spaes over smooth points of Z. Landsbergand Manivel study in details an expliit birational map ϕ := ϕH0,p0

: P(T ∗Pn) 99K

P2n−1 whih depends on a hyperplane H0 in Pn and on a point p0 ∈ H0. AfterBryant [Bry82℄ they observe that ϕ(Z) (if only makes sense) is always a Legen-drian subvariety, but usually singular. Next they study onditions under whih
ϕ(Z) is smooth. In partiular, they prove that the onditions are satis�ed when
Z is a Kummer quarti surfae in P3 in general position with respet to p0 and
H0 and this gives rise to their example. 91



Jarosªaw Buzy«skiWe want to modify the above onstrution just a little bit to obtain our 3-fold.Instead of onsidering Z♯ as a subvariety in
P(W ) × P(W ∗) = (W \ {0}) × (W ∗ \ {0})/C∗ × C∗,we onsider a subvariety X in

P2n+1 = P(W ⊕W ∗) = (W ×W ∗) \ {0}/C∗suh that the underlying a�ne one ofX inW×W ∗ is the same as the underlyinga�ne penil of Z♯. In other words, we take X to be the losure of preimage of
Z♯ under the natural projetion map:

p : P(W ⊕W ∗) 99K P(W ) × P(W ∗).Both P(W ) and P(W ∗) are naturally embedded into P(W ⊕ W ∗). Let Hbe a hyperplane in P(W ⊕W ∗) whih does not ontain P(W ) nor P(W ∗). Set
H0 := P(W )∩H and p0 to be the point in P(W ) dual to P(W ∗)∩H . Assume His hosen in suh a way that p0 ∈ H0.Theorem VII.10. Let X ⊂ P(W ⊕W ∗) ≃ P2n+1 be a subvariety onstrutedas above from any irreduible subvariety Z ⊂ P(W ). On W ⊕ W ∗ onsiderthe standard sympleti struture (see �II.1.5) and on P(W ⊕W ∗) onsider theassoiated ontat struture. Also assume H, H0 and p0 are hosen as above.Then:(i) X is a Legendrian subvariety ontained in the quadri p−1

(
P
(
T ∗P(W )

)).(ii) Let X̃H be the Legendrian variety in P2n−1 onstruted from X and H as in�VII.1.1. Also onsider the losure of ϕH0,p0
(Z♯) as in the onstrution of[LM04, �4℄. Then the two onstrutions agree, i.e., the losure ϕH0,p0

(Z♯)is a omponent of X̃H .(iii) The singular lous of X equal to the union of following:on P(W ) the singular points of Z,on P(W ∗) the singular points of Z∗ andoutside P(W )∪P(W ∗) the preimage under p of the singular lous of theonormal variety Z♯.Proof. For part (i) onsider Ẑ ⊂ W , the a�ne one over Z ⊂ P(W ). Theotangent bundle to W is equal to W ⊕ W ∗. Furthermore, by our de�nition
X̂ ⊂ V , the a�ne one over X ⊂ P(W ⊕W ∗) is the onormal variety of X̂, so aLagrangian subvariety (see example II.6).92



Algebrai Legendrian varieties Chapter VIIFor part (ii), we hoose oordinates x0, x1, . . . , xn on W and dual oordinates
y0, y1, . . . , yn onW ∗ suh that in the indued oordinates on V the hyperplane Hhas the equation x0−yn = 0. Now restrit to the a�ne piee x0 = yn = 1 on both
H and P(W ) × P(W ∗). We see expliitly, that the projetion map H → P2n−1

[1, x1, . . . , xn, y
0, . . . , yn−1, 1] 7→ [y1, . . . , yn−1, y0 − xn, x1, . . . , xn−1, 1]agrees with the map ϕ from [LM04, �4℄.To �nd the singularities of X on X ∩ P(W ) as in part (iii) note that X ⊂

P(W ⊕W ∗) is invariant under the following ation of C∗:
t · [w, α] := [tw, t−1α].In partiular, points of X ∩P(W ) are �xed points of the ation. So let [w, 0] ∈ Xand then T[w,0]X deomposes into the eigenspaes of the ation:

T[w,0]X = T[w,0](X ∩ P(W )) ⊕ T[w,0](X ∩ Fw) (VII.11)where Fw is the �bre of the projetion ρ : (P(W ⊕W ∗)\P(W ∗)) → P(W ), Fw :=
ρ−1([w]). Clearly the image of X under the projetion ρ is Z, so the dimension ofa general �bre of ρ|X : X → Z is equal to dimX−dimZ = dim P(W )−dimZ =
codimP(W ) Z. Therefore, sine the dimension of the �bre an only grow at speialpoints, we have:

dimT[w,0](X ∩ Fw) ≥ dim(X ∩ Fw) ≥ codimP(W ) Z. (VII.12)Also d[w,0](ρ|X) : T[w,0]X → T[w]Z maps T[w,0](X ∩Fw) to 0 and T[w,0](X ∩ P(W ))onto T[w]Z. Therefore:
dim T[w,0](X ∩ P(W )) ≥ dimT[w]Z ≥ dimZ. (VII.13)Now assume [w, 0] is a smooth point of X. Then adding (VII.12) and (VII.13)we get:

dimX = dimT[w,0]Xby (VII.11)
= dimT[w,0](X ∩ Fw) + dimT[w,0](X ∩ P(W ))

≥ codimP(W ) Z + dimZ = dim P(W ).By (i) the dimX is equal to the dim P(W ), so in (VII.12) and (VII.13) all theinequalities are in fat equalities. In partiular dimT[w]Z = dimZ, so [w] is asmooth point of Z.Conversely, assume [w] is a smooth point of Z, then the tangent spae
T[w,0]X = T[w]Z ⊕N∗

[w](Z ⊂ P(W )), 93



Jarosªaw Buzy«skitherefore learly [w, 0] is a smooth point of X.Exatly the same argument shows that X is singular at a point [0, α] ∈ X ∩
P(W ∗) if and only if Z∗ is singular at [α].For the last part of (iii) it is enough to note that p is a loally trivial C∗-bundlewhen restrited to P(W ⊕W ∗)\ (P(W ) ∪ P(W ∗)).

�Corollary VII.14. Given a Legendrian subvariety Z̃ ⊂ P2n−1 we an take Z# :=
φ−1

H0,p0
(Z̃) to onstrut a Legendrian subvariety in P(T ∗Pn). Suh a variety mustbe the onormal variety to some variety Z ⊂ Pn (see orollary III.19). Let X ⊂

P2n+1 be the Legendrian variety onstruted from Z as above. By theorem VII.10(ii), a omponent of a hyperplane setion of X an be projeted onto Z̃.Unfortunately, in the setup of the theorem X is almost always singular (see�VII.4).Example VII.15. If Z is a Kummer quarti surfae in P3, then X is a 3-fold with 32 isolated singular points (it follows from theorem VII.10(iii) beausethe Kummer quarti surfae has 16 singular points, it is isomorphi to its dualand it has smooth onormal variety in P(T ∗P3)). Therefore by theorem VII.1 ageneral hyperplane setion of X is smooth and admits a Legendrian embedding.By theorem VII.10 the example of Landsberg and Manivel is a speial ase of thishyperplane setion. Even though the ondition p0 ∈ H0 is a losed ondition, itsatis�es the generality onditions of theorem VII.1 and therefore this hyperplanesetion onsists of a unique smooth omponent that is projeted isomorphiallyonto Z̃.Example VII.16. Similarly, if Z is a urve in P2 satisfying the generality ondi-tions of Bryant [Bry82, thm G℄, then X is a surfae with only isolated singulari-ties and its hyperplane setion projets isomorphially onto a Bryant's Legendrianurve.VII.4 Smooth varieties with smooth dualFurthermore we observe that a lassial problem of lassifying smooth varietieswith smooth dual variety an be expressed in terms of Legendrian varieties:Corollary VII.17. Using the notation of the previous setion, let QW ⊂ P(W ⊕
W ∗) be the quadri p−1 (P(T ∗P(W ))) � see VII.10(i). On W ⊕ W ∗ onsiderthe standard sympleti struture (see �II.1.5) and on P(W ⊕W ∗) onsider theassoiated ontat struture (see �III.1).(i) Let Z ⊂ P(W ) be a smooth subvariety with Z∗ ⊂ P(W ∗) smooth. Let

X ⊂ P(W ⊕ W ∗) be as in the above onstrution. Then X is a smoothLegendrian variety ontained in QW .94



Algebrai Legendrian varieties Chapter VII(ii) Conversely, assume X ⊂ P(W ⊕W ∗) is irreduible, Legendrian and on-tained in QW . Let Z = X ∩ P(W ). Then Z∗ = X ∩ P(W ∗) and the varietyarising from Z in the above onstrution is exatly X. Moreover, if X issmooth, then Z and Z∗ are smooth.We underline that although all the smooth quadris of a given dimension areprojetively isomorphi, the lassi�ation of quadris relatively to the ontatstruture is more ompliated. The quadri QW an therefore be written as
x0y0 + . . . + xnyn = 0 in some sympleti oordinates x0, . . . , xn, y0, . . . , yn on
W ⊕W ∗. We note (without proof), that suh quadri QW determines uniquelythe pair of Lagrangian subspaes W and W ∗.Proof. Part (i) follows immediately from theorem VII.10(i) and (iii).To prove part (ii), onsider p(X) ⊂ P(T ∗P(W )). By lemma I.4 and proposi-tion II.1 p(X) is Legendrian. By orollary III.19, p(X) is a onormal variety tosome subvariety Z ⊂ P(W ). The next thing to prove is that X oinides withthe variety onstruted above from Z, i.e. that

X = p−1
(
p(X)

)
.Equivalently, it is enough to prove that X is C∗-invariant. This is provided bytheorem III.5 sine the quadri QW produes exatly the required ation. Finally,it follows that Z = X ∩ P(W ). Moreover, p(X) is also the onormal variety to

Z∗ ⊂ P(W ∗) and hene Z∗ = X ∩ P(W ∗). If X is in addition smooth, then Zand Z∗ are smooth by theorem VII.10(iii).
�smooth self-dual variety Z ⊂ Pn the orresponding Legendrianvariety X ⊂ P2n+1

Qm P1 ×Qm

P1 × Pm P1 ×Q2m

Gr(2, 5) Gr(3, 6)
S5 S6Table VII.1: The known self-dual varieties and their orresponding Legendrianvarieties. Note that Q2m and P1 × Pm lead to isomorphi Legendrian varieties.Yet their embeddings in the distinguished quadris are not isomorphi.Therefore the lassi�ation of smooth varieties with smooth dual is equivalentto the lassi�ation of pairs (X,Q), where Q ⊂ P2n+1 is a quadri whih an bewritten as x0y0+. . .+xnyn = 0 in some sympleti oordinates x0, . . . , xn, y0, . . . , ynon C2n+2 and X ⊂ P2n+1 is a smooth Legendrian variety, whih is ontained in
Q. So far the only known examples of smooth varieties with smooth dual arethe smooth self-dual varieties (see [Ein86℄). From these we get some of the ho-mogeneous Legendrian varieties (see table VII.1). Therefore we annot hope to95



Jarosªaw Buzy«skiprodue new examples of smooth Legendrian varieties in this way. What we hopefor is to lassify the pairs (X,Q) as above and hene �nish the lassi�ation ofsmooth varieties with smooth dual.
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Appendix AVetor �elds, forms andautomorphismsIn the ourse of the main part of this dissertation, partiularly in hapter IIIwe used some di�erential geometri fats, whih we summarise in this appendix.Although all these fats are standard or follow easily from the standard material,we reprodue or at least sketh most of the proofs. We do this for the sake ofompleteness of the material presented in the thesis and also beause variousauthors of textbooks use various notations and ombining these one an get veryonfused (at least this has happened to the author of this thesis).A.1 Homogeneous di�erential forms and vetor�eldsLet Y , Y ′ be two omplex manifolds and let φ : Y ′ −→ Y be a holomorphi map.For a k-form ω ∈ H0(Y,ΩkY ), by φ∗ω ∈ H0(Y ′,ΩkY ′) we denote the pull-bakof ω:
(φ∗ω)y(v1, . . . , vk) := ωφ(y)

(
Dyφ(v1), . . . ,Dyφ(vk)

)
.Now assume we have a C∗-ation on Y :

(t, y) 7−→ λt(y).We say that ω ∈ H0(Y,ΩkY ) is homogeneous of weight wt(ω) if
∀t ∈ C∗ λ∗tω = twt(ω)ω.For example, assume Y = An = Spec(C[y1, . . . , yn]) and C∗ ats via ho-motheties. We say ω ∈ ΩkAn is onstant, if it is a C-linear ombination of

dyi1 ∧ . . .∧ dyik . Constant k forms are homogeneous of weight k (not of weight 0as one ould possibly expet). Conversely, if ω ∈ H0(An,ΩkAn) is homogeneous97



Jarosªaw Buzy«skiof weight k, then it is onstant, beause every global form an be written as∑
fi1,...,ikdyi1 ∧ . . .∧dyik . Sine dyi1 ∧ . . .∧dyik are already of weight k, it followsthat fi1,...,ik are onstant funtions.Let µ ∈ H0(Y, TY ) be a vetor �eld. We say µ is homogeneous of weight

wt(µ) if
Dλt−1µ = twt(µ)µ.Lemma A.1. Let Y , Y ′ be omplex manifolds, both with a C∗-ation. Moreoverassume φ : Y ′ −→ Y is a C∗-equivariant map, ω ∈ H0(Y,ΩkY ) is a homogeneous

k-form for some k ∈ {0, 1, . . . , dimY } and µ ∈ H0(Y, TY ), ν ∈ H0(Y ′, TY ′) aretwo homogeneous vetor �elds.(i) ω(µ) is homogeneous and wt
(
ω(µ)

)
= wt(ω) + wt(µ);(ii) φ∗ω is homogeneous of weight wt(ω) and Dφ(ν) is homogeneous of weight

wt(ν);(iii) dω is homogeneous of weight wt(ω).Proof. This is an immediate alulation. For instane (i):
λ∗t (ω(µ))x(v1, . . . , vk−1) = ωλt(x)(µ,Dλt(v1), . . . ,Dλt(vk−1)) =

= (λ∗tω)x(Dλt−1(µ), v1, . . . , vk−1) = twt(ω)twt(µ)(ω(µ))x(v1, . . . , vk−1).

�A.2 Vetor �elds and automorphismsA.2.1 Vetor �elds, Lie braket and distributionsLet Y be a omplex manifold or a smooth algebrai variety, let F ⊂ TY be aorank 1 subbundle1 and let θ : TY → TY/F =: L be the quotient map, so thatthe following sequene is exat:
0 −→ F −→ TY

θ
−→ L −→ 0.Also assume U is an open subset. We say that a (possibly singular) subvariety

X ⊂ U with its smooth lous X0 is F -integrable if TX0 is ontained in F .1One ould also onsider F to be a orank r subbundle for any r ∈ {1 . . .dim Y }. Someof the statements below an be generalised to any r (not neessary r = 1), but the proofs getmore ompliated, espeially in notation. We restrit our onsiderations to the r = 1 ase, asthis is the only one used in the thesis.98



Algebrai Legendrian varieties Appendix AProposition A.2. With the assumptions as above:(i) dθ gives a well de�ned map of OY -modules:
dθ :

∧2
F −→ L.We refer to this map as the twisted 2-form dθ.(ii) Assume µ and ν are two vetor �elds on U , both ontained in F . Then

θ([µ, ν])(y) = dθy(µ(y), ν(y)). In partiular θ([µ, ν])(y) does not depend onthe vetor �elds, but only on their values at y.(iii) Again assume µ and ν are two vetor �elds on U , but now only ν is on-tained in F . Then again θ([µ, ν])(y) depends only on the value of ν at
y, but not on the whole vetor �eld. In other words the map of sheaves
F −→ L given by θ([µ, ·]) is OY -linear and hene it determines a map ofvetor bundles F −→ L.(iv) If X is F -integrable, then dθ|X0

≡ 0. In partiular if r = 1, then
dimX ≤ rkF −

1

2
min
x∈X

(rk dθx)Proof. All the statements are analytially loal, so it is enough to assume that
Y is a dis D2n ⊂ Cn with oordinates y1, . . . , ym, U = Y , y = 0 and that θ is anowhere vanishing setion of Ω1Y ⊗ L ≃ Ω1Y (the hoie of the trivialisation of
L is of ourse not unique):

θ =
∑

i

Aidyi = A · dy,where the olletion (A1, . . . , Am) (respetively (dy1, . . . , dym)T ) we denote by A(respetively dy). Then:
F :=

{
v ∈ TD2n |

∑

i

Aidyi(v) = 0

}
.To prove (i) note that:

dθ =
∑

i

dAi ∧ dyi = dA ∧ dy.We must hek that this does not depend on the hoie of the trivialisation A of
L. So assume B is a di�erent trivialisation, so there exists g : Y −→ GL(1) ≃ C∗suh that:

B = g · A. 99



Jarosªaw Buzy«skiWe must prove that dB ∧ dy restrited to F transforms in the same manner:
dB ∧ dy = d(g · A) ∧ dy = (dg · A + g · dA) ∧ dy =sine A vanish on F

= (g · dA) ∧ dy.To prove (ii) let
µ =

∑

k

µk
∂

∂yk

, (A.3)
ν =

∑

k

νk
∂

∂yk
(A.4)for some holomorphi funtions µk and νk. Sine µ and ν are ontained in F wehave: ∑

k

Akµk = 0 and ∑

l

Alνl = 0.Therefore for every k or l we have:
∑

k

∂Ak

∂yl
µk = −

∑

k

Ak
∂µk

∂yl
; (A.5a)

∑

l

∂Al

∂yk

νl = −
∑

l

Al
∂νl

∂yk

. (A.5b)Sine
[µ, ν] =

∑

k,l

(
νk
∂µl

∂yk

∂

∂yl
− µl

∂νk

∂yl

∂

∂yk

)
,hene:

θ([µ, ν]) =
∑

k,l

(
Alνk

∂µl

∂yk

− Akµl
∂νk

∂yl

)
=by (A.5)

=
∑

k,l

(
−
∂Al

∂yk
µlνk +

∂Ak

∂yl
µlνk

)
=

=
∑

k,l

(
∂Al

∂yk
(µkνl − µlνk)

)
=

=
∑

k,l

(
∂Al

∂yk
(dyk ∧ dyl) (µ, ν)

)
=

= dθ (µ, ν) .We note that the above alulation is a speial ase of [KN96, prop. I.3.11℄,though the reader should be areful, as the notation in [KN96℄ is di�erent thanours and as a onsequene a onstant fator −2 is �missing� in our formula.100



Algebrai Legendrian varieties Appendix AThe proof of (iii) is idential as the beginning of the proof of (ii).Finally to prove (iv) just use (ii) and the fat that the Lie braket of twovetor �elds tangent to X must be tangent to X.
�A.2.2 AutomorphismsHere we introdue the notation about several types of automorphisms of a mani-fold Y and its subvarietyX. Also we reall some standard properties and relationsbetween them.Let Y be a omplex manifold (or respetively, smooth algebrai variety) andlet U ⊂ Y be an open subset in analyti (or respetively, Zariski) topology. By

Authol(U) (respetively, Autalg(U)) we denote the group of holomorphi (respe-tively, algebrai) automorphisms of U . By Aut•(U) we mean either Authol(U) or
Autalg(U), whenever speifying is not neessary.Assume that a omplex Lie group (respetively, an algebrai group) G atson U , i.e. we have a group homomorphism G −→ Aut•(U). Also let g be the Liealgebra of G. By G0 we denote the the onneted omponent of identity in G.An in�nitesimal automorphism of U is a vetor �eld µ ∈ H0(U, TY ).Di�erentiating the ation map G × U −→ U by the �rst oordinate we get theindued map g × Y −→ TY or more preisely g −→ H0(U, TY ). This mappreserves the Lie braket (see [Akh95, thm in �1.7℄) and if the ation is faithful,then it is injetive (see [Akh95, thm in �1.5℄).The partiular ase is when G = C∗. Then we get a map C −→ H0(U, TY )and we set µC∗ to be the image of 1 ∈ C under this map. We say µC∗ is thevetor �eld related to the C∗-ation. Note that µC∗ is homogeneous of weight
0. The in�nitesimal automorphisms make a sheaf TY of Lie algebras, whih atthe same time is an OY -module. The two strutures are related by the followingLeibniz rule:

∀f ∈ H0(U,OY ), ∀µ, ν ∈ H0(U, TY ) [fµ, ν] = f [µ, ν] + df(ν)µ. (A.6)The following theorem omparing in�nitesimal, algebrai and holomorphiautomorphisms for a projetive variety is well known and standard:Theorem A.7. Let Y be a projetive variety. Then:(i) Authol(Y ) is a omplex Lie group.(ii) Every holomorphi automorphism of Y is algebrai and hene
Aut(Y ) := Authol(Y ) = Autalg(Y ). 101



Jarosªaw Buzy«ski(iii) By aut(Y ) we denote the tangent Lie algebra to Aut(Y ). Every in�nitesimalautomorphism is tangent to some 1-parameter subgroup of Authol(Y ), sothat aut(Y ) = H0(Y, TY ).Proof. Part (i) is proved in [Akh95, �2.3℄. Part (ii) is a onsequene of [Gri74,thm IV.A℄. Part (iii) is explained in [Akh95, prop. in �1.5 & or. 1 in �1.8℄.
�Clearly H0(U,OY ) is a representation of G and hene also of g. We also havethe following Lie algebra ation of the sheaf of in�nitesimal automorphisms:

TY ×OY −→ OY

(µ, f) 7→ df(µ),whih is given by the derivation in the diretion of the vetor �eld.The ation of g on H0(U,OY ) is the omposition
g −→ H0(U, TY ) −→ gl

(
H0(U,OY )

)
.Let X ⊂ Y be a subvariety. By Aut•(U,X) we denote the respetive subgroupof Aut•(U) preserving the intersetion U∩X. If Y is projetive, then by aut(Y,X)we mean the Lie algebra tangent to Aut•(Y,X). By autinf(U,X) we denote theLie algebra of in�nitesimal automorphisms of U preserving X, i.e.:

autinf(U,X) :=
{
µ ∈ H0(U, TY ) | ∀f ∈ I(X)|U (df)(µ) ∈ I(X)|U

}
,where I(X) ⊳ OY is the sheaf of ideals of X.Clearly, if G preserves X, then the image of g −→ H0(U, TY ) is ontainedin autinf(U,X). Conversely, if the image is ontained in autinf(U,X), then theation of the onneted omponent G0 preserves X.Corollary A.8. If Y is projetive, then autinf(Y,X) = aut(Y,X).

�Moreover autinf(·, X) makes in TY a subsheaf of Lie algebras andOY -modules.A.2.3 Distributions and automorphisms preserving themIf F ⊂ TY is a orank 1 vetor subbundle (partiularly a ontat distribution -see �III.2 for the de�nition), then by Aut•F (U), autF (Y ), autinf
F (U), Aut•F (U,X),

autF (Y,X) and autinf
F (U,X) we denote the appropriate automorphisms or in-�nitesimal automorphisms preserving F and possibly the subvariety X.For instane,

autinf
F (U) =

{
µ ∈ H0(U, TY ) | [µ, F ] ⊂ F

}
. (A.9)102



Algebrai Legendrian varieties Appendix AAlso autinf
F makes a sheaf of Lie algebras, but usually it is not anOY -submoduleof TY . To see that take any µ ∈ autinf

F (U) for U small enough. Assume for all
f ∈ OY (U) we have fµ ∈ autinf

F (U). Then by Leibniz rule (see equation A.6):
∀ν ∈ H0(U, F ) df(ν) · µ ∈ H0(U, F ).This an only happen if either:

• µ ∈ H0(U, F ) or
• F = 0, i.e. F is the rank 0 bundle.We have seen that the �rst ase does not happen if F is a ontat distribution(unless µ = 0, see theorem III.151)). In fat, one an prove that it never happensfor all µ ∈ H0(U, F ) (remember that U is small enough), unless F = 0.If G ats on U and preserves the distribution F , then the map g → H0(U, TY )fators through autinf

F (U). Conversely, if G is onneted, it ats on U and the map
g → H0(U, TY ) fators through autinf

F (U), then the ation of G preserves F . Asa onsequene we get:Corollary A.10. If Y is projetive and X ⊂ Y is a subvariety, then:(i) autF (Y ) = autinf
F (Y )(ii) autF (Y,X) = autinf

F (Y,X)Proof. This follows from the above onsiderations and from theorem A.7.
�Further, let L be the quotient bundle and θ be the quotient map:

0 −→ F −→ TY
θ

−→ L −→ 0.If the ation of G on U extended to TY |U preserves F , then in the obvious waywe get the indued ation of G on the total spaes of L|U and L∗|U . Theseations preserve the zero setions.Let L• and RL be as in �I.3.7.By analogy with above we want to de�ne the ation of autinf
F on L•. In otherwords, we de�ne a speial lifting of the vetor �elds from autinf
F ⊂ TY to vetor�elds on L•.First observe that the sheaf of Lie algebras autinf

F ats on the sheaf L: if
s ∈ H0(U,L), then hoose an open subset V ⊂ U small enough and any lifting
sTY ∈ H0(V, TY ), θ(sTY ) = s|V and let µ ∈ autinf

F (U) at on H0(U,L) loally by
s|V 7→ (µ.s)|V := θ ([sTY , µ|V ]) . (A.11)103



Jarosªaw Buzy«skiBy equation (A.9), this does not depend on the hoie of sTY and hene, byelementary properties of sheaves, it glues uniquely to an element of H0(U,L).Hene we get a Lie algebra representation autinf
F (U) −→ gl (H0(U,L)).Seondly, we an extend the ation of autinf

F on the loally free sheaf L de�nedin equation (A.11) to an ation on RL, by requesting that the ation must satisfythe Leibniz rule:
t, s ∈ RL, µ ∈ autinf

F =⇒ µ.(ts) = (µ.t)s+ t(µ.s) (A.12)� loally every setion of Lm an be written as a sum of produts of setions of
L (or their inverses, if m < 0).Finally, we an extend this ation to OL• , again requesting the Leibniz rule.Eventually, we get the ation, whih we will all the indued ation of autinf

Fon L•. The following property justi�es the name:Proposition A.13. If the ation of G preserves F , then the tangent ation tothe indued ation of G on L•|U := π−1(U) is the omposition of g −→ autinf
F (U)and the indued ation of autinf

F on L•.
�For a �xed µ ∈ autinf

F (U), the indued map OL• |π−1(U) −→ OL•|π−1(U) is aderivation, so it orresponds to a vetor �eld µ̆ ∈ H0(π−1(U), TL•), suh that
∀f ∈ OL• µ.f = df(µ̆). (A.14)By onstrution we also have Dπ(µ̆) = µ.A.2.4 1-form θ•With the notation and assumptions as in the previous setions, we have a anon-ial isomorphism of line bundles τ : π∗L

≃
−→ OL• : if y ∈ Y , λ ∈ L•

y = π−1(y),
l ∈ Ly, then we set

τ(y, λ, l) := (y, λ, λ(l)).We let θ• := τ ◦ π∗θ ◦ Dπ:2
TL• Dπ

−→ π∗TY
π∗θ
−→ π∗L

τ
−→ OL• .Lemma A.15. For every µ ∈ autinf

F (U) the indued in�nitesimal automorphism
µ̆ preserves θ•, i.e.:

Lµ̆(θ•) := lim
t→0

γµ̆(t)
∗θ• − θ•

t
= 0,where Lµ̆ is the Lie derivative operator and γµ̆(t) is the loal 1-parameter groupof transformations of L• determined by µ̆.2In [Bea98℄, [LeB95℄ the authors denote θ• simply as π∗θ, sine the other maps are natural.This is a bit onfusing to some people (inluding the author of this thesis, but see also aomment in [SCW04℄ about a small mistake in [KPSW00℄) and therefore we underline that θ•is the omposition of three maps.104



Algebrai Legendrian varieties Appendix AProof. For the simpliity of notation assume γµ̆(t) is a global transformation.The following diagram of vetor bundles is ommutative:
TL• Dπ

//

Dγµ̆(t)

��

π∗TY
π∗θ

//

Dπγµ(t)

��

π∗L
τ

//

γπ∗L
µ (t)

��

OL•

γµ̆(t)×idC

��

TL• Dπ
// π∗TY

π∗θ
// π∗L

τ
// OL•where by Dπγµ(t) we mean the automorphism of π∗TY , whih is determined by

Dγµ(t) : TY → TY and γµ̆(t) : L• → L•; similarly γπ∗L
µ (t) is determined by

Dγµ(t) : TY/F → TY/F and γµ̆(t) : L• → L•. The omposition of the wholeupper row is equal to θ•. The omposition of the left most vertial arrow andthe whole lower row is equal to γµ̆(t)∗θ•. Sine the right arrow is the identityon the seond omponent OL• = L• × C and sine the diagram is ommutative,both forms take the same values on every vetor v ∈ TL•, hene are equal andthe laim follows.
�We also give a loal desription of θ• and dθ•. So now assume Y ≃ D2m andlet y1, . . . , ym be some oordinates on Y . Let z be a linear oordinate on the �breof L• ≃ Y ×C∗. This means that z determines a setion of L whih trivialises Lover D2m. So we an think of θ as of a holomorphi 1-form on L• depending onlyon yi's and dyi's. Let (y, z0) be any point of L• and let v̄ be any vetor tangentto L• at (y, z0). We write v̄ = v + w, where v is the omponent tangent to Y ,while w is tangent to C∗. Then:

θ•(y,z0)(v̄) = (τ ◦ π∗θ ◦ Dπ)y,z0
(v̄) = (τ ◦ π∗θ)y,z0

(v) = z0(θy(v)) = z0 · θy(v).Or more onisely (in loal oordinates)
θ• = zθ, (A.16)and therefore

dθ• = d (zθ) = zdθ + dz ∧ θ. (A.17)Sine in this notation θ is a homogeneous 1-form of weight 0 and wt(z) = 1,
θ• and dθ• are homogeneous forms of weight 1 (see �A.1).In the above oordinates, the vetor �eld µC∗ related to the C∗-ation an beexpressed as follows:

µC∗ = z
∂

∂z
.Proposition A.18. Let Y be a omplex manifold or smooth algebrai varietyand let L be a line bundle on Y . Also let L• be the prinipal C∗-bundle over Yas in �I.3.7 and let µC∗ be the vetor �eld on L• assoiated to the ation of C∗.Finally, let ω be a homogeneous losed 2-form on L• of weight 1. Then: 105



Jarosªaw Buzy«ski(i) ω = d
(
ω(µC∗)

);(ii) There exists a unique twisted 1-form θ : TY −→ L, suh that ω(µC∗) = θ•,where θ• is de�ned from θ as above;(iii) Moreover, ω(µC∗) is nowhere vanishing if and only if θ is nowhere vanishing.If this is the ase, then ω is non-degenerate if and only if dθ|F is non-degenerate.Proof. To prove (i) let z be a loal oordinate linear on the �bres of π : L• → Y .Sine ω is losed, loally it is exat, so
ω = d(zφ′ + gdz)for some funtion g and 1-form φ′, both homogeneous of weight 0. However,

d(zφ′ + gdz) = d
(
z(φ′ − dg)

)
.Set φ := φ′−dg, so that ω = d(zφ). Note that although φ′ and g are not uniquelydetermined, φ is the unique homogeneous 1-form of weight 0 suh that ω = d(zφ).Then,

ω (µC∗) = (dz ∧ φ)

(
z
∂

∂z

)
+ zdφ

(
z
∂

∂z

)
= dz

(
z
∂

∂z

)
· φ = zφ.Hene d

(
ω (µC∗)

)
= ω, as laimed in (i).To prove (ii), de�ne θ to be loally the form φ from the above argument. Onemust verify that φ glues uniquely to a twisted 1-form θ : TY −→ L.Part (iii) follows from the loal desriptions of θ• and dθ•, see (A.16) and(A.17). For instane, if n = 1

2
(dimY − 1), then:

(dθ•)∧
n+1

= (n+ 1)dz ∧ θ ∧ (dθ)∧
n

.Therefore dθ• is non-degenerate at a given point if and only if θ does not vanishat that point and dθ is non-degenerate on the kernel of θ.
�Lemma A.19. Let X ⊂ Y be any subvariety and X0 its smooth lous. Then

X is F -integrable if and only if dθ• vanishes identially on the tangent spae to
π−1(X0).Proof. First assume X is F -integrable. Then dθ vanishes on T (π−1(X0)) byproposition A.2(iv) and θ vanishes by de�nition. Hene from the loal desriptionof dθ• (see equation (A.17)) we get the result.106



Algebrai Legendrian varieties Appendix AOn the other hand if dθ•|T (π−1(X0)) ≡ 0, sine
µC∗|π−1(X0) ∈ H0

(
π−1(X0), T

(
π−1(X0)

))
,then in partiular

dθ•
(
µC∗, T

(
π−1(X0)

))
≡ 0.But dθ• (µC∗) = θ• (see proposition A.18(ii)), hene π−1X is (π∗F )-integrableand therefore X is F -integrable.

�For s ∈ RL = π∗OL• , by s̃ ∈ OL• we denote the lifting of s, i.e. s̃ := τ ◦ π∗s.Hene we have two possibilities of lifting an in�nitesimal automorphism µ ∈
autinf

F to an objet on L•: either we lift it to a vetor �eld µ̆ (see (A.14)) or we lift
θ(µ) to funtion θ̃(µ). We will ompare these two liftings and how they behavewith respet to the Lie braket of vetor �elds in the following statements.Lemma A.20. We have:

∀ν ∈ autinf
F (U), µ ∈ H0(U, TY ) ˜θ([µ, ν]) = d

(
θ̃(µ)

)
(ν̆).Proof. By (A.11):

θ([µ, ν]) = ν.θ(µ)and hene ˜θ([µ, ν]) = ν.θ̃(µ). By (A.14), this is equal to d
(
θ̃(µ)

)
(ν̆).

�Proposition A.21. If µ ∈ autinf
F (U), then:

d
(
θ̃(µ)

)
= −(dθ•)(µ̆).Proof. The following proof is quoted from [Bea98, prop. 1.6℄. Sine Lµ̆(θ•) = 0(see lemma A.15), by [KN96, prop. I.3.10(a)℄ we have:

(dθ•)(µ̆) = −d
(
θ•(µ̆)

)
.On the other hand:

θ•(µ̆) = τ ◦ π∗θ ◦ Dπ(µ̆) = τ ◦ π∗ (θ(µ)) = θ̃(µ).Combining the two equalities, we get the result.
�Corollary A.22. If µ, ν ∈ autinf

F (U), then
˜θ([µ, ν]) = −(dθ•)(µ̆, ν̆).Proof. This ombines lemma A.20 and proposition A.21.
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