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Abstract

The main goal of this thesis is to apply the Hilbert Method in order to find
decision procedures for the equivalence problem for various classes of trans-
formations of combinatorial objects, like words, trees, or graphs. The Hilbert
Method, roughly speaking, amounts to finding a register transducer model
that captures the desired class of transformations, and encoding combinato-
rial objects used by this model into integers, in a way that the basic combi-
natorial operations (like, for example, word concatenation) can be simulated
with the use of algebraic operations of addition and multiplication.

While proving our main results, we extend the Hilbert Method by prov-
ing the following lemmas: (1) the combinatorial objects may be encoded into
any computable reduced ring, (2) if the combinatorial objects are encoded
into a field (note that any field is a reduced ring), then also the division op-
eration can be used to simulate the combinatorial operations, (3) if the com-
binatorial objects are encoded into a ring of polynomials (note that it can be
embedded into a field of rational functions), then also the substitution opera-
tion can be used, with restrictions, to simulate the combinatorial operations.

In Chapter 1 we give preliminaries about rings, polynomial ideals, and
Gröbner bases.

In Chapter 2 we give a self-contained presentation of the Hilbert Method,
and prove decidability of equivalence of register transducers with output in
an unordered variant of the free forest algebra introduced by Bojańczyk and
Walukiewicz.

In Chapter 3 we obtain a register transducer model that captures MSO2
transductions of graphs of bounded treewidth, and prove decidability of
a (very) restricted variant of their equivalence problem.

In Chapter 4 we investigate the third of our ways of extending the Hilbert
Method, finding a strong limitation of this approach, and obtaining two pos-
itive results about register transducers with output in a free monoid enriched
with the substitution operation.

In Chapter 5 we propose a proof scheme for showing decidability of equiv-
alence of register transducers with output in a given finitely presented monoid,
and obtain a criterion for equational Noetherianity of a monoid (which is also
called compactness property).

Keywords: register transducer, equivalence problem, Hilbert Method, bounded
treewidth, polynomial ideal, word substitution
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Streszczenie

Głównym celem tej pracy jest zastosowanie Metody Hilberta do znalezienia
procedur decyzyjnych rozstrzygających problem równoważności dla różnych
klas transformacji obiektów kombinatorycznych, takich jak słowa, drzewa
bądź grafy. Metoda Hilberta, w zarysie, polega na znalezieniu modelu trans-
duktora rejestrowego, który jest w stanie wyrazić daną klasę transforma-
cji, oraz zakodowaniu obiektów kombinatorycznych używanych przez ten
model za pomocą liczb całkowitych w taki sposób, że podstawowe oper-
acje kombinatoryczne (jak, na przykład, konkatenacja słów) mogą być symu-
lowane z użyciem operacji algebraicznych dodawania i mnożenia.

W trakcie pracy rozszerzamy Metodę Hilberta dowodząc następujących
lematów: (1) obiekty kombinatoryczne mogą być zakodowane w dowol-
nym obliczalnym pierścieniu zredukowanym, (2) jeżeli obiekty kombinato-
ryczne są zakodowane w ciele (zauważmy, że każde ciało jest pierścieniem
zredukowanym), to również operacja dzielenia może być użyta do symu-
lowania operacji kombinatorycznych, (3) jeżeli obiekty kombinatoryczne są
zakodowane w pierścieniu wielomianów (zauważmy, że można go zanurzyć
w ciało funkcji wymiernych), to również operacja podstawienia może być,
z ograniczeniami, użyta do symulowania operacji kombinatorycznych.

W rozdziale pierwszym, przedstawiamy informacje wstępne dotyczące
pierścieni, ideałów oraz baz Gröbnera.

W rozdziale drugim, przedstawiamy Metodę Hilberta oraz dowodzimy
rozstrzygalności równoważności transduktorów rejestrowych, których alge-
bra wyjściowa jest wariantem nieuporządkowanym wolnej algebry lasów
wprowadzonej przez Bojańczyka i Walukiewicza.

W rozdziale trzecim, wskazujemy model transduktora rejestrowego, który
jest w stanie wyrazić MSO2 transdukcje grafów o ograniczonej szerokości
drzewiastej, oraz dowodzimy rozstrzygalności (bardzo) ograniczonej wersji
jego problemu równoważności.

W rozdziale czwartym, badamy trzeci ze sposobów rozszerzania Metody
Hilberta, znajdując spore ograniczenia tego podejścia, a także otrzymując
dwa pozytywne wyniki z jego użyciem, dotyczące transduktorów rejestrowych
o wyjściu w monoidzie wolnym rozszerzonym o operację podstawienia.

W rozdziale piątym, proponujemy schemat dowodzenia rozstrzygalności
równoważności dla transduktorów rejestrowych, których algebra wyjściowa
jest skończenie prezentowanym monoidem, oraz otrzymujemy kryterium na
równaniową Noetherowskość monoidu (zwaną również własnością zwartości).

Słowa kluczowe: transduktor rejestrowy, problem równoważności, Metoda
Hilberta, ograniczona szerokość drzewiasta, ideał w pierścieniu wielomi-
anów, podstawienie słów
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Introduction

This thesis is focused on the problem of decidability of functionality and of
equivalence of functional register transducers that input trees. Our general
theme is the Hilbert Method, which, roughly speaking, is a reduction of com-
binatorial objects, like words or trees, to algebraic objects, like numbers or
polynomials, such that the operations of the former can be reduced to the
operations of the latter. We describe the Hilbert Method later; let us now
focus on transducers.

In general, a tree transducer is a formal machine model built on a tree au-
tomaton that, additionally to accepting trees, returns some output, which
for example could be another tree or a number. In consequence, it defines
not only a language but also a transformation. The definition of a regis-
ter transducer is given later in the text. A transducer is called functional if
the transformation it defines is a function (i.e. admits at most one output
for every input), and two transducers are called equivalent if they define the
same transformation. A decision procedure for testing equivalence of trans-
ducers can be used, for example, to verify if a given transducer defines the
desired transformation. This can be done by taking another transducer that
undoubtedly defines the transformation of our interest (but possibly is sub-
optimal) and testing both transducers for equivalence. The motivation for
tree transducers comes, among others, from theory of document transforma-
tion1, compiler theory2, and natural language processing3. For more infor-
mation and references regarding tree transducers and their applications we
refer to a textbook of Fülöp and Vogler4.

The field of transducers has numerous models. Let us give several ex-
amples. We begin with a word transducer – it is a special case of a tree
transducer, since words can be represented as trees in which every node has
at most one child. The oldest and simplest model of a word transducer is
a Mealy Machine, introduced in 1955 by Mealy5. It traverses the input word
in the left-to-right manner like a deterministic finite automaton ( ), and
in every step outputs one letter, which is determined by both the state and
the input letter; the states are used only for determining the output letters –
the machine returns output for every input word.

1Hosoya, 2010.
2For example see Thirunarayan, 2009. Attribute grammars can be seen as tree transduc-

ers: attribute grammars and attributed tree transducers have the same expressive power
(Maneth, 1998).

3Maletti, 2015.
4Fülöp and Vogler, 1998.
5Mealy, 1955.
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b|a
a|a b|b

a|b

FIGURE 1: A Mealy Machine. For example, it maps abbba to
aabbb.

A transducer model that is slightly more general is a deterministic finite state
transducer. It can be described shortly as a deterministic finite automaton
with output: in every step it outputs a word (which, in contrast to the case of
Mealy Machines, might consist of more than one letter), and it either accepts
or reject the input word, depending on the state reached after reading it.

b|#
a|a b|abb

a|b

FIGURE 2: A deterministic finite state transducer. It returns out-
put for words of form (a + b)⇤a; for example, it maps abbba to

aabbabbb.

Analogously, one can construct transducer models from other automata mod-
els, and thus obtain the following: nondeterministic finite state transducer,
push-down transducer, two-way (non)deterministic finite transducer, pebble
transducer6, and marble transducer7 (we do not claim the list to be exhaus-
tive). Also, one can apply an analogous construction to tree automata, and
thus obtain (non)deterministic top-down (bottom-up) transducers or pebble
tree transducers. There are also transducer models of other kinds, let us
mention macro tree transducer8, attribute transducer (derived from attribute
grammar)9, Higher Order deterministic top-down transducer10, and ground
tree transducer11.
Transformation models of this thesis. Let us proceed to transformation
models we use in this thesis. The first one is defined using Monadic Second

6Pebble automata were introduced in Globerman and Harel, 1996.
7Marble automata were introduced for trees in Engelfriet, Hoogeboom, and Van Best,

1999.
8Engelfriet and Vogler, 1985.
9Fülöp, 1981.

10Gallot, Lemay, and Salvati, 2020.
11Dauchet et al., 1990.
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Order logic (MSO); it is called MSO transduction. MSO is an extension of
first order logic that allows quantification over sets of elements of the struc-
ture. Connections of MSO and automata theory date back to 1960s when the
famous theorem of Büchi, Elgot, and Trakhtenbrot established the equiva-
lence of and MSO over words with the successor relation12; similar re-
sults were proved for trees13 and graphs14. These connections were extended
from automata to transducers: Engelfriet and Hoogeboom established the
equivalence of deterministic two-way transducers and MSO transductions of
words with the successor relation15, and Engelfriet and Maneth established
the equivalence of macro tree transducers with regular look-ahead that are
single use restricted and MSO transductions of trees16; also, Alur et al. intro-
duced another equivalent model (register transducer, cf. next paragraph) for
both words17 and trees18. MSO transductions were studied also for graphs,
see a survey of Courcelle19, although with no relation to tree transducers. (In
Chapter 3, we discuss MSO transductions of graphs (of bounded treewidth),
introducing connections with register transducers (using the mentioned re-
sults of Alur et al.))

The second and the most important transformation model we use is, fol-
lowing the work of Engelfriet, Maneth, Alur, Černý, and D’Antoni20, a tree
transducer that uses registers; we call it a register transducer, following Bo-
jańczyk21. It outputs elements of a fixed algebra (for example a free monoid
or a field of rational numbers), denoted as output algebra. (A register trans-
ducer with output algebra A is also called a register transducer with output in
A.) A register transducer is based on a bottom-up tree automaton, and is en-
riched with a finite tuple of variables, called registers, that store elements of
the output algebra. The tuple of registers is initiated in every leaf of the input
tree, then in every non-leaf node it is synthesized by applying a polynomial
operation of A (in the sense of universal algebra) to its children’s registers,
and finally the returned output is an evaluation of a polynomial operation
of A on the root’s registers. The output algebra can be arbitrary, although
typically it is either of “combinatorial” kind, like a free monoid or an algebra
of ranked trees, or a ring, for example of integers or of polynomials.

12Büchi, 1960, Elgot, 1961, and Trakhtenbrot, 1961.
13The proof is analogous as for words.
14Courcelle and Engelfriet, 2012.
15Engelfriet and Hoogeboom, 2001.
16Engelfriet and Maneth, 1999.
17Alur and Černý, 2010; Alur and Černý, 2011.
18Alur and D’Antoni, 2012.
19Courcelle, 1994; see also related comments in M. Bojańczyk and Pilipczuk, 2016, Intro-

duction.
20Engelfriet and Maneth, 1999; Alur and Černý, 2010; Alur and Černý, 2011; Alur and

D’Antoni, 2012.
21Mikołaj Bojańczyk, 2019.
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a b

a

c dcc
(0, 1) (0, 1)(0, 1) (0, 0)

(1, 2) (0, 1)

output 6 = 2 · 3

(2, 3) = (1 + 1 + 0, 2 + 1)

FIGURE 3: A run of a register transducer with output in the
ring of integers that computes the product of the numbers of

a-labeled and c-labeled nodes of an input tree.

a b

a

c dcc
hci hci

hahcii

hci hci

hahcii

hahahciahciii

output hahahciahciii

FIGURE 4: A run of a register transducer with output in a free
monoid that computes the string representation of an input

tree.

Register transducers are expressive: for the output algebra being a free monoid
and input alphabet that consists of unary and 0-ary symbols they strictly sub-
sume MSO string-to-string transductions, and for output algebra being a free
forest algebra (introduced by Bojańczyk and Walukiewicz22) they strictly sub-
sume MSO tree-to-tree transductions. They were introduced, with so-called
copyless restriction, by Alur and Černý in the string-to-string case23, and by
Alur and D’Antoni in the tree-to-tree case24 (with the copyless restriction, in
both cases the register transducers and corresponding MSO transductions
are equally expressive25). Register transducers were also used by Seidl et
al.26 with the output algebra being the field of rational numbers, for which
they proved decidability of equivalence27.

22M. Bojańczyk and Walukiewicz, 2008.
23Alur and Černý, 2010.
24Alur and D’Antoni, 2012.
25Alur and Černý, 2011; Alur and D’Antoni, 2012.
26Seidl, Maneth, and Kemper, 2018.
27The proof is done for deterministic transductions; the general case follows from a rather

standard reduction to the deterministic case, cf. the proof of Lemma 2.9.
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Hilbert Method. The proof scheme we use in this thesis is analogous to the
one used by Seidl et al. They simulated a subclass of register transducers with
output in a free monoid (deterministic top-down tree-to-string transducers)
by register transducers with output in the ring of integers. Their simulation
amounts to simulating the output structures: a free monoid is simulated by
the ring of integers, by embedding it into the multiplicative monoid of the
matrix ring, see the below figure28.

a1
f
7�!


3 1
0 1

�

a2
f
7�!


3 2
0 1

�

w · v
f
7�! f(w) · f(v) for w, v 2 {a1, a2}

⇤.

FIGURE 5: A simulation of a free monoid {a1, a2}
⇤ by the ring of

integers, using a homomorphism into the multiplicative matrix

monoid; a word w = ai1 ai2 . . . ain is mapped to


3n w3
0 1

�
where

w3 is the number represented by i1i2 . . . in 2 {1, 2}⇤ in ternary.

Seidl et al. obtained decidability of equivalence for the former model by
showing decidability of equivalence for the latter model, using polynomial
ideals. An analogous proof scheme has been used in formal language the-
ory before29, having its roots in representation theory, and has recently been
called the Hilbert Method by Bojańczyk30. We use it and expand it in each
of the forthcoming chapters – each time with an algebra other than a free
monoid and a ring other than the one of integers – and obtain decidability
results for other classes of transductions.
Organization of the thesis. In Chapter 1, we give preliminaries about rings,
polynomial ideals, and Gröbner bases.

In Chapter 2, we present the proof of decidability of functionality and
equivalence of functional register transducers with output in a computable
commutative ring with no zero divisors (or, without loss of generality, with
output in a computable field31) (Theorem 5)32. Then, we simulate a certain

28This particular injective homomorphism is from Seidl, Maneth, and Kemper, 2018, Ex-
ample 3.2; analogous homomorphisms can be found in the literature, see for example the,
classical, Sanov linear representation of a free group.

29Albert and Lawrence, 1985; Honkala, 2000; Benedikt et al., 2017.
30Mikołaj Bojańczyk, 2019.
31Register transducers with output in fields have the same expressive power as register

transducers with output in rings with no zero divisors (cf. Theorem 5). It is because every
field is a ring with no zero divisors, and every commutative ring with no zero divisors is
contained in some field (for example, its field of fractions).

32The proof repeats the arguments of Seidl et al. (in an equivalent formalism of polynomial
grammars), but with weaker assumptions on the output ring.
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algebra of unordered forests by the ring of univariate polynomials, thus ob-
taining a decidability result for register transducers with output in this alge-
bra. We also formalize the notion of a simulation of algebras and the used
proof scheme.

In Chapter 3, we give a register transducer model that captures MSO
transductions of graphs of bounded treewidth. Then, we simulate graphs
of bounded treewidth – up to a certain relaxation of isomorphism, which we
call walk-equivalence – by the field of univariate rational functions enriched
with the division operation. We extend the scope of Theorem 5 to register
transducers that use the division operation, thus our simulation gives decid-
ability of functionality and equivalence of functional MSO transduction of
graphs of bounded treewidth in which the output graphs are identified up to
walk-equivalence.

In Chapter 4, we consider register transducers with output in a ring of
polynomials enriched with the substitution operation. First, we obtain unde-
cidability of equivalence for this model. Then, we obtain two positive results,
using this model’s restricted variants. The first result states decidability of
satisfaction of a (potentially infinite) system of word equations by every tu-
ple of words from a given language, if both the system and the language
are generated by a register transducer (notice that an equation in variable
set X can be represented as a pair of words over an alphabet that contains
X). The second result states decidability of functionality and equivalence of
functional register transducers with output in a free monoid enriched with
word homomorphisms that satisfy the following restrictions: (1) the homo-
morphisms must be applied simultaneously to all registers, and (2) each of
these homomorphisms, when mapped by the simulation of a free monoid by
a ring of polynomials that we introduce, induces an automorphism of some
field that contains the output ring of polynomials (we show this property can
be easily decided).

In Chapter 5, we propose a proof scheme for showing decidability of func-
tionality and equivalence of functional register transducers with output in
a given finitely presented monoid (a classical example of such a monoid in
computer science is a trace monoid). We apply this proof scheme successfully
for an example monoid (M = ha, b, c | abc = cbai), although we do not show
it is more useful than simpler proof methods. Finally, we observe that our
proof scheme yields a criterion for equational Noetherianity (also called com-
pactness property) of a given finitely presented monoid, a property that states
that every infinite system of equations admits a finite equivalent subsystem.
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Chapter 1

Commutative algebra. Ideal
Membership

In this chapter, we present the technical background regarding rings, polyno-
mial ideals, and the theory of Gröbner bases. An ideal contained in a polyno-
mial ring Q[x1, . . . , xn] can represent a set of polynomial relations that hold
between all tuples of a given subset C of Qn. For example, C can be the set
of all valuations of variables in a given location of a given program. The
program might be of any kind, however we restrict our attention to a register
transducer, this thesis’s main computational model.

We focus on proving decidability of the Ideal Membership problem, which
asks if a given polynomial belongs to a given ideal. To this end, we use
Gröbner bases. Our intended application of Ideal Membership is to decide if
a given polynomial relation holds between variables of a register transducer
(called registers).

1.1 Rings, fields, ideals
A (commutative) ring is a set with constants 0, 1 and operations +, · that satisfy
the usual commutative ring axioms (see for example Cox, Little, and O’Shea,
2015, Appendix A, §1, Definition 2 ). Let us emphasize that every ring that
occurs in this thesis, except a matrix ring, is commutative, which means that
a · b = b · a for all its elements a, b.

A ring R has no zero divisors if a 6= 0, b 6= 0 implies a · b 6= 0 for all
a, b 2 R, and is a computable ring if its elements can be enumerated so that
the ring operations +, · are computable functions. A field K is a ring in which
every non-zero element a 2 K admits an inverse element, i.e. an element b
such that a · b = 1. A computable field is a field that is a computable ring
– note that in such a case the function that maps every non-zero element
to its inverse is a computable function. The rings we usually consider are
rings of polynomials with coefficients in some field K, denoted K[X] where X
is a variable set. Having said that, in Chapter 4 we also consider quotients of
rings of polynomials, which we define in that chapter.

An ideal in a ring R is a subset I ✓ R such that

f , g 2 I ) f + g 2 I for all f , g 2 R
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and
f 2 I ) f · h 2 I for all f , h 2 R.

For a subset F ✓ R, by hFiR we denote the smallest ideal in R that contains
the set F; if R is clear from the context we abbreviate hFiR to hFi. It can be
shown that

hFiR = {h1 f1 + . . . + hm fm | f1, . . . , fm 2 F, h1, . . . , hm 2 R, m 2 {0, 1, . . .}}.

The ideal hFi is called the ideal generated by F; the set F is called a generating
set or a set of generators of the ideal hFi and its elements are called generators
of hFi.

Let us invoke Hilbert’s Basis Theorem, which implies that every ideal can
be represented in a finite way.

Definition 1.1. A ring R is called Noetherian if it satisfies either of the follow-
ing equivalent conditions:

(i) every set of polynomials admits a finite subset that generates the same
ideal,

(ii) every strictly ascending chain of ideals of R

I1 ( I2 ( I3 ( . . .

is finite.

Theorem 1 (Hilbert’s Basis Theorem). If a ring R is Noetherian then the ring of
polynomials R[x] in one variable x also is Noetherian.

Corollary 1.2. Let K be a Noetherian ring (for example a field). The polynomial
ring K[x1, . . . , xn] is Noetherian for every n 2 {1, 2, . . .}.

In consequence, for every field K, every ideal I ✓ K[x1, . . . , xn] admits
a finite set of generators. Therefore, for algorithmic purposes we always as-
sume that every ideal is given by (one, out of many possible) finite generating
set(s).

1.2 Ideal Membership
Let K be a computable field and X be a finite variable set. Consider the fol-
lowing decision problem.
Name: Ideal Membership for K[X]
Input: f 2 K[X],
F – an finite subset of K[X],
Question: Is it the case that

f 2 hFi?

How to decide Ideal Membership? We take the “division approach”,
following a textbook of Cox, Little, and O’Shea1. Given a polynomial f and

1Cox, Little, and O’Shea, 2015, Chapter 2.
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an ideal I = h f1, . . . , fsi it is tempting to “divide” f by f1, . . . , fs and obtain
a “decomposition” of f as

f = g1 f1 + . . . + gs fs + r

where g1, . . . , gs are polynomials and r is a remainder of f divided by f1, . . . , fs,
which hopefully is unique w.r.t. I (that is, is independent of the choice of
generators of I and their order as divisors) and is equal to 0 if and only if f
belongs to I.

Before we define division for multivariable polynomials, let us demon-
strate the difficulties of the above approach to deciding Ideal Membership
that occur even in the one-variable case.

Example 1.3. Let f = x5 and let the ideal I ✓ Q[x] be defined by I = h f1, f2i

where f1 = x3
� x and f2 = x2 + x. Then f is in I:

x5 = (�
1
2

x4) · (x3
� x) + (�

1
2

x5 +
1
2

x4) · (x2 + x).

However, it has a non-zero remainder (x) of division by f1, f2:

x5 = (x2 + 1) · (x3
� x) + 0 · (x2 + x) + x.

Notice that changing the order of divisors to ( f2, f1) results in a different
decomposition, yet again in a non-zero remainder (x, which happens to be
the same as with the previous order of divisors):

x5 = (x3
� x2 + x � 1) · (x2 + x) + 0 · (x3

� x) + x.

We investigate this problem deeper in the, general, multivariable case.

For the division of multivariable polynomials to be properly defined, we
order the monomials; this way, we can perform a step of division by dividing
a monomial of f by the largest monomial of one of fi’s (denoted later as the
leading monomial); in consequence, the result of such process – a remainder –
has all monomials not divisible by any of the largest monomials of fi’s, and
is unique for a special choice of the generating set (Lemma 1.14(i)).
Ordering monomials. Let X = {x1, . . . , xn} be a finite variable set. A mono-
mial in variable set X is a product of variables of X, possibly with repetitions;
we identify a monomial with an element of NX

' Nn. We adopt the conven-
tion of denoting a monomial xa1

1 · . . . · xan
n as xa where a = (a1, . . . , an) 2 Nn.

The total degree of a monomial xa, denoted deg(xa), is the sum of the exponents
of its variables. For a polynomial f = Âa2Nn aaxa (note that aa = 0 for almost
all a) we say that a monomial xa occurs in f if aa 6= 0; we sometimes simply
call it a monomial of f . The total degree of a polynomial f = Âa2Nn aaxa, denoted
deg( f ), is the maximal total degree of its monomials.

Definition 1.4 (Graded-lexicographic order (grlex)). Let X be a finite variable
set. The graded lexicographical order (grlex) is an order > on the set of mono-
mials in variable set X (or equivalently – on the set NX) in which xa > xb

if
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• deg(xa) > deg(xb), or

• deg(xa) = deg(xb) and a > b in lexicographical order,

for a, b 2 NX. Intuitively, among two monomials with the same total degree,
the one with more occurrences of larger variables is larger.

Example 1.5. Consider an ordered set of variables X = {x > y > z}. With
respect to grlex order, the following inequalities hold:

y2z3 > x3y

and
x2yz2 > xy3z.

We use the following properties of grlex order2.

Definition 1.6 (Properties of grlex). Let X be a finite variable set and let >
denote grlex order. Then the following properties hold:

(i) x > 1 for every variable x 2 X,

(ii) m1 > m2 implies m1n > m2n for all monomials m1, m2, n,

(iii) > is a well-order, i.e. it has no infinite descending chains.

Throughout this chapter, whenever we compare two monomials, it is al-
ways by grlex order for some fixed ordering of variables.

In Example 1.3 we saw that the “naive division approach” to deciding
Ideal Membership is not correct. Let us investigate that again, this time in
a multivariable setting.

Example 1.7. Let f = x2y2 and I ✓ Q[x, y] be an ideal defined by I = h f1, f2i

where f1 = xy2 + y and f2 = x2y � x. Then f is in I:

x2y2 =
1
2

x2y · (xy2 + y) + (�
1
2

xy2) · (x2y � x).

but it has a non-zero remainder (�xy) when divided by f1, f2:

x2y2 = x · (xy2 + y) + 0 · (x2y � x) + (�xy).

Notice that changing the order to ( f2, f1) results in a different remainder, yet
again a non-zero one (xy):

x2y2 = y · (x2y � x) + 0 · (xy2 + y) + xy.

2In fact, these are the only properties we need in this chapter. Every ordering of mono-
mials that satisfies those properties is called a monomial order. There are other examples of
monomial orders, for example grevlex (graded reverse lexicographical order), which, intuitively,
is similar to grlex, but among two monomials with the same total degree, the one with less
occurrences of smaller variables is larger.
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Notice that in the above sum a monomial of degree larger than deg( f ) occurs
in both summands (x3y3) and gets canceled out in the sum. For the division
algorithm to decide Ideal Membership, we enrich the set of generators of
a given ideal with polynomials being results of such cancel-outs (called S-
polynomials). This new set of generators is called a Gröbner basis of I.

Gröbner bases. From now until the end of this chapter let K be a computable
field and X be a finite variable set.

Definition 1.8. Let f = Âa2Nn aaxa
2 K[X]. Then

• the leading monomial of f , denoted by LM( f ), is the largest monomial
(w.r.t. grlex order) that occurs in f .

Let xa be the leading monomial of f . Then

• the leading term of f , denoted by LT( f ), is aaxa,

• the leading coefficient of f , denoted by LC( f ), is aa.

Observe that the notion of leading monomial is a multivariable analogue
of the notion of degree of a one-variable polynomial. This is also reflected in
the proofs, as many of them will proceed by induction on the leading mono-
mial of some polynomial.

Remark 1.9 (Membership in hLT(G)i). In the forthcoming lemmas we will
use ideals of form hLT(G)i = h{LT(g) | g 2 G}i for some set of polynomi-
als G ✓ K[X]. We will use the following property of hLT(G)i: a monomial
belongs to hLT(G)i if and only if it is divisible by the leading monomial of
some polynomial from G.

Definition 1.10 (Division step). Let f = Âa2Nn aaxa and g be polynomials.
A division step of f by g that uses a monomial xa that occurs in f and is divis-
ible by the leading monomial of g produces a polynomial

ef := f � aa ·
xa

LM(g)
· g

and results in a decomposition

f = aa ·
xa

LM(g)
· g + ef .

In such situation we write
f !g ef .

If G is a finite set of polynomials then we write

f !G ef

if f !g ef for some g 2 G.

Lemma 1.11. Let G be a finite set of polynomials. Then the following hold.
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(i) Every sequence of division steps f !G f1 !G f2 !G . . . ultimately ter-
minates in some, not necessarily unique, polynomial r, and, as a by-product,
results in a decomposition

f = Â
g2G

rg · g + r, no monomial of r is divisible by the leading monomial

of some polynomial from G
(1.1)

for some polynomials (rg)g2G that satisfy

max
g2G

LM(rg · g) = LM( f ).

(In particular, all (rg · g)’s and r have smaller or equal leading monomials than
f .) We call every such r a remainder of division of f by G.

(ii) If f !G ef and it was the leading monomial of f that was used for this step,
then LM( ef ) < LM( f ).

The proof is straightforward and we omit it.
We announced Gröbner basis as an enriched set of generators of an ideal

I. However, by definition, a Gröbner basis of an ideal I is a finite subset of I
that “completely” represents I in terms of division.

Definition 1.12. Let I ✓ K[X] be an ideal. A Gröbner basis of I is a finite subset
G ✓ I such that

hLT(G)i = hLT(I)i, (1.2)

i.e. every monomial is divisible by a leading monomial of some polynomial
of I if and only if it is divisible by the leading monomial of some polynomial
of G3. Notice that in such case any polynomial f can be divided by I (with
either zero or a non-zero remainder, but necessarily different than f ) if and
only it can be divided by G (likewise).

Lemma 1.13. Every ideal I ✓ K[X] has a Gröbner basis G. Every Gröbner basis of
I generates I.

Proof. By Noetherianity of K[X] viewed as in item (i) of Definition 1.1 (Corol-
lary 1.2), there is a finite set G ✓ I that satisfies (1.2). We prove that G is
a generating set of I.

By contradiction, take a polynomial f with the smallest leading monomial
that belongs to I \ hGi. Then the leading monomial of f belongs to hLT(I)i =
hLT(G)i, and hence it can be divided by some polynomial g 2 G as in Lemma
1.11(ii). This results in a polynomial ef with a smaller leading monomial such
that f = h · g + ef for some polynomial h; observe that ef also belongs to I \ G,
a contradiction.

Now we prove that our division approach is correct, that is, it decides
Ideal Membership if the generating set of a given ideal is its Gröbner basis.

3Note that for every ideal I the ideal hLT(I)i is the same as the ideal hLM(I)i, nevertheless
we use the first notation, following Cox, Little, and O’Shea, 2015.
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Lemma 1.14. Let f 2 K[X] be a polynomial, I ✓ K[X] be an ideal, and G be
a Gröbner basis of I. Then

(i) there is a unique remainder of division of f by G,

(ii) f 2 I if and only if this remainder is 0.

Proof. Take any two remainders r, r0 of division of f by G, and let

f = Â
g2G

rg · g + r = Â
g2G

r0g · g + r0 (1.3)

be the corresponding decompositions of f . Then

r � r0 = Â
g2G

(r0g � rg) · g 2 hGi.

If r � r0 was non-zero, then the leading monomial of r � r0 would be in
hLT(G)i, which is impossible since no monomial of either r or r0 is in hLT(G)i;
in consequence r � r0 is 0. The proof of item (ii) is analogous: from (1.3)
we have that f 2 I if and only if r 2 I, and since no monomial of r is in
hLT(G)i = hLT(I)i, we have that r 2 I if and only if r is 0.

Corollary 1.15. Ideal Membership reduces to the problem of finding a Gröbner basis
of a given ideal.

Therefore the rest of this chapter is devoted to the computation of a Gröb-
ner basis of a given ideal.
Computing Gröbner bases. As we saw in Example 1.7, sometimes a polyno-
mial f does belong to the ideal h f1, . . . , fsi but in every “decomposition” that
certifies this fact – f = g1 f1 + . . . + gs fs for some polynomials g1, . . . , gs 2

K[X] – there must be a cancel-out of monomials of gi fi’s that are larger than
the leading monomial of f , and in consequence division of f by ( f1, . . . , fs)
does not capture the fact that f belongs to I. We fix this problem by enlarg-
ing the set of generators with polynomials that capture the simplest of such
cancel-outs – S-polynomials.

Definition 1.16 (S-polynomial). Let f , g 2 K[X] be a pair of polynomials and
let the monomial m be the least common multiple of the leading monomials
of f and g. Then the S-polynomial of ( f , g), denoted S( f , g), is defined by

S( f , g) :=
m

LT( f )
· f �

m
LT(g)

· g. (1.4)

Notice that in S( f , g) we divide by the leading terms of f and g, not by their
leading monomials; in consequence, in the right-hand side of (1.4) the largest
monomial m gets canceled-out. Intuitively, S( f , g) is the “simplest cancel-
out” of the largest monomial that can occur in a sum of form r f + sg, where
r, s are polynomials from K[X].

Let us see two first main properties of an S-polynomial.



16 Chapter 1. Commutative algebra. Ideal Membership

Lemma 1.17. Let f , g 2 K[X]. Then the following hold.

(i) if f , g belong to some ideal I, so does S( f , g),

(ii) if additionally f and g have the same leading monomial then

LM(S( f , g)) < max(LM( f ), LM(g)).

Proof. We omit the proofs.

It turns out that S-polynomials capture all cancel-outs, in the sense made
precise in the below lemma.

Lemma 1.18. Let p, p1, . . . , ps 2 K[X] be polynomials and m be a monomial such
that

p = p1 + . . . + ps

and

LM(pi) = m for all 1  i  s (i.e. monomial m occurs in each pi) but
LM(p) < m (i.e. monomial m gets canceled out in the sum p1 + . . . + ps).

Then p is a linear combination of S(pi, pj), 1  i < j  s.

Proof. Let di be the leading coefficient of pi for 1  i  s; then LT(pi) = dim.
By assumptions, d1 + . . . + ds = 0 and S(pi, pj) =

1
di

pi �
1
dj

pj.
To prove the claim, observe that

s�1

Â
i=1

diS(pi, ps) = p. (1.5)

Indeed, Âs�1
i=1 diS(pi, ps) = Âs�1

i=1 pi �
⇣

Âs�1
i=1 di

⌘
·

1
ds

ps
(1.5)
= Âs�1

i=1 pi + ps = p.

Now we are ready to state and prove two main theorems of this chapter.

Theorem 2 (Buchberger’s Criterion). Let I ✓ K[X] be an ideal. Then a finite
generating set G of I is a Gröbner basis of I if and only if every remainder of division
of S(g, eg) by G is 0, for g, eg 2 G, g 6= eg.

Proof. The left-to-right implication is a direct consequence of the fact that
S(g, eg) 2 I (Lemma 1.17(i)) and uniqueness of the remainder in a division by
a Gröbner basis (Lemma 1.14(ii)).

For the right-to-left implication, take any f 2 I and a decomposition

f = Â
g2G

rg · g (1.6)

with the smallest m := maxg2G LM(rg · g). Now consider cases regarding the
leading monomial of f . If it is equal to m, then it clearly belongs to hLM(G)i.
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Otherwise, i.e. if LM( f ) < m (and hence some monomial larger that LM( f )
got canceled out in the sum Âg2G rg · g), we show that f admits another de-
composition of form as in (1.6), but with a smaller m, which is a contradiction.

Indeed, take the part of Âg2G rg · g constituted by those (LM(rg) · g)’s
from (1.6) whose leading monomial is m and, by Lemma 1.18, rewrite it as
a linear combination of S-polynomials of pairs of those (LM(rg) · g)’s – ob-
serve each of these S-polynomials has a strictly smaller leading monomial
than m (Lemma 1.17(ii)). Since the S-polynomial of any pair of (LM(rg) · g)’s
is a multiple of the S-polynomial of the pair of the same g’s4, by the assump-
tion its remainder of division by G is 0, so dividing it by G yields its decom-
position into a sum of form Âg2G hg · g whose summands have smaller or
equal leading monomials. This way we obtain a representation of f in the
same form as in (1.6), but with a smaller m, a contradiction.

Theorem 3 (Buchberger’s algorithm). Given an ideal I ✓ K[x1, . . . , xn] by a fi-
nite set of generators F ✓ K[x1, . . . , xn], one can compute a set G ◆ F that is
a Gröbner basis of I by the following algorithm:

Input : F ✓ K[x1, . . . , xn]� a finite set,

Output : G ✓ K[x1, . . . , xn]� a Gröbner basis of I := hFi.

G := F
repeat

Gold := G
for g, eg 2 G, g 6= eg

r := a remainder of S(g, eg) of division by G
if r 6= 0 then

add r to G
until G = Gold

return G

Proof. If the algorithm terminates, it clearly returns a finite generating set of
the input ideal that satisfies the Buchberger’s Criterion, and hence is a Gröb-
ner basis of I (Theorem 2). The algorithm always terminates, because after
each loop execution the ideal hLT(G)i strictly increases (cf. Corollary 1.2 and
Definition 1.1(ii)).

Corollary 1.19. Ideal Membership is decidable.

Proof. Combine Corollary 1.15 and Theorem 3.

Corollary 1.20 (Ideal Inclusion). Let K be a computable field and X be a finite
variable set. The following problem is decidable:
Name: Ideal Inclusion

4With multiplier being the gcd of the leading monomials of (LM(rg) · g)’s divided by gcd
of the leading monomials of g’s.
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Input: F, G – finite subsets of K[X],
Question: Is it the case that

hFi ✓ hGi?

Proof. Observe that hFi ✓ hGi if and only if f 2 hGi for all f 2 F, which is
a reduction to Ideal Membership.

1.3 Summary
In this chapter, we give a self-contained presentation of Buchberger’s algo-
rithm (Theorem 3), which can be used to decide if a given polynomial belongs
to a given ideal (Ideal Membership). In consequence, we obtain a procedure
to decide, given a pair of ideals, if one of them is contained in the other (Ideal
Inclusion). To this end, we introduce the well-known notion of a Gröbner
basis.

Let us give four remarks. First, the algorithm we describe can be opti-
mized; this involves, among others, avoiding computing the same S-polynomial
twice, restricting the computation of S-polynomials to critical pairs in G, i.e.
pairs of polynomials of G whose leading monomials are not relatively prime5,
and finally, replacing – by the remainders – not only the newly added S-
polynomials but also the generators given in the input. Second, if the last
optimization is applied, the result of the algorithm is a unique6 Gröbner ba-
sis, called reduced Gröbner basis. Third, Buchberger’s algorithm works in ex-
ponential space7, and in this sense it is optimal: deciding Ideal Membership
requires at least exponential space8. The fourth, last, remark is that appli-
cations of Gröbner bases techniques reach far beyond deciding Ideal Mem-
bership: we refer to a chapter about elimination theory in a textbook of Cox,
Little, and O’Shea9, or to a broader survey of Buchberger and Winkler10.
References. This chapter is based on a textbook of Cox, Little, and O’Shea11.

5Two monomials m, n are relatively prime if and only if they have disjoint sets of vari-
ables.

6The uniqueness is up to multiplying generators by scalars from the field.
7Kühnle and Mayr, 1996.
8Mayr and Meyer, 1982, Main Corollary.
9Cox, Little, and O’Shea, 2015, Chapter 3, Elimination Theory.

10Buchberger and Winkler, 1998.
11Cox, Little, and O’Shea, 2015.
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Chapter 2

The Hilbert Method

In this chapter, we define this thesis’s main computational model, a regis-
ter transducer, and this thesis’s main decision problems, functionality and
equivalence of functional register transducers, for register transducers with
output in various algebras. We also present a decision procedure for these
problems in the case when register transducers have output in some ring
with no zero divisors, for example a ring of integers or of polynomials with
integer coefficients (Theorem 5). Finally, we apply the Hilbert Method to prove
decidability of each of the main problems for register transducers that output
unordered trees (i.e. trees in which there is no order on the siblings), that is,
we encode the unordered trees into univariate polynomials so that the tree
operations can be simulated by addition and multiplication of polynomials
(Theorem 7). We also show that the case of the, usual, ordered trees can be
reduced to the unordered one (Fact 2.35).

2.1 Register transducers
A register transducer is a formal machine model that describes recursively
defined functions that input trees. Let us begin with an informal definition.
Register transducers input ranked trees, i.e. rooted trees labeled by ranked sym-
bols, which are letters with an associated natural number called arity (or rank)
that describes the number of children of a node: a node labeled by a ranked
symbol of arity k 2 {0, 1, . . .} has k children. A set of ranked symbols is called
a ranked set or a ranked alphabet. For a ranked alphabet S, the set of trees la-
beled by S, also called S-labeled trees, is denoted as RankedTrees(S). By a(k)
we denote a ranked symbol with letter a and arity k.
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b
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c
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b b
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FIGURE 2.1: A ranked tree over the ranked alphabet
{a(2), b(1), c(0)} and an unranked tree over the unranked alpha-

bet {a, b, c}.

The values output by a register transducer can come from an arbitrary alge-
bra, like a free monoid, the ring of integers etc. Given an input tree, a register
transducer runs a bottom-up (nondeterministic, finite) tree automaton that is
additionally equipped with a finite number of registers that store and manip-
ulate elements of the chosen algebra. After reading the tree, the transducer
outputs the evaluation of a (fixed) function on the tuple of current register
values. Now we proceed to the formal definition.
Algebras and polynomial operations. Let A be an algebra, i.e. a pair A =
(A, QA) where A is a set, called the universe of A, and QA is a set of functions,
called basic operations of A, each of type Ak

! A for some k 2 {0, 1, . . .}. The
basic operations of A give rise to polynomial operations of A, which can be
defined shortly as functions of type An

! Am for some n 2 {0, 1, . . .}, m 2

{1, 2, . . .} that are compositions of projections, constant functions, and basic
operations of A. Formally, a polynomial (of A) in variable set X is a term
built on the union of the signature of A, the set of constants of A, and X;
a polynomial operation (of A) of type AX

! Am is a function from AX to Am

defined by an m-tuple of polynomials in the usual way. If the set X is ordered,
we naturally identify AX with An and AX with An where n = |X|.

Let us give a few examples of polynomial operations. In the case when A

is the free monoid ({a, b}⇤, ·) the function

(w, v) 7! (a · w · w · v · b, b · v)

is a polynomial operation of A, and

w 7! (head (first letter) of w, tail (remaining part) of w)

is not. In the case when A is the ring of polynomials Z[x] the function

f 7! x · f + 2

is a polynomial operation of A, and

f 7! f [x := x + 1]

is not.

Definition 2.1. A (nondeterministic) register transducer with output algebra A,
or with output in A, consists of:

• a finite ranked input alphabet S,

• a finite set of states Q,

• a finite set of final states F ✓ Q,

• a finite set of registers R,
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• a finite set of transitions D, each of form (q1, . . . , qk, s, p, q), where k 2

{0, 1, . . .}, q1, . . . , qk, q 2 Q, s 2 S is a ranked symbol of arity k, and p is
a polynomial operation of type (AR)k

! AR,

• an output function fout that is a polynomial operation of type AR
! Am

for some m 2 {1, 2, . . .}.

For a transition (q1, . . . , qk, s, p, q), the polynomial operation p is called its reg-
ister update. We denote the class of register transducers with output algebra
A by A.

The semantics of a register transducer T = (S, Q, F,R, D0, D, fout) with
output algebra A is a binary relation from RankedTrees(S) to A; it is defined
as follows. Let t 2 RankedTrees(S) be an input tree. A reachable configuration
on t is a pair (q, a) 2 Q ⇥ AR defined inductively as follows: for a tree t =
s(t1, . . . , tk) where k 2 {0, 1, . . .} it is every pair (q, p(a1, . . . , ak)) for every
transition (q1, . . . , qk, s, p, q) 2 D and reachable configurations on ti (qi, ai)
for i 2 {1, . . . , k}; notice the base of the induction is the case when t = s
for some 0-ary symbol s; in consequence, we call a transition with a 0-ary
symbol an initial configuration; we denote the set of initial configurations by
D0, and the set of transitions where the arity of the symbol is positive by D+.
Finally, an output of T on t is fout(a) for any reachable configuration (q, a)
on t in which the state is q final, i.e. q 2 F.

Register transducers define (compute) relations (or in an equivalent point
of view, multi-valued functions); nevertheless, in this thesis we are mainly
interested in transducers that define (compute) functions – every such trans-
ducer is called functional. A register transducer is deterministic if the transition
relation is a function in the sense that in every transition (q1, . . . , qk, s, p, q) 2
D the states q1, . . . , qk together with the ranked symbol s determine both the
register update p and the state q. Clearly every deterministic register trans-
ducer is functional.

We give four examples of register transducers, all of which are functional.
We denote the unique output of a functional transducer T on an input tree t
as T(t).

We call a register transducer stateless if it has only one state and it is a final
state; in such case states can be removed from the description of the trans-
ducer: a configuration is a tuple of elements of A, and a transition is a pair:
(input letter, register update).

Remark 2.2. Register transducers input strings by representing them as monadic
trees.

a
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b

a

?

aaba 7�!

FIGURE 2.2: Strings as monadic trees.
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Example 2.3 (Reverse function). Let S be a finite alphabet. The function :
S⇤

! S⇤ defined by

(s1s2 . . . sn) := snsn�1 . . . s1, for s1, s2, . . . , sn 2 S, n 2 {0, 1, . . .}

can be computed by a stateless deterministic register transducer that inputs
trees over the alphabet {s(1)

| s 2 S}[ {?
(0)

} with output in the free monoid
(S⇤, ·) with one register, transitions D = {(s, ps) | s 2 S} [ {(?, #)} where
ps : S⇤

! S⇤ is defined by ps(x) := s · x, and the identity output function.

Example 2.4 (Number of a’s below some b). Let S be a ranked alphabet and
let a, b 2 S be different ranked symbols of positive arity. Consider a function
f : RankedTrees(S) ! Z defined by

f (t) := number of b-labeled nodes of t that have
an a-labeled ancestor.

This function can be computed by the following nondeterministic register
transducer with output in the ring of integers. Intuitively, it has one counter
that stores the value of f on the currently read subtree, and the state repre-
sents a “guessed in advance” information regarding if some ancestor of the
currently read node is labeled by a. Formally, it has one register and two
states Q = {qanc�a, qno�anc�a}, only qno�anc�a being accepting, initial config-
urations D0 = {(s, q, 0) | s 2 S, q 2 Q}, identity output function, and the
following transitions with a symbol of positive arity

{(q, a, x 7! x, q) | q 2 {qanc�a}
(arity of a), q 2 Q}[

{(q, b, x 7! x + 1, qanc�a) | q 2 {qanc�a}
(arity of b)

}[

{(q, s, x 7! x, qanc�a) | q 2 {qanc�a}
(arity of s), s 2 S \ {a, b}}[

{(q, s, x 7! x, qno�anc�a) | q 2 {qno�anc�a}
(arity of s), s 2 S \ {a}}.

The case when a = b is analogous.

In the next example we describe a register transducer with output in the
algebra of ranked trees; for a ranked alphabet S, ranked trees form an algebra,
where every ranked symbol s 2 S of arity k 2 {0, 1, . . .} induces an operation
of type RankedTrees(S)k

! RankedTrees(S) defined by

(t1, . . . , tk) ! s(t1, . . . , tk).

Example 2.5 (Ranked tree to binary tree). Let S be a ranked alphabet and let
S0 be a copy of S in which the arity of each symbol of non-zero arity is set to
2. Consider the function : RankedTrees(S) ! RankedTrees(S0

[ {•
(2)

})
defined by

(s(t1, . . . , tk)) := s( (t1), •( (t2), •(. . . , •( (tk�1), (tk))))),
(s) := s, for s of arity 0,

(2.1)
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which converts a ranked tree into a binary tree by introducing a padding
symbol •.

a

c1 c2 c3 c4
��!

a

c1 •

c2 •

c3 c4

FIGURE 2.3: Function bin.

Observe that formula (2.1) can be used to define a stateless deterministic reg-
ister transducer with output in an algebra of ranked trees with one register
and identity output function that computes function .

In the last example, Example 2.7, we consider trees labeled by an alphabet
that is not ranked. We sometimes call a set, alphabet, or a letter unranked to
emphasize that it is not ranked. We consider a function which, roughly
speaking, is a left inverse of the function from Example 2.5. The nodes of
trees output by the function can have arbitrarily many children, and
therefore this function cannot be captured by a register transducer with out-
put in an algebra of ranked trees over any ranked alphabet. For this reason
we introduce an algebra that contains unranked trees, which is similar to the
forest algebra introduced by Bojańczyk and Walukiewicz1, but the trees are
unordered, i.e. there is no order of the children of the nodes.

Definition 2.6. An unordered tree is an unranked tree modulo an equivalence
relation that identifies trees that differ only by the order of children of some
nodes.

a

a a

b c

a

a b

a

a

b a

a a

b c

FIGURE 2.4: Two representations of the same unordered tree.

Example 2.7 (Removing padding from binary tree). Let S be an unranked
alphabet. Let AS be the following algebra:

• the universe consists of unordered S-labeled forests, which are multisets
of S-labeled unordered trees,

• there are |S|+ 2 basic operations:

– ∆ – a constant (0-ary operation), called empty unordered forest, that
is the empty multiset of unordered trees,

– roots for s 2 S – a unary operation that introduces a new node
labeled by s as a parent of roots of all trees in the forest,

1M. Bojańczyk and Walukiewicz, 2008.
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– + – a binary operation of multiset addition.

For example, roota(rootb(∆) + rootc(∆)) + rootb(∆) is the unordered forest
(with two trees) a(b, c)b.

Let S be a finite ranked alphabet in which every symbol has arity at most
2, and let S0 be an unranked alphabet that is a copy of S with arities removed.
Consider the function defined by

: RankedTrees(S [ {•
(2)

}) ! AS0 ,
(s(t1, t2)) := roots( (t1) + (t2)),

(•(2)(t1, t2)) := (t1) + (t2),
(s(t)) := roots( (t)),
(s) := roots(∆), for s 2 S of arity 0

(2.2)

whose domain consists of trees in which every •-labeled node has a child
which is not labeled by • and the root is not labeled by • – it is a regular tree
language.

a

a

a c

•

c •

a c

���!

a

a

a c

c a c

FIGURE 2.5: Function .

The function can be computed by a deterministic register transducer
with output in algebra AS0 that has one register, whose states verify if the
input belongs to the domain, and whose transitions are derived from the
formula (2.2).

2.2 The Hilbert Method: equivalence and function-
ality

Now we define the main problem considered in this thesis, which is equiva-
lence of functional register transducers.
Name: Equivalence of functional register transducers (with output algebra
A)
Parameter: A– an algebra
Input: T1, T2 – functional A with the same input alphabet.
Question: Is it the case that

T1(t) = T2(t) for every input tree t?

In particular, for T1, T2 to be equivalent, their domains must be the same.
This is a decidable property, as shown in the below lemma.
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Lemma 2.8. Let A be an algebra. Given two T1, T2 2 A with the same input
alphabet, one can decide if their domains are the same.

Proof. First, observe that the domain of a register transducer – over any alge-
bra – is a regular tree language. Indeed, a register transducer admits at least
one output on a given input tree if and only if the underlying bottom-up tree
automaton of T admits an accepting run on this tree. It is well-known that
one can decide if two given regular tree languages are equal.

Let us emphasize that, in the above problem, if one of the input transduc-
ers is not functional, then we do not demand to give the correct answer. The
issue of the input correctness gives rise to the functionality problem.
Name: Functionality of (nondeterministic) register transducers (with output
algebra A)
Parameter: A – an algebra
Input: T – a (nondeterministic) A.
Question: Is it the case that T is functional, i.e.

T has at most one output on every input tree t?

It turns out that equivalence and functionality of register transducers are
inter-reducible.

Lemma 2.9. Let A be an algebra. Then there are logspace reductions between the
decision problems of functionality and equivalence of functional register transducers
with output in A.

Proof. For one direction, let T1 and T2 be functional register transducers with
output in A. If their domains are not equal, then they are not equivalent
(this property can be decided by Lemma 2.8). Otherwise, one can construct
a transducer, denote it T1 _ T2, in which the image of every input tree is the
union of the images of this tree by T1 and T2. This is done, roughly speaking,
by nondeterministically guessing which of T1 and T2 to apply. This can be
achieved e.g. by adding a label from {1, 2} to every node of the input tree and
applying Ti if and only if all the vertices are labeled by i, for i = 1, 2. Then T1
and T2 are equivalent if and only if the transducer T1 _ T2 is functional.

For the converse, let T be a nondeterministic register transducer with out-
put in A with transition set D. Let D1, D2 be two copies of D. We construct
deterministic register transducers T1, T2 that input (D1 ⇥ D2)-labeled trees,
and for every input tree, Ti runs the transducer T (deterministically) with the
transitions determined by the labels from the i-th coordinate, for i = 1, 2. In
this way, for every input tree t and every pair of runs of T on it there exists
an input tree for T1 and T2 such that its images by T1, T2 are the images of t
by T with those runs. In consequence, T is functional if and only if T1 and T2
are equivalent.

In the remaining part of this section, we show that equivalence of func-
tional register transducers is decidable when the output algebra is a com-
putable ring with no zero divisors (e.g. the ring of integers) (Theorem 4).
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Polynomial grammars. Let us first observe that equivalence of functional
register transducers with output in a computable ring with no zero divisors
(and hence their functionality) can be reduced to the zeroness problem, de-
fined below.
Name: Zeroness of register transducers with output in a ring with no zero
divisors
Parameter: R – a ring with no zero divisors
Input: T – a (nondeterministic) R.
Question: Is it the case that

T(t) = 0 for every input tree t?

The reduction is as follows. Let T1, T2 be functional R with the same
input alphabet. One checks if T1 and T2 have the same domain (Lemma 2.8),
and if they do, one constructs a T 2 R that outputs the difference of out-
puts of T1, T2; sketching the construction, T is essentially a Cartesian prod-
uct of T1, T2, reachable configurations of T on a given input tree are of form
((q1, q2), (a1, a2)), where (qi, ai) is some reachable configuration of Ti on this
tree for i = 1, 2, and the output function of T is the difference of output func-
tions of T1, T2. To finish the proof, observe that T1, T2 are equivalent if and
only if T is equivalent to 0, i.e. zeroness holds for T.

Now let us introduce a grammar model that corresponds to a register
transducer.

Definition 2.10. Let A be an algebra. A polynomial grammar with output al-
gebra A consists of:

• a finite ranked set of nonterminals X ,

• a distinguished initial nonterminal S 2 X ,

• a finite set of production rules P of form (X, p, X1, . . . , Xk) where k 2

{0, 1, . . .}, X, X1, . . . Xk 2 X and p is a polynomial operation of type

Arank X1+...+rank Xk ! Arank X;

a production rule (X, p, X1, . . . , Xk) is denoted X ! p(X1, . . . , Xk).

The language of a nonterminal X of a grammar G = (X , S, P), denoted L(X), is
defined inductively as follows: for every production rule of form (X, p), i.e.
with k = 0, p – which is constant in such case – belongs to L(X), and for every
production rule (X, p, X1, . . . , Xk) with k 2 {1, 2, . . .}, for every xi 2 L(Xi)
for i 2 {1, . . . , k}, p(x1, . . . , xk) belongs to L(X). The language of a polynomial
grammar G, denoted L(G), is the language of its initial nonterminal. Observe
that L(X) ✓ Arank X for a nonterminal X; the rank of a polynomial grammar G,
denoted rank G, is the rank of its initial nonterminal, hence L(G) ✓ Arank G.

Let us justify the correspondence of register transducers with output alge-
bra A and polynomial grammars with output algebra A, for any algebra A.
With a register transducer T = (S, Q, F,R, D0, D, fout) we associate a polyno-
mial grammar G that contains nonterminals {Xq | q 2 Q} for which
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a 2 L(Xq) if and only if (q, a) is a reachable configuration of T on some
input tree2.

The grammar G is constructed as follows:

• create nonterminals {Xq | q 2 Q}, each of rank R,

• create a production rule

Xq ! p(Xq1 , . . . , Xqk) for any transition (q1, . . . , qk, s, p, q) 2 D,

in particular, create a production rule

Xq ! a for any initial configuration (q, a) 2 D0,

• create an initial nonterminal S and a production

S ! fout(Xq) for any final state q 2 F.

In consequence we have that

zeroness holds for T if and only if L(G) ✓ {0R}
rank G. (2.3)

From now on we write the right side of the condition (2.3) for polynomial
grammars with non-empty language as

G = 0.

Note that a property of a grammar of having a non-empty language can be
decided.

Fact 2.11. Given a polynomial grammar (with output in any algebra), one can decide
if it has a non-empty language.

Proof. The proof is standard and we omit it.

Equivalence (2.3) gives rise to the problem of zeroness of polynomial gram-
mars with output in a ring with no zero divisors.
Name: Zeroness of polynomial grammars with output in a ring with no zero
divisors
Parameter: R – a computable ring with no zero divisors
Input: G – a polynomial grammar with output in R with non-empty lan-
guage.
Question: Is it the case that

G = 0?

Let us give two examples of polynomial grammars and for each of them see
if zeroness holds.

2In fact, the correspondence is stronger: every derivation tree of G that starts in Xq, denote
the tuple it produces by a, corresponds to a run of T that ends in the state q whose register
valuation is a.
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Example 2.12. Consider the following polynomial grammar G with output in
the ring of integers: S ! p1(A), A ! p2(A) | (0, 0) where p1(x, y) = x2

� y2

and p2(x, y) = (x + 1, y � 1).

A Sp1

p2

(0, 0)

p1(x, y) = x2
� y2,

p2(x, y) = (x + 1, y � 1).

FIGURE 2.6: An illustration of an example grammar for which
zeroness holds.

We prove that zeroness holds for G by showing inductively that a (polyno-
mial) invariant x + y = 0 holds for all (x, y) 2 L(A). Indeed, it holds for
a tuple produced by a minimal derivation A ! (0, 0) (0 + 0 = 0) and more-
over it is inductive i.e. it is preserved by the production rule A ! p2(A) – we
have x + y = 0 ) (x + 1) + (y � 1) = 0. In consequence, for all a 2 L(S)
we have a = x2

� y2 for some (x, y) 2 L(A) and hence a = (x + y)(x � y) =
0 · (x � y) = 0, which finishes the proof of zeroness of G.

Example 2.13. Consider another example polynomial grammar H with out-
put in the ring of integers: S ! p1(A), A ! p2(A) | 0, where p1(x) = x2

� x
and p2(x) = x + 1.

A Sp1

p2

0

p1(x) = x2
� x,

p2(x) = x + 1.

FIGURE 2.7: An illustration of an example grammar for which
zeroness does not hold.

Zeroness does not hold for H; the derivation

S ! p1(A) ! p1(p2(A)) ! p1(p2(p2(A))) ! p1(p2(p2(0))) = 3

produces 3 6= 0.

These two examples together illustrate the algorithm for zeroness we now
propose (provided the grammar’s language is non-empty): search in parallel,
(1) for an invariant that witnesses zeroness (as in the first example) and (2)
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for a derivation that witnesses non-zeroness (as in the second example). In
the rest of this section we define the notion of invariant formally, prove there
exists one that witnesses zeroness in the case when zeroness holds, and show
that candidates for an invariant that witnesses zeroness can be effectively
enumerated and verified.
Decidability of zeroness. Let K be a Noetherian ring. The observation is
as follows: fix some set C ✓ Kn; if polynomials f , g 2 K[x1, . . . , xn] satisfy
the property that f (x) = 0 and g(x) = 0 for all tuples x 2 C, then the same
holds for f + g and f · h for any polynomial h 2 K[x1, . . . , xn] – in other
words, polynomials f 2 K[x1, . . . , xn] such that f (x) = 0 for x 2 C form an
ideal in K[x1, . . . , xn]. Let us recall that due to Hilbert’s Basis Theorem every
ideal I ✓ K[x1, . . . , xn] admits a finite set of generators, i.e. a set F such that
hFi = I. In consequence, for algorithmic purposes we assume that every
ideal is represented by a finite generating set.

Definition 2.14. In the proof we will use the field of fractions of a ring with no
zero divisors R, which is roughly speaking the smallest field that contains R
(for example, the field of fractions of Z is Q; it exists only for rings with no
zero divisors); formally, the field of fractions of R is the set of pairs (r, s) 2 R2

modulo equivalence relation (r1, s1) ⇠ (r2, s2) , r1s2 = r2s1 – a pair (r, s)
intuitively represents the fraction r

s , and the ring operations are defined as
for usual fractions.

Definition 2.15. An ideal I in a ring R is proper if I 6= R.

Definition 2.16 (Inductive invariant). Let G = (X , S, P) be a polynomial
grammar with output in R in which every nonterminal has a non-empty
language (this is without loss of generality) and let K be the field of frac-
tions of R (it is a computable field because R is a computable ring). For
a production rule X ! p(X1, . . . , Xk), we represent the polynomial opera-
tion p by a (rank X)-tuple of polynomials from the ring K[tX1,i1 , . . . , tXk,ik | ij 2
{1, . . . , rank Xj}, j 2 {1, . . . , k}] . An inductive invariant (for G) is an X -tuple
of proper3 ideals I = (IX)X2X where IX ✓ K[tX,i | i 2 {1, . . . , rank X}] that
satisfies the following conditions:

(a) IX(a) = 0 for any production rule X ! a, where a is constant,

(b) hIX1 [ . . . [ IXki ◆ IX � p for all production rules (X, p, X1, . . . , Xk) (notice
that X can be initial).

If additionally

(c) IS = htS,i | i 2 {1, . . . , rank S}i,

then we say that I witnesses zeroness (of G).

In this subsection, by abuse of notation we write X instead of L(X), for
a nonterminal X.

3If an invariant consisted of all polynomials (i.e. was defined by a non-proper ideal), it
would describe an empty set; we choose not to include such possibility.
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Lemma 2.17. For a polynomial grammar with output in a ring in which every
nonterminal has a non-empty language and an inductive invariant I we have

IX(X) = 0 (2.4)

i.e. every tuple x 2 X satisfies invariants f = 0 for all f 2 IX.

Proof. Observe that condition (a) of an inductive invariant states that (2.4)
holds for any a that can be derived from a production rule of form X ! a for
some nonterminal X, and hence is an induction base. Condition (b) yields
an inductive step of the proof: for x1, . . . , xk derivable from, respectively,
X1, . . . , Xk, for which IXi(xi) = 0 for i 2 {1, . . . , k} and a production rule
X ! p(X1, . . . , Xk) we have that x satisfies IX(x) = 0 – indeed, IX(x) =
IX(p(x1, . . . , xk)) = (IX � p)(x1, . . . , xk) ✓ (hIX1 [ . . . [ IXki)(x1, . . . , xk) =
IX1(x1) + . . . + IXk(xk) = 0.

Lemma 2.18. For a polynomial grammar with output in a ring with no zero divisors
in which every nonterminal has a non-empty language, zeroness holds if and only if
there exists an inductive invariant that witnesses zeroness.

Proof. For the right-to-left direction, see that condition (2.4), in presence of
(c), clearly witnesses zeroness of G.

For the converse, assume that zeroness holds for G. Let I = (IX)X2X be
the strongest invariant that holds for G, that is

IX := { f 2 K[tX,i | i 2 {1, . . . , rank X}] | f (X) = 0} for X 2 X .

It is an immediate consequence of an exercise from a textbook of Cox, Lit-
tle, and O’Shea4 that I witnesses zeroness provided zeroness holds for G. It
remains to prove that it is an inductive invariant. Condition (a) of an induc-
tive invariant holds for I – for a production rule X ! a we have IX(a) ✓

IX(X) = 0. For condition (b), take a production rule X ! p(X1, . . . , Xk).
Due to a lemma from a paper of Seidl et al.5 (which is a classical fact) for any
nonterminals X1, . . . , Xk we have

hIX1 [ . . . [ IXki = { f 2 K[tXi,j | i 2 {1, . . . , k}, j = 1, . . . , rank Xi] | f (X1 ⇥ . . .⇥Xk) = 0}.

In consequence, (b) is equivalent to (IX � p)(X1 ⇥ . . . ⇥ Xk) = 0; this holds,
as (IX � p)(X1 ⇥ . . . ⇥ Xk) = IX(p(X1 ⇥ . . . ⇥ Xk)) ✓ IX(X) = 0.

A candidate for an invariant is an X -tuple of proper ideals (it is decid-
able if a given ideal I is proper by checking 1 /2 I), hence candidates can
be enumerated. For effectiveness of the proposed algorithm, it remains to
prove that one can verify if a given candidate is an inductive invariant that
witnesses zeroness.

Lemma 2.19. Given a tuple of proper ideals I = (IX)X2X , IX ✓ K[tX,i | i 2

{1, . . . , rank X}] one can verify if it is an inductive invariant that witnesses ze-
roness.

4Cox, Little, and O’Shea, 2015, Exercise 18a., §4, Chapter 1.
5Seidl, Maneth, and Kemper, 2018, Lemma 6.3.
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Proof. Regarding condition (a) of an inductive invariant, observe that for
a proper ideal I of an arbitrary ring of polynomials K[x1, . . . , xn] and a con-
stant a = (a1, . . . , an) 2 Kn we have I(a) = 0 if and only if I = hxi � ai | i 2 {1, . . . , n}i
(this is a shifted variant of an exercise from a textbook of Cox, Little, and
O’Shea6). Regarding condition (b), observe that for ideals I1, . . . , Ik ideal
hI1 [ . . . [ Iki can be computed from I1, . . . , Ik (take the union of sets of gen-
erators as the generating set), and for ideal I and a polynomial operation p
the set I � p is an ideal and can be computed from I and p (take the set of f � p
for generators f of I as the generating set).

In consequence, all conditions of an inductive invariant (i.e. (a), (b), and
(c)) can be reduced to Ideal Inclusion, which is decidable ( 1.20).

In consequence, the proposed algorithm is indeed effective, which fin-
ishes the proof of the following theorem7.

Theorem 4. Zeroness of polynomial grammars with output in a computable ring
with no zero divisors is decidable.

Theorem 5. Functionality and equivalence of functional register transducers with
output in a computable ring with no zero divisors is decidable.

2.3 First application: unordered trees
Denote the algebra of unordered forests from Example 2.7 with a unary al-
phabet S by UF. The aim of this section is to prove that functionality and
equivalence of functional register transducers with output algebra UF is de-
cidable (Theorem 6). To this end, we “simulate” UF with Z[x] (the
notion of simulation will be formalized in Section 2.4), for which this problem
is decidable due to Theorem 5 (as, clearly, the ring Z[x] has no zero divisors).

The use of the ring Z[x] instead of Z is, to our best knowledge, new.
To avoid confusion, let us emphasize that the register updates of a register
transducer with output in Z[x] are polynomial functions with coefficients in
Z[x]; an example of such polynomial function is f (t) = (x2 + x)t2 + xt +
(x2

� x) 2 (Z[x])[t].
Consider the following polynomial f f 2 Z[x] associated to any unordered

forest f 2 UF. It is defined inductively as:

f : UF ! Z[x],
f∆ := 1,
froot( f ) := x · f f + 2,

f f+g := f f · fg.

(2.5)

6Cox, Little, and O’Shea, 2015, Exercise 18a., §4, Chapter 1.
7Let us remark that the algorithms that decide problems from Theorem 4 and Theorem 5

are uniform in R, i.e. R could be a part of the input.
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The function f describes how to, given a functional T 2 UF, construct
a fT 2 Z[x] that returns fT(t) on an input tree t. Explicitly, fT dif-
fers from T only in register updates – in particular, it has the same regis-
ters as T – and whenever T applies a basic operation of unordered forests
q 2 {∆, root,+}, the transducer fT applies the corresponding polynomial
function with coefficients in Z[x] from the corresponding right-hand side of
(2.5).

Corollary 2.20. Let f be the function defined in (2.5). Then, for every functional
T 2 UF there is a canonical functional fT 2 Z[x] such that

(fT)(t) = fT(t) for every input tree t.

To finish the reduction, we claim that any T1, T2 2 UF are equivalent
if and only if fT1, fT2 2 Z[x] are equivalent – this is a consequence of
the following lemma.

Lemma 2.21. The function f defined in (2.5) is injective.

Proof. We prove inductively that (1) f f is monic, i.e. has leading coefficient 1,
for all f 2 UF, and (2) if f = t1 + . . . + tn is the decomposition of a forest f
into a multiset of trees, then

f f = ft1 · . . . · ftn is the decomposition of a monic polynomial f f

into monic irreducible polynomials (i.e. ones that cannot be further
decomposed into product of polynomials of Z[x] of positive degree).

(2.6)
Using (1) and (2), the proof of injectivity of f is as follows: for any f , g 2 UF

we have that

• (induction base) f f = f∆ = 1 if and only if f = ∆,

• (injectivity on trees) froot( f ) = froot(g) , x · f f + 2 = x · fg + 2 , f f =
fg, hence injectivity on trees reduces to injectivity on smaller forests,

• (injectivity on forests) if f = t1 + . . . + tn and g = s1 + . . . + sm, n 2

{2, 3, . . .}, m 2 {1, 2, . . .} are the decompositions of forests f , g into mul-
tisets of trees, then due to (2.6) we have that f f = fg if and only if mul-
tisets of polynomials {fti | i 2 {1, . . . , n}} and {fsj | j 2 {1, . . . , m}} are
equal, hence injectivity on forests reduces to injectivity on smaller trees.

In the proof of (2), we use Eisenstein’s Criterion for irreducibility of a poly-
nomial in Z[x].

Eisenstein’s Criterion. Let r(x) = anxn + . . . + a1x1 + a0x0
2 Z[x] and let

p be a prime number. If p | ai for i 2 {0, . . . , n � 1}, p - an, p2 - a0, then r is an
irreducible polynomial of Z[x].

Now we prove (1) and (2). We prove inductively that for every forest f 2

UF (1) f f is monic (2’) all the non-leading coefficients of f f are divisible by
2, (2”) the coefficient of ft standing by x0 is not divisible by 4, for any tree t 2
UF (conditions (2’) and (2”) imply condition (2) by Eisenstein’s Criterion).
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Condition (2”) can be proved without using induction, as if t = root( f ) then
the coefficient of ft = x ·f f + 2 standing by x0 is 2, which is not divisible by 4.
Now we prove (1) and (2’). For the induction base, f∆ is monic and froot(∆) =
x + 2 satisfies (2’). For the induction step, if f f , fg are monic and satisfy (2’),
then the same holds for x · f f + 2 = froot( f ) and f f · fg = f f+g.

Corollary 2.22. Any functional T1, T2 2 UF are equivalent if and only if
fT1, fT2 2 Z[x] (which are functional) are equivalent.

Theorem 6. Functionality and equivalence of functional UF are decidable.

Proof. Combine Corollary 2.22 and Theorem 5.

2.4 The proof scheme: polynomial simulation
In the forthcoming sections (and chapters) we will apply the proof scheme
used in the previous section but for different algebras: for an algebra A of
our interest, we will prove decidability of functionality and equivalence of
functional A by “simulating” A with a ring R with no zero divisors,
thus “simulating” A with R, for whom the problem is decidable.
In this section, we formalize this proof scheme, in particular the notion of
simulation.

Definition 2.23 (Compositional function). Let A = (A, QA), B = (B, QB)
be algebras. Let f : A ! Bm be a function for some m 2 {1, 2, . . .} and
(hq)q2QA

be polynomial operations of type (Bm)(arity of q)
! Bm that interpret

the operations from QA in the image of f in the sense that

f(q(a)) = hq((f(a))a2a) for all a 2 A(arity of q). (2.7)

The above formula is equivalent to the following diagram being commuta-
tive.

A(arity of q)
� _

f⇥...⇥f
✏✏

q
// A� _

f
✏✏

(Bm)(arity of q) hq
// Bm

FIGURE 2.8: A basic operation q of A is “simulated” by a poly-
nomial operation hq of B in the image of A by f.

We call every such function f compositional (with respect to (hq)q2QA
).

Observation 2.24. Let A = (A, QA), B = (B, QB) be algebras. Let f : A ! Bm

be a compositional function for some m 2 {1, 2, . . .}. Then, for every functional
T 2 A there is a canonical functional fT 2 B such that

(fT)(t) = f(T(t)) for every input tree t.
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(Technically speaking, the definition of fT depends also on the particular (hq)q2QA

that certifies compositionality of f, nevertheless both the register values and the out-
put of fT depend only on f.)

Definition 2.25 (Polynomial simulation). Let A = (A, QA), B = (B, QB) be
algebras. A polynomial simulation of A by B is a function f : A ! Bm for
some m 2 {1, 2, . . .} that is

1. injective, and

2. compositional.

The related mapping T 7! fT is called a polynomial simulation of A by
B; we say that f(a) simulates an element a 2 A, hq simulates a basic

operation q 2 QA, and fT polynomially simulates a register transducer T.

Lemma 2.26. If f is a polynomial simulation of A by B, then for functional T1, T2 2

A, T1 is equivalent to T2 if and only if fT1 is equivalent to fT2; in other words,
then equivalence of functional A reduces to equivalence of functional B.

Corollary 2.27 (Proof scheme). Let A be an algebra and R be a computable ring
with no zero divisors. If there is a polynomial simulation of A by R, then equivalence
of functional A is decidable.

2.5 From trees to contexts
In this section, we introduce contexts, which are forests with one distin-
guished leaf for which one can substitute other forests (Figure 2.9). In the
next section we will extend the algebra of unordered forests from Example
2.7 by contexts, thus obtaining an unordered variant of the free forest algebra
introduced by Bojańczyk and Walukiewicz8, but first, in this section we con-
sider the, original, ordered variant. We show that adding contexts increases
the expressiveness of register transducers (Example 2.32), whilst preserving
decidability of their functionality (Corollary 2.34).

Definition 2.28 (Context). Let S be an unranked alphabet. An (ordered) S-
forest is a list of sibling ordered S-labeled trees. Let ? be a fresh symbol.
An (ordered) S-context (with one hole) is a (S [ {?})-forest with exactly one
?-labeled node which necessarily is a leaf.

Intuitively, the (unique) ?-labeled node of a context represents the part of
a forest that has not yet been defined: the ?-labeled node may substituted
with a forest or a context, as shown in Figure 2.9.

Definition 2.29 (Context composition). Let C be a context and F be a forest
(context). The composition of C and F, denoted C · F, is the forest (context)
resulting from substituting F for the ?-labeled leaf in C. If the substituted
forest (context) consists of more than one tree, its trees become children of

8M. Bojańczyk and Walukiewicz, 2008.
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the parent of ?-node in the context to which we substitute. For example,
consider the {a, b, c}-context C := a(a, b(?))b(b). Then, the composition of C
and the tree b(c) results in the forest a(a, b(b(c)))b(b), and the composition
of C and the context b(c)?a results in the context a(a, b(b(c), ?, a))b(b).

a

a b

?

b

b

2

66664

3

77775
=

a

a b

b

c

? a

b

bb

c

? a
? :=

FIGURE 2.9: Composition of contexts.

Definition 2.30. [Free (unordered) forest algebra] We consider the following
2-sorted algebra9.
Name: free forest algebra (over S)
Universe: S-forests (sort 0) and S-contexts (sort 1)
Basic operations:

• ∆ – a constant (0-ary operation), called the empty forest, that is the empty
list of trees; is of sort 0,

• ? – a constant (0-ary operation) that is a tree that consists of one ?-
labeled node; is of sort 1,

• s(?) for s 2 S – a constant (0-ary operation); is of sort 1,

• + – a binary operation of list concatenation; formally, there are three
operations + of types 0 ⇥ 0 ! 0, 0 ⇥ 1 ! 1, and 1 ⇥ 0 ! 1,

• · (also denoted by (�)[? := (�)]) – a binary operation of context com-
position; formally, there are two operations · of types 1 ⇥ 0 ! 0 and
1 ⇥ 1 ! 1.

We define the free unordered forest algebra (over an alphabet S) analogously:
it consists of unordered S-forests (which are multisets of unordered S-labeled
trees) and unordered S-contexts (with one hole), which are unordered (S[ {?})-
forests with exactly one ?-labeled node which necessarily is a leaf; we omit
the description of the basic operations; if the alphabet is unary, we denote
this algebra by CUF.

Let us emphasize that every forest can be built using constants from {∆}[

{s(?) | s 2 S} and basic operations from {+, ·} – for example, the for-
est a(a, b(c), b)b is obtained by a(?) · (a(?) · ∆ + b(?) · (c(?) · ∆) + b(?) · ∆) +
b(?) · ∆.

Remark 2.31 (Multisorted output algebras, multisorted polynomial simula-
tions). Consider a situation where the output algebra of a register transducer

9Ibid.
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is a multisorted algebra (for example the free forest algebra). Such a regis-
ter transducer can clearly, at the cost of extra states, keep the information
about the sort of each of the elements currently kept in the registers. In con-
sequence, the construction from Observation 2.24 (cf. Corollary 2.20) can be
applied to multisorted algebras as well: if f : A ! B is a multisorted com-
positional function, then from a T 2 A one can construct a fT 2 B

such that (fT)(t) = f(T(t)) for every input tree t.
Also, we define the notion of polynomial simulation in the case when A

is a multisorted algebra, but B = (B, QB) is a (single-sorted) algebra. In such
case, we require that for each sort of A there is an injective mapping to a set of
form Bm for some m 2 {1, 2, . . .}, and each basic operation of A is simulated
by a polynomial operation of B.

Example 2.32 (Adding contexts increases expressiveness). The function that
reverses the order of the unary nodes of a monadic tree can be defined by
a register transducer with output either in the free forest algebra or in the free
unordered forest algebra. Moreover, if the alphabet has at least two unary
symbols, the use of contexts during the run is necessary.

a

b

c

?

reverse
����!

c

b

a

?

FIGURE 2.10: Reverse of a monadic tree.

Indeed, this function can be computed by the following stateless determin-
istic register transducer with one register R: the register R is updated over
a unary symbol s by R := R · s(?), and the output is R ·?. We omit the proof
of the second claim, as it is straightforward.

Now we proceed to the proof of Corollary 2.34.

Fact 2.33. Register transducers with output in the free forest algebra can be polyno-
mially simulated, in the sense of Remark 2.31, by register transducers with output
in the free monoid.

Proof. Let S be a finite alphabet. We polynomially simulate, in the sense of
Remark 2.31, the free forest algebra over S by a free monoid.

A forest represented by a word w, over the alphabet S enriched with two
symbols that represent the brackets, is mapped to the same word w, and
a context represented by a word w?v is mapped to the pair of words (w, v).
It is straightforward that the basic operations of the free forest algebra can
be simulated using concatenation: for example, the composition of a pair of
contexts that are mapped to (w1, v1) and (w2, v2) is mapped to (w1w2, v2v1);
we omit the rest of the details.

Corollary 2.34. Functionality and equivalence of functional of register transducers
with output in the free forest algebra is decidable.
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Proof. We use the well-known fact that the free monoid over S can be poly-
nomially simulated by a ring of integers, for example by embedding it into
the free monoid over the binary alphabet, which is then embedded into the
multiplicative monoid of 2 ⇥ 2 integer-entry matrices by mapping the letters
of the alphabet to the generators of the Sanov group (Figure 2.11). The claim
follows from Corollary 2.27.

{a, b}⇤ ! M2⇥2(Z),

a 7!


1 2
0 1

�
,

b 7!


1 0
2 1

�
.

FIGURE 2.11: Mapping the letters of the alphabet to the gener-
ators of the Sanov group.

2.6 Unordered trees are more expressive than or-
dered trees

In this section, we compare the expressiveness of register transducers with
output in either free forest algebra or free unordered forest algebra. We show
that the unordered variant is at least as expressive as the, usual, ordered one,
by constructing a polynomial simulation from the latter to the former (Fact
2.35). Then, we show that the unordered variant is decidable (Theorem 7).

Before we prove Fact 2.35, let us show how ordered ranked trees (and con-
texts) can be polynomially simulated by unordered ranked trees (and con-
texts).

a

a

c ?

b

c

7�!

a

child1

a

child1

c

child2

?

child2

b

child1

c

FIGURE 2.12: An ordered ranked context over the alphabet
{a(2), b(1), c(0)} mapped to an unordered ranked context over

the alphabet {a(2), b(1), c(0)} [ {child(1)1 , child(1)2 }.

Fact 2.35. Register transducers with output in the free forest algebra over a finite
alphabet can be polynomially simulated by register transducers with output in the
free unordered forest algebra over a unary alphabet (CUF).
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Proof. The proof consists of three polynomial simulations, whose composi-
tion is a polynomial simulation of the free forest algebra over a finite alphabet
by CUF.

First, we take a polynomial simulation, in the sense of Remark 2.31, of
a free forest algebra by a free monoid (Fact 2.33). Second, we polynomi-
ally simulate a free monoid by a free unordered forest algebra: the word
w = s1s2 . . . sn is mapped to the context s1(s2(. . . (sn(?)))); the only basic
operation – concatenation – is simulated by (context) composition. Finally,
we define a “delabeling” of unordered S-contexts, for a finite alphabet S, i.e.
a polynomial simulation of a free unordered forest algebra over S by the al-
gebra CUF. To define it, we put some order on the alphabet S, thus obtaining
S = {s1, s2, . . . , sn}. Then, ∆ is mapped to ∆, ? is mapped to ?, si is mapped
to •(•(•, •, . . . , •| {z }

i+2

, ?)), and the basic operations +, · remain unchanged.

•

•

• • . . . • ?
7�!si(?)

?7�!?

∆7�!∆

| {z }
i+2

FIGURE 2.13: “Delabeling” unordered forests.

It has the following effect on a forest: every si-labeled node is mapped to
a node with i + 2 additional children for i 2 {1, . . . , n}, and every edge is
subdivided (the root of the image of si(?) is the division node); it is hence
clear it is injective.

Theorem 7. Functionality and equivalence of functional of register transducers
with output in the free unordered forest algebra over a unary alphabet (CUF) is
decidable.

Proof. We polynomially simulate the algebra CUF with the ring Z[x]; the
claim follows from Corollary 2.27.

Observe that the polynomial simulation f from (2.5) naturally extends
to a compositional mapping from CUF to (Z[x])[?] which maps ? to ?. By
a standard reasoning, this extension is well-defined, compositional with re-
spect to operations of forests ∆, ?, s(?),+, ·, and injective. It also is composi-
tional with respect to the substitution operation, even in the stronger sense:

f f [?:=g] = f f [? := g] for f , g 2 CUF.

In consequence, this extension is a polynomial simulation of the 2-sorted al-
gebra CUF by the 2-sorted algebra of “Z[x] and Z[x]-contexts”, which we
denote C, defined naturally as follows: the universe of C consists of poly-
nomials from (Z[x])[?] of form a(x) + b(x)? for a(x), b(x) 2 Z[x]; the ones
with b = 0 are of sort 0 and the remaining ones are of sort 1; informally, the
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operations are +, ·, and (�)[? := (�)] – formally, for every i, j 2 {0, 1} there
is an operation + of type i ⇥ j ! max(i, j), there are three · operations of
types 0 ⇥ 0 ! 0, 0 ⇥ 1 ! 1, 1 ⇥ 0 ! 1, and there are two (�)[? := (�)]
operations of types 1 ⇥ 0 ! 0, 1 ⇥ 1 ! 1. Now observe that the algebra
C can be polynomially simulated by the ring Z[x], in the sense of Remark
2.31. The construction is similar to the one from the proof of Fact 2.35, but
now with the ring Z[x] instead of a free monoid. A polynomial a(x) (of
sort 0) is mapped to itself, and a polynomial a(x) + b(x)? where b(x) 6= 0
(of sort 1) is mapped to the pair (a(x), b(x)). It is straightforward that the
basic operations of the algebra C can be polynomially simulated using the
operations +, · of the ring Z[x]: for example, the substitution of a pair of
contexts that are mapped to (a1(x), b1(x)) and (a2(x), b2(x)) is mapped to
(a1(x) + a2(x) · b1(x), b1(x) · b2(x)); we omit the rest of the details.

2.7 Summary
In this chapter, we define register transducers, which transform ranked trees
into elements of an arbitrary algebra. We also define grammars that corre-
spond to register transducers (polynomial grammars). Using the grammar
model, we show that for the output algebra being a computable ring with no
zero divisors (like the ring of integers, or of polynomials), functionality and
equivalence of functional register transducers are decidable (Theorem 5). As
the first application of Theorem 5, we prove decidability of functionality and
equivalence of functional register transducers with output in the algebra UF

which consists of unordered forests (Theorem 6). We also compare the ex-
pressiveness of register transducers that output either ordered or unordered
trees and use contexts during the run, and show, by a reduction to Theorem
6, that functionality and equivalence of functional register transducers is de-
cidable in both cases (Theorem 7). We formalize the scheme of the proof of
Theorem 6 (Section 2.4), introducing the notion of polynomial simulation; we
use this proof scheme in each of the forthcoming chapters.

Let us mention the complexity of the problem we reduce to, i.e. equiv-
alence of functional register transducers with output in a ring with no zero
divisors10: there is an Ackermann-hard lower bound in general11 and the
problem is Ackermann-complete in the simplest case12 when the output ring
is the ring of integers13. Nevertheless, there are notable subclasses of register
transducers with output in the ring of integers for which zeroness is primi-
tive recursive14, or even PSPACE15.

10Technically, we reduce to the inter-reducible problem of zeroness.
11Benedikt et al., 2017, Theorem 1.
12Every ring in which for every n 2 {1, 2, . . .} 1 + 1 + . . . + 1| {z }

n

6= 0 (i.e. a ring of character-

istic zero) has a subring isomorphic to Z.
13Benedikt et al., 2017, Theorem 1 and Corollary 1.
14Ibid., Theorem 5.
15Ibid., Theorem 8.
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Let us conclude with the following diagram of this chapter’s polynomial
simulations16 .

free forest algebra free monoid

free unordered Z[x]

Z

forest algebra

Fact 2.33

Fact 2.35

Theorem 7

Figure 2.11

FIGURE 2.14: Polynomial simulations between this chapter’s
algebras.

References. The essence of the proof of Theorem 4 comes from a paper of
Seidl et al.17 – the difference is that we do not assume the output ring to be
the ring of integers. The proof of Theorem 6 can be found in a paper of Boiret,
Piórkowski and S.18.

16Most likely there are no polynomial simulations in the opposite directions, nevertheless
we do not prove that.

17Seidl, Maneth, and Kemper, 2018.
18Boiret, Piórkowski, and Schmude, 2018.



41

Chapter 3

Transductions of graphs of
bounded treewidth

In this chapter, we present an application of register transducers with output
in the ring of polynomials to transductions of graphs of bounded treewidth.
The treewidth of a graph is a positive integer parameter that describes its re-
semblance to a tree – roughly speaking, the lower the treewidth, the higher
the resemblance. Diestel attributes the introduction of treewidth (under a dif-
ferent name) to Halin, 19761. The notion of treewidth is well-known for its
role in the proof of the famous Robertson and Seymour’s Graph Minor The-
orem, which states that the relation of being a minor is a well-quasi-ordering
of finite graphs – the proof is performed first for trees, then for graphs of
bounded treewidth, and finally for all graphs; for more details, we refer to
a Diestel’s textbook’s chapter2. Also, it has numerous applications to graph
algorithms, especially fixed-parameter tractable algorithms parameterized
by the treewidth; for more details, we refer to a Cygan et al.’s textbook’s
chapter3.

We consider the problems of functionality and equivalence of functional
MSO2 transductions of graphs of bounded treewidth. To the author’s best
knowledge, these problems are not known to be decidable or not, even in the
simplest case of treewidth 1, i.e. when both the input and the output graphs
are trees (unrooted trees, cf. Section 3.1). We do not decide these problems,
but we give an algorithm for their (very) restricted variant in which the out-
put graphs are considered up to a certain relaxation of isomorphism (Theo-
rem 8).

3.1 Introduction: different kinds of trees
Let us begin with a discussion about MSO transductions of trees. Originally,
MSO transductions input and output trees that are rooted, ordered, and un-
ranked (see for example a survey of Courcelle4). In this section, we consider

1Diestel, 2017, Notes.
2Ibid.
3Cygan et al., 2015.
4Courcelle, 1994.
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three kinds of trees that are not ranked: (rooted ordered) trees, (rooted) un-
ordered trees, and unrooted (unordered) trees5 (cf. Figure 3.1). We assume
the input trees to be rooted and ordered. This case is the most general of the
three, regardless of the chosen kind of the output trees, as there are surjec-
tive MSO transductions from trees through unordered trees to unrooted trees
(which can be used for pre-composition, cf. Fact 3.9). Indeed, one can take
MSO interpretations that merely forget structure, cf. Example 3.7. It seems
that there are no surjective MSO transductions in the opposite directions,
although we do not attempt to prove so. On the other hand, regarding the
kind of the output trees, removing the structure increases the expressiveness
of MSO transductions. It is because there are injective MSO transductions
from trees through unordered trees to unrooted trees (which can be used for
post-composition, cf. Fact 3.9).

6=

6=

6=

=
6=

6=
=

= =

(rooted ordered) unrooted (unordered)(rooted) unordered,! ,!trees trees trees

FIGURE 3.1: In MSO transductions that output trees, more
structure in the output reduces to less structure in the output.

Indeed, the injective mapping from trees to unordered trees from the proof
of Fact 2.35 is an MSO transduction, and unordered trees can be injectively
mapped to unrooted trees by treating the root node as a vertex labeled by
a fresh label. Again, it seems that there are no injective MSO transductions
in the opposite direction, although again we do not attempt to prove so.

Returning to our main point – functionality and equivalence of functional
MSO transductions – these problems are decidable for output trees being
either trees or unordered trees (the latter model is at least as expressive as
the former, as we showed in the previous paragraph). The case of trees was
proved in 2005 by Engelfriet and Maneth6. The case of unordered trees is
decidable due to Theorem 7: MSO transductions that output unordered trees
are captured by register transducers with output in a free unordered forest
algebra7, and the latter model has decidable functionality and equivalence

5Unrooted tree is the same thing as undirected acyclic graphs.
6Engelfriet and Maneth, 2005; the proof is done for deterministic transductions; the gen-

eral case follows from a rather standard reduction to the deterministic case, cf. the proof of
Lemma 3.16.

7The proof of this fact is as follows: given an MSO transduction that outputs unordered
trees, consider an enrichment of this transduction that induces some ordering of the siblings
in the output tree (the ordering can be derived from the ordering of the input tree, cf. the
construction from item 3 of the proof of Lemma 3.24). This is an MSO transduction that
outputs trees, hence we can take a register transducer with output in a free (ordered) forest
algebra that computes it (Alur and D’Antoni, 2012); this register transducer, with semantics
taken in a free unordered forest algebra, computes the given MSO transduction.
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of functional transductions (Theorem 7). For unrooted trees, the question of
decidability of these problems is, to the author’s best knowledge, open.

Finally, let us note that the class of unrooted trees coincides with the class
of graphs of treewidth 1; it is the smallest output class of this chapter’s model,
MSO transductions of graphs of bounded treewidth.

3.2 Treewidth

Sourced graphs and treewidth. Treewidth can be defined in many ways (for
example by tree decompositions8). For this notion to be suitable for register
transducers, we define it algebraically, following Courcelle9.

Definition 3.1 (k-sourced graphs). A (finite, undirected) graph is a pair (V, E)
where V is a finite set of vertices and E is a set of edges which is a subset
of the set of unordered pairs of elements of V. A k-sourced graph is a graph
with a tuple of at most k distinguished vertices, called sources. Formally,
a k-sourced graph is a pair (G, source) where G = (V, E) is a graph and
source : {1, . . . , k} ! V is an injective partial function.

We define the following operations on k-sourced graphs:

• fuse – a partial binary operation that connects the graphs along the
common sources (see Figure 3.2), provided their subgraphs induced by
the common sources are identical,

• forgeti, for a source i 2 {1, . . . , k} – a partial unary operation that turns
the i-th source into a non-source vertex (see Figure 3.3), provided the
i-th source is defined,

• renamep, for a permutation p of the set of source names {1, . . . , k} –
a unary operation that renames the i-th source to p(i) for i 2 {1, . . . , k}
(see Figure 3.4).

1 4

2

4

2

5

G H

7 7

7�
! fuse

8Numerous papers, for example Diestel, 2017.
9Courcelle, 1990.
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1 4

2

4

2

577

fuse(G, H)

FIGURE 3.2: Fuse operation of 7-sourced graphs.

2

3

G

forget2
7���!

3

forget2(G)

FIGURE 3.3: Forget operation of 7-sourced graphs.

2

3

G

renamep
7����!

3

1

renamep(G)

FIGURE 3.4: Rename by p = {1 7! 2, 2 7! 3, 3 7! 1}.

Let us now define treewidth.

Definition 3.2 (Treewidth). A graph has treewidth  k if it can be obtained
using constants and operations of (k + 1)-sourced graphs fuse, forgeti for
i 2 {1, . . . , k}, and renamep for permutations p of {1, . . . , k}. A graph has
treewidth k, if it has treewidth  k and does not have treewidth  k � 1.

Example 3.3. Graphs of treewidth 1 are exactly the unrooted trees (undi-
rected acyclic graphs). We omit the proof.

Example 3.4. The following graph has treewidth 2.
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To verify this, we show how to obtain this graph using constants and op-
erations of 3-sourced graphs. We start with a graph and fuse it with other
graphs, forgetting some vertices along the way; all mentioned graphs have
three vertices, hence clearly have treewidth  2. The source names are omit-
ted from the notation.

forget
7���!

fuse fuse

(continued below)

forget
7���!

fuse fuse

FIGURE 3.5: Constructing a graph of treewidth 2 using 3-
sourced graphs with three vertices and basic operations of the

3-sourced graph algebra.

The k-sourced graph algebra.

Definition 3.5. The (multisorted) k-sourced graph algebra is defined as follows:

• the sorts are graphs built on k-sources (with no non-source vertices; in
particular, there are 2(

k
2) sorts),

• the universe consists of all k-sourced graphs that can be obtained using
the constants and the operations of this algebra; the sort of a graph is
the k-sourced subgraph induced by the set of sources,

• the operations are as follows:

– there is a constant (0-ary operation) for every graph whose all ver-
tices are sources; there are 2(

k
2) constants,
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– for every pair of sorts (I, J) whose subgraphs induced by the com-
mon sources are identical, there is an operation fuse (we omit the
sort names from the notation) of type I ⇥ J ! fuse(I, J),

– for every source i 2 {1, . . . , k}, forgeti for every sort I that has an
i-th source, there is an operation forgeti (we omit the sort names
from the notation) of type I ! I \ {i},

– for every permutation p of {1, . . . , k} for every sort I, there is an
operation renamep (we omit the sort names from the notation) of
type I ! renamep(I).

Sorts of the k-sourced graph algebra might seem not to be of any use (pos-
sibly except the fuse operation, in which they restrict the domain of the op-
eration). However, equipping an algebra A with sorts is useful, because it
allows to define more compositional functions from A (to some algebra B),
and in consequence, more simulations. This is because in such case the poly-
nomial on the right-hand side of the formula (2.7) of the definition of a com-
positional function may additionally depend on the sorts of the elements on
the left-hand side; we use this observation in the proof of Lemma 3.26. Sorts
can be captured by register transducers in the sense of Remark 2.31.

3.3 Monadic second order logic (MSO)

MSO transductions of relational structures. A relation on a set D is a subset
of Dk for some k 2 {1, 2, . . .}; the number k is called the arity of this relation.
Let S be a ranked set. A relational S-structure is a pair D = (D, QD) where D
is a set, called the universe of D, and QD is a S-tuple of relations on D, where
the arity of the s-th relation is the arity of s for s 2 S. For a relational S-
structure, S is called its signature, elements of S are called relational symbols,
and QD is called its interpretation of the signature or interpretation of relational
symbols. Later on we call a ranked set a signature to designate its intended
use. We assume all relational structure to be finite. We denote the set of all
(finite) relational structures with signature S by Rel(S).

Let S be a signature. Monadic second-order logic (MSO) on signature S is an
extension of first-order logic on the same signature obtained by adding vari-
ables that range over sets of elements, called monadic (second-order) variables,
and by adding a binary symbol 2 that denotes set membership. We denote
the first-order variables by lowercase letters like x, y, z, . . . and the monadic
variables by uppercase letters like X, Y, Z, . . ., and write x 2 X to say that
an element x belongs to the set X – formally, first-order variables are 0-ary
symbols, monadic variables are unary symbols, and the expression x 2 X is
rewritten as X(x). And so, 8x means “for every element x” and 8Y means
“for every set of elements Y” (likewise for the existential quantifier): for ex-
ample, if S = {a(1), b(1), c(1), parent(2)} is the signature of {a, b, c}-labeled
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trees, then the MSO sentence

f := 8x a(x) ! 9Y
⇣

x 2 Y ^ 8y (y 2 Y ^ ¬b(y)) ! 9z z 2 Y ^ parent(z, y)
⌘

| {z }
the parent of a not b-labeled node from Y is in Y

holds on those trees in which every a-labeled node has a b-labeled ancestor.

Definition 3.6 (MSO transduction). Now we define MSO transductions fol-
lowing Bojańczyk and Pilipczuk Mi.10. There is an equivalent presentation by
Courcelle, see the survey for more details11. An MSO transduction is a map-
ping or a relation on relational structures that are considered up to isomor-
phism that is a composition of a finite number of the following mappings or
relations:

• copying from Rel(S) to Rel(S [ {layer1, layer2, . . . , layerm, copy}) for
every signature S and m 2 {1, 2, . . .}; a function that returns the dis-
joint union of m copies of an input structure, called layers, enriched
with unary predicates layer1(x), layer2(x), . . . , layerm(x) that state that
the element x comes from respectively, first, second, . . . , m-th copy of
the universe of the input structure, and a binary predicate copy(x1, x2)
that states that the elements x1, x2 (possibly from different layers) are
copies of the same element of the input structure,

• coloring from Rel(S) to Rel(S [ {X1, . . . , Xk}) for every signature S and
unary predicates X1, . . . , Xk (called colors); a relation that relates an in-
put structure with each of its enrichments by an interpretation of X1, . . . , Xk,

• interpreting from a subset of Rel(S) to Rel(G) for every signatures S and
G, MSO sentence fdom, MSO formula in one free variable funiv, and a G-
tuple of MSO formulas (yg)g2G where the number of free variables of
yg is the arity of g for g 2 G; a function that is the composition of the
following three functions, in that order:

1. domain restriction that restricts the domain to S-structures that sat-
isfy fdom,

2. universe restriction that restricts the universe of an input structure
to elements that satisfy funiv,

3. MSO interpretation that does not modify the universe of an input
structure and interprets every symbol g 2 G via the formula yg.

If any of the above three functions is an identity, we omit it from the
description of a given interpreting transduction.

An MSO transduction is deterministic if it can be obtained as a composition
of copying and interpreting transductions (without coloring transductions),
and is inherently nondeterministic otherwise. An MSO transduction is func-
tional if it is a function; notice that deterministic transductions are functional.

10M. Bojańczyk and Pilipczuk, 2016.
11Courcelle, 1994.



48 Chapter 3. Transductions of graphs of bounded treewidth

Now we give two examples of MSO transductions.

Example 3.7. Our first example is a deterministic MSO transduction that is
the “identity” function from ordered to unordered trees that merely forgets
the order of the siblings (and does not change the parent relation). The in-
put signature S consists of two binary symbols FC(2), NS(2), which are inter-
preted as the relations “is first child of” and “is next sibling of”, and the out-
put signature G consists of one binary symbol child(2), which is interpreted
as “is a child of” relation. This transduction is an interpreting transduction
that consists only of the following MSO interpretation:
ychild(x1, x2) :=
8Y
h
(8y1 FC(x1, y1) ! y1 2 Y) ^

�
8y y 2 Y 8y0 NS(y, y0) ! y0 2 Y

� i
! x2 2 Y

| {z }
if a set contains the first child of x1 and is closed under siblings, then it contains x2

.

Example 3.8. Another example is a deterministic MSO transduction of words.
A word, as a relational structure, is a monadic tree where a “node” is called
a “position” and a “child” is called a “successor”. Consider a function that
doubles every word over alphabet {a, b}, i.e. maps every w 2 {a, b}⇤ to ww.
The input signature is S = {a(1), b(1), s(2)}, where a(1), b(1) denote the label
of a position and s(2) denotes the “is a successor of” relation, and the output
signature is G = S. This transduction is the composition of the following
transductions:

1. copying with two layers (m = 2),

2. interpreting that consists only of the following MSO interpretation:

y
(i)
a (x) := a(x), y

(i)
b (x) := b(x), i = 1, 2, and

8
>><

>>:

y
(i,i)
s (x1, x2) = s(x1, x2), i = 1, 2,

y
(2,1)
s (x1, x2) = ?,

y
(1,2)
s (x1, x2) = last(x1) ^ f irst(x2),

where last(x) is an abbreviation for ¬9y s(x, y) and
f irst(x) is an abbreviation for ¬9y s(y, x).

In each of the two above examples the MSO transductions are determin-
istic. However, in Example 3.11 and Example 3.13 we give functional MSO
transductions that are not deterministic.

Following Bojańczyk and Pilipczuk Mi.12, we state two fundamental prop-
erties of MSO transductions.

Fact 3.9. MSO transductions are closed under composition.

Fact 3.10 (Canonical form of an MSO transduction). Every MSO transduction
is a composition of MSO transductions of the following kinds, in that order: at
most one coloring transduction, at most one copying transduction, and at most one
interpreting transduction.

12M. Bojańczyk and Pilipczuk, 2016.
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The proof of Fact 3.9 follows straightforwardly from our definition of an
MSO transduction. The proof of Fact 3.10 is rather straightforward yet tech-
nical. (For a complete proof, one may combine the following results: Fact
3.9 was proved by Courcelle for his model of an MSO transduction13, from
which one can infer equivalence of his and our model, and this equivalence
immediately implies Fact 3.10.)
MSO transductions of graphs. To define MSO transductions of graphs,
one must see them as relational structures. One way of doing so is to take
the set of the vertices as the universe and consider the incidence relation. The
corresponding MSO logic is called MSO1

14. The second way is to take the
union of the set of vertices and the set of edges as the universe and consider
the incidence relation. The corresponding MSO logic is called MSO2

15. In this
thesis we are interested in MSO transductions of graphs seen as relational
structures in the second way, both in the input and the output – they are
called MSO2 transductions. Formally, an MSO2 transduction is a relation on
relational structures over one binary symbol – up to isomorphism – that are
graphs when this symbol is interpreted as the incidence relation (i.e. the
universe can be partitioned into sets V and E such that the relation is a subset
of V ⇥ E in which every element of E is related to exactly two elements of V).

Analogously as in the case of register transducers, we are mainly inter-
ested in MSO transductions that are functional. Let us consider two follow-
ing examples of functional MSO transductions.

Example 3.11 (Cycle-to-path). The mapping of graphs that maps a cycle to
a path with the same number of vertices (and is undefined for input graphs
that are not cycles) is an MSO2 transduction.

7�!

FIGURE 3.6: Mapping a cycle to a path with the same number
of vertices.

It can be defined as a composition of the following: domain restriction to
graphs that are cycles, coloring with one color (i.e. k = 1), domain restriction
to graphs in which exactly one edge is colored, and universe restriction to
non-colored edges (the vertices remain unchanged). Intuitively speaking,
this transduction checks if the input graph is a cycle, and if it is, guesses an
edge and removes it.

13Courcelle, 1994, Proposition 3.2(2).
14Ibid.
15Ibid.
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Remark 3.12. Notice that, in the above transduction, if the input graph is
a cycle of length � 2, then there are multiple choices of an edge to be re-
moved, yet they all yield the same output graph up to isomorphism. In other
words, the above transduction is functional.

On the other hand, this transduction is inherently nondeterministic. Indeed,
by contradiction assume it could be defined without coloring. There clearly
exists an MSO2 formula that selects the set of endpoints of a given path (they
have exactly one neighbor) and therefore, by pre-image, there would exist an
MSO2 formula that could select some set of at most two vertices in a given cy-
cle. But this is impossible, as for cycles of length � 3 every set of at most two
vertices can be mapped to a different set by some automorphism of a cycle.
This finishes the proof’s sketch.

Example 3.13 (Subdivide every edge). The mapping of graphs of bounded
treewidth that subdivides every edge is an MSO2 transduction.

7�!

FIGURE 3.7: Subdivision of every edge.

Subdividing requires, for a graph of treewidth  k, guessing nondeterminis-
tically a (k + 1)-coloring of this graph16– this way, every edge has the “first”
and the “second” vertex, which are defined by comparing their, necessarily
different, colors. Then, every edge E is mapped to three copies: two edges
E(1), E(2) and a vertex E(3), where E(1) is set incident with the “first” vertex
of E and E(3), and E(2) is set incident with the “second” vertex of E and E(3).

v w

E
7�!

v w

E(1) E(3) E(2)

first vertex of E second vertex of E

the edges

middle vertex

(larger color) (smaller color)

the edge

FIGURE 3.8: Subdividing an edge using MSO2 and a finite col-
oring of a graph; the edges of this picture represent incidence.

16Every graph of treewidth  k admits a (k + 1)-coloring, due to the following recursive
algorithm: a coloring is constructed successively, starting from the root of the term of the
(k + 1)-sourced graph algebra that defines the graph, and going down, either coloring the
forgotten sources or, by recursion, coloring the subgraphs begin fused; we omit the proof’s
details.
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Notice that guessing a (k + 1)-coloring of a graph can not be removed from
the above reasoning, as when setting the incidences, we use MSO2-definability
of the notion of the first vertex of a given edge E.

As we saw in Example 3.11, for graphs represented as relational structures
with the incidence relation, functional MSO transductions are strictly more
expressive that deterministic ones. We finish this section with a remark that
for some classes of relational structures this is not the case.

Fact 3.14. (Engelfriet and Hoogeboom, 2001, Theorem 21). Every functional MSO
transduction that inputs words with successor relation is deterministic.

The idea of the above fact’s proof is to represent a given MSO transduc-
tion in a normal form as in Fact 3.10, and use an MSO formula that selects
a unique coloring of positions that passes the domain restriction (and hence
for which an output is returned) – then the colors can be replaced by MSO
formulas; there exists such a formula, for example one that describes the lex-
icographically smallest coloring that passes the domain restriction.

3.4 Equivalence problem
The central problems of this chapter are functionality and equivalence of
functional MSO2 transductions. We consider the restricted variants of the
problem in which both the input and the output graphs have some fixed
bounds on the treewidth. We do it, because if the input graphs have un-
bounded treewidth, then both problems are immediately seen to be unde-
cidable – in fact, in such case even non-emptiness of the domain is undecid-
able17. In consequence, we are interested in the two following problems.

Name: Functionality of MSO2 transductions of graphs of bounded treewidth
Input: k, ` 2 {1, 2, . . .},
f – an MSO2 transduction such that all input graphs have treewidth  k and
all output graphs have treewidth  `
Question: Is it the case that for every graph G of treewidth  k there is
at most one graph H (up to isomorphism) such that (G, H) 2 f ?

Name: Equivalence of functional MSO2 transductions of graphs of bounded
treewidth
Input: k, ` 2 {1, 2, . . .},
f1, f2 – functional MSO2 transductions such that all input graphs have treewidth
 k and all output graphs have treewidth  `
Question: Is it the case that

f1(G) = f2(G)

for every graph G of treewidth  k?

17Seese, 1991.
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Notice that for every MSO2 transduction one can restrict its domain (codomain)
to graphs with a given bound on the treewidth; this can be done by pre-(post-
)composing with an appropriate domain restriction transduction18.

Let us prove a couple inter-reductions between the above problems, and
some their variants. A labeled variant of the problem is when the vertices of the
graphs (both input and output) are labeled by letters from a finite alphabet.

Fact 3.15. There are polynomial-time reduction between the decision problem of
functionality of MSO2 transductions of graphs of bounded treewidth and its labeled
variant. Likewise for the problem of equivalence of functional transductions.

Proof. It is enough to show a reduction from the labeled to the unlabeled vari-
ant. For both problems, this reduction follows from the following encoding
of labeled graphs into unlabeled graphs.

a1

a2

a2

a3

a2

a3

a1

(1 neighbor)
(2 neighbors)a “label” vertex

an “edge” vertex

a “vertex” vertex
(� 3 neighbors: i + 2 “label” neighbors )

labeled by the i-th letter)

�!

FIGURE 3.9: Encoding labeled graphs into unlabeled graphs.

The above encoding can be defined by an MSO2 transduction that, intuitively
speaking, maps every vertex labeled by the i-th symbol of the alphabet to
a vertex connected with i + 2 vertices of degree one, for i 2 {1, . . . , |S|}, and
subdivides every edge, as described in Example 3.13. Also, observe that the
inverse mapping can be defined by an MSO2 transduction too; we omit the
details.

Reductions in both directions follow by pre-composing given transduc-
tion(s) with the inverse of the above encoding and post-composing it (them)
with the above encoding, which results in an MSO2 transduction (cf. Fact
3.9).

18Given a natural number k, one can obtain an MSO2 formula that is satisfied exactly by
graphs of treewidth  k. We give a proof sketch, using the Backwards Translation Theorem
(Courcelle and Engelfriet, 2012, Theorem 1.40, see also M. Bojańczyk and Pilipczuk, 2016,
Section 2.1) that allows to identify an MSO formula with an MSO transduction that returns
either 0 or 1: such an MSO2 formula (transduction that returns either 0 or 1) can be obtained
by composing an MSO2 transduction that returns a tree decomposition of optimal width
(M. Bojańczyk and Pilipczuk, 2017) and a MSO2 formula (transduction that returns either 0
or 1) that tests if a given decomposition has the desired width.
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Lemma 3.16. There are polynomial-time reductions between the decision problem
of functionality and equivalence of functional MSO2 transductions.

Proof. For each of the above problems we prove it is reducible to the labeled
variant of the other problem. This will be sufficient as each of those problems
is inter-reducible with its labeled variant (Fact 3.15).

For one direction, let f1 and f2 be functional MSO2 transductions. If their
domains are not equal, then they are not equivalent (this property can be de-
cided19). Otherwise, one can construct the transduction f1 [ f2, i.e. a relation
in which the image of a graph is the union of the images of this graph by
f1 and f2. This is done, roughly speaking, by nondeterministically guessing
which of f1 and f2 to apply. This can be achieved e.g. by adding a label from
G = {1, 2} to every vertex of the input graphs and applying fi if and only if
all the vertices are labeled by i, for i = 1, 2. Then f1 and f2 are equivalent if
and only if the transduction f1 [ f2 is functional.

For the converse, let T be an MSO2 transduction given in a canonical form
as in 3.10 with the set of colors X . Let X1,X2 be two copies of X . We construct
deterministic MSO2 transductions f1, f2 that input graphs whose vertices are
labeled by P(X1) ⇥ P(X2), and for every input graph, fi applies the trans-
duction T (deterministically) with the interpretation of X determined by the
labels from the i-th coordinate, for i = 1, 2. In this way, for every graph G
and every pair of interpretations of X in G there exists an input graph for
f1 and f2 such that its images by f1, f2 are the images of G by T with those
interpretations of X . In consequence, T is functional if and only if f1 and f2
are equivalent.

Remark 3.17. By an analogous proof, there exist inter-reductions for the vari-
ants where both the input and output graphs have fixed bounds on the treewidth
and the relation used for comparing the output graphs, which originally is
isomorphism, is changed to a relation that we call walk-equivalence (Defini-
tion 3.20), as in Theorem 8.

Let us now proceed to the main result of this chapter, Theorem 8, which
states that functionality and equivalence of functional MSO2 transductions
of graphs of bounded treewidth are decidable in the restricted variant when
the output graphs are considered up to walk-equivalence (Definition 3.20)

Definition 3.18. A walk in a graph G is a sequence of vertices of G interleaved
with edges that connect them; the length of a walk is the number of edges it
contains (counting multiplicities).

Example 3.19. The following graph has 16 (= 4 · 22) length-2 walks: there
are 4 vertices to start a walk in, and there are 2 choices for the next vertex in
each of the 2 steps of a walk.

19Courcelle, 1989.
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FIGURE 3.10: A graph with 16 length-2 walks.

Definition 3.20 (Walk-equivalence). We call two graphs walk-equivalent if they
have the same number of length-n walks for every n 2 {0, 1, . . .}.

G H

FIGURE 3.11: Two walk-equivalent non-isomorphic graphs.

We proceed to Fact 3.22, which describes how walk-equivalence is related
to the isomorphism relation.

Definition 3.21. The adjacency matrix of a graph G = (V, E), denoted AG, is
the V ⇥ V matrix defined by

(AG)v,w :=

(
1 if there is an edge between v and w,
0 otherwise.

Let G, H be graphs. Consider the following property of a pair of graphs G
and H: 8

><

>:

XAG = AGX, and
the entries of every row of X sum up to 1, and
the entries of every column of X sum up to 1,

(3.1)

for some real-entry matrix X (notice that X might have negative entries).

Dell, Grohe, and Rattan noted that if we additionally require X to have
non-negative entries, then the relation described by (3.1) is the fractional iso-
morphism, and if we additionally require X to have natural entries, then (3.1)
describes the isomorphism relation20. They also characterized walk-equivalence
in the following way.

Fact 3.22 (Dell, Grohe, and Rattan, 2018). Two graphs are walk-equivalent if and
only if the formula (3.1) holds for some real-entry matrix X21.

20Dell, Grohe, and Rattan, 2018.
21Observe that a walk in a graph G can be equivalently seen as a homomorphism from

a path (with a distinguished endpoint) to G. Every class of graphs H induces the following
equivalence relation: two graphs are related if they have the same number of homomor-
phisms from H for every H from H. Fact 3.22 states that by taking as H the class of all paths
one obtains an equivalence relation similar to fractional isomorphism but in which negative
coefficients are allowed. Let us also mention the classical result of Lovász that states that by
taking as H the class of all graphs one obtains the isomorphism relation. The distinguish-
ing power of relations obtained this way, which obviously varies for different choices of the
class H, has been further studied (see e.g. Dvořák, 2010): for example, each of the classes of
2-degenerate graphs and of non-bipartite graphs suffices to give the isomorphism relation,
and each of the classes of graphs of treewidth  k for k 2 {1, 2, . . .} gives a weaker relation,
which admits several descriptions, i.a. in terms of k-dimensional Weisfeiler-Lehman (color
refinement) algorithm and of k-variable first-order logic with counting.
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Remark 3.23. Let us remark that we can reformulate the property of a pair
of graphs G and H given by the formula (3.1) as follows: there is a mapping
X of vertices of G to (formal) linear combinations of vertices of H that, when
treated as a linear mapping, has the following properties:

• every vertex of G is mapped to one vertex of H in total

• every vertex of H is an image of one vertex of G in total

• the neighborhood of every vertex of G (seen as a formal sum of its
neighbors) is mapped to the neighborhood of its image in total (XAG =
AGX).

Theorem 8. The following problems, which can be reduced to each other in polyno-
mial time (Lemma 3.16), are decidable:
Name: Walk-functionality of MSO2 transductions of graphs of bounded treewidth
Input: k, ` 2 {1, 2, . . .},
f – an MSO2 transduction such that all input graphs have treewidth  k and all
output graphs have treewidth  `
Question: Is it the case that for every graph G of treewidth  k there is at most one
graph H up to walk-equivalence such that (G, H) 2 f ?

and the problem of walk-equivalence of walk-functional MSO2 transductions
of graphs of bounded treewidth, defined analogously, i.e. that inputs positive
integers k, ` 2 {1, 2, . . .} and walk-functional MSO2 transductions f1, f2 whose
input graphs have treewidth  k and output graphs have treewidth  l, and asks if
they output walk-equivalent graphs for every input graph.

The proof of Theorem 8 proceeds as follows:

(1) we show how register transducers with output in the k-sourced graph
algebra can express MSO2 transductions of graphs of bounded treewidth
(Section 3.5),

(2) we find a “relaxed” polynomial simulation of that algebra with a ring
of polynomials that is injective if the graphs are considered up to walk-
equivalence (Section 3.6).

3.5 From MSO2 transductions to register transduc-
ers

In this section we introduce a register transducer model that can express
MSO2 transductions of graphs of bounded treewidth. Since register trans-
ducers input trees, not graphs, the input graphs are encoded as terms over
a k-sourced graph algebra (which are finitely labeled graphs for a fixed k).
Also, the output graphs are computed using a k-sourced graph algebra.

Lemma 3.24. Let k, ` 2 {1, 2, . . .} and f be an MSO2 transduction (not necessarily
functional) that inputs graphs of treewidth  k and outputs graphs of treewidth  `.
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graphs of
treewidth  k

f
�!

graphs of
treewidth  `

Then there exists a register transducer T with output in the (`+ 1)-sourced graph
algebra such that the following diagram is commutative:

terms of the
(k+1)-sourced graph algebra

eval
✏✏

T

((

graphs of
treewidth  k

f
//

graphs of
treewidth  `

Proof of Lemma 3.24. We combine the following facts. For each of them, we ei-
ther provide a reference or give a proof. Recall that an ordered graph is a graph
with a binary relation that is an ordering of the vertices.

(1) Every MSO transduction of (rooted, ordered) trees can be defined by
a register transducer with output in the free forest algebra (Definition
2.30)22.

(2) One can construct a deterministic MSO transduction that maps a term
over the k-sourced graph algebra to the graph it represents enriched with
some ordering of vertices; we denote this transduction as evalord.

(3) Every MSO2 transduction (of graphs) can be extended to an MSO2 trans-
duction of ordered graphs; more precisely, for every MSO2 transduction
(of graphs) T there is an MSO2 transduction of ordered graphs Tord such
that if T maps a graph (V, E) to a graph (V0, E0), then Tord maps every
ordered graph of form (V, E,<) for some ordering < of V to an ordered
graph of form (V0, E0,<0) for some ordering <0 of V0.

(4) One can construct a non-functional MSO2 transduction that maps an or-
dered graph of treewidth  k to a term over a (k + 1)-sourced graph
algebra that represents it, for k 2 {1, 2, . . .}.

(5) The composition of two MSO transductions (of relational structures over
arbitrary signatures) is an MSO transduction (Fact 3.9).

Proof of item (3). The ordering of the output vertices can be inherited from the
ordering of the input vertices, in the following way: for two vertices of the
output graph, first order them by the vertices of the input graph they come
from, and if these vertices are the same, order them by the layers they belong
to.

Proof of item (2). Evaluating a term to a graph can be done by an MSO2 trans-
duction in a straightforward way. By proceeding the same as in the proof of
item (3), the ordering of the output vertices can be inherited from any MSO-
definable ordering of the nodes of the input tree – for example, one can pick
the depth-first search ordering.

22Alur and D’Antoni, 2012, Theorem 1.
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Proof of item (4). First, by a result of Bojańczyk and Pilipczuk Mi., an analo-
gous claim holds for (unordered) graphs and “unranked unordered terms”23.
We describe their transduction in more detail, and use it to construct the de-
sired transduction.

By an unranked unordered term over the k-sourced graph algebra we mean
an unranked unordered tree labeled by the names of the basic operations of
this algebra in which only the fuse symbol does not respect its original arity,
i.e. it can have arbitrarily many children – it is not a major change as the
fuse operation is associative; despite the lack of order on the siblings in this
term, its semantics is well-defined, as the non-unary nodes are labeled by
a commutative basic operation (fuse).

Technically, the cited result uses a representation of graphs of bounded
treewidth, called a tree decomposition, that differs from the unordered un-
ranked term. Nevertheless, it is straightforward (e.g. from the proof of Bo-
jańczyk24) that there are MSO transductions that map each of these represen-
tations to the other. In consequence of this, and of closure of MSO transduc-
tions under composition, both representations can be used interchangeably.

Now we construct the desired MSO2 transduction. By item (3), we turn
the mentioned “graph-to-(unranked unordered term)” MSO2 transduction
into “(ordered graph)-to-(unranked term)” MSO2 transduction. Then, we
compose it with the transduction that turns the fuse-labeled nodes into bi-
nary nodes without changing the decomposition defined below.

fuse

t1 t2 . . . tk�1 tk

7!

fuse

t1 fuse

t2 ...

fuse

tk�1 tk

Turning the fuse-labeled nodes into binary nodes without
changing the decomposition; t1, . . . , tk are trees.

To finish the proof, we prove that the above is an MSO transduction; it is
the composition of the following. Recall that the input signature consists of
unary symbols fuse, forgeti for i 2 {1, . . . , k + 1}, and renamep for a per-
mutation p : {1, . . . , k} ! {1, . . . , k}, that are labels of vertices, and two
binary symbols FC, NS, which are interpreted as the relations “is first child
of” and “is next sibling of”, and the output signature consists of the same
set of unary symbols, and two binary symbols child1, child2, which are inter-
preted as the relations “is first child of” and “is second child of”. The first
transduction colors the nodes using labels root, f irst_child, middle_child, and
last_child so that every node is labeled by its property (a last child is assumed

23M. Bojańczyk and Pilipczuk, 2017, Corollary 3.
24M. Bojańczyk, 2015.
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not to be a first child), i.e. the root is labeled by the label root and so on – for-
mally, this is done by first coloring and then restricting the domain. The next
transductions, and the last ones at the same time, are copying and interpret-
ing transductions described in the below figure; only some nodes are copied
(precisely, the middle children), which formally is achieved by first copying
all vertices and then restricting the universe.

(root v) v ) v

(first child v) w FC
�! v )

w

v

(middle child v) v0 NS
�! v )

parent(v0)

v0 fuse (=v(2))

v(1)

(last child v) v0 NS
�! v )

parent(v0)

v0 v

Copying the vertices, labeling the new copies, and interpreting
relations child1, child2; for a middle child v, the vertex v(i) is its
i-th copy, for i = 1, 2; for the remaining nodes, we identify the

first (and only) copy of v with v itself.

Let us consider the MSO transduction that is the composition of the MSO
transductions from items (2), (3), and (4), and denote by T00 the register trans-
ducer with output in the free forest algebra that computes it.

terms of the
(k + 1)-sourced graph algebra

evalord
✏✏

T00

//

terms of the
(`+ 1)-sourced graph algebra

ordered graphs of
treewidth  k

f
//

ordered graphs of
treewidth  `

OO

We would like to compose the register transducer T00 with the function that
evaluates terms of the (`+ 1)-sourced graph algebra to graphs of treewidth
 `. There are two issues that we encounter when trying to do so.

The first issue is that T00 might store a forest in some of its registers, which
in this case is a part of a term and hence cannot be directly evaluated in the
(`+ 1)-sourced graph algebra. Nevertheless, such part can only be a list of
trees to which the fuse operation has not been applied yet. In consequence,
T00 can be easily transformed to an equivalent transducer that applies the fuse
operation in advance to any such list, and hence always stores a term in each
of its registers.
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After solving the first issue, the second issue is that, in its registers, T00

might store not only terms (trees), which evaluate to (`+ 1)-sourced graphs,
but also contexts, which evaluate to contexts in the (` + 1)-sourced graph
algebra, defined below.

A context (with one hole) in a k-sourced graph algebra is a multisorted polyno-
mial operation in the k-sourced graph algebra defined by a polynomial with
one occurrence of variable ‘?’; since the operations we consider are multi-
sorted, every context has a fixed sort of the inputs and of the outputs, which
we call the input sort and the output sort; we define the sort of a context to
be the pair: (input sort, output sort). By adding contexts one obtains the
multisorted algebra of k-sourced graphs and contexts in which, like in the case of
forest-contexts (cf. Definition 2.30), there is an additional basic operation of
substitution for symbol ?. There is a related issue that the symbol ? (and in
consequence, every context) can come with various sorts assigned to it; how-
ever, a register transducer can, by the use of nondeterminism, guess the sort
of each occurrence of the symbol ? in advance, and later verify the correct-
ness of that guess at the moment of substitution for that occurrence (notice
that it is possible due to the fact that the contexts have at most one occurence
of ?).

And so, by evaluating the terms stored in the registers of T00 we obtain
a register transducer T0 with output in the algebra of (`+ 1)-sourced graphs
and contexts.

T0 : terms of the
(k + 1)-sourced graph algebra !

graphs of
treewidth  `

.

One can remove contexts from T0 using the following claim. This finishes the
proof.

Claim. The algebra of `-sourced graphs and contexts can be polynomially simulated
by an `0-sourced graph algebra (without contexts) for some `0 2 {1, 2, . . .}.

In the proof of the above claim we use the following remark.

Remark 3.25. Let A and B be multisorted algebras. Then in a polynomial
simulation of A by B, a basic operation q of A may be simulated by a collec-
tion of polynomial operations of B, one for each combination of the sorts of
the input elements.

Proof of Claim. We pick `0 = 3`. For the simplicity of notation we denote
the sources by 1, . . . , `,b1, . . . , b̀,bb1, . . . ,bb̀. Intuitively speaking, we use sources
1, . . . , ` to simulate the sources of the graph (including the ones that are to ap-
pear after substitution for the ? symbol), sources b1, . . . , b̀ to simulate the for-
gotten sources of the graph that will be substituted for ? symbol, and sources
bb1, . . . ,bb̀ temporarily when simulating the basic operation of substitution.

The polynomial simulation is defined inductively on the term structure as
follows. A sourced graph is mapped to itself, and the symbol ? of input and
output sort I is mapped to the sourced graph I. Each of the basic operations
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fuse and rename is simulated by itself (the remaining one-dashed and two-
dashed sources are not renamed). Now we move to the basic operations of
forget and substitution.

Every time the source that originates from (the graph to be substituted
for) ? is forgotten, it is renamed in the image to its dashed counterpart (i.e.
i-th source is renamed to bi, where i 2 {1, . . . , `}); the remaining sources are
simply forgotten. In consequence, a dashed source bi of the image of a context
represents the forgotten i-th source of the graph to be substituted for ? and is
kept in the image until the moment of substitution.

When the substitution G[? := H] is performed (recall H can be a graph or
a context), the image of the substituted graph (or context) H is “fused” with
the image of G in the following way: the sources of the image of H that are
dashed are not being fused, and those that are not dashed are fused, in the
image of G, as follows: the i-th source of H is fused with the bi-th source of
G if it exists, and with the i-th source otherwise for i 2 {1, . . . , l}, and, ad-
ditionally, in the result of the fusion, the fused dashed sources are forgotten
(notice the set of sources to be forgotten can be inferred from the sorts of the
images of G and H, which is admissible, cf. Remark 3.25). The operation we
just described cannot be performed directly (we cannot fuse sources with dif-
ferent names), however its result can be achieved using renaming: it can be
done by applying, in the image of H, a renaming that adds one dash to every
zero-dashed source that does not occur in G and to every one-dashed source
– denote the resulting sourced graph by bH – then fusing bH and the image of
G, then forgetting the one-dashed sources, and finally applying a renaming
that removes one dash from every two-dashed source (Figure 3.12).

Finally, notice that when simulating both fuse and the substitution oper-
ation, the fused graphs have the same subgraphs induced by the common
sources, and so their sorts are as required.

1 2

3

b1 b2

1 2

b2

3

image of G

image of H

b1 b2

bb2

3

bH

1 2

3

b1 b2

bb2

1 2

3

b2

image of G[? := H]

fuserename
forget, rename
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FIGURE 3.12: Constructing the image of the substitution of
a context (H) into a context (G) using the basic operations of

the 3l-sourced graph algebra.

3.6 Rational power series
In this section we prove the following lemma.

Lemma 3.26. Let k 2 {1, 2, . . .}. The following problem can be reduced to ze-
roness of register transducers with output in the ring Z[x]: walk-equivalence of
walk-functional register transducers with output in the k-sourced graph algebra (de-
fined in Theorem 8 for MSO2 transductions) .

Now we proceed to the definition of the walk series, which is a power
series in which we will keep the numbers of length-n walks of a graph for
n 2 {1, 2, . . .}.

Definition 3.27. A power series in variable x is an “infinite polynomial”, i.e.
an expression of form Â•

n=0 anxn where (an)n2N is a sequence of coefficients.
Let us emphasize that it might happen that all the coefficients are non-zero,
e.g. there is a power series Â•

n=0 n2xn. The operations of addition and mul-
tiplication are defined for power series in the same way as for polynomials.
For more information on power series we refer to a textbook of Salomaa and
Soittola25.

By Z[[x]] we denote the ring of power series in variable x with integer co-
efficients. A power series is called quasiregular if it is of form Â•

n=1 anxn, i.e.
its coefficient standing by x0 is 0; clearly the set of quasiregular power series
is equal to xZ[[x]] (as Â•

n=1 anxn = x Â•
n=0 an+1xn). A partial operation of

Kleene plus, denoted +, is defined for quasiregular power series by26

+ : xZ[[x]] ! xZ[[x]],
f+ := f + f · f + f · f · f + . . . .

A power series is rational if it either:

• is a polynomial,

• is a sum of two rational power series,

• is a product of two rational power series,

• is a Kleene plus of a quasiregular rational power series.

25Salomaa and Soittola, 1978.
26Notice that the formula that defines Kleene plus has no meaning for some non-

quasiregular power series, for example 2+ would give 2+ 22 + . . . which does not converge.



62 Chapter 3. Transductions of graphs of bounded treewidth

The set of rational power series is denoted by Zrat[[x]]. In the proof of Lemma
3.26 we will use the algebra (xZrat[[x]],+, ·,+), to which we refer shortly as
“the algebra xZrat[[x]]”.

Definition 3.28 (Walk series). Let W be a subset of the set of walks of positive
length in a graph G. We define the walk series of W as Â•

n=1 anxn where an is
the number of length-n walks in W for n 2 {1, 2, . . .}. We define the walk
series of a graph G to be the walk series of the set of walks in G of positive
length, i.e. Â•

n=1 anxn where an is the number of length-n walks in G.

walk series =
Â•

n=1(4 · 2n)xn

FIGURE 3.13: A graph and its walk series (cf. Example 3.19).

Remark 3.29. Observe that the walk series of a set of walks of positive length
W can also be obtained in the following way. A set of walks W can be seen as
a multivariable non-commutative power series, as a formal sum of its walks,
where a single walk is a product of its edges (which are the variables of this
series). Then the walk series of W is the power series obtained from W by
replacing every edge (variable) by x.

wnon�com = 2 · (e1 + e2 + e3 + e4)+e4 e1

e2e3 walk series = wnon�com[e1, e2, e3, e4 := x] = Â•
n=1(4 · 2n)xn

((e4e3 + e4e4 + e1e1 + e1e2) + (e1e4 + e1e1 + e2e2 + e2e3)+
(e2e1 + e2e2 + e3e3 + e3e4) + (e3e2 + e3e3 + e4e4 + e4e1)) + . . .

FIGURE 3.14: Representation of the set of walks as a multivari-
able non-commutative power series and evaluation to the walk

series.

Observation 3.30. Two graphs are walk-equivalent if and only if they have the same
number of vertices and their walk series are equal.

3.6.1 The proof of Lemma 3.26
We split the proof of Lemma 3.26 into three following steps.

Step 1. There is a multisorted compositional function f from the k-sourced graph
algebra to the algebra xZrat[[x]] that is “injective up to walk-equivalence”, i.e.

f(G) = f(H) if and only if G, H are walk-equivalent. (3.2)

Step 2. The algebra xZrat[[x]] can be polynomially simulated by the enrichment of
the field Z(x) by the division operation.
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Step 3. Zeroness of register transducers with output in the enrichment of the field
Z(x) by the division operation can be reduced to zeroness of register transducers
with output in the ring Z[x].

The above steps are composed as follows: due to Lemma 2.26 and Remark
2.31 composing Step 1 with Step 2 gives a reduction to zeroness of register
transducers with output in the field Z(x) enriched with the division opera-
tion, and Step 3 reduces this problem to zeroness of register transducers with
output in the ring Z[x] (without the division operation), which is shown de-
cidable in Theorem 4 for an equivalent model of polynomial grammars.

Proof of Step 1. We will construct f that satisfies the property (3.2) using Ob-
servation 3.30. For a sort I by G : I we denote a k-sourced graph G of sort I.
As the first component of f we put the mapping

G = (V, E) #V
7�! |V|.

Observe it is compositional (the proof is straightforward; for example, #V(fuse(G :
I, H : J)) = #V(G) + #V(H)� |I \ J|; we omit the rest of the details). The sec-
ond component of f is a compositional mapping ef from the k-sourced graph
algebra to xZrat[[x]] such that ef(G) is the walk series of G for a graph G with
no sources. After defining ef, we define f by

f : G 7! (#V(G), ef(G)).

It satisfies the property (3.2) due to Observation 3.30, which finishes the
proof.

In the rest of the proof we define ef, and show that it is compositional.
Let G : I be a k-sourced graph and • be a fresh symbol. Let Gi,j, for i, j

being either a number of a source of I or the • symbol, be the set of walks
of positive length from the i-th source to the j-th source of G whose internal
vertices are not sources, where the symbol • denotes the set of all non-source
vertices (and hence by an abuse of notation, Gi,• denotes the set of walks of
positive length from the i-th source to a non-source vertex, and G•,• denotes
the set of walks of positive length from a non-source vertex to a non-source
vertex). Let gi,j denote the walk series of Gi,j (define hi,j, ki,j analogously for a
graph denoted H, K etc.). In particular, if G is a graph with no sources, then
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g•,• is the walk series of G. We have the following:

ki,j =

(
gi,j + hi,j � x if there is an edge from i-th to j-th source in both G and H
gi,j + hi,j otherwise

,

where K = fuse(G, H), i, j 2 {1, . . . , k} [ {•}, and

k0i,j =

8
>>>><

>>>>:

gi,j + gi,l · (1 + g+l,l) · gl,j if i 6= • and j 6= •

gi,j + gi,l · (1 + g+l,l) · (1 + gl,j) if i 6= • and j = •

gi,j + (1 + gi,l) · (1 + g+l,l) · gl,j if i = • and j 6= •

gi,j + (1 + gi,l) · (1 + g+l,l) · (1 + gl,j) if i = • and j = •

,

where K0 = forgetl(G), l 2 {1, . . . , k}, i, j 2 {1, . . . , k} [ {•},
k00i,j = k00p�1(i),p�1(j) where p(•) = •, where K00 = renamep(G), i, j 2 {1, . . . , k} [ {•}.

(3.3)
The above formulas can be either proved by hand, or by substituting x for
every edge in the analogous, self-evident, formulas for sets of walks (with the
mentioned view of sets of walks as multivariable non-commutative power
series, see Remark 3.29). The formula (3.3) proves that the mapping ef from
the multisorted variant of k-sourced graph algebra to the algebra of rational
power series defined by

ef(G : I) := (gi,j)i,j2sources(I)[{•}

is compositional. This finishes the proof.

Proof of Step 2. Let us observe that

f · f+ + f = f+,

and hence
f+ =

f
1 � f

. (3.4)

The formula (3.4) has two following consequences: (1) every rational power
series can be seen as a rational function from Z(x) (as it is obtained from
polynomials by operations +, ·, and +), and (2) operation + can be simulated
by the ring operations and division. This finishes the proof.

Proof of Step 3. We will mimic the classical embedding of a field into the pro-
jective line, in which the division operation (and, in fact, every rational func-
tion of this field) becomes a polynomial function. Precisely, we will con-
struct a mapping f from Z(x) into the set Z[x]⇥ Z[x] such that an element
a 2 Z(x) is mapped to a pair (numerator, denominator) of a fraction that rep-
resents a; the counterparts of operations +, ·, / will be defined in Z[x]⇥Z[x]
as for usual fractions (see (3.6)). Finally, we will use the fact that for a fraction
p
q we have

p
q
= 0 if and only if p = 0. (3.5)
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We proceed as follows. Consider the multi-valued mapping

f : Z(x) ! Z[x]⇥ Z[x]

defined by
p
q
7! (p, q), for p, q 2 Z[x]

i.e. that sends every element a 2 Z(x) to all pairs (p, q) such that a = p
q .

Define operations y+, y·, y/ on Z[x]⇥ Z[x] by

(addition) y+((p1, q1), (p2, q2)) = (p1q2 + q1p2, q1q2),
(multiplication) y·((p1, q1), (p2, q2)) = (p1p2, q1q2),

(division) y/((p1, q1), (p2, q2)) = (p1q2, q1p2).
(3.6)

Let T be a register transducer with output in the enrichment of Z(x) by the
division operation. As in Observation 2.24, by applying the mapping f (with
any choice of its values) and the operations y+, y·, y/ one can construct a reg-
ister transducer fT with output in Z[x] whose output on a given input can
be described as follows: for every run of T that outputs a 2 Z(x) there is
a corresponding run of fT that outputs (p, q) 2 Z[x]⇥ Z[x] such that p

q = a.
The reduction is hence as follows: zeroness holds for T if and only if zeroness
holds for the register transducer that outputs the first coordinate of the out-
put of fT (cf. (3.5)).

3.7 Summary
In this chapter, we consider transductions of graphs of bounded treewidth
defined using MSO logic. We characterize them by register transducers with
output in a k-sourced graph algebra (Lemma 3.24). Using this characteriza-
tion, we show that functionality and equivalence of functional transductions
are decidable when the output graphs are considered up to walk-equivalence
(Theorem 8).

One can apply the proof scheme of Theorem 8 with a different composi-
tional graph polynomial or power series than the walk series, and thus obtain
a different, possibly stronger, decidability result. This idea seems particularly
promising, as there are many known graph polynomials and power series.
However, none of the ones we found were relevant, as they either were not
compositional, or had low distinguishing power: for example, Tutte polyno-
mial does not distinguish (unrooted) trees of the same size27, and character-
istic polynomial does not distinguish (unrooted) trees almost surely28.

We do not know if functionality (or an inter-reducible problem of equiv-
alence of functional) MSO2 transductions of graphs of bounded treewidth
is decidable. However, if it is, the proof could follow the following proof
schemes that use our result.

27This fact follows straightforwardly from the definition of Tutte polynomial.
28Schwenk, 1973, Theorem 8.
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1. Prove an analogous result to Theorem 8 but for a different equiva-
lence relation that, together with walk-equivalence, characterize graphs
uniquely up to isomorphism.

2. Find an MSO2 transduction that maps every pair of different graphs to
a pair of walk-inequivalent graphs; then functionality could be decided
by post-composing a given transduction with this transduction and ap-
plying Theorem 8.

References. This chapter is based on a paper of Bojańczyk and S.29. The
introductory section (Section 3.1) is also partially based on a paper of Boiret,
Piórkowski, and S.30.

29M. Bojańczyk and Schmude, 2020.
30Boiret, Piórkowski, and Schmude, 2018.
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Chapter 4

Adding substitution

In this chapter, we consider register transducers with output in the ring of
polynomials enriched with the substitution operation. This model can simu-
late analogous models in which a ring of polynomials is replaced with a free
monoid, an algebra of trees, or any other algebra that can be polynomially
simulated by a ring with no zero divisors. We show that this model has un-
decidable zeroness, even in the case when the substitution is applied at most
once during the run (Theorem 9). Then we find two restrictions on the use
of substitution under each of which zeroness is decidable (Theorem 10 and
Lemma 4.22). We also discuss the consequences these results have on tree-
to-string transductions (second paragraph of Summary section; Example 4.8
and Corollary 4.9; Theorem 11 and Example 4.21).
Notation. In this chapter we denote vector coordinates by parenthesized
superscripts, not subscripts like in the previous chapters; for example, for a
vector a of length n 2 {1, 2, . . .} we have

a = (a(1), . . . , a(n)).

4.1 Substitution and reset VASS
For a variable set X, by the substitution operation we mean an (|X|+ 1)-ary
operation that maps elements (like polynomials, words, etc.) f , (gx)x2X =: g
to the element f [x := gx, x 2 X], which we sometimes denote by f (g). In this
section we consider the univariate ring of polynomials; in consequence, sub-
stitution is simply composition of univariate polynomials, which we denote
by f � g for f , g 2 Z[x]. The main result of this section is the following.

Theorem 9. The following problem is undecidable.
Name: Zeroness of register composition
Input: T = (S, Q, F,R, D0, D, fout) – a register transducer with output in the ring
Z[x],
R, S 2 R – registers of T
Question: Is it the case that

R � S = 0 on every accepting run of T?
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The rest of this section is devoted to the proof of the above theorem. We
proceed to the statement of the undecidability result from which we give the
reduction (Corollary 4.4).

Definition 4.1 (Reset VASS). A reset Vector Addition System with States (reset
VASS) consists of

• a dimension n 2 N,

• a finite set of states Q,

• an initial state q0 2 Q,

• a set of final states F ✓ Q,

• a set of transitions D ✓ Q ⇥ {inc, leave, dec, reset}n
⇥ Q.

The symbols inc, leave, dec, reset represent the counter operations “increment
by one, leave as it is, decrement by one, reset to 0”. A configuration of a reset
VASS (n, Q, q0, F, D) is a pair (state, vector) from Q ⇥ Nn. The transitions are
applied coordinate-wise: a configuration (r, u) 2 Q ⇥ Nn is one-step reachable
from (q, v) – a property we denote by (q, v)!V (r, u) – if there is a transition
(q, a, r) 2 D such that u(i) = a(i)(v(i)) for i = 1 . . . , n.

The reachability relation is the transitive closure of !V . A run (of V) from
s 2 Nn to t 2 Nn is a sequence

(q0, v0 = s)!V (q1, v1)!V . . .!V (ql, vl = t)

where q0 is the initial state of for some states q1, . . . , ql�1 2 Q and some final
state ql 2 F. By abuse of notation, we say that a vector t 2 Nn is reachable (by
V) from a vector s 2 Nn if there is a run of V from s to t.

Let us note that the states are a syntactic sugar that can be eliminated
without the loss of expressiveness at a cost of a larger dimension.

Example 4.2. In this example, for brevity of notation, we use an equivalent
model of reset VASS in which the transitions can increment and decrement
coordinates by arbitrary numbers (simulating this model with our reset VASS
model is straightforward and requires extra states); we denote the “increment
by i” operation by inc : i for i 2 {1, 2, . . .}.

Let n = 2, Q = {q0, q1}, F = {q1}, and D = {d1, d01, d2, d3} where d1 =
(q0, (inc : 3, dec : 1), q0), d01 = (q1, (inc : 3, dec : 1), q1), d2 = (q0, (dec : 5, inc :
3), q1), and d3 = (q1, (reset, inc : 2), q1). Consider a VASS V = (n, Q, q0, F, D).
Then the vector t1 = (3, 4) is reachable from the vector s1 = t1 � (1, 2) =
(2, 2). Indeed,

(q0, (2, 2))!d1 (q0, (5, 1))!d1 (q0, (8, 0))!d2 (q1, (3, 3))!d3 (q1, (0, 5))!d01
(q1, (3, 4)).

On the other hand, the vector t2 = (2, 3) is not reachable from the vector
s2 = t2 � (1, 2) = (1, 1). Indeed, the only choice of a transition (q0, (1, 1)) !d1
(q0, (4, 0)) reaches a dead end.
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Fact 4.3. (Araki and Kasami, 1976, Theorem 5). The following problem is undecid-
able.
Name: Reachability in a reset VASS
Input: V = (n, Q, q0, F, D) – a reset VASS,
s, t 2 Nn.
Question: Is t reachable by V from s?

The following special case of the above problem also is undecidable. By
0n we denote the vector (0, . . . , 0) 2 Nn.

Corollary 4.4. The following problem is undecidable.
Name: Reachability from 0 to 0 in a reset VASS
Input: V = (n, Q, q0, F, D) – a reset VASS.
Question: Is 0n reachable by V from 0n?

Proof. We reduce from reachability in a reset VASS. Intuitively speaking, by
introducing additional states we force a reset VASS to add the vector s before
the run and subtract the vector t after the run.

More formally, let V = (n, Q, q0, F, D) be a reset VASS and s, t 2 Nn. We
construct a reset VASS V

0 = (n, Q0, q00, {q0f }, D0) such that (q f , t) is reachable
by V from (q0, s) for some final state q f 2 F if and only if (q0f , 0n) is reachable
by V

0 from (q00, 0n). The reset VASS V
0 is constructed from V by adding a new

initial state q00 (and turning q0 to a non-initial state), adding a sequence of
transitions that changes the state from q00 to q0 and translates the vector of the
configuration by s (this can be achieved by adding |s(1)|+ |s(2)|+ . . . + |s(n)|
new states), adding a new final state q0f and turning all states from F to non-
final states, and adding a sequence of transitions that changes the state from
q f to q0f and translates the vector of the configuration by �t (likewise) for
each state q f 2 F.

4.1.1 Proof of Theorem 9
Now we proceed to the proof of Theorem 9. The crucial ingredient of this
proof is a polynomial, which we call an inverting polynomial, that maps non-
zero integers from a fixed interval to zero and vice versa.

Proof of Theorem 9. For the simplicity of notation, we consider an inter-reducible
problem of zeroness of register composition problem in which not only regis-
ters, but also polynomial expressions of registers can be composed (for a reg-
ister transducer, one can always introduce a register that stores a polynomial
expression of the remaining registers). We reduce from reachability from 0 to
0 in a reset VASS, as in the following claim.

Claim 4.5. Let V = (n, Q, q0, F, D) be a reset VASS. One can construct a determin-
istic register transducer T with output in the ring Z[x] with a distinguished tuple
of registers R1, . . . , Rn and a distinguished register Rval that inputs sequences of
transitions of V , accepts only those sequences in which the consecutive transitions’
states are matched, and has the following properties:
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(i) if the read input sequence yields a run of V from 0n to 0n then

• Rval stores a non-zero number, and
• all Ri’s store 0,

(ii) if the read input sequence does not yield a run of V from 0n to 0n then either

• Rval stores a non-zero number, but some of Ri’s are non-zero (this is in
case the input sequence yields a run from 0n, which however does not end
in 0n), or

• Rval stores 0 (this is in case the input sequence does not yield a run from
0n: since the matching of the states is being checked by the states of T,
this happens if and only if some of the read transitions tried to decrement
a coordinate that had value 0)

Proof. Let us sketch the construction of T. The input alphabet is D. The states
are Q [ {?}, where ? denotes a new state which we call the error state; the
state of T is the current state of V if the states of the consecutive read transi-
tions match, and the error state ? otherwise. There are n coordinate registers
R1, . . . , Rn, one for each of n coordinates of V , that intend to store the current
vector of V . They are updated by adding integers and resetting to 0 accord-
ingly to the read transitions. However, this implies that some coordinate
registers might go below 0, specifically, on those input sequences that do not
yield a run of V from the vector 0n. To prevent “accepting” such an input
sequence we introduce a “validity” register. The validity register Rval stores
a non-zero number if and only if none of the coordinate registers went below
0 during the run. It is updated by multiplying it with

Pn
i=1(Ri + 1);

it turns 0 at the first time some coordinate register goes below 0.
It is clear that T satisfies the desired properties.

Observe that the expression

Rval
·

 
n

Â
i=1

Ri

!

is non-zero only on those input sequences that yield a run of V from the
vector 0n that does not end in the vector 0n. To achieve the opposite behavior,
we use the inverting polynomial pN(x) that for a fixed N 2 {0, 1, . . .} maps
a number x from {0, 1, . . . , N} to 0 if and only if x is non-zero:

pN(x) := (x � 1) · . . . · (x � N).

We define an inverting register Rinv and an auxiliary register Raux that, after
reading an input sequence of length l 2 {0, 1, . . .}, store the inverting poly-
nomial pl and the number l. The auxiliary register is updated by adding 1,
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and the inverting register is updated by multiplying it by (x � (Raux + 1)).
Finally, in the problem we ask if the following expression is zero:

⇣
Rval

· Rinv
⌘
�

 
n

Â
i=1

Ri

!
; (4.1)

note that Rval always stores an integer, hence the above expression is equiv-
alent to, more natural, Rval

·
�

Rinv
� (Ân

i=1 Ri)
�

. It is now clear that the above
expression is non-zero for those input sequences that yield a run of V from
the vector 0n to the vector 0n; in other words, 0n is reachable by V from 0n

if and only if zeroness of register composition (in the variant described by
(4.1)) does not hold for T.

References. Theorem 9 is due to Lasota and Piórkowski1; a similar proof
concept can be found in a paper by Benedikt et al.2, and the idea to use the
inverting polynomial can be found in a paper by Boiret, Piórkowski, and S.3.

4.2 The independent substitution
In the problem of zeroness of register composition (Theorem 9) the polyno-
mials being composed are generated dependently, by the same register trans-
ducer. In this section’s main result, Theorem 10, we show that if the com-
posed polynomials are generated independently, by two separate register trans-
ducers (or equivalently, polynomial grammars), then the problem is decid-
able. In addition, the polynomials may have arbitrarily many variables.

Theorem 10. Let R be a computable ring with no zero divisors, and X be a variable
set. Let G, H be polynomial grammars with output in the ring R[X] where the
grammar H is of rank |X|. Then one can decide if

L(G)(L(H)) = 0.

Now we proceed to Example 4.8 and Corollary 4.9, which show an appli-
cation of Theorem 10.

Definition 4.6. A word equation over an alphabet S in variable set X is a pair of
words over the alphabet S [ X. An X-tuple of words (wx)x2X 2 (S⇤)X is
a solution to an equation e = (e1, e2) 2 (S [ X)⇤ ⇥ (S [ X)⇤ if

e1[x := wx, x 2 X] = e2[x := wx, x 2 X].

A system of equations is simply a set of equations .
1Lasota and Piórkowski, 2019.
2Benedikt et al., 2017, Example 3.
3Boiret, Piórkowski, and Schmude, 2018, Theorem 17.
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Example 4.7. Let S = {a, b} and X = {x1, x2}. Consider the word equation
e = (e1, e2) = (x1ax1ab, bx2x2), i.e.

x1ax1ab = bx2x2.

The X-tuple of words {x1 = b, x2 = ab} is a solution to the equation e. The
set of solutions of e is {{x1 = bw, x2 = wab} | w 2 {a, b}⇤}.

Example 4.8. Suppose we have a language of k-tuples of words

L ✓ S⇤
⇥ . . . ⇥ S⇤

| {z }
k

for some k 2 {1, 2, . . .} and we want to test if it satisfies a given property
y that we can describe by an infinite system of word equations. Moreover,
suppose that we can generate both L and the system for y by polynomial
grammars (of rank k and 2, respectively). For example, say that k = 3,

L = {(w, v, u) 2 (S⇤
⇥ S⇤

⇥ S⇤) | w, v 2 u⇤
},

and that the property y of triples of words (x, y, z) is defined by the following
system of equations E:

E := {xnzk1ymzk2 = xn0

zk01ym0

zk02 | k1 + k2 = k01 + k02 and n+m = n0+m0
}.

Both L and E can be generated by polynomial grammars. Indeed, L can be
generated by the grammar

G := {

S ! X,
X ! pz,#,#(X) | Y,
Y ! p#,z,#(Y) | Z,
Z ! p#,#,s(Z) for s 2 S | (#, #, s) for s 2 S}

where
pz,#,#(x, y, z) := (x · z, y, z),
p#,z,#(x, y, z) := (x, y · z, z),
p#,#,s(x, y, z) := (x, y, s · z) for s 2 S.

The system of equations E (for the property y) in variable set {x, y, z} can be
generated by a polynomial grammar H that generates 8-tuples (xn, zk1 , ym, zk2 ,
xn0 , zk01 , ym0 , zk02) of words over the alphabet {x, y, z} such that n1 + n2 = n0

1 +
n0

2 and n + m = n0 + m0 and concatenates them appropriately – the con-
struction is analogous as for the grammar G, and hence we omit the de-
tails. In consequence, the set L(G)(L(H)) consists of pairs (e1[(x, y, z) :=
(w, v, u)], e2[(x, y, z) := (w, v, u)]) for (w, v, u) 2 L for (e1, e2) 2 E.

Now, one can decide if L satisfies y as follows. Observe that L satisfies
y if and only if L(G)(L(H)) satisfies an equivalence-like problem that asks
if the first and the second coordinate of every element of a given language
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of pairs of words are equal. Hence, using the construction from Observation
2.24, one can apply the polynomial simulation of a free monoid by a ring of
polynomials from Definition 4.23 to both grammars L and E; under this sim-
ulation, word substitution corresponds to polynomial substitution (Lemma
4.25), thus this is a reduction to the problem from Theorem 10. Notice that the
mentioned polynomial simulations by the ring of integers (Figure 5 and Fig-
ure 2.11) do not support substitution in the sense of Lemma 4.25, and hence
are not suitable for such applications.

Corollary 4.9. Let languages

L ✓ S⇤
⇥ . . . ⇥ S⇤)| {z }

k

,

E ✓ (S [ {?1, . . . , ?k})
⇤
⇥ (S [ {?1, . . . , ?k})

⇤

be generated by polynomial grammars over free monoids for some k 2 {1, 2, . . .}.
Then, it can be decided if every k-tuple from L satisfies every equation in variable set
{?1, . . . , ?k} from E, i.e.

C1[?1 := w1, . . . , ?k := wk] = C2[?1 := w1, . . . , ?k := wk] for (C1, C2) 2 E
for (w1, . . . , wk) 2 L.

Remark 4.10. Let us now discuss if the composition of languages of every
two polynomial grammars G, H can be simply obtained by one polynomial
grammar, specifically, the one in which the initial nonterminal of H is passed
to the terminals of G (which are polynomials) as the tuple of arguments. This
idea is correct in the case when the grammar G is linear (this is the case in
Example 4.8), however is not correct in general. This is because the values
of H passed to different occurrences of terminals of G might return different
values (cf. Example 4.11).

Example 4.11. Let G = {S ! q(A, A), A ! p}, H = {S0
! 0 | 1} be

polynomial grammars with output in Z[x], where q(x1, x2) = x1 + x2 and
p = x 2 Z[x] (notice p is a constant). Then L(G) = {2x}, L(H) = {0, 1}, and
L(G)(L(H)) = {0, 2}. However, by applying the construction from Remark
4.10 one obtains a grammar

{S ! q(A, A), A ! p(S0), S0
! 0 | 1}.

The language of the above grammar is not equal to L(G)(L(H): a derivation

S ! q(A, A) ! q(p(S0), p(S0)) ! q(p(0), p(1)) = 1,

returns a value outside L(G)(L(H)).

Now we proceed to the proof of Theorem 10, which relies on additional
concepts from commutative algebra that we now describe.
More commutative algebra. Let R be a ring. A quotient ring of R by an ideal
I of R, denoted R/I, is defined as the set of equivalence classes of the relation
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⇠I defined by
a⇠Ib if a � b 2 I

with operations +, · defined by

[a]⇠I + [b]⇠I := [a + b]⇠I ,
[a]⇠I · [b]⇠I := [a · b]⇠I

where [a]⇠I denotes the equivalence class of an element a 2 R with respect
to ⇠I . An ideal I of R is a prime ideal if a, b 2 I implies that either a 2 I or
b 2 I for any a, b 2 R. Observe that an ideal I is a prime ideal if and only if
the quotient ring R/I is a ring with no zero divisors. A radical of an ideal I of
R, denoted

p
I, is a subset of R defined by
p

I := { f 2 R | f n
2 I for some n 2 {1, 2, . . .}};

it is an ideal of R that contains I. An ideal I is a radical ideal if it is equal to its
radical.

We will use the following lemma.

Lemma 4.12. Let K be a computable field, X be a variable set, and I ✓ K[X] be
a radical ideal. Then the quotient ring K[X]/I can be effectively embedded into
a finite product of rings with no zero divisors.

Proof. Compute prime ideals P1, . . . , Pn such that

I =
n\

i=1
Pi.4

It can be checked straightforwardly that the mapping f defined by

f : K[X]/I ! K[X]/P1 ⇥ . . . ⇥ K[X]/Pn,
f([a]⇠I ) := ([a]⇠P1

, . . . , [a]⇠Pn
)

is an injective ring homomorphism.

Now we are ready to prove Theorem 10.

Proof of Theorem 10. In this proof, for brevity of notation, we denote the lan-
guage of a grammar G by G, instead of, formally correct, L(G). Without the
loss of generality we assume that R is a field (by embedding R into the field
of fractions), and from now on we denote it by K.

Observe that G(H) = 0 if and only if there exists a radical ideal I in the
ring K[X] such that the following conditions hold:

(
G ✓ I, (1)
I(H) = 0 (2)

4Such family of ideals {P1, . . . , Pn} is called a prime decomposition of a radical ideal I. It
is well-known that it exists for every radical ideal and can be obtained effectively, see for
example a remark after Theorem 7 of §6 of Chapter 4 of Cox, Little, and O’Shea, 2015.
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(for example for I one can take the radical of the smallest ideal in the ring
K[X] that contains G). We show the following claim.

Claim. Given a radical ideal I ✓ K[X] one can effectively test conditions (1) and
(2).

Using the above claim, one can decide zeroness of G(H) by the following
algorithm. It is the composition of two semi-algorithms: one that enumerates
derivations of grammars G, H to find a counterexample to G(H) = 0, and one
that enumerates radical ideals in the ring K[X] and tests conditions (1) and (2)
(radical ideals can be enumerated by enumerating finite sets of polynomials
and testing if the ideals they generate are radical5). This finishes the proof.

Proof of Claim. We reduce each of conditions (1) and (2) to zeroness of a poly-
nomial grammar with output in a ring with no zero divisors.

Condition (2), i.e. I(H) = 0, is equivalent to

f (H) = 0 for all generators f of I.

This is a conjunction of instances of the zeroness problem of a polynomial
grammar with output in K.

To decide condition (1), first, intuitively speaking, we take the seman-
tics of the grammar G in the ring K[X]/I – then this condition becomes an
instance of zeroness, however with the ring possibly having zero divisors.
Formally, we consider a polynomial grammar GK[X]/I obtained from G by re-
placing every coefficient of every polynomial used in the definition of G by
its ⇠I-equivalence class. Then the condition (1) is equivalent to

GK[X]/I = 0. (4.2)

Using Lemma 4.12, we embed the ring K[X]/I into a product of rings with no
zero divisors, thus reducing (4.2) to a finite number of instances of zeroness
of a polynomial grammar, each over a (possibly different) ring with no zero
divisors (cf. Lemma 2.26). This finishes the proof.

4.3 The simultaneous substitution
This section is motivated by the following example.

Example 4.13. Let S be an alphabet and # be a fresh symbol. Consider the
following stateless deterministic register transducer T1 that inputs trees over
the alphabet {s(1)

| s 2 S} [ {?
(0)

} with output in the enrichment of the
free monoid (S [ {#})⇤ with the substitution operation; it has two registers
R and S, transitions D = {(s, ps) | s 2 S} [ {(?, (R 7! #, S 7! #))}, where
the register update ps for s 2 S is the composition of the operations

5It is well-known that one can effectively test if a given ideal is a radical ideal, see for
example ibid., Second bullet point (denoted “Radical Ideal”) in remarks after the proof of
Theorem 7 of §2 of Chapter 4.
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1. substitute [# := s · #] in all registers, and

2. append R · s · # to S and s to R.

(notice that the symbol # never occurs in the register R; nevertheless, we
apply the substitution simultaneously to all registers for this example to be
consistent with the model we introduce later; let us also remark that in that
model not all substitutions are admitted), and the output function is

fout(R, S) = S.

Transducer T1 computes the function : S⇤
! (S [ {#})⇤ defined by

(#) := #,
(s1 . . . sn) := (sn . . . s1#)n for s1, . . . , sn 2 S, n 2 {1, 2, . . .}.

Consider a register transducer T2 defined similarly to T1 except that the reg-
ister update over s 2 S is the composition of the following:

1. substitute [# := s · #] in all registers, and

2. prepend R · s · # to S and append s to R.

In this section we show that equivalence can be decided for register trans-
ducers like T1 and T2 (Theorem 11).

Remark 4.14. The transducers T1, T2 from Example 4.13 are equivalent: they
both compute the function (we omit the proof). Let us also add that the
function is inspired by the function defined by Bojańczyk6.

Transducer models. Now we proceed to the definition of this section’s
register transducer models, i.e. register transducer with output in a field with
simultaneous automorphisms and register transducer with output in a free monoid
with simultaneous com-injective substitutions. Each of these models is a register
transducer whose output algebra is enriched with homomorphisms, and for
each of them we additionally require that (1) it always applies a given homo-
morphism simultaneously to all registers, and (2) each of the homomorphisms
can be extended to an automorphism of some (fixed) algebra that contains
the output algebra (notice it can be the output algebra itself).

Definition 4.15 (Simultaneous homomorphism). Let A be an algebra and t :
A ! A be a homomorphism. By t ⇥ . . . ⇥ t we denote the homomorphism
defined by

(t ⇥ . . . ⇥ t)| {z }
n

: An
! An,

(a1, . . . , an) 2 An
! (t(a1), . . . , t(an)).

We call it a simultaneous homomorphism of An (defined by t).
6M. Bojańczyk, 2018.
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Definition 4.16 (Register transducer with simultaneous homomorphisms).
Let A be an algebra. A register transducer with output in A with simultaneous
homomorphisms is a register transducer with output in the enrichment of A

with homomorphisms that satisfies the following property: its register up-
dates (which, recall, are polynomial operations of type AR

! AR, where R

denotes the set of the transducer’s registers) are compositions of polynomial
operations of A and simultaneous homomorphisms of AR. When defining
the register transducer model, one can use a subclass of homomorphisms:
for example, in Lemma 4.22 we take the class of automorphisms, and hence
define a register transducers with output in (a field) K with simultaneous automor-
phisms.

Com-injectivity.

Definition 4.17 (Com-injectivity). Let S be a finite alphabet and t : S ! S⇤

be a word substitution. Observe that the word homomorphism defined by
t induces a homomorphism of commutative words. We call a substitution t
(or a word homomorphism it defines) com-injective if the induced homomor-
phism of commutative words is injective.

Example 4.18. Let S = {a, b} and t, t0 be the word substitutions defined by
t := {a 7! aab, b 7! ab} and t0 := {a 7! ab, b 7! ba}. Then t is com-injective:
if t(w) has n a’s and m b’s then necessarily w has n � m a’s and 2m � n b’s.
On the other hand, t0, despite being an injective homomorphism of words, is
not com-injective: for example, a and b are mapped to the same commutative
word.

Com-injectivity of a given word substitution can be easily decided, as
stated in the following lemma.

Lemma 4.19. Let S be a finite alphabet and t : S ! S⇤ be a word substitution. It
can be decided in polynomial time if t is com-injective.

Proof. Observe that com-injectivity of t is equivalent to invertibility of the
S ⇥ S integer-entry matrix that represents the homomorphism of commuta-
tive words defined by t. Indeed, a Q-linear mapping is injective on integer-
entry vectors if and only if it is injective (on all, rational-entry, vectors), and
when the domain and codomain are of the same dimension, then injectiv-
ity is equivalent to invertibility. Finally, it is well-known that invertibility of
a matrix can be decided in polynomial time.

Example 4.20. Let S and t be as in Example 4.18. Then the homomorphism
of commutative words defined by t is represented by the following integer-
entry matrix. 

2 1
1 1

�
.

This matrix is invertible. Its inverse, whose entries happen to be integers
(which is not required for com-injectivity), is equal to


1 �1
�1 2

�
.
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We conclude this section with the following theorem.

Theorem 11. Functionality and equivalence of functional register transducers with
output in a free monoid with simultaneous com-injective substitutions is decidable.

Before we prove the above theorem, we show its example application.

Example 4.21. Consider the substitution [# := s · #] where s 2 S from Exam-
ple 4.13. It clearly is com-injective, as the corresponding matrix is triangular
with ones on the diagonal, and so is invertible. In consequence, equivalence
of the transducers T1 and T2 from that example can be decided by the algo-
rithm from Theorem 11 (cf. Remark 4.14).

4.3.1 Proof of Theorem 11
The proof of Theorem 11 is based on the following lemma.

Lemma 4.22. Let K be a computable field. Zeroness is decidable for register trans-
ducers with output in K with simultaneous automorphisms.

In the proof of Theorem 11, Lemma 4.22 is combined with the fact that, via
our polynomial simulation of a free monoid by a ring of polynomials (Defi-
nition 4.23), com-injective word homomorphisms induce automorphisms of
a (fixed) computable field that contains the corresponding ring of polynomi-
als (Lemma 4.26).

Proof of Lemma 4.22. The general idea behind this proof is that “applying an
automorphism to the elements does not change the algebraic properties of
the whole”, in particular, applying an automorphism to the registers pre-
serves existence of inductive invariants that witness zeroness of a register
transducer, as we now prove. The proof proceeds analogously to the one of
Theorem 4. The only difference is in the condition (b) of the definition of an
inductive invariant: the function p might not be a polynomial function, but
a composition of polynomial functions and simultaneous automorphisms of
K. In consequence, the set I � p might not consist of polynomial functions.
However, we show that I � p can be replaced by an equivalent set of poly-
nomials I0 that is equivalent in the sense that it maps the same tuples of ele-
ments of K to the zero element of K, i.e.

I0(a) = 0 if and only if (I � p)(a) = 0 for every tuple a. (4.3)

We give the proof for the case when p is a simultaneous automorphism; the
proof of the general case follows by composition.

Let i = Âa2Nn aaxa be a polynomial (implicitly: from the ideal I) from a
polynomial ring K[x1, . . . , xn]. Let t be an automorphism of K, and consider
a simultaneous automorphism p = t ⇥ . . . ⇥ t| {z }

n

. Then, for any tuple a =

(a1, . . . , an) 2 Kn the formula (i � p)(a) = 0 can be rewritten as

Â
a=(a1,...,an)2Nn

aat(a1)
a1 . . . t(an)

an = 0.
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By applying t�1 to both sides, this is equivalent to

Â
a2Nn

t�1(aa)aa = 0.

Therefore, for an ideal I ✓ K[x1, . . . , xn] the set of polynomials

t�1 I :=

(

Â
a2Nn

t�1(aa)xa
| Â

a2Nn
aaxa

2 I

)

satisfies the property (4.3), i.e.

(t�1 I)(a) = 0 if and only if (I � p)(a) = 0 for a 2 Kn.

In consequence, we can replace the set of functions I � (t ⇥ . . . ⇥ t) by the set
of polynomial functions t�1 I for every automorphism t of K.

Finally, let us see that testing inclusion of t�1 I in other ideals, as required
by the condition (b) of an inductive invariant, can be done effectively. Indeed,
observe that t�1 I is an ideal generated by the set t�1F where F is a generat-
ing set of I. This finishes the proof.

Word-to-polynomial simulation. Now we define a polynomial simulation
of a free monoid by a ring of polynomials. It is a generalization of the polyno-
mial simulation of a free monoid by the ring of integers from Figure 5, which
was used by Seidl et al. to prove decidability of equivalence for a subclass
of register transducers with output in a free monoid (deterministic top-down
tree-to-string transducers)7. The new feature of our polynomial simulation is
that it supports the substitution operation (Lemma 4.25), and hence is appli-
cable to a larger class of transducers.

Definition 4.23 (Word-to-polynomial simulation). Let S be an alphabet. Let
eS = {es | s 2 S} and S = {s | s 2 S} be two copies of S. Consider
the function f defined by

f = (f1, f2) : S⇤
! Z[eS [ S]⇥ Z[S],

f(s) := (es, s) for s 2 S,
f(sw) := (es · f2(w) + f1(w), s · f2(w)) for s 2 S, w 2 S⇤.

(4.4)

We introduce the notation
ew := f1(w),
w := f2(w),

and so the second line of (4.4) extends to all words, i.e.

f(w) = ( ew, w) for w 2 S⇤. (4.5)

7Seidl, Maneth, and Kemper, 2018.
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In particular, the third line of (4.4) can be rewritten as
(
fsw = es · w + ew,
sw = s · w

for s 2 S, w 2 S⇤. (4.4’)

Formula (4.4’) says that the mapping f is essentially a homomorphism
from the free monoid S⇤ to the monoid of Z[eS [ S]-entry 2 ⇥ 2 matrices de-
fined, for the generators of S⇤, by

s
f
7�!


s 0
es 1

�
for s 2 S,

and so for an arbitrary word the following holds

w
f
7�!


w 0
ew 1

�
for w 2 S⇤. (4.6)

We call the above mapping the matrix form of f. As a consequence of (4.6),
we obtain

w · v 7!


w 0
ew 1

�
·


v 0
ev 1

�
=


w · v 0
ew · v + ev 1

�
for w, v 2 S⇤,

and hence (
fwv = ew · v + ev,
wv = w · v

for w, v 2 S⇤. (4.4”)

Also, by unfolding the recursive formula (4.4’) one obtains that
(

ŝn . . . s1 = Ân
i=1 esi · si�1 · . . . · s1,

sn . . . s1 = sn · . . . · s1
for s1, . . . , sn 2 S, n 2 {0, 1, . . .}.

(4.4”’)

Fact 4.24. Mapping f is a polynomial simulation of a free monoid by a ring of poly-
nomials.

Proof. The formula (4.4”) proves that f is compositional. Injectivity of f fol-
lows from (4.4”’): the (unique) monomial of ew of total degree i is divisible by
es if and only if the i-th letter of a word w 2 S⇤ is s 2 S for i = 1, . . . , |w|.

Now we show that if the substitution operation is added as a basic oper-
ation, f still is a polynomial simulation.

Lemma 4.25. Mapping f is a polynomial simulation of the enrichment of a free
monoid with the substitution operation by the enrichment of a ring of polynomials
with the substitution operation. More precisely,

f(w[s := ws, s 2 S]) = f(w)[es := fws, s := ws, s 2 S] for w, ws 2 S⇤, s 2 S.
(4.7)
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Proof. For the simplicity of notation we rewrite the substitution expression
[es := fws, s := ws] as [f(s) := f(ws)]8 for s 2 S . In particular, we rewrite
the formula (4.7) as

f(w[s := ws, s 2 S]) = f(w)[f(s) := f(ws), s 2 S] for w, ws 2 S⇤, s 2 S.

The proof proceeds by induction. The desired formula (4.7) clearly holds
in the base case when w = a 2 S:

f(a[s := ws, s 2 S]) = f(wa) = f(a)[f(a) := f(wa)] = f(a)[f(s) := f(ws), s 2 S].

The inductive step is as follows: (in the below formula we assume that f
returns a 2 ⇥ 2 matrix as in (4.6))

f((a · w)[s := ws, s 2 S]) =
f(a[s := ws, s 2 S] · w[s := ws, s 2 S]) =
f(a[s := ws, s 2 S]) · f(w[s := ws, s 2 S]) =
f(a)[f(s) := f(ws), s 2 S] · f(w)[f(s) := f(ws), s 2 S] =
(f(a) · f(w))[f(s) := f(ws), s 2 S] =
f(a · w)[f(s) := f(ws), s 2 S].

This finishes the proof.

Com-injective homomorphisms induce field automorphisms. In the next
lemma we prove that, via our polynomial simulation from Definition 4.23,
word homomorphisms that are com-injective, and only such, induce auto-
morphisms of some field that contains a ring of polynomials.

This field is fixed for a given alphabet. To define it, we use an exten-
sion of a ring of polynomials in which the variables may have non-negative
rational exponents. Such an extension is well-defined, as, in general, one
can construct a ring of polynomials whose variables’ exponents come from
an arbitrary monoid: in the usual polynomials, it is the additive monoid of
natural numbers (N,+), and in the below lemma, some variables use the
monoid (Q�0,+) where Q�0 denotes the set of non-negative rational num-
bers. We introduce the following notation: by Z[eS, SQ�0 ] (resp. Z(eS, SQ�0))
we denote the ring of polynomials (resp. the field of rational functions) with
integer coefficients in which the variables from the set eS have natural ex-
ponents (from the monoid (N,+)), and the variables from the set S have
non-negative rational exponents (from the monoid (Q�0,+)).

Lemma 4.26. Let S be an alphabet and t = {s 7! ws | s 2 S} be a word
substitution. Consider the homomorphism from the ring Z[eS [ S] to itself defined
by

Z[eS [ S] 3 f 7! f [f(s) := f(ws), s 2 S]. (4.8)

Then
8For this notation to be formally correct, the pair f(s) should consist of variables, not

polynomials.
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(i) if t is com-injective, then the unique homomorphism from the field Z(eS [

SQ�0) to itself that is an extension of (4.8) is an automorphism,

(ii) if t is not com-injective, then the homomorphism (4.8) is not injective; in con-
sequence, there is no field that contains the ring Z[eS[SQ�0 ] for which there is
an extension of the homomorphism (4.8) that is an automorphism of that field.

Proof. (i) First we give a proof for an example word substitution; then we
give a proof in full generality.
Let S = {a} and t = {a 7! aa}. Then the formula (4.8) defines the
following homomorphism from the field Z(ea, aQ�0) to itself:

Z(ea, aQ�0) 3 f 7! f [(ea, a) := (ea · a + ea, a2)]. (4.8’)

We explicitly find the inverse homomorphism of (4.8’), thus proving
it is an automorphism. Consider the system of equations in the field
Z(ea0, a0Q�0) (

ea0 = ea · a + ea,
a0 = a2 (4.9)

in variables ea, a where ea0, a0 are constants. From the second equation we
get a = a0

1
2 . Substituting this to the first equation we get ea = ea0 · 1

1+a0
1
2

.

In consequence, the homomorphism from Z(ea, aQ�0) to itself defined by
8
<

:
ea 7! ea · 1

1+a
1
2

,

a 7! a
1
2

is a left inverse of (4.8’). Moreover, it is a two-sided inverse, as the
mappings from the non-primed variables to the primed variables are of
kinds for which a one-sided inverse is always a two-sided inverse: the
mapping of the barred variable is an exponentiation by a constant, and
the mapping of the tilded variable is a multiplication by an expression
that depends solely on the barred variable.
Now we perform the above reasoning in full generality, this time having
no assumptions on S and t. Let eS0 = {es0

| s 2 S}, S0
= {s0

| s 2

S} be copies of eS and S. Consider a system of equations in the field
Z(eS0, S0Q�0)

{es0 = fws | s 2 S} [ {s0 = ws | s 2 S}

in variable set eS [ S where es0, s0 are constants for s 2 S. It can be
solved in the following way. First solve the subsystem of |S| equations
concerning only the barred variables: it can be seen as a system of lin-
ear equations when the exponents are treated as coefficients, and, in this
view, it clearly has a solution because t is com-injective. Substitute the
obtained results to the remaining |S| equations. Now observe that this
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remaining subsystem (that now concerns only tilded variables) is linear
with coefficients in the field Z(eS0

[ S0Q�0). We prove it has a solution.
First, observe that it has a solution if and only if the original subsystem,
before substituting for the barred variables, had a solution when con-
sidered in variable set eS and with coefficients from Z(eS0

[ SQ�0) – it is
so because our mapping of s’s to the primed s’s is an invertible linear
change of exponents and hence defines an isomorphism from the field
Z(SQ�0) to Z(S0Q�0) (and modifying the coefficients of a linear system
of equations by an isomorphism does not change the property of this
system of having a solution or not). Second, observe that the original
subsystem – again considered in variable set eS and with coefficients
from Z(eS0

[ SQ�0) – which is a linear system, would have a solution if
one substituted [s := 1, s 2 S] in the coefficients – this follows from the
com-injectivity of t. In consequence, the determinant of this subsystem,
which is a polynomial in variable set S, evaluates to a non-zero value at
(s = 1)s2S, and hence is a non-zero polynomial, and so this system has
a solution.

The obtained solution of the whole system defines a left inverse of the
homomorphism from the field Z(eS [ SQ�0) to itself that extends (4.8).
(Notice that this solution indeed defines a mapping from Z(eS [ SQ�0)
to itself, as every variable from S is mapped to a product of some ratio-
nal powers of variables from S.) This left inverse is a two-sided inverse,
because it can be seen as a linear change of variables, and for every lin-
ear mapping a one-sided inverse is a two-sided inverse – indeed, the
barred variables have linearly changed exponents, and the tilded vari-
ables are changed by a linear mapping with coefficients in Z(SQ�0).
This finishes the proof.

(ii) Let u, v be different commutative words that are mapped by the homo-
morphism t to the same commutative word, denote it s, i.e.

u[s := ws, s 2 S] = v[s := ws, s 2 S] = s.

Then both polynomials u and v (which are necessarily different) are
mapped by the homomorphism (4.8) to the same polynomial of Z[eS [

S], namely s. In consequence, this homomorphism is not injective.

References. Lemma 4.22 is due to Worrell et al.9.

4.4 Summary
In this chapter, we discuss register transducers with output in a ring of poly-
nomials enriched with the substitution operation.

9M. Bojańczyk, Kiefer, et al., 2019.
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First we show that this model has undecidable zeroness (Theorem 9). The
meta-corollary of this fact is the following: we still do not know if register
transducers with output in a free monoid enriched with the substitution op-
eration have decidable functionality or not, but we know that, in contrast
to the case of register transducers without substitution, the reduction via our
polynomial simulation of words with polynomials is a reduction to an unde-
cidable problem.

Then we prove two positive results, each using a restricted variant of this
model (Theorem 10 and Theorem 11); we also present an example applica-
tion for each of them (Example 4.8 and Corollary 4.9; Example 4.21). Theo-
rem 10 describes grammars with languages of form L(G)(L(H)), where G, H
are polynomial grammars with output in a ring of polynomials with coeffi-
cients in a ring with no zero divisors (like Z or Z[x1, . . . , xn]), and Theorem
11 describes register transducers with output in a free monoid whose register
updates can use word homomorphisms (which are instances of the substitu-
tion operation), however with two restrictions: the homomorphisms must
satisfy a certain, easily verifiable, condition, which we call com-injectivity,
and they can only be applied simultaneously to all registers. Both results do
not give a satisfactory answer to the question “how much substitution can be
added to register transducers with output in a free monoid for the function-
ality and equivalence of functional register transducers to remain decidable”,
but hopefully they are a step towards an answer.
References. This chapter is based on an author’s unpublished paper10. The
references of both Section 4.1 and Section 4.3 are included at their ends.

10Schmude, 2021.
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Chapter 5

Output in finitely presented
monoids

In this chapter, we consider register transducers with output in a finitely
presented monoid1. We focus on finitely presented monoids whose rela-
tions merely permute the letters of a word, which we call trace-like monoids.
Trace-like monoids are motivated by trace monoids, which are a fundamental
concept in concurrency theory. Intuitively, a trace monoid consists of actions
on some (implicit) set some pairs of which can be executed in any order (this
can happen for example when the actions act on disjoint sets of resources).
For more information on trace monoids we refer to a survey of Diekert and
Métivier2.

Finitely presented monoids arise in computer science in a similar way,
as the monoids of actions on a data structure. For example, Huschenbett,
Kuske, and Zetzsche consider the monoid of queue actions; they represent
it as a finitely presented monoid, which happens to be trace-like3. For illus-
tration, consider a queue over alphabet S and two different symbols a, b 2

S, and take two sequences w1, w2 of queue actions, which are words over
alphabet G := {pushs | s 2 S} [ {pops | s 2 S}, defined by w1 :=
pusha pushb popb and w2 := pusha popb pushb. They give the same effect
on every queue, and in consequence represent the same queue action (notice
that words w0

1 := pushb popb and w0

2 := popb pushb do not represent the
same queue action, as only the second one gets stuck on the empty queue);
notice that w2 is a permutation of w1.

We are interested in decidability of functionality and equivalence of func-
tional register transducers with output in a finitely presented monoid (which
are inter-reducible due to Lemma 2.9). For a trace monoid the solution is
simple: embed it into a product of free monoids4, thus reducing to the free

1Let us give two remarks. First, formally we consider register transducers with output in
a free monoid but take the semantics in this monoid’s quotient (although both choices are
formally correct). Second, an analogous model, but with one register and for monoids that
are embeddable in a group, was considered by Zakharov, for which he proved decidability
of equivalence (Zakharov, 2015).

2Diekert and Métivier, 1997.
3Huschenbett, Kuske, and Zetzsche, 2014, Theorem 4.1, see also Lemma 3.5.
4Such an embedding exists for every trace monoid, see e.g. Diekert and Métivier, 1997,

Corollary 2.2.



86 Chapter 5. Output in finitely presented monoids

monoid case, which is decidable5. For an arbitrary monoid, we consider a
proof scheme, to which we refer as “this chapter’s proof scheme” (Lemma
5.7), which roughly speaking is as follows: apply our polynomial simula-
tion of a free monoid by a ring of polynomials (Definition 4.23) to the output
monoid, thus obtaining a candidate for a polynomial simulation of the out-
put monoid by a quotient of a ring of polynomials, and try to prove that it
is injective. The proof attempt of injectivity is done by an exhaustive search
for a minimal counter-example, and uses Gröbner bases for computations in
the target quotient ring. Additionally, one must prove that the target ring is
embeddable into a product of rings with no zero divisors – this property of
a ring is decidable, by a rather standard argument (Fact 5.4 and Corollary
5.6).

We apply the above proof scheme to the monoid ha, b, c | abc = cbai and
obtain a decidability result (Corollary 5.11). We also apply it to the monoid
of queue actions, but without success (Corollary 5.13). Finally, we analyze
this proof scheme in terms of its automation (in the general case).

As a byproduct of this chapter’s proof scheme, we obtain a criterion for
equational Noetherianity of a finitely presented monoid6.

5.1 Monoids
A monoid is a set with an associative binary operation. A finitely presented
monoid is given by a finite presentation, which consists of a finite set S of gen-
erators and a finite set S ✓ S⇤

⇥ S⇤ of relations; a relation (u, v) 2 S is written
as “u = v00. The presentation with generators S and relations S defines the
monoid hS | Si whose universe is S⇤/⇠S where ⇠S ✓ S⇤

⇥ S⇤ is the smallest
equivalence relation on S⇤ such that u⇠Sv implies sut⇠Ssvt for s, t 2 S⇤, and
the multiplication operation is defined by

[w1]⇠S · [w2]⇠S := [w1 · w2]⇠S for w1, w2 2 S⇤

where [w]⇠S denotes the ⇠S-equivalence class of an element w 2 S⇤. In this
chapter, we assume all monoids to be given by a finite presentation.

We call a finitely presented monoid hS | Si trace-like if for every “u = v00 2
S, the word v is a permutation of u.

Let M be a finitely presented monoid with generating set S. By taking the
semantics of register transducers with output monoid S⇤ to be in M, one ob-
tains the following variants of the problems of functionality and equivalence
of functional register transducers.
Name: M-functionality of register transducers
Parameter: M =hS | Si - a finitely presented monoid

5Seidl, Maneth, and Kemper, 2018; they prove this result for a slightly weaker model, but
the proof can be extended to all register transducers with output in a free monoid.

6We denote this property by equational Noetherianity following Shevlyakov (e.g.
Shevlyakov, 2016). Nevertheless, it is often called compactness property (see e.g. Harju,
Karhumäki, and Plandowski, 1995).
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Input: T - a register transducer with output in the monoid S⇤

Question: Is it the case that

for every input tree t all outputs of T on t are ⇠S-equivalent?

We denote the ⇠S-equivalence class of elements output by an M-functional
register transducer T on an input tree t by [T(t)]⇠S .

Name: M-equivalence of M-functional register transducers
Parameter: M =hS | Si- a finitely presented monoid
Input: T1, T2 - register transducers with output in the monoid S⇤ with the
same input alphabet
Question: Is it the case that

[T1(t)]⇠S = [T2(t)]⇠S for every input tree t?

Also, one obtains the following variant of our word-to-polynomial simula-
tion (Definition 4.23).

Definition 5.1 (M-to-RM mapping). Let M = hS | Si. Recall that our word-
to-polynomial simulation f is defined (in (4.4)) by

f = (f1, f2) : S⇤
! Z[eS [ S]⇥ Z[S],

f(s) := (es, s) for s 2 S,
f(sw) := (es · f2(w) + f1(w), s · f2(w)) for s 2 S, w 2 S⇤.

Let us also recall that f can be equivalently seen as the following monoid
homomorphism (cf. (4.6))7.

f : S⇤
! M2⇥2

⇣
Q[eS [ S]

⌘
,

w
f
7�!


w 0
ew 1

�
for w 2 S⇤.

We refer to the above form of f as the matrix form.
For a ring R, denote by LTn⇥m (R) the ring of lower-triangular matrices

with entries from R. By quotienting the mapping f by ⇠S, we naturally ob-
tain the following mapping of M:

fM : M ! LT2⇥2

⇣
Q[eS [ S]

⌘
/hf(w1)� f(w2) | w1⇠Sw2, w1, w2 2 S⇤

i
LT2⇥2(Q[eS[S]),
(5.1)

fM : [w] 7! [f(w)] for w 2 S⇤.

Notice that we consider a quotient of a lower-triangular matrix ring. Let us
describe it explicitly by computing the defining ideal.

7Formally, (4.6) defines the codomain of our word-to-polynomial simulation to be a ring
of polynomials with coefficients in the ring Z, and here we use the field Q. We extend to Q
to manage the ideals obtained by the quotient construction.
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Claim 5.2 (M-to-RM mapping for a trace-like monoid M). Assume that M is
trace-like. Then fM, when the matrix form is dropped, is as follows

fM : M ! Q[eS [ S]/IM ⇥ Z[S],
fM([w]) := ([ ew], w) for w 2 S⇤

(5.2)

where
IM := heu � ev | (u, v) 2 Si. (5.3)

Proof. Observe that

f(w1)� f(w2) =


0 0

fw1 �fw2 0

�
for w1⇠Sw2, w1, w2 2 S⇤.

Also,


p1 0
p2 p3

�
·


0 0

fw1 �fw2 0

�
·


p01 0
p02 p03

�
=


0 0

p1 · p01 · (fw1 �fw2) 0

�
,

for w1, w2 2 S⇤, pi, p0i 2 Q[eS [ S] for i 2 {1, 2, 3} hence the defining ideal (of
LT2⇥2

⇣
Q[eS [ S]

⌘
) is generated by

⇢
0 0
p 0

�
| p 2 IM

�

where the ideal IM ✓ Q[eS [ S] is defined by

IM := hfw1 � ew2 | w1⇠Sw2, w1, w2 2 S⇤
i

Q[eS[S]. (5.4)

This proves (5.2) provided the above-defined IM is equal to the one in (5.3); it
indeed is and we prove it now. By unfolding the definition of ⇠S we obtain
that

IM = hfsut � fsvt | (u, v) 2 S, s, t 2 S⇤
i,

and since

fsut � fsvt = (esut � esvt) + (eut � evt) + (t � t) =
= eset(u � v) + (eu � ev)t =
= (eu � ev)t for (u, v) 2 S for s, t 2 S⇤,

hence
IM = h(eu � ev)t | t 2 S⇤

i =

= heu � ev | (u, v) 2 Si.

A similar claim holds for an arbitrary finitely presented monoid. The
proof is analogous and we omit it.
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Claim (M-to-RM mapping for a monoid M). Let M = hS | Si. When the
matrix form is dropped, fM is as follows

fM : M ! Q[eS [ S]/IM ⇥ Z[S]/JM,
fM([w]) := ([ ew], [w]) for w 2 S⇤

where
IM := h{eu � ev | (u, v) 2 S} [ {u � v | (u, v) 2 S}i, and
JM := hu � v | (u, v) 2 Si.

Now we observe that the mapping fM is compositional.

Fact 5.3. Let M be a finitely presented monoid. Then the mapping fM is composi-
tional.

Proof. It follows immediately from compositionality of f. We omit the details
of the proof.

Let us now proceed to the formulation of this chapter’s main lemma,
Lemma 5.7. It is based on the following observation. Let M be a finitely
presented monoid. If the mapping fM is injective, it yields a polynomial
simulation of M by a ring, namely RM. If additionally the ring RM can be
embedded into a product of rings with no zero divisors, then we are done –
the mapping fM yields a reduction like in Corollary 2.27.
Reduced rings. Now we show that rings that are embeddable into a product
of rings with no zero divisors are exactly reduced rings, then show that one
can decide if a given ring is reduced, and finally state and prove Lemma 5.7.

A ring R is reduced if rm = 0 implies r = 0 for all r 2 R and m 2 {1, 2, . . .}.

Fact 5.4. Let X be a variable set and K be a (computable) field. For an ideal I ✓ K[X],
the quotient ring K[X]/I can be (effectively) embedded into a product of (com-
putable) rings with no zero divisors if and only if it is reduced.

Proof. The right-to-left implication follows from Lemma 4.12. The left-to-
right implication is straightforward from the definition.

The property of a ring being reduced can be decided due to the following
fact.

Fact 5.5. Let X be a variable set and K be a field. For an ideal I ✓ K[X], where X
is a variable set and K is a field (e.g. Q), the quotient ring K[X]/I is reduced if and
only if the ideal I is radical.

Corollary 5.6. Let X be a variable set and K be a computable field. One can decide
if the ring K[X]/I is reduced.

Proof. The ring K[X]/I is reduced if and only if the ideal I is radical; it is
known that the latter can be decided8.

We conclude with the below lemma.
8Cox, Little, and O’Shea, 2015, Remarks at the end of §2 of Chapter 4.
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Lemma 5.7 (This chapter’s proof scheme). Let M =hS | Si be a finitely pre-
sented monoid. If the mapping fM is injective and the ring RM is reduced, then
M-functionality and M-equivalence of M-functional register transducers with out-
put in the monoid S⇤ are decidable.

Proof. By applying Fact 5.4, the mapping fM is a polynomial simulation by
a product of rings with no zero divisors. The claim follows from Corollary
2.27.

5.2 A proof for an example monoid
In this section, we apply this chapter’s proof scheme (Lemma 5.7) to an ex-
ample finitely presented monoid. We choose M = hS | Si with generators
S = {a, b, c} and a singleton set of relations S = {abc = cba}9. We obtain

IM = h(eabc � ecba) + (ebc � eba) + (ec � ea)i.

We order the variables as follows:

ea > eb > ec > a > b > c.

The generating set of IM is of size one, hence it is a Gröbner basis of IM; the
leading monomial of the generator of IM is eabc. The ideal IM is radical, due
to the following fact.

Fact 5.8. Let I be a polynomial ideal. If the leading monomials of all polynomials of
some Gröbner basis of I are square-free (a monomial is square-free if the exponent
of each of its variable is 1), then I is a radical ideal.

Proof. Let G be a Gröbner basis of I whose all polynomials have square-free
leading monomials. By contradiction, assume there is a polynomial f and
a natural number n > 1 such that f n

2 I but f /2 I. Let r be the remainder of
division of f by G; we have that rn

2 I and r /2 I. This means that the leading
monomial of rn is divisible by the leading monomial of some polynomial
from G, but r is not – a contradiction with the assumption that the leading
monomials of polynomials from G are square-free.

Corollary 5.9. The ring RM is reduced.

Proof. IM is radical due to Fact 5.8. In consequence, RM is reduced (cf. Fact
5.5).

Now it remains to prove that fM is injective.

Lemma 5.10. fM is injective.
9We choose such M because it is the simplest cancellative trace-like monoid that is not

a trace monoid (a monoid is right/left cancellative if xz = yz/zx = zy implies x = y for all
its elements x, y, z, and is cancellative if it is both left and right cancellative) – it is straight-
forward that this chapter’s proof scheme surely fails on non-left-cancellative monoids, and
it seems to surely fail on non-right-cancellative ones.
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Proof. By contradiction, let (w, v) 2 S⇤
⇥ S⇤ be a minimal counterexample

to injectivity of fM, i.e. w 6 ⇠Sv, ew = ev, w = v, and the total length of w
and v is smallest possible; we also assume that both w and v do not contain
a substring abc, as it could be replaced with cba without the change of M-
equivalence class (for a word w at most |w|

2 replacements are needed). Let us
consider cases regarding the first letters of w and v (and second, third letters
etc. if necessary). For words w0, v0 2 S⇤, by writing w = w0 . . . , v = v0 . . .
we mean that w has a prefix w0 and v has a prefix v0. We denote the suffix of
w (resp. v) that skips the first i letters by wi (resp. vi). Finally, if we denote
a polynomial by ri, for i = 1, 2, . . . , |w|, then it is a monomial in variable set
S of degree |w|� i.

We omit the cases where w and v start with the same letter, as any such
case contradicts the minimality of (w, v): if w = sw1 and v = sv1 for some
s 2 S, then w1 = w/s = v/s = v1 and fw1 = ew � esw1 = ev � sv1 = ev1.
Each of the remaining cases follows the following scheme. The polynomial
f = ew � ev is non-zero and represent the zero element in RM; equivalently,
the remainder of the division of f by G = {(eabc � ecba) + (ebc �eba) + (ec � ea)}
is 0. In consequence, after any sequence of division steps f = f0 !G f1 !G
f2 !G . . . !G fl that has not yet reached 0 (including the empty sequence,
for which l = 0) it is possible to apply a division step to the leading monomial
of fl. We apply consecutive division steps in this way, and in each of the cases
we reach either a smaller counter-example or a contradiction.

Case 1� Neither of w, v starts with a. In such case, the leading monomial
of ew� ev is not divisible by eabc, and hence it is not possible to apply a division
step to it. A contradiction.

Case 2� w = a . . . , v = s . . . for some s 2 {b, c}. In such case, using the
divisibility of LM( ew) by eabc, we get that

f = ew � ev = eabcr3 � esr1| {z }
largest degree

+(fw1 � ev1) for some monomials r1, r3 2 Z[S].

By applying a division step to eabcr3 we obtain

f !G f1 = ecbar3 � esr1| {z }
largest degree or 0

+ smaller degree monomials.

If s was b, then the polynomial ecbar3 � esr1 could not be reduced by division
steps by G to a smaller degree polynomial; in consequence, ecbar3 � esr1 is
equal to 0, and hence s = c.

Case 2�(updated) w = a . . . , v = c . . .. Observe we have

f = ew � ev !G f1 = (eba � eca)r3 + LM(fw1)� LM( ev1)| {z }
largest degree or 0

+(ea � ec)r3 + (fw2 � ev2).

The monomials ebar3 and ebcr3 neither are divisible by eabc nor can be reduced
to 0 by division steps by G of the remaining monomials of the largest degree
(as the largest degree monomials of the remainders of such division steps are
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not divisible by eb), hence they both necessarily are canceled-out by LM(fw1)
and LM( ev1). In consequence, the second letter of both w and v is b.

Case 2�(second update) w = ab . . . .v = cb . . .,

f = ew � ev !G f1 = (ea � ec)r3 + LM(fw2)� LM( ev2)| {z }
largest degree or 0

+(fw3 � ev3).

By reasoning analogously ad infinitum, taking into account that neither w
nor v contains a subword abc, one can show that w and v begin with, re-
spectively, (ab)(ab)n and (cb)(cb)k(ab)n�k for every n 2 {1, 2, . . .} for some
k 2 {0, 1, . . . , n} – a contradiction with finiteness of w and v.

Corollary 5.11. For M = ha, b, c | abc = cbai, the problems of M-functionality
and M-equivalence of M-functional register transducers with output in the monoid
{a, b, c}⇤ are decidable.

5.3 A proof attempt for the monoid of queue ac-
tions

Let S be a finite alphabet. Huschenbett, Kuske, and Zetzsche10 showed that
the monoid of queue actions over alphabet S is isomorphic to hG | Si where
G := {pushs | s 2 S} [ {pops | s 2 S} and

S :={pusha pushb popb = pusha popb pushb | a, b 2 G}[
{pusha popa popb = popa pusha popb | a, b 2 G}[
{pusha popb = popb pusha | a, b 2 G, a 6= b}.

Notice it is a trace-like monoid. Unfortunately, this chapter’s proof method
(Lemma 5.7) does not succeed on it, due to the following fact.

Fact 5.12. Let M = hS | Si be a finitely presented monoid. If M is not left-
cancellative (i.e. mm1 = mm2 but m1 6= m2 for some m, m1, m2 2 M.), then
fM is not injective.

Proof. Let x, y, z 2 S⇤ be representatives of a counter-example to left-cancellativity
of M, i.e. [x]M · [y]M = [x]M · [z]M but [y]M 6= [z]M. Then fM([y]M) =
fM([z]M), which contradicts injectivity of fM. Indeed, using the equality
fM(xz) = fM(yz) we obtain the following equalities in the ring RM: y =
xy/x = xz/x = z, and ey = fxy � exy = exz � exz = ez.

Corollary 5.13. Let M be the monoid of queue actions. Then fM is not injective.

Proof. Due to Fact 5.12, it suffices to show that M is not left-cancellative.
Indeed, observe that for a queue symbol s we have pushs pushs pops =
pushs pops pushs, but pushs pops 6= pops pushs, as only the second se-
quence of queue actions gets stuck on the empty queue.

10Huschenbett, Kuske, and Zetzsche, 2014, Theorem 4.1, see also Lemma 3.5.
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5.4 Can this chapter’s proof scheme be automated?
In the case when M is an arbitrary monoid, a proof analogous to the one from
Section 5.2 is unlikely to be approachable by hand-calculations (e.g. due to
the necessarily large size of a Gröbner basis of ideal IM). This raises the
necessity to automate at least some parts of the proof. Let us describe this
proof in general terms and see which parts can be automated.

Let M = hS | Si be a finitely presented monoid. First we need a unique
representative of every ⇠S-equivalence class. It can be defined using string
rewriting systems.

Definition 5.14. A string rewriting system (over alphabet S) is a finite set S ✓

S⇤
⇥ S⇤. It defines a relation of one rewriting step !S ✓ S⇤

⇥ S⇤ by

w1uw2!Sw1vw2 for (u, v) 2 S for w1, w2 2 S⇤.

By !
⇤

S
we denote the reflexive transitive closure of !S , and by $

⇤

S
we de-

note the smallest equivalence relation that contains !S .
A string rewriting system S is complete if for every word w every sequence

of rewriting steps w = w0!Sw1!S . . . ultimately ends, and moreover every
such sequences ends in the same word, called the S-normal form of w.

Fact 5.15. Let S be a complete string rewriting system. Then if w1$
⇤

S
w2, then w1

and w2 have the same S-normal form.

Proof. The proof is standard and we omit it.

Due to the above fact, we define the unique representative of a ⇠S-equivalence
class of some word to be its S-normal forms for some complete string rewrit-
ing system S that contains S (up to reversing the order of words in some re-
lations). Observe that a word is an S-normal form of some word if and only
if it does not contain a substring from {u | (u, v) 2 S}. Hence, if S is finite,
then the language of normal forms is regular and can be obtained effectively.
However, it is not clear how to effectively complete a string rewriting system
in general. In some cases this task can be performed by the Knuth-Bendixson
completion algorithm, which is a word analogue of the Buchberger’s algo-
rithm. If it terminates on the set of relations S, it returns such a finite system.

If we manage to effectively obtain the language of unique representatives,
there are further steps that can be done automatically: we can check if RM is
reduced, compute a Gröbner basis of the ideal IM, and start performing the
steps of the proof, i.e. take an arbitrary minimal counter-example pair (w, v),
consider cases regarding prefixes of (w, v), perform division steps on f :=
ew � ev, while analyzing the largest degree monomials of the current value of
f . Despite the fact that each proof step can be performed automatically and
the branches of the proof seem to always lead to either a counter-example or
some cyclical behavior of both the polynomial f and the prefixes of w and v,
the proof is not fully automated yet, as it is not clear under what conditions
the proof branches should be terminated.



94 Chapter 5. Output in finitely presented monoids

5.5 Equational Noetherianity
In this section, we show how this chapter’s proof scheme gives a criterion
for equational Noetherianity of a finitely presented monoid. We begin by
defining this notion.

Two systems of equations (in an arbitrary algebra, for example a monoid
or a ring) are equivalent if they have the same sets of solutions. A monoid is
equationally Noetherian11 if every infinite system of equations in this monoid
admits a finite equivalent subsystem. Equational Noetherianity has been
used in formal language theory. For example, a proof of decidability of equiv-
alence of HDT0L sequences uses the fact that a free monoid is equationally
Noetherian12. For more information and references on equationally Noethe-
rian monoids we refer to lecture notes of Shevlyakov13, in particular, to the
references made in Section 7.1.

Example 5.16. Every free monoid is equationally Noetherian14. For example,
the system of equations S := {xn(ab)n = (ab)nxn

| n is a prime number} in
the monoid {a, b}⇤, i.e.

x2(ab)2 = (ab)2x2

x3(ab)3 = (ab)3x3

x5(ab)5 = (ab)5x5

...

admits a finite equivalent subsystem S
0 := {x2(ab)2 = (ab)2x2

}; the set of
solutions of both S and S

0 is (ab)⇤.

Example 5.17 (Bicyclic monoid). The finitely presented monoid M = ha, b | ab =
#i, called the bicyclic monoid, is not equationally Noetherian. Indeed, Lothaire
shows15 that the system of equations S := {xn

1 xn
2 x3 = x3 | n 2 {1, 2, . . .}}

does not admit a finite equivalent subsystem.

Now we state and prove the main result of this section.

Theorem 12 (Criterion for equational Noetherianity). Let M be a finitely pre-
sented monoid. If fM is injective, then M is equationally Noetherian.

Corollary 5.18. The monoid ha, b, c | abc = cbai is equationally Noetherian.

Proof. Combine Lemma 5.10 and Theorem 12.

The proof of Theorem 12. Before we prove Theorem 12, we formally intro-
duce the notions related to systems of equations.

Let M = hS | Si be a finitely presented monoid. For a pair of words
w1, w2 2 S⇤ we write w1 =M w2 if w1⇠Sw2. We define an equation in M

11Equational Noetherianity is also called compactness property by some authors.
12Honkala, 2000.
13Shevlyakov, 2016.
14Albert and Lawrence, 1985 and Guba, 1986.
15Lothaire, 2002 (Lothaire denotes equational Noetherianity as compactness property).
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in variable set X to be a pair of words over alphabet S [ X16. We write an
equation (s1, s2) 2 (S [ X)⇤ as s1 = s2. We say that an X-tuple m = (mx)x2X
of elements of M satisfies, or is a solution to, an equation s1 = s2, and write
m |= s1 = s2, if

s1[x := mx, x 2 X] =M s2[x := mx, x 2 X].

We generalize this notation to systems of equations, which by definition are sets
of equations; and so, if m satisfies every equation from a system of equations
S , then we say that m satisfies, or is a solution to, S and write m |= S .

Example 5.19. Consider the bicyclic monoid M = hS | Si where S = {a, b}
and S = {ab = #}. Let X = {x1, x2} and let s1, s2 2 (S [ X)⇤ be defined by

s1 := ax1x1,
s2 := ax2ax1x1.

Then m = {x1 7! ba, x2 7! b} is a solution to the equation s1 = s2, or in
other words, m |= s1 = s2. Indeed, s1[x1 := ba, x2 := b] = ababa =M a and
s2[x1 := ba, x2 := b] = abababa =M a.

Also, analogously we define each of the above notions for quotients of
rings of polynomials; in particular, for a ring Q[X]/I, where I ✓ Q[X] is
an ideal, an equation in variable set Y is a pair of polynomials in variable set
X[Y (where the variables from Y are supposed to be substituted by elements
from Q[X]/I).

Proof of Theorem 12. Let S be a system of equations in M in variable set X.
Consider a system of equations fS in RM defined by

fS := {f(s1) = f(s2) | s1 = s2 2 S}.

The ring RM is Noetherian, hence it is equationally Noetherian; in conse-
quence, we can take an equivalent finite subsystem fS 0 := {f(s1) = f(s2) |
s1 = s2 2 S

0
} of fS , for some finite S

0
✓ S . Then S

0 is equivalent to S , due
to the fact that every X-tuple m = (mx)x2X of elements of M is a solution to
S if and only if fm := (f(mx))x2X is a solution to fS . Indeed, due to Lemma
4.25 we have that

m |= s1 =M s2 ()

s1[x := mx, x 2 X] =M s2[x := mx, x 2 X] ()

f(s1[x := mx, x 2 X]) =RM
f(s2[x := mx, x 2 X])

Lemma 4.25
()

f(s1)[f(x) := f(mx), x 2 X] =RM
f(s2)[f(x) := f(mx), x 2 X] ()

fm |= f(s1) =RM
f(s2).

16Another, equivalent, approach would be to define an equation in M as a pair of terms of
M in variable set X; our approach however makes the notation in the proof of Theorem 12
lighter.
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In consequence, for every X-tuple m of elements of M

m |= S , fm |= fS , fm |= fS 0
, m |= S

0,

i.e. S is equivalent to S
0.

5.6 Summary
By applying the quotient construction to our word-to-polynomial simula-
tion we obtain a proof scheme for deciding functionality and equivalence of
functional register transducers with output in a finitely presented monoid
(Lemma 5.7). We illustrate this scheme on the monoid M = ha, b, c | abc =
cbai, thus obtaining a decidability result for it (Theorem 5.11). However, let
us add that this monoid admits a simpler proof: there is a polynomial simula-
tion of M by a free monoid (the reasoning is standard: consider normal forms
of elements of M w.r.t. the Semi-Thue system {abc ! cba}, or in other words,
their lexicographically smallest representatives); in fact, we do not know of
any monoid M for which there is no simple polynomial simulation by a free
monoid but fM is injective. We also remark that some parts of the proof,
e.g. checking if the ring RM is reduced, or performing a single step of the
proof of injectivity of fM, can be automated, although we do not know if the
crucial steps of terminating proof branches are automatable or not (Section
5.4). In addition to deciding functionality and equivalence of functional reg-
ister transducers, this chapter’s proof scheme yields a criterion for equational
Noetherianity of a finitely presented monoid (Theorem 12). In consequence,
from the reasoning we perform for the monoid M = ha, b, c | abc = cbai we
conclude that this monoid is equationally Noetherian (Corollary 5.18).
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Alur, R. and P. Černý (2010). “Expressiveness of streaming string transduc-
ers”. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2010). Ed. by Kamal Lodaya
and Meena Mahajan. Vol. 8. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, pp. 1–12. ISBN: 978-3-939897-23-1. DOI:

. URL:
.

— (2011). “Streaming Transducers for Algorithmic Verification of Single-Pass
List-Processing Programs”. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’11. Austin,
Texas, USA: Association for Computing Machinery, pp. 599–610. ISBN:
9781450304900. DOI: . URL:

.
Alur, R. and L. D’Antoni (2012). “Streaming Tree Transducers”. In: Automata,

Languages, and Programming. Ed. by Artur Czumaj, Kurt Mehlhorn, An-
drew Pitts, and Roger Wattenhofer. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 42–53. ISBN: 978-3-642-31585-5.

Araki, T. and T. Kasami (1976). “Some decision problems related to the reach-
ability problem for Petri nets”. In: Theoretical Computer Science 3.1, pp. 85–
104. ISSN: 0304-3975. DOI:

. URL:
.

Benedikt, M., T. Duff, A. Sharad, and J. Worrell (2017). “Polynomial automata:
Zeroness and applications”. In: 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pp. 1–12. DOI:

.
Boiret, A., R. Piórkowski, and J. Schmude (2018). “Reducing Transducer Equiv-

alence to Register Automata Problems Solved by "Hilbert Method"”. In:
38th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2018). Ed. by Sumit Ganguly and
Paritosh Pandya. Vol. 122. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 48:1–48:16. ISBN: 978-3-95977-093-4. DOI:

. URL:
.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://drops.dagstuhl.de/opus/volltexte/2010/2853
http://drops.dagstuhl.de/opus/volltexte/2010/2853
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/https://doi.org/10.1016/0304-3975(76)90067-0
https://doi.org/https://doi.org/10.1016/0304-3975(76)90067-0
https://www.sciencedirect.com/science/article/pii/0304397576900670
https://www.sciencedirect.com/science/article/pii/0304397576900670
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.48
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.48
http://drops.dagstuhl.de/opus/volltexte/2018/9947
http://drops.dagstuhl.de/opus/volltexte/2018/9947


98 Bibliography
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