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Oświadczenie autora rozprawy:
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Chapter 1

Introduction

1.1 Motivation

It is estimated that approximately 14.1 million new cancer cases were diagnosed
worldwide in 2012 alone, from which about 1 million in Central and Eastern
Europe [123], see Fig. 1.1. The estimates for cancer related deaths worldwide in
2012 provide a shocking number of 8.2 million cases [123] – that is more or less
the current population of Switzerland. In Poland there were about 140 thousand
new cases of malignant tumors in 2010, which is more than twice as much as in
the year 1980 [31]. In the same year 2010 there were about 93 thousand regis-
tered cancer associated deaths in Poland, making cancer the second leading cause
of death, just after heart diseases [31]. Cancer became a major public health
concern in most of the parts of the world and in a few years it might become a
leading cause of death in the United States, surpassing heart diseases [105]. The
most frequently diagnosed cancers worldwide are breast among females (≈ 1.7
mln new cases in 2012) and cancers of respiratory system among males (≈ 1.2
mln new cases in 2012), with an estimated deaths in 2012 of about 0.5 mln and
0.3 mln, respectively [123], see Fig. 1.2. The most difficult-to-treat cancers give
a poor survival prognosis even in case of early detection, e.g. in case of lung
cancer the overall estimated 5-years survival in United States is only 18% [105].
Statistics in United States are even worse for pancreatic cancer, predicting that
only about 7 out of 100 diagnosed patients will survive next 5-years [105].

That is why, almost every developed country conducts cancer research at
some level, with the estimated worldwide budget of about 14,300 million euros
in 2004/2005 [39]. In the war with cancer there are three predominant paths
pursued by the researchers: prevention, early detection, and treatment. First one
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Estimated number of new cases in 2012 by the world region. Figure
reproduced from [123].

attempts to reduce the death toll of cancer, by reducing its incidence rate, mostly
by investigating environmental factors that increase the chance of developing
cancer. The most known example of prevention program is the smoking aware-
ness policy, that resulted in modest reduction of smoking prevalence in United
States between 2005 and 2010 by 19.3% [108]. Some agencies estimate that
introducing additional smoke-free legislations in United States could result in
about 600,000 fewer deaths, saving more than 1 billion dollars in treatment costs
[108]. The second research path focuses on developing new technologies allow-
ing for detection of cancer on its early stages, when patient has the best prognosis
and there are the best chances for complete cure. Because of the advancement in
screening techniques, incidence of prostate cancers that have already spread to
neighboring lymph nodes reduced in United States from about 40% to <10% in
the last 50 years [110]. It is significant improvement in reducing the cancer death
toll, as about 97% of prostate cancer patients will survive 10 years since the di-
agnosis if there is no lymph node involvement, compared to 83% otherwise [20].

The most intense research, however, is focused on developing new treatment
strategies. It is estimated that the about 61% and 50% of the total cancer research
budget in years 2002/03 in Europe and United States, respectively, was spent
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Figure 1.2: Estimated number of new cases and deaths in 2012 by type of cancer.
Figure reproduced from [123].

for research focused on cancer biology and developing new treatments [39]. In
recent years there were many significant breakthroughs in the treatment of par-
ticular cancers. One of the examples is approval of imatinib in the treatment
of chronic myeloid leukemia, which transformed this leukemia with previous
life expectancy of 4-6 years to chronic illness [107]. This makes imatinib one
of the best examples of successful targeted therapy, i.e. therapy that targets
molecules associated directly with cancer cells. A particularly exciting devel-
opment, hailed by the editors of Science as the breakthrough of 2013 [27], is that
immune surveillance might be tipped back in favor of primary and metastatic
tumor regression through novel immunotherapeutic strategies. Newly developed
PD-1/PDL-1 antibodies that aim to increase the efficacy of cytotoxic T lym-
phocytes in fighting the cancer cells have been hailed as drug of the year, as
their administration results in high quality responses in metastatic melanoma pa-
tients [96]. Another example of alternative approaches to cancer treatment that
was developed in last few decades is the anti-angiogenic treatment, which is
designed to inhibit the tumor vascular support and thus induce tumor cell star-
vation [43, 44]. That kind of approach holds the promise of being less patient-
specific as the host vasculature is targeted and not the constantly evolving tumor
population.

However, despite those significant breakthroughs and development of alter-
native approaches, still in most of the cases cancer treatment consists of var-
ious combination of chemotherapy, radiotherapy and surgery. It is estimated
that about 50% of all cancer patients received radiotherapy as part of their treat-
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ment [30, 41] and it was administered in 40% of cases in which the primary tu-
mor was successfully eradicated [47]. Since 1896, when the first cancer patients
were treated with radiation, the main focus in development of radiotherapy has
always been to design techniques allowing to deliver 100% of prescribed radia-
tion dose to the tumor site with sparing the normal tissue at the same time [119].
The true revolution in radiotherapy started at the end of 20th century together
with the development of computer-assisted treatment planning and delivery tech-
niques [119], which allowed to significantly reduce the dose of radiation deliv-
ered to normal tissue and escalate the dose administered to tumor site. In the
prostate cancer treatment the delivered dose to gross tumor volume increased 2.5-
fold since 1935 [119]. Despite those significant improvements, however, there
are still problems in radiobiology that remains partially unanswered and new un-
expected phenomena are still being discovered. While traditional methods for
measuring cellular response to radiation have included cell death and loss of
colony formation, more recent findings suggest radiation induced cellular senes-
cence may play a larger role in how a tumor responds [103]. Most interesting is
the ability of senescent cells to induce angiogenesis [25] and affect neighboring
cells [90]. For decades it was thought that the radiation induces changes only in
tissues within the irradiated volume. However, experiments revealed that there
are changes induced outside the radiation field that may influence the treatment
outcome, so called bystander effects [7]. It has been also shown that radiation
triggers a specific type of cell death that makes cancer cells more “visible” to
the immune system and thus, potentially triggers the secondary wave of immune
response [124]. Taking into account how frequently radiotherapy is used world-
wide in the war against cancer, it is of the utmost importance to decipher these
processes, incorporate findings in clinical practice and potentially increase treat-
ment efficacy.

Overwhelming complexity of processes that occur in response to cancer ther-
apy is now frequently deciphered using mathematical models, by the researchers
working in a relatively new field termed mathematical oncology. It is a power-
ful approach in which, experimental and clinical data are utilized to build and
calibrate quantitative models. There are many examples of successful applica-
tion of mathematical modeling in treatment design. We need to mention a model
for erythroid production based on a continuous maturation-proliferation scheme
developed by Lasota and colleagues [65]. Its analysis showed how to cure spe-
cific types of therapy induced anemia. There are also several examples of suc-
cessful application of mathematical models for the cancer treatment analysis. A
mathematical model of cytotoxic T lymphocyte (CTL) immunotherapy predicted
that cellular adoptive immunotherapy may have previously failed in glioblastoma
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(GBM) patients as the administered dose is up to twenty times lower than would
be required for tumor eradication in the brain, which is protected by the blood-
brain barrier [62]. Model simulations suggested that dose-intensive strategies
are essential, and simulation-supported recommendations of therapy dose and
duration may allow personalization of CTL therapy in GBM. A recent study
that iteratively combined experimental and mathematical modeling revealed op-
timized radiotherapy protocols for platelet-derived growth factor-driven glioblas-
toma [67]. Using a simple mathematical model informed with experimental data
of in vivo dose-dependent radiation response, the authors simulated response to
the conventional 2 Gy per day radiation fractionation protocol and compared it to
hypo- and hyperfractionation regimens as well as arbitrary dose schedules with
identical total dose. The mathematical model predicted that doses delivered at
varying frequencies could provide similar tumor regression as standard of care
fractionation but prolonged growth delays – results that were subsequently veri-
fied in animal studies. The study exemplifies that an integrated multidisciplinary
approach can provide the urgently needed scientific methodology to design opti-
mized therapies.

1.2 Hypothesis and specific aims

The thesis aims at improving the understanding how tumor and surrounding tis-
sue respond to radiotherapy, through combining mathematical modeling with ex-
periments. We hypothesize that radiation, through inducing cellular senescence
in both cancer and normal cells, can trigger tumor angiogenesis and boost the
growth of previously dormant tumors in the neighborhood of primary site. This
effect, however, depends on the TP53 gene status as it controls the cell fate based
on the amount of DNA damage induced by radiation. Thus, we postulate that,
depending on the TP53 gene status, radiation combined with anti-agniogenic
treatment in the form of adjuvant therapy can improve cancer treatment outcome
in the case of localized diseases.

In order to verify the postulated hypothesis, this thesis will be organized
around the following specific aims.

Specific Aim 1 Determine experimentally if and to what extent radiation induces
cellular senescence (directly or through bystander signals) in cancer and normal
cell lines.

• Aim 1A: Irradiate human colorectal cancer cells and co-incubate them
with non-irradiated cells of the same type. Perform experiments for cells
that differ by TP53 gene status. Quantify amount of induced senescence.
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• Aim 1B: Irradiate normal human fibroblasts and co-incubate them with
non-irradiated cells of the same type. Measure amount of induced senes-
cence.

Specific Aim 2 Design and analyze mathematical model of tumor growth under
angiogenic signaling.

• Aim 2A: Derive the mathematical model of tumor growth under angio-
genic signaling, which incorporates the pathology of newly developed tu-
mor vasculature. Extend the model by incorporating the influence of anti-
VEGF focused treatment approaches.

• Aim 2B: Analyze the proposed model and simulate different scenarios.

Specific Aim 3 On the basis of proposed model investigate efficacy of different
treatment approaches for tumor that grows under angiogenic signaling.

• Aim 3A: On the basis of proposed model state and analyze the optimal
control problem (optimal treatment schedule and dosage problem) for the
anti-VEGF tumor treatment. Utilize the Pontryagin Minimum Principle
and analyze the possible solutions to the adjoint problem. Design and
implement efficient procedures to solve the problem numerically.

• Aim 3B: Perform both local and global sensitivity analysis of proposed
model. Implement Fourier Amplitude Sensitivity Test method and per-
form variance decomposition on different stages of tumor growth (at dif-
ferent time points). Investigate different possible scenarios for therapeutic
intervention.

1.3 Outline for the dissertation

Chapter 1: Introduction. This introduction.
Chapter 2: Background and hypothesis. Provides details about the biological
processes considered in the performed experiments and mathematical models. In
Chapter 2 we also clearly state hypothesis stated and investigated in this disser-
tation.
Chapter 3: Experimental results. Describes materials and methods used in
experiments together with summary of obtained results.
Chapter 4: Tumor angiogenesis model. In this chapter we derive in detail the
model of tumor growth under angiogenic signaling. We perform its analysis and
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show simulations of different possible scenarios. In Chapter 5 we also fit the
model to the experimental results available in the literature.
Chapter 5: Optimal control. Describes considered optimal control problem for
anti-VEGF treatment and provides its solution for certain cases. In Chapter 6 we
also show few possible numerical solutions to the optimal control problem.
Chapter 6: Sensitivity analysis. Describes the results of both local and global
sensitivity analyses performed for the proposed model. We focus on effective-
ness of different treatment approaches on different stages of tumor growth.
Chapter 7: Summary.

1.4 List of publications

Results presented in the dissertations were published in the following peer-reviewed
articles:

1. Poleszczuk J., Hahnfeldt P., Enderling H. Therapeutic implications from
sensitivity analysis of tumor angiogenesis models. PloS ONE 2015;10(3):
e0120007.

• Citations: 0

• 5 Year IF (2014): 3.702

• Contribution: I came with idea for the study while visiting P. Hah-
nfeldt and H. Enderling in the Center of Cancer Systems Biology in
Boston at the beginning of 2012. I’ve performed data fitting of the
models to the experimental data from murine models, as well as local
and global sensitivity analysis. Percentage contribution: 90%.

2. Poleszczuk J., Piotrowska M.J., Foryś U. Optimal protocols for the anti-
VEGF tumor treatment. Mathematical Modelling of Natural Phenomena
2014;9(4): 204–15.

• Citations: 1

• 5 Year IF (2014): 0.807

• Contribution: 90%. I came with idea for the study during XVIIth
National Conference on Application of Mathematics to Biology and
Medicine, where I was presenting the results of my previous research
on anti-angiogenic treatment modeling. I’ve formulated and analyzed
the optimal control problem discussed in the paper. Percentage con-
tribution: 90%.
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3. Poleszczuk J., Bodnar M., Foryś U. New approach to modeling of antian-
giogenic treatment on the basis of Hahnfeldt et al. model. Mathematical
Biosciences and Engineering 2011;8(2): 591–603.

• Citations: 10

• 5 Year IF (2014): 1.128

• Contribution: The research contained in the article is an extension
of my work done during MSc studies. I’ve derived the model consid-
ered in the paper, and worked together with M. Bodnar and U. Foryś
on its mathematical analysis and numerical simulations. Percentage
contribution: 50%.

Other studies performed during PhD studies that are directly related to the topics
considered in this dissertation were published in the following peer-reviewed
articles:

1. Poleszczuk J., Krzywon A., Forys U., Widel M. Connecting radiation-
induced bystander effects and senescence to improve radiation response
prediction. Radiation Research 2015;183(5): 571–577.

• Citations: 0

• 5 Year IF (2014): 2.880

• Contribution: I came with idea for the study when I first visited the
group of my thesis co-supervisor, Prof. Maria Wideł. I helped with
the experimental design of the study, proposed mathematical model
of senescence associated bystander signaling, and performed its data
fitting to the experimental data. Percentage contribution: 70%.

2. Widel M., Lalik A., Krzywon A., Poleszczuk J., Fujarewicz K., Rzeszowska-
Wolny J. The different radiation response and radiation-induced bystander
effects in colorectal carcinoma cells differing in p53 status. Mutation Re-
search 2015;778: 61–70.

• Citations: 0

• 5 Year IF (2014): 3.521

• Contribution: The work is an extension to the work published in [90].
I’ve helped with the design of the study. Percentage contribution:
10%.
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3. Poleszczuk J., Hahnfeldt P., Enderling H. Biphasic modulation of cancer
stem cell-driven solid tumour dynamics in response to reactivated replica-
tive senescence. Cell Proliferation 2014;47(3): 267–276.

• Citations: 2

• 5 Year IF (2014): 2.777

• Contribution: The idea for the study was proposed by H. Enderling
while I was visiting the Center of Cancer Systems Biology in Boston
at the beginning of 2012. I’ve implemented his idea in the form of
cellular automaton model, performed all simulations and subsequent
analysis of the results. Percentage contribution: 70%.

4. Piotrowska M.J., Bodnar M., Poleszczuk J., Foryś U. Mathematical mod-
elling of immune reaction against gliomas: Sensitivity analysis and influ-
ence of delays. Nonlinear Analysis: Real World Applications 2013;14(3):
1601–1620.

• Citations: 2

• 5 Year IF (2014): 2.322

• Contribution: In this study I performed the global sensitivity anal-
ysis for the considered mathematical model. I’ve implement the
Fourier Amplitude Sensitivity Test and subsequently proposed how
to simplify the model. Percentage contribution: 25%.





Chapter 2

Background and hypothesis

This Chapter describes the biological processes and mechanism that are an in-
tegral part of the investigated hypothesis. It begins with description of changes
induced in a cell after exposure to ionizing radiation, and existing cellular mech-
anisms to counteract them. It provides description of the basic functions of p53
protein, which is one of the most important proteins involved in cellular response
to DNA damage caused by radiation. After direct exposure to radiation, depend-
ing on the status of the TP53 gene (gene that encodes p53 protein), cell can either
die or acquire several distinct phenotypes. A particularly interesting phenotype
is senescence, which is described in the subsequent section. After considering
radiation response on a single cell level, the chapter focuses in two subsequent
sections on the response to radiation on a population level. First, it introduces the
concept of radiation-induced bystander effects that have been intensively studied
by experimentalists for the last few decades. Then, it describes the process of
tumor angiognesis, which for decades has been considered as a promising target
for cancer therapy. The chapter ends with detailed statement of the hypothesis,
which is investigated in the thesis.

2.1 Influence of ionizing radiation on a cell

Ionizing radiation, which is frequently utilized in cancer therapy, gives a charge
to the atoms that were previously electrically neutral by removing tightly bound
electrons from their orbits [106]. Ionization of nucleobases (cytosine, guanine,
adenine, and thymine), the basic building blocks of DNA, can result in breaks of
DNA strands and thus, can introduce errors in genetic material whose integrity
is essential for cell function and survival [2]. However, most of the DNA breaks

11



12 CHAPTER 2. BACKGROUND AND HYPOTHESIS

that occur after exposure to the ionizing radiation are caused not by the direct
ionization of nucleobases, but by the interaction of DNA strands with radiation-
induced water-derived radicals [59, 98], see Fig. 2.1.

Figure 2.1: Breaks in the DNA strands can occur directly through ionization
of DNA molecules or indirectly through interactions of DNA with radiation-
induced water-derived radicals. Figure reproduced from [79].

Breaks in the DNA are being detected by a specialized proteins, which then
initiate a various signaling cascades through mediator proteins. This results in
many changes on a cellular level, such as initiation of the DNA repair mecha-
nisms, arrest of the cell cycle at the regulation point in order to extend the time
available for necessary repairs, increase in the availability of DNA building ele-
ments (deoxynucleotides, dNTPs), or, if the damages are to extensive, initiation
of the programmed cell death process termed apoptosis [56], see Fig. 2.1. Single
strand breaks are relatively easy to repair by the available cellular mechanisms,
as the second intact strand carries information about proper structure of the ge-
netic material. Not always properly repaired and thus, potentially harmful for a
cell, are so-called double strand breaks (DSBs), i.e. breaks on both DNA strands
occurring so close to each other that the DNA splits into two parts [56, 64].

The p53 protein is one of the most important proteins regulating the response
of a cell to DNA damage. Its main function, in case of damage detection, is to
arrest the cell cycle in G1 phase in which cell prepares enzymes necessary for the
DNA replication in subsequent phases [38]. Elongating G1 phase duration gives
the cell time to repair the DNA and thus, decreases the chance of passing faulty
genetic material to daughter cells. Moreover, if the damages are too extensive
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Figure 2.2: Schematic representation of the cell response to double strand break
(DSB). Detection proteins sense a new newly created DSB and send a down-
stream signal to mediator proteins, which in turn affect multiple signaling path-
ways.

or the repair fails, p53 protein can trigger the programmed cell death pathway
– apoptosis [46, 78]. The TP53 gene, which encodes the p53 protein, is fre-
quently called the “guardian of the genome”, because of such an important role
in keeping consistency of genetic information stored in the DNA. Interestingly,
mutations of TP53 gene that impair the functioning of p53 protein are common
feature among human cancers [49]. In case of the lung, colon and ovarian cancer,
mutation of TP53 gene is found in about 50% of all diagnosed cases [49].

2.2 Cellular senescence

In 1961, Hayflick and Moorhead reported that extensively cultured human pri-
mary cells cease to proliferate after a finite number of divisions [54] yet remain
viable and metabolically active [17, 61]. Experiments with transfected telom-
erase, an enzyme that rebuilds telomeric DNA [50], revealed that proliferation
exhaustion is a consequence of telomere erosion [6, 103]. This irreversible cy-
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tostasis of the cell is termed replicative senescence. Several other factors can
lead to different forms of irreversible mitotic arrest, such as DNA damage and
oxidative stress (SIS - stress induced senescence; [61]), oncogenic activation
(OIS – oncogene-induced senescence; [104]), or loss of tumour suppressor genes
(PICS - PTEN loss-induced cellular senescence; [19]). Senescent cells display
altered cell morphologies, overexpress plasminogen activator protein 1 (PAI-I),
and present β-galactosidase [16, 97], see Fig. 2.3. Experiments suggest that cells
with functional p53 appear more sensitive to stress and oncogene activities that
stimulate senescence [5]. Initially, cellular senescence was believed to be a side

Figure 2.3: Human colorectal cancer cells in senescent state (A) and undergoing
apoptosis (B) after exposure to 8 Gy of radiation. Senescent cells display char-
acteristic enlarged morphology and over-expression of β-galactosidase (stained
in green). Pictures from own experiments.

effect of culturing cells in vitro, but recently senescent cells have also been de-
tected in vivo in a variety of tissues in a number of different organs [22]. The
senescence program is believed to protect tissue integrity by disabling mitosis in
stressed or damaged cells – therefore likely acting as a tumour suppressor [73].
During carcinogenesis, cells acquire traits that enable circumvention of replica-
tive senescence – a hallmark of cancer [52, 53, 71]. It has been suggested, how-
ever, that the cellular senescence pathways remain intact in tumours [101] and
can be reactivated through cell autonomous programs [126]. What is most im-
portant, it has been reported that cellular senescence can also be triggered, and
might actually be the predominant response to ionizing radiation and many cur-
rently used chemotherapeutic drugs [61, 71, 83]. Growth arrest in these cases is
achieved and maintained, in part, by the increased expression of specific cyclin-
dependent kinase inhibitors, including p16Ink4a [42].

Recent studies have shown that senescent cells can exert harmful effects on
the tissue microenvironmnet, mainly by the acquisition of a senescence-associated
secretory phenotype (SASP) [29]. Further, SASP seems to be conserved across
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cell types and species and it has been shown that it is triggered after a treatment
of cancer patients with DNA damaging chemotherapy [26]. SASP is accompa-
nied by a huge increase in the secretion of over 40 intercellular signaling factors,
which may have various effects on the surrounding cells [24, 129], such us pro-
motion of the proliferation and tumorigenesis of epithelial cells [63]. Senescent
cells have been also shown to release nitric oxide and ROS [127], which are one
of the intercellular signaling molecules that elicit the radiation induced bystander
effect [99]. What is most important, it has been shown that human fibroblast in
the senescent state secrete vascular endothelial growth factor [25] and thus, can
trigger the angiogenesis process.

2.3 Radiation-induced bystander effects

Radiation induced bystander effects (RIBE) are defined as the induction of bi-
ological changes in cells that are not directly exposed to ionizing radiation, but
are only subject to signals released by their irradiated neighbors, see Fig. 2.4.
For the last two decades they have attracted significant attention due to their
possible implications for radiotherapy; see [99] and references therein. Classi-
cal RIBE include negative influence of signals released by the irradiated cells
on unirradiated cells, such as: reduced clonogenic survival [81], increased sister
chromatid exchange [70], formation of micronuclei and apoptosis [95]. Other
types of RIBE include effects such as: increased survival of non-targeted cells
when the targeted cells received a high dose of radiation [99]; an increase in
the survival of cells targeted by a high radiation dose when neighboring cells
received a low radiation dose [74]. Various cell types present variable radiosen-
sitivity and bystander response, which can depend on, among others, the genetic
status, the experimental setting and endpoint investigated [7]. One of the most
intensively studied genes in RIBE research is the TP53 tumor suppressor gene,
which is involved (through its own product - the p53 protein) in DNA repair,
cell cycle regulation and apoptosis [21, 75, 121]. The role of the TP53 gene in
RIBE is, however, inconclusive. The appearance of DNA double-strand breaks
accompanied by binding of the protein 53BP1 (p53-binding protein 1), has been
detected as 53BP1 foci not only in the nuclei of cells irradiated by individual
alpha particles, but also in the adjacent non-irradiated cells [118]. Similarly, p53
protein expression was observed in the rat lung epithelial cells adjoining the cells
targeted with alpha particles [55]. On the other hand, it has been shown that both
HCT116 cells with p53-wild type and p53-knockout gene induced bystander ef-
fect appearing as decrease of clonogenic cell survival [80]. This indicates the en-
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gagement of p53 pathway in response to bystander signals, though cells lacking a
functional p53 may still generate such signals. Other experiments performed on
normal human fibroblasts [122] revealed that cells with wild type p53 were not
only restrained in releasing the bystander signals after irradiation, but were also
resistant to the signals released by the mutated p53 cells. Although the identity
of the molecular pathways associated with RIBEs has not been completely elu-
cidated, several intercellular and intracellular signaling molecules implicated in
bystander signaling have been identified; see [99] and references therein, notably
including ROS, nitric oxide, Interleukin 8 and NF-κB protein.

Figure 2.4: Different (non-mutually exclusive) scenarios of multi-cellular re-
sponses to radiation. In bystander (A) effects irradiated cells (gray circles) com-
municate with non-irradiated cells (white circles) within the irradiation field. In
abscopal responses (B) non-irradiated cells outside the radiation volume are af-
fected. In cohort effects (C) we consider signaling between irradiated cells.

2.4 Tumor angiogenesis

In 1971 Judah Folman in [43] wrote that growth of any tumor is strongly depen-
dent on the amount of blood vessels that it induces to grow. He surmised that,
if a tumor could be stopped from growing its own blood supply, it would wither
and die. In adults normal physiological role of angiogenesis – the process of
new vessels formation – is restricted to wound healing, the menstrual cycle and
pregnancy. In addition, angiogenesis is critical during fetal development. Unfor-
tunately, it is also essential for the successful growth and development of solid
tumors. After reaching avascular dormant state tumor can grow further only by
inducing vessels in host tissue to sprout capillary tubes which migrate towards
and ultimately penetrate the tumor, providing it with a circulating blood supply
and, therefore, an additional source of nutrients [57, 58].
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Figure 2.5: Schematic representation of tumor angiogenesis process. After
reaching avascular dormant state, tumor can grow further only by inducing ves-
sels in the host tissue to sprout capillary tubes which migrate towards and ul-
timately penetrate the tumor, providing it with a circulating blood supply, and
therefore an additional source of nutrients.

Despite the essential role of angiogenesis in tumor growth, it has been discov-
ered that tumor angiogenesis is highly pathological. Incorrect structure and poor
efficiency of newly formed vessels are common tumor features [57, 58]. Some
trials which where developed to investigate tumor biology revealed that most of
administrated dose of chemotherapy is not even absorbed by tumor. Moreover,
absorbed part of dose was not distributed evenly in particular tumor regions. It
makes effective tumor treatment difficult, because cells which do not get suffi-
cient amount of drug can survive and even if they are only few repeated tumor
growth is inevitable.

Figure 2.6: Pathology of tumor angiogenesis. Abnormal structure (right) and
poor efficiency of newly formed vessels are common tumor features. Anti-
angiogenic drugs improve chemotherapy by causing “vessel normalization” in
tumors (left).
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2.5 Working hypothesis

In the preceding sections we have reported existing experimental evidence that
the senescence can be induced directly by the ionizing radiation, with the magni-
tude depending on the TP53 gene status. We discussed the influence of senescent
cells on the surrounding tissue, providing reports showing that senescent cells
can trigger the angiogenesis process. We have also reported the current knowl-
edge about bystander effects, phenomena in which cells non-exposed to radiation
are affected by the signals from irradiated cells.

We hypothesize that senescence can be also induced in the cells residing out-
side of the irradiated volume through bystander signaling. To verify that state-
ment we perform series of experiments on both cancer and normal human cell
lines in which we co-incubate irradiated cells with non-irradiated ones (Specific
Aim 1). It is conceivable that in the in vivo setting senescent cells induced out-
side of the irradiation field can trigger the angiogenesis process and thus, boost
the growth of micro-tumors residing outside of the irradiation field. It is worth to
mention that in case of the breast cancer studies have shown that subclinical dis-
ease occurs in 52% and 25% of the specimens at distances >10mm and >20mm,
respectively, from the gross tumor volume captured at MRI images [102]. Thus,
we hypothesize that the radiotherapy combined with the anti-angiogenic drug
could improve the treatment outcome. This, unfortunately, can be verified only
in clinical trials or murine models, which are outside of the scope of this thesis.
However, even before attempting to design a clinical trial or murine experiment,
one needs to know the dosage at which the anti-angiogenic drug should be ap-
plied. That is why, in Specific Aim 2 we develop and analyze a mathematical
model of tumor growth under angiogenic signaling that incorporates the effect
of anti-angiogenic drugs and in subsequent Specific Aim 3, we state an optimal
control problem for anti-angiogenic treatment to derive the best clinical proto-
cols. In Specific Aim 3 we also investigate other treatment approaches using
tools of sensitivity analysis.



Chapter 3

Experimental results

This Chapter presents experiments performed to verify if cellular senescence can
be induced through radiation-induced bystander signaling. These experiments
were planned and performed with the group of Prof. Maria Wideł, who is co-
supervisor of this dissertation. The Chapter starts with the detailed description
of materials and methods used in the experiments. Briefly, irradiated (2, 4, 6
and 8 Gy) human colorectal carcinoma cells (HCT116) with wild (p53 +/+) or
knockout (p53 −/−) TP53 gene were co-incubated with non-irradiated cells of
the same type. Senescence assays were used for both irradiated (IR) and only
co-incubated (By) populations. In order to asses the radiation response in nor-
mal tissue, the same set of experiments was performed for normal human dermal
fibroblasts (NHDFs). In subsequent sections of the Chapter we report experi-
mental results. Briefly, we observed that senescence is effectively induced in
bystander populations for both HCT116 p53 +/+ and NHDF cell lines, with
the magnitude depending on the radiation dose. We didn’t observe significant
changes in the fraction of senescent cells in bystander populations for HCT116
p53 −/− cells. However, additional experiments performed only for NHDFs
make us believe that in the case of HCT116 p53 −/− cell line senescence induc-
tion was not detected as a result of too short co-incubation period.

3.1 Materials and Methods

Human colorectal carcinoma HCT116 wild type (p53 +/+), p53 null (p53 −/−)
and NHDF cell lines were obtained from the Culture Bank of Center of Oncology-
Gliwice. The HCT116 p53 +/+ line was originally purchased from American
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Type Culture Collection; HCT116 p53 −/− was kindly donated by Prof. Bert
Vogelstein (The Ludwig Center at Johns Hopkins University, Baltimore, USA).

3.1.1 Culture system and irradiation

All cell lines were routinely tested for mycoplasma and cultured at 37 ◦C in a hu-
midified CO2 incubator in Dulbecco’s modified Eagle’s medium/F12 Ham (1:1)
(Sigma-Aldrich) supplemented with 12% heat-inactivated fetal bovine serum
(FBS; PAA, Immuniq, Poland) and 80 μg/ml gentamicin (Krka, Poland). Cells to
be irradiated were seeded 20 hours before the experiment (1.0× 105 cells/well in
3 ml medium) into 6-well dishes (BD Immunogen, see Fig. 3.1) and incubated.

Figure 3.1: Cell culture plate used in bystander experiments. Non-irradiated cells
in inserts are inserted into one of 6 wells containing cells exposed to ionizing
radiation.

Simultaneously, the same number of cells was seeded on inserts with mem-
brane bottom of 0.4 μm pore size (BD Immunogen), inserted into sterile 6-well
dishes, and incubated. Confluence of cells before irradiation was about 50%.
Cells in 6-well dishes were irradiated at a room temperature with 2, 4, 6, 8 Gy
single doses of X-rays (6 MV) generated by the therapeutic accelerator Clinac
600. Immediately after irradiation, inserts with non-exposed cells were inserted
into wells and co-incubated for a range of periods. The schematic representation
of the experimental procedure is shown in Fig. 3.2.
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Figure 3.2: Experimental setting used in bystander experiments. Both cells to be
irradiated and bystanders were seeded about 20 h before irradiation. About 10
minutes after irradiation inserts were inserted into wells.

3.1.2 Senescence assay

After co-incubation period, senescent cells were evaluated in situ directly in
the wells and inserts using a widely used and accepted biochemical marker,
senescence-associated β-galactosidase (SA-β-gal) activity [109]. It has been
shown in [32] that expression of SA-β-gal distinguishes senescent cells from
proliferating and quiescent ones. For the SA-β-gal staining we used Senescence
Cells Histochemical Staining Kit (Sigma-Aldrich) in accordance to the original
protocol. Staining was evaluated after ∼16 h incubation at 37 ◦C in a CO2-free
incubator. The percentages of β-galactosidase positive cells were determined us-
ing inverted microscope by scoring at least 1000 cells/sample (one of the acquires
images is shown in Fig. 3.3). Characteristic flattened and enlarged morphology

Figure 3.3: Exemplary image fragment of the culture plate stained for
senescence-associated β-galactosidase (SA-β-gal).

of the senescent cells, with a prominent nucleus and increased cytoplasmic gran-
ulation, was also taken into account. Presented results are the averages from 4
independent experimental sets.
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3.2 Results

3.2.1 Senescence induction in bystander populations

In the first set of experiments we quantified amount of induced senescence in
both irradiated and bystander populations after 48 h of co-incubation. We found
that p53 positive HCT116 cells are much more vulnerable to radiation induced
senescence than their p53 negative counterparts, compare Fig. 3.4. We observed

Figure 3.4: Fraction of senescent cells in p53 +/+ and p53 −/− colorectal car-
cinoma cell lines (HCT116) exposed to direct radiation. Asterisk denotes statis-
tically significant difference (p-value<0.05; Student’s t-test). Presented data are
the means ± SD.

that the higher the radiation dose, the larger the difference between the cell lines
in the fraction of senescent cells (4.57% vs. 2.28% at 4 Gy and 15.81% vs. 3.63%
at 8 Gy for directly irradiated p53 +/+ and p53 −/− cell lines, respectively).
The same qualitative behavior was found in the bystander populations, compare
Fig. 3.5. For p53 positive bystander population we obtained a 6-fold increase in
the fraction of senescent cells compared to the untreated control.

Similar response to radiation was observed for NHDF cell line, compare
Fig. 3.6. After direct exposure to 6 Gy of radiation about 14% of NHDF popu-
lation acquired senescent phenotype, which is a significant increase compared to
almost negligible fraction of senescent cells in the untreated control (p-value<0.05;
Student’s t-test). We observed the same qualitative behavior in the bystander
population, for which about 8% of cells acquired senescent phenotype after co-
incubation with population irradiated using 8Gy of radiation.
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Figure 3.5: Fraction of senescent cells in p53 +/+ and p53 −/− colorectal carci-
noma cell lines (HCT116) co-incubated with the cell exposed to direct radiation.
Asterisk denotes statistically significant difference (p-value<0.05; Student’s t-
test). Presented data are the means ± SD.

Figure 3.6: Fraction of senescent cells in normal human dermal fibroblasts cell
line (NHDF) exposed to direct radiation and co-incubated with irradiated cells.
Presented data are the means ± SD.

3.2.2 Senescence induced senescence

In the second part of experiments we set on to answer if changes induced in the
bystander populations can propagate further into the tissue, i.e. cells from inserts
can induce senescence in untreated cells. We designed three experimental setups
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for NHDF cell line:

• Control: co-incubate directly irradiated cells (0, 2 and 6 Gy) with non-
irradiated bystanders for 96 hours. Quantify the amount of senescence in
wells.

• Group 1: co-incubate directly irradiated cells (0, 2 and 6 Gy) with non-
irradiated bystanders for 48 hours and then remove the inserts. Continue
incubation of irradiated cells without inserts for additional 48 hours. Quan-
tify amount of senescence in wells.

• Group 2: place inserts removed after 48 hours in Group 1 into wells
containing untreated cells and co-incubate them for 48 hours. Quantify
amount of senescence in wells.

If there is a positive feedback loop, i.e. cells acquiring changes through by-
stander signaling can induce senescence in untreated cells, we can expect that
the fraction of senescent cells will be larger in Group 1 compared to the Control.
We can expect also a significant increase in the amount of senescence in Group 2
compared to cells that were not exposed to any radiation (0 Gy from all groups).

In the experimental results, however, we did not detect any significant dif-
ferences between Control and Group 1, compare Fig. 3.7. The increase in the

Figure 3.7: Fraction of senescent cells in normal dermal fibroblasts NHDF
line from experimental control group (96 h co-incubation), group 1 (48 h co-
incubation + 48 h incubation), and group 2 (48 h incubation + 48 h co-
incubation). Presented data are the means ± SD.
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fraction of senescent cells within the irradiated population was indistinguishable
between both groups and increased from about 5% at 0 Gy to about 30% for 6
Gy. Interestingly, the amount of senescence is noticeably higher after 96 hours of
co-incubation compared to 48 hours of co-incubation, compare Figs. 3.7 and 3.6.
Consistently, we did not observe any significant differences between Group 2 and
untreated cells – the amount of senescent cells within populations was the same.

3.3 Conclusions

Performed experiments have clearly shown that the bystander signals can induce
senescent phenotype in bystander non-irradiated populations. This effect, how-
ever, is dependent on the TP53 gene status – in the considered co-incubation pe-
riods it was detected only for cells having a functioning p53 protein. Moreover,
experiments designed to verify if the bystander signal can be propagated fur-
ther indicate that there are no-secondary effects on the surrounding tissue when
senescence is considered. However, we observed that the fraction of senescent
cells is dependent on the co-incubation period, i.e. development of senescence
phenotype can take more than 48 hours. Thus, it is conceivable that the sec-
ondary effects and bystander senescence induction in p53 knockout cells could
be visible after prolonged periods of co-incubation. However, confirmation is
needed with subsequent experiments.





Chapter 4

Tumor angiogenesis model

This Chapter introduces mathematical model of tumor response to anti-angiogenic
treatment, which was developed together with the group of my supervisor Prof.
Urszula Foryś. The mathematical framework is based on the well recognized
model proposed by Hahnfeldt and colleagues [51], which has been an object of
my research since graduate studies [85, 87, 92]. The model has been success-
fully compared by Hahnfeldt and co-workers to the experimental data collected
from murine models designed to investigate the effects of anti-vascular treatment,
i.e. treatment focused on destroying endothelial cells that are the basic building
blocks of blood vessels. For that kind of treatment, on the basis of the Hahnfeldt
et al. model, with the usage of the optimal control theory, some protocols of anti-
vascular treatment and radiotherapy were proposed [40, 68, 69, 111, 115, 117].
However, the formulation of that model in our opinion is valid only for the anti-
vascular treatment and thus, we propose modification of the original model such
that the anti-angiogenic treatment, that is the treatment focused on blocking an-
giogenic signaling, is valid. Preliminary idea of presented modification was also
described in my MsC thesis. However, later on we have proposed more general
model exploiting new methodology in modeling of such a treatment [86].

4.1 Introduction

Growth of tumor under angiogenic signalling was successfully mathematically
described by Hahnfeldt et al. in [51]. Confirmed by laboratory experiments bio-
logical validity of the Hahnfeldt et. al model makes it probably the most impor-
tant model describing this aspect of tumor development. Several other studies
have incorporated mathematical models for the development of tumor under an-
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giogenic signalling: see [76] and references therein or [94], where also other
processes connected with tumor growth are presented. A family of models based
on the Hahnfeldt et al. model is an object of study of several groups of re-
searchers. D’Onofrio and Gandolfi [34–36] analyzed these models from a dy-
namical systems point of view. Influence of time delays which are important
part of any complex biological process were studied in [8, 11, 12, 45]. Świer-
niak, Świerniak et al. [111, 115, 117] and Ledzewicz and Schättler [68, 69] stud-
ied these models as optimal control problems with the goal of designing opti-
mal and suboptimal antiangiogenic protocols. In the literature we can also find
models built on different, than in case of the Hahnfeldt et al. model, assump-
tions (see e.g. [1, 4]) and approaches to angiogenesis (see e.g. [9]).

The model proposed by Hahnfeldt et al. [51] results from the theoretical
concept postulating that the tumor growth is a bidirectional control process. The
tumor regulates associated vascular growth or suppression, and in turn, the tu-
mor vasculature controls the tumor growth through its usual nutritive function.
The tumor volume (V) and the effective vascular support (K), which defines the
environmental carrying capacity, are time-dependent variables described by cou-
pled ordinary differential equations (ODEs). Hahnfeldt et al. [51] built the model
on the basis of Gompertzian tumor growth, which is one of the commonly used
single population growth model. This model reads

V̇(t) = −εV(t) ln
V(t)
K

, (4.1)

where:

• V(t) is the population size (here we consider the population of tumor cells)
at time t;

• ε is the maximal reproduction rate, meaning the rate of reproduction for
the size of population near 0;

• K is the population carrying capacity, meaning the optimal population size:
if V(t) < K, then the population size can grow, otherwise it must decrease,
and in natural populations growing from the beginning in their environ-
ment only the first situation is possible.

It is obvious that for any positive initial data V(0) > 0 the solution V(t) of
Eq. (4.1) tends to K monotonically. Hahnfeldt et al. [51] claimed that Eq. (4.1)
could be a proper description for tumor cells only in the first avascular stage of
the growth. Then, with the constant effective vascular support Kmax, the initial
rapid tumor growth is followed by a slowdown as the tumor volume approaches
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environmental carrying capacity Kmax. When angiogenesis starts, the tumor car-
rying capacity grows, and therefore K = K(t) in such a case. Moreover, Eq. (4.1)
should be complemented by an equation describing the dynamics of K(t).

To account reciprocal interaction of the tumor with the host vasculature the
vascular support can be described by the following relation

K̇(t) = −µK(t) + bS (V(t),K(t)) − dI(V(t),K(t)) , (4.2)

where −µK(t) represents the spontaneous loss of functional vasculature, the term
bS (V(t),K(t)) represents the stimulation of vessels growth, while −dI(V(t),K(t))
describes the endogenous inhibition of previously generated vasculature.

To derive the relationship between the functions I(V,K) and S (V,K) Hah-
nfeldt et al. considered a partial differential equation for the concentration of
angiogenic stimulators/inhibitors from which the following relationship between
I(V,K) and S (V,K) was derived

I(V,K)
S (V,K)

= VαKβ , where α + β = 2/3 ,

see [51, 87] for further details. We shall follow this idea in the next Section,
proposing our modification of this model.

Hahnfeldt et. al proposed to consider α = −1/3 and β = 1, that is the
stimulatory capacity and the endogenous inhibition functions given by V(t) and
K(t)V2/3(t), respectively. However, other forms of those functions were con-
sidered by other authors, compare Tab. 4.1, and hence one can consider the
whole family of the tumor angiogenesis models. Introduction of other stimu-

S(V(t), K(t)) I(V(t), K(t)) Ref.

V(t) K(t)V2/3(t) Hahnfeldt et al. [51]

K2/3(t) K4/3(t) Ergun et al. [40]

K(t) K(t)V2/3(t) d’Onofrio and Gandolfi [34]

Table 4.1: Formulas for the stimulatory capacity function S (V,K) and the en-
dogenous inhibition function I(V,K) considered in the literature.

lation/inhibition functions was motivated by the biological evidences [34] or it
was dictated by easier tractability of the associated optimal control problem [40].
However, it can be shown (see e.g. [84]) that for all formulas presented in Tab. 4.1
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and arbitrary positive initial conditions V0 > 0 and K0 > 0, the corresponding so-
lution (V,K) of Eqs. (4.1) and (4.2) exists for all t ≥ 0, is unique and both V and
K remain positive. In addition, there are only two possible scenarios depending
on the parameter values: there exists a unique positive globally asymptotically
stable steady state in R2

+ or there is no positive steady state and the solution (V,K)
tends to (0, 0) as t → +∞.

The classical Hahnfeldt et al. model includes also additional term describing
anti-vascular treatment. Therefore, the second equation of the model takes the
form

K̇(t) = −µK(t) + bS (V(t),K(t)) − dI(V(t),K(t)) − eK(t)u(t) , (4.3)

where u(t) describes the concentration of drug which is typically referred as to
antiangiogenic.

Eventually, the Hahnfeldt et al. model reads

V̇(t) = −εV(t) ln V(t)
K(t) ,

K̇(t) = −µK(t) + bV(t) − dK(t)
(
V(t)

)2/3
− eK(t)u(t).

(4.4)

What is important, this model predictions were successfully compared with ex-
perimental data on the treatment with TNP-470, Angiostatin and Endostatin [51].

The analysis of this model dynamics for constant treatment [69] yields the
following corollary.

Corollary. If u(t) = u is independent of t, then

• for 0 ≤ u < b−µ
e there exists a positive steady state of Eqs. (4.4),

(
V̄ , K̄

)
=(

(b−µ−eu)3/2

d3/2 , (b−µ−eu)3/2

d3/2

)
, which is globally attractive;

• for u ≥ b−µ
e there is no positive steady state and any solution tends to the

trivial one (0, 0).

It should be marked that the term−eK(t)u(t) in the second equation of Eqs. (4.4)
is formed in the same way as the first term in the equation for K̇(t), that is −µK(t),
which is assumed to describe the spontaneous loss of functional vasculature [51].
Therefore, we claim that this kind of treatment modeling can be referred only to
anti-vascular treatment, that is the treatment with the usage of vascular targeting
agents (VTAs) which are designed to cause a rapid and selective shutdown of the
blood vessels of tumors [66, 120]. In opposite to VTAs, antiangiogenic drugs
are designed to inhibit the formation of new vessels on the level of signaling
and therefore, treatment with their usage needs in our opinion another mathe-
matical description. In [86] we tried to make such description by modifying the
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derivation of the Hahnfeldt et. al model. We described only those antiangiogenic
agents which are designed to bind and block the proteins that are responsible for
inducing growth of blood vessels (eg. VEGF – vascular endothelial growth fac-
tor [57, 58]). An example of such agent is widely used bevacizumab (trade name
Avastin, Genentech/Roche) which is a humanized monoclonal antibody that rec-
ognizes and blocks vascular endothelial growth factor A (VEGF-A) [128].

We will refer further as antiangiogenic only to the treatment that is focused
on blocking the signaling of angiogenesis process, while the treatment described
originally by Hahnfledt et al. will be referred as to antivascular.

4.2 New model derivation

The key element in introducing antiangiogenic treatment to the Hahnfeldt et al.
model is to modify Eq. (4.3). To obtain the exact forms of both functions S (V,K)
and I(V,K) the following diffusion–consumption equation for the concentration
n(t, x) of stimulators/inhibitors was used

∂n(x, t)
∂t

= D2∆xn(x, t) − cn(x, t) + s1l[0,r0)(||x||) , (4.5)

where D2 denotes the diffusion coefficient, c is the stimulator/inhibitor clearance
rate, s is the rate of stimulator/inhibitor secretion and r0 is the radius of the tumor,
which is assumed to be a three dimensional spheroid.

We assume that administered drugs are proteins that bind and block angio-
genic stimulators, and therefore we propose a modification of Eq. (4.5) (in the
case when n(x, t) is a concentration of stimulators) in the following form

∂n(x, t)
∂t

= D2∆xn(x, t) − (c + f (x, u(t)))n(x, t) + s1l[0,r0)(||x||) , (4.6)

where u(t) is the concentration of drug in the normal tissue at time t.
Due to the pathology of tumor angiogenesis we assume that the concentra-

tion of drug inside the tumor is different than outside, therefore we propose the
following simple form of f (x, u(t)) function

f (x, u(t)) =

{
u(t) for ||x|| ∈ [r0,∞),

du(t) for ||x|| < r0,
(4.7)

where the parameter d ∈ R+ describes the change in drug concentration caused
by the incorrect structure of vessels inside the tumor.
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Let us further assume that the tumor and the drug concentration are in quasi-
stationary states, that is the growth rate of tumor and the change of drug concen-
tration are small relative to the rate of distribution of factor, then

∂n(x, t)
∂t

= 0 and u(t) = const = u.

Following [51] we assume also that concentration of stimulator is radially sym-
metric, that is

||x|| = ||y|| =⇒ n(x) = n(y).

Under those assumptions, Eq. (4.6) simplifies to the following ordinary dif-
ferential equation of the second order

n′′(r) +
2
r

n′(r) −
(c + f (r, u))

D2 n(r) +
s1l[0,r0)(r)

D2 = 0.

As in [51] we try further to obtain analytic solution of the equation formulated
above. As we are interested in radially symmetric, continuously differentiable
and bounded solution, we need to have the following conditions satisfied

n′(0) = 0 and sup
r∈[0,+∞)

|n(r)| < +∞ . (4.8)

Making the change of variables (u, z)→ (r, n), where

u = r
√

c+du
D , z =

√
r
(
n − s

c+du

)
f or r < r0,

u = r
√

c+u
D , z =

√
rn f or r ≥ r0,

we obtain in both cases the modified Bessel equation in z(u) of order 1/2, from
which, under the assumptions (4.8), we obtain the following form of the solution
n(r)

n(r) =


b1

D exp
(
−r
√

c+u
D

)
r
√

c + u
for r ∈ [r0,∞),

s
c + du

+ b2

D sinh
(
r
√

c+du
D

)
r
√

c + du
for r < r0,

where b1, b2 are some constants. The exact expressions for b1, b2 are got by
checking the limits

lim
r→r−0

n(r) = lim
r→r+

0

n(r) and lim
r→r−0

n′(r) = lim
r→r+

0

n′(r) .

Under these assumptions we obtain that

b1 =
s
√

c2 exp
( √c2r0

D

) (√
c1r0 cosh

( √c1r0

D

)
− D sinh

( √c1r0

D

))
c1D

(√
c1 cosh

( √c1r0

D

)
+
√

c2 sinh
( √c1r0

D

)) ,

b2 = −

(
D +

√
c2r0

)
s

c1D cosh
( √c1r0

D

)
+
√

c1c2D sinh
( √c1r0

D

) ,
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where c1 = c + du and c2 = c + u. In [51] it was assumed that c (stimulator clear-
ance rate) is large and the exact solution n(r) was approximated. In our derivation
we proposed that the stimulator clearance rate is also monotonically increasing
function of the drug concentration and is always greater than the clearance rate
c in the absence of treatment. Therefore, we can make similar approximation as
in [51] from which we obtain

n(r) ≈


s

c + du
for r < r0,

0 for r ∈ [r0,∞),

Our main goal is to propose specific form of the S (V,K) function under the above
calculations. Therefore, we calculate the total concentration of stimulators inside
the tumor

L(r0, u) = γ

∫ r0

0
n(r)r2dr ≈ γ

s
c + du

r3
0,

where γ is some constant. We see that L depends on r3
0 and V = 4

3πr3
0 which

yields

L(r0, u) = L(V, u) ≈
α

c + du
V, α = 3

4πγs. (4.9)

We shall now formulate the law governing the change of drug concentration
inside the tumor. We propose that it should be proportional to the inverse of the
tumor volume V (d ∼ 1/(β+V p)), as the pathology is increasing during the tumor
growth and decreasing due its reduction due to the treatment. Under the obtained
approximation (4.9) and the assumption about the form of the change of the
drug concentration we formulate the following system describing angiogenesis
process with antiangiogenic treatment

V̇ = −εV ln
V
K
,

K̇ = −µK + b
(β + V p)V

a(β + V p) + u(t)
− dKV2/3 ,

(4.10)

where all parameters are non-negative.
Under the assumption that the same amount A of antiangiogenic drug is ad-

ministered as bolus at time moments t1, . . . , tn and usual pharmacokinetic as-
sumptions we propose the following form of u(t):

u(t) = D
n∑

i=1

exp
(
−clr(t − ti)

)
l{t≥ti} , (4.11)

where clr is the parameter describing the clearance rate of the drug.
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4.3 Analysis of the model dynamics for constant
treatment

In this section we study the behavior of the system

V̇ = −εV ln
V
K
,

K̇ = b
β + V p

a(β + V p) + u
V − dKV2/3,

(4.12)

where we assume that µ ≡ 0 and u(t) = const = u. The first assumption fol-
lows from the estimations of parameters published in the original article [51],
while the second one is the standard first attempt in analyzis of the influence of
treatment.

The right-hand side of Eqs. (4.12) is properly defined in D = (R+)2, where
R+ = (0,+∞) here. Moreover, it is of class C1 in D which yields the existence
of unique solution for every initial data fromD.

Proposition. The setD is invariant for Eqs. (4.12).

Proof. Notice, that the right-hand side of Eqs. (4.12) can be extended on the
boundary ofD. Indeed, for every arbitrary K > 0 defining

F1(V) =

−εV ln V
K for V > 0,

0 for V = 0

one gets a continuous function of V . Similarly,

F2(K) = b
β + V p

u + aβ + aV p V − dKV2/3

is a continuous function of K for every K ∈ R and arbitrary V ≥ 0.
Let (V0,K0) ∈ D be the initial point for t0 = 0. We know that the unique

solution exists on some time interval [0, t∗). IfD is not invariant, then there exists
such initial data and time t1 > 0 for which the solution reaches the boundary of
D. Therefore, either limt→t−1

V(t) = 0 or limt→t−1
K(t) = 0. However, the extended

functions F1 and F2 of the right-hand side show that if V(t1) = 0, then V̇(t1) = 0
and if K(t1) = 0, then K̇(t1) ≥ 0. Therefore, the solution to Eqs. (4.12) cannot
leave the setD. �

The general behavior of solutions of Eqs. (4.12) can be analyzed through the
phase-space portrait. Analyzing the phase-space portrait we calculate the null-
clines for Eqs. (4.12), that is
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1. for V the null-cline inD is V = K;

2. for K the null-cline inD is K =
b
d
βV1/3 + V p+1/3

aβ + u + aV p .

The dynamics of Eqs. (4.12) depends on the shape of the null-cline of K(V). We
see that

K(V) ∼
b

ad
V1/3 , as V → ∞ , K(V) ∼

bβ
d(aβ + u)

V1/3 , as V → ∞ .

we see that the null-cline of V is below the null-cline of K for small V and above
this null-cline for large V . Therefore, to determine the dynamics of Eqs. (4.12)
we have to determine the number of intersections between the null-cline of K and
the null-cline of V , that is to calculate the number of steady states. The relation
K(V) = V yields

αV p+2/3 + α (β + ϑ) V2/3 − V p − β = 0 , (4.13)

where α = ad
b and ϑ = u/a. To determine a number of positive solutions of (4.13)

we use Descartes’ rule of signs [3].
Although the rule can be applied only for polynomials, it is possible to use

it for (4.13) with p = k/(3n), k, n ∈ �, since then the left-hand side of (4.13)
is a polynomial of x = V1/(3n), and by a continuity argument the result can be
extended for any p ≥ 0.

1. For p = 0 the coefficients have signs: + + − and for p ∈ (0, 2/3): + + −−,
thus Descartes’ rule of signs implies that there exists exactly one positive
solution of (4.13).

2. If p > 2/3 we have to change the places of the second and the third term
of (4.13) and then the sings are as follows: + − +− and (4.13) can have
either three or one positive solution.

3. In the case p = 2/3, the signs can be + + − (if β + ϑ > 1) or + − − (if
β + ϑ < 1), but this means one change of sing of the coefficients, and
therefore there exists exactly one positive solution to (4.13).

Now, we consider p > 2/3 and give a sufficient condition for the existence of
a unique positive solution of (4.13). In fact, we will give a condition of the
monotonicity of the left-hand side of (4.13). Differentiating with respect to V we
have

α

(
p +

2
3

)
V p−1/3 +

2α
3

(β + ϑ)V−1/3 − pV p−1. (4.14)
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Positivity of (4.14) for V > 0 is equivalent to the inequality

g(V) = α

(
p +

2
3

)
V2/3 +

2α
3

(β + ϑ)V2/3−p > p , for V > 0.

Now, we find minimum of the function g. Calculating the derivative of g and
letting it to be zero we find a point V0 at which g reaches its minimum

V0 =


(
p − 2

3

)
(β + ϑ)(

p + 2
3

) 
1/p

.

The condition g(V0) > p guarantees monotonicity of the left-hand side of (4.13),
and thus the existence of a unique positive solution of (4.13).

We can rewrite the inequality g(V0) > p and formulate the following lemma.

Lemma. If p ∈ [0, 2
3 ] or p > 2

3 and the inequality

u > a


(

b
ad

) 3p
2
 p + 2

3

p − 2
3

1− 3p
2

− β

 (4.15)

holds, then there exists a unique steady state of (4.12) inD.

We want to emphasize that Condition (4.15) is only sufficient for the exis-
tence of a unique positive steady state. If this condition is not fulfilled it can
happen that the positive steady state is unique. In fact, numerical simulation
suggest that three positive steady states may exist only for small values of β, and
coefficients of those two additional steady states are very small.

From the phase portrait (see Fig. 4.1) it can be seen that the largest positive
steady state (A) is always a stable node and so the smallest positive steady state
(C), if it exists. The middle steady state, if exists, is a saddle point.

Moreover, we can formulate the following theorem.

Theorem. If the positive steady state for Eqs. (4.12) is unique in D, then it is
globally stable inD.

Proof. In fact, studying the phase-space portraits for Eqs. (4.12) we see that
every solution is bounded. Therefore, according to the Poincaré–Bendixson the-
orem any solution tends to either a steady state or to a closed orbit. However, due
to the Dulac–Bendixson criterion there is no closed orbit in D. Indeed, taking
B(V,K) = 1

VK one gets

∂

∂V

(
−
ε

K
ln

V
K

)
+
∂

∂K

(
b
K

β + V p

u + a(β + V p)
− dV−1/3

)
= −

ε

KV
−

b(β + V p)
K2(u + a(β + V p))

< 0,

which implies that there is no closed orbits inD. �
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Figure 4.1: Sketch of the phase portrait of Eqs. (4.12). On the left-hand side
the case with one positive steady state, and on the right-hand side the case when
three steady states exist.

4.4 Numerical simulations

To illustrate the behavior of the solution of the model described by Eqs. (4.10)
with the pharmacokinetic function u given by (4.11) we perform some numerical
simulation. We have taken the same model parameters as Hahnfeldt et al. [51]
rescaled as in [10]. Thus, we use the following values of the model parameters:

ε = 0.192 , µ = 0 , b = 5.85 , d = 4.052 , a = 1 , e = 0.1 , β = 1 .

The daily dose of medicine Dd varies. In fact, we use D = Dd/n, where n is the
number of doses applied each day. If the medicine is applied every kth day, then
n = 1/k. For chosen parameters’ values there exists a unique positive steady
state of Eqs. (4.12).

In order to compare the treatment that is considered in the original Hanhn-
feldt model with the treatment proposed by us we use exactly the same pharma-
cokinetic function.

We have compared the solution of the original Hahnfeldt et al. model with
the modified model for p = 1 (see Figs. 4.2, 4.4, 4.6) and the modified model for
different values of p, this is for p = 2 and p = 0 (see Figs. 4.3, 4.5, 4.7).

If the treatment is applied rarely an oscillation due to application of the
medicine can be observed (see Figs. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7). If the daily
dose is small, the size of tumor in the stationary state is smaller for the modified
model than for the Hahnfeldt et al. model and deceases with decreasing p (see
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Figure 4.2: Comparison of solutions of the Hahnfeldt model (4.4) and modified
model (4.10) for daily dose 0.05. Solid line – the solution for a dose is applied
one a week, dotted line – a dose is applied every hour.
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Figure 4.3: Comparison of solutions of the modified model (4.10) for daily dose
0.05 for different values of p. Solid line – the solution for a dose is applied one
a week, dotted line – a dose is applied every hour.

Fig. 4.2, 4.3 and 4.8). If the daily dose is larger, the size of tumor in the station-
ary state become smaller with increasing p (see Fig. 4.4, 4.5 and 4.8). For daily
dose large enough (larger than 0.5), the size of tumor in the steady state becomes
smaller for the Hahnfeldt et al. model (see Fig. 4.6, 4.7 and 4.8).

We have not observed any significant difference in means of the solutions for
various treatment regimes when means were calculated over the interval equal to
the time between doses’ applications.
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Figure 4.4: Comparison of solutions of the Hahnfeldt model (4.4) and modified
model (4.10) for daily dose 0.2. Solid line – the solution for a dose is applied
one a week, dotted line – a dose is applied every hour.
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Figure 4.5: Comparison of solutions of modified model (4.10) for daily dose 0.2
for different values of p. Solid line – the solution for a dose is applied one a
week, dotted line – a dose is applied every hour.
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Figure 4.6: Comparison of solutions of the Hahnfeldt model (4.4) and modified
model (4.10) for daily dose 0.7. Solid line – the solution for a dose is applied
one a week, dotted line – a dose is applied every hour.
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Figure 4.7: Comparison of solutions of modified model (4.10) for daily dose 0.7
for different values of p. Solid line – the solution for a dose is applied one a
week, dotted line – a dose is applied every hour.
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Figure 4.8: Comparison of the mean value of the solution to the Hahnfeldt
model (4.4) (dotted line) and modified model (4.10) (solid line) in the stationary
state (after long time) for depending on daily dose

4.5 Summary

In this chapter we have described a new approach to antiangiogenic treatment.
Typically, such treatment is described as a separate term in the equation describ-
ing the dynamics of vessels’ volume, as in the case of the classical Hahnfeldt et
al. model [51]. In our opinion such term reflects anti-vascular treatment, while
anti-angiogenic treatment occurs on the level of the angiogenic signaling. We
have considered such type of drugs which acts on the stimulators of angiogene-
sis and therefore, basing on the Hahnfeldt et al. ideas [51] we have modified the
term describing stimulation of angiogenesis. As it can be expected, the dynamics
of both considered models is completely different. Starting the research on an-
tiangiogenic treatment Folkman [43] believed that this should lead to complete
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recovery from cancer disease. Therefore, there were such requirements for the
Hahnfeldt et al. model that it should reflect complete recovery for sufficiently
high drug dosage. Now, after many years of experiments we know that generally
it is not true. This is reflected in our modified model. We have studied the dy-
namics of the modified model in the case of constant treatment. We know that
for the original Hahnfeldt et al. model the complete recovery is guaranteed un-
der the assumption of sufficiently high drug dosage. For the modified model we
have shown that complete recovery is impossible independently of the magni-
tude of this dosage; this phenomenon was noticed in [35, 37]. This suggest that
using only anti-angiogentic treatment we are not able to cure cancer. However,
using anti-angiogenic treatment we are able to decrease both cancer and vessels’
volume and normalize vasculature such that chemotherapy can better penetrate
tumor mass. This is now the main goal of anti-angiogenic treatment. We have
performed a series of numerical simulations using non-constant treatment, de-
scribed as an application of drug as bolus. As for the constant treatment, the
application of the same doses of drugs give different results depending on the
Hill coefficient p. In our opinion, experiments with different doses of differ-
ent drugs should be performed in order to check which model is better for the
description of the specific drug.





Chapter 5

Optimal control

This Chapter presents results of the research on anti-angiogenic treatment in the
context of optimal control. It is prepared on the basis of [91], in which we sum-
marized the results of our research on that topic. Cancer treatment using the
anti-angiogenic agents targets the evolution of tumor vasculature. The aim is
to significantly reduce supplies of oxygen and nutrients, and thus starve the tu-
mor and induce its regression. We consider the family of tumor angiogenesis
models proposed by Hahnfeldt et al. described by Eqs. (4.1)-(4.2) together with
our modification – Eqs. (4.10), that increases accuracy in the case of treatment
using VEGF antibodies. Our aim is to consider the optimal control problem of
minimizing the tumor volume when the maximal admissible drug dose (the total
amount of used drug) and the final level of vascularization are also taken into
account. We investigate the solution of that problem for a fixed therapy duration.
We show that the optimal strategy consists of the drug-free, full-dose and sin-
gular (with intermediate values of the control variable) intervals. Moreover, no
bang-bang switch of the control is possible, that is the change from the no-dose
to full-dose protocol (or in opposite direction) occurs on the interval with the
singular control. For two particular form of the models, used by Hahnfeldt et
al. and Ergun et al., we provide additional theorems about the optimal control
structure. We investigate the optimal controls numerically using the customized
software written in MATLAB R©, which we make freely available for download
(http://labpages.moffitt.org/enderlingh/jan/) and attach its source in Appendix A.
Utilized numerical scheme is based on the composition of the well known gradi-
ent and shooting methods.

43
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5.1 Introduction

Conventional cancer therapies, such as radiotherapy or chemotherapy, are de-
signed to induce large amount of cell death in rapidly proliferating cancer cells.
Although such therapies are capable of shrinking the tumor many orders of mag-
nitude, the complete tumor eradication is often unachievable [72]. In addition,
cancer cells may acquire drug resistance, because of their fast duplications com-
bined with high genetic instability. Novel treatment approaches shift focus away
from the cancer cells and instead target the environment that supports the tu-
mor [14]. An example of such approach is the antiangiogenic therapy postulated
by Folkman [43], which is designed to inhibit the vascular support of the tu-
mor, and thus induce the tumor starvation and regression. It holds the promise
of being less patient specific, because it targets genetically stable host vascu-
lature and not the constantly mutating tumor cells [23]. Moreover, it has been
proposed that the proper dose of the antiangiogenic drugs might significantly im-
prove chemotherapy efficacy [57, 58]. Namely, without the treatment, tumor has
the ability to recruit new blood vessels in a process called tumor angiogenesis.
However, it has been discovered that tumor angiogenesis is highly pathological
– incorrect structure and poor efficiency of newly formed vessels are common
tumor features [57, 58]. Some trials revealed that those vasculature pathologies
result in significant impairment of the chemotherapy delivery since most of the
administered drug dose is not even absorbed by the tumor and the successfully
delivered part is not distributed uniformly in the tumor region [57]. The hypoth-
esis is that the proper amount of antiangiogenic drugs may cause in the removal
of abberant neovessels (in a process called vascular pruning) what would re-
sult in the increase of the overall vasculature quality, and thus in the boost of
chemotherapy efficacy through its increased delivery. Of course too high dose of
the agents may destroy too much of the tumor vasculature, leading to the poor
drug delivery. Hence, the effort is to identify the dosage and the timing of the
normalization window caused by the antiangiogenic therapy in order to increase
the efficacy of chemotherapy.

Here, we address the problem of designing optimal protocols for the antian-
giogenic treatment. We focus our attention on the therapeutic agents directly
blocking angiogenesis inducing proteins which are secreted by the cancer cells
(compare bevacizumab, trademark Avastin R©, that inhibits vascular endothelial
growth factor VEGF). We base our analysis on the well established family of
mathematical models originating from the Hahnfeldt et al. model of tumor an-
giogenesis [51]. However, we consider the models with the modification pro-
posed in [86] which was introduced in order to better reflect the effect of con-
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sidered drugs and, to our knowledge, has never been analyzed from the optimal
control point of view. We consider the optimal control problem of minimizing
the tumor volume for a fixed therapy duration and when the maximal admissible
drug dose, the total amount of used drugs, and the final level of vascularization
(ratio of the carrying capacity to the tumor volume) are also taken into account.
We explicitly introduce the part of the payoff functional describing the level of
final vascularization in order to capture the concept of vasculature related to
chemotherapy efficacy, what, to our knowledge, is also a novelty. Our main aim
is to formulate as much detailed description of the optimal control as possible.

5.2 Considered family of tumor angiogenesis mod-
els

The family of models proposed by Hahnfeldt at el. described by Eqs. (4.1)-(4.3)
was extensively used in the context of optimal control. In current studies it is usu-
ally assumed that the main goal of the antiangiogenic treatment is to minimize
the tumor volume at the end of treatment, compare Świerniak et al. [111, 117] or
Ledzewicz and Schättler [68, 69]. Various constraints on the treatment protocol
are considered, among them: limited total amount of drug, maximal admissi-
ble dose or fixed therapy duration. For the original Hahnfeldt et al. model it
has been shown that with limited amount of drug, fixed maximal drug dose and
without fixed therapy duration the maximal minimization of tumor is achieved
in a very non-trivial way [68, 69]. More precisely, the optimal treatment strat-
egy might consist of a singular control interval in which the dosage depends
on the temporal tumor volume and vasculature size. However, for a fixed du-
ration of antiangiogenic therapy and for the Ergun et al. and d’Onofrio and
Gandolfi forms of the model (see Tab. 4.1 in Chapter 4) the structure of opti-
mal control is much simpler [112]. Namely, the intermediate doses of the drug
are not optimal, and thus the optimal protocol has a bang-bang structure, that
is it consists of switches between maximal dose and no drug intervals. Nowa-
days much effort is put into optimizing the combined treatments, i.e protocols
in which antiangiogenic drugs are administered simultaneously with chemother-
apy/radiotherapy. Various combined treatment protocols have been intensively
studied through numerical simulations [33, 92] or from the optimal control point
of view [60, 113, 114]. Numerical investigations show that there is an increase
in the chemotherapy efficiency when antiangiogenic agents are simultaneously
administered [92].

Let us recall that in Chapter 4 we have proposed new idea of antiangio-
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genic treatment modelling. In [86] we argued that the original model, although
successful in predicting the response to many therapeutic agents, might insuffi-
ciently describe the effect of antiangiogenic drugs that directly inhibit angiogenic
stimulating molecules. Bevacizumab (trademark Avastin R©), a humanized mon-
oclonal antibody, that inhibits vascular endothelial growth factor A (VEGF-A),
was provided as an example of such agent [86]. For the antiangiogenic agents
with the course of action comparable to bevacizumab, the following modification
of the original model (Eqs. (4.1) and (4.3)) was proposed

V̇(t) = −εV(t) ln
V(t)
K(t)

,

K̇(t) = −µK(t) +
l

a + u(t)
S (V(t),K(t)) − dI(V(t),K(t)) ,

(5.1)

which is from one hand a generalization of Eqs. (4.10) derived in Chapter 4,
because in (4.10) we have specific forms of the function S and I, but from the
other hand it is a specific case of Eqs. (4.10) for p = 0. Note that in comparison
to the original model the treatment does not induce gross reduction of vasculature
but selectively inhibits the formation of tumor-stimulated neovasculature. What
is important, comparisons of the modified and original models predictions with
the experimental data show that when Bevacizumab is applied as the therapeutic
agent, then the quality of fit is higher (data approximation error is lower) for the
modified model [85, 88].

In the following, we consider only the family of models described by Eqs. (5.1)
with continuously differentiable functions S (V,K) and I(V,K). For a particular
kind of functions describing inhibition and stimulation, we can show positivity
of solutions of Eqs. (5.1). More precisely, the following lemma holds.

Lemma. If I(V, 0) = 0 and ∀V ≥ 0 S (V, 0) ≥ 0, then the solution of Eqs. (5.1) re-
mains positive for positive initial data, independently of the maximal admissible
dose of drug.

Proof. Indeed, the first equation of Eqs. (5.1) can be rewritten in the integral
form

V(t) = V(0) exp

−ε
t∫

0

ln
V(s)
K(s)

ds

 .
Hence, V(0) > 0 implies V(t) > 0 for all t > 0. Let us further assume that
K(t) → 0 as t → t1 for some t1 > 0. However, from the second equation of
Eqs. (5.1) we have that K̇(t1) = l

a+uS (V, 0) ≥ 0 due to the positivity of V . Hence,
uniqueness of solutions yields their positivity for the positive initial data. �
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Lemma 5.2 is crucial for the next Section, as the strict positivity of solutions
of Eqs. (5.1) is constantly used. Notice, that the assumptions of Lemma 5.2 are
fulfilled for all formulas presented in Tab. 4.1.

5.3 Results

The main part of the payoff functional that we consider in our minimization
problem has a standard form and is consisted of the tumor volume at the end
of therapy, V(T ), and the total amount of the used drug

∫ T

0
u(t)dt, where T is

the fixed therapy duration. However, we would also like to tackle the prob-
lem of subsequent (after the antiangiogenic therapy) chemotherapy administra-
tion. According to the “vessels normalization” hypothesis, efficient treatment
with chemotherapy is possible only when the cytotoxic agent can be distributed
evenly, that is when vessels penetrate most of the tumor regions and have the
proper structure and functionality [58]. In order to reflect that phenomena, we as-
sume that the higher the tumor vascularization (defined as the ratio of the vessels
carrying capacity to the tumor volume, K(t)/V(t)) is, the larger the chemother-
apy efficacy is. Hence, we take into account the tumor vascularization at the end
of the treatment and we assume the following form of the payoff functional

P[u(·)] = V(T ) − k1
K(T )
V(T )

+ k2

T∫
0

u(t)dt , (5.1)

where T > 0 is the treatment duration, and k1 , k2 describe the trade-offs be-
tween separate treatment goals. Additionally, the cumulative side effects of the
chemotherapeutic agents are taken into account to measure the side effects of
the treatment. Hence, a penalty term in the form of integral to the terminal time
T is present in the considered payoff functional. Clearly,

∫ T

0
u(t)dt measures

the total amount of the given cytotoxic agent u. Moreover, because of the high
cost of anti-angiogenic agents one can not give indefinite administrations of the
agents. Thus, we assume that the total amount of the anti-antiangiogenic agents
is limited by Amax, i.e.

T∫
0

u(t)dt ≤ Amax.

Our goal is to minimize P[u(·)] subject to the dynamics of Eqs. (5.1) for the
fixed therapy duration T and over all measurable functions u : [0,T ] →

[
0, Ã

]
,

where Ã denotes the maximal drug dose that can be administered without mak-
ing a harm to the patient. Clearly, we do not consider the model describing the
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influence of the chemotherapy and thus, although it seems biologically reason-
able, we cannot claim that the usage of the final vascularization in the payoff

functional is an optimal way for combined protocol in which we assume that the
chemotherapy is administered after the antiangiogenic treatment. In fact, the op-
timality strongly depends on the way in which the chemotherapy is incorporated
into the model.

Before analyzing the problem in details, we discuss the optimal treatment
protocol when the only goal is to minimize the tumor volume at the end of the
therapy, i.e. when ki = 0 for i = 1, 2.

Lemma. If k1 = 0 and k2 = 0, then the optimal treatment protocol for Eqs. (5.1)
is to give the maximal admissible dose through the whole treatment interval, that
is u∗(t) ≡ Ã.

Proof. Suppose that the optimal control u∗(t) for Eqs. (5.1) is less than Ã on
some interval of non-zero Lebesgue measure. Then there exists t∗ < T such that
K∗(t) > K f (t) for t > t∗, where K∗(t) and K f (t) are the second coordinates of
the solutions corresponding to the optimal control u∗ and the full-dose protocol
u f (t) ≡ Ã, respectively. It easily follows that V∗(T ) > V f (T ), and hence u∗(t) is
not an optimal control. �

Clearly, if we focus only on minimizing the tumor volume, then the structure
of optimal treatment protocol is straightforward. This scenario can be utilized
when the antiangiogenic treatment is administered just before the tumor resec-
tion. In such a case the final vascularization and the total amount of used drug
can be omitted.

We consider now the structure of optimal control for strictly positive values
of k1 and k2. Let us denote the right-hand side of Eqs. (4.10) by F(V,K, u). The
part of the payoff functional P that depends only on the endpoint can be treated

as a function of (V(T ),K(T )), that is G(V(T ),K(T )) = V(T ) − k1
K(T )
V(T )

. From

the Pontryagin Minimum Principle it follows that if u∗(t) is an optimal control
and (V∗(t),K∗(t)) is the corresponding trajectory, then there exists a function (ad-
joint or co-state variable) y : [0,T ] → R2, which satisfies the adjoint system of
equations ẏ = −DT

(V,K)F · y, where D(V,K)F describes the Jacobi matrix of F with
respect to V and K, with the terminal condition y(T ) = ∇G(V(T ),K(T )), and
such that Hamiltonian H(y,V,K, u) = yTF(V,K, u) is minimized [18, 93].

In our case the adjoint variables satisfy the following system of ordinary
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differential equations

ẏ1 = εy1

(
ln

V∗
K∗

+ 1
)
− y2

 l
a + u∗

∂S (V,K)
∂V

∣∣∣∣∣∣
(V∗,K∗)

− d
∂I(V,K)
∂V

∣∣∣∣∣∣
(V∗,K∗)

 ,
ẏ2 = −εy1

V∗
K∗

+ y2

µ − l
a + u∗

∂S (V,K)
∂K

∣∣∣∣∣∣
(V∗,K∗)

+ d
∂I(V,K)
∂K

∣∣∣∣∣∣
(V∗,K∗)

 , (5.2)

with the terminal conditions

y1(T ) = 1 + k1
K∗(T )

(V∗(T ))2 > 0 ,

y2(T ) = −k1
1

V∗(T )
< 0 ,

(5.3)

and the optimal control u∗(t) together with the corresponding trajectories (V∗(t),K∗(t))
and (y1(t), y2(t)) minimizes the Hamiltonian H given by

H(y1, y2,V,K, u) = −εy1V ln
V
K
− y2

(
µK −

l
a + u

S (V,K) + dI(V,K)
)

+ k2u .

Moreover, as the Hamiltonian does not depend explicitly on t, its value is con-
stant on the optimal trajectory

H(y1, y2,V∗,K∗, u∗) ≡ const .

Through the minimization property on the Hamiltonian H the function

Φ =
∂H
∂u

= Hu = k2 −
l

(a + u)2 y2S (V,K) , (5.4)

determines the structure of the optimal control u∗(t). Since the stimulation term
S (V,K) is positive for positive V and K, we have that if the co-state variable y2

is negative or equal to zero, then Φ > 0. Hence, from minimization property
we have that u∗ = 0 for y2 ≤ 0. For positive values of y2 there always exits

ū =
√

l
k2

y2S (V,K) − a such that Φ = 0. If ū ∈ [0, Ã], then u∗ = ū, since Huu > 0

for any value of u. Similarly, if ū < 0 (ū > Ã), then u∗ = 0 (u∗ = Ã). Thus, the
values of the control are determined by the co-state y2 and (V,K) as follows:

u∗(t) =


0 for y2 ≤ 0 ,

min{max{

√
l

k2
y2S (V,K) − a , 0} , Ã} for y2 > 0 .

(5.5)

As it can be seen, there are singular parts of the control, but the intermediate
values of the optimal u can be calculated explicitly. Moreover, it is clear that
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the switch from the full-dose to no-dose protocol (or in the opposite direction)
can occur only through singular interval and not in a bang-bang manner. In
addition, since the terminal condition for y2 is negative, y2 remains negative in
some neighborhood of T . Formula (5.5) implies that this neighborhood is the
drug free interval, and hence we may state the following lemma.

Lemma. Optimal control for Eqs. (5.1) ends with the drug free interval (τ,T ].

In general, because of the constrains on the control value, we can have mul-
tiple intervals in which u∗ = 0 or u∗ = Ã for y2 > 0. However, in the next sub-
section we provide theorems limiting the number of points in which the change
of the sign of y2 occurs. Let us denote the intervals in which y2 > 0 by “y” and
in which y2 ≤ 0 (drug free intervals) by “0”.

5.3.1 Case of functions considered by Ergun et al.

For the stimulatory and inhibitory functions considered by Ergun et al. the ad-
joint equation for the co-state variable y1 reduces to the following

ẏ1 = εy1

(
ln

V∗
K∗

+ 1
)
.

Hence, if y1 vanishes at some t̄, then y1 ≡ 0 for all t > t̄ as a consequence of the
uniqueness of solutions of Eqs. (5.2). Therefore, it cannot change the sign and
the terminal condition (5.3) implies that y1 is strictly positive for all t. As the
time derivative of the co-state variable y2(t) at point y2(t) = 0 is equal to

ẏ2(t)
∣∣∣∣
y2(t)=0

= −εy1
V∗
K∗

,

and only the switch of the y2 sign can occur. Thus, we may formulate the fol-
lowing theorem.

Theorem. For Eqs. (5.1) with S (V,K) = K2/3 and I(V,K) = K4/3 there is at most
one switch of the y2 sign during the whole treatment interval, i.e. the optimal
control is at most y 0.

5.3.2 Case of functions considered by Hahnfeldt et al.

Assume that l − µa > 0. This means that for the therapy free model considered
by Hahnfeldt et al. [51], that is when u ≡ 0 in Eqs. (5.1), there exists a single
globally asymptotically stable positive steady state (V̄ , K̄), cf. [10, 34]. Thus, we
consider a successfully growing tumor, which cannot be eliminated without the
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treatment. Phase portrait analysis (see Fig. 5.2) allows to prove the following
lemma.

Lemma. In the absence of therapy (u = 0), the set D = {(V,K) ∈ R+ : V <

V̄ ,K < K̄}, where (V̄ , K̄) is the positive steady state, is positively invariant for
Eqs. (5.1) with S (V,K) = V, I(V,K) = KV2/3 and l > µa.

The number of points in which the change in the y2 sign can occur is limited by
the following theorem.

Theorem. For Eqs. (5.1) with S (V,K) = V, I(V,K) = KV2/3, (V(0),K(0)) ∈
D and l > µa there are at most two switches of the y2 sign during the whole
treatment interval, that is the optimal control is at most 0 y 0.

Proof. Assume that there are three or more switches of the y2 sign in the whole
treatment interval. The derivative of the co-state variable y2 at the switch point
is expressed as

ẏ2(t)
∣∣∣∣
y2(t)=0

= −εy1
V∗
K∗

.

Hence, if y1 > 0, then the y2 switches from positive to negative values. If y1 <

0, then the switch occurs in the opposite direction. In order to get more than
one switch of the optimal control, y1 needs to change the sign from negative to
positive in the interval in which y2 > 0, compare Fig. 5.1. At the switching

Figure 5.1: Structure of the optimal control. Moments ti denote the y2 switching
points. Blue dashed lines denote no-dose intervals.

points, that is when y2 = 0, we have

H(y1, 0,V∗,K∗, u∗) = −εy1V∗ ln
V∗
K∗

,

and as the Hamiltonian is constant, we obtain that if at any switching point y1 < 0
and V∗ > K∗ (V∗ < K∗), then V∗ < K∗ (V∗ > K∗) if y1 > 0 at any other switching
point.

Let us focus now on the switch from the singular to no-dose protocol that oc-
curs before the last one of that type (tn−2 in Fig. 5.1). In order to have that switch,



52 CHAPTER 5. OPTIMAL CONTROL

y1 should change its sign from positive to negative during the treatment free in-
terval, that is in the interval in which y2 < 0 (the interval (tn−2, tn−1) in Fig. 5.1).
Hence, at some point inside this interval the following inequality should be sat-
isfied

ẏ1

∣∣∣∣
y1=0

= −y2

(
l
a
− d

2
3

K∗
V1/3
∗

)
< 0 .

This inequality is equivalent to

K∗ >
3l

2ad
V1/3
∗ . (5.6)

In the treatment free model (Eqs. (5.1) with u(t) ≡ 0), the null-cline for the
variable K is described by the following equation

K =

l
aV

µ + dV2/3 ,

and if Inequality (5.6) is satisfied at some (V∗,K∗), then it is easy to see that
(V∗,K∗) lies above the null-cline for the variable K, that is (V∗,K∗) is placed in
the area C in Fig. 5.2, while we consider only the set D. On the other hand,

Figure 5.2: Sketch of the phase portrait.

from the structure of the optimal control we have that during the same therapy
free interval the ratio of the tumor volume to the carrying capacity V∗/K∗ should
start below (above) 1 and end above (below) 1. Looking at the phase portrait in
Fig. 5.2 we see that if the solution starts below the null-cline K = V , that is from
the area A, then it either remains in the same area or moves from A to B and
remains in B. In that case Inequality (5.6) cannot be fulfilled and there cannot be
a second switch of the optimal control from the full-dose to no-dose protocol. If
the solution starts above the null-cline K = V , that is initially K∗ > V∗, then it
remains above that null-cline and it is impossible to have K∗ < V∗ at the end of
the interval. This completes the proof. �
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For the stimulatory and inhibitory functions considered by d’Onofrio and
Gandolfi [34], that is for S (V,K) = K and I(V,K) = KV2/3, we were unable to
formulate any theorem limiting the number of y2 sign switches.

5.4 Numerical results

There are various methods that allow to approximate numerically the optimal
control for given parameters and initial conditions [82, 125]. For the purpose of
this paper we implemented numerical scheme based on two well known meth-
ods: gradient (steepest descent) method and shooting method. The former one
uses the information about the derivative of the Hamiltonian with respect to the
control and can be summarized in the following steps:

1. Pick a control ũ and solve the model equations (5.1) for (Ṽ(t), K̃(t)).

2. Integrate adjoint equations (5.2) backwards using terminal conditions (5.3)
with (Ṽ(T ), K̃(T )). Calculate simultaneously ∂H

∂u .

3. Pick k such that the control ū = ũ− k ∂H
∂u gives a smaller value of the payoff

functional. Proceed to 1 with ũ = ū.

The above procedure ends when the change in the payoff functional reaches pre-
scribed tolerance. What is important, the gradient method gives rapid initial con-
vergence. However, much faster final convergence is obtained with the shooting
method, which is also less computationally intensive [82] and can be summa-
rized in the following steps:

1. Pick an initial condition for the adjoint equations (5.2) and solve them
together with the model equations (5.1) with the control u calculated using
information about the ∂H

∂u .

2. Calculate the error between the obtained terminal conditions and the ones
that should be fulfilled (5.3).

3. Adjust the initial condition in order to decrease the absolute value of the
calculated error (use for example the Newton-Raphson method) and pro-
ceed to 1.

We decided to use the combination of those two methods. Namely, we utilize
the gradient method with relatively large prescribed tolerance to generate ini-
tial condition for the shooting method. All procedures are written in MATLAB R©

computing language and we share their source code on our personal websites and
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the sourceforge.net repository. What is important, we already implemented an-
giogenesis models (see Tab. 4.1) in both modified and original forms. Moreover,
necessary modifications of the code in case of other stimulation and inhibition
functions are simple and straightforward. Hence, the code gives a good basis for
other numerical investigations of optimal antiangiogenic treatment protocols.

5.4.1 Numerical approximation of the optimal controls

Values of the parameters associated with the optimal control settings were taken
arbitrary and the only criterion was that all of the terms in the payoff functional
should be significant. For the therapy duration T equal to 30 days and the initial
condition (V(0),K(0)) = (3000 mm3, 4000 mm3) we set k1 = 103 and k2 = 5 or
k2 = 100 depending on the simulation. For the maximal admissible dose we set
Ã = 20 mg/kg since it was the maximal dose used in one of the Bevacizumab re-
lated experiments [85]. In the numerical simulations we consider the stimulation
and inhibition functions considered by Hahnfeldt et al. and Ergun et al. as both
of them were fitted to Bevacizumab data in [85, 88] and we take the estimated
parameters values as presented in Tab. 5.1.

First, we numerically investigate the optimal control problem for the Ergun
et al. form of the modified model (5.1). We take the smaller value of k2, that is
we consider the case in which the influence of the total amount of used drug on
the overall performance is smaller, compare Eq. (5.1). Numerical solution to that
optimization problem is presented in the Fig. 5.3. It can bee seen that, as stated
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Figure 5.3: Optimal treatment strategy for the Ergun et al. model. (A) Solu-
tion to the model (4.10) with the optimal control u presented in the inset. (B)
Corresponding dynamics of the co-state (adjoint) variables (5.2).

in Lemma 3, the optimal control ends with a short drug-free interval. Moreover,
for the rest of the treatment interval it is singular, that is u takes the intermedi-
ate dose values. This result completely agrees with the analysis carried out in
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Parameter Description Unit Ergun et al. Hahnfeldt et al.

ε
tumor
growth rate

day−1 0.2032 0.074

µ

rate of
sponta-
neous
loss of
functional
vasculature

day−1 0 0.002

l

l/a is the
rate of ves-
sels growth
stimulation

day−1conc 10.39 2.8109

a conc 4.598 2.1008

d

rate of en-
dogenous
inhibition
of pre-
viously
generated
vasculature

day−1vol−2/3 0.0028 0.002

Table 5.1: Model parameters used in all numerical simulations. Values for Hah-
nfeldt et al. and Ergun et al. models are taken from [85] and [88], respectively.

the previous section. Interestingly, singular control never reaches the maximal
admissible dose (Ã = 20 mg/kg) and one can see that the shape of the optimal
control is similar to the dynamics of the y2 co-state variable, compare panel A
and B in Fig. 5.3. The later behavior of the control is related to the relatively
small changes in the tumor volume during the treatment course, and hence the
changes in y2 have larger impact on the formula used to calculate u, compare
Eq. (5.5).

Similar shape of the optimal control can bee also seen for the Hahnfeldt et
al. model, compare Fig. 5.4(A). However, for the same value of the parameter k2

there is an additional interval in which the full-dose protocol is realized, showing
that the additional non-singular intervals are possible. Another non-singular no-
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Figure 5.4: Optimal treatment strategy for the Hahnfeldt et al. model with k2 = 5
(A) and k2 = 100 (B). Presented are the solutions to the model (5.1) together with
the corresponding optimal controls u presented in the insets.

dose interval appears in the case of k2 = 100, that is when there is higher penalty
for using antiangiogenic drugs, see Fig. 5.4(B). Interestingly, the additional no-
dose interval occurring before the singular one is realized with y2 > 0 and on its
left there is a tiny interval with the singular control appearing again (not visible
in the plot inset).

5.5 Summary

Investigating the influence of new cancer therapies on tumor development is of
the great importance. Their effects, both when used as supportive and stand
alone therapies, need to be verified. In this Chapter we addressed the problem
of designing optimal protocols for the antiangiogenic treatment using therapeu-
tic agents directly blocking angiogenesis inducing proteins, such as VEGF. We
based our analysis on the well established family of mathematical models origi-
nating from the Hahnfeldt et al. model of tumor angiogenesis [51]. We consid-
ered those models with the modification proposed in [86]. Moreover, we intro-
duced additional part to the standard payoff functional that describes the level of
final vascularization, what, to our knowledge, is also a novelty. Proposed modi-
fication of the payoff functional tackles the “vessels normalization” hypothesis,
which states that efficient treatment with chemotherapy is possible only when
the cytotoxic agent can be distributed evenly, that is when vessels penetrate most
of the tumor regions and they have proper structure and functionality. Namely,
if the chemotherapy is administered after the antiangiogenc treatment, then it
seems biologically reasonable to have as much vascularized tumor as possible
before chemotherapy.
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We have shown that the optimal strategy consists of the drug-free, full-dose
and singular (with intermediate values of the control variable) intervals. What is
important, we have shown that even for the fixed treatment duration T the singu-
lar controls are the common feature of the whole considered family of models.
Singular controls in cancer treatment were previously obtained only for partic-
ular angiogenesis models [68, 69] and for some chemotherapy models [116].
From the structure of the optimal controls it follows that no bang-bang switch
of the control is possible, i.e. there is no change from the no-dose to full-dose
protocol (or in opposite direction) on the interval with the singular control. For
Hahnfeldt et al. and Ergun et al. models, we provided additional theorems about
the optimal control structure.

Finally, we investigated the optimal controls numerically using the customized
software written in MATLAB R©, which we made freely available for download
from our personal websites. Utilized numerical scheme is based on the com-
position of the well known gradient (steepest descent) and shooting methods.
Numerical simulations showed clearly that the structure of the optimal controls
are far from being simple and they can have multiple switches from the no-dose
to singular to full-dose regimes.





Chapter 6

Sensitivity analysis

Last Chapter is devoted to another practical issue – sensitivity analysis of an-
giogenesis models in the context of anti-angiogenic treatment, and is based on
my research with the group of Heiko Enderling and Philip Hahnfeldt, published
in [89]. We study the effects of parameter value uncertainties for a model of tu-
mor development under angiogenic signaling for two different treatments: anti-
vascular and anti-angiogenic. We consider the classical Hahnfeldt et al. model
and our modification described in detail in Chapter 4. Data fitting is performed
to compare predictions of both models and to obtain nominal parameter values
for sensitivity analysis. Sensitivity analysis reveals that the success of different
cancer treatments depends on tumor size and tumor intrinsic parameters. In par-
ticular, we show that tumors with ample vascular support can be successfully
targeted with conventional cytotoxic treatments. On the other hand, tumors with
curtailed vascular support are not limited by their growth rate and therefore in-
terruption of neovascularization emerges as the most promising treatment target.

6.1 Introduction

Anti-angiogenic treatment is designed to inhibit the tumor vascular support and
thus increasing oxygen tension and inducing tumor cell starvation. This can be
achieved either by targeting the neo-vasculature directly or by interfering with
pro-angiogenic factors secreted by the tumor [66]. Anti-angiogenic treatment
holds the promise of being less patient-specific as the host vasculature is tar-
geted and not the constantly evolving tumor population [23]. We compare two
different anti-angiogenic agents by local and global sensitivity analysis of param-
eters describing tumor-vasculature interactions. We utilize models described in

59
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previous Chapters, that is the Hahnfeldt et al. model described by Eqs. (4.4) and
the modified model proposed by us (4.10). The local sensitivity analysis investi-
gates the effect of small variation in a single parameter about its nominal/average
value when all other parameters are kept fixed at the estimated values. However,
biological systems contain typically substantial variations in almost all parame-
ters values; between patients and even within tumors of a single patient. Hence,
it might happen that the model parameter a is locally the most influential for one
patient, while for another patient (with other set of nominal parameters values)
it is parameter b. In contrast, a global sensitivity analysis reveals which param-
eters are the most influential in general by perturbing all parameters simulta-
neously, assuming patient population heterogeneity and thus parameter values
uncertainty.

The model proposed by Hahnfeldt et al. (Eqs. (4.4)) can simulate the ef-
fect of anti-angiogenic treatment, and model predictions were successfully com-
pared with experimental data of treatment with TNP-470, Angiostatin and En-
dostatin [51]. We shall refer to this models as ‘the original model’. Additionally,
we consider the model without treatment described by Eqs. (4.1)-(4.2), which
will be referred as to ‘control’.

As we have pointed out in Chapter 4 the original model, although success-
ful in predicting the response to therapeutic agents that block the growth of new
blood vessels (for example, Angiostatin), might insufficiently describe the ef-
fect of anti-angiogenic drugs that act to inhibit angiogenic stimulation. Beva-
cizumab, a humanized monoclonal antibody that inhibits vascular endothelial
growth factor A (VEGF-A), was provided as an example of such agent [86].
For anti-angiogenic agents like Bevacizumab we proposed Eqs. (4.10) instead
of Eqs. (4.4). Note that in comparison to the original model, treatment does not
induce gross reduction of vasculature but selectively inhibits formation of tumor-
stimulated neovasculature. In this Chapter we consider the simplest version of
Eqs. (4.10) with p = 0. This is also a specific form of Eqs. (5.1) exploited in
Chapter 5, namely for S and I considered by Hahnfeldt et al. We shall refer to
that model as ‘the modified model’ describing the response of a tumor to anti-
angiogenic treatment.

Both models (4.4) and (4.10) should be equipped with the description of the
time dependent concentration of an administered inhibitor u(t). Under the usual
pharmacokinetic assumptions [13], instead of discrete formula (4.11) presented
in Chapter 4, in the following we assume that u(t) is expressed as

u(t) =

t∫
0

c(s) exp
(
− clr(t − s)

)
ds (6.1)
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where c(s) is the administration rate at time s and clr is the clearance rate of the
considered inhibitor.

6.1.1 Data fitting

Data fitting of control, original and modified models was performed to experi-
mental data obtained by Fujita and colleagues [48]. The values estimated in the
original model [51] were taken as the initial set of parameters for tumor growth
without treatment, i.e., the control case. The maximal perturbation value for each
parameter was assumed to be equal to 80% of its initial value. For spontaneous
death rate µ, which was neglected in the original model analysis, we assumed
the range of admissible values between 0 and 1 (representing 0%–100%). For
treatment associated parameters D, clr and e, we only considered positive values.
Data fitting was divided into control case fitting and subsequent treatment model
fitting. In both cases, trust region method (incorporated in MATLAB lsqnonlin
function) for finding the minimal fit error values was utilized. The trust-region-
reflective algorithm uses a quadratic approximation for the minimized function
(defined by the first two terms of its Taylor approximation) in a neighborhood
(trust region) around the current point x to improve the current approximation
error [15]. In order to avoid finding only local minima we generated 1000 ran-
dom initial parameter values for the optimization procedure.

6.1.2 Sensitivity analysis

We focused on the sensitivity of tumor volume V and ignored the sensitivity of
effective vascular support K (as V is directly dependent on K). Local sensitiv-
ities were obtained by solving the extended system of equations and taking the
derivative of the initial vector field with respect to all parameters. To measure
global sensitivity we assumed that each parameter is perturbed by a uniformly
distributed random variable within the range of ±10% or ±20% of the initial
parameter value. Spearman’s partial rank correlation coefficients were calcu-
lated from 1000 samples generated with a Latin Hypercube Sampling (LHS)
algorithm [77]. The scatter plots of obtained samples revealed only monotonic
relations between tumor volume and parameters. The sensitivity indices, defined
as fraction of total output variance generated by the uncertainty in the respective
parameter value, were calculated using the Fourier Amplitude Sensitivity Test
(FAST) method [28].
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6.2 Results

Figure 6.1: Fitted model curves and predicted tumor response to different doses
of bevacizumab. Control data derived from [48] and parameters in Table 1. (a)
Control data and the fitted model curve using Eqs. (4.1)-(4.2). (b) Treatment data
together with the solutions to original (Eqs. (4.4)) and modified (Eqs. (4.10))
models. (c) Response of tumor for higher doses of bevacizumab: 6 mg/kg and
12 mg/kg

6.2.1 Bevacizumab treatment data

The impact of Bevacizumab on head and neck squamous cell tumors grown in
Female BALB/c nu/nu nude mice was investigated experimentally [48]. Tumor-
bearing mice were randomized at mean tumor volume 50-100 mm3. Mice were
treated with Bevacizumab either 2 mg/kg/day or 4 mg/kg/day on days 1 and 4 of
each week for 4 weeks. Both treatment regimes were shown to decelerate growth
but are insufficient to prevent tumor expansion (Fig. 6.1b).

Although Bevacizumab was not injected as bolus, for simplicity we assume
that c(s) = D(δ(s − t1) + δ(s − t2) + . . .), where D is the administered dose and
ti are the injection days. This assumption may generally lead to decrease in
fit quality but should not influence the comparison between considered models.
Comparison of the experimental data with fitted curves demonstrates the ability
of both models to reproduce the experimental data (Fig. 6.1a). An excellent
control fit was obtained when solving the model (Eqs. (4.1)-(4.2)) for parameters
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ε, µ, b and d (Fig. 6.1a). In contrast to previous assumptions that spontaneous
vasculature loss µ is negligible [51] we obtained the best fitting curve for µ > 0,
specifically µ = 0.0021 (cf. Table 1). This value, however, is relatively small
and therefore its role in the model will be addressed in the next sections. A good
fit for early response to low doses of Bevacizumab of 2 and 4 mg/kg/day was
obtained by both the original and modified model without significant differences
in tumor growth curves (Fig. 6.1b). At the end of the treatment (t > 30 days),
however, the original model fails to correctly approximate tumor growth for the
2 mg/kg/day treatment. For both doses of Bevacizumab the total fit error for the
modified model was about two times smaller than for the original model (1.78
for 2 mg/kg/day and 1.75 for 4 mg/kg/day of Bevacizumab), see Table 1 for
specific values of fit error. Large differences in treatment predictions by both
models are observed for higher doses of bevacizumab (Fig. 6.1c). For treatment
doses of 12 mg/kg/day, the original model predicts a more than three times larger
tumor response to treatment than the modified model. Due to lack of data for
such a high doses of Bevacizumab, however, we are unable to score the model
predictions.

6.2.2 Treatment free model: sensitivity analysis

Parameter values obtained in the previous subsection describe average tumor
growth. Each parameter, however, has an intrinsic burden of uncertainty, which
is reflected in patient-specific clinical disease courses of tumors of the same or-
gan. In order to obtain the compact form of the considered models, however,
many aspects of the tumor angiogenesis process have been incorporated into sin-
gle parameters, which introduces additional variation in their values. Sensitivity
analysis for the treatment-free model described by Eqs. (4.1)-(4.2) demonstrates
the influence of the uncertainty in the parameters values (Fig. 6.2). A basic ap-
proach to measuring sensitivity at a fixed time point is to calculate the partial
derivatives of systems solution with respect to the parameters [100]. That ‘local’
sensitivity analysis provides direct information on the effect of small variation in
a single parameter about its nominal value. Our analysis revealed that variation
in the parameter for spontaneous loss of vasculature, µ in Eq. (4.2), has no signif-
icant influence on the tumor size (Figure 2) and can therefore be neglected in the
model as predicted by Hahnfeldt et al. [51]. Sensitivity analysis further shows
that for early tumor growth up, i.e. t < 50 days, there is no significant difference
in ‘local’ sensitivity to each parameter (Fig 6.2a). In other words, small varia-
tion in each single model parameter has similar impact on early tumor growth
dynamics. After t = 50 days, however, when the tumor has reached an apprecia-
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Description Control Original model Modified model

e drug impact 0.0636 0.4755

clr clearance rate 0.0745 0.0799

ε growth rate 0.0741 0.0741 0.0741

µ loss of vessels 0.0021 0.0021 0.0021

b stimulation 1.3383 1.3383 1.3383

d inhibition 0.002 0.002 0.002

V0 initial V 71.2553 71.2553 71.2553

K0 initial K 71.6675 71.6675 71.6675

Fit error average % 6.57 2 mg/kg/day: 12.66; 2 mg/kg/day: 7.1;

per point 4 mg/kg/day: 10.97 4 mg/kg/day: 6.26

Table 6.1: Estimated tumor growth parameters. The kinetic model (Eqs. (4.1)-
(4.2)) was applied first to the untreated control tumor data, and the growth pa-
rameters ε, µ, b, d, and K0 (initial value of K) were solved for by performing
gradient-based optimization for 1000 randomly chosen set of initial parameters.
Using obtained parameters the data for Bevacizumab (2 or 4 mg/kg) was used
to solve for the respective treatment parameters e and clr in case of the original
model (Eqs. (4.4)) and the modified model (Eqs. (4.10)).

ble size, sensitivity to growth rate ε begins to decrease while sensitivity to other
model parameters continues to increases at similar rates as before. Therefore,
tumor growth for larger tumors is not determined by its intrinsic growth rate but
increasingly dependent on parameters associated with the angiogenesis process.

Although the performed local analysis provides direct information on the ef-
fect of small parameter perturbations about their nominal values, it does not indi-
cate the effect of concurrent, large perturbations in all model parameters. In can-
cer progression and treatment, many parameters are unknown or only estimated,
and may be uncertain by one or more orders of magnitude [100]. In order to
reflect this uncertainty, we assume that the value of each parameter is uniformly
distributed around the nominal value obtained through data fitting in previous
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Figure 6.2: Local and global sensitivity analysis for the control case. Analy-
sis carried with the nominal parameters values presented in Table 1. (a) Time
evolution of the local sensitivities, defined as the partial derivatives of the tumor
growth curve taken with respect to each parameter and multiplied by the nominal
parameter value. (b) Partial rank correlation coefficients between each parame-
ter and the tumor volume after 20, 50 or 95 days from initiation. Coefficients
were calculated from 1000 randomly generated samples under the assumption
that each parameter is uniformly varied by no more than 10% of its initial value
(∗ denotes p-value below 0.01). (c) First order sensitivity indices, defined as the
fraction of the total variance in tumor volume caused by the variation in each pa-
rameter value. Calculations were performed after 20, 50 and 95 days from tumor
initiation using the FAST method and under the assumption that parameters are
varied uniformly by no more than 10%.

section. We set the range of that distribution to ±10% of the nominal value.
Such amount of uncertainty in each parameter yields up to 30% differences in
the tumor volume 100 days after initiation. Figure 6.2 b and c show the par-
tial rank correlation coefficients and variance decomposition indicative of most
influential parameters perturbations. At large tumor sizes local and global sen-
sitivity analysis concur that tumor progression is most sensitive to angiogenesis-
associated parameters. Global sensitivity analysis, however, reveals that tumor
growth rate ε is the major determinant of tumor progression when the tumor is
small (Fig. 6.2c). At the beginning of tumor growth almost 75% percent of vari-
ation in tumor volume are due to uncertainty in the tumor growth rate. Similar
size dependence is confirmed in the values of partial rank correlation coefficients
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(Fig. 6.2b). The initial high correlation of tumor volume with the value of the tu-
mor growth rate decreases in favor of angiogenesis-associated parameters. From
the global sensitivity analysis we derive the following therapeutic implications:

(i) at small tumor sizes it is better to perturb the tumor growth rate by targeting
cancer cells directly;

(ii) manipulation of the vascular supply by increasing inhibition or decreasing
stimulation is the most promising approach when tumors have grown to a
substantial size.

6.2.3 Target angiogenic stimulators or endothelial cells?

As alluded to above, anti-angiogenic drugs can have different courses of action.
One class of drugs interferes with the balance of angiogenesis promoters and
inhibitors in favor of inhibition, whereas the other class prevents blood vessel
formation regardless of stimulatory signals. We set out to answer the question
which anti-angiogenic mechanism is less patient specific and promises more ro-
bust treatment results. The original model is used in case of Angiostatin, TNP-
470 and Endostatin and the modified model for Bevacizumab. Table 2 shows the
pharmacokinetic parameters for Bevacizumab as estimated above (cf. Table 6.1),
as well as TNP-470, Angiostatin and Endostatin as estimated by Hahnfeldt and
colleagues through fitting to experimental data [48]. We assume the same treat-
ment protocol as in the previous section with drugs being administered on days 1
and 4 of each week for 4 weeks. Doses for TNP-470, Angiostatin and Endostatin
are chosen to give response curves comparable to treatment with Bevacizumab
at 4 and 8 mg/kg/day. For sensitivity analysis of the treatment model we only
present data for Angiostatin as similar results were obtained for both TNP-470
and Endostatin (data not shown).

In order to investigate the robustness of the treatment outcome we revisit the
intrinsic uncertainty for parameters ε, µ, b, d, e. We assume that the variation is
uniformly distributed around the nominal value of the parameter and its maximal
value is limited to 20%. Figure 6.3 shows the global sensitivity analysis revealing
the influence of parameter uncertainty on tumor volume 26 days after initiation.
For both drug dose regimes a larger variation in tumor volume is observed for
Angiostatin than for Bevacizumab. With comparable average tumor volumes at
the end of treatment, Bevacizumab yields 34% and 49% lower standard devia-
tion from average tumor size than Angiostatin for both lower and higher drug
doses, respectively. The minimal tumor volumes for both drug regimes however,
are in favor of Angiostatin, with almost 25% less tumor volume than the small-
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est tumors obtained with Bevacizumab. On the other hand, the worst possible
outcomes (maximal tumor volume) with Bevacizumab were almost 30% smaller
than those in the Angiostatin group. The decomposition of the variance revealed
no significant differences between both drugs, providing the similar amount of
unexplained origin of variation (higher order interactions) (compare Fig. 6.3c).
Differences are only observable in the dependence of tumor volume on uncer-
tainty in parameter d describing endogenous vasculature inhibition. Estimated
partial rank correlation coefficients show higher correlation of d with treatment
outcome for Bevacizumab, suggesting that tumors with larger endogenous inhi-
bition of tumor angiogenesis may respond better to Bevacizumab.

e (drug impact) clr (clearance rate) D (dose)

TNP-470 1.3 10.1 13.2; 20.2

Endostatin 0.66 1.7 4.1; 5.8

Angiostatin 0.15 0.38 4.2; 5.9

Bevacizumab 0.4755 0.0799 4; 8

Table 6.2: Dosage of different agents giving similar therapeutic effects. Shown
are the exact values of pharmacokinetic parameters (e, clr) and doses (D) for
which the original model (TNP-470, Endostatin, Angiostatin) and the modified
one (Bevacizumab) give the same tumor volume at the end of treatment. Values
of pharmacokinetic parameters, except for Bevacizumab, were estimated in [7].

6.3 Discussion

Mathematical models can be utilized to dissect complex mechanisms underlying
tumor growth and response to treatment, especially if treatment is not directed
at tumor cells but at the environment that modulates tumor growth kinetics. We
set out to investigate the sensitivity of parameters in a well-studied mathemati-
cal model of tumor growth with reciprocal dependence on its vascular support,
and its response to anti-angiogenic treatment [51, 86]. In line with previous
assumptions, our analysis confirmed that tumor growth rate as well as tumor-
orchestrated angiogenesis promotion and inhibition outweigh spontaneous loss
of vasculature in tumor growth dynamics. Local and global sensitivity analysis
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Figure 6.3: Global sensitivity analysis for Bevacizumab and Angiostatin. Analy-
sis carried for two different dose regimes and with the nominal parameters values
presented in Tables 6.1 and 6.2. (a) Box plot of tumor volume after 26 days from
the initiation calculated from 1000 samples generated under the assumption that
parameters ε, µ, b, d, e are varied uniformly up to 20%. (b) Partial rank corre-
lation coefficients between each parameter and the tumor volume after 26 days
from initiation (∗ denotes p-value below 0.01). (c) First order sensitivity indices,
defined as the fraction of the total variance in tumor volume caused by the vari-
ation in each parameter value. Calculations were performed after 26 days from
tumor initiation using the FAST method.

further revealed that tumor growth is separated into distinct phases with different
dependence on underlying mechanisms. Intuitively, when a tumor is initiated
its progression is predominantly determined by the intrinsic growth rate, that
is, ratio of cell proliferation to cell death. As the tumor grows and exhausts
its vascular support the growth rate becomes insignificant and tumor progres-
sion is increasingly dependent on the interplay of angiogenesis promoting and
inhibiting mechanisms. These findings offer valuable insights into tumor size-
dependent treatment design. Small tumors as well as tumors progressing with
ample vascular support might be best targeted by direct induction of cell kill.
Tumors with curtailed vascular support are not dependent on their growth rate,
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and induction of cell kill will only have minimal effects. We showed that for such
tumors interference with the neovascularization is the most promising treatment
target. These model predictions will need to be confirmed in carefully designed
animal experiments that allow for quantification of the degree of tumor vascular-
ization and vascularization-dependent response to cytotoxic and anti-angiogenic
treatments as well as their combinations.

A number of anti-angiogenic treatments have recently been approved for both
single treatment and in combination with other therapeutic agents and many
more are in various stages of clinical trials. The Hahnfeldt model has suc-
cessfully predicted tumor response to anti-angiogenic treatment with TNP-470,
Angiostatin and Endostatin [51]. A modification of that model put forward by
Poleszczuk et al. extended its applicability to treatment with Bevacizumab [86].
We normalized treatment protocols in both models to achieve comparable tumor
sizes after treatment and analyzed the sensitivity of both models to the underlying
parameters. With equal perturbation of parameters in both models representa-
tive of patient variability we showed that the average tumor sizes after treatment
with both Angiostatin and Bevacizumab are similar. The deviation from average
response, however, was significantly larger for Angiostatin, indicating that the
course of action with Bevacizumab is less patient specific and thus wider appli-
cable. The most favorable outcome, however, was observed for treatment with
Angiostatin, with final tumor size being more than 30% smaller than the best
sample from the Bevacizumab group. On the other hand, the least successful
treatment outcome featured also a significantly larger tumor in the Angiostatin
group compared to Bevacizumab. No significant differences in parameter sensi-
tivity were found between both drugs, providing similar amount of unexplained
origin of variation in tumor response. These results visualize that higher order
interactions between tumor, vasculature and anti-angiogenic agents are at play
that are yet to be fully deciphered.

In conclusion, we have demonstrated that simple mathematical models with
a small number of experimentally validated parameters can reliably reproduce
and predict tumor growth and treatment response data. Thorough analysis of pa-
rameter uncertainty yields invaluable insights into mechanisms driving growth
kinetics and response of tumors. Our study encourages the measure of tumor
vasculature as a surrogate for tumor carrying capacity as a biomarker, which
may ultimately lead to better-informed patient-specific synergizing of cytotoxic
and anti-angiogenic treatment. These findings from our analysis augment the
understanding of cause-action relation of tumor kinetics and aim to drive future
experiments and clinical validation towards improved understanding and ulti-
mately patient prognosis.





Chapter 7

Summary

In the war with cancer even slight improvement in the efficacy of currently ap-
proved therapeutic agents is of great importance. Taking into account more than
8 million cancer related deaths in 2012 alone, improvement of already approved
cancer therapies by 1% translates into 80,000 saved lives. In the thesis I have
focused on the secondary effects that can be caused by the radiotherapy, which
is one of the most widely used cancer therapies. I stated a novel hypothesis that
radiation induces cellular senescence outside the irradiated field, which in turn
triggers tumor angiogenesis leading to fast growth of previously existing subclin-
ical tumor sites. Thus, I postulated that adding adjuvant anti-angiogenic therapy
to radiotherapy could improve the overall treatment outcome.

In the first part of the thesis, I focused on preliminary verification of the con-
sidered hypothesis using in vitro experiments. Together with the group of my
co-supervisor Prof. Maria Wideł we performed a series of experiments, in which
we irradiated both cancer and non-transformed human cell lines and quantified
the amount of induced senescence. Results clearly show that the bystander sig-
nals can induce senescent phenotype in bystander non-irradiated populations.
This effect, however, is dependent on the TP53 gene status – in the considered
co-incubation periods it was detected only for cells having a functioning p53
protein. Those results indicate that senescence can be indeed induced in cells
residing outside of the MRI outlined irradiation field. However, considered hy-
pothesis needs additional experimental verification, which will be the focus of
further research. First step will be to perform experiments in which directly ir-
radiated cancer cells will be co-incubated with non-irradiated non-transformed
cells. That setting will be closer to the in vivo setting as most of the cells outside
of the irradiation field are non-transformed. In the subsequent experiments we
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will also measure concentration of vascular endothelial growth factor (VEGF)
to make sure that the angiogenesis can be indeed triggered in the non-irradiated
tissue. Ultimate verification of the considered hypothesis, however, can be made
only in clinical trials, which are outside of the scope of this thesis. However,
even before attempting to design a clinical trial or murine experiment, one needs
to know the dosage at which the anti-angiogenic drug should be applied. That
problem can be tackled using mathematical models, which can be calibrated us-
ing experimental and clinical data.

That is why in the second part of the thesis, I focused on the mathemati-
cal modeling of tumor angiogenesis process and its response to anti-angiogenic
treatment. In the research conducted together with the group of my supervisor
Prof. Urszula Foryś, we have focused on modeling the effect of the drugs that
act on the stimulators of angiogenesis. Developed mathematical framework is
based on the well recognized model proposed by Hahnfeldt in [51] and, in con-
trary to the original model, predicts that complete disease remission is impossi-
ble independently of the magnitude drug dosage; this phenomenon was noticed
in [35, 37]. This suggest that using only anti-angiogentic treatment we are not
able to cure cancer. However, using anti-angiogenic treatment we are able to
normalize vasculature such that chemotherapy can better penetrate tumor mass,
which is now the main outcome studied for anti-angiogenic treatment.

That outcome of the treatment has been analyzed as an optimal control prob-
lem in the third part of the thesis. Together with the group of Prof. Urszula
Foryś we have introduced additional part to the standard payoff functional that
describes the level of final vascularization, what, to our knowledge, is also a
novelty. Using Pontryagin Minimum Principle we have shown that the optimal
strategy consists of the drug-free, full-dose and singular (with intermediate val-
ues of the control variable) intervals. What is important, we have shown that even
for the fixed treatment duration the singular controls are the common feature of
the whole considered family of models. In order to be able to calculate optimal
treatment schedules on a per-patient basis in the future trials, we have written
numerical procedures approximating optimal controls, which we made freely
available for download from our personal websites. Utilized numerical scheme
is based on the composition of the well known gradient (steepest descent) and
shooting methods.

In the final chapter of the thesis I focused on another practical issue – sen-
sitivity analysis of angiogenesis models in the context of anti-angiogenic treat-
ment. Presented research, focused on comparing the outcomes of treatment using
anti-vascular and anti-angiogenic drugs, has been conducted with the group of
Heiko Enderling and Philip Hahnfeldt. With equal perturbation of parameters
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in both models, representative of patient variability, we showed that the average
tumor sizes after treatment with both anti-vascular and anti-angiogenic drugs are
similar. The deviation from average response, however, was significantly larger
for anti-vascular drugs, indicating that the course of action with anti-angiogenic
drugs is less patient specific and thus wider applicable.

Results presented in this thesis provide firm background for future research,
hopefully leading to performing clinical trial informed by the mathematical mod-
els. Mathematically informed clinical trials are the new fast developing field in
cancer research, giving hope for deciphering large complexity of tumor biology
and ultimately wining the war with cancer.
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[9] M. Bodnar, U. Foryś. Angiogenesis model with carrying capacity depend-
ing on vessel density. Journal of Biological Systems, 17(1):1–25, 2009.
[citation on page 28]

75



76 BIBLIOGRAPHY
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main
function main()
%MAIN FUNCTION FOR OPTIMAL CONTROL SEARCH

addpath('Additional functions');
addpath('Core functions');
addpath('Models');
addpath('Plot functions');

%%%%--- INITIALIZE ---%%%%
%%%% Setting all necessary parameters

    [par, init,u]=initSettings();

    [S, I, dS, dI] = selectModel(par.model);

%%%%--- ---%%%%

%%%%--- CALCULATING INITIAL SOLUTION AND PAYOFF ---%%%%

    solM=solveModel( S,I,u, par, init);
    Jinit=payoff(solM.y(1,end),solM.y(2,end),u,par);

%%%%--- --- %%%%

%%%%--- GRADIENT BASED METHOD ---%%%%
%%%% Finding initial guess for shooting method

    %display('Starting gradient method...');
    niter=1; JPrev=1e10; JTmp=Jinit;

    while abs(JPrev-JTmp)>par.gradTol

        JPrev=JTmp;
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        solC=solveCostateInv(solM,u, dS, dI, par);
        [tmesh, ~, dHu]=Hamiltonian(solM,solC,u,S,I,par);

        [l1, u] = findOpt(u, dHu, tmesh, S, I, par, init);

        solM=solveModel(S, I, u, par, init);
        JTmp=payoff(solM.y(1,end),solM.y(2,end),u,par);

        %display(['J value after ' num2str(niter) ...
        %         'iterations:' num2str(JTmp)]);
        niter=niter+1;
    end

    %display('Tolerance met - stopping.');
    %display('_____________________________');

%%%%--- ---%%%%

%%%%--- SHOOTING METHOD ---%%%%
%%%% Finding optimal control with shooting method

    %display('Starting shooting method...');

    [x0, val, uN] = findOptShooting( S, I, dS, dI, par, init, u );

    %display('_____________________________');

%%%%--- ---%%%%

%%%%--- DISPLAY FINAL RESULT ---%%%%
%%%% Display final procedure report

    solMFinal=solveModel( S,I,uN, par, init);

    JFinal=payoff(solMFinal.y(1,end),solMFinal.y(2,end),uN,par);

    %display(['Final J value: ' num2str(JFinal)]);
    %display(['Shooting method error: ' num2str(val)]);

%%%%--- ---%%%%

%%%%--- PLOT SOLUTION ---%%%%
%%%% Plot respective solution components

    %plotControl(solMFinal,uN,[0.63 0.5 0.25 0.25],1);

%%%%--- ---%%%%
end

initSettings
function [params, init, u] = initSettings()
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    %%%%--- MODEL ASSOCIATED PARAMETERS ---%%%%

    params.model='Ergun'; %{'Hahnfeldt', 'Ergun', 'dOnofrio'}

    params.angType=1;  %0 -> original model, 1 -> modified model

    params.eps=0.2032; %tumor growth rate: -eps*p*log(p/q)
    params.mu=0;       %spontaneous loss of vasculature: -mu*q
    params.d=0.0028;   %endogenous inhibition: -d*I(p,q)
    params.l=10.3915;  %stimulation: l/(a+u(t))*S(p,q)
    params.a=4.5980;   %stimulation: l/(a+u(t))*S(p,q)
    params.e=0.0273;   %drug influence: -e*u(t)*q

    init=[2000; 3000]; %initial condition (p(0),q(0))

    params.Tmax=30;    %final time

    %%%%--- ---%%%%

    %%%%--- OPTIMAL CONTROL PROBLEM SETTINGS ---%%%%

    params.Ub=20;    %upper bound for control
    params.Lb=0;     %lower bound for control

    params.k1=2;     %payoff functional parameter: k1*Integrate(u(t))
    params.k2=1000;  %payoff functional parameter: -k2*q(T)/p(T)

    %%%%--- ---%%%%

    %%%%--- SOLVER SETTINGS ---%%%%

    %initial control
    u.ti=[0 params.Tmax];
    u.ui=[params.Ub params.Ub];

    params.gradTol=1e-0; %tolerance for the gradient method

    params.solTol=1e-8;  %RelTol for the ode methods

    %%%%--- ---%%%%

end

Hamiltonian
function [tmesh, H, dHu] = Hamiltonian(solM,solC,u,S,I,par)
%HAMILTONIAN - function calculating Hamiltonian value and value of its
%derivative with respect to control u

H=NaN; %no need to calculate in this version of the code
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tmesh=unique([solM.x solC.x]);
solMm=deval(solM,tmesh);
solCc=deval(solC,tmesh);

if par.angType
    dHu=par.k1-par.l./(par.a+control(tmesh,u)).^2.*solCc(2,:).*...
        feval(S,solMm(1,:),solMm(2,:));
else
    dHu=par.k1-par.e*solCc(2,:).*solMm(2,:);
end

end

control
function u = control(t,ms)
    %return value of the control at time t
    u=interp1(ms.ti,ms.ui,t);
end

findOpt
function [l1, uN] = findOpt(u,dHu,tmesh,S,I,par, init)
%FINDOPT - function finding the best value by which multiply the
%Hamiltonians derivative and add to control.

    %%%% creating common mesh and taking values
    tmeshN=unique([u.ti tmesh]);
    uN=interp1(u.ti,u.ui,tmeshN);
    dHuN=interp1(tmesh,dHu,tmeshN);

    u.ti=tmeshN;
    u.ui=uN;

    %%%%

    for i=1:10
        options = optimset('Display','none');
        l1=abs(fminsearch(@F,i,options));
        if F(l1)<F(0)
            uN=u;
            uN.ui=min(max(u.ui-l1*dHuN,par.Lb),par.Ub);
            break;
        end
    end

    if F(l1)>=F(0)
        l1=0;
        uN=u;
    end

    function y=F(x)



5

        ux=u;
        ux.ui=min(max(u.ui-abs(x)*dHuN,par.Lb),par.Ub);
        solM=solveModel( S, I, ux, par, init);
        y=payoff(solM.y(1,end), solM.y(2,end), ux, par);
    end

end

findOptShooting
function [x0, val, uout] = findOptShooting( S, I, dS, dI, par, init, u )
%FINDOPTSHOOTING - function approximating the optimal control using
%shooting method.

    solMinit=solveModel( S,I,u, par, init);
    solCinit=solveCostateInv(solMinit,u, dS, dI, par);

    initC=deval(solCinit,0);

    options=optimset('Display','none','TolX',1e-10,'TolFun',1e-10);
    [x0, val]=lsqnonlin(@F, initC,[],[],options);

    [~, uout]=F(x0);

    function [y, u]=F(x)

        solM=solveFullSystem( S,I, dS, dI, par, [init; x]);

        u.ti=solM.x;
        u.ui=solveHu(solM.x,solM.y,S,par);

        [~,bound]=payoff(solM.y(1,end),solM.y(2,end),u,par);

        y=solM.y(3:4,end)-bound;
    end
end

payoff
function [J, Mdx]= payoff(p,q,u,par)
%PAYOFF - function returning value of the payoff functional and
%corresponding terminal conditions for the adjoint equations.

J=p+par.k1*trapz(u.ti,u.ui)-par.k2*q/p;

Mdx=[1+par.k2*q/p^2; -par.k2/p];

end

solveCostateInv
function solC = solveCostateInv( sPQ,u, dS, dI, par  )
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%SOLVECOSTATEINV - solving adjoint equations backward in time.

    [~,init]=payoff(sPQ.y(1,end),sPQ.y(2,end),u,par);

    options=odeset('RelTol',par.solTol,'Refine',10);

    if par.angType
        solC=ode45(@costateEqns,[par.Tmax 0],init,options);
    else
        solC=ode45(@costateEqnsClassic,[par.Tmax 0],init,options);
    end

    function dY=costateEqns(t,y) %adjoint equations for modified model
        dY=zeros(2,1);
        pq=deval(sPQ,t);
        w=par.l/(par.a+control(t,u));
        vdS=feval(dS,pq(1),pq(2));
        vdI=feval(dI,pq(1),pq(2));

        dY(1)=par.eps*y(1)*(log(pq(1)/pq(2))+1)-...
              y(2)*(w*vdS(1)-par.d*vdI(1));
        dY(2)=-par.eps*y(1)*pq(1)/pq(2)+...
              y(2)*(par.mu-w*vdS(2)+par.d*vdI(2));
    end

    function dY=costateEqnsClassic(t,y) %adjoint eqs for original model
        dY=zeros(2,1);
        pq=deval(sPQ,t);
        w=control(t,u);
        vdS=feval(dS,pq(1),pq(2));
        vdI=feval(dI,pq(1),pq(2));

        dY(1)=par.eps*y(1)*(log(pq(1)/pq(2))+1)-...
              y(2)*(par.l/par.a*vdS(1)-par.d*vdI(1));
        dY(2)=-par.eps*y(1)*pq(1)/pq(2)+...
              y(2)*(par.mu-par.l/par.a*vdS(2)+par.d*vdI(2)+par.e*w);
    end
end

solveFullSystem
function solM = solveFullSystem( S, I, dS, dI, par, init)

    options=odeset('RelTol',1e-10);

    if par.angType
        solM=ode45(@vectField,[0 par.Tmax],init,options);
    else
        solM=ode45(@vectFieldClassic,[0 par.Tmax],init,options);
    end

    function dY=vectField(t,x)
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        u=solveHu(t,x,S,par);
        w=par.l/(par.a+u);

        dY=zeros(4,1);
        dY(1)=-par.eps*x(1)*log(x(1)/x(2));
        dY(2)=-par.mu*x(2)-par.d*feval(I,x(1),x(2))+...
              w*feval(S,x(1),x(2));

        vdS=feval(dS,x(1),x(2));
        vdI=feval(dI,x(1),x(2));

        dY(3)=par.eps*x(3)*(log(x(1)/x(2))+1)-...
              x(4)*(w*vdS(1)-par.d*vdI(1));
        dY(4)=-par.eps*x(3)*x(1)/x(2)+...
              x(4)*(par.mu-w*vdS(2)+par.d*vdI(2));
    end

    function dY=vectFieldClassic(t,x)
        w=solveHu(t,x,S,par);%control(t,u0);

        dY=zeros(4,1);
        dY(1)=-par.eps*x(1)*log(x(1)/x(2));
        dY(2)=-par.mu*x(2)-par.d*feval(I,x(1),x(2))+...
              par.l/par.a*feval(S,x(1),x(2))-w*par.e*x(2);

        vdS=feval(dS,x(1),x(2));
        vdI=feval(dI,x(1),x(2));

        dY(3)=par.eps*x(3)*(log(x(1)/x(2))+1)-...
              x(4)*(par.l/par.a*vdS(1)-par.d*vdI(1));
        dY(4)=-par.eps*x(3)*x(1)/x(2)+...
              x(4)*(par.mu-par.l/par.a*vdS(2)+par.d*vdI(2)+par.e*w);
    end

end

solveHu
function u = solveHu(~,x,S,par)

    if par.angType

        u=(x(4,:).*feval(S,x(1,:),x(2,:))<=0)*par.Lb+...
          (x(4,:).*feval(S,x(1,:),x(2,:))>0).*...
          max(min(abs(sqrt(1./(par.k1./x(4,:)./...
          feval(S,x(1,:),x(2,:))/par.l)))-par.a,par.Ub),par.Lb);

    else

        u=((par.k1-par.e.*x(4,:).*x(2,:))>0)*par.Lb+...
          ((par.k1-par.e.*x(4,:).*x(2,:))<=0)*par.Ub;



8

    end

end

solveModel
function solM = solveModel( S,I,u, par, init )
%SOLVEMODEL - function returning solution to the model specified by the
%S(p,q) and I(p,q) function with the parameters in par.

    options=odeset('RelTol',par.solTol,'Refine',10);

    if par.angType
        solM=ode45(@vectField,[0 par.Tmax],init,options);
    else
        solM=ode45(@vectFieldClassic,[0 par.Tmax],init,options);
    end

    function dY=vectField(t,x) %vector field for the modified model
        dY=zeros(2,1);
        dY(1)=-par.eps*x(1)*log(x(1)/x(2));
        dY(2)=-par.mu*x(2)-par.d*feval(I,x(1),x(2))+...
              par.l/(par.a+control(t,u))*feval(S,x(1),x(2));
    end

    function dY=vectFieldClassic(t,x) %vector field for the original model
        dY=zeros(2,1);
        dY(1)=-par.eps*x(1)*log(x(1)/x(2));
        dY(2)=-par.mu*x(2)-par.d*feval(I,x(1),x(2))+...
              par.l/par.a*feval(S,x(1),x(2))-control(t,u)*par.e*x(2);
    end

end

selectModel
function [S, I, dS, dI] = selectModel( model )
%SELECTMODEL - function returning handles to the functions defining the
%respective models (I(p,q) and S(p,q)) together with the Jacobi matrix D[I,
%S]. Defined models: 'Hahnfeldt', 'Ergun', 'dOnofrio'.

    switch model
        case 'Hahnfeldt'
            S=@(p,q)(p);
            I=@(p,q)(q.*p.^(2/3));
            dS=@(p,q)([1; 0]);
            dI=@(p,q)([2/3*q.*p.^(-1/3); p.^(2/3)]);
        case 'Ergun'
            S=@(p,q)(q.^(2/3));
            I=@(p,q)(q.^(4/3));
            dS=@(p,q)([0; 2/3*q.^(-1/3)]);
            dI=@(p,q)([0; 4/3*q.^(1/3)]);
        case 'dOnofrio'
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            S=@(p,q)(q);
            I=@(p,q)(q.*p.^(2/3));
            dS=@(p,q)([0; 1]);
            dI=@(p,q)([2/3*q.*p.^(-1/3); p.^(2/3)]);
    end

end

Published with MATLAB® R2013b
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