
Uniwersytet Warszawski
Wydział Matematyki, Informatyki i Mechaniki

Jakub Świątkowski
Nr alb: 416261

Variational Inference
Applications in Deep Learning

Rozprawa doktorska
w dziedzinie nauk ścisłych i przyrodniczych

w dyscyplinie informatyka

Praca wykonana pod kierunkiem
dr hab. Marka Cygana, prof. UW

Instytut Informatyki

Warszawa, Wrzesień, 2023

2

Oświadczenie kierującego pracą

Oświadczam, że niniejsza praca została przygotowana pod moim kierunkiem i stwierdzam,
że spełnia ona warunki do przedstawienia jej w postępowaniu o nadanie stopnia doktora w
dziedzinie nauk ścisłych i przyrodniczych w dyscyplinie informatyka.

Data Podpis kierującego pracą

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza rozprawa doktorska została
napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z
obowiazującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur
związanych z uzyskaniem stopnia doktora w innej jednostce.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektron-
iczną.

Data Podpis autora pracy

3

Słowa kluczowe

Inferencja wariacyjna, metody aproksymacji, bayesowskie sieci neuronowe, zmienne
ukryte, uczenie reprezentacji, głębokie sieci neuronowe, zanurzenia w głębokich sieciach
neurownowych, modele generatywne, synteza mowy, dubbing maszynowy, transfer
prozodii mowy, wielo-językowość syntezy mowy

Tytuł pracy w języku polskim

Zastosowania inferencji wariacyjnej w głębokich sieciach neuronowych

4

Streszczenie w języku polskim

Ta praca doktorska bada przecięcie uczenia głębokiego i wnioskowania wariacyjnego, dwóch
znaczących obszarów w dziedzinie uczenia maszynowego i statystyki. Choć modele uczenia
głębokiego wykazały wyjątkową wydajność w różnych aplikacjach, ich ograniczenia w kwan-
tyfikacji niepewności i probabilistycznych prognozach stanowią znaczne wyzwania. Aby je
pokonać, niniejsze badania wykorzystują zasady wnioskowania bayesowskiego, aby wyposażyć
modele uczenia głębokiego w niezawodność, interpretowalność i rozumowanie probabilisty-
czne. Jednak bezpośrednie zastosowanie wnioskowania bayesowskiego w skomplikowanych
modelach, takich jak sieci uczenia głębokiego, jest niemożliwe do przeprowadzenia z powodu
problemów obliczeniowych i skalowalności. Aby to rozwiązać, praca korzysta z wnioskowania
wariacyjnego jako techniki aproksymacyjnej. Konkretnie, w pracy badamy zastosowania
wnioskowania wariacyjnego do bayesowskich sieci neuronowych i syntezy mowy przy użyciu
sieci neuronowych.

W kontekście bayesowskich sieci neuronowych (BNNs), wnioskowanie wariacyjne jest
stosowane do wag sieci. Badania prezentowane w tej pracy znacznie rozszerzają nasze
zrozumienie i wykorzystanie BNNs. Odkryto, że powszechnie używana forma wnioskowania
wariacyjnego w BNNs wykazuje strukturę niskiego rzędu. Odkrycie to pozwala na redukcję
liczby parametrów i prowadzi do przyspieszenia uczenia modelu. Ponadto, badanie prezentuje
intrygujące stwierdzenie, że BNNs odbiegające od teoretycznie optymalnego wnioskowania
Bayesa wykazują lepszą wydajność. Szereg hipotez jest systematycznie badanych, aby
wyjaśnić to zaobserwowane zachowanie.

W dziedzinie syntezy mowy, wnioskowanie wariacyjne jest stosowane do nauki rozłącznych,
interpretowalnych i kontrolowalnych reprezentacji danych za pomocą Auto-Enkoderów Wari-
acyjnych (VAEs). Praca proponuje nową metodę dubbingu maszynowego, która uczy się
zanurzeń prozodii mowy, które są rozłączone od języka, mówcy i szumów kanału, dzięki
czemu mogą być przeniesione między językami i mówcami, aby generować czyste dubbingi
maszynowe. Ponadto, badanie pokazuje, że modelowanie i transfer prozodii na poziomie frazy
prozodycznej, zamiast na poziomie całej wypowiedzi, znacznie poprawia jakość dubbingu
maszynowego.

Podsumowując, poprzez połączenie wnioskowania wariacyjnego z uczeniem głębokim, ta
praca nie tylko zwiększa wydajność i interpretowalność modeli, ale także przesuwa granice
możliwego w dziedzinach takich jak bayesowskie sieci neuronowe i neuralna synteza mowy.
Badanie dostarcza nowych spostrzeżeń i metod, które torują drogę dla przyszłych rozwojów
w tych obszarach.

5

Streszczenie w języku angielskim

This PhD thesis explores the intersection of deep learning and variational inference, two
significant areas in machine learning and statistics. While deep learning models have demon-
strated exceptional performance across a range of applications, their inherent limitations in
uncertainty quantification and probabilistic predictions present significant challenges. To
overcome these challenges, this research leverages the principles of Bayesian inference to
imbue deep learning models with robustness, interpretability, and probabilistic reasoning.
However, direct application of Bayesian inference in complex models such as deep learning
networks is intractable due to computational and scalability issues. To address this, the
thesis employs variational inference as an approximation technique. This work specifically
explores the application of variational inference to Bayesian neural networks and neural
speech synthesis.

In the context of Bayesian neural networks (BNNs), variational inference is applied to
the weights of the network. The research presented in this thesis significantly enhances our
understanding and utilization of BNNs. It uncovers that a commonly used form of variational
inference in BNNs exhibits a low-rank structure. This discovery allows for a reduction in the
number of parameters and leads to accelerated model training. Additionally, the research
presents an intriguing finding that BNNs deviating from the theoretically optimal Bayes
inference show improved performance. A series of hypotheses are systematically examined to
explain this observed behaviour.

In the domain of speech synthesis, variational inference is applied to learning disentangled,
interpretable, and controllable latent representations of data using Variational Auto-Encoders
(VAEs). The thesis proposes a novel method for machine dubbing that learns speech prosody
embeddings, which are disentangled from language, speaker, and channel noise and can be
transferred across languages and speakers to generate clean machine dubs. Moreover, the
research demonstrates that modelling and transferring prosody at a prosodic phrase level,
instead of a whole utterance level, significantly improves machine dubbing quality.

In summary, by intertwining variational inference with deep learning, this thesis not only
enhances model performance and interpretability but also pushes the boundaries of fields
such as Bayesian neural networks and neural speech synthesis. This research provides novel
insights and methods that pave the way for future developments in these areas.

6

Contents

1 Introduction 11
1.1 List of publications . 11
1.2 Overview . 12
1.3 Deep learning . 15
1.4 Bayesian inference . 15
1.5 Variational inference . 17

1.5.1 Gaussian Mean-Field Variational Inference 18

2 Variational Inference in Bayesian Neural Networks 21
2.1 Bayesian Neural Networks . 21
2.2 Variational Inference Bayesian Neural Networks 23

2.2.1 Gaussian Mean-Field Variatonal Inference Bayesian Neural Network . 24
2.3 SG-MCMC Bayesian Neural Networks . 25

2.3.1 Posterior Simulation using Langevin Dynamics 26
2.3.2 Stochastic Gradient MCMC (SG-MCMC) 27

2.4 Summary of Chapter 4 . 28
2.4.1 Introduction . 28
2.4.2 Results . 29

2.5 Summary of Chapter 5 . 31

3 Variational Inference in Neural Speech Synthesis 33
3.1 Overview . 33
3.2 Speech Synthesis . 34

3.2.1 Task formulation . 34
3.2.2 Speech signal processing . 35
3.2.3 High-level system architecture . 37
3.2.4 Text analysis . 38
3.2.5 Acoustic models . 39
3.2.6 Vocoders . 40
3.2.7 Controllability . 41

3.3 Variational Auto-Encoder (VAE) . 42
3.3.1 Gaussian Mean-Field Variational Auto-Encoder 43

7

8 CONTENTS

3.3.2 Practical challenges with training VAEs 44
3.4 VAE in Speech Synthesis . 45

3.4.1 VAE for Prosody Transfer . 45
3.4.2 VAE for Audio Representation Learning 46

3.5 Machine Dubbing . 47
3.6 Summary of Chapter 6 . 48
3.7 Summary of Chapter 7 . 49

4 The k-tied Normal Distribution: A Compact Parameterization of Gaussian
Mean Field Posteriors in Bayesian Neural Networks 55
4.1 Overview . 55
4.2 Introduction . 55
4.3 Mean Field Posterior Standard Deviations Naturally Have Low-Rank Structure 56

4.3.1 Methodology . 57
4.3.2 Experimental setting . 59
4.3.3 Main experimental observation . 60
4.3.4 Low-rank approximation of mean field posterior standard deviations . 60

4.4 The k-tied Normal Distribution: Exploiting Low-Rank... 61
4.4.1 Experimental setting . 62
4.4.2 Experimental results . 63

4.5 Related Work . 64
4.6 Conclusion . 67

5 How Good is the Bayes Posterior in Deep Neural Networks Really? 71
5.1 Overview . 71
5.2 Introduction . 71

5.2.1 Why Should Bayes (T = 1) be Better? 72
5.3 Cold Posteriors Perform Better . 73

5.3.1 Deep Learning Models: ResNet-20 and LSTM 73
5.3.2 Why is a Temperature of T < 1 a Problem? 74
5.3.3 Confirmation from the Literature . 74

5.4 Accurate SG-MCMC Simulation . 76
5.5 Inference: Is it Accurate? . 77

5.5.1 Hypothesis: Inaccurate SDE Simulation 77
5.5.2 Hypothesis: Biased SG-MCMC . 78
5.5.3 Hypothesis: Stochastic Gradient Noise 79
5.5.4 Hypothesis: Bias-Variance Trade-off 80

5.6 Why Could the Bayes Posterior be Poor? . 81
5.6.1 Problems in the Likelihood Function? 81
5.6.2 Problems with the Prior? . 82
5.6.3 Inductive Bias due to SGD? . 84

5.7 Alternative Explanations? . 85
5.8 Related Work on Tempered Posteriors . 86

CONTENTS 9

5.9 Conclusion . 86

6 Cross-lingual Prosody Transfer for Expressive Machine Dubbing 89
6.1 Overview . 89
6.2 Introduction . 89
6.3 Modelling . 92

6.3.1 Prosody Encoder . 92
6.3.2 Noise Modelling . 93
6.3.3 Training Setup . 94

6.4 Evaluations . 94
6.4.1 Perceptual Metrics . 95
6.4.2 Analysis of Prosody Embedding Space 95
6.4.3 Objective Metrics For Other Language Pairs 96

6.5 Conclusions . 96

7 Expressive Machine Dubbing Through Phrase-level Cross-lingual Prosody
Transfer 99
7.1 Overview . 99
7.2 Introduction . 99
7.3 Method . 101

7.3.1 Phrase-level reference encoder . 102
7.3.2 Length-based regularization . 103
7.3.3 Noise modelling at phrase-level . 103
7.3.4 Alignment of phrase-level audio reference embeddings to target text

phonemes . 104
7.4 Experiments . 104

7.4.1 Training setup . 104
7.4.2 Data . 105
7.4.3 Evaluated systems . 105
7.4.4 Subjective Evaluation . 106
7.4.5 Objective Metrics . 107

7.5 Conclusions . 107

A Appendix for Chapter 4 109
A.1 Proof of the Matrix Variate Normal Parameterization 109
A.2 He-scaled Normal Prior . 110
A.3 KL Annealing with Adam . 111
A.4 Experimental Details . 111

A.4.1 Models and datasets . 111
A.4.2 GMFVI training . 113
A.4.3 Low-rank structure analysis . 114
A.4.4 k-tied Normal posterior training . 115

10 CONTENTS

B Appendix for Chapter 5 121
B.1 Model Details . 121

B.1.1 ResNet-20 CIFAR-10 Model . 121
B.1.2 ResNet-20 CIFAR-10 SGD Baseline . 122
B.1.3 CNN-LSTM IMDB Model . 123
B.1.4 CNN-LSTM IMDB SGD Baseline . 123

B.2 Deep Learning Parameterization of SG-MCMC Methods 124
B.3 Connection to Stochastic Gradient Descent (SGD) 124
B.4 Semi-Adaptive Estimation of Layerwise Preconditioner M 126
B.5 Kullback-Leibler Scaling in Variational Bayesian Neural... 127
B.6 Inference Bias-Variance Trade-off Hypothesis 129
B.7 Cold posteriors improve uncertainty metrics. 130
B.8 Details on the Experiment for the Implicit Initialization Prior... 131
B.9 Diagnostics: Temperatures . 131

B.9.1 Kinetic Temperature Estimation . 132
B.9.2 Configurational Temperature Estimation 134

B.10 Simulation Accuracy Ablation Study . 135
B.11 Dirty Likelihood Functions . 135

B.11.1 Augmented Latent Model . 136
B.11.2 Log-likelihood Bound and Jensen Posterior 138
B.11.3 Deep Learning Techniques Optimize Jensen Posteriors 141
B.11.4 Dirty Likelihood Experiment . 143

B.12 Prior Predictive Analysis for Different Prior Scales 144
B.12.1 He-Scaled Normal Prior, N (0, I) for Biases 145
B.12.2 He-Scaled Normal Prior, N (0, ϵI) for Biases 145

B.13 Tempering the Observation Model? . 147
B.14 Details: Generation of a Synthetic Dataset Based on an MLP Drawn From its

Prior Distribution . 149
B.15 Details about Hamiltonian Monte Carlo . 149

B.15.1 Hyperparameter choices . 150
B.15.2 Convergence monitoring . 150
B.15.3 KL divergence between predictive distributions 151

Chapter 1

Introduction

This PhD thesis explores applications of variational inference (Peterson, 1987; Hinton &
Van Camp, 1993a) techniques in the domain of deep learning (Goodfellow et al., 2016).
Variational inference provides a powerful framework for approximate Bayesian inference (Pearl,
1988; Murphy, 2012), allowing for efficient and scalable probabilistic modelling. In recent
years, deep learning has emerged as a dominant approach for solving complex tasks in various
domains. However, incorporating uncertainty estimation and probabilistic modelling into
deep learning systems remains a challenging problem. This thesis investigates the potential of
variational inference in addressing these challenges and explores its applications in different
areas of deep learning. The research contributes novel methodologies, theoretical insights,
and empirical evaluations, shedding light on the benefits, limitations, and future directions
of variational inference in deep learning.

1.1 List of publications

My thesis comprises four published papers from P1 to P4:

P1 J. Swiatkowski, K. Roth, B. Veeling, L. Tran, J. Dillon, J. Snoek, S. Mandt, T.
Salimans, R. Jenatton, S. Nowozin
"The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field
Posteriors in Bayesian Neural Networks"
International Conference on Machine Learning 2020
CORE Rank: A*, MNiSW: 200
As the sole first author of this work my contributions cover all the major work items including
proposing and developing a research idea, method implementation, experimentation, analysis,
and paper writing. Other co-authors contributed through discussions, final paper writing
(abstract, introduction and related work), and the proof of the Matrix Variate Normal
Parameterization.
I estimate my contribution to be at 80%.

11

12 CHAPTER 1. INTRODUCTION

P2 F. Wenzel, K. Roth, B. Veeling, J, Swiatkowski, L. Tran, S. Mandt, J. Snoek, T.
Salimans, R. Jenatton, S. Nowozin
"How Good is the Bayes Posterior in Deep Neural Networks Really?"
International Conference on Machine Learning 2020
CORE Rank: A*, MNiSW: 200
As a secondary author of this work, my contribution is mainly through discussions and
my initial observation of the cold posterior effect in the variational inference variant of
Bayesian neural networks, which at least partially motivated the research done in this work.
Nevertheless, I include this work due to its significant impact on the field of machine learning,
especially related to Bayesian neural networks (284 citations until August 2023).

P3 J. Swiatkowski, D. Wang, M. Babianski, P. Tobing, R. Vipperla, V. Pollet
"Cross-lingual Prosody Transfer for Expressive Machine Dubbing"
INTERSPEECH 2023
CORE Rank: A, MNiSW: 140
As one of three first authors of this work, my contributions cover proposing and developing
the research idea (proposal of the cross-lingual prosody transfer through reference encoder),
initial method implementation and experimentation showing the success of such transfer,
method evaluation, paper writing.
I estimate my contribution to be at 35%.

P4 J. Swiatkowski, D. Wang, M. Babianski, G. Coccia, P. Tobing, R. Vipperla, V.
Klimkov, V. Pollet
"Expressive Machine Dubbing Through Phrase-level Cross-lingual Prosody Transfer"
INTERSPEECH 2023
CORE Rank: A, MNiSW: 140
My contributions cover proposing and developing the research idea (proposal of the phrase-
level cross-lingual prosody transfer), method implementation, experimentation, analysis, and
paper writing.
I estimate my contribution to be at 60%.

1.2 Overview

Deep learning has revolutionized the field of artificial intelligence, enabling significant
advancements in various domains, including computer vision, natural language processing,
and speech processing. Deep neural networks have demonstrated remarkable performance in
complex tasks, surpassing traditional machine learning methods in many areas. However,
deep learning models often lack the ability to capture uncertainty and provide probabilistic
predictions, which is essential for decision-making under uncertainty, robustness analysis,
and reliable risk assessment.

1.2. OVERVIEW 13

In contrast, Bayesian inference provides a principled framework for probabilistic modelling
and uncertainty quantification. It allows for incorporating prior knowledge, learning from
limited data, and obtaining posterior distributions over model parameters. Bayesian methods
have been widely studied and applied in various fields, but their direct integration with deep
learning models is challenging due to computational complexity and scalability issues.

Variational inference, a branch of Bayesian inference, offers a promising approach to
address these challenges. It provides a scalable and efficient approximation technique for
Bayesian inference, enabling the incorporation of uncertainty estimation and probabilistic
modelling in deep learning models. It estimates and manipulates uncertainty by treating
specific model components as latent variables. In the context of deep learning, the latents
can be neural network weights or learned data representations.

Traditionally, neural network weights are treated as fixed parameters and learned using
optimization techniques like stochastic gradient descent. However, this approach does not
account for uncertainty in the weights, which can be valuable in various scenarios, such as
model generalization, robustness, and interpretability.

By treating neural network weights as variational inference latents, we can capture
and quantify uncertainty in the weights, leading to more robust and interpretable models.
Bayesian neural networks (BNNs) (Peterson, 1987; Hinton & Van Camp, 1993a; Blei et al.,
2017) are a prime example of this approach, where the posterior distribution over the weights
is approximated using variational inference. BNNs provide a means to encode uncertainty in
the model’s predictions, enabling robust decision-making and confidence estimation. This
describes two published papers advancing the state-of-the-art and understanding of Bayesian
neural networks co-authored by Jakub Swiatkowski, the author of this thesis.

In the first paper (P1), where Jakub Swiatkowski is the main author, two main contribu-
tions are:

1. Finding that the most commonly used family of variational posteriors for Bayesian
neural network weights has a low-rank structure.

2. Proposed low-rank parametrization of the variational posteriors, which reduces the
number of parameters by half and leads to faster training convergence.

In the second paper (P2), where Jakub Swiatkowski is a secondary author, our contribu-
tions are:

1. We demonstrate that artificially reducing the variance of learned BNN posteriors
improves predictive performance over theoretically optimal Bayes predictive posteriors
in BNNs.

2. We put forth and systematically examine hypotheses that could explain the observed
behaviour.

3. We introduce two new diagnostic tools for assessing the approximation quality of the
learned posteriors.

14 CHAPTER 1. INTRODUCTION

In addition to modelling uncertainty in neural network weights, variational inference
can also be applied to learning data representations using Variational Auto-Encoders
(VAEs) (Kingma & Welling, 2013; Salimans et al., 2013; Rezende & Mohamed, 2015).
Learned representations capture the underlying structure and features of the data, creating
more expressive and compact features for downstream tasks. By treating the learned data
representations as variational inference latents, we can learn and sample from rich distribu-
tions over these representations, providing a more flexible, controllable and interpretable
model.

One practical application that benefits from such learned representations using VAEs is
speech synthesis (Zhang et al., 2019c; Kim et al., 2021). Speech synthesis aims to generate
natural and human-like speech from textual or other input representations. By leveraging
variational inference to learn latent representations, we can capture the complex dependencies
and variability in speech data, improving synthesis quality, controllability and expressiveness.

In speech synthesis, the ability to model uncertainty in latent representations allows for
more robust and contextually relevant speech generation. By manipulating the latent variables,
we can control specific speech attributes, such as speaking style, emotion, or intonation,
enabling personalized and expressive speech synthesis (Zhang et al., 2019c). Moreover,
variational inference facilitates the learning of disentangled representations, separating
different factors of variation, such as speaker identity and linguistic content, into distinct
dimensions of the latent space (Kumar et al., 2018; Locatello et al., 2019).

Controllability in speech synthesis is especially crucial for tasks like machine dubbing.
In machine dubbing, the goal is to synthesize speech for translated text while maintaining
the vocal performance of the original language’s voice recording. We describe two published
papers showing an application of VAEs in this setting, where Jakub Swiatkowski is the first
author.

In the first dubbing paper (P3), our contributions are:

1. We present a novel method capable of learning VAE representations of vocal performance
with disentangled language and voice characteristics that can be transferred across
languages.

2. We propose combining multiple VAE encoders that disentangle vocal performance and
background noise allowing for clean speech synthesis from a noisy reference audio.

In the second dubbing paper (P4), our contributions are:

1. We extend the previous paper with a more granular, phrase-level, VAE-learned repre-
sentation of the vocal performance. We show that such representation results in better
dubbing quality than the utterance-level representations proposed in P3.

2. We propose a length-based regularization for the phrase-level representation that
improves the disentanglement of vocal performance from the original language content.

By intertwining variational inference with deep learning, this thesis not only enhances
model performance and interpretability but also pushes the boundaries of fields such as

1.3. DEEP LEARNING 15

Bayesian neural networks and neural speech synthesis. In the remainder of this chapter, we
will introduce the concepts of deep learning, Bayesian inference and variational inference. In
Chapters 2 and 3, we will delve into the details of applying variational inference in Bayesian
neural networks and neural speech synthesis respectively. In both chapters, we provide
summaries of the relevant publications (P1-P4), which are the main body of this thesis in
Chapters 4–7.

1.3 Deep learning

Deep Learning (Goodfellow et al., 2016), a subfield of machine learning, has achieved
remarkable success across a wide array of tasks, including image classification (Krizhevsky
et al., 2012), speech recognition (Graves et al., 2013), natural language processing (Vaswani
et al., 2017), and even board and video games (Silver et al., 2016). Deep learning algorithms,
commonly referred to as neural networks, are models comprised of many processing layers
(hence "deep"), which learn representations of data with multiple levels of abstraction.

Neural networks, in particular, are comprised of interconnected nodes, known as neurons,
organized into layers. The input is passed through these layers, transformed at each stage,
and ultimately generates an output. The primary strength of deep learning lies in the
fact that these networks can learn directly from raw data and automatically extract useful
features, mitigating the need for handcrafted feature extraction, which is often labor-intensive
and task-specific.

The success of deep learning models is attributed to their capacity to learn complex
patterns and interactions within data. These models are trained through a process known
as backpropagation (Rumelhart et al., 1986), an algorithm used for adjusting the model’s
weights to minimize the difference between the model’s predictions and the actual data. While
the initial layers of a deep learning model might learn simple patterns, the more advanced
layers combine these simpler patterns to understand more complicated relationships.

Deep learning models’ flexibility and strength are especially apparent in tasks involving
unstructured data (e.g., images, audio, and text), where traditional machine learning models
struggle. Deep learning can handle these types of data due to its ability to learn hierarchical
features and deal with high-dimensional data. However, while deep learning has had significant
success, there are still numerous challenges, such as overfitting, interpretability, and the need
for large amounts of training data. This thesis aims to contribute towards addressing some
of these challenges in the context of Bayesian deep learning and speech synthesis.

In the following sections, we will delve into the Bayesian inference method, one of the
main concepts used in this work, and how it can be combined with deep learning to better
model uncertainty, regularize models, and improve their interpretability.

1.4 Bayesian inference

Bayesian inference (Pearl, 1988; Murphy, 2012) is a powerful framework for reasoning and
making predictions under uncertainty. It provides a systematic way to update our beliefs or

16 CHAPTER 1. INTRODUCTION

knowledge about a particular phenomenon as new evidence becomes available (Gelman et al.,
2013). Named after the Reverend Thomas Bayes, an 18th-century English statistician and
philosopher, Bayesian inference is a cornerstone of modern statistics and has applications
in a wide range of fields, including machine learning, artificial intelligence, economics, and
healthcare (McGrayne, 2011).

At its core, Bayesian inference is based on Bayes’ theorem (2.1), which describes how
to update the probability of a hypothesis (or a set of hypotheses) z given new evidence x.
The theorem mathematically connects the prior probability p(z), which represents our initial
beliefs or knowledge about the hypothesis z, with the likelihood p(x|z), which quantifies
how well the observed evidence supports or contradicts the hypothesis. By combining the
prior probability with the likelihood, Bayes’ theorem allows us to compute the posterior
probability p(z|x), which represents our updated belief about the hypothesis in light of the
new evidence.

p(z|x) = p(x|z)p(z)
p(x)

(1.1)

The key idea in Bayesian inference is to treat probabilities as measures of our own
uncertainty or degrees of belief. Unlike frequentist statistics, which often focus on the
long-run properties of estimators, Bayesian inference directly addresses our subjective beliefs
and updates them in a rational and coherent manner (Jaynes, 2003). This subjective
interpretation of probability allows us to incorporate prior knowledge, expert opinions, or
subjective judgments into the inference process (Berger, 2013).

One of the strengths of Bayesian inference is its ability to handle complex problems
involving multiple parameters or hypotheses. By using probability distributions to represent
uncertainty, we can express our beliefs about the values of these parameters or hypotheses
and update them as new data becomes available. This flexibility enables Bayesian inference
to handle a wide range of models, from simple linear regression to complex hierarchical
models with latent variables (Gelman et al., 2013).

Posterior distribution allows us to integrate out the latent variables of our model z and
estimate the probability of new data x∗ after observing all the previous evidence x:

p(x∗|x) =
∫
p(x∗|z)p(z|x) dz (1.2)

In addition to its theoretical elegance, Bayesian inference offers practical advantages. It
provides a unified framework for data analysis, allowing us to seamlessly combine prior
knowledge with observed data (Box & Tiao, 2011). Furthermore, Bayesian methods naturally
quantify uncertainty by providing posterior probability distributions, which can be used to
estimate credible intervals or perform decision analysis (Robert et al., 2007).

While Bayesian inference offers numerous benefits, it also presents challenges. Computing
the posterior distribution can be analytically intractable for complex models. In particular,
computing the normalizing constant of the exact posterior p(x) involves integration over
all possible latent variables that is computationally prohibitive for the complex models.

1.5. VARIATIONAL INFERENCE 17

This motivates the use of approximation techniques such as Markov Chain Monte Carlo
(MCMC) (Gelfand & Smith, 1990) or Variational Inference (Peterson, 1987; Hinton &
Van Camp, 1993a; Jordan et al., 1999). We focus on the latter in this thesis. Additionally,
the choice of prior distributions can have a significant impact on the results, and different
priors may lead to different conclusions. Therefore, careful consideration and sensitivity
analysis are necessary when specifying prior beliefs, as demonstrated in Chapter 5 of this
thesis.

1.5 Variational inference

Variational Inference (Peterson, 1987; Hinton & Van Camp, 1993a; Jordan et al., 1999)
is a family of methods used to approximate complex posterior distributions when direct
computation is intractable. It offers a scalable and computationally efficient alternative to
exact Bayesian inference, allowing us to perform inference in large-scale models.

The main idea behind variational inference is to cast the problem of approximating
the posterior distribution as an optimization task. Instead of directly calculating the
true posterior, variational inference introduces a simpler family of distributions, called the
variational family, from which we seek the best approximation.

The variational family is typically defined by a set of parameters that can be optimized to
minimize the divergence between the true posterior and the approximating distribution. The
optimization problem is often formulated as minimizing the Kullback-Leibler (KL) divergence
between the true posterior and the variational distribution. In particular, we minimize
the KL divergence DKL between the variational distribution qθ(z) and the true posterior
distribution p(z|x), which is given by

DKL[qθ(z)||p(z|x)] = Eq

[
log

qθ(z)

p(z|x)

]
= Eq

[
log

qθ(z)

p(z)p(x|z)/p(x)

]
= Eq

[
log

qθ(z)

p(z)

]
− Eq [log p(x|z)] + Eq [log p(x)]

= DKL[qθ(z)||p(z)]− Eq [log p(x|z)] + log p(x).

(1.3)

Here, we do not know the normalizing constant of the exact posterior p(x), but since this
term does not depend on z, we may ignore it for the purpose of optimizing our approximation
q. We are then left with what is called the negative Evidence Lower Bound (negative ELBO):

Lq = DKL[qθ(z)||p(z)]− Eq[log p(x|z)]. (1.4)

We observe that the first term is a regularization that encourages the variational posterior to
be close to the prior. On the other hand, the second term is an expected likelihood which
encourages variational posteriors that explain the data with high likelihood.

18 CHAPTER 1. INTRODUCTION

Figure 1.1: Variational Inference as an optimization problem. Variational family approximate
posterior qθ(z) is optimised to minimise DKL from true posterior p(z|x). Source: Blei et al.
(2016).

In practice, the expectation of the log-likelihood p(x|z) with respect to q is usually not
analytically tractable and instead is estimated using Monte Carlo sampling:

Eq[log p(x|z)] ≈
1

S

S∑
s=1

log p(x|z(s)),

z(s) ∼ qθ(z),

(1.5)

where the ELBO is optimized by differentiating this stochastic approximation with respect to
the variational parameters θ (Salimans et al., 2013; Kingma & Welling, 2013). By optimizing
the parameters of the variational distribution, we iteratively refine the approximation until
it becomes close to the true posterior. See Figure 1.1. This process is often performed using
stochastic gradient descent or other optimization techniques.

We can observe that ELBO is a lower-bound on the log evidence log p(x) ≥ ELBO for
any qθ(z), which explains its name. This follows from:

DKL[qθ(z)||p(z|x)] + ELBO = log p(x) (1.6)

and the fact that KL(·) ≥ 0 (Kullback & Leibler, 1951).
Finally, in this thesis, we study the setting of amortized variational inference (Gershman

& Goodman, 2014) where the variational parameters are shared across data points.

1.5.1 Gaussian Mean-Field Variational Inference

Gaussian Mean-Field Variational Inference (GMFVI) (Blei et al., 2017; Blundell et al., 2015b)
is a widely used approach within variational inference that assumes the approximate posterior
distribution can be factorized into independent Gaussian distributions q = N (µq,Σq) with
zi ∼ N (µi, σ

2
i). This mean-field assumption simplifies the problem by assuming that the

latent variables are not correlated, allowing for more efficient computations. The latents zi

1.5. VARIATIONAL INFERENCE 19

can then be sampled using a reparameterization trick (Kingma & Welling, 2013), i.e, for the
s-th sample, we have

z
(s)
i = µi + σiϵ

(s), ϵ ∼ N (0, 1). (1.7)

This makes the parameters µi and σi differentiable.
Variational inference provides several advantages, particularly in the context of large

and complex models. It is computationally efficient compared to other methods, such as
Markov chain Monte Carlo (MCMC), making it scalable to large datasets and complex
models. Moreover, variational inference allows for parallel computation and can scale to
massive datasets, enabling real-time or online inference, and generally provide competitive
performance (Ovadia et al., 2019a).

However, variational inference relies on approximations, and the quality of the approxi-
mation depends on the chosen variational family. The chosen family may introduce biases
or inaccuracies in the inference process. Additionally, variational inference can struggle
with capturing complex dependencies and multimodal posterior distributions, leading to less
accurate results compared to exact Bayesian inference methods (Giordano et al., 2018).

Despite these limitations, variational inference remains a valuable tool for Bayesian
inference in scenarios where exact calculations are impractical or computationally prohibitive.
Its ability to provide fast and scalable approximations has made it a popular choice for a
wide range of applications in machine learning, probabilistic modelling, Bayesian statistics,
and deep learning.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Variational Inference in Bayesian
Neural Networks

Neural networks have been widely successful in various domains, demonstrating their ability
to learn complex patterns and make accurate predictions (Goodfellow et al., 2016). However,
traditional neural networks lack a principled approach to quantify uncertainty in their weights
and predictions, limiting their reliability in decision-making under uncertainty and robustness
analysis (Kendall & Gal, 2017). Bayesian neural networks (BNNs) (MacKay, 1992; Neal,
1993) offer a solution to this problem by integrating Bayesian inference into the learning
process, allowing for uncertainty estimation and probabilistic modelling.

2.1 Bayesian Neural Networks

A Bayesian neural network(MacKay, 1992; Neal, 1993) is a type of neural network that
leverages the principles of Bayesian probability theory (Pearl, 1988). This offers a robust
framework for managing uncertainty, enabling these neural networks to present predictions
with a measurable degree of confidence (Gal, 2016). This Bayesian-based approach to neural
networks is part of a machine learning subfield known as Bayesian deep learning.

Standard neural networks (Goodfellow et al., 2016) adjust their parameters, such as
weights and biases, during training to minimize the loss function. However, they provide
deterministic outputs for a given input, meaning if the same input is repeatedly introduced,
the output remains unchanged. These networks do not communicate any uncertainty about
the predictions, which can be a significant shortcoming in real-world applications where
understanding model uncertainty is essential (Kendall & Gal, 2017).

Contrarily, Bayesian neural networks integrate uncertainty within the model parameters
w by treating them as latent variables (z in Chapter 1). In other words, the weights and
biases are interpreted as posterior probability distributions, not single values. See Figure 2.1.
This approach allows the network to account for uncertainty in its parameters, leading to
uncertainty in predictions. Hence, the outputs from a Bayesian neural network for a given
input are not deterministic but probabilistic.

21

22 CHAPTER 2. VARIATIONAL INFERENCE IN BAYESIAN NEURAL NETWORKS

H1 H2 H3 1

X 1

Y

0.5 0.1 0.7 1.3

1.40.3

1.2

0.10.1 0.2

(a) Standard neural network: each weight has a
fixed value, as provided by classical backpropaga-
tion.

H1 H2 H3 1

X 1

Y

(b) Bayesian neural network: each weight is as-
signed a distribution, as provided by Bayes by
Backprop.

Figure 2.1: Illustrative comparison between a standard neural network and a Bayesian neural
network. Source: Blundell et al. (2015a).

For neural network weights w, features x and labels y, the posterior distribution p(w|x,y)
is computed using Bayes’ rule, which multiplies the prior distribution p(w) and data likelihood
p(y|w,x) and renormalizes:

p(w|x,y) = p(y|w,x)p(w)

p(x,y)
. (2.1)

Notice, that while in Chapter 1 we used x notation for the model outputs as is standard
in generative modelling literature, in the Bayesian neural network setting we denote model
outputs as y instead and we use x as the model conditioning inputs, as is standard in the
Bayesian neural network literature.

When predicting with Bayesian neural networks, we form an average over model predic-
tions where each prediction is generated using a set of parameters that is randomly sampled
from the posterior distribution:

p(y∗|x∗,x,y) =

∫
p(y∗|x∗,w)p(w|x,y) dw. (2.2)

This can be viewed as a type of ensembling, of which various types have proven highly
effective in deep learning (see e.g. Goodfellow et al., 2016, sec 7.11).

The Bayesian approach offers advantages in several contexts. It can help prevent overfitting
to the training data, a common problem in machine learning where a model learns the training
data too well, limiting its generalization capabilities (Hinton & Van Camp, 1993a). By
considering model parameters as distributions instead of point estimates, Bayesian neural

2.2. VARIATIONAL INFERENCE BAYESIAN NEURAL NETWORKS 23

networks can better regularize their learning, mitigating overfitting (Neal, 1995). Besides
offering improved predictive performance over single models, Bayesian ensembles are also more
robust because ensemble members will tend to make different predictions on hard examples
(Raftery et al., 2005). The diversity of the ensemble represents predictive uncertainty and
can be used for out-of-domain detection or other risk-sensitive applications (Ovadia et al.,
2019a).

Despite these advantages, Bayesian neural networks come with their own set of difficulties.
The most notable is the computational cost associated with estimating the posterior distri-
bution over the model parameters, especially for large networks (Graves, 2011a). Various
approximations, such as the Variational Inference Graves (2011b); Ranganath et al. (2014);
Blundell et al. (2015b); Hernández-Lobato & Adams (2015); Zhang et al. (2017); Khan et al.
(2018) applied in P1 and the Stochastic Gradient Markov Chain Monte Carlo (Welling &
Teh, 2011; Chen et al., 2014) applied in P2, have been developed to handle this issue. We
describe both types of approximations in subsequent sections.

2.2 Variational Inference Bayesian Neural Networks

Variational inference, described in Section 1.5, is the most widespread approach for training
Bayesian neural networks. It approximates the intractable true posterior distribution over
model parameters p(w|x,y) using a tractable simpler distribution qθ(w). This tractable
distribution is parameterised by variational parameters θ that are optimized to minimize the
distance between the two distributions:

DKL[qθ(w)||p(w|x,y)] = Eq

[
log

qθ(w)

p(w|x,y)

]
= Eq

[
log

qθ(w)

p(w)p(y|w,x)/p(x,y)

]
.

(2.3)

While the true posterior distribution is unknown due to the intractable marginal evidence
p(x,y), we can still optimise the above distance with respect to θ because the evidence
p(x,y) does not depend on θ. This results in the negative ELBO loss function:

Lq = DKL[qθ(w)||p(w)]− Eq[log p(y|w,x)]. (2.4)

were the expectation over the log-likelihood is usually approximated using Monte Carlo
sampling:

Eq[log p(y|w,x)] ≈ 1

S

S∑
s=1

log p(y|w(s),x),

w(s) ∼ qθ(w),

(2.5)

In practice, it is common to use only a single parameter sample w(s) for this approximation
during each training iteration of variational inference Bayesian neural networks.

24 CHAPTER 2. VARIATIONAL INFERENCE IN BAYESIAN NEURAL NETWORKS

Given trained qθ(w) we predict on a new instance x∗ by integrating out the model
parameters as shown in Equation 2.2. However, the exact integration is not tractable.
Therefore, we approximate it using Monte Carlo sampling from qθ(w):

p(y∗|x∗,x,y) ≈ 1

S

S∑
s=1

p(y∗|w(s), x∗), (2.6)

where w(s), s = 1, . . . , S, is sampled from qθ(w).
In Bayesian neural networks, we consider layers that consist of a linear transformation

followed by a non-linearity f ,

al = hlWl + bl, hl+1 = f(al), (2.7)

where Wl ∈ Rm×n, hl ∈ R1×m and bl,al,hl+1 ∈ R1×n. To simplify the notation in the
following, we drop the subscript l such that W = Wl, µq = µql, Σq = Σql and we focus on
the kernel matrix W for a single layer.

2.2.1 Gaussian Mean-Field Variatonal Inference Bayesian Neural Network

The most widely adopted parameterization for training the variational inference Bayesian
neural networks is Gaussian Mean-Field Variational Inference (GMFVI)(Blundell et al.,
2015a), introduced more generally in Section 1.5.1. In GMFVI, we model the variational
posterior as:

q(W) = N (µq,Σq) =

m∏
i=1

n∏
j=1

q(wij),

with q(wij) = N (µij , σ
2
ij),

(2.8)

where µq ∈ Rmn×1 is the posterior mean vector, Σq ∈ Rmn×mn
+ is the diagonal posterior

covariance matrix.
The weights are then usually sampled using a reparameterization trick (Kingma & Welling,

2013), i.e, for the s-th sample, we have

w
(s)
ij = µij + σijϵ

(s), ϵ ∼ N (0, 1). (2.9)

In practice, we often represent the posterior standard deviation parameters σij in the form
of a matrix A ∈ Rm×n

+ . Note that we have the relationship Σq = diag(vec(A2)) where
the elementwise-squared A is vectorized by stacking its columns, and then expanded as a
diagonal matrix into Rmn×mn

+ . See Figure 2.2 for illustration.
While Gaussian Mean-Field posteriors are considered to be one of the simplest types of

variational approximations, with some known limitations (Giordano et al., 2018), they scale
to comparatively large models and generally provide competitive performance (Ovadia et al.,
2019a). Additionally, Farquhar et al. (2020b) have found that the Mean-Field becomes a

2.3. SG-MCMC BAYESIAN NEURAL NETWORKS 25

samplereshape

Mean-Field

split by layer

Figure 2.2: Illustration of sampling a neural network ensemble member from a GMFVI Bayesian
neural network.

less restrictive assumption as the depth of the network increases. However, when compared
to deterministic neural networks, GMFVI doubles the number of parameters and is often
harder to train due to the increased noise in stochastic gradient estimates. We address these
challenges in Chapter 4 of this thesis. Furthermore, despite the theoretical advantages of
GMFVI over the deterministic neural networks, GMFVI suffers from over-regularization for
larger networks, which leads to underfitting and often worse predictive performance in such
settings, as we show in Chapter 5.

2.3 SG-MCMC Bayesian Neural Networks

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) methods are an alternative to
variational inference for approximation of the parameter posterior distribution in Bayesian
neural networks. SC-MCMC Bayesian neural networks are the main topic of Chapter 5.
SG-MCMC methods approximate the posterior distribution by combining stochastic gradient
descent with Markov chain Monte Carlo techniques, allowing for scalable and approximate
sampling from the posterior. These methods generate samples by iteratively updating the
weights using stochastic gradients and applying Markov chain transitions to explore the
posterior distribution. Unlike the variational inference approximation, the samples from
the posterior should in the limit converge to the true posterior distribution. In this SG-
MCMC setting, we denote the neural network weights w as θ because they are the object of
optimisation (unlike in variational inference where the variational parameters are optimised).

In supervised deep learning we use a training dataset of features x = {xi}i=1,...,n and
labels y = {yi}i=1,...,n, and a probabilistic model p(y|x,θ) to minimize the regularized

26 CHAPTER 2. VARIATIONAL INFERENCE IN BAYESIAN NEURAL NETWORKS

cross-entropy objective,

L(θ) := − 1

n

n∑
i=1

log p(yi|xi,θ) + Ω(θ), (2.10)

where Ω(θ) is a regularizer over model parameters. We approximately optimize (2.10) using
variants of stochastic gradient descent (SGD), (Sutskever et al., 2013). Beside being efficient,
the SGD minibatch noise also has generalization benefits (Masters & Luschi, 2018; Mandt
et al., 2017).

SG-MCMC methods reframe the standard deep learning parameter optimization as
sampling from posterior distribution over the parameters:

p(θ|x,y) ∝ p(y|θ,x)p(θ) = exp(−U(θ)/T), (2.11)

where U(θ) is the posterior energy function analogous to a standard supervised learning
training objective (2.10):

U(θ) := − log p(y|θ,x)− log p(θ) =

n∑
i=1

log p(yi|xi,θ)− log p(θ), (2.12)

where the first term is the likelihood of data and the second term is regularization. If we scale
U(θ) by 1/n and set Ω(θ) = − 1

n log p(θ) we recover L(θ) in (2.10). Therefore exp(−U(θ))
simply gives high probability to models which have low loss L(θ). T is a temperature that
adjusts the sharpness of the posterior distribution. Approximation of the posterior with
sampling proportional to the likelihood and prior avoids the computation of the intractable
normalizing term in the exact Bayes posterior equation.

Given p(θ|x,y) we predict on a new instance x∗ by averaging over all likely models as
show in Equation 2.2. However, solving this integral exactly is not possible. Instead, we
approximate the integral using Monte Carlo sampling:

p(y∗|x∗,x,y) ≈ 1

S

S∑
s=1

p(y∗|x∗,θ(s)), (2.13)

where θ(s), s = 1, . . . , S, are samples saved during the Markov chain transitions when
exploring the posterior distribution p(θ|x,y). This is in contrast to the Variational Inference
BNNs that generate the posterior samples at prediction time.

2.3.1 Posterior Simulation using Langevin Dynamics

To generate approximate parameter samples θ ∼ p(θ | D) we consider Langevin dynamics
over parameters θ ∈ Rd and momenta m ∈ Rd, defined by the Langevin stochastic differential
equation (SDE),

dθ = M−1m dt, (2.14)

dm = −∇θU(θ) dt− γm dt+
√
2γT M1/2 dW. (2.15)

2.3. SG-MCMC BAYESIAN NEURAL NETWORKS 27

Here U(θ) is the posterior energy defined in (2.12), and T > 0 is the temperature. We use
W to denote a standard multivariate Wiener process, which we can loosely understand as a
generalized Gaussian distribution (Särkkä & Solin, 2019; Leimkuhler & Matthews, 2016).
The mass matrix M is a preconditioner, and if we use no preconditioner then M = I, such
that all M-related terms vanish from the equations. The friction parameter γ > 0 controls
both the strength of coupling between the moments m and parameters θ as well as the
amount of injected noise (Langevin, 1908; Leimkuhler & Matthews, 2016). For any friction
γ > 0 the SDE (2.14–2.15) has the same limiting distribution, but the choice of friction does
affect the speed of convergence to this distribution. Simulating the continuous Langevin
SDE (2.14–2.15) produces a trajectory distributed according to exp(−U(θ)/T) and the Bayes
posterior is recovered for T = 1.

2.3.2 Stochastic Gradient MCMC (SG-MCMC)

Bayesian inference now corresponds to simulating the above SDE (2.14–2.15) and this requires
numerical discretization. For efficiency stochastic gradient Markov chain Monte Carlo (SG-
MCMC) methods further approximate ∇θU(θ) with a minibatch gradient (Welling & Teh,
2011; Chen et al., 2014). For a minibatch B ⊂ {1, 2, . . . , n} we first compute the minibatch
average gradient G̃(θ),

∇θG̃(θ) := − 1

|B|
∑
i∈B
∇θ log p(yi|xi,θ)−

1

n
∇θ log p(θ), (2.16)

and approximate ∇θU(θ) with the unbiased estimate ∇θŨ(θ) = n∇θG̃(θ). Here |B| is the
minibatch size and n is the training set size; in particular, note that the log prior scales with
1/n regardless of the batch size.

The SDE (2.14–2.15) is defined in continuous time (dt), and in order to solve the dynamics
numerically we have to discretize the time domain (Särkkä & Solin, 2019). In this work we
use a simple first-order symplectic Euler discretization, (Leimkuhler & Matthews, 2016), as
first proposed for (2.14–2.15) by Chen et al. (2014). Recent work has used more sophisticated
discretizations, (Chen et al., 2015; Shang et al., 2015; Heber et al., 2019; Heek & Kalchbrenner,
2019). Applying the symplectic Euler scheme to (2.14–2.15) gives the discrete time update
equations,

m(t) = (1− hγ)m(t−1) − hn∇θG̃(θ(t−1)) (2.17)

+
√
2γhT M1/2R(t), (2.18)

θ(t) = θ(t−1) + hM−1m(t), (2.19)

where R(t) ∼ Nd(0, Id) is a standard Normal vector.
To put this into perspective, when M = I the only difference between these updates

and the familiar SGD with momentum is the additional noise term
√
2γhT M1/2R(t) in

the SG-MCMC method. In this precise sense the presented SG-MCMC is just “SGD
with noise”. In fact, the parameterization in terms of step size h and friction γ, can be

28 CHAPTER 2. VARIATIONAL INFERENCE IN BAYESIAN NEURAL NETWORKS

rewritten in terms of the familiar SGD learning rate ℓ and momentum decay parameters β by
setting h :=

√
ℓ/n, and γ := (1− β)

√
n/ℓ. Appendix B.2 contains exact derivations of these

equations. Furthermore, the preconditioner M can be viewed as the familiar adaptive learning
rate preconditioners known from commonly used optimizers such RMSprop (Tieleman &
Hinton, 2012) or Adam (Kingma & Ba, 2014).

In summary, SG-MCMC BNNs approximate the posterior using samples stored from
exploring the posterior space, instead of approximating the posterior using a simpler distri-
bution as variational inference BNNs. While variational BNNs avoid computing the marginal
evidence by minimising the ELBO objective that is independent of the marginal evidence,
SG-MCMC BNNs achieve it by sampling, which also does not require computing the marginal
evidence. The variational BNNs samples from the variational distribution during prediction,
while the SG-MCMC reuse the samples stored from the exploration. Both the variational
inference and SG-MCMC methods inject additional noise in the training procedure compared
to deterministic neural networks. In variational inference, the additional noise comes from
sampling the network parameters from the variational posterior in each forward pass during
training. In SG-MCMC, the additional noise is instead injected during the network parameter
updates. Therefore, while the implementation details are different for both of the described
BNN approaches, the core principles of sampling ensemble members and injecting additional
parameter noise during training are similar.

2.4 Summary of Chapter 4

In this section, we provide a concise summary of the contributions and results of paper P1,
which is later described in more detail in Chapter 4.

2.4.1 Introduction

Beyond mean-field variational inference (Section 1.5.1), recent work on approximate Bayesian
inference has explored ever richer parameterizations of the approximate posterior in the
hope of improving the performance of Bayesian neural networks. In contrast, here we study
a simpler, more compactly parameterized variational approximation. Our motivation for
studying this setting is to better understand the behaviour of GMFVI with the goal to
address the issues with its practical applicability. Consequently, we show that the compact
approximations can also work well for a variety of models. In particular we find that:

• Converged posterior standard deviations under GMFVI consistently display strong
low-rank structure. This means that by decomposing these variational parameters into
a low-rank factorization, we can make our variational approximation more compact
without decreasing our model’s performance.

• Factorized parameterizations of posterior standard deviations improve the signal-to-
noise ratio of stochastic gradient estimates, and thus not only reduce the number of
parameters compared to standard GMFVI, but also can lead to faster convergence.

2.4. SUMMARY OF CHAPTER 4 29

Figure 2.3: Illustration of the relationship between the standard Gaussian Mean-Field posterior
and its “low-rank” parameterization, which we call the k-tied Normal posterior. The illustration
shows the posterior parameterization for a network with L layers, where x and y are the network
inputs and outputs respectively, and µq1 , Σq1 , µqL and ΣqL are the variational parameters for the
layers 1 and L respectively. The k-tied Normal distribution parameterizes the already diagonal per
layer posterior covariance matrices Σq1..L using the even more compact U1..L and V1..L matrices
from N

(
µq,diag

(
vec
(
(UVT)2

)))
.

2.4.2 Results

We start by empirically studying the properties of the spectrum of matrices A, introduced
in Section 2.2, post-training (after convergence), while using standard Gaussian mean-field
variational distributions (see Figure 2.3). Interestingly, we observe that those matrices
naturally exhibit a low-rank structure (see Figure 2.4), i.e,

A ≈ UVT (2.20)

for some U ∈ Rm×k, V ∈ Rn×k and k a small value (e.g., 2 or 3). This observation motivates
the introduction of the following variational family, which we name k-tied Normal:

k-tied -N (W;µq,U,V) =

N
(
µq,diag

(
vec
(
(UVT)2

)))
,

(2.21)

where the squaring of the matrix UVT is applied elementwise. Due to the tied parame-
terization of the diagonal covariance matrix, we emphasize that this variational family is
smaller—i.e., included in—the standard Gaussian mean-field variational distribution family.

Notice that our diagonal covariance Σq repeatedly reuses the same elements of U and V,
which results in parameter sharing across different weights. The total number of the standard
deviation parameters in our method is k(m+ n) from U and V, compared to mn from A in
the standard GMFVI parameterization. Given that in our experiments, the k is very low
(e.g. k = 2), this reduces the number of the posterior standard deviation parameters from
quadratic to linear in the dimensions of the layer. This in practice approximately halves

30 CHAPTER 2. VARIATIONAL INFERENCE IN BAYESIAN NEURAL NETWORKS

1 2 3 4 5 6 7 8 9 10
Rank

10-6

10-5

10-4

10-3

10-2

10-1

100

P
e
rc

e
n
t

o
f

e
x
p
la

in
e
d
 v

a
ri

a
n
ce

Dense 1 means

Dense 2 means

Dense 3 means

Dense 1 stddevs

Dense 2 stddevs

Dense 3 stddevs

1 2 3 4 5 6 7 8 9 10
Rank

Dense 1 means

Dense 2 means

Dense 1 stddevs

Dense 2 stddevs

1 2 3 4 5 6 7 8 9 10
Rank

Kernel means

Recurrent kernel means

Kernel stddevs

Recurrent kernel stddevs

(a) 3-layer MLP trained on MNIST

1 2 3 4 5 6 7 8 9 10
Rank

10-6

10-5

10-4

10-3

10-2

10-1

100

Pe
rc

en
t o

f e
xp

la
in

ed
 v

ar
ia

nc
e

conv2d stddevs
conv2d means
conv2d_7 stddevs
conv2d_7 means
dense stddevs
dense means

(b) ResNet-18 trained on CIFAR-10

Figure 2.4: Fraction of variance explained per each singular value from SVD of matrices of
posterior means and posterior standard deviations post-training in different model types. Unlike
posterior means, posterior standard deviations clearly display a strong low-rank structure, with
most of the variance contained in the top few singular values.

(a) The k-tied Normal distribution approximately
halves the number of model parameters.

(b) The k-tied Normal distribution does not de-
grade predictive performance for k ≥ 2.

Figure 2.5: The k-tied Normal distribution with rank k ≥ 2 approximately halves the number
of model parameters without decreasing the predictive performance compared to the standard
GMFVI.

the total number of model parameters (posterior means are unchanged) without decreasing
predictive performance (see Figure 2.5). Additionally, such parameter sharing across the
weights leads to higher signal-to-noise ratio during training and thus in some cases faster
convergence (see Figure 2.6).

2.5. SUMMARY OF CHAPTER 5 31

(a) Mean gradient Signal-to-Noise-Ratio (SNR) in
the log posterior standard deviation parameters
of the MNIST MLP model at increasing training
steps for different ranks of tying k. The k-tied
Normal distribution significantly increases the
SNR for these parameters.

(b) Negative ELBO on the MNIST validation
dataset at increasing training steps for different
ranks of tying k. The higher SNR from the k-tied
Normal posterior translates into the increased
convergence speed for the MLP model.

Figure 2.6: The k-tied Normal distribution improves the signal-to-noise ratio of stochastic gradi-
ent estimates and results in faster training convergence speed.

10 4 10 3 10 2 10 1 100

Temperature T

0.88

0.90

0.92

0.94

Te
st

 a
cc

ur
ac

y

SG-MCMC
Baseline: SGD

Figure 2.7: The “cold posterior” effect: for a ResNet-20 on CIFAR-10 we can improve the
generalization performance significantly by cooling the posterior with a temperature T ≪ 1,
deviating from the Bayes posterior p(θ|D) ∝ exp(−U(θ)/T) at T = 1.

2.5 Summary of Chapter 5

This section summarizes the contributions of Paper P2, which is described in greater detail
in Chapter 5.

Paper P2 reevaluates the understanding of Bayes posteriors in popular deep neural
networks. It shows that theoretically optimal Bayes posteriors yield systematically worse
predictions compared to standard SGD optimisation and posteriors with an artificially down-
scaled temperature T < 1 in Equation 2.11, as illustrated in Figure 2.7. This phenomenon is
termed the "cold posteriors" effect, where the temperature T < 1 corresponds to overcounting
the data evidence by a factor of 1/T . Paper P2 also highlights the prevalence of such down-
scaling in the Bayesian neural network literature.

32 CHAPTER 2. VARIATIONAL INFERENCE IN BAYESIAN NEURAL NETWORKS

Additionally, P2 proposes several hypotheses that could explain the cold posterior effect,
and these hypotheses are evaluated through experimental analysis. The hypotheses are
grouped based on their connection with either the SG-MCMC inference procedure, the prior,
or the likelihood function.

First, the hypothesis related to the SG-MCMC inference procedure suggests that this
procedure may be inaccurate. The high-dimensional posterior of deep neural networks could
lead to difficult-to-simulate Stochastic Differential Equation (SDE) dynamics (Equations 2.14-
2.15). Moreover, the approximate SG-MCMC inference method has to contend with minibatch
noise and it produces only a finite sample approximation to the predictive integral in Equation
2.13. However, P2 shows that the SG-MCMC inference procedure is accurate in the analysed
settings, indicating that it is not the cause of the cold posterior effect.

Second, P2 investigates the effects of deep learning practices that violate the likelihood
principle, such as batch normalization, dropout, and data augmentation. It discovers that
the cold posterior effect persists even when a clean likelihood function is employed.

Finally, P2 provides evidence suggesting that the standard Normal prior commonly used
for Bayesian inference is inadequate for Bayesian neural networks. Specifically, it shows that
typical functions produced by this prior assign a high probability to the same class for all
inputs, whereas a uniform distribution would be expected. This implicates the prior in the
cold posterior effect.

Chapter 3

Variational Inference in Neural Speech
Synthesis

3.1 Overview

This chapter is centred around the use of Variational Inference in the realm of Neural Speech
Synthesis (Tan, 2023). Here, we examine and explore the conjunction of deep learning
techniques and digital audio processing in synthesizing human speech. With a focus on
Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013; Rezende et al., 2014), we
will delve into their application and significance in creating more refined and human-like
synthesized speech.

To set the foundation for the discussion, the chapter starts with a comprehensive examina-
tion of speech synthesis in section 3.2. It begins with the task formulation of speech synthesis,
outlining the problem space and associated challenges. Next, it delves into the technical
aspects of speech signal processing. We then examine the high-level system architecture
typical of a speech synthesis system (Taylor, 2009).

To understand the building blocks of speech synthesis systems, individual sub-components
like text analysis, acoustic models, and vocoders are dissected and analyzed. We then describe
a recent trend in combining the acoustic and vocoder submodules with end-to-end modelling.
This will enable an understanding of the fundamental techniques and architectures utilized
in speech synthesis, setting the stage for later discussions on applying variational inference
in such systems.

Section 3.3 will begin with an introduction to the Variational Auto-Encoder, providing the
theoretical background needed to understand how it works, its architecture, and how it differs
from standard auto-encoders (Hinton & Salakhutdinov, 2006; Goodfellow et al., 2016). We
will describe how the principles of variational inference introduced in Section 1.5 are applied
in the context of the VAE. This section will establish the foundation for understanding the
relevance of VAEs in the speech synthesis process.

Section 3.4, "VAE in Speech Synthesis," dives deeper into the use of VAEs in the speech
synthesis process. We will discuss the role of VAEs in enhancing the quality and versatility

33

34 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

of synthesized speech. We further subdivide this section into two sub-sections: 3.4.1, "VAE
for Prosody Transfer," and 3.4.2, "VAE for Audio Representation Learning." In these sub-
sections, we will discuss how VAEs can be used to capture and transfer prosody from
one speech to another and for learning compact, meaningful representations of audio data.
Prosody, which refers to the rhythm, stress, and intonation of speech, is a crucial aspect of
natural-sounding synthesized speech, and VAEs provide a promising approach to capturing
and transferring this aspect of speech.

Section 3.5, "Machine Dubbing," moves us into an application area of the principles
discussed earlier. Machine dubbing signifies the replacement of original voice content with
synthesized voices in different languages while maintaining the original emotion and tone.
We will look at how the concepts of VAE and speech synthesis come together in this practical
and growing field.

Finally, Sections 3.6 and 3.7 summarise two machine dubbing papers P3 and P4 which
are the contributions of this thesis. P3 proposes a cross-lingual prosody transfer method
based on VAE for machine dubbing. P4 extends this method with a more granular prosody
modelling using the VAE representations, which improves the quality of machine dubs.

In essence, this chapter aims to give an in-depth view of the application of variational
inference in neural speech synthesis, its potential in machine dubbing, and its growing
relevance in today’s world of AI and machine learning. This work aspires to bridge the gap
between theoretical understanding and practical implementations, providing insights that
can be utilized for further research and development.

3.2 Speech Synthesis

3.2.1 Task formulation

Speech synthesis, also often referred to as text-to-speech (TTS), is a field of study within
artificial intelligence and computational linguistics that focuses on generating human-like
speech from text and other data. More formally, given an input text sequence, the goal
of a speech synthesis system is to generate a corresponding audio waveform that a human
listener would perceive as natural speech. See Figure 3.1. This process involves mapping
linguistic symbols into a sequence of acoustic parameters, and subsequently converting these
parameters into a digital audio signal. This task is typically framed as a sequence-to-sequence
problem, where the input sequence is the text and the output sequence is the audio waveform.
Speech synthesis has broad applications, ranging from accessibility features for the visually
impaired or dyslexic individuals to its use in digital personal assistants, navigation systems,
call centres, audiobook reading and more recently in entertainment such as video games and
video dubbing.

An important aspect of the task formulation is determining what constitutes ’natural
speech’. It is not enough for the system to simply articulate words—it must also recreate
the intonations, pauses, and other prosodic features that occur in human speech, and do so
in a way that matches the context of the text being spoken. The goal, therefore, is not just

3.2. SPEECH SYNTHESIS 35

Text Text to Speech
(TTS) Speech waveform

Figure 3.1: Conventional Text-To-Speech systems generate speech waveform for an input text.

intelligibility, but also naturalness and expressivity.
Furthermore, real-world applications often require control over aspects of the speech such

as the speaker’s identity, accent, emotional state, speaking style, and acoustic condition. This
implies an additional layer of complexity in the task formulation, as the system must learn
to control these aspects in a way that is both consistent with the input text and flexible to
the specific requirements of the application. Conventional text-to-speech systems as shown
in Figure 3.1 often do not meet these requirements. We will delve into the controllability
of speech synthesis in Section 3.2.7 and focus on its application in the challenging machine
dubbing domain in Section 3.5. Preceding sections will assume a single-speaker, single-
language, neutral text-to-speech system trained on studio quality recording.

3.2.2 Speech signal processing

This section describes concepts instrumental to the field of speech signal processing, thereby
fortifying the understanding required for subsequent discussions.

Analog-to-Digital Conversion

Analog-to-Digital Conversion (ADC) plays a fundamental role in the field of digital signal
processing and, by extension, in speech synthesis. While human speech is an inherently
analogue phenomenon—continuous in both time and amplitude—it is necessary to convert it
into a digital format to process it using computer systems. This conversion is accomplished
through ADC. The process of ADC consists of two primary steps: sampling and quantization.

Sampling involves recording the amplitude of the speech signal at discrete intervals. The
sampling rate, or the number of samples taken per second, determines how accurately the
digital signal can represent the analogue signal. In the realm of speech synthesis, a common
sampling rate is 24 kHz.

Quantization is the process of assigning discrete amplitude values to each sample. It
essentially involves converting the continuous range of amplitudes in the analogue signal to a
finite set of possible amplitude levels. The number of levels is determined by the bit depth
of the quantization, with a higher bit depth providing a more accurate representation of the
original amplitudes, but also requiring more memory to store. It is common to use 16-bit
per sample. Higher bit rates would increase memory consumption without high benefits to
perceptual quality.

The result of ADC is a digital audio signal, represented as a sequence of discrete samples,
each with a specific amplitude value. This digital signal serves as the basis for further
processing.

36 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Time to Frequency Domain Transformation

Once the speech signal has been digitized through the analogue-to-digital conversion, the
next critical step in speech signal processing involves transforming the signal from the time
domain to the frequency domain. This transformation provides a different representation
of the signal, revealing the different frequencies that make up the signal and their relative
intensities.

The transformation from the time domain to the frequency domain is typically achieved
through a mathematical operation called the Fourier Transform (Bracewell & Bracewell,
1986). In practice, for digital signals, a variant of the Fourier Transform known as the
Fast Fourier Transform (FFT) is commonly used due to its computational efficiency. The
FFT essentially decomposes the time-domain signal into a sum of sinusoidal components of
different frequencies, each with its own amplitude and phase. The result is a spectrum that
shows the relative intensity of each frequency component in the signal.

Inherent to human speech is a non-stationary nature of the speech signal. Consequently,
the static Fourier Transform, which provides a global view of the frequency components,
becomes inadequate for capturing this time-varying behaviour. To address this, the Short-
Time Fourier Transform (STFT) (Allen, 1977) is typically employed.

The STFT divides the continuous speech signal into small, overlapping segments or
frames using a window function, and then applies the Fourier Transform to each segment.
This approach allows the spectral characteristics of the speech signal to be analyzed over
short time periods, thereby capturing its non-stationary nature.

The choice of the window function and its length have significant implications for
the resulting frequency representation. Common window functions include the Hamming
window and the Hanning window (Blackman & Tukey, 1958), which mitigate the artificial
discontinuities at the edges of each frame, thereby reducing spectral leakage—a distortion in
the frequency representation.

The length of the window dictates the time-frequency resolution trade-off. A longer
window provides better frequency resolution (i.e., it can distinguish between closely spaced
frequencies) but poorer time resolution (i.e., it cannot accurately capture rapid changes in
the signal). Conversely, a shorter window offers better time resolution but poorer frequency
resolution.

The hop length, or the step size between consecutive windows, also plays a role in this
transformation process. Smaller hop sizes lead to a more densely sampled time-frequency
representation and hence a lower level of compression, while larger hop sizes yield a more
compressed but potentially less detailed representation.

Finally, human perception of sound follows a logarithmic scale and is not linear, and as
such, the raw spectrum produced by the STFT does not align well with human auditory
perception. Specifically, we are more sensitive to changes in lower frequencies than in higher
ones. Mel-spectrograms address this by utilizing the Mel scale (Rabiner & Schafer, 2010), a
perceptual scale that approximates the human ear’s response to different frequencies. The
Mel scale is quasi-logarithmic: it is more densely packed at lower frequencies (which we are
more sensitive to) and less densely packed at higher frequencies (which we are less sensitive

3.2. SPEECH SYNTHESIS 37

Text Text
Analysis

Phonemes Acoustic
Model Vocoder

Mel-spectrogram

Dec.

Speech

Figure 3.2: Popular multi-stage text-to-speech system architecture.

to).
Equipped with the basic knowledge of speech signal processing, we proceed to a high-level

description of speech synthesis systems in the next subsection.

3.2.3 High-level system architecture

The evolution of speech synthesis system architecture reflects the advancements in both
computational power and machine learning techniques. Historically, the field was dominated
by two main methodologies: Concatenative Synthesis (Hunt & Black, 1996) and Statistical
Parametric Synthesis (Zen et al., 2009).

Concatenative Synthesis relied on a vast database of pre-recorded speech segments, which
were selected and concatenated to form the output speech. This method, while capable of
producing high-quality speech, was limited by the size and diversity of the available speech
database.

On the other hand, Statistical Parametric Synthesis used statistical models to generate
speech, which was typically more flexible and customizable. However, the speech produced
by these methods often sounded more robotic and less natural due to the simplifications and
assumptions made by the models.

The advent and proliferation of deep learning techniques have led to a new era in speech
synthesis, with Neural Synthesis now being the prevalent approach (Tan, 2023). Neural
Synthesis employs neural networks to model and generate speech, leading to synthetic speech
that can closely match the naturalness and intelligibility of human speech.

A popular high-level system architecture for modern Neural Synthesis involves a multi-
stage approach, consisting of three main components: Text Analysis, Acoustic Modeling, and
a Vocoder (Figure 3.2).

Text Analysis is the first stage of this architecture. Here, the input text is transformed
into a sequence of phonemes, or distinct units of sound that make up speech. This stage often
includes other language processing steps such as tokenization, normalization, part-of-speech
tagging, and syntactic analysis, which provide the system with a deeper understanding of
the input text. Text Analysis is usually rule-based.

Next, the Acoustic Model takes the sequence of phonemes and transforms it into an
intermediate acoustic representation, commonly a Mel-spectrogram. This transformation
is typically achieved through a neural network model, which can learn complex, non-linear
relationships between the phonetic input and the acoustic output.

38 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Text Text
Analysis

Phonemes

Dec.

Figure 3.3: Overview of a text analysis module.

The final stage is the Vocoder, which transforms the Mel-spectrogram into a speech
waveform. This step involves converting the frequency-domain information in the Mel-
spectrogram back into the time-domain, resulting in a digitized version of the speech signal.
The vocoder is also typically implemented using a neural network, which can generate
high-quality, natural-sounding speech.

Subsequent sections provide more detailed descriptions of these three stages.

3.2.4 Text analysis

Text analysis is a crucial component of a speech synthesis system, serving as the first step
in the process of transforming written text into spoken speech. It is in this stage that the
written input is decoded into a structured representation that exposes the linguistic and
phonetic content necessary for generating natural sounding speech.

The text analysis process usually comprises of several sub-stages, including tokenization,
text normalization, and phonetic transcription.

Tokenization involves dividing the text into smaller units such as sentences, words, and
phrases. This segmentation of text is critical for subsequent stages as it allows the system to
analyze and process the text in a more granular and manageable way.

Text normalization is the process of converting written numbers, abbreviations, acronyms,
and other non-standard forms of text into their standard spoken equivalents. For instance,
"Dr." might be converted to "Doctor," "$20" to "twenty dollars," and "St." to "Street." This
stage is crucial to ensure the speech output is intelligible and natural sounding.

Phonetic transcription translates each token into its corresponding phonetic representation.
This involves mapping each word to a sequence of phonemes, which are the smallest units of
sound in a language. This phonetic sequence serves as the input to the subsequent speech
signal processing stages. While neural networks could operate on characters/graphemes
directly, the phoneme representation is particularly useful for the controllability of custom
pronunciations of words unseen during training, such as entity names.

Text analysis is typically rule-based. The rules are usually developed by linguists
that specialize in a given locale, where a locale is composed of a language and an accent.
For instance, the English language has accents such as British, United States, Canadian,
Australian, Irish, Scottish and Indian.

Text analysis, therefore, involves converting the raw input text into a detailed, structured
representation that captures not only the linguistic content of the text, but also the phonetic
features that are necessary for generating natural speech. Despite its seeming simplicity, this

3.2. SPEECH SYNTHESIS 39

Phonemes Acoustic
Model

Mel-spectrogram

Figure 3.4: Overview of an acoustic module.
.

stage is quite challenging due to the complexity and variability of natural language. It serves
as the foundation for the rest of the speech synthesis process, and its quality can significantly
impact the naturalness and intelligibility of the synthesized speech.

3.2.5 Acoustic models

Acoustic modelling is a crucial component that plays the role of a sequence-to-sequence con-
verter, transforming sequences of phonemes into corresponding sequences of Mel-spectrogram
frames. This transformation task involves establishing a monotonic alignment between the
phonemes and the Mel-spectrogram frames. This alignment is essentially the temporal
mapping from each phoneme to the segment of the speech waveform it corresponds to, and
accurately predicting this alignment is the central problem addressed by the acoustic model.

Two primary approaches have emerged to tackle this alignment problem: auto-regressive
modelling and parallel modelling.

Auto-regressive modelling, as embodied in architectures such as Tacotron (Wang et al.,
2017; Shen et al., 2018), uses an attention mechanism to predict the alignment between the
phonemes and the Mel-spectrogram frames. This approach allows for highly expressive and
natural-sounding speech synthesis, as the model can learn complex dependencies between
the input and output sequences. However, it tends to be slow due to its sequential nature
and can be unstable, sometimes resulting in attention failures where the model loses the
correct alignment.

Parallel modelling, in contrast, separates the alignment prediction into a distinct stage
based on predicted phoneme durations. This approach, used in models like Parallel
Tacotron (Elias et al., 2021), offers faster and more stable synthesis as it decouples du-
ration prediction from the rest of the acoustic model. However, it can be less expressive, as
the parallel models may not capture all the nuanced temporal variations in natural speech.

Phoneme duration predictors can be trained using alignments derived from forced align-
ment methods (Povey et al., 2011), which use dynamic programming to find the optimal
alignment between phonemes and corresponding ground truth audio.

The input phonemes are usually processed by an encoder network, which outputs a
higher-level representation of the phonemes. These encodings are then upsampled to frame-
level representations, typically using a duration predictor, and fed into a decoder network to
generate the final Mel-spectrogram values.

The choice of modern encoder architecture often falls to Transformer models (Vaswani

40 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Vocoder
Mel-spectrogram

Speech

Figure 3.5: Overview of a vocoder module.

et al., 2017), as seen in Ren et al. (2019, 2020), due to their capacity to capture long-range
dependencies between phonemes. On the other hand, there is greater variety in decoder
strategies. Deterministic convolutional neural networks (CNNs) and Transformer models
offer a stable and efficient approach to decoding, while generative models like normalizing
flows (Rezende & Mohamed, 2015; Kim et al., 2020) or diffusion models (Popov et al.,
2021) can provide greater expressivity by modelling the data distribution, which allows
for sampling varied model outputs. For instance, GlowTTS (Kim et al., 2020) contains
a normalizing flow module (Prenger et al., 2019) that learns an invertible transformation
between Mel-spectrograms and their embeddings, which are regularized to be close in space
to the text embeddings from a transformer encoder. The flow learns to embed the Mel-
spectrograms during training but it can also perform the inverse operation of converting the
text embeddings into Mel-spectrograms during inference.

3.2.6 Vocoders

Vocoders play a critical role in the process of speech synthesis by converting the generated
Mel-spectrograms into an audio waveform. However, this task is far from straightforward
due to the lossy nature of Mel-spectrograms. The process of converting a spectrogram to
a Mel-spectrogram involves downsampling the frequencies to a lower granularity Mel scale.
Additionally, phase information is often discarded in spectrograms and acoustic models
predict only spectrogram magnitudes, making it necessary for the vocoder to reconstruct the
phase aspect of the speech signal.

Griffin-Lim (Griffin & Lim, 1984) is a popular algorithm used to reconstruct phase
information from magnitude-only spectrograms. The algorithm iteratively estimates the
phase by exploiting redundancies between neighboring spectrogram frames that arise from
the overlapping computations in the short-time Fourier transform. The resulting complex-
valued spectrograms, which consist of the desired magnitude and estimated phase, can be
transformed back into a waveform via an inverse short-time Fourier transform (iSTFT).
However, due to the approximations inherent in the Griffin-Lim algorithm, the quality of the
reconstructed speech signal often falls short of natural human speech.

As a result, recent advancements in vocoding technology have largely been driven by
deep learning models, leading to a range of state-of-the-art vocoders such as auto-regressive
models (Oord et al., 2016), normalizing flow models (Oord et al., 2018; Prenger et al., 2019),
and diffusion-based models (Chen et al., 2020; Kong et al., 2020b). Nonetheless, as of the

3.2. SPEECH SYNTHESIS 41

time of writing, the most widely-used vocoders are based on Generative Adversarial Networks
(GANs) (Goodfellow et al., 2020), including models such as MelGAN (Kumar et al., 2019),
HiFi-GAN (Kong et al., 2020a), and BigVGAN (Lee et al., 2023). These models are favored
due to their relatively small size, fast inference speed, and high-quality speech reconstruction.

GAN-based vocoders are characterized by their two-part structure consisting of a generator
and a discriminator. The generator is tasked with creating waveforms from Mel-spectrograms
that are as indistinguishable as possible from real waveforms. Concurrently, the discriminator
is trained to differentiate between these synthesized waveforms and actual waveforms. The
training process of these models involves a delicate balance: while the generator strives to
fool the discriminator with its generated waveforms, the discriminator continuously improves
at identifying the generator’s outputs.

Additionally, GAN training stability is typically enhanced with the aid of a feature
matching loss. This loss function minimizes the L1-norm difference between the features
of the discriminator’s output for the generated and real waveforms, helping to guide the
generator towards producing waveforms that not only deceive the discriminator but also
closely resemble the true speech signals. The interplay between the generator and the
discriminator during training leads to a robust and efficient vocoder capable of generating
high-quality, natural-sounding speech.

3.2.7 Controllability

The previous sections have largely discussed speech synthesis systems designed for a single
speaker, speaking a single language and accent, with neutral prosody/style, and typically
recorded in a clean studio environment. However, practical, real-world applications often
require systems with much higher controllability, including control over the speaker’s identity
(timbre), language and accent, prosody/style of the speech, and the sound of the background
environment.

Multi-speaker and multi-lingual models provide a more cost-effective solution for hosting
large-scale speech synthesis services as they eliminate the need to maintain individual models
for each speaker or language. Moreover, these models offer the potential for novel applications,
such as synthesizing speech in a particular speaker’s voice but in a language not seen during
training for that speaker (Jia et al., 2018). However, achieving this requires successful
disentanglement of speaker identity and language information to prevent unwanted accents
in the synthesized speech.

Locale embeddings, which encode language and accent information, are typically modelled
as one-hot vectors in these systems. Similarly, speaker identity can be encoded either as a
one-hot vector or extracted from a reference audio clip of the target speaker (Wu et al., 2022).
The latter approach offers the possibility of synthesizing speech for unseen speakers, but its
effectiveness depends on the system’s ability to disentangle the speaker’s voice characteristics
from other aspects of the reference audio.

In many applications, it is desirable to synthesize speech with a specific style or emotional
tone. For example, a virtual assistant might be required to speak empathetically, or a dubbed
audio track might need to match the emotional tone of the original performance. This can

42 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

be achieved either by using discrete emotion labels (Rattcliffe et al., 2022a), or by extracting
continuous emotion/style embeddings from a reference audio (Skerry-Ryan et al., 2018b;
Wang et al., 2018). The latter approach offers the advantage of capturing a broader range of
emotions and does not require emotion labels, but its success again hinges on the system’s
ability to disentangle the prosodic properties of the reference audio.

Recording studio-quality speech is a costly and time-consuming process, which can limit
the amount of data available for training. With the abundance of readily accessible, albeit
noisy, data on the internet, it is advantageous to train robust speech synthesis systems using
such data while still being able to produce clean, studio-quality speech when necessary. This
necessitates the disentanglement of background noise from the speech signal itself (Zhang
et al., 2021).

A common way to achieve the above-described controllability is through learning disentan-
gled representations of speech that can be conditioned on the control factors as we described
in Chapter 6. However, most recent works have explored also an alternative approach.
These methods achieve control over voice identity, language, prosody, and background effects
through prompting, either by auto-regressive continuation (Wang et al., 2023) or in-painting
with a diffusion model (Shen et al., 2023) or a transformer model (Borsos et al., 2023b).

In conclusion, the level of controllability over various aspects of the synthesized speech is
a key requirement for practical applications, and recent research has made significant strides
in addressing this challenge through a variety of strategies, whether through disentanglement
or innovative prompting techniques. In the next section, we will describe Variational Auto-
Encoders (VAEs) and their use in speech synthesis such as improving prosody controllability
and disentanglement.

3.3 Variational Auto-Encoder (VAE)

The Variational Auto-Encoder (VAE) is a cornerstone of variational inference applied to
deep learning, serving as a potent tool for unsupervised learning tasks, particularly in the
representation learning of complex data distributions. Introduced by Kingma & Welling
(2013), VAEs are a class of generative models that are particularly effective for tasks where
we aim to capture, understand and generate high-dimensional data (Kingma & Welling, 2013;
Rezende et al., 2014).

VAEs are based on autoencoders (Hinton & Salakhutdinov, 2006; Goodfellow et al.,
2016), a type of neural network architecture designed for unsupervised learning of data
encodings. An autoencoder consists of two parts: an encoder, which maps input data to a
lower-dimensional representation (also known as latent space), and a decoder, which attempts
to reconstruct the original input from the lower-dimensional representation. While the
vanilla autoencoder is trained to minimize the reconstruction error, the VAE differs in its
incorporation of probabilistic modelling, utilizing variational inference.

In a VAE, the encoder is not just mapping input data to a fixed point in the latent space;
instead, it’s learning the parameters of a probability distribution representing the data. More
precisely, given an input data point x, the encoder of the VAE models the parameters of the

3.3. VARIATIONAL AUTO-ENCODER (VAE) 43

posterior distribution p(z|x), where z is the latent variable.
The decoder, on the other hand, is designed to reconstruct the original input x from

samples drawn from the encoded distribution p(z|x). It does so by modelling the likelihood
distribution p(x|z). This results in a more continuous latent space compared to the standard
autoencoders, which improves latent space interpolation and generalizability (Kingma &
Welling, 2013; Bowman et al., 2015). As discussed in Section 1.5, the posterior p(z|x) for the
complex models is intractable due to the computation of the posterior normalizing constant
p(x) =

∫
p(x|z)p(z) dz. In the case of VAEs, this would involve integrating over all possible

latent space values z. Therefore, VAEs employ the variational approximation qθ(z|x) of the
true posterior p(z|x).

In VAEs the variational posterior qθ(z|x) is over the latent representation z of input x.
Additionally, the optimized variational parameters are the weights of a neural network that
predicts the variational distribution parameterization. In comparison, in Bayesian neural
networks (BNNs), the variational posterior qθ(w) is over neural network weights w, and the
optimized variational parameters are directory the posterior distribution parameterizations
(e.g. µ and σ in GMFVI BNNs from Section 2.2.1). Therefore, VAE posterior usually
models a smaller number of dimensions compared to BNNs (dim(z) ≪ dim(w)), but the
VAE posterior has more capacity in modelling complex distributions. Furthermore, note that
the VAE variational posterior qθ(z|x) is conditional on both variational parameters θ and
the neural network input x. In Bayesian neural networks, the variational posterior qθ(w) is
conditional only on the training data through the variational parameters θ trained using
amortized inference (Gershman & Goodman, 2014).

3.3.1 Gaussian Mean-Field Variational Auto-Encoder

A common choice for the variational distribution qθ in VAEs is the multivariate Gaussian
with diagonal covariance, termed as Gaussian Mean-Field Variational Inference (GMFVI)
previously in the context of Bayesian neural networks from Section 1.5.1. GMFVI factorises
dimensions of the latent space z by making an independence assumption. In this setting,
the encoder network predicts the mean µ and standard deviation σ parameters of qθ(z|x)
for a given input x. Latent vector z is then sampled using the reparameterization trick
z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I). The reparametrization allows to backpropagate gradients
through the sampling operation, making it feasible to train the VAE using gradient-based
optimization techniques. Finally, the latent z is passed to the decoder pϕ(x|z). Figure 3.6
illustrates this approach.

The VAE is optimized using the evidence lower bound (ELBO) objective introduced in
Section 1.5. For VAEs, the negative ELBO takes the form:

Neg.ELBO = DKL[qθ(z|x)||p(z)]− Eq [log pϕ(x|z)] (3.1)

Equation 3.1 reflects the balance between data fidelity (reconstruction loss Eq [log pϕ(x|z)])
and the complexity of the model (regularization term DKL[qθ(z|x)||p(z)]). The regularization
term is essentially the Kullback-Leibler (KL) divergence between the approximate posterior

44 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Figure 3.6: Illustration of variational autoencoder model with the diagonal multivariate Gaus-
sian assumption. Source: Weng (2018).

distribution and the prior distribution, which in most applications, is assumed to be a
standard normal distribution. This term encourages the network to use the latent space
efficiently, resulting in learned representations that are often more interpretable, disentangled
and structured (Bowman et al., 2015; Zhang et al., 2019c).

3.3.2 Practical challenges with training VAEs

The practical challenges inherent in training Variational Auto-Encoders (VAEs) should
not be overlooked. A specific challenge to note is the well-documented tendency of the
posteriors within VAEs to collapse towards a prior distribution (Sønderby et al., 2016). This
typically occurs due to the confluence of the powerful, uniform gradient originating from the
regularization term of the Evidence Lower Bound (ELBO) objective and the noisy gradients
of the data fit term. Consequently, the model is often entrapped in local minima where the
inputs, denoted as x, are disregarded, resulting in the encoder network invariably predicting
a posterior distribution identical to the prior.

This situation draws parallels to the cold posterior effect, a phenomenon introduced
in Section 2.5 and thoroughly examined in Chapter 5 within the framework of Bayesian
Neural Networks (BNNs). Both in the context of BNNs and VAEs, the mitigation of the
regularization Kullback-Leibler (KL) term—equating to a reduction in the temperature
of the posterior distribution — can lead to enhanced model performance. An alternative
approach to this issue involves the application of an annealing strategy to the KL weight
contribution (Sønderby et al., 2016). By gradually escalating the contribution from 0 to 1 at
the onset of training, the likelihood term is afforded an opportunity to converge within its
local minima prior to the introduction of the KL divergence regularization, thereby providing

3.4. VAE IN SPEECH SYNTHESIS 45

a countermeasure to the posterior collapse.
In conclusion, despite the practical challenges, VAEs provide a powerful and versatile

model for unsupervised learning, capable of learning rich, latent representations of data.
Their theoretical foundation in variational inference makes them particularly suited for tasks
where we want to both generate new samples from learned data distribution and understand
the underlying structure of our data. In the following sections, we’ll explore how these
properties of VAEs can be leveraged in the field of speech synthesis.

3.4 VAE in Speech Synthesis

Utilization of Variational Auto-Encoders (VAEs) extends into several realms of speech
synthesis, chiefly because of their capacity to learn continuous, generalizable, and disentangled
representations. Within this context, we elucidate two salient applications of VAEs. Firstly, we
delve into the exploration of VAEs as proficient methods for acquiring prosody representations
with transferable attributes across multiple utterances. Secondly, we discuss the capability of
VAEs to learn more comprehensive audio representations, offering an advantageous alternative
to Mel-spectrograms as an intermediary modeling representation within the architectural
framework of speech synthesis delineated in the preceding section.

3.4.1 VAE for Prosody Transfer

Continuous prosody encoders for reference audio, as mentioned in Section 3.2.7, offer consid-
erable advantages such as the unsupervised learning of representations and the elimination of
the requirement for prosody labels. An initial implementation of this approach, as proposed in
Skerry-Ryan et al. (2018b), employed a Convolutional Neural Network (CNN) down-sampling
encoder which coupled with an LSTM to distill the prosody into a single global embedding
for each utterance. This embedding was subsequently utilized as a conditioning factor within
an acoustic model.

In an effort to enhance this approach, Zhang et al. (2019c) proposed the application
of a variational inference framework to the reference encoder. This approach gave rise to
a more disentangled and continuous space emanating from the Variational Auto-Encoder
(VAE), as described in Bowman et al. (2015), thereby facilitating superior transferability of
embeddings across distinct utterances. Zhang et al. (2019c) further demonstrated that these
resulting embeddings could be transferred between different speakers, effectively evidencing
the successful disentanglement of prosody from speaker information in the embeddings.

Related to the discussion in Section 3.3.2, it is crucial to precisely calibrate the Kullback-
Leibler (KL) term in the VAE’s Evidence Lower Bound (ELBO) objective weights in order
to achieve optimal transfer and disentanglement. A disproportionately high contribution
from the KL term can induce the posterior to collapse to a prior distribution, resulting in
the model ignoring the reference audio. Conversely, insufficient KL regularization can lead
to entanglement of the prosody with content and speaker information in the embeddings
derived from the reference audio. An appropriately tuned scaling of the VAE’s KL term

46 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Text Text
Analysis

Phonemes
End-to-end model

Dec.

Speech

Figure 3.7: Overview of an end-to-end TTS system.

encourages the synthesis model to exclusively extract prosody information from the reference
audio, while acquiring content information from the input phoneme sequence and speaker
information from the provided speaker embeddings.

3.4.2 VAE for Audio Representation Learning

Until recently, the two-stage architectures with separate acoustic and vocoder models de-
scribed in Section 3.2.3, were the leading performers in the field of speech synthesis. However,
this two-stage architecture is not without its drawbacks. The primary issue lies in the
data shift between the Mel-spectrograms forecasted by the acoustic model, which are often
overly smoothed, and the ground truth Mel-spectrograms used for training vocoders. This
discrepancy necessitates further fine-tuning of the already trained vocoders on the predicted
Mel-spectrograms to attain optimal performance. Furthermore, the Mel-spectrogram does
not serve as the ideal intermediate representation as it is a hand-crafted feature and it is not
learned.

VITS (Kim et al., 2021) is the first end-to-end model combining the acoustic and vocoder
modules into a single model, which out-performed the two-stage architectures (Figure 3.7).
VITS accomplishes this by employing a Variational Auto-Encoder (VAE) to learn an internal
audio representation. The encoder of VITS’s VAE is based on WaveNet (Oord et al., 2016)
blocks, and the decoder of VITS is a HiFi-GAN, as introduced in section 3.2.6. The VITS’s
VAE is concurrently trained with VITS’s acoustic model, based on GlowTTS (Kim et al.,
2020), which we introduced in Section 3.2.5. In VITS, the GlowTTS flow predicts the VAE
representation from the linguistic content, instead of predicting the Mel-spectrogram as
proposed originally. Figure 3.8 shows an overview of a modified VITS architecture with the
combined VAE and acoustic model that we adopt in Chapters 6 and 7.

VITS demonstrated exceptional results, achieving human-equivalent naturalness in the
synthesized speech. However, a significant drawback of VITS is the extended training time
required for each iteration of the model. The training of the HiFi-GAN vocoder component,
in particular, is time-consuming due to the extensive sequence lengths of raw audio and the
objectives of GAN training. This protracted training process hinders rapid experimentation.

More recently, a trend prevalent in the generative computer vision community where
models operate on VAE learned latent representations (Rombach et al., 2022), has begun to
permeate the audio generation domain. Notably, state-of-the-art speech synthesis methods
are now utilizing Residual Vector Quantized Variational Auto-encoders with Adversarial
Learning (Zeghidour et al., 2021; Défossez et al., 2022). These audio codecs yield high-quality

3.5. MACHINE DUBBING 47

Figure 3.8: Overview of a modified VITS architecture that we adopt in Chapters 6 and 7. Two
modifications visible here compared to the original VITS from Kim et al. (2021) are the use of
a duration predictor as described in Section 3.2.5 and an additional frame prior network that
smooths upsampled text encodings, both as proposed in Zhang et al. (2022).

audio reconstruction and can serve as targets for other models. Due to their discrete nature,
they can be partnered with transformer models (Vaswani et al., 2017) for modeling the audio
codes (Borsos et al., 2023a; Wang et al., 2023; Borsos et al., 2023b).

In the next section, we describe the task of machine dubbing for which the above
applications of VAE are employed in a practical setting, as later summarized in Sections 3.6
and 3.7, and described in detail in Chapters 6 and 7.

3.5 Machine Dubbing

Machine dubbing involves synthesizing translated speech from a given reference video
containing original language speech. The task necessitates the translated speech to reflect the

48 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

vocal performance observed in the original language. Achieving satisfactory performance in
machine dubbing involves overcoming several challenges and fulfilling multiple requirements.

Firstly, despite the unprecedented naturalness exhibited by state-of-the-art synthesis
systems, they struggle to generate the expressive and spontaneous speech characteristic of
multimedia recordings.

Secondly, the system must maintain precise control over expressiveness to ensure it aligns
with the original vocal performance.

Thirdly, the duration of the synthesized speech must correlate with the lip movements
visible in the underlying video, ensuring synchronicity between auditory and visual elements.

Lastly, multimedia recordings are frequently captured in uncontrolled environments,
which often introduce background noise. This stands in contrast to conventional text-to-
speech datasets which are recorded in controlled, clean studio environments. Such noisy
data necessitate learning methods capable of handling the inherent noise and producing
clean dubbed speech. As such, the system must be equipped with mechanisms to disentangle
prosody from noise in the reference recordings (Zhang et al., 2021).

The Variational Auto-Encoder (VAE) framework, outlined in Section 3.4, offers an
effective solution to address these challenges. The remaining two sections in this chapter will
summarize two published works that propose machine dubbing systems grounded in VAEs,
demonstrating their capability to satisfy the aforementioned requirements.

3.6 Summary of Chapter 6

In this section, we provide a concise summary of the contributions and results of paper P3,
which is later described in more detail in Chapter 6.

Prosody transfer within a single language has been extensively studied in the context
of expressive speech synthesis (Skerry-Ryan et al., 2018b; Wang et al., 2018; Zhang et al.,
2019c). However, the field of cross-lingual prosody transfer has received less attention to
date.

Notably, previous machine dubbing systems did not effectively transfer prosody from
original speech (Federico et al., 2020; Virkar et al., 2021). Therefore, in Chapter 6, we
introduce a machine dubbing system capable of transferring prosody across both languages
and speakers.

Our method, termed Variational Inference for Prosody Transfer (VIPT), augments the
VITS system (Kim et al., 2021) detailed in Section 3.4.2 with a VAE-based prosody encoder,
explained in section 3.4.1, and additional language and speaker conditioning, as shown in
Figure 3.9. Consequently, our system learns to disentangle prosody representations that can
be effectively transferred across languages and speakers.

Furthermore, we devise a method for disentangling noise that enables our system to
synthesize clean dubs even when the reference audio is noisy. Our method, depicted in
Figure 3.10, separates denoised and noise streams via a pre-trained denoiser component (Isik
et al., 2020), which are then processed by distinct VAE reference encoders that condition the

3.7. SUMMARY OF CHAPTER 7 49

Figure 3.9: Proposed VIPT architecture. Our VIPT extensions to VITS are marked in red
squares.

VITS’s acoustic model. During inference, we substitute the noise stream with clean audio,
which results in clean speech synthesis.

Our refined system bridges the gap between a baseline that lacks cross-lingual prosody
transfer and human recordings by 11%, as illustrated in Figure 3.11.

3.7 Summary of Chapter 7

In this section, we provide a concise summary of the contributions and results of paper P4,
which is later described in more detail in Chapter 7.

In Chapter 7, we present a method for phrase-level cross-lingual prosody transfer, en-
hancing the expressivity of multi-lingual machine dubbing compared to the VIPT method
summarised in Section 3.6. The improved approach models and transfers VAE-based prosody
representations at the level of prosodic phrases, which are defined as continuous speech
segments separated by silence regions.

50 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Figure 3.10: Illustration of our noise modelling method in VIPT that conditions text encoder
module.

Recording
(83.5±0.47)

VIPT-Centroid
(60.3±0.54)

VIPT-Transfer
(59.4±0.53)

VIPT-NM-Transfer
(62.9±0.52)

20

40

60

80

100

Figure 3.11: Subjective listener ratings from a machine dubbing MUSHRA test (Recommenda-
tion, 2015) on an expressive and noisy multimedia dataset. While cross-lingual prosody transfer
using VIPT method without noise modelling (VIPT-Transfer) performs worse compared to a
baseline VIPT without the cross-lingual prosody transfer (VIPT-Centroid), cross-lingual prosody
transfer with VIPT containing a noise modelling module (VIPT-NM-Transfer) beats the baseline.

3.7. SUMMARY OF CHAPTER 7 51

VIPT introduced a method for global prosody transfer at the utterance level. However, it
was not equipped to encode detailed local prosody variations, which are crucial for expressive
machine dubbing (Torresquintero et al., 2021).

Chapter 7 addresses this limitation with a phrase-level prosody transfer, which modifies
the VAE-based prosody reference encoder employed in VIPT. This phrase-level reference
encoder is designed to condition the phrases of the input text with prosody embeddings
extracted from corresponding segments of the reference speech waveform, as illustrated in
Figure 3.12.

The more granular modelling of prosody allows a greater capacity for prosody representa-
tion. However, it also poses more significant challenges in disentangling prosody from other
factors, such as content information. This issue is particularly evident in shorter prosodic
phrases, where a single prosody embedding can easily encode the content information. To ad-
dress this, Chapter 7 proposes a length-based regularization of the phrase-level VAE reference
encoder. This approach results in stronger regularization for shorter phrases, encouraging
the model to rely more on the content information from the text input.

The proposed phrase-level prosody transfer delivers a significant 6.2% increase in the
subjective listening scores over a baseline with utterance-level global prosody transfer. Thus, it
bridges the gap between the baseline and expressive human dubbing by 23.3%, as illustrated in
Figure 3.13. This improvement is confirmed by the objective conditional Frechet DeepSpeech
Distance (cFDSD) metric (Bińkowski et al., 2020), as shown in Table 3.1.

Lastly, P4 demonstrates the effectiveness of the proposed length-based regularization for
short phrases, as displayed in Table 3.1.

Table 3.1: Objective metrics: word error rate (WER) and conditional Fréchet DeepSpeech Dis-
tance (cFDSD) Bińkowski et al. (2020).

System cFDSD ↓ WER ↓
all shortest 25%

VIPT-NM-GVAE 0.297 0.098 0.169
VIPT-NM-GVAE-PP 0.288 0.094 0.155
VIPT-NM-PVAE 0.224 0.101 0.161
w/o length-based reg. 0.241 0.106 0.229

52 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Figure 3.12: Illustration of a phrase-level reference encoder in the context of cross-lingual
prosody transfer as in machine dubbing.

3.7. SUMMARY OF CHAPTER 7 53

Figure 3.13: Subjective listener ratings from a machine dubbing MUSHRA test (Recommen-
dation, 2015) on a expressive and noisy multimedia dataset. Our proposed system trained with
a phrase-level reference encoder (VIPT-NM-PVAE) is rated better than systems trained with a
global utterance-level reference encoder (VIPT-NM-GVAE and VIPT-NM-GVAE-PP). VIPT-
NM-GVAE-PP performs phrase-level prosody transfer at inference time while being trained as a
global-level reference encoder.

54 CHAPTER 3. VARIATIONAL INFERENCE IN NEURAL SPEECH SYNTHESIS

Chapter 4

The k-tied Normal Distribution: A
Compact Parameterization of
Gaussian Mean Field Posteriors in
Bayesian Neural Networks

4.1 Overview

Variational Bayesian Inference is a popular methodology for approximating posterior distri-
butions over Bayesian neural network weights. Recent work developing this class of methods
has explored ever richer parameterizations of the approximate posterior in the hope of
improving performance. In contrast, here we share a curious experimental finding that
suggests instead restricting the variational distribution to a more compact parameterization.
For a variety of deep Bayesian neural networks trained using Gaussian mean-field variational
inference, we find that the posterior standard deviations consistently exhibit strong low-rank
structure after convergence. This means that by decomposing these variational parameters
into a low-rank factorization, we can make our variational approximation more compact
without decreasing the models’ performance. Furthermore, we find that such factorized
parameterizations improve the signal-to-noise ratio of stochastic gradient estimates of the
variational lower bound, resulting in faster convergence.

4.2 Introduction

We introduced Gaussian Mean-Field Variational Inference (GMFVI) for Bayesian neural
networks (BNNs) in Section 2.2 of this thesis. Beyond mean-field variational inference, recent
work on approximate Bayesian inference has explored ever richer parameterizations of the
approximate posterior in the hope of improving the performance of Bayesian neural networks
(see Figure 4.1). In contrast, here we study a simpler, more compactly parameterized

55

56 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

Figure 4.1: Approximate summarization of different variational inference methods for Bayesian
deep learning. Our approach complements existing approaches by combining the mean-field as-
sumption with a dramatic reduction in the number of parameters by weight sharing.

variational approximation. Our motivation for studying this setting is to better understand
the behaviour of GMFVI with the goal to address the issues with its practical applicability.
Consequently, we show that the compact approximations can also work well for a variety of
models. In particular we find that:

• Converged posterior standard deviations under GMFVI consistently display strong
low-rank structure. This means that by decomposing these variational parameters into
a low-rank factorization, we can make our variational approximation more compact
without decreasing our model’s performance.

• Factorized parameterizations of posterior standard deviations improve the signal-to-
noise ratio of stochastic gradient estimates, and thus not only reduce the number of
parameters compared to standard GMFVI, but also can lead to faster convergence.

4.3 Mean Field Posterior Standard Deviations Naturally Have
Low-Rank Structure

In this section, we show that the converged posterior standard deviations of Bayesian neural
networks trained using standard GMFVI consistently display strong low-rank structure. We
also show that it is possible to compress the learned posterior standard deviation matrix
using a low-rank approximation without decreasing the network’s performance. We first
briefly reintroduce the mathematical notation for our GMFVI setting from Section 1.5.1 and
the low-rank approximation as summarized in Section 2.4. We then provide experimental
results that support the two main claims of this section.

To avoid any confusion among the readers, we would like to clarify that we use the

4.3. MEAN FIELD POSTERIOR STANDARD DEVIATIONS NATURALLY HAVE... 57

Figure 4.2: Illustration of the relationship between the standard Gaussian Mean-Field posterior
and its “low-rank” parameterization, which we call the k-tied Normal posterior. The illustration
shows the posterior parameterization for a network with L layers, where x and y are the network
inputs and outputs respectively, and µq1 , Σq1 , µqL and ΣqL are the variational parameters for the
layers 1 and L respectively. The k-tied Normal distribution parameterizes the already diagonal per
layer posterior covariance matrices Σq1..L using the even more compact U1..L and V1..L matrices
from N

(
µq,diag

(
vec
(
(UVT)2

)))
.

terminology “low-rank” in a particular context. While variational inference typically makes
use of low-rank decompositions to compactly represent the dense covariance of a Gaussian
variational distribution (see numerous references in Section 4.5), we investigate instead
underlying low-rank structures within the already diagonal covariance of a Gaussian fully-
factorized variational distribution. Figure 4.2 aims to make this even more clear by illustrating
the relationship between the Gaussian fully-factorized variational distribution and its “low-
rank” parameterization explored in this chapter. We will make this explanation more formal
in the next section.

4.3.1 Methodology

To introduce the notation, we consider layers that consist of a linear transformation followed
by a non-linearity f ,

al = hlWl + bl, hl+1 = f(al), (4.1)

where Wl ∈ Rm×n, hl ∈ R1×m and bl,al,hl+1 ∈ R1×n. To simplify the notation in the
following, we drop the subscript l such that W = Wl, µq = µql, Σq = Σql and we focus on
the kernel matrix W for a single layer.

In GMFVI, we model the variational posterior as

q(W) = N (µq,Σq) =
m∏
i=1

n∏
j=1

q(wij),

with q(wij) = N (µij , σ
2
ij),

(4.2)

58 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

Variational family Parameters (total)
multivariate Normal mn+ mn (mn+1)

2
diagonal Normal mn+mn

MN mn+ m(m+1)
2 + n(n+1)

2
MN (diagonal) mn+m+ n
k-tied Normal (ours) mn+ k(m+ n)

Table 4.1: Number of variational parameters for a variational family for a matrix W ∈ Rm×n.
MN (diagonal) is from Louizos & Welling (2016).

where µq ∈ Rmn×1 is the posterior mean vector, Σq ∈ Rmn×mn
+ is the diagonal posterior

covariance matrix. The weights are then usually sampled using a reparameterization trick
(Kingma & Welling, 2013), i.e, for the s-th sample, we have

w
(s)
ij = µij + σijϵ

(s), ϵ ∼ N (0, 1). (4.3)

In practice, we often represent the posterior standard deviation parameters σij in the form
of a matrix A ∈ Rm×n

+ . Note that we have the relationship Σq = diag(vec(A2)) where
the elementwise-squared A is vectorized by stacking its columns, and then expanded as a
diagonal matrix into Rmn×mn

+ .
In the sequel, we start by empirically studying the properties of the spectrum of matrices

A post-training (after convergence), while using standard Gaussian mean-field variational
distributions. Interestingly, we observe that those matrices naturally exhibit a low-rank
structure (see Section 4.3.3 for the corresponding experiments), i.e,

A ≈ UVT (4.4)

for some U ∈ Rm×k, V ∈ Rn×k and k a small value (e.g., 2 or 3). This observation motivates
the introduction of the following variational family, which we name k-tied Normal:

k-tied -N (W;µq,U,V) =

N
(
µq, diag

(
vec
(
(UVT)2

)))
,

(4.5)

where the squaring of the matrix UVT is applied elementwise. Due to the tied parame-
terization of the diagonal covariance matrix, we emphasize that this variational family is
smaller—i.e., included in—the standard Gaussian mean-field variational distribution family.

As formally discussed in Appendix A.1, the matrix variate Gaussian distribution (Gupta
& Nagar, 2018), referred to asMN and already used for variational inference by Louizos
& Welling (2016) and Sun et al. (2017), is related to our k-tied Normal distribution with
k = 1 when MN uses diagonal row and column covariances. Interestingly, we prove that for
k ≥ 2, our k-tied Normal distribution cannot be represented by anyMN distribution. This
illustrates the main difference of our approach from the most closely related previous work
of Louizos & Welling (2016).

4.3. MEAN FIELD POSTERIOR STANDARD DEVIATIONS NATURALLY HAVE... 59

Notice that our diagonal covariance Σq repeatedly reuses the same elements of U and V,
which results in parameter sharing across different weights. The total number of the standard
deviation parameters in our method is k(m+ n) from U and V, compared to mn from A in
the standard GMFVI parameterization. Given that in our experiments the k is very low (e.g.
k = 2) this reduces the number of parameters from quadratic to linear in the dimensions of
the layer, see Table 4.1. More importantly, such parameter sharing across the weights leads
to higher signal-to-noise ratio during training and thus in some cases faster convergence. We
demonstrate this phenomena in the next section. In the rest of this section, we show that
the standard GMFVI methods already learn a low-rank structure in the posterior standard
deviation matrix A. Furthermore, we provide evidence that replacing A with its low-rank
approximation does not degrade the predictive performance and the quality of uncertainty
estimates.

4.3.2 Experimental setting

Before describing the experimental results, we briefly explain the key properties of the
experimental setting. We analyze three types of GMFVI Bayesian neural network models:

• Multilayer Perceptron (MLP): a network of 3 dense layers and ReLu activations that we
train on the MNIST dataset (LeCun & Cortes, 2010). We use the last 10,000 examples
of the training set as a validation set.

• Convolutional Neural Network (CNN): a LeNet architecture (LeCun et al., 1998) with
2 convolutional layers and 2 dense layers that we train on the CIFAR-100 dataset
(Krizhevsky et al., 2009b). We use the last 10,000 examples of the training set as a
validation set.

• Long Short-Term Memory (LSTM): a model that consists of an embedding and an
LSTM cell (Hochreiter & Schmidhuber, 1997), followed by a single unit dense layer.
We train it on the IMDB dataset (Maas et al., 2011), in which we use the last 5,000
examples of the training set as a validation set.

• Residual Convolutional Neural Network (ResNet): a ResNet-181 architecture (He et al.,
2016b) trained on all 50,000 training examples of the CIFAR-10 dataset (Krizhevsky
et al., 2009a).

In each of the four models, we use the standard mean-field Normal variational posterior
and a Normal prior, for which we set a single scalar standard deviation hyper-parameter
shared by all layers. Appendix A.2 contains an ablation study result with an alternative
prior. We optimize the variational posterior parameters using the Adam optimizer (Kingma
& Ba, 2014). For a more comprehensive explanation of the experimental setup please refer to
Appendix A.4. Finally, we highlight that our experiments focus primarily on the comparison
across a broad range of model types rather than competing with the state-of-the-art results
over the specifically used datasets. Nevertheless, we also show that our results extend to
larger models with competitive performance such as the ResNet-18 model. Note that scaling

1See: https://github.com/tensorflow/probability/blob/master/tensorflow_probability/
examples/cifar10_bnn.py.

https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py

60 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

GMFVI to such larger model sizes is still a challenging research problem (Osawa et al.,
2019b).

4.3.3 Main experimental observation

Our main experimental observation is that the standard GMFVI learns posterior standard
deviation matrices that have a low-rank structure across different model types (MLP, CNN,
LSTM), model sizes (LeNet, ResNet-18) and layer types (dense, convolutional). To show
this, we investigate the results of the SVD decomposition of posterior standard deviation
matrices A in the four described models types. We analyze the models post-training, where
the models are already trained until ELBO convergence using the standard GMFVI approach.
While for the first three models (MLP, CNN and LSTM), we evaluate the low-rank structure
only in the dense layers, for the ResNet model we consider the low-rank structure in the
convolutional layers as well.

Figure 4.3 shows the fraction of variance explained per each singular value k from the
SVD decomposition of matrices A in the dense layers of the first three models. The fraction
of variance explained per singular value k is calculated as γ2k/

∑
i′ γ

2
i′ , where γ are the

singular values. We observe that, unlike posterior means, the posterior standard deviations
have most of their variance explained by the first few singular values. In particular, a
rank-1 approximation of A explains most of its variance, while a rank-2 approximation can
encompass nearly all of the remaining variance. Figure 4.4 further supports this claim visually
by comparing the heat maps of the matrix A and its rank-1 and rank-2 approximations. In
particular, we observe that the rank-2 approximation heat map looks visually very similar to
A, while this is not the case for the rank-1 approximation. Importantly, Figure 4.5 illustrates
that the same low-rank structure is also present in both the dense and the convolutional
layers of the larger ResNet-18 model. In the analysis of the above experiments, we use the
shorthand SEM to refer to the standard error of the mean.

4.3.4 Low-rank approximation of mean field posterior standard deviations

Motivated by the above observations, we show that it is possible to replace the reshaped
diagonal posterior standard deviation matrices A with their low-rank approximations without
decreasing predictive performance and the quality of uncertainty estimates. Table 4.2 shows
the performance comparison of the MLP, CNN and LSTM models with different ranks of
the approximations. Figure 4.5 contains analogous results for the ResNet-18 model. The
results show that the post-training approximations of the mean field posterior covariance
with ranks higher than one achieve predictive performance close to that of the mean field
posterior with no approximations for all the analyzed model types, model sizes and layer
types. Furthermore, Table 4.3 shows that, for the ResNet-18 model, the approximations
with ranks higher than one also do not decrease the quality of the uncertainty estimates
compared to the mean field posterior with no approximations2. These observations could

2We compute the Brier Score and the ECE using the implementations from the TensorFlow Probabil-
ity (Dillon et al., 2017).

4.4. THE k-TIED NORMAL DISTRIBUTION: EXPLOITING LOW-RANK... 61

MNIST, MLP
Method -ELBO ↓ NLL ↓ Accuracy ↑
Mean-field 0.431±0.0057 0.100±0.0034 97.6±0.15

1-tied 3.41±0.019 0.677±0.0040 93.6±0.25

2-tied 0.456±0.0059 0.107±0.0033 97.6±0.15

3-tied 0.450±0.0059 0.106±0.0033 97.6±0.15

CIFAR100, CNN
Method -ELBO ↓ NLL ↓ Accuracy ↑
Mean-field 3.83±0.020 2.23±0.017 42.1±0.49

1-tied 4.33±0.021 2.30±0.016 41.7±0.49

2-tied 3.88±0.020 2.24±0.017 42.2±0.49

3-tied 3.86±0.020 2.24±0.017 42.1±0.49

IMDB, LSTM
Method -ELBO ↓ NLL ↓ Accuracy ↑
Mean-field 0.536±0.0058 0.493±0.0057 80.1±0.25

1-tied 0.687±0.0058 0.491±0.0056 80.0±0.25

2-tied 0.621±0.0058 0.494±0.0057 80.1±0.25

3-tied 0.595±0.0058 0.493±0.0056 80.1±0.25

Table 4.2: Impact of post-training low-rank approximation of the GMFVI-trained posterior stan-
dard deviation matrix on model’s ELBO and predictive performance, for three types of models.
We report mean and SEM of each metric across 100 weights samples. The low-rank approxima-
tions with ranks higher than one achieve predictive performance close to that of mean-field with-
out the approximations.

be used as a form of post-training network compression. Moreover, they give rise to further
interesting exploration directions such as formulating posteriors that exploit such a low-rank
structure. In the next section we explore this particular direction while focusing on the first
three model types (MLP, CNN, LSTM).

4.4 The k-tied Normal Distribution: Exploiting Low-Rank
Parameter-Structure in Mean Field Posteriors

In the previous section, we have shown that it is possible to replace a reshaped diagonal
matrix of posterior standard deviations, which is already trained using GMFVI, with its
low-rank approximation without decreasing the predictive performance. In this section, we
show that it is also possible to exploit this observation during training time. We achieve this
by exploiting our novel variational family, the k-tied Normal distribution (see Section 4.3.1).

We show that using this distribution in the context of GMFVI in Bayesian neural networks

62 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

Method Brier Score ↓ NLL ↓ ECE ↓
Mean-field -0.761±0.0039 0.495±0.0080 0.0477
1-tied -0.695 ±0.0034 0.658±0.0069 0.1642
2-tied -0.758±0.0038 0.503±0.0080 0.0540
3-tied -0.758±0.0038 0.501±0.0079 0.0541

Table 4.3: Quality of predictive uncertainty estimates for the ResNet-18 model on the CIFAR10
dataset without and with post-training low-rank approximations of the GMFVI posterior standard
deviation matrices in all the layers of the model. The approximations with ranks k ≥ 2 match
the quality of the predictive uncertainty estimates from the mean-field posteriors without the
approximations. The quality of the predictive uncertainty estimates is measured by the negative
log-likelihood (NLL), the Brier Score and the ECE (with 15 bins). For the NLL and the Brier
Score metrics we report mean and SEM across 100 weights samples.

allows to reduce the number of network parameters, increase the signal-to-noise ratio of
the stochastic gradient estimates and speed up model convergence, while maintaining the
predictive performance of the standard parameterization of the GMFVI. We start by recalling
the definition of the k-tied Normal distribution:

k-tied -N (W;µq,U,V) = N
(
µq,diag

(
vec
(
(UVT)2

)))
where the variational parameters are comprised of {µq,U,V}.

4.4.1 Experimental setting

We now introduce the experimental setting in which we evaluate the GMFVI variational
posterior parameterized by the k-tied Normal distribution. We assess the impact of the
described posterior in terms of predictive performance and reduction in the number of
parameters for the same first three model types (MLP, CNN, LSTM) and respective datasets
(MNIST, CIFAR-100, IMDB) as we used in the previous section. Additionally, we also
analyze the impact of k-tied Normal posterior on the signal-to-noise ratio of stochastic
gradient estimates of the variational lower bound for the CNN model as a representative
example. Overall, the experimental setup is very similar to the one introduced in the previous
section. Therefore, we highlight only the key differences here.

We apply the k-tied Normal variational posterior distribution to the same layers which
we analyzed in the previous section. Namely, we use the k-tied Normal variational posterior
for all the three layers of the MLP model, the two dense layers of the CNN model and
the LSTM cell’s kernel and recurrent kernel. We initialize the parameters uik from U and
vjk from V of the k-tied Normal distribution so that after the outer-product operation
the respective standard deviations σij have the same mean values as we obtain in the
standard GMFVI posterior parameterization. In the experiments for this section, we use
KL annealing (Sønderby et al., 2016), where we linearly scale-up the contribution of the
DKL[qθ(w)||p(w)] term in Equation 2.4 from zero to its full contribution over the course of

4.4. THE k-TIED NORMAL DISTRIBUTION: EXPLOITING LOW-RANK... 63

training. Appendix A.3 describes the impact of KL annealing on the modelled uncertainty.
Furthermore, additional details on the experimental setup are available in Appendix A.4.

4.4.2 Experimental results

We first investigate the predictive performance of the GMFVI Bayesian neural network
models trained using the k-tied Normal posterior distribution, with different levels of tying
k. We compare these results to those obtained from the same models, but trained using the
standard parameterization of the GMFVI. Table 4.4 shows that for k ≥ 2 the k-tied Normal
posterior is able to achieve the performance competitive with the standard GMFVI posterior
parameterization, while reducing the total number of model parameters. The benefits of
using the k-tied Normal posterior are the most visible for models where the layers with the
k-tied Normal posterior constitute a significant portion of the total number of the model
parameters (e.g. the MLP model).

We further investigate the impact of the k-tied Normal posterior on the signal-to-noise
ratio (SNR)3 of stochastic gradient estimates of the variational lower bound (ELBO). In
particular, we focus on the gradient SNR of the GMFVI posterior standard deviation
parameters for which we perform the tying. These parameters are either uik and vjk for
the k-tied Normal posterior or σij for the standard GMFVI parameterization, all optimized
in their log forms for numerical stability. Table 4.5 shows that the uik and vjk parameters
used in the k-tied Normal posterior are trained with significantly higher gradient SNR than
the σij parameters used in the standard GMFVI parameterization. Consequently, Table
4.6 shows that the increased SNR from the k-tied Normal distribution translates into faster
convergence for the MLP model, which uses the k-tied Normal distribution in all of its layers.

Note that the k-tied Normal posterior does not increase the training step time compared
to the standard parameterization of the GMFVI, see Table 4.7 for the support of this
claim4. Therefore, the k-tied Normal posterior speeds up model convergence also in terms of
wall-clock time.

Figure 4.6 shows the convergence plots of validation negative ELBO for all the three
model types. We observe that the impact of the k-tied Normal posterior on convergence
depends on the model type. As shown in Table 4.6, the impact on the MLP model is strong
and consistent with the k-tied Normal posterior increasing convergence speed compared to
the standard GMFVI parameterization. For the LSTM model we also observe a similar
speed-up. However, for the CNN model the impact of the k-Normal posterior on the ELBO
convergence is much smaller. We hypothesize that this is due to the fact that we use the
k-tied Normal posterior for all the layers trained using GMFVI in the MLP and the LSTM

3SNR for each gradient value is calculated as E[g2b]/Var[gb], where gb is the gradient value for a single
parameter. The expectation E and variance V ar of the gradient values gb are calculated over a window of
last 10 batches.

4Code to compare the training step times of the k-tied Normal and the standard GMFVI is avail-
able under: https://colab.research.google.com/drive/14pqe_VG5s49xlcXB-Jf8S9GoTFyjv4OF. The
code uses the network architecture from: https://github.com/tensorflow/docs/blob/master/site/en/
tutorials/keras/classification.ipynb.

https://colab.research.google.com/drive/14pqe_VG5s49xlcXB-Jf8S9GoTFyjv4OF
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb

64 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

models, while in the CNN model we use the k-tied Normal posterior only for some of the
GMFVI trained layers. More precisely, in the CNN model we use the k-tied Normal posterior
only for the two dense layers, while the two convolutional layers are trained using the standard
parameterization of the GMFVI.

Model & Dataset Method -ELBO ↓ NLL ↓ Accuracy ↑ #Par. [k] ↓
MNIST, MLP Mean-field 0.501±0.0061 0.133±0.0040 96.8±0.18 957
MNIST, MLP 1-tied 0.539±0.0063 0.155±0.0043 96.1±0.19 482
MNIST, MLP 2-tied 0.520±0.0063 0.129±0.0039 96.8±0.18 484
MNIST, MLP 3-tied 0.497±0.0060 0.120±0.0038 96.9±0.18 486
CIFAR100, CNN Mean-field 3.72±0.018 2.16±0.016 43.9±0.50 4,405
CIFAR100, CNN 1-tied 3.65±0.017 2.12±0.015 45.5±0.50 2,262
CIFAR100, CNN 2-tied 3.76±0.019 2.15±0.016 44.3±0.50 2,268
CIFAR100, CNN 3-tied 3.73±0.018 2.13±0.016 44.3±0.50 2,273
IMDB, LSTM Mean-field 0.538±0.0054 0.478±0.0052 79.5±0.26 2,823
IMDB, LSTM 1-tied 0.592±0.0041 0.512±0.0040 77.6±0.26 2,693
IMDB, LSTM 2-tied 0.560±0.0042 0.484±0.0041 78.2±0.26 2,694
IMDB, LSTM 3-tied 0.550±0.0051 0.491±0.0050 78.8±0.26 2,695

Table 4.4: Impact of the k-tied Normal posterior on test ELBO, test predictive performance
and number of model parameters. We report the test metrics on the test splits of the respective
datasets as a mean and SEM across 100 weights samples after training each of the models for
≈300 epochs. The k-tied Normal distribution with rank k ≥ 2 allows to train models with smaller
number of parameters without decreasing the predictive performance.

Method MNIST, MLP Dense 2, SNR at step
1000 5000 9000

Mean-field 4.13±0.027 4.45±0.091 3.21±0.035

1-tied 5840±190 158±3.8 5.3±0.20

2-tied 7500±240 140±11 4.3±0.26

3-tied 7000±270 117±1.7 4.1±0.20

Table 4.5: Mean gradient SNR in the log posterior standard deviation parameters of the Dense
2 layer of the MNIST MLP model at increasing training steps for different ranks of tying k. The
k-tied Normal distribution significantly increases the SNR for these parameters. We observe a
similar increase in the SNR from tying in all the layers that use the k-tied Normal posterior.

4.5 Related Work

The application of variational inference to neural networks dates back at least to Peterson
(1987) and Hinton & Van Camp (1993a). Many developments5 have followed those seminal

5We refer the interested readers to Zhang et al. (2018a) for a recent review of variational inference.

4.5. RELATED WORK 65

Method MNIST, MLP, -ELBO at step
1000 5000 9000

Mean-field 42.16±0.070 26.52±0.016 15.39±0.016

1-tied 43.11±0.039 14.85±0.017 2.06±0.027

2-tied 42.74±0.090 13.97±0.023 1.82±0.017

3-tied 42.63±0.068 13.61±0.020 1.80±0.031

Table 4.6: Negative ELBO on the MNIST validation dataset at increasing training steps for
different ranks of tying k. The higher SNR from the k-tied Normal posterior translates into the
increased convergence speed for the MLP model. We report mean and SEM across 3 training runs
with different random seeds in both the top right and the bottom right table.

Training method Train step time [ms] ↓
Point estimate 2.00±0.0064

Standard GMFVI 7.17±0.014

2-tied Normal GMFVI 6.14±0.018

Table 4.7: Training step evaluation times for a simple model architecture with two dense lay-
ers for different training methods. We report mean and SEM of evaluation times across a single
training run in the Google Colab environment linked in the footnote. The k-tied Normal posterior
with k = 2 does not increase the train step evaluation times compared to the standard param-
eterization of the GMFVI posterior. We expect this to hold more generally because the biggest
additional operation per step when using the k-tied Normal posterior is the UVT multiplication
to materialize the matrix of posterior standard deviations A, where U ∈ Rm×k, V ∈ Rn×k and k
is a small value (e.g., 2 or 3). The time complexity of this operations is O(kmn), which is usually
negligible compared to the time complexity of data-weight matrix multiplication O(bmn), where b
is the batch size.

research efforts, in particular regarding (1) the expressiveness of the variational posterior
distribution and (2) the way the variational parameters themselves can be structured to lead
to compact, easier-to-learn and scalable formulations. We organize the discussion of this
section around those two aspects, with a specific focus on the Gaussian case.

Full Gaussian posterior. Because of their substantial memory and computational cost,
Gaussian variational distributions with full covariance matrices have been primarily applied
to (generalized) linear models and shallow neural networks (Jaakkola & Jordan, 1997; Barber
& Bishop, 1998a; Marlin et al., 2011; Titsias & Lázaro-Gredilla, 2014; Miller et al., 2017;
Ong et al., 2018).

To represent the dense covariance matrix efficiently in terms of variational parameters,
several schemes have been proposed, including the sum of low-rank plus diagonal matri-
ces (Barber & Bishop, 1998a; Seeger, 2000; Miller et al., 2017; Zhang et al., 2017; Ong et al.,
2018), the Cholesky decomposition (Challis & Barber, 2011) or by operating instead on the
precision matrix (Tan & Nott, 2018; Mishkin et al., 2018).

66 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

Gaussian posterior with block-structured covariances. In the context of Bayesian
neural networks, the layers represent a natural structure to be exploited by the covariance
matrix. When assuming independence across layers, the resulting covariance matrix exhibits
a block-diagonal structure that has been shown to be a well-performing simplification of the
dense setting (Sun et al., 2017; Zhang et al., 2017), with both memory and computational
benefits.

Within each layer, the corresponding diagonal block of the covariance matrix can be
represented by a Kronecker product of two smaller matrices (Louizos & Welling, 2016; Sun
et al., 2017), possibly with a parameterization based on rotation matrices (Sun et al., 2017).
Finally, using similar techniques, Zhang et al. (2017) proposed to use a block tridiagonal
structure that better approximates the behavior of a dense covariance.

Fully factorized mean-field Gaussian posterior. A fully factorized Gaussian variational
distribution constitutes the simplest option for variational inference. The resulting covariance
matrix is diagonal and all underlying parameters are assumed to be independent. While the
mean-field assumption is known to have some limitations—e.g., underestimated variance of
the posterior distribution (Turner & Sahani, 2011) and robustness issues (Giordano et al.,
2018)—it leads to scalable formulations, with already competitive performance, as for instance
illustrated by the recent uncertainty quantification benchmark of Ovadia et al. (2019a).

Because of its simplicity and scalability, the fully-factorized Gaussian variational distri-
bution has been widely used for Bayesian neural networks (Graves, 2011b; Ranganath et al.,
2014; Blundell et al., 2015b; Hernández-Lobato & Adams, 2015; Zhang et al., 2017; Khan
et al., 2018).

Our approach can be seen as an attempt to further reduce the number of parameters of
the (already) diagonal covariance matrix. Closest to our approach is the work of Louizos &
Welling (2016). Their matrix variate Gaussian distribution instantiated with the Kronecker
product of the diagonal row- and column-covariance matrices leads to a rank-1 tying of the
posterior variances. In contrast, we explore tying strategies beyond the rank-1 case, which
we show to lead to better performance (both in terms of ELBO and predictive metrics).
Importantly, we further prove that tying strategies with a rank greater than one cannot be
represented in a matrix variate Gaussian distribution, thus clearly departing from Louizos &
Welling (2016) (see Appendix A.1 for details).

Our approach can be also interpreted as a form of hierarchical variational inference from
Ranganath et al. (2016). In this interpretation, the prior on the variational parameters
corresponds to a Dirac distribution, non-zero only when a pre-specified low-rank tying
relationship holds. More recently, Karaletsos et al. (2018) proposed a hierarchical structure
which also couples network weights, but achieves this by introducing representations of
network units as latent variables.

Our reduction in the number parameters through tying decreases the variance of the
stochastic gradient estimates of the ELBO objective for the posterior standard deviation
parameters. Alterantive methods for the variance reduction propose to either change the
noise sampling scheme Kingma et al. (2015); Wen et al. (2018); Farquhar et al. (2020a) or to

4.6. CONCLUSION 67

determinize the variational posterior approximation Wu et al. (2019). Those methods can be
combined with our method, but some of them are not valid in cases when our method is
applicable (e.g. the method from Kingma et al. (2015) is not valid for convolutional layers).

We close this related work section by mentioning the existence of other strategies to
produce more flexible approximate posteriors, e.g., normalizing flows (Rezende & Mohamed,
2015) and extensions thereof (Louizos & Welling, 2017).

4.6 Conclusion

In this chapter, we have shown that Bayesian Neural Networks trained with standard Gaussian
Mean-Field Variational Inference learn posterior standard deviation matrices that can be
approximated with little information loss by low-rank SVD decompositions. This suggests
that richer parameterizations of the variational posterior may not always be needed, and
that compact parameterizations can also work well. We used this insight to propose a simple,
yet effective variational posterior parameterization, which speeds up training and reduces
the number of variational parameters without degrading predictive performance on a range
of model types.

In future work, we hope to scale up variational inference with compactly parameterized
approximate posteriors to much larger models and more complex problems. For mean-field
variational inference to work well in that setting several challenges will likely need to be
addressed (Wenzel et al., 2020); improving the signal-to-noise ratio of ELBO gradients using
our compact variational parameterizations may provide a piece of the puzzle.

68 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

Figure 4.3: Fraction of variance explained per each singular value from SVD of matrices of
posterior means and posterior standard deviations post-training in different dense layers of three
model types trained using standard GMFVI: MLP (top), CNN (middle), LSTM (bottom). Unlike
posterior means, posterior standard deviations clearly display strong low-rank structure, with
most of the variance contained in the top few singular values.

4.6. CONCLUSION 69

Figure 4.4: Post-training heat maps of the reshaped diagonal posterior standard deviation ma-
trix for the first dense layer of a LeNet CNN trained using GMFVI on the CIFAR-100 dataset.
Unlike the rank-1 approximation, the rank-2 approximation already looks visually very similar to
the matrix with no approximation. This is consistent with the quantitative results from Figure 4.3,
where the first two singular values explain most of the variance in the reshaped diagonal posterior
standard deviation matrix.

1 2 3 4 5 6 7 8 9 10
Rank

10-6

10-5

10-4

10-3

10-2

10-1

100

Pe
rc

en
t o

f e
xp

la
in

ed
 v

ar
ia

nc
e

conv2d stddevs
conv2d means
conv2d_7 stddevs
conv2d_7 means
dense stddevs
dense means

Method -ELBO ↓ NLL ↓ Accuracy ↑
Mean-field 122.61±0.012 0.495±0.0080 83.5±0.37

1-tied 122.57±0.012 0.658±0.0069 81.7±0.39

2-tied 122.77±0.012 0.503±0.0080 83.2±0.37

3-tied 122.67±0.012 0.501±0.0079 83.2±0.37

Figure 4.5: Unlike posterior means, the posterior standard deviations of both dense and convo-
lutional layers in the ResNet-18 model trained using standard GMFVI display strong low-rank
structure post-training and can be approximated without loss in predictive metrics. Top: Fraction
of variance explained per each singular value of the matrices of converged posterior means and
standard deviations. Bottom: Impact of post-training low-rank approximation of the posterior
standard deviation matrices on the model’s performance. We report mean and SEM of each met-
ric across 100 weights samples.

70 CHAPTER 4. THE k-TIED NORMAL DISTRIBUTION: A COMPACT PARAM...

50000 100000 150000 200000 250000 300000 350000
Train step

0.5

0.6

0.7

0.8

0.9

1.0

H
el

d-
ou

t
ne

g.
 E

LB
O

 /
 n

MLP

H
el

d-
ou

t
ne

g.
 E

LB
O

 /
 n

50000 100000 150000 200000 250000
Train step

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0
CNN

H
el

d-
ou

t
ne

g.
 E

LB
O

 /
 n

0 10000 20000 30000 40000 50000 60000
Train step

0.5

0.6

0.7

0.8

0.9

1.0

1.1 Mean-field
1-tied
2-tied
3-tied

LSTM

Figure 4.6: Convergence of negative ELBO (lower is better) for the three model types on their
respective validation datasets when training with mean-field and k-tied variational posteriors. The
k-tied Normal posteriors result in faster initial convergence for the MLP and LSTM models. For
the CNN models the speed-up is not as significant when using the k-tied Normal posterior only for
the two dense layers of the LeNet architecture.

Chapter 5

How Good is the Bayes Posterior in
Deep Neural Networks Really?

5.1 Overview

During the past five years the Bayesian deep learning community has developed increasingly
accurate and efficient approximate inference procedures that allow for Bayesian inference
in deep neural networks. However, despite this algorithmic progress and the promise of
improved uncertainty quantification and sample efficiency there are—as of early 2020—no
publicized deployments of Bayesian neural networks in industrial practice. In this chapter, we
cast doubt on the current understanding of Bayes posteriors in popular deep neural networks:
we demonstrate through careful MCMC sampling that the posterior predictive induced by
the Bayes posterior yields systematically worse predictions compared to simpler methods
including point estimates obtained from SGD. Furthermore, we demonstrate that predictive
performance is improved significantly through the use of a “cold posterior” that overcounts
evidence. Such cold posteriors sharply deviate from the Bayesian paradigm but are commonly
used as heuristic in Bayesian deep learning papers. We put forward several hypotheses that
could explain cold posteriors and evaluate the hypotheses through experiments. Our work
questions the goal of accurate posterior approximations in Bayesian deep learning: If the
true Bayes posterior is poor, what is the use of more accurate approximations? Instead, we
argue that it is timely to focus on understanding the origin of the improved performance of
cold posteriors.

5.2 Introduction

We introduced the Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) Bayesian
neural networks that are the topic of this chapter in Section 2.3.2 of this thesis. Specifically,
this chapter studies a surprising effect in SG-MCMC Bayesian neural networks shown
in Figure 5.1, the “Cold Posteriors” effect: for deep neural networks the Bayes posterior (at

71

72 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

10 4 10 3 10 2 10 1 100

Temperature T

0.88

0.90

0.92

0.94

Te
st

 a
cc

ur
ac

y
SG-MCMC
Baseline: SGD

Figure 5.1: The “cold posterior” effect: for a ResNet-20 on CIFAR-10 we can improve the
generalization performance significantly by cooling the posterior with a temperature T ≪ 1,
deviating from the Bayes posterior p(θ|D) ∝ exp(−U(θ)/T) at T = 1.

temperature T = 1) works poorly but by cooling the posterior using a temperature T < 1 we
can significantly improve the prediction performance. This empirical observation conflicts
with the theoretical understanding of Bayes posteriors in deep neural networks, for which
T = 1 should be optimal, as we explain next.

Cold Posteriors: among all temperized posteriors the best posterior predictive per-
formance on holdout data is achieved at temperature T < 1.

5.2.1 Why Should Bayes (T = 1) be Better?

Why would we expect that predictions made by the ensemble model (2.2), could improve over
predictions made at a single well-chosen parameter? There are three reasons: 1. Theory : for
several models where the predictive performance can be analyzed it is known that the posterior
predictive (2.2) can dominate common point-wise estimators based on the likelihood, (Komaki,
1996), even in the case of misspecification, (Fushiki et al., 2005; Ramamoorthi et al., 2015); 2.
Classical empirical evidence: for classical statistical models, averaged predictions (2.2) have
been observed to be more robust in practice, (Geisser, 1993); and 3. Model averaging : recent
deep learning models based on deterministic model averages, (Lakshminarayanan et al., 2017;
Ovadia et al., 2019b), have shown good predictive performance.

Note that a large body of work in the area of Bayesian deep learning in recent years is
motivated by the assertion that predicting using (2.2) is desirable. We will confront this
assertion through a simple experiment to show that our understanding of the Bayes posterior
in deep models is limited. Our work makes the following contributions:

• We demonstrate for two models and tasks (ResNet-20 on CIFAR-10 and CNN-LSTM
on IMDB) that the Bayes posterior predictive has poor performance compared to
SGD-trained models.

• We put forth and systematically examine hypotheses that could explain the observed
behaviour.

• We introduce two new diagnostic tools for assessing the approximation quality of
stochastic gradient Markov chain Monte Carlo methods (SG-MCMC) and demonstrate

5.3. COLD POSTERIORS PERFORM BETTER 73

10 4 10 3 10 2 10 1 100

Temperature T

0.2

0.3

0.4

0.5

Te
st

 c
ro

ss
 e

nt
ro

py SG-MCMC
Baseline: SGD

Figure 5.2: Predictive performance on the CIFAR-10 test set for a cooled ResNet-20 Bayes
posterior. The SGD baseline is separately tuned for the same model (Appendix B.1.2).

that the posterior is accurately simulated by existing SG-MCMC methods.

5.3 Cold Posteriors Perform Better

We now examine the quality of the posterior predictive for two simple deep neural net-
works. We describe details of the models, priors, and approximate inference methods in
Appendix B.1.1 to B.1.3. In particular, we will study the accuracy of our approximate
inference and the influence of the prior in great detail in Section 5.5 and Section 5.6.2,
respectively. Here we show that temperized Bayes ensembles obtained via low temperatures
T < 1 outperform the true Bayes posterior at temperature T = 1.

5.3.1 Deep Learning Models: ResNet-20 and LSTM

ResNet-20 on CIFAR-10. Figure 5.1 and 5.2 show the test accuracy and test cross-entropy
of a Bayes prediction (2.2) for a ResNet-20 on the CIFAR-10 classification task.1 We can
clearly see that both accuracy and cross-entropy are significantly improved for a temperature
T < 1/10 and that this trend is consistent. Also, surprisingly this trend holds all the way to
small T = 10−4: the test performance obtained from an ensemble of models at temperature
T = 10−4 is superior to the one obtained from T = 1 and better than the performance of
a single model trained with SGD. In Appendix B.7 we show that the uncertainty metrics
Brier score Brier (1950) and expected calibration error (ECE) Naeini et al. (2015) are also
improved by cold posteriors.

CNN-LSTM on IMDB text classification. Figure 5.3 shows the test accuracy and
test cross-entropy of the tempered prediction (2.2) for a CNN-LSTM model on the IMDB
sentiment classification task. The optimal predictive performance is again achieved for a
tempered posterior with a temperature range of approximately 0.01 < T < 0.2.

1A similar plot is Figure 3 in (Baldock & Marzari, 2019) and another is in the appendix of (Zhang
et al., 2019a).

74 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

10 4 10 3 10 2 10 1 100
0.80

0.82

0.84

0.86

Te
st

 a
cc

ur
ac

y
SG-MCMC Baseline: SGD

10 4 10 3 10 2 10 1 100

Temperature T

0.30

0.35

0.40

0.45

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 5.3: Predictive performance on the IMDB sentiment task test set for a tempered CNN-
LSTM Bayes posterior. Error bars are ± one standard error over three runs. See Appendix B.1.4.

5.3.2 Why is a Temperature of T < 1 a Problem?

There are two reasons why cold posteriors are problematic. First, T < 1 corresponds to
artificially sharpening the posterior, which can be interpreted as overcounting the data by a
factor of 1/T and a rescaling2 of the prior as p(θ)

1
T . This is equivalent to a Bayes posterior

obtained from a dataset consisting of 1/T replications of the original data, giving too strong
evidence to individual models. For T = 0, all posterior probability mass is concentrated
on the set of maximum a posteriori (MAP) point estimates. Second, T = 1 corresponds to
the true Bayes posterior and performance gains for T < 1 point to a deeper and potentially
resolvable problem with the prior, likelihood, or inference procedure.

5.3.3 Confirmation from the Literature

Should the strong performance of tempering the posterior with T ≪ 1 surprise us? It
certainly is an observation that needs to be explained, but it is not new: if we comb the
literature of Bayesian inference in deep neural networks we find broader evidence for this
phenomenon.

2E.g., using a Normal prior with temperature T results in a Normal distribution with scaled variance
by a factor of T .

5.3. COLD POSTERIORS PERFORM BETTER 75

Related work that uses T < 1 posteriors in SG-MCMC. The following table lists
work that uses SG-MCMC on deep neural networks and tempers the posterior.3

Reference Temperature T

(Li et al., 2016) 1/
√
n

(Leimkuhler et al., 2019) T < 10−3

(Heek & Kalchbrenner, 2019) T = 1/5

(Zhang et al., 2019a) T = 1/
√
50000

Related work that uses T < 1 posteriors in Variational Bayes. In the variational
Bayes approach to Bayesian neural networks, (Blundell et al., 2015b; Hinton & Van Camp,
1993b; MacKay et al., 1995; Barber & Bishop, 1998b) we optimize the parameters τ of a
variational distribution q(θ|τ) by maximizing the evidence lower bound (ELBO),

Eθ∼q(θ|τ)

[
n∑

i=1

log p(yi|xi,θ)

]
− λDKL(q(θ|τ)∥p(θ)). (5.1)

For λ = 1 this directly minimizes DKL(q(θ|τ) ∥ p(θ|D)) and thus for sufficiently rich varia-
tional families will closely approximate the true Bayes posterior p(θ|D). However, in practice
researchers discovered that using values λ < 1 provides better predictive performance, with
common values shown in the following table.4

Reference KL term weight λ in (5.1)

(Zhang et al., 2018b) λ ∈ {1/2, 1/10}
(Bae et al., 2018) tuning of λ, unspecified
(Osawa et al., 2019a) λ ∈ {1/5, 1/10}
(Ashukha et al., 2020) λ from 10−5 to 10−3

In Appendix B.5 we show that the KL-weighted ELBO (5.1) arises from tempering the
likelihood part of the posterior.

From the above list we can see that the cold posterior problem has left a trail in the
literature, and in fact we are not aware of any published work demonstrating well-performing
Bayesian deep learning at temperature T = 1. We now give details on how we perform
accurate Bayesian posterior inference in deep learning models.

3For (Li et al., 2016) the tempering with T = 1/
√
n arises due to an implementation mistake.

For (Heek & Kalchbrenner, 2019) we communicated with the authors, and tempering arises due to over-
counting data by a factor of 5, approximately justified by data augmentation, corresponding to T = 1/5.
For (Zhang et al., 2019a) the original implementation contains inadvertent tempering, however, the au-
thors added a study of tempering in a revision.

4For (Osawa et al., 2019a) scaling with λ arises due to their use of a “data augmentation factor” ρ ∈
{5, 10}.

76 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

5.4 Accurate SG-MCMC Simulation

In this section we describe how we achieve efficient and accurate simulation of SG-MCMC
Bayesian neural network posteriors based on Langevin dynamics introduced in Section 2.3.2 of
this thesis. This section does not contain any major novel contribution but instead combines
existing work.

In practice there are two sources of error when following the Langevine dynamics (2.17–
2.19):

• Minibatch noise: ∇θŨ(θ) is an unbiased estimate of ∇θU(θ) but contains additional
estimation variance.

• Discretization error : we incur error by following a continuous-time path (2.14–2.15)
using discrete steps (2.17–2.19).

We use two methods to reduce these errors: preconditioning and cyclical time stepping.
Layerwise Preconditioning. Preconditioning through a choice of matrix M is a

common way to improve the behavior of optimization methods. Li et al. (2016) and Ma et al.
(2015) proposed preconditioning for SG-MCMC methods, and in the context of molecular
dynamics the use of a matrix M has a long tradition as well, (Leimkuhler & Matthews,
2016). Li’s proposal is an adaptive preconditioner inspired by RMSprop, (Tieleman & Hinton,
2012). Unfortunately, using the discretized Langevin dynamics with a preconditioner M(θ)
that depends on θ compromises the correctness of the dynamics.5 We propose a simpler
preconditioner that limits the frequency of adaptating M: after a number of iterations we
estimate a new preconditioner M using a small number of batches, say 32, but without
updating any model parameters. This preconditioner then remains fixed for a number of
iterations, for example, the number of iterations it takes to visit the training set once, i.e.
one epoch. We found this strategy to be highly effective at improving simulation accuracy.
For details, please see Appendix B.4.

Cyclical time stepping. The second method to improve simulation accuracy is to
decrease the discretization step size h. Chen et al. (2015) studied the consequence of both
minibatch noise and discretization error on simulation accuracy and showed that the overall
simulation error goes to zero for h ↘ 0. While lowering the step size h to a small value
would also make the method slow, recently Zhang et al. (2019a) propose to perform cycles of
iterations t = 1, 2, . . . with a high-to-low step size schedule h0C(t) described by an initial
step size h0 and a function C(t) that starts at C(1) = 1 and has C(L) = 0 for a cycle length
of L iterations. Such cycles retain fast simulation speed in the beginning while accepting
simulation error. Towards the end of each cycle however, a small step size ensures an accurate
simulation. We use the cosine schedule from (Zhang et al., 2019a) for C(t), see Appendix B.1.

We integrate these two techniques together into a practical SG-MCMC procedure, Algo-
rithm 1. When no preconditioning and no cosine schedule is used (M = I and C(t) = 1 in all
iterations) and T (t) = 0 this algorithm is equivalent to Tensorflow ’s SGD with momentum
(Appendix B.3).

5Li et al. (2016) derives the required correction term, which however is expensive to compute and
omitted in practice.

5.5. INFERENCE: IS IT ACCURATE? 77

Algorithm 1: Symplectic Euler Langevin scheme.

1 Function SymEulerSGMCMC(G̃, θ(0), ℓ, β, n, T)
Input: G̃ : Θ→ R mean energy function estimate; θ(0) ∈ Rd initial parameter; ℓ > 0

learning rate; β ∈ [0, 1) momentum decay; n total training set size; T (t) ≥ 0
temperature schedule

Output: Sequence θ(t), t = 1, 2, . . .
2 h0 ←

√
ℓ/n // SDE time step

3 γ ← (1− β)
√

n/ℓ // friction
4 Sample m(0) ∼ Nd(0, Id)
5 M← I // Initial M

6 for t = 1, 2, . . . do
7 if new epoch then
8 mc ←M−1/2 m(t−1)

9 M← EstimateM(G̃,θ(t−1))

10 m(t−1) ←M1/2 mc

11 h← C(t)h0 // Cyclic modulation
12 Sample R(t) ∼ Nd(0, Id) // noise

13 m(t) ← (1− hγ)m(t−1) − hn∇θG̃(θ(t−1)) +
√
2γhT (t)M1/2 R(t)

14 θ(t) ← θ(t−1) + hM−1m(t)

15 if end of cycle then
16 yield θ(t) // Parameter sample

Coming back to the Cold Posteriors effect, what could explain the poor performance
at temperature T = 1? With our Bayesian hearts, there are only three possible areas to
examine: the inference, the prior, or the likelihood function.

5.5 Inference: Is it Accurate?

Both the Bayes posterior and the cooled posteriors are all intractable. Moreover, it is plausible
that the high-dimensional posterior landscape of a deep network may lead to difficult-to-
simulate SDE dynamics (2.14–2.15). Our approximate SG-MCMC inference method further
has to deal with minibatch noise and produces only a finite sample approximation to the
predictive integral (2.2). Taken together, could the Cold Posteriors effect arise from a poor
inference accuracy?

5.5.1 Hypothesis: Inaccurate SDE Simulation

Inaccurate SDE Simulation Hypothesis: the SDE (2.14–2.15) is poorly simu-
lated.

To gain confidence that our SG-MCMC method simulates the posterior accurately, we
introduce diagnostics that previously have not been used in the SG-MCMC context:

78 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

10 3 10 2 10 1 100

Temperature T

1.07

1.08

1.09

1.10

1.11

HMC

MLP depth = 1
MLP depth = 2
MLP depth = 3

10 3 10 2 10 1 100

Temperature T

1.07

1.08

1.09

1.10

1.11
SG-MCMC

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 5.4: HMC (left) agrees closely with SG-MCMC (right) for synthetic data on multilayer
perceptrons. A star indicates the optimal temperature for each model: for the synthetic data
sampled from the prior there are no cold posteriors and both sampling methods perform best at
T = 1.

• Kinetic temperatures (Appendix B.9.1): we report per-variable statistics derived
from the moments m. For these so called kinetic temperatures we know the exact
sampling distribution under Langevin dynamics and compute their 99% confidence
intervals.

• Configurational temperatures (Appendix B.9.2): we report per-variable statistics
derived from ⟨θ,∇θU(θ)⟩. For these configurational temperatures we know the expected
value under Langevin dynamics.

We propose to use these diagnostics to assess simulation accuracy of SG-MCMC methods.
We introduce the diagnostics and our new results in detail in Appendix B.9.

Inference Diagnostics Experiment: In Appendix B.10 we report a detailed study
of simulation accuracy for both models. This study reports accurate simulation for both
models when both preconditioning and cyclic time stepping are used. We can therefore with
reasonably high confidence rule out a poor simulation of the SDE. All remaining experiments
in this chapter also pass the simulation accuracy diagnostics.

5.5.2 Hypothesis: Biased SG-MCMC

Biased SG-MCMC Hypothesis: Lack of accept/reject Metropolis-Hastings correc-
tions in SG-MCMC introduces bias.

In Markov chain Monte Carlo it is common to use an additional accept-reject step
that corrects for bias in the sampling procedure. For MCMC applied to deep learning
this correction step is too expensive and therefore omitted in SG-MCMC methods, which
is valid for small time steps only, (Chen et al., 2015). If accept-reject is computationally
feasible the resulting procedure is called Hamiltonian Monte Carlo (HMC) (Neal et al., 2011;
Betancourt & Girolami, 2015; Duane et al., 1987; Hoffman & Gelman, 2014). Because it

5.5. INFERENCE: IS IT ACCURATE? 79

provides unbiased simulation, we can consider HMC the gold standard, (Neal, 1995). We
now compare gold standard HMC against SG-MCMC on a small example where comparison
is feasible. We provide details of our HMC setup in Appendix B.15.

HMC Experiment: we construct a simple setup using a multilayer perceptron (MLP)
where by construction T = 1 is optimal; such Bayes optimality must hold in expectation
if the data is generated by the prior and model that we use for inference, (Berger, 1985).
Thus, we can ensure that if the cold posterior effect is observed it must be due to a problem
in our inference method. We perform all inference without minibatching (|B| = n) and
test MLPs of varying number of one to three layers, ten hidden units each, and using the
ReLU activation. As HMC implementation we use tfp.mcmc.HamiltonianMonteCarlo from
Tensorflow Probability (Dillon et al., 2017; Lao et al., 2020): Details for our data and HMC
are in Appendix B.14–B.15.

In Figure 5.4 the SG-MCMC results agree very well with the HMC results with optimal
predictions at T = 1, i.e. no cold posteriors are present. For the cases tested we conclude
that SG-MCMC is almost as accurate as HMC and the lack of accept-reject correction cannot
explain cold posteriors. Appendix B.15 further shows that SG-MCMC and HMC are in good
agreement when inspecting the KL divergence of their resulting predictive distributions.

5.5.3 Hypothesis: Stochastic Gradient Noise

Minibatch Noise Hypothesis: gradient noise from minibatching causes inaccurate
sampling at T = 1.

Gradient noise due to minibatching can be heavy-tailed and non-Gaussian even for large
batch sizes, (Simsekli et al., 2019). Our SG-MCMC method is only justified if the effect of
noise will diminish for small time steps. We therefore study the influence of batch size on
predictive performance through the following experiment.

Batchsize Experiment: we repeat the original ResNet-20/CIFAR-10 experiment at
different temperatures for batch sizes in {32, 64, 128, 256} and study the variation of the
predictive performance as a function of batch size. Figure 5.5 and Figure 5.6 show that while
there is a small variation between different batch sizes T < 1 remains optimal for all batch
sizes. Therefore minibatch noise alone cannot explain the observed poor performance at
T = 1.

For both ResNet and CNN-LSTM the best cross-entropy is achieved by the smallest
batch size of 32 and 16, respectively. The smallest batch size has the largest gradient noise.
We can interpret this noise as an additional heat source that increases the effective simulation
temperature. However, the noise distribution arising from minibatching is anisotropic, (Zhu
et al., 2019), and this could perhaps aid generalization. We will not study this hypothesis
further here.

80 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

10 4 10 3 10 2 10 1 100

Temperature T

0.88

0.90

0.92

0.94

Te
st

 a
cc

ur
ac

y
batch size 32
batch size 64
batch size 128
batch size 256

10 4 10 3 10 2 10 1 100

Temperature T

0.15

0.20

0.25

0.30

0.35

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 5.5: Batch size dependence of the ResNet-20/CIFAR-10 ensemble performance, reporting
mean and standard error (3 runs): for all batch sizes the optimal predictions are obtained for
T < 1.

10 4 10 3 10 2 10 1 100

Temperature T

0.80

0.82

0.84

0.86

Te
st

 a
cc

ur
ac

y

batch size 16
batch size 32
batch size 64
batch size 128

10 4 10 3 10 2 10 1 100

Temperature T

0.30

0.35

0.40

0.45

0.50
Te

st
 c

ro
ss

 e
nt

ro
py

Figure 5.6: Batch size dependence of the CNN-LSTM/IMDB ensemble performance, reporting
mean and standard error (3 runs): for all batch sizes, the optimal performance is achieved at
T < 1.

5.5.4 Hypothesis: Bias-Variance Trade-off

Bias-variance Tradeoff Hypothesis: For T = 1 the posterior is diverse and there
is high variance between model predictions. For T ≪ 1 we sample nearby modes and
reduce prediction variance but increase bias; the variance dominates the error and
reducing variance (T ≪ 1) improves predictive performance.

If this hypothesis were true then simply collecting more ensemble members, S →∞, would
reduce the variance to arbitrary small values and thus fix the poor predictive performance
we observe at T = 1. Doing so would require running our SG-MCMC schemes for longer—
potentially for much longer. We study this question in detail in Appendix B.6 and conclude
by an asymptotic analysis that the amount of variance cannot explain cold posteriors.

5.6. WHY COULD THE BAYES POSTERIOR BE POOR? 81

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 1

Train set class distribution

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 2

Train set class distribution

Figure 5.7: ResNet-20/CIFAR-10 typical prior predictive distributions for 10 classes under a
N (0, I) prior averaged over the entire training set, Ex∼p(x)[p(y|x,θ(i))]. Each plot is for one sam-
ple θ(i) ∼ N (0, I) from the prior. Given a sample θ(i) the average training data class distribution
is highly concentrated around the same classes for all x.

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y

Prior predictive average (S=100)

Figure 5.8: ResNet-20/CIFAR-10 prior predictive Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10 classes,
estimated using S = 100 prior samples θ(i) and all training images.

5.6 Why Could the Bayes Posterior be Poor?

With some confidence in our approximate inference procedure what are the remaining
possibilities that could explain the cold posterior effect? The remaining two places to look at
are the likelihood function and the prior.

5.6.1 Problems in the Likelihood Function?

For Bayesian deep learning we use the same likelihood function p(y|x,θ) as we use for SGD.
Therefore, because the same likelihood function works well for SGD it appears an unlikely
candidate to explain the cold posterior effect. However, current deep learning models use a
number of techniques—such as data augmentation, dropout, and batch normalization—that
are not formal likelihood functions. This observations brings us to the following hypothesis.

Dirty Likelihood Hypothesis: Deep learning practices that violate the likelihood
principle (batch normalization, dropout, data augmentation) cause deviation from the
Bayes posterior.

In Appendix B.11 we give a theory of “Jensen posteriors” which describes the likelihood-
like functions arising from modern deep learning techniques. We report an experiment
(Appendix B.11.4) that—while slightly inconclusive—demonstrates that cold posteriors
remain when a clean likelihood is used in a suitably modified ResNet model; the CNN-LSTM
model already had a clean likelihood function.

82 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

5.6.2 Problems with the Prior?

So far we have used a simple Normal prior, p(θ) = N (0, I), as was done in prior work (Zhang
et al., 2019a; Heek & Kalchbrenner, 2019; Ding et al., 2014; Li et al., 2016; Zhang et al.,
2018b). But is this a good prior?

One could hope, that perhaps with an informed and structured model architecture, a
simple prior could be sufficient in placing prior beliefs on suitable functions, as argued
by Wilson (2019). While plausible, we are mildly cautious because there are known examples
where innocent looking priors have turned out to be unintentionally highly informative.6

Therefore, with the cold posterior effect having a track record in the literature, perhaps
p(θ) = N (0, I) could have similarly unintended effects of placing large prior mass on
undesirable functions. This leads us to the next hypothesis.

Bad Prior Hypothesis: The current priors used for BNN parameters are inade-
quate, unintentionally informative, and their effect becomes stronger with increasing
model depths and capacity.

To study the quality of our prior, we study typical functions obtained by sampling from
the prior, as is good practice in model criticism, (Gelman et al., 2013).

Prior Predictive Experiment: for our ResNet-20 model we generate samples θ(i) ∼
p(θ) = N (0, I) and look at the induced predictive distribution Ex∼p(x)[p(y|x,θ(i))] for each
parameter sample, using the real CIFAR-10 training images. From Figure 5.7 we see that
typical prior draws produce concentrated class distributions, indicating that the N (0, I)
distribution is a poor prior for the ResNet-20 likelihood. From Figure 5.8 we can see that the
average predictions obtained from such concentrated functions remain close to the uniform
class distribution. Taken together, from a subjective Bayesian view p(θ) = N (0, I) is a poor
prior : typical functions produced by this prior place a high probability the same few classes
for all x. In Appendix B.12 we carry out another prior predictive study using He-scaling
priors, (He et al., 2015b), which leads to similar results.

Prior Variance σ Scaling Experiment: in the previous experiment we found that
the standard Normal prior is poor. Can the Normal prior p(θ) = N (0, σ) be fixed by
using a more appropriate variance σ? For our ResNet-20 model we employ Normal priors
of varying variances. Figure 5.12 shows that the cold posterior effect is present for all
variances considered. Further investigations for known scaling laws in deep networks is given
in Appendix B.12. The cold posterior effect cannot be resolved by using the right scaling of
the Normal prior.

Training Set Size n Scaling Experiment: the posterior energy U(θ) in (2.12) sums
over all n data log-likelihoods but adds log p(θ) only once. This means that the influence
of log p(θ) vanishes at a rate of 1/n and thus the prior will exert its strongest influence for
small n. We now study what happens for small n by comparing the Bayes predictive under

6A shocking example in the Dirichlet-Multinomial model is given by Nemenman et al. (2002). Im-
portantly the unintended effect of the prior was not recognized when the model was originally proposed
by Wolpert & Wolf (1995).

5.6. WHY COULD THE BAYES POSTERIOR BE POOR? 83

10000 20000 30000 40000 50000

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

SG-MCMC SGD/MAP

10000 20000 30000 40000 50000
Training set size n

0.5

1.0

1.5

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 5.9: ResNet-20/CIFAR-10 predictive performance as a function of training set size n.
The Bayes posterior (T = 1) degrades gracefully as n decreases, whereas SGD/MAP performs
worse.

a N (0, I) prior against performing SGD maximum a posteriori (MAP) estimation on the
same log-posterior.7

Figure 5.9 and Figure 5.10 show the predictive performance for ResNet-20 on CIFAR-10
and CNN-LSTM on IMDB, respectively. These results differ markedly between the two
models and datasets: for ResNet-20 / CIFAR-10 the Bayes posterior at T = 1 degrades
gracefully for small n, whereas SGD suffers large losses in test cross-entropy for small n. For
CNN-LSTM / IMDB predictions from the Bayes posterior at T = 1 deteriorate quickly in
both test accuracy and cross entropy. In all these runs SG-MCMC and SGD/MAP work with
the same U(θ) and the difference is between integration and optimization. The results are
inconclusive but somewhat implicate the prior in the cold posterior effect: as n becomes small
there is an increasing difference between the cross-entropy achieved by the Bayes prediction
and the SGD estimate, for large n the SGD estimate performs better.

Capacity Experiment: we consider a MLP using a N (0, I) prior and study the relation
of the network capacity to the cold posterior effect. We train MLPs of varying depth
(number of layers) and width (number of units per layer) at different temperatures on
CIFAR-10. Figure 5.11 shows that for increasing capacity the cold posterior effect becomes
more prominent. This indicates a connection between model capacity and strength of the
cold posterior effect.

7For SGD we minimize U(θ)/n.

84 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

2500 5000 7500 10000 12500 15000 17500 20000

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y
SG-MCMC SGD/MAP

2500 5000 7500 10000 12500 15000 17500 20000
Training set size n

0.4

0.6

0.8

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 5.10: CNN-LSTM/IMDB predictive performance as a function of training set size n. The
Bayes posterior (T = 1) suffers more than the SGD performance, indicating a problematic prior.

10 3 10 2 10 1 100

Temperature T

1.2

1.4

1.6

1.8

Te
st

 c
ro

ss
 e

nt
ro

py

MLP depth

depth 1
depth 2
depth 3
depth 4

10 3 10 2 10 1 100

Temperature T

1.2

1.4

1.6

MLP width
width 32
width 64
width 128
width 256

Figure 5.11: MLP of different capacities (depth and width) on CIFAR-10. Left: we fix the width
to 128 and vary the depth. Right: we fix the depth to 3 and vary the width. Increasing capacity
lowers the optimal temperature.

5.6.3 Inductive Bias due to SGD?

Implicit Initialization Prior in SGD: The inductive bias from initialization is
strong and beneficial for SGD but harmed by SG-MCMC sampling.

Optimizing neural networks via SGD with a suitable initialization is known to have a
beneficial inductive bias leading to good local optima, (Masters & Luschi, 2018; Mandt et al.,
2017). Does SG-MCMC perform worse due to decreasing the influence of that bias? We
address this question by the following experiment. We first run SGD until convergence, then

5.7. ALTERNATIVE EXPLANATIONS? 85

10 4 10 3 10 2 10 1 100

0.75
0.80
0.85
0.90
0.95

Te
st

 a
cc

ur
ac

y
Prior variance

0.001
0.01
0.1

1
10

10 4 10 3 10 2 10 1 100

Temperature T

0.25

0.50

0.75

1.00

Te
st

 c
ro

ss
 e

nt
ro

py

Figure 5.12: ResNet-20/CIFAR-10 predictive performance as a function of temperature T for
different priors p(θ) = N (0, σ). The cold posterior effect is present for all choices of the prior
variance σ. For all models the optimal temperature is significantly smaller than one and for σ =
0.001 the performance is poor for all temperatures. There is no “simple” fix of the prior.

switch over to SG-MCMC sampling for 500 epochs (10 cycles), and finally switch back to
SGD again. Figure 5.13 shows that SGD initialized by the last model of the SG-MCMC
sampling dynamics recovers the same performance as vanilla SGD. This indicates that the
beneficial initialization bias for SGD is not destroyed by SG-MCMC. Details can be found in
Appendix B.8.

5.7 Alternative Explanations?

Are there other explanations we have not studied in this chapter?

Masegosa Posteriors. A compelling analysis of the failure to predict well under the
Bayes posterior is given by Masegosa (2019). In his analysis he first follows Germain et al.
(2016) in identifying the Bayes posterior as a solution of a loose PAC-Bayes generalization
bound on the predictive cross-entropy. He then uses recent results demonstrating improved
Jensen inequalities, (Liao & Berg, 2019), to derive alternative posteriors. These alternative
posteriors are not Bayes posteriors and in fact explicitly encourage diversity among ensemble
member predictions. Moreover, the alternative posteriors can be shown to dominate the
predictive performance achieved by the Bayes posterior when the model is misspecified. We
believe that these new “Masegosa-posteriors”, while not explaining cold posteriors fully, may
provide a more desirable approximation target than the Bayes posterior. In addition, the
Masegosa-posterior is compatible with both variational and SG-MCMC type algorithms.

86 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

0 100 200 300 400 500 600 700 800
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

Si
ng

le
 m

od
el

 a
cc

ur
ac

y SGD 10 cycles of SG-MCMC sampling SGD

train
test

Figure 5.13: Do the SG-MCMC dynamics harm a beneficial initialization bias used by SGD? We
first train a ResNet-20 on CIFAR-10 via SGD, then switch over to SG-MCMC sampling and fi-
nally switch back to SGD optimization. We report the single-model test accuracy of SGD and the
SG-MCMC chain as function of epochs. SGD recovers from being initialized by the SG-MCMC
state.

Tempered observation model? In (Wilson & Izmailov, 2020, Section 8.3) it is claimed
that cold posteriors in one model correspond to untempered (T = 1) Bayes posteriors in a
modified model by a simple change of the likelihood function. If this were the case, this would
resolve the cold posterior problem and in fact point to a systematic way how to improve the
Bayes posterior in many models. However, the argument in (Wilson & Izmailov, 2020) is
wrong, which we demonstrate and discuss in detail in Appendix B.13.

5.8 Related Work on Tempered Posteriors

Statisticians have studied tempered or fractional posteriors for T > 1. Motivated by the
behavior of Bayesian inference in misspecified models (Grünwald et al., 2017; Jansen, 2013)
develop the SafeBayes approach and Bhattacharya et al. (2019) develops fractional posteriors
with the goal of slowing posterior concentration. The use of multiple temperatures T > 1 is
also common in Monte Carlo simulation in the presence of rough energy landscapes, e.g. (Earl
& Deem, 2005; Sugita & Okamoto, 1999; Swendsen & Wang, 1986). However, the purpose of
such tempering is to aid in accurate sampling at a desired target temperature, but not in
changing the target distribution. Mandt et al. (2016) studies temperature as a latent variable
in the context of variational inference and shows that models often select temperatures
different from one.

5.9 Conclusion

This chapter has raised the question of cold posteriors but we did not fully resolve nor fix
the cause for the cold posterior phenomenon. Yet our experiments suggest the following.

5.9. CONCLUSION 87

SG-MCMC is accurate enough: our experiments (Section 5.5–5.6) and novel diag-
nostics (Appendix B.9) indicate that current SG-MCMC methods are robust, scalable, and
accurate enough to provide good approximations to parameter posteriors in deep nets.

Cold posteriors work: while we do not fully understand cold posteriors, tempered
SG-MCMC ensembles provide a way to train ensemble models with improved predictions
compared to individual models. However, taking into account the added computation from
evaluating ensembles, there may be more practical methods, (Lakshminarayanan et al., 2017;
Wen et al., 2019; Ashukha et al., 2020).

More work on priors for deep nets is needed: the experiments in Section 5.6.2
implicate the prior p(θ) in the cold posterior effect, although the prior may not be the only
cause. Our investigations fail to produce a “simple” fix based on scaling the prior variance
appropriately. Future work on suitable priors for Bayesian neural networks is needed, building
on recent advances, (Sun et al., 2019; Pearce et al., 2019; Flam-Shepherd et al., 2017; Hafner
et al., 2018).

Acknowledgements. We would like to thank Dustin Tran for reading multiple drafts and
providing detailed feedback on the work. We also thank the four anonymous ICML 2020
reviewers for their detailed and helpful feedback.

88 CHAPTER 5. HOW GOOD IS THE BAYES POSTERIOR IN DEEP NEURAL...

Chapter 6

Cross-lingual Prosody Transfer for
Expressive Machine Dubbing

6.1 Overview

Prosody transfer is well-studied in the context of expressive speech synthesis. Cross-lingual
prosody transfer, however, is challenging and has been under-explored to date. In this chapter,
we present a novel solution to learn prosody representations that are transferable across
languages and speakers for machine dubbing of expressive multimedia contents. Multimedia
contents often contain field recordings. To enable prosody transfer from noisy audios, we
introduce a novel noise modelling module that disentangles noise conditioning from prosody
conditioning, and thereby gains independent control of noise levels in the synthesised speech.
We augment noisy training data with clean data to improve the ability of the model to map
the denoised reference audio to clean speech. Our proposed system can generate speech
with context-matching prosody and closes the gap between a strong baseline and human
expressive dialogs by 11.2%

6.2 Introduction

Intonation, stress, rhythm and style are factors of speech that are collectively referred to
as prosody. To study and apply these factors for the purpose of speech generation, various
acoustically inspired labelling schemes have been designed. In Van Coile et al. (1994), the
transplantation of prosody from an original speech clip via a system called PROTRAN
was proposed. This technique involves an encoding of stylized pitch contours and phoneme
durations into a low bit-rate enriched phonetic transcription that can be used in conjunction
with desired text to reproduce the prosody of an original recording. In this work, we
circumvent the labour-intensive schematizing and labelling of prosody. We adopt the term
prosody as a general term that constitutes learned latent representations from ground truth
speech audios. Similar to the definition in Skerry-Ryan et al. (2018b), prosody in this chapter

89

90 CHAPTER 6. CROSS-LINGUAL PROSODY TRANSFER FOR EXPRESSIVE...

refers to the encoding of variations in speech signal that remains after accounting for the
variations due to phonetics, language, speaker identity, and channel effects (i.e. the recording
environment and ambient noise).

Figure 6.1: Architecture diagram of the VIPT system with prosody reference encoder.

In this chapter, we focus on cross-lingual speech synthesis for machine dubbing applications
described in Section 3.5 of this thesis. Existing speech synthesis methods in machine
dubbing (Federico et al., 2020; Matoušek & Vít, 2012; Effendi et al., 2022b) generate speech
only based on translated text, but do not model nor transfer the expression of corresponding
speech in the original language. For machine dubbing of expressive multimedia contents such
as videos from various sources, it is important to convey the same emotion and expression
as in the original speech (Brannon et al., 2021). Here, we explore cross-lingual prosody
transfer for expressive speech synthesis of multimedia contents. We define cross-lingual
prosody transfer as the transfer of prosody representations from speech in a source language
from a source speaker to generate speech in a target language with voice characteristics of a
target speaker. While exact prosody delivery varies across languages, the prosody of speech
expressing the same emotions in related languages exhibits highly correlated prosody, as
discussed in Section 4.6 in Brannon et al. (2021). Therefore, we explore these cross-lingual

6.2. INTRODUCTION 91

correlations for the purpose of prosody transfer. We study European languages such as
English, German, French, Italian and Spanish, and focus on English-Spanish prosody transfer.
We do not focus here on more distant languages such as Japanese.

Cross-lingual prosody transfer brings additional context from speech in source language,
but it also involves a number of challenges that are not present in conventional Text-To-
Speech (TTS) solutions such as those introduced in Section 3.2 of this thesis. First, currently
cross-lingual prosody transfer has to be learned without access to multilingual parallel speech
datasets due to the scarcity of such datasets. The available parallel datasets (Jia et al., 2022)
lack expressivity. The absence of expressive parallel datasets also means speech-to-speech
translation methods (Lee et al., 2022) are not applicable. Second, available non-parallel
speech datasets lack the full range of expressivity present in human speech (Wang et al.,
2021). Therefore, we resort to gathering expressive speech of different languages and speakers
from in-house multimedia data. However, such data was not recorded for the purpose of
TTS systems. For example, the data contains channel noise, which needs to be alleviated to
generate clean and expressive speech.

We propose a solution based on conditional variational autoencoder with adversarial
learning for end-to-end text-to-speech (VITS) (Kim et al., 2021), which we described in
Section 3.4.2. Our solution learns cross-lingual prosody transfer from non-parallel data.
We use parallel translated texts during inference, but our proposed system doesn’t require
parallel text nor parallel audio data during training. It enables the cross-lingual prosody
transfer by learning prosody representations that are agnostic to speakers and languages.
The prosody representations are learnt via a variational reference encoder (Zhang et al.,
2019c) with carefully balanced regularization, as introduced in Section 3.4.1. The learnt
representations can be transplanted from a reference audio in source language spoken by a
source speaker to generate speech in target language with the voice characteristics of a target
speaker. Furthermore, to improve the robustness of our model to noisy reference audio, we
propose two different approaches. The first approach utilizes a noise modelling extension to
our reference encoder module that disentangles the prosody and the channel noise, where a
denoised signal extracted from a reference audio is utilized. On the other hand, in the second
approach, we augment the training data with clean speech data to improve the capability
of our model to map a denoised reference audio to clean speech. Both approaches allow
our system to learn from noisy data and to generate high-quality clean speech in a target
language even when it is provided with a noisy reference audio from the source language.

Related to our system, numerous works on the prosody transfer within a single language
have been proposed, such as with the use of reference encoder (Skerry-Ryan et al., 2018a),
with style tokens (Wang et al., 2018), or with variational autoencoder (VAE) (Zhang et al.,
2019c), as introduced in Section 3.4.1. Concurrent to us, Mitsui et al. (2022) also extended
VITS with a reference encoder. The cross-lingual setting was explored in Rattcliffe et al.
(2022a), but they focused on style transfer based on categorical labels, which are provided as
ground truth during training. Last but not least, explicit noise modelling in TTS systems
has also been studied (Zhang et al., 2021; Saeki et al., 2022), but transferring prosody from
noisy reference recordings was not explored in these studies. To the best of our knowledge,

92 CHAPTER 6. CROSS-LINGUAL PROSODY TRANSFER FOR EXPRESSIVE...

our method is the first to address the problem of cross-lingual prosody transfer for machine
dubbing and is robust to noisy data. To sum up, our contributions are:

• We show that cross-lingual prosody transfer can be achieved with a multilingual model
trained without parallel data.

• We propose a reference encoder architecture that disentangles prosody and channel noise
allowing for clean speech synthesis from a noisy reference audio. We also investigate
the augmentation of noisy data with clean training data to improve the capability of
the model to map a denoised reference input to clean speech.

6.3 Modelling

Our proposed model consists of a backbone adapted from VITS (Kim et al., 2021), a prosody
reference encoder to encode prosody information from the reference audio, and an optional
noise reference encoder to model noise information. Figure 6.1 shows an overview of the
proposed model architecture.

We derive our base model by adapting the following changes from the literature to the
backbone VITS architecture that we briefly mentioned in Section 3.4.2. First, we replace
VITS’s monotonic alignment search algorithm with explicit duration predictor and extend
prior encoder module with a frame prior network as in Zhang et al. (2022). Second, we
incorporate speaker embeddings and language embeddings as in Cho et al. (2022) for training
on multi-speaker and multi-lingual datasets. This is also depicted in Figure 6.1. Finally, we
replace HiFiGAN decoder (Kong et al., 2020a) with a BigVGAN-base decoder (Lee et al.,
2023) as BigVGAN shows improved generalization performance compared to HiFiGAN. We
find that these changes significantly improve over the original VITS and keep them fixed in
all our experiments.

6.3.1 Prosody Encoder

The prosody reference encoder extracts prosody embedding from a reference speech input as
explained in Section 3.4.1. As we explicitly condition speaker and language variations via
respective embeddings, the prosody encoder captures the remaining variability related to
prosody. The prosody embedding is used to condition the model to synthesise speech with
similar prosody to the reference speech sample. Formally, the prosody reference encoder can
be represented as a function h that encodes speech representation s into prosody embedding
e as e = h(s). We can either use the output of posterior encoder or the extracted linear
spectrogram as speech representation s. In our experiments, we find both to have similar
performances.

In practice, the reference encoder h is parameterized by a variational encoder module
that consists of five convolutional layers of 512 channel size and a kernel size of 3, and one
bi-directional LSTM layer of channel size 512. The cell states of LSTM layer is then further
processed by two fully connected layers that output the parameterized diagonal Gaussian

6.3. MODELLING 93

distribution, that is regularized using KL-Divergence with a standard Gaussian N (0, I).
The variational Bayesian formulation has two advantages. First, this formulation allows
interpolable embedding space, which is conducive for the sampling of prosody. Secondly,
carefully tuned KLD regularizes the prosody embedding to reduce speaker and language
information contained within the embedding as mentioned in Section 3.4.1, which is essential
for cross-speaker and cross-lingual prosody transfer.

We experimented with various ways of conditioning the model on extracted prosody
embedding and found that conditioning in the text encoder module (as in Figure 6.1) produces
the best result. Intuitively, conditioning in the text encoder allows a joint modelling P (c, e)
of the text embedding c and the prosody embedding e, which makes it possible to model
long-term dependencies between text sequence and prosody embedding. We denote this
system as Variational Inference for Prosody Transfer (VIPT).

6.3.2 Noise Modelling

The prosody encoder, designed to encode the prosody of the reference audio, also encodes
other artefacts, such as background noise and distant speech not annotated in the text. In
our empirical study, we found that the presence of these artefacts severely degrades the
quality of speech synthesis. We propose two approaches to tackle this issue.

In the first approach, we introduce an explicit noise modelling method (see Figure 6.2)
to our system, which enables us to disentangle the prosodic information from the noise
information. As a result, clean speech audio can be generated even when noisy reference
audio is provided. At training time, we use an external denoiser (Isik et al., 2020) to split
reference audio into denoised waveform and noise residual waveform. We feed the spectrograms
extracted from the two audio streams into separate reference encoders, resulting in two
disentangled embeddings: a prosody embedding from denoised audio and a noise embedding
from the noise residual. Finally, we concatenate the prosody and noise embeddings to
condition the text encoder as described in Section 6.3.1. In this way, a mapping from the
noise embedding to noise artefacts contained in the target waveform is learnt. At inference
time, the prosody embedding is extracted from a given denoised reference audio containing
the desired prosody, while the noise embedding is derived from a separate clean utterance.
We denote this system as Variational Inference for Prosody Transfer with Noise Modelling
(VIPT-NM).

In the second approach, we use the base VIPT architecture, but input the denoised
reference audio during inference time. This approach is able to reduce the noise level in
the synthesised speech, but may also introduce distortions due to unseen denoised reference
audio input that are out of training data distribution. To remedy this, we add clean data as
a proxy for denoised audio to our dataset and train our model with both noisy data and
clean data. In this way, the out-of-distribution condition of the denoised reference audio is
alleviated, which, in turn, improves the synthesis quality.

94 CHAPTER 6. CROSS-LINGUAL PROSODY TRANSFER FOR EXPRESSIVE...

6.3.3 Training Setup

We follow the training setup of original VITS (Kim et al., 2021), where we include the use of
short-term Fourier transform (STFT) discriminator as in BigVGAN (Lee et al., 2023). The
final loss can be expressed as follows:

L = LV ITS + α1LProsodyKLD + α2LNoiseKLD (6.1)

where LV ITS represents the VITS loss terms except with the adversarial loss changed to
the BigVGAN’s formulation. LProsodyKLD and LNoiseKLD are KLD losses for prosody and
noise reference encoders respectively. After hyper-parameter search of 12 runs, we found the
best KL-Divergence loss coefficients α1 and α2 to be both 0.001. We use mixed precision
training on eight NVIDIA V100 GPUs. The batch size is set to 30 per GPU and the models
are trained up to 700k steps. The generative part of the VIPT-transfer model has a total of
90 million parameters and discriminators have 47 million parameters.

6.4 Evaluations

We used an internal multi-speaker multilingual dataset mined from existing in-house multime-
dia source data that contains expressive speech recorded in varying acoustic conditions. The
dataset comprises 118 hours of speech recordings from 127 speakers in five different locales;
namely US English, Castilian Spanish, French, German and Italian. Speaker age groups
range from children to elderly. We split data into training, development, and test sets using
a 85:5:10 ratio. For the evaluation of cross-lingual prosody transfer, we ran MUSHRA (Rec-
ommendation, 2015) tests on a held-out subset of 100 US English utterances with expressive
human dubbing in Castilian Spanish. For the subjective evaluation, for the sake of brevity,
we focus on prosody transfer from US English to Castilian Spanish as a representative of
other language combinations. Our proposed method also works for other language pairs, and
we briefly discuss objective metrics evaluation for the other language pairs in Section 6.4.3.
In order to provide testers with a precise context for prosody assessment, we presented the
audio samples overlaid on the corresponding videos. We evaluated four systems:

• VIPT-Centroid - We aim to pick a baseline model that generates high quality speech,
but does not have prosody transfer capability. We introduce VIPT-Centroid, which
is the same as VIPT model, but uses the centroid of prosody embeddings calculated
across denoised reference samples for the target speaker. VIPT-Centroid is a stronger
baseline than other VITS-based external models such as YourTTS (Casanova et al.,
2022), because those models, without a reference encoder, tend to internalize the
noise into the model parameters and frequently generate noisy speech with higher
rate of mispronunciations. To illustrate this, we measured Signal-to-Noise Ratio
(SNR) of VIPT-Centroid and YourTTS outputs by using the same denoiser as used in
Section 6.3.2. VIPT-Centroid has a SNR of 45.2 dB, which is significantly higher than
YourTTS’s SNR ratio of 34.8 dB.

6.4. EVALUATIONS 95

• VIPT-Transfer - As above but with the prosody embedding extracted from the denoised
audio of a source English speaker.

• VIPT-NM-Transfer - As above but with explicit noise modelling applied.

• Recording - Professional human Spanish dubbing.

In the MUSHRA test, 25 native Spanish speakers were presented with the video samples in
a random order side-by-side, and were asked to “Rate the vocal performance in the Spanish
video dubbing samples with respect to the English reference video”. Each test case was scored
by all 25 testers independently.

6.4.1 Perceptual Metrics

Figure 7.3 shows that while VIPT-Transfer on average achieved lower MUSHRA scores
than the baseline VIPT-Centroid, VIPT-NM-Transfer was significantly better. On closer
inspection, we observed that the VIPT-Transfer system scored lowest for utterances with
particularly noisy English reference audios, thereby dragging down the mean score despite
of its capability to perform prosody transfer. VIPT-NM-Transfer was more robust to the
negative impact of the noise in reference audio and resulted in better matching prosody
than the baseline VIPT-Centroid, thereby achieved a statistically significant MUSHRA score
increase and closed the gap to human dubbing by 11.2%.

Additionally, we evaluated the effects of adding clean data to improve the synthesis
quality when using denoised reference audio. For model training, we added 480 hours of
internal clean speech data that consists of 183 additional speakers within the same 5 locales
as the original data. Similarly as before, on the cross-lingual prosody transfer from English
to Spanish, we used denoised English reference audio to condition the prosody encoder for
synthesising Spanish speech with the desired prosody. For the perceptual metric evaluation,
we conducted a MUSHRA test with the same setup as above. Figure 6.4 shows the MUSHRA
scores of VIPT-Transfer compared to VIPT-Centroid. The improved score of VIPT-Transfer
shows that adding clean data allowed us to effectively use a denoised reference audio for
performing cross-lingual prosody transfer without a significant compromise in terms of the
stability.

6.4.2 Analysis of Prosody Embedding Space

Cross-lingual prosody transfer should only transfer the prosody but not language specific
accents to the target language. This requires the prosody embedding space to be disentangled
from language categories. In order to verify this and to further understand the learnt VAE
reference encoder embedding space, we used t-SNE to reduce dimensions of the embedding
space to R2 and plotted randomly sampled embedding using a colored scatter plot. The
embedding was taken from the output mean predicted from the reference encoder for the
corresponding reference sample.

96 CHAPTER 6. CROSS-LINGUAL PROSODY TRANSFER FOR EXPRESSIVE...

Figure 6.5 depicts t-SNE plots of randomly sampled utterances’ prosody embedding from
five different locales in our dataset with 600 utterances per locale. It can be observed that
there is no significant locale clustering, which indicates that the learnt reference embedding
space was locale/language independent. This local-independent prosody distribution is
essential for performing cross-lingual prosody transfer.

6.4.3 Objective Metrics For Other Language Pairs

In this section, we discuss objective metrics evaluation for language pairs other than US
English and Castilian Spanish. As a metric of measure for prosody transfer, we focus on F0
statistics, including Mean Squared Error (MSE) and Pearson correlation between synthesised
speech and the corresponding Spanish human dubs. In Table 6.1 F0 objective metrics are
computed for an external baseline YourTTS (Casanova et al., 2022), and VIPT-Transfer with
different language pairs on the same test set as used for the MUSHRA evaluation. It can
be seen that VIPT-Transfer outperforms YourTTS in terms of F0 metrics for any included
language pair, which indicates that our proposed method works for more than one language
pair. The VIPT-Transfer-En-To-Es system gives the best scores for both metrics, which we
hypothesise is due to higher proportion of English utterances in our training data.

Table 6.1: F0 Metrics comparing an external baseline YourTTS (Casanova et al., 2022) and our
VIPT-Transfer model with prosody transfer for different language pairs. Mean Squared Error
(MSE) and correlation coefficient are computed against corresponding human Spanish recordings.

System MSE ↓ Correlation ↑
YourTTS 8367.7 0.30

VIPT-Transfer-En-To-Es 6970.0 0.40
VIPT-Transfer-It-To-Es 7639.2 0.35
VIPT-Transfer-Fr-To-Es 7724.7 0.33
VIPT-Transfer-De-To-Es 7693.4 0.34

6.5 Conclusions

We presented a novel solution that learns cross-lingual prosody transfer from non-parallel
noisy speech data. We showed that our proposed solution can generate dubbed speech with
context-matching prosody. We further demonstrated two approaches to address challenges
posed by noise in multimedia data. First, we introduced a novel noise modelling module that
disentangles noise from prosody, where a denoised signal extracted from reference audio is
utilized. Second, we augment noisy data with clean training data to improve the capability
of the model to map denoised reference audio to clean speech. Through subjective and
objective evaluations, we showed that our system outperforms a strong baseline in the task
of speech generation for automatic dubbing.

6.5. CONCLUSIONS 97

Figure 6.2: Explicit noise modelling method utilizing both prosody and noise reference encoders.

Recording
(83.5±0.47)

VIPT-Centroid
(60.3±0.54)

VIPT-Transfer
(59.4±0.53)

VIPT-NM-Transfer
(62.9±0.52)

20

40

60

80

100

Figure 6.3: Subjective listeners ratings from the machine dubbing MUSHRA test for VIPT and
VIPT-NM. Values under labels represent mean scores and their respective standard errors.

98 CHAPTER 6. CROSS-LINGUAL PROSODY TRANSFER FOR EXPRESSIVE...

Figure 6.4: Subjective listeners ratings from the cross-lingual prosody transfer MUSHRA test for
VIPT-Transfer with additional clean training data. Values under labels represent mean scores and
their respective standard errors.

Figure 6.5: T-SNE plot of VAE reference encoder embedding space coloured by languages.

Chapter 7

Expressive Machine Dubbing Through
Phrase-level Cross-lingual Prosody
Transfer

7.1 Overview

Speech generation for machine dubbing adds complexity to conventional Text-To-Speech
solutions as the generated output is required to match the expressiveness, emotion and
speaking rate of the source content. Capturing and transferring details and variations in
prosody is a challenge. In this chapter, we introduce phrase-level cross-lingual prosody
transfer for expressive multi-lingual machine dubbing. The proposed phrase-level prosody
transfer delivers a significant 6.2% MUSHRA score increase over a baseline with utterance-
level global prosody transfer from Chapter 6, thereby closing the gap between the baseline
and expressive human dubbing by 23.2%, while preserving intelligibility of the synthesised
speech.

7.2 Introduction

As defined in the previous chapters, prosody transfer is the ability to transfer speaking
style variations and vocal performances disentangled from the spoken content and speaker
identity (Skerry-Ryan et al., 2018b; Wang et al., 2018; Luong et al., 2017; Hsu et al., 2019;
Zhang et al., 2019b). Many of recent proposed prosody transfer methods utilize global-level
prosody transfer. A single embedding per utterance is used to capture prosody and to
condition the models to generate speech with the target prosody. These global embeddings
are either explicitly learned from ground truth labels such as emotions (Luong et al., 2017;
Guo et al., 2023; Rattcliffe et al., 2022b) or implicitly learned from a reference audio signal
using a reference prosody encoder (Skerry-Ryan et al., 2018b; Wang et al., 2018; Zhang et al.,
2019b), or a combination of both (Hsu et al., 2019).

99

100CHAPTER 7. EXPRESSIVE MACHINE DUBBING THROUGH PHRASE-LEVEL...

In this chapter, we keep our focus from Chapter 6 on prosody transfer for cross-lingual
machine dubbing. To our best knowledge, VIPT (Variational Inference for Prosody Transfer)
described in Chapter 6, is the only known work tackling cross-lingual prosody transfer for
machine dubbing. VIPT uses a global reference encoder to capture prosody. One limitation in
using a global reference embedding is that only utterance-level prosody variations are captured,
while detailed local prosody variations cannot be properly encoded. This potentially impacts
the transfer of prosody for generating long-form utterances. Transferring local prosody
variations such as syntactic phrasing, topic emphasis and marked tonicity is important
for expressive machine dubbing (Torresquintero et al., 2021). We tackle this drawback by
exploring more fine-grained cross-lingual prosody transfer.

Intra-lingual fine-grained prosody control has been explored (Ren et al., 2020; Lee & Kim,
2019; Babiański et al., 2023; Sun et al., 2020) by training predictors of prosody components
at phoneme or at word level. However, prosody transfer across different utterances at word
level suffers due to word mismatch. This applies as well to cross-lingual prosody transfer
for machine dubbing, as it is unlikely to have one-to-one alignment between words in the
original and translated text. Several recent works (Virkar et al., 2021; Effendi et al., 2022a)
have proposed machine translation techniques for machine dubbing, allowing to generate
monotonic alignments between translated texts at the level of a prosodic phrase, where a
prosodic phrase is defined as a continuous segment of speech separated by silence regions.
Therefore, we explore phrase-level cross-lingual prosody transfer for machine dubbing.

Prosody delivery varies across languages, however the prosody of speech expressing the
same emotions is correlated in related languages, as discussed in Section 4.6 in Brannon et al.
(2021). We explore these cross-lingual correlations for the purpose of prosody transfer. Our
study is limited to European languages comprising English, German, French, Italian and
Spanish, and focused on English-Spanish prosody transfer as a common dubbing language
pair. We anticipate that more distant language pairs such as English-Japanese exhibit less
correlated prosody features.

Our solution follows VIPT from Chapter 6 in combining a VAE (Variational Auto-
Encoder) prosody encoder with VITS and trains on multimedia data without mining of
parallel utterances with matching text across different locales. We propose to capture and to
transfer phrase-level variations of prosody in a cross-lingual setting. To achieve that, we have
devised a new phrase-level reference encoder that learns to condition the phrases of the input
text with prosody embeddings extracted from corresponding parts of the reference speech
waveform. We have also introduced a novel regularization applied on prosody embeddings
based on phrase length, to reduce content leakage from short phrases. We discuss the details
in Section 7.3.

We evaluate our proposed method with both MUSHRA (Recommendation, 2015) subjec-
tive perceptual test and objective metrics including Word Error Rate (WER) and conditional
Fréchet DeepSpeech Distance (cFDSD) (Bińkowski et al., 2020). We compare our method
against VIPT from Chapter 6, a strong baseline for cross-lingual performance transfer. Both
subjective and objective metrics suggest that our method improves expressiveness without
compromising on intelligibility. We also show the importance of phrase-level conditioning in

7.3. METHOD 101

training, by comparing against a VIPT variant trained with global-level conditioning, but
transferring prosody at phrase-level during inference. We demonstrate a significant 6.2%
MUSHRA score increase over VIPT, which closes the gap between machine dubbing and
expressive human dubbing by 23.2%. To summarize, our contributions are:

• We present a new method capable of cross-lingual phrase-level prosody transfer for
expressive multi-lingual machine dubbing. Robust and more fine-grained transfer
compared to global-level prosody transfer improves the quality.

• We propose a length-based regularization method for fine-grained prosody representa-
tions.

Figure 7.1: Proposed system architecture.

7.3 Method

This work extends the VIPT architecture from Chapter 6 by enabling modelling and cross-
lingual transfer of prosody at the phrase level. Figure 7.1 provides an overview of the
proposed method. This section describes extensions to the VIPT architecture from Chapter 6
that enable the modelling and cross-lingual prosody transfer at the phrase level.

102CHAPTER 7. EXPRESSIVE MACHINE DUBBING THROUGH PHRASE-LEVEL...

Figure 7.2: Phrase-level reference encoder.

The global-level reference encoder in VIPT may not sufficiently transfer the prosody
variations present in expressive multimedia speech, especially when a dialogue line consists
of several short phrases. Capturing prosody variations consequently requires more fine-
grained representations. Word-level prosody representations are challenging to transfer in
a cross-lingual setting due to lack of monotonic word correspondence between translated
texts. Instead, we propose prosodic phrases as a level of granularity for cross-lingual prosody
transfer. We show experimentally that prosodic phrases are able to capture local variations
in prosody which can be robustly transferred between speech in different languages. At
the same time, prosodic phrases can be automatically aligned across translated texts using
recently developed prosodic alignment techniques for machine dubbing (Virkar et al., 2021;
Effendi et al., 2022a).

7.3.1 Phrase-level reference encoder

We adopt the definition of prosodic phrases from (Virkar et al., 2021; Effendi et al., 2022a)
as continuous speech segments separated by silences. The silences are extracted by force
aligning reference audio and text using an external aligner, such as the Gaussian Mixture
Model (GMM) based Kaldi Speech Recognition Toolkit (Povey et al., 2011) used in our
experiments. We treat the silence regions as part of preceding speech phrases. Each speech

7.3. METHOD 103

phrase is encoded into a single prosody embedding using a reference encoder described below.
See Figure 7.2 for an illustration of this approach.

Our proposed phrase-level reference encoder architecture extracts frame-level embeddings
from a linear spectrogram and downsamples the frame-level embeddings to the phrase-level.
We base our reference encoder architecture on that from VIPT, but with changes to keep one-
to-one frame-embedding correspondence before downsampling to the phrase-level. Namely,
our architecture consists of five convolutional layers with a channel size of 512, a kernel size of
three and a stride of one, followed by one bi-directional LSTM layer with channel size of 512.
The frame-level outputs of the bi-directional LSTM are then downsampled by selecting the
middle embedding per phrase. We experimented with other forms of downsampling (e.g. mean
of frames per phrase) but did not observe significant differences. The phrase-level embeddings
are then further processed by a fully connected layer that outputs a parameterization of a
32-dimensional diagonal Gaussian distribution, which is regularized using Kullback-Leibler
Divergence (KLD) with a standard Gaussian N (0, I). The final phrase embeddings are
sampled from this Gaussian.

7.3.2 Length-based regularization

We propose a length-based regularization of phrase-level prosody embeddings to reduce
content leakage when transplanting prosody embeddings across languages. As we have
observed content leakage for short phrases, we added a length-based regularization as
following:

LKLDβ
=

1

K

∑
k∈[1,K]

e−βLkKLD(hk,N (0, I)) (7.1)

where K is the total number of phrases in one utterance, Lk is length of phrase k defined
as the number of phonemes, β is a constant hyper-parameter controlling how much Lk

affects the scaling factor e−βLk , hk is the prosody embedding distribution of the kth phrase.
This formulation applies stronger regularization to the embeddings of short phrases, thus
preventing them from carrying content information that should only be obtained from the text
prior. We show experimentally that the proposed regularization improves the intelligibility
of synthesised speech for short phrases in Table 7.2.

7.3.3 Noise modelling at phrase-level

We apply the noise modelling approach from VIPT in the context of the phrase-level reference
encoder. Specifically, the reference audio is passed to a denoising component (Isik et al.,
2020) to extract denoised and noise streams. The two streams are then used as inputs to two
separate phrase-level reference encoders with the architecture described in subsection 7.3.1.
The reference encoders output phrase-level denoised prosody and noise embeddings that are
concatenated, upsampled to the phoneme level and used as conditioning in the text encoder.

During inference, we extract a clean noise embedding from a static clean audio similarly
to VIPT. However, we make sure to use a clean audio, which contains exactly one phrase, so

104CHAPTER 7. EXPRESSIVE MACHINE DUBBING THROUGH PHRASE-LEVEL...

that it is feasible to upsample this single clean noise embedding to match the number of the
per-phrase prosody embeddings extracted from the denoised reference audio.

7.3.4 Alignment of phrase-level audio reference embeddings to target text
phonemes

We aim to transfer prosody from phrases of reference speech to corresponding phrases in the
translated target text to be synthesised. More precisely, we concatenate phrase embeddings
extracted from the reference audio with encoded phonemes corresponding to a given phrase
in the target text. To achieve this, we need a mapping between reference audio phrases and
target text phonemes. See the illustration in Figure 7.2.

During training, the reference audio and the text to be synthesised correspond to each
other. This allows us to force align the audio and the text phonemes to compute frame-
phoneme correspondences. During inference, when performing cross-lingual prosody transfer,
the reference audio contains speech in a language different from the translated text to be
synthesised. Therefore, in such case we cannot align the audio and the text as in training.
Instead, we need to insert phrase breaks into the translated text to obtain a monotonic
one-to-one alignment between the phrases in the audio and the text. Such alignments can be
automatically generated using recently developed prosodic alignment techniques for machine
dubbing (Virkar et al., 2021; Effendi et al., 2022a). However, the focus of this work is on
evaluating the quality of prosody transfer, and thus we assume the prosodic alignment is
given.

7.4 Experiments

7.4.1 Training setup

Our training setup largely follows that of VIPT described in Section 6.3.3 except updating
the KLD regularization for prosody LProsodyKLD and noise LNoiseKLD reference encoders
with the phrase-level formulation and the length-based scaling coefficients β described in
Section 7.3.2. The final loss can be formulated as:

L = LV ITS + α1LProsodyKLDβ1
+ α2LNoiseKLDβ2

(7.2)

where LV ITS represents the VITS loss terms with replaced adversarial components as in
BigVGAN (Lee et al., 2023). We performed nine runs of hyperparameter search and set
the KLD loss coefficient α and the length-based KLD loss scaling coefficient β for both the
prosody and the noise reference encoder as α1 = α2 = 0.04 (other tested values: 0.02 and
0.08) and β1 = β2 = 0.08 (other tested values: 0.02 and 0.04) respectively. We trained
using mixed precision on 8 NVIDIA V100 GPUs, with a batch size of 30 per GPU, and used
AdamW optimizer (Loshchilov & Hutter, 2019). We trained the model for 600 epochs. The
generative part of our proposed model and discriminators have 100 million and 47 million
parameters respectively.

7.4. EXPERIMENTS 105

7.4.2 Data

We used an internal multimedia dataset from which we extract multi-speaker multi-lingual
dialogues resulting in 598 hours of speech from 134 female and 162 male speakers in 5 different
locales; namely US English, Castilian Spanish, French, German and Italian. Speaker age
groups range from children to elderly.

The speech data is resampled to 24 kHz and normalized in terms of loudness. Silences
longer than 2 seconds are trimmed. We split the dialogues into separate phrases based on
silences of at least 50 milliseconds.

7.4.3 Evaluated systems

We evaluated the proposed method against human Spanish dubs and two baseline models.
We denote our method as Variational Inference for Prosody Transfer with Noise Modelling
and Phrase-level Variational Auto-Encoder (VIPT-NM-PVAE). VIPT-NM-GVAE is a strong
baseline for cross-lingual performance transfer with a global-level reference encoder (cor-
responding to VIPT-NM-Transfer model from Chapter 6). Additionally, we introduce a
second baseline named VIPT-NM-GVAE-PP, which uses the same model architecture as
VIPT-NM-GVAE during training, while at inference time, it computes prosody embeddings
per phrase (PP). Namely, during inference, the VIPT-NM-GVAE-PP model passes parts of
the source audio corresponding to each of the K phrases separately through the global-level
reference encoder to extract the K phrase-level embeddings. We include this baseline to
evaluate the importance of training phrase-level embeddings.

Figure 7.3: Subjective listeners ratings from the machine dubbing MUSHRA test. Values under
labels represent mean scores and their respective standard errors.

106CHAPTER 7. EXPRESSIVE MACHINE DUBBING THROUGH PHRASE-LEVEL...

Table 7.1: Subjective evaluation MUSHRA mean scores reported separately for single-phrase and
multi-phrase utterances.

System MUSHRA ↑
single-phrase multi-phrase

VIPT-NM-GVAE 69.58± 0.40 63.21± 0.52
VIPT-NM-GVAE-PP 69.81± 0.39 64.32± 0.53
VIPT-NM-PVAE 74.31± 0.36 66.56± 0.53
Recording 83.75± 0.38 87.22± 0.40

7.4.4 Subjective Evaluation

For the evaluation of cross-lingual prosody transfer, we performed a MUSHRA test on a
held-out subset of 100 parallel utterances between US English and Castilian Spanish. To
provide testers context for the assessment of prosody match, all audio samples were overlaid
on the corresponding videos. 25 bi-lingual test subjects native in Castilian Spanish and
fluent in English were presented with the video samples in a random order side-by-side.
The test subjects were tasked to “Rate the vocal performance in the Spanish video dubbing
samples with respect to the English reference video”. Each test case was scored by all 25
testers independently.

Evaluation results are summarized in Figure 7.3 and show that VIPT-NM-PVAE achieved
a statistically significant 6.2% MUSHRA score increase over VIPT-NM-GVAE baseline
system, which closes the gap to human dubbing by 23.2%. Inspection of evaluators ratings
suggests that the improvement in VIPT-NM-PVAE results from increased expressiveness
of generated speech and more accurate prosody transfer. There is significant difference
in MUSHRA scores between VIPT-NM-PVAE and both baseline models for multi-phrase
utterances, and for single-phrase utterances (Table 7.1). We hypothesize that training with
the proposed phrase-level reference encoder may lead to increased sensitivity to the prosody
embedding.

Table 7.2: Objective metrics: word error rate (WER) and conditional Fréchet DeepSpeech Dis-
tance (cFDSD) (Bińkowski et al., 2020).

System cFDSD ↓ WER ↓
all shortest 25%

VIPT-NM-GVAE 0.297 0.098 0.169
VIPT-NM-GVAE-PP 0.288 0.094 0.155
VIPT-NM-PVAE 0.224 0.101 0.161
w/o length-based reg. 0.241 0.106 0.229

7.5. CONCLUSIONS 107

7.4.5 Objective Metrics

To quantify stability of tested systems and intelligibility of synthesised speech we conducted
Word Error Rate (WER) analysis. The results are reported in Table 7.2 for a held-out
test set of 1200 parallel utterances. First, all generated audio files were transcribed with a
Whisper Large (Radford et al., 2022) ASR model. Then, WER scores were computed between
sentence texts and corresponding transcriptions. We have observed no significant stability
issues with the VIPT-NM-PVAE model, which backs up our conclusion that phrase-level
modelling allows for more expressive and accurate cross-lingual prosody transfer without
compromising intelligibility.

For all tested systems we also computed the conditional Fréchet DeepSpeech Distance
(cFDSD) (Bińkowski et al., 2020), an objective metric measuring the quality of synthesised
audio samples based on their distance to a reference set. We closely follow Bińkowski et al.
(2020) in our implementation of the cFDSD metric, only differing in using XLSR-53 Large
(Conneau et al., 2022) as a backbone network, which was trained on multi-lingual speech data.
All tested systems are compared to human Spanish dubs. We observe that VIPT-NM-PVAE
has a significantly lower distance to the human dubs (Table 7.2) compared to all other models.
This result is inline with the MUSHRA subjective evaluation scores.

Finally, as an ablation study, we trained a VIPT-NM-PVAE model without the length-
based regularization described in Section 7.3.2. This resulted in a significant WER increase
for short utterances (Table 7.2), while at the same time cFDSD distance to recordings also
increased. We conclude that applying regularization dependent on phrase lengths is crucial
to find a good balance between expressivity and stability of our system.

7.5 Conclusions

We have presented a novel solution that enables phrase-level cross-lingual, cross-speaker
prosody transfer for expressive machine dubbing. The proposed method can learn to model
prosody information at phrase-level, and transfer the phrase prosody embeddings from
a source to a target language for translated text. In subjective evaluations, our system
outperforms a strong baseline that transfers prosody at global-level. In future work, we
plan to extend our evaluation to include wider range of languages and further close the gap
between synthesised speech and expressive human dialogues by exploring duration modelling,
hierarchical prosody modelling and the usage of parallel data.

108CHAPTER 7. EXPRESSIVE MACHINE DUBBING THROUGH PHRASE-LEVEL...

Appendix A

Appendix for Chapter 4

A.1 Proof of the Matrix Variate Normal Parameterization

In this section of the appendix, we formally explain the connections between the k-tied
Normal distribution and the matrix variate Gaussian distribution (Gupta & Nagar, 2018),
referred to asMN .

Consider positive definite matrices Q ∈ Rr×r and P ∈ Rc×c and some arbitrary matrix
M ∈ Rr×c. We have by definition that W ∈ Rr×c ∼MN (M,Q,P) if and only if vec(W) ∼
N (vec(M),P ⊗Q), where vec(·) stacks the columns of a matrix and ⊗ is the Kronecker
product

TheMN has already been used for variational inference by Louizos & Welling (2016)
and Sun et al. (2017). In particular, Louizos & Welling (2016) consider the case where both
P and Q are restricted to be diagonal matrices. In that case, the resulting distribution
corresponds to our k-tied Normal distribution with k = 1 since

P⊗Q = diag(p)⊗ diag(q) = diag(vec(qp⊤)).

Importantly, we prove below that, in the case where k ≥ 2, the k-tied Normal distribution
cannot be represented as a matrix variate Gaussian distribution.

Lemma (Rank-2 matrix and Kronecker product). Let B be a rank-2 matrix in Rr×c
+ . There

do not exist matrices Q ∈ Rr×r and P ∈ Rc×c such that

diag(vec(B)) = P⊗Q.

Proof. Let us introduce the shorthand D = diag(vec(B)). By construction, D is diagonal
and has its diagonal terms strictly positive (it is assumed that B ∈ Rr×c

+ , i.e., bij > 0 for all
i, j).

We proceed by contradiction. Assume there exist Q ∈ Rr×r and P ∈ Rc×c such that
D = P⊗Q.

This implies that all diagonal blocks of P ⊗ Q are themselves diagonal with strictly
positive diagonal terms. Thus, pjjQ is diagonal for all j ∈ {1, . . . , c}, which implies in

109

110 APPENDIX A. APPENDIX FOR CHAPTER 4

turn that Q is diagonal, with non-zero diagonal terms and pjj ̸= 0. Moreover, since the
off-diagonal blocks pijQ for i ̸= j must be zero and Q ̸= 0, we have pij = 0 and P is also
diagonal.

To summarize, if there exist Q ∈ Rr×r and P ∈ Rc×c such that D = P⊗Q, then it holds
that D = diag(p)⊗ diag(q) with p ∈ Rc and q ∈ Rr. This last equality can be rewritten as
bij = pjqi for all i ∈ {1, . . . , r} and j ∈ {1, . . . , c}, or equivalently

B = qp⊤.

This leads to a contradiction since qp⊤ has rank one while B is assumed to have rank
two.

Figure A.1 provides an illustration of the difference between the k-tied Normal and the
MN distribution.

tied
parameters

non-factorized
distribution

fully factorized
distribution

free
parameters

m + n

mn

m(m+1)/2 + n(n+1)/2

decr
ea

sin
g number

of
paramete

rs

k = 1

Matrix-variate
Normal (full)

Matrix-variate
Normal (diag)

in
cr

ea
si

ng
 k

k-
ti

ed
 N

or
m

al

Gaussian
mean field

mn(mn+1)/2

Figure A.1: Illustration of the difference in modeling of the posterior covariance by the k-tied
Normal distribution (green), theMN distribution (red), the Gaussian mean field (blue) and the
dense Gaussian covariance (black) for a layer of size m × n. The k-tied Normal with k = 1 is
equivalent toMN with diagonal row and column covariance matrices (half-red, half-green circle).
Our experiments show that the k = 1 fails to capture the performance of the mean field. On
the other hand, while the full/non-diagonalMN increases the expressiveness of the posterior, it
also increases the number of parameters. In contrast, the k-tied Normal distribution with k ≥ 2
not only decreases the number of parameters, but also matches the predictive performance of the
mean field.

A.2 He-scaled Normal Prior

We investigate whether the low-rank structure is specific to the GMFVI neural networks that
use a Normal prior with a single scalar scale for all the weights. Instead of using the single

A.3. KL ANNEALING WITH ADAM 111

scale parameter, we analyse a setting in which the Normal prior scale is set according to the
scaling rules devised for neural network weights initialization Glorot & Bengio (2010b); He
et al. (2015a). According to these rules, a per layer scale parameter is set according to the
layer shape and activation function used. In particular, we use the scaling rule from He et al.
(2015a) for the models with ReLU activations Glorot et al. (2011):

p(wl) = N
(
0,

2

ml

)
, (A.1)

where ml is the fan-in of the m’th layer.1 However, the scaling rule proposed in He et al.
(2015a) does not cover the bias terms, which are initialized at zero. Therefore, for the
ResNet-18 on CIFAR-10 which we take under test, we keep the prior for the biases unchanged
at N (0, I). We rerun then the low-rank structure experiments from Section 4.3.3 Figure 4.5,
but now with the He-scaled prior. Figure A.2 shows the low-rank structure analysis results
for the new prior. While we observe an overall drop in performance, the low-rank structure
clearly remains present.

A.3 KL Annealing with Adam

We verify that when using KL annealing with Adam the posterior standard deviation
parameters do not converge prematurely, but rather continue being optimized after the KL is
at its full contribution. Figure A.3 illustrates this on the example of the ResNet-18 CIFAR-10
model trained the standard GMFVI. Furthermore, for the MLP, CNN and LSTM models, we
observed their posterior standard deviations at convergence to have large values compared to
the prior standard deviation value (>50% of the prior value), showing that we are modeling
substantial uncertainty.

A.4 Experimental Details

In this section we provide additional information on the experimental setup used in Chapter 4.
In particular, we describe the details of the models and datasets, the utilized standard
Gaussian Mean Field Variational Inference (GMFVI) training procedure, the low-rank
structure analysis of the GMFVI trained posteriors and the proposed k-tied Normal posterior
training procedure.

A.4.1 Models and datasets

To confirm the validity of our results, we performe the experiments on a range of models
and datasets with different data types, architecture types and sizes. Below we describe their
details.

1For a dense layer the fan-in is the number of input dimensions, for a 2D Convolutional layer with a
kernel of size k × k and d input channels the fan-in is ml = k2d.

112 APPENDIX A. APPENDIX FOR CHAPTER 4

1 2 3 4 5 6 7 8 9 10
Rank

10-6

10-5

10-4

10-3

10-2

10-1

100

Fr
ac

tio
n

of
 e

xp
la

in
ed

 v
ar

ia
nc

e

conv2d stddevs
conv2d means
conv2d_7 stddevs
conv2d_7 means
dense stddevs
dense means

Method -ELBO ↓ NLL ↓ Accuracy ↑
Mean-field 1.379±0.0096 0.6384±0.0096 79.0±0.41

1-tied 5.428±0.018 1.485±0.0056 57.0±0.50

2-tied 1.448±0.0097 0.648±0.0079 78.8±0.41

3-tied 1.411±0.0097 0.646±0.0079 78.9±0.41

Figure A.2: The post-training low rank structure is still present in the posterior standard de-
viation parameters of the ELBO-converged standard GMFVI ResNet-18 CIFAR-10 model when
using the He-scaled prior. Approximations to these parameters with ranks higher than 1 result
in performance close to that when not using the approximation. We report mean and SEM for
predictions made using an ensemble of 100 weights samples. The SEM is measured across the test
examples.

MLP MNIST Multilayer perceptron (MLP) model with three dense layers and ReLu
activations trained on the MNIST dataset (LeCun & Cortes, 2010). The three layers have
sizes of 400, 400 and 10 hidden units. We preprocess the images to be have values in range
[−1, 1]. We use the last 10,000 examples of the training set as a validation set.

LeNet CNN CIFAR-100 LeNet convolutional neural network (CNN) model (LeCun
et al., 1998) with two convolutional layers followed by two dense layers, all interleaved with
ReLu activations. The two convolutional layers have 32 and 64 output filters respectively,
each produced by kernels of size 3× 3. The two dense layers have sizes of 512 and 100 hidden
units. We train this network on the CIFAR-100 dataset (Krizhevsky et al., 2009b). We
preprocess the images to have values in range [0, 1]. We use the last 10,000 examples of the
training set as a validation set.

LSTM IMDB Long short-term memory (LSTM) model (Hochreiter & Schmidhuber, 1997)
that consists of an embedding and an LSTM cell, followed by a dense layer with a single unit.

A.4. EXPERIMENTAL DETAILS 113

The LSTM cell consists of two dense weight matrices, namely the kernel and the recurrent
kernel. The embedding and the LSTM cell have both 128-dimensional output space. More
precisely, we adopt the publicly available LSTM Keras (Chollet et al., 2015) example2, except
that we set the dropout rate to zero. We train this model on the IMDB text sentiment
classification dataset (Maas et al., 2011), in which we use the last 5,000 examples of the
training set as a validation set.

ResNet-18 CIFAR-10 ResNet-18 model (He et al., 2016a) trained on the CIFAR-10
dataset (Krizhevsky et al., 2009b). We adopt the ResNet-18 implementation3 from the
Tensorflow Probability (Dillon et al., 2017) repository. We train/evaluate this model on
the train/test split of 50,000 and 10,000 images, respectively, from the CIFAR-10 dataset
available in Tensorflow Datasets4.

A.4.2 GMFVI training

We train all the above models using GMFVI. We split the discussion of the details of the
GMFVI training procedure into two parts. First, we describe the setup for the MLP, CNN
and LSTM models, for which we prepare our own GMFVI implementations. Second, we
explain the setup for the GMFVI training of the ResNet-18 model, for which we use the
implementation available in the Tensorflow Probability repository as mentioned above.

MLP, CNN and LSTM In the MLP and the CNN models, we approximate the posterior
using GMFVI for all the weights (both kernel and bias weights). For the LSTM model, we
approximate the posterior using GMFVI only for the kernel weights, while for the bias weights
we use a point estimate. For all the three models, we use the standard reparametrization trick
estimator (Kingma & Welling, 2013). We initialize the GMFVI posterior means using the
standard He initialization (He et al., 2015a) and the GMFVI posterior standard deviations
using samples from N (0.01, 0.001). Furthermore, we use a Normal prior N (0, σpI) with a
single scalar standard deviation hyper-parameter σp for all the layers. We select σp for each
of the models separately from a set of {0.2, 0.3} based on the validation data set performance.

We optimize the variational parameters using an Adam optimizer (Kingma & Ba, 2014).
We pick the optimal learning rate for each model from the set of {0.0001, 0.0003, 0.001, 0.003}
also based on the validation data set performance. We choose the batch size of 1024 for the
MLP and CNN models, and the batch size of 128 for the LSTM model. We train all the
models until the ELBO convergence.

To implement the MLP and CNN models we use the tfp.layers module from the Tensor-
flow Probability, while to implement the LSTM model we use the LSTMCellReparameterization5

2See: https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py.
3See: https://github.com/tensorflow/probability/blob/master/tensorflow_probability/

examples/cifar10_bnn.py.
4See: https://www.tensorflow.org/datasets/catalog/cifar10.
5See: https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/recurrent.

py.

https://github.com/keras-team/keras/blob/master/examples/imdb_lstm.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://www.tensorflow.org/datasets/catalog/cifar10
https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/recurrent.py
https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/recurrent.py

114 APPENDIX A. APPENDIX FOR CHAPTER 4

class from the Edward2 Layers module Tran et al. (2019).

ResNet-18 The specific details of the GMFVI training of the ResNet-18 model can be
found in the previously linked implementation from the Tensorflow Probability repository.
Here, we describe the most important and distinctive aspects of this implementation.

The ResNet-18 model approximates the posterior using GMFVI only for the kernel
weights, while for the bias weights it uses a point estimate. The model uses the Flipout
estimator (Wen et al., 2018) and a constraint on the maximum value of the GMFVI posterior
standard deviations of 0.2. The GMFVI posterior means are initialized using samples from
N(0, 0.1), while the GMFVI posterior log standard deviations are initialized using samples
from N (−9.0, 0.1). Furthermore, the model uses a Normal prior N (0, I) for all of its layers.

The variational parameters are trained using the Adam optimizer with a learning rate of
0.0001 and a batch size of 128. The model is trained for 700 epochs. The contribution of
the DKL term in the negative Evidence Lower Bound (ELBO) equation is annealed linearly
from zero to its full contribution over the first 50 epochs (Sønderby et al., 2016).

A.4.3 Low-rank structure analysis

After training the above models using GMFVI, we investigate the low-rank structure in their
trained variational posteriors. For the MLP, CNN and LSTM models, we investigate the
low-rank structure of their dense layers only. For the ResNet-18 model, we investigate both
its dense and convolutional layers.

To investigate the low-rank structure in the GMFVI posterior of a dense layer, we inspect
a spectrum of the posterior mean and standard deviation matrices. In particular, for both
the posterior mean and standard deviation matrices, we consider the fraction of the variance
explained by the top singular values from their SVD decomposition (see Figure 4.3). Fur-
thermore, we explore the impact on predictive performance of approximating the reshaped
diagonal matrices with their low-rank approximations using only the components correspond-
ing to the top singular values (see Table 4.2). Note that such low-rank approximations may
contain values below zero. This has to be addressed when approximating the matrices of the
posterior standard deviations, which can contain only positive values. Therefore, we use a
lower bound of zero for the values of the approximations to the posterior standard deviations.

To investigate the low-rank structure in a GMFVI posterior of a convolutional layer, we
need to add a few more steps compared to those for a dense layer. In particular, weights of
the convolutional layers considered here are 4-dimensional, instead of 2-dimensional as in the
dense layer. Therefore, before performing the SVD decomposition, as for the dense layers, we
first reshape the 4-dimensional weight tensor from the convolutional layer into a 2-dimensional
weight matrix. More precisely, we flatten all dimensions of the weight tensor except for the
last dimension (e.g., a weight tensor of shape [3, 3, 512, 512] is reshaped to [3 · 3 · 512, 512]).
Figure A.4 contains example visualizations of the resulting flattened 2-dimensional matrices6.

6After this specific reshape operation, all the weights corresponding to a single output filter are con-
tained in a single column of the resulting weight matrix.

A.4. EXPERIMENTAL DETAILS 115

Given the 2-dimensional form of the weight tensor, we can investigate the low-rank structure
in the convolutional layers as for the dense layers. As noted already in Figure 4.5, we observe
the same strong low-rank structure behaviour in the flattened convolutional layers as in the
dense layers. Interestingly, the low-rank structure is the most visible in the final convolutional
layers, which also contain the highest number of parameters, see Figure A.5.

Importantly, note that after performing the low-rank approximation in this 2-dimensional
space, we can reshape the resulting 2-dimensional low-rank matrices back into the 4-
dimensional form of a convolutional layer. Table A.1 shows that such a low-rank ap-
proximation of the convolutional layers of the analyzed ResNet-18 model can be performed
without a loss in the model’s predictive performance, while significantly reducing the total
number of model parameters.

Method -ELBO ↓ NLL ↓ Accuracy ↑ #Params ↓ %Params ↓
Mean-field 122.61±0.012 0.495±0.0080 83.5±0.37 9,814,026 100.0
1-tied 122.57±0.012 0.658±0.0069 81.7±0.39 4,929,711 50.2
2-tied 122.77±0.012 0.503±0.0080 83.2±0.37 4,946,964 50.4
3-tied 122.67±0.012 0.501±0.0079 83.2±0.37 4,964,217 50.6

Table A.1: Impact of the low-rank approximation of the GMFVI-trained posterior standard
deviations of a ResNet-18 model on the model’s predictive performance. We report mean and
SEM of each metric across 100 weights samples. The low-rank approximations with ranks higher
than one achieve predictive performance close to that when not using any approximations, while
significantly reducing the number of model parameters.

A.4.4 k-tied Normal posterior training

To exploit the low-rank structure observation, we propose the k-tied Normal posterior, as
discussed in Section 4.4. We study the properties of the k-tied Normal posterior applied
to the MLP, CNN and LSTM models. We use the k-tied Normal variational posterior for
all the dense layers of the analyzed models. Namely, we use the k-tied Normal variational
posterior for all the three layers of the MLP model, for the two dense layers of the CNN
model and for the LSTM cell’s kernel and recurrent kernel.

We initialize the parameters uik and vjk of the k-tied Normal distribution so that after
the outer-product operation the respective standard deviations σij have the same mean values
as we obtain when using the standard GMFVI posterior parametrization. More precisely, we
initialize the parameters uik and vjk so that after the outer-product operation the respective
σij standard deviations have means at 0.01 before transforming to log-domain. This means
that in the log domain the parameters uik and vjk are initialized as 0.5(log(0.01)− log(k)).
We also add white noise N (0, 0.1) to the values of uik and vjk in the log domain to break
symmetry.

During training of the models with the k-tied Normal posterior, we linearly anneal the
contribution of the DKL term of the ELBO loss. We select the best linear coefficient for the
annealing from {5× 10−5, 5× 10−6} (per batch) and increase the effective contribution every

116 APPENDIX A. APPENDIX FOR CHAPTER 4

100 batches in a step-wise manner. In particular, we anneal the DKL term to obtain the
predictive performance results for all the models in Table 4.4. However, we do not perform
the annealing in the Signal-to-Noise ratio (SNR) and negative ELBO convergence speed
experiments in tables 4.5 and 4.6 respectively. In these two cases, KL annealing would
occlude the values of interest, which show the clear impact of the k-tied Normal posterior.

A.4. EXPERIMENTAL DETAILS 117

0 10000 20000 30000 40000 50000 60000
Training step

0.000

0.002

0.004

0.006

0.008

0.010
M

ea
n

of
 p

os
te

rio
r s

td
de

v
pa

ra
m

et
er

s

KL annealing KL at full contribution

conv2d_stddevs
conv2d_7_stddevs
dense_stddevs

0 50000 100000 150000 200000 250000 300000
Training step

0.00

0.05

0.10

0.15

0.20

M
ea

n
of

 p
os

te
rio

r s
td

de
v

pa
ra

m
et

er
s

conv2d_stddevs
conv2d_7_stddevs
dense_stddevs

Figure A.3: Change in the mean of posterior standard deviation parameters for selected layers of
the standard GMFVI ResNet-18 CIFAR-10 model over the course of training. KL is annealed over
the first 50 epochs linearly from 0 to 1 (gray area). Top: posterior standard deviation parameters
continue being optimized when the KL is at its full contribution. Bottom: the posterior standard
deviations reach large values after 700 epochs showing that we are modeling substantial uncer-
tainty.

118 APPENDIX A. APPENDIX FOR CHAPTER 4

Figure A.4: Heat maps of the partially flattened posterior standard deviation tensors for the
selected convolutional layers of the ResNet-18 GMFVI BNN trained on CIFAR-10. The partially
flattened posterior standard deviation tensors of the convolutional layers display similar low-rank
patterns that we observe for the dense layers.

A.4. EXPERIMENTAL DETAILS 119

Figure A.5: Fraction of variance explained per each singular value from SVD of partially flat-
tened tensors of posterior means and posterior standard deviations for different convolutional
layers of the ResNet-18 GMFVI BNN trained on CIFAR-10. Posterior standard deviations clearly
display strong low-rank structure, with most of the variance contained in the top few singular val-
ues, while this is not the case for posterior means. Interestingly, the low-rank structure is the most
visible for the final convolutional layers, which also contain the highest number of parameters.

120 APPENDIX A. APPENDIX FOR CHAPTER 4

Appendix B

Appendix for Chapter 5

B.1 Model Details

We now give details regarding the models we use in all our experiments. We use Tensorflow
version 2.1 and carry out all experiments on Nvidia P100 accelerators.

B.1.1 ResNet-20 CIFAR-10 Model

We use the CIFAR-10 dataset from (Krizhevsky et al., 2009a), in “version 3.0.0” provided in
Tensorflow Datasets.1 We use the Tensorflow Datasets training/testing split of 50,000 and
10,000 images, respectively.

We use the ResNet-20 model from https://keras.io/examples/cifar10_resnet/ as a
starting point. For our SGD baseline we use the exact same setup as in the Keras example
(200 epochs, learning rate schedule, SGD with Nesterov acceleration). Notably the Keras
example uses bias terms in all convolution layers, whereas some other implementations do
not.

The Keras example page reports a reference test accuracy of 92.16 percent for the
CIFAR-10 model, compared to our 92.22 percent accuracy. This is consistent with the larger
literature, collected for example at https://github.com/google/edward2/tree/master/
baselines/cifar10, with even higher accuracy achieved for variations of the ResNet model
such as using wide layers, removing bias terms in the convolution layers, or additional
regularization.

In Chapter 5, we study the phenomenon of poor T = 1 posteriors obtained by SG-MCMC
and therefore use an accurate simulation and sampling setup at the cost of runtime. In
order to obtain accurate simulations we use the following settings for SG-MCMC in every
experiment, except where noted otherwise:

• Number of epochs: 1500
• Initial learning rate: ℓ = 0.1
• Momentum decay: β = 0.98

1See https://www.tensorflow.org/datasets/catalog/cifar10

121

https://keras.io/examples/cifar10_resnet/
https://github.com/google/edward2/tree/master/baselines/cifar10
https://github.com/google/edward2/tree/master/baselines/cifar10
https://www.tensorflow.org/datasets/catalog/cifar10

122 APPENDIX B. APPENDIX FOR CHAPTER 5

0 200 400 600 800 1000 1200 1400
0.00

0.25

0.50

0.75

1.00

C(
t)

sampling phase

C(t)
Model sample

0 200 400 600 800 1000 1200 1400
Epoch

0.00

0.25

0.50

0.75

1.00

T(
t)

sampling phase
T(t)

Figure B.1: Cyclical time stepping C(t), and temperature ramp-up T (t), as proposed by Zhang
et al. (2019a) and used in Algorithm 1, for our ResNet-20 CIFAR-10 model (Section B.1.1). We
sample one model at the end of each cycle when the inference accuracy is best, obtaining an en-
semble of 27 models.

• Batch size: |B| = 128
• Sampling start: begin at epoch 150
• Cycle length: 50
• Cycle schedule: cosine
• Prior: p(θ) = N (0, I)

For experiments on CIFAR-10 we use data augmentation as follows:
• random left/right flipping of the input image;
• border-padding by zero values, four pixels in horizontal and vertical direction, followed

by a random cropping of the image to its original size.
We visualize the cyclic schedule used in our ResNet-20 CIFAR-10 experiments in Fig-

ure B.1.

B.1.2 ResNet-20 CIFAR-10 SGD Baseline

For the SGD baseline we follow the best practice from the existing Keras example which was
tuned for generalization performance. In particular we use:

• Number of epochs: 200
• Initial learning rate: ℓ = 0.1
• Momentum term: 0.9
• L2 regularization coefficient: 0.002
• Batch size: 128
• Optimizer: SGD with Nesterov momentum

B.1. MODEL DETAILS 123

• Learning rate schedule (epoch, ℓ-multiplier): (80, 0.1), (120, 0.01), (160, 0.001), (180, 0.0005).
Data augmentation is the same as described in Section B.1.1. We report the final

validation performance and over the 200 epochs do not observe any overfitting.

B.1.3 CNN-LSTM IMDB Model

We use the IMDB sentiment classification text dataset provided by the tensorflow.keras.datasets
API in Tensorflow version 2.1. We use 20,000 words and a maximum sequence length of 100
tokens. We use 20,000 training sequences and 25,000 testing sequences.

We use the CNN-LSTM example2 as a starting point. For our SGD baseline we use
the Keras model but add a prior p(θ) = N (0, I) as used for the Bayesian posterior. We
then use the Tensorflow SGD implementation to optimize the resulting U(θ) function. For
SGD the model overfits and we therefore report the best end-of-epoch test accuracy and test
cross-entropy achieved.

For all experiments, except where explicitly noted otherwise, we use the following
parameters:

• Number of epochs: 500
• Initial learning rate: ℓ = 0.1
• Momentum decay: β = 0.98
• Batch size: |B| = 32
• Sampling start: begin at epoch 50
• Cycle length: 25
• Cycle schedule: cosine
• Prior: p(θ) = N (0, I)

We visualize the cyclic schedule used in our CNN-LSTM IMDB experiments in Figure B.2.

B.1.4 CNN-LSTM IMDB SGD Baseline

The SGD baseline follows the Keras example settings:
• Number of epochs: 50
• Initial learning rate: ℓ = 0.1
• Momentum term: 0.98
• Regularization: MAP with N (0, I) prior
• Batch size: 32
• Optimizer: SGD with Nesterov momentum
• Learning rate schedule: None
We report the optimal test set performance from all end-of-epoch test evaluations. This

is necessary because there is significant overfitting after the first ten epochs.

2Available at https://github.com/keras-team/keras/blob/master/examples/imdb_cnn_lstm.py

https://github.com/keras-team/keras/blob/master/examples/imdb_cnn_lstm.py

124 APPENDIX B. APPENDIX FOR CHAPTER 5

0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

C(
t)

sampling phase

C(t)
Model sample

0 100 200 300 400 500
Epoch

0.00

0.25

0.50

0.75

1.00

T(
t)

sampling phase
T(t)

Figure B.2: Cyclical time stepping C(t), and temperature ramp-up T (t) for our CNN-LSTM
IMDB model (Section B.1.3). We sample one model at the end of each cycle when the inference
accuracy is best, obtaining an ensemble of 7 models.

B.2 Deep Learning Parameterization of SG-MCMC Methods

We derive the bijection between (learning rate ℓ, momentum decay β) and (timestep h,
friction γ) by considering the instantaneous gradient effect α on the parameter, i.e. the
amount by which the current gradient at time t affects the current gradient update update
at time t. We set α = ℓ/n, where ℓ is the familiar learning rate parameter used in SGD
and the factor 1/n is to convert ∇θU to ∇θG, as ∇θG = ∇θU/n is the familiar minibatch
mean gradient. Likewise, the momentum decay is the factor β < 1 by which the momentum
vector m(t) is shrunk in each discretized time step. Having determined α and β we can
derive two non-linear equations that depend on the particular time discretization used; for
the symplectic Euler Langevin scheme these are

h2 = α

(
=

ℓ

n

)
, and 1− hγ = β. (B.1)

Solving these equations for h and γ simultaneously, given ℓ, n, and β yields the bijection

h =
√
ℓ/n, (B.2)

γ = (1− β)
√
n/ℓ. (B.3)

B.3 Connection to Stochastic Gradient Descent (SGD)

We now give a precise connection between stochastic gradient descent (SGD) and the
symplectic Euler SG-MCMC method, Algorithm 1.

B.3. CONNECTION TO STOCHASTIC GRADIENT DESCENT (SGD) 125

Algorithm 2: Stochastic Gradient Descent with Momentum (SGD) in Tensorflow.

1 Function SGD(G̃, θ(0), ℓ, β)
Input: G̃ : Θ→ R average batch loss function, cf equation (2.16); θ(0) ∈ Rd initial

parameter; ℓ > 0 learning rate parameter; β ∈ [0, 1) momentum decay
parameter.

Output: Parameter sequence θ(t), at step t = 1, 2, . . .
2 m(0) ← 0 // Initialize momentum
3 for t = 1, 2, . . . do
4 m(t) ← βm(t−1) − ℓ∇θG̃(θ(t−1)) // Update momentum
5 θ(t) ← θ(t−1) +m(t) // Update parameters
6 yield θ(t) // Parameter at step t

Algorithm 2 gives the stochastic gradient descent (SGD) with momentum algorithm as im-
plemented in Tensorflow ’s version 2.1 optimization methods, tensorflow.keras.optimizers.SGD
and tensorflow.train.MomentumOptimizer, (Abadi et al., 2016).

Starting with Algorithm 2 we first perform an equivalent substitution of the moments,

m̃(t) :=

√
n

ℓ
m(t), respectively, (B.4)

m(t) :=

√
ℓ

n
m̃(t), (B.5)

we obtain the update from line 4 in Algorithm 2,√
ℓ

n
m̃(t) ← β

√
ℓ

n
m̃(t−1) − ℓ∇θG̃(θ(t−1). (B.6)

Multiplying both sides of (B.6) by
√
n/
√
ℓ we obtain an equivalent form of Algorithm 2 with

lines 4 and 5 replaced by

m̃(t) ← β m̃(t−1) −
√
ℓn∇θG̃(θ(t−1)), (B.7)

θ(t) ← θ(t−1) +

√
ℓ

n
m̃(t). (B.8)

From the bijection (B.2–B.3) we have h =
√
ℓ/n and γ = (1− β)

√
n/ℓ. Solving for β gives

β = 1− γ

√
ℓ

n
= 1− γh. (B.9)

We also have
√
ℓn =

√
ℓ

n
n2 = n

√
ℓ

n
= hn. (B.10)

126 APPENDIX B. APPENDIX FOR CHAPTER 5

Algorithm 3: Stochastic Gradient Descent with Momentum (SGD), reparameterized.

1 Function SGDEquivalent(G̃, θ(0), ℓ, β)
Input: G̃ : Θ→ R average batch loss function, cf equation (2.16); θ(0) ∈ Rd initial

parameter; h > 0 discretization step size parameter; γ > 0 friction parameter.
Output: Parameter sequence θ(t), t = 1, 2, . . . , at step t

2 m̃(0) ← 0 // Initialize momentum
3 for t = 1, 2, . . . do
4 m̃(t) ← (1− γh) m̃(t−1) − hn∇θG̃(θ(t−1)) // Update momentum
5 θ(t) ← θ(t−1) + h m̃(t) // Update parameters
6 yield θ(t) // Parameter at step t

Substituting (B.9) and (B.10) into (B.7) and (B.8) gives the equivalent updates

m̃(t) ← (1− γh) m̃(t−1) − hn∇θG̃(θ(t−1)), (B.11)
θ(t) ← θ(t−1) + h m̃(t). (B.12)

These equivalent changes produce Algorithm 3. Algorithm 2 and Algorithm 3 generate
equivalent trajectories θ(t), t = 1, 2, . . . , but differ in the scaling of their momenta, m(t) and
m̃(t).

Comparing lines 4–5 in Algorithm 3 with lines 13–14 in Algorithm 1 we see that when
M = I and C(t) = 1 the only remaining difference between the updates is the additional
noise

√
2γhT M1/2R(t) in the SG-MCMC method. In this precise sense the SG-MCMC

Algorithm 1 is just “SGD with noise”.

B.4 Semi-Adaptive Estimation of Layerwise Preconditioner M

During our experiments with deep learning models we noticed that both minibatch noise as
well as gradient magnitudes tend to behave similar within a set of related parameters. For
example, for a given learning iteration, all gradients related to convolution kernel weights of
the same convolution layer of a network tend to have similar magnitudes and minibatch noise
variance. At the same iteration they may be different from the magnitudes and minibatch
noise variance of gradients of the parameters of another layer in the same network.

Therefore, we estimate a simple diagonal preconditioner that ties together the scale of
all parameter elements that belong to the same model variable. Moreover, we normalize
the preconditioner so that the least sensitive variable always has scale one. With such
normalization, if all variables would be equally sensitive the preconditioner becomes M = I,
the identity preconditioner.

We estimate the layerwise preconditioner using Algorithm 4.

Updating the preconditioner. In Langevin schemes the preconditioner couples the
moment space to the parameter space. If we use a new estimate M′ to replace the old

B.5. KULLBACK-LEIBLER SCALING IN VARIATIONAL BAYESIAN NEURAL... 127

Algorithm 4: Estimate Layerwise Preconditioner.

1 Function EstimateM(G̃, θ, K, ϵ)
Input: G̃ : Θ→ R mean energy function estimate; (θ1, . . . ,θS) ∈ Rd1×···×dS current

model parameter variables; K number of minibatches (default K = 32); ϵ
regularization value (default ϵ = 10−7)

Output: Preconditioning matrix M
2 for s = 1, 2, . . . , S do
3 vs ← 0

4 for k = 1, 2, . . . ,K do
5 g(k) ← ∇θG̃(θ) // Noisy gradient
6 for s = 1, 2, . . . , S do
7 vs ← vs + g

(k)
s · g(k)

s

8 for s = 1, 2, . . . , S do
9 σs ←

√
ϵ+ 1

dsK

∑
i vs,i // RMSprop

10 σmin ← mins σs // Least sensitive
11 for s = 1, 2, . . . , S do
12 Ms ← σs

σmin
I

13 M←

 M1 . . . 0
...

. . .
...

0 . . . MS

14 return M

preconditioner M then we change this coupling and if left unchanged then the old moments
m would no longer have the correct distribution.3 We therefore posit that upon changing
the preconditioner the effect of the moments should remain the same. To retain the full
information in the current moments we set m′ = M′1/2M−1/2m which we can understand
as M′1/2(M−1/2m), where the bracketed part canonicalizes the moments m to the identity
preconditioner, and M′1/2 transfers the canonical moments to the new preconditioner.

B.5 Kullback-Leibler Scaling in Variational Bayesian Neural
Networks

With the posterior energy U(θ) defined in Chapter 5, we define two variants of tempered
posterior energies:

• Fully tempered energy: UF (θ) = U(θ)/T , and
• Partially tempered energy: UP (θ) = − log p(θ)− 1

T

∑n
i=1 log p(yi|xi,θ).

3More precisely, M−1/2m should always be distributed according to N (0, I).

128 APPENDIX B. APPENDIX FOR CHAPTER 5

Note that UF (θ) is used for all experiments in Chapter 5 and temper both the log-likelihood
as well as the log-prior terms, whereas UP (θ) only scales the log-likelihood terms while
leaving the log-prior untouched.

We now show that Kullback-Leibler scaling as commonly done in variational Bayesian
neural networks corresponds to approximating the partially tempered posterior,

pP (θ|D) ∝ exp(−UP (θ)). (B.13)

For any distribution q(θ) we consider the Kullback-Leibler divergence,

DKL(q(θ) ∥ pP (θ|D)) (B.14)
= Eθ∼q(θ) [log q(θ)− log pP (θ|D)] (B.15)

= Eθ∼q(θ)

[
log q(θ)− log

exp(−UP (θ))∫
exp(−UP (θ′)) dθ′

]
. (B.16)

The normalizing integral in (B.16) is not a function of θ and thus does not depend on q(θ),
allowing us to simplify the equation further:

= Eθ∼q(θ)

[
log q(θ)− log p(θ)− 1

T

n∑
i=1

log p(yi|xi,θ)

]
(B.17)

+ log

∫
exp(−UP (θ)) dθ︸ ︷︷ ︸

constant, =: logEP

(B.18)

= DKL(q(θ) ∥ p(θ))−
1

T

n∑
i=1

log p(yi|xi,θ) + logEP . (B.19)

Here we defined EP as the partial temperized evidence which does not depend on θ and
therefore becomes a constant. The global minimizer of (B.19) over all distributions q ∈ Q is
the unique distribution pP (θ|D), (MacKay et al., 1995).

We now consider this minimizer, substituting λ := T ,

argmin
q∈Q

DKL(q(θ) ∥ pP (θ|D)) (B.20)

= argmin
q∈Q

DKL(q(θ) ∥ p(θ))−
1

T

n∑
i=1

log p(yi|xi,θ) (B.21)

The minimizing q ∈ Q does not depend on the overall scaling of the optimizing function. We
can therefore scale the function by a factor of T ,

= argmin
q∈Q

TDKL(q(θ) ∥ p(θ))−
n∑

i=1

log p(yi|xi,θ) (B.22)

B.6. INFERENCE BIAS-VARIANCE TRADE-OFF HYPOTHESIS 129

Substituting λ := T yields

= argmin
q∈Q

λDKL(q(θ) ∥ p(θ))−
n∑

i=1

log p(yi|xi,θ). (B.23)

The last equation, (B.23) is the KL-weighted negative evidence lower bound (ELBO) ob-
jective commonly used in variational Bayes for Bayesian neural networks, confer the ELBO
equation (5.1).

B.6 Inference Bias-Variance Trade-off Hypothesis

Bias-variance Tradeoff Hypothesis: For T = 1 the posterior is diverse and there
is high variance between model predictions. For T ≪ 1 we sample nearby modes and
reduce prediction variance but increase bias; the variance dominates the error and
reducing variance (T ≪ 1) improves predictive performance.

We approach the hypothesis using a simple asymptotic argument. We consider the SG-
MCMC method we use, including preconditioning and cyclical time stepping. Whereas within
a cycle the Markov chain is non-homogeneous, if we consider only the end-of-cycle iterates
that emit a parameter θ(t), then this coarse-grained process is a homogeneous Markov chain.
For such Markov chains we can leverage generalized central limit theorems for functions of θ,
see e.g. (Jones et al., 2004; Häggström & Rosenthal, 2007), and because of existence of limits
we can consider the asymptotic behavior of the test cross-entropy performance measure C(S)
as we increase the ensemble size S →∞.

In particular, expectations of smooth functions of empirical means of S samples have an
expansion of the form, (Nowozin, 2018; Schucany et al., 1971),

E[C(S)] = C(∞) + a1
1

S
+ a2

1

S2
+ (B.24)

Risk Asymptotics Experiment: if we can estimate C(∞) we know what performance
we could achieve if we were to keep sampling. To this end we apply a simple linear regression
estimate, (Schucany et al., 1971), to the empirically observed performance estimates Ĉ(S)
for different ensemble sizes S. By truncation at second order, we obtain estimates for C(∞),
a1, and a2.

In Figure B.3 we show the regressed test cross-entropy metric obtained by fitting (B.24)
to second order to all samples for S ≥ 20 close to the asymptotic regime, and visualize
the estimate Ĉ(∞). In Figure B.4 we visualize our estimated Ĉ(∞) as a function of the
temperature T . The results indicate two things: first, we could gain better predictive
performance from running our SG-MCMC method for longer (Figure B.3); but second, the
additional gain that could be obtained from longer sampling is too small to make T = 1
superior to T < 1 (Figure B.4).

130 APPENDIX B. APPENDIX FOR CHAPTER 5

5 10 15 20 25
Ensemble size S

0.35

0.40

0.45

Te
st

 c
ro

ss
 e

nt
ro

py SG-MCMC ensemble, T = 1
2nd-order fit C(S)
Asymptotic limit C() 0.341

Figure B.3: Regressing the limiting ResNet-20/CIFAR-10 ensemble performance: at temperature
T = 1 an ensemble of size S =∞ would achieve 0.341 test cross-entropy. For SG-MCMC we show
three different runs with varying seeds.

10 4 10 3 10 2 10 1 100

Temperature T

0.15

0.20

0.25

0.30

Te
st

 c
ro

ss
 e

nt
ro

py Asymptotic limit C()
C(S = 28)

10 4 10 3 10 2 10 1 100

Temperature T

0.25

0.30

0.35

0.40

0.45

Te
st

 c
ro

ss
-e

nt
ro

py Asymptotic limit C()
C(S = 19)

Figure B.4: Ensemble variance for ResNet-20/CIFAR-10 (top) and CNN-LSTM/IMDB
(bottom) does not explain poor performance at T = 1: even in the infinite limit the perfor-
mance C(∞) remains poor compared to T < 1.

B.7 Cold posteriors improve uncertainty metrics.

In Chapter 5, we show that cold posteriors improve prediction performance in terms of
accuracy and cross entropy. Figure B.5 and Figure B.6 show that for both the ResNet-20 and
the CNN-LSTM model, cold posteriors also improve the uncertainty metrics Brier score Brier
(1950) and expected calibration error (ECE) Naeini et al. (2015).

B.8. DETAILS ON THE EXPERIMENT FOR THE IMPLICIT INITIALIZATION PRIOR...131

10 4 10 3 10 2 10 1 100

Temperature T

0.10

0.12

0.14

0.16
Te

st
 B

rie
r S

co
re SG-MCMC

10 4 10 3 10 2 10 1 100

Temperature T

0.01

0.02

0.03

Te
st

 E
CE

SG-MCMC

Figure B.5: ResNet-20/CIFAR-10: Chapter 5, we show that cold posteriors improve prediction
performance in terms of accuracy and cross entropy (Figure 5.1 and Figure 5.2). This plot shows
that cold posteriors also improve the uncertainty metrics Brier score and expected calibration
error (ECE) (lower is better).

B.8 Details on the Experiment for the Implicit Initialization
Prior in SGD Hypothesis

SGD and SG-MCMC are set up as described in Appendix B.1.1. In Chapter 5, the test
accuracy as a function of epochs is shown in Figure 5.13. In Figure B.7 we additionally
report the test cross entropy for the same experiment. SGD initialized by the last model
of the SG-MCMC sampling dynamics also recovers the same performance in terms of cross
entropy as vanilla SGD.

B.9 Diagnostics: Temperatures

The following proposition adapted from (Leimkuhler & Matthews, 2016, Section 6.1.5)
provides a general way to construct temperature observables.

Proposition 1 (Constructing Temperature Observables). Given a Hamiltonian H(θ,m)
corresponding to Langevin dynamics,

H(θ,m) =
1

T
U(θ) +

1

2
mTM−1m, (B.25)

and an arbitrary smooth vector field B : Rd × Rd → Rd × Rd satisfying

132 APPENDIX B. APPENDIX FOR CHAPTER 5

10 4 10 3 10 2 10 1 100

Temperature T

0.200

0.225

0.250

0.275

Te
st

 B
rie

r S
co

re

10 4 10 3 10 2 10 1 100

Temperature T

0.02

0.04

0.06

0.08

Te
st

 E
CE

Figure B.6: CNN-LSTM/IMDB: Cold posteriors also improve the uncertainty metrics Brier
score and expected calibration error (ECE) (lower is better). The plots for accuracy and cross
entropy are shown in Figure 5.3.

• 0 < E(θ,m)[⟨B(θ,m),∇H(θ,m)⟩] <∞,
• 0 < E(θ,m)[⟨12d,∇B(θ,m)⟩] <∞, and
• ∥B(θ,m) exp(−H(θ,m))∥ <∞ for all (θ,m) ∈ Rd × Rd,

then

T =
E(θ,m)[⟨B(θ,m),∇H(θ,m)⟩]

E(θ,m)[⟨12d,∇B(θ,m)⟩]
. (B.26)

Note that for the Hamiltonian (B.25) we have, assuming a symmetric preconditioner,
(M−1)T = M−1,

∇θH(θ,m) =
1

T
∇θU(θ), (B.27)

∇mH(θ,m) = M−1m. (B.28)

B.9.1 Kinetic Temperature Estimation

Simulating the Langevin dynamics, equations (2.14–2.15), produces moments m which are
jointly distributed according to a multivariate Normal distribution, (Leimkuhler & Matthews,
2016),

m ∼ N (0,M). (B.29)

B.9. DIAGNOSTICS: TEMPERATURES 133

0 100 200 300 400 500 600 700 800
Epochs

0.0

0.2

0.4

0.6

0.8

Si
ng

le
 m

od
el

 c
ro

ss
 e

nt
ro

py SGD 10 cycles of SG-MCMC sampling SGD

train
test

Figure B.7: Do the SG-MCMC dynamics harm a beneficial initialization bias used by SGD?
We first train a ResNet-20 on CIFAR-10 via SGD, then switch over to SG-MCMC sampling and
finally switch back to SGD optimization. We report the single-model test cross entropy of SGD
and the SG-MCMC chain as function of epochs. SGD recovers from being initialized by the SG-
MCMC state.

The kinetic temperature T̂K(m) is derived from the moments as

T̂K(m) :=
mT M−1m

d
, (B.30)

and we have that for a perfect simulation of the dynamics we achieve E[T̂K(m)] = T , where
T is the target temperature of the system, (Leimkuhler & Matthews, 2016). This can be

seen by instantiating Proposition 1 for the Langevin Hamiltonian and BK(θ,m) =

[
0
m

]
.

In general we only approximately solve the SDE and errors in the solution arise due to
discretization, minibatch noise, or lack of full equilibration to the stationary distribution.
Therefore, we can use T̂K(m) as a diagnostic to measure the temperature of the current
system state, and a deviation from the target temperature could diagnose poor solution
accuracy. To this end, we know that if m ∼ N (0,M) then (M−1/2m) ∼ N (0, Id) and
thus the inner product (M−1/2m)T (M−1/2m) = mT M−1m is distributed according to a
standard χ2-distribution with d degrees of freedom,

(mTM−1m) ∼ χ2(d). (B.31)

The χ2(d) distribution has mean d and variance 2d and we can use the tail probabilities
to test whether the observed temperature could arise from an accurate discretization of
the SDE (2.14–2.15). For a given confidence level c ∈ (0, 1), e.g. c = 0.99, we define the
confidence interval

JTK
(d, c) :=

(
T

d
F−1
χ2(d)

(
1− c

2

)
,
T

d
F−1
χ2(d)

(
1 + c

2

))
, (B.32)

134 APPENDIX B. APPENDIX FOR CHAPTER 5

where F−1
χ2(d)

is the inverse cumulative distribution function of the χ2 distribution with d

degrees of freedom. By construction if (B.31) holds, then T̂K(m) ∈ JTK
(d, c) with probability

c exactly.
Therefore, if c is close to one, say c = 0.99, and we find that T̂K(m) /∈ J(d, c) this

indicates issues of discretization error or convergence of the SDE (2.14–2.15).
Because (B.29) holds for any subvector of m, we can create one kinetic temperature

estimate for each model variable separately, such as one or two scalar temperature estimates
for each layer (e.g. one for the weights and one for the bias of a Dense layer). We found
per-layer temperature estimates helpful in diagnosing convergence issues and this directly
led to the creation of our layerwise preconditioner.

B.9.2 Configurational Temperature Estimation

The so called configurational temperature4 is defined as

T̂C(θ,∇θU(θ)) =
⟨θ,∇θU(θ)⟩

d
. (B.33)

For a perfect simulation of SDE (2.14–2.15) we have E[T̂C] = T , where T is the target
temperature of the system. This can be seen by instantiating Proposition 1 for the Langevin

Hamiltonian and BC(θ,m) =

[
θ
0

]
.

As for the kinetic temperature diagnostic, we can instantiate Proposition 1 for arbitrary
subsets of parameters by a suitable choice of BC(θ,m). However, whereas for the kinetic
temperature the exact sampling distribution of the estimate is known in the form of a
scaled χ2 distribution, we are not aware of a characterization of the sampling distribution
of configurational temperature estimates. It is likely this sampling distribution depends on
U(θ) and thus does not have a simple form. Proposition 1 only asserts that under the true
target distribution we have

Eθ∼exp(−U(θ)/T)[T̂C(θ,∇θU(θ))] = T. (B.34)

Because (B.33) is the empirical average of per parameter random variables, if all these
variables have finite variance the central limit theorem asserts that for large d we can expect

T̂C(θ,∇θU(θ)) ∼ N (T, σ2
TC

), (B.35)

with unknown variance σ2
TC

.
Recent work of Yaida (2018) provides a similar diagnostic, equation (FDR1’) in their

work, to the configurational temperature (B.33) for the SGD equilibrium distribution under
finite time dynamics. However, our goal here is different: whereas Yaida (2018) is interested
in diagnosing convergence to the SGD equilibrium distribution in order to adjust learning
rates we instead want to diagnose discrepancy of our current dynamics against the true
target distribution.

4Sometimes other quantities are also refered to as configurational temperature, see (Leimkuhler &
Matthews, 2016, Section 6.1.5).

B.10. SIMULATION ACCURACY ABLATION STUDY 135

B.10 Simulation Accuracy Ablation Study

Equipped with the diagnostics of Section B.9 we can now study how accurate our algorithms
simulate the Langevin dynamics. We will demonstrate that layerwise preconditioning and
cyclical time stepping are individually effective at improving simulation accuracy, however,
only by combining these two methods we can achieve high simulation accuracy on the
CNN-LSTM model as measured by our diagnostics.

Setup. We perform the same ResNet-20 CIFAR-10 and CNN-LSTM IMDB experiments as
in Chapter 5, but consider four variations of our algorithm: with and without preconditioning,
and with and without cosine time stepping schedules. In case no preconditioner is used we
simply set M = I for all iterations. In case no cosine time stepping is used we simply set
C(t) = 1 for all iterations.

Independent of whether cosine time stepping is used we divide the iterations into cycles
and for each method consider all models at the end of a cycle, where we hope simulation
accuracy is the highest. We then evaluate the temperature diagnostics for all model variables.
For the kinetic temperatures, if simulation is accurate then 99 percent of the variables should
on average lie in the 99% high probability region under the sampling distribution. For the
configurational temperature we can only report the average configurational temperature
across all the end-of-cycle models.

Results. We report the results in Table B.1 and Table B.2 and visualize the kinetic
temperatures in Figures B.8 to B.11 and Figures B.12a to B.12d.

The results indicate that both cosine time stepping and layerwise preconditioning have a
beneficial effect on simulation accuracy. For ResNet-20 cyclical time stepping is sufficient for
high simulation accuracy, but it is by itself not able to achieve high accuracy on the CNN-
LSTM model. For both models the combination of cyclical time stepping and preconditioning
(Figure B.8 and Figure B.12a) achieves a high simulation accuracy, that is, all kinetic
temperatures match the sampling distribution of the Langevin dynamics, indicating—at least
with respect to the power of our diagnostics—accurate simulation.

Another interesting observation can be seen in Table B.1: we can achieve a high accuracy
of ≥ 88 percent even in cases where the simulation accuracy is poor. This indicates that
optimization is different from accurate Langevin dynamics simulation.

B.11 Dirty Likelihood Functions

Dirty Likelihood Hypothesis: Deep learning practices that violate the likelihood
principle (batch normalization, dropout, data augmentation) cause deviation from the
Bayes posterior.

We now discuss how batch normalization, dropout, and data augmentation produce
non-trivial modifications to the likelihood function. We call the resulting likelihood functions

136 APPENDIX B. APPENDIX FOR CHAPTER 5

Precond Cyclic Ê[T̂K ∈ R99] Ê[T̂C] Accuracy (%) Cross-entropy

✓ ✓ 0.989±0.0014 0.94±0.011 88.2±0.11 0.358±0.0011
✗ ✓ 0.9772±0.00059 1.02±0.018 88.49±0.014 0.3500±0.00064
✓ ✗ 0.905±0.0019 1.23±0.046 88.0±0.10 0.3808±0.00064
✗ ✗ 0.676±0.0052 1.7±0.18 86.86±0.072 0.507±0.0080

Table B.1: ResNet-20 CIFAR-10 simulation accuracy ablation at T = 1: layerwise precondi-
tioning and cyclical time stepping each have a beneficial effect on improving inference accuracy
and the effect is complementary. Ê[T̂K ∈ R99] is the empirically estimated probability that the
kinetic temperature statistics are in the 99% confidence interval, the ideal value is 0.99. Ê[T̂C] is
the empirical average of the configurational temperature estimates, the ideal value is 1.0. For both
quantities we take the value achieved at the end of each cycle, that is, whenever C(t) = 0 and
average all the resulting values. The deviation is given in ±SEM where SEM is the standard error
of the mean estimated from three independent experiment replicates. Both preconditioning and
cyclical time stepping are effective at improving the simulation accuracy.

Precond Cyclic Ê[T̂K ∈ R99] Ê[T̂C] Accuracy (%) Cross-entropy

✓ ✓ 0.954±0.0053 0.99122±0.000079 81.95±0.22 0.425±0.0032
✗ ✓ 0.761±0.0095 1.012±0.0088 51.3±0.65 0.6925±0.00019
✓ ✗ 0.49±0.012 0.9933±0.00019 74.5±0.49 0.579±0.0048
✗ ✗ 0.384±0.0018 1.0141±0.00066 0.49997±0.000039 0.698±0.0013

Table B.2: CNN-LSTM IMDB simulation accuracy ablation at T = 1: with both layerwise
preconditioning and cyclical time stepping we can achieve high inference accuracy as measured
by configurational and kinetic temperature diagnostics. Just using one (either preconditioning or
cyclical time stepping) is insufficient for high inference accuracy. This is markedly different from
the results obtained for ResNet-20 CIFAR-10 (Table B.1), indicating that perhaps the ResNet
posterior is easier to sample from.

“dirty” to distinguish them from clean likelihood functions without such modifications. Our
discussion will suggest that these techniques can be seen as a computational efficient “Jensen
posterior ” approximation of a proper Bayesian posterior of another model. Our analysis
builds on and generalizes previous Bayesian interpretations, (Noh et al., 2017; Atanov et al.,
2018; Shekhovtsov & Flach, 2018; Nalisnick et al., 2019; Inoue, 2019). In Section B.11.4
we perform an experiment to demonstrate that the dirty likelihood cannot explain cold
posteriors.

B.11.1 Augmented Latent Model

To accommodate popular deep learning methods we first augment the probabilistic model
p(y|x,θ) itself by adding a latent variable z. The augmented model is p(y|x, z,θ) and

B.11. DIRTY LIKELIHOOD FUNCTIONS 137
co

nv
2d

/b
ia

s
co

nv
2d

/k
er

ne
l

co
nv

2d
_1

/b
ia

s
co

nv
2d

_1
/k

er
ne

l
co

nv
2d

_1
0/

bi
as

co
nv

2d
_1

0/
ke

rn
el

co
nv

2d
_1

1/
bi

as
co

nv
2d

_1
1/

ke
rn

el
co

nv
2d

_1
2/

bi
as

co
nv

2d
_1

2/
ke

rn
el

co
nv

2d
_1

3/
bi

as
co

nv
2d

_1
3/

ke
rn

el
co

nv
2d

_1
4/

bi
as

co
nv

2d
_1

4/
ke

rn
el

co
nv

2d
_1

5/
bi

as
co

nv
2d

_1
5/

ke
rn

el
co

nv
2d

_1
6/

bi
as

co
nv

2d
_1

6/
ke

rn
el

co
nv

2d
_1

7/
bi

as
co

nv
2d

_1
7/

ke
rn

el
co

nv
2d

_1
8/

bi
as

co
nv

2d
_1

8/
ke

rn
el

co
nv

2d
_1

9/
bi

as
co

nv
2d

_1
9/

ke
rn

el
co

nv
2d

_2
/b

ia
s

co
nv

2d
_2

/k
er

ne
l

co
nv

2d
_2

0/
bi

as
co

nv
2d

_2
0/

ke
rn

el
co

nv
2d

_3
/b

ia
s

co
nv

2d
_3

/k
er

ne
l

co
nv

2d
_4

/b
ia

s
co

nv
2d

_4
/k

er
ne

l
co

nv
2d

_5
/b

ia
s

co
nv

2d
_5

/k
er

ne
l

co
nv

2d
_6

/b
ia

s
co

nv
2d

_6
/k

er
ne

l
co

nv
2d

_7
/b

ia
s

co
nv

2d
_7

/k
er

ne
l

co
nv

2d
_8

/b
ia

s
co

nv
2d

_8
/k

er
ne

l
co

nv
2d

_9
/b

ia
s

co
nv

2d
_9

/k
er

ne
l

de
ns

e/
bi

as
de

ns
e/

ke
rn

el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 130 of 132 in 99% sampling interval

Figure B.8: ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates with
preconditioning and with cosine time stepping schedule. The green bars show the 99%
true sampling distribution of the Kinetic temperature sample. The blue dots show the actual
kinetic temperature samples at the end of sampling. About 1% of variables should be outside the
green boxes, which matches the empirical count (2 out of 132 samples), indicating an accurate
simulation of the Langevin dynamics at the end of each cycle.

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 2.88130 of 132 in 99% sampling interval

Figure B.9: ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates without
preconditioning but with cosine time stepping schedule. Two out of 132 variables are
outside the 99% hpd region, indicating accurate simulation.

we can obtain the effective model p(y|x,θ) =
∫
p(y|x, z,θ) p(z)dz. For a dataset D =

{(xi, yi)}i=1,...,n, where we denote X = (x1, . . . , xn) and Y = (y1, . . . , yn), the resulting
model has as likelihood function in θ that is the marginal likelihood, obtained by integrating
over all zi variables,

p(Y |X,θ) =

n∏
i=1

p(yi |xi,θ) (B.36)

=
n∏

i=1

Ezi∼p(zi)[p(yi |xi, zi,θ)]. (B.37)

138 APPENDIX B. APPENDIX FOR CHAPTER 5

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 120 of 132 in 99% sampling interval

Figure B.10: ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates with
preconditioning but without cosine time stepping schedule (flat schedule). 12 out of 132
variables are too hot (boxes in red) and lie outside the acceptable region, indicating an inaccurate
simulation of the Langevin dynamics. However, there is a marked improvement due to precondi-
tioning compared to no preconditioning (Figure B.11).

co
nv

2d
/b

ia
s

co
nv

2d
/k

er
ne

l
co

nv
2d

_1
/b

ia
s

co
nv

2d
_1

/k
er

ne
l

co
nv

2d
_1

0/
bi

as
co

nv
2d

_1
0/

ke
rn

el
co

nv
2d

_1
1/

bi
as

co
nv

2d
_1

1/
ke

rn
el

co
nv

2d
_1

2/
bi

as
co

nv
2d

_1
2/

ke
rn

el
co

nv
2d

_1
3/

bi
as

co
nv

2d
_1

3/
ke

rn
el

co
nv

2d
_1

4/
bi

as
co

nv
2d

_1
4/

ke
rn

el
co

nv
2d

_1
5/

bi
as

co
nv

2d
_1

5/
ke

rn
el

co
nv

2d
_1

6/
bi

as
co

nv
2d

_1
6/

ke
rn

el
co

nv
2d

_1
7/

bi
as

co
nv

2d
_1

7/
ke

rn
el

co
nv

2d
_1

8/
bi

as
co

nv
2d

_1
8/

ke
rn

el
co

nv
2d

_1
9/

bi
as

co
nv

2d
_1

9/
ke

rn
el

co
nv

2d
_2

/b
ia

s
co

nv
2d

_2
/k

er
ne

l
co

nv
2d

_2
0/

bi
as

co
nv

2d
_2

0/
ke

rn
el

co
nv

2d
_3

/b
ia

s
co

nv
2d

_3
/k

er
ne

l
co

nv
2d

_4
/b

ia
s

co
nv

2d
_4

/k
er

ne
l

co
nv

2d
_5

/b
ia

s
co

nv
2d

_5
/k

er
ne

l
co

nv
2d

_6
/b

ia
s

co
nv

2d
_6

/k
er

ne
l

co
nv

2d
_7

/b
ia

s
co

nv
2d

_7
/k

er
ne

l
co

nv
2d

_8
/b

ia
s

co
nv

2d
_8

/k
er

ne
l

co
nv

2d
_9

/b
ia

s
co

nv
2d

_9
/k

er
ne

l
de

ns
e/

bi
as

de
ns

e/
ke

rn
el

0.0

0.5

1.0

1.5

2.0

2.5

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 29.20
30.12
17.13

81 of 132 in 99% sampling interval

Figure B.11: ResNet-20 CIFAR-10 Langevin per-variable kinetic temperature estimates with-
out preconditioning and without cosine time stepping schedule (flat schedule). 51 out of
132 kinetic temperature samples are too hot (shaded in red) and lie outside the acceptable region,
sometimes severely so, indicating a very poor simulation accuracy for the Langevin dynamics.

Note that in (B.37) the latent variable zi is integrated out and therefore the marginal
likelihood is a deterministic function.

B.11.2 Log-likelihood Bound and Jensen Posterior

Given a prior p(θ) the log-posterior for the augmented model in Figure B.13 takes the form

log p(θ | D) (B.38)

= C + log p(θ) +
n∑

i=1

logEzi∼p(zi)[p(yi |xi, zi,θ)], (B.39)

B.11. DIRTY LIKELIHOOD FUNCTIONS 139

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 24 of 24 in 99% sampling interval

(a) Preconditioning, cosine stepping
co

nv
/b

ia
s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K

19.18
21.32

20 of 24 in 99% sampling interval

(b) No preconditioning, cosine stepping

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K 13 of 24 in 99% sampling interval

(c) Preconditioning, no cosine stepping

co
nv

/b
ia

s

co
nv

/k
er

ne
l

de
ns

e/
bi

as

de
ns

e/
ke

rn
el

em
be

dd
in

g/
em

be
dd

in
gs

lst
m

/b
ia

s

lst
m

/k
er

ne
l

lst
m

/re
cu

rre
nt

_k
er

ne
l0.0

2.5

5.0

Ki
ne

tic
 te

m
pe

ra
tu

re
 T

K

1692.03
121.85
16.33

211.04
12.89

7.05
7 of 24 in 99% sampling interval

(d) No preconditioning, no cosine stepping

Figure B.12: CNN-LSTM IMDB Langevin per-variable kinetic temperature estimates at tem-
perature T = 1 for four different simulation settings: with and without preconditioning, with and
without cosine time stepping. The only accurate simulation is obtained with both preconditioning
and cosine time stepping.

140 APPENDIX B. APPENDIX FOR CHAPTER 5

where we can now apply Jensen’s inequality, f(E[x]) ≥ E[f(x)] for concave f = log,

≥ C + log p(θ) +
n∑

i=1

Ezi∼p(zi)[log p(yi |xi, zi,θ)], (B.40)

where C = − log p(Y |X) is the negative model evidence and is constant in θ. We call
equation (B.40) the Jensen bound to the log-posterior log p(θ|D).

Jensen Posterior. Because we can estimate (B.40) in an unbiased manner, we will see
that many popular methods such as dropout and data augmentation can be cast as special
cases of the Jensen bound. We also define the Jensen posterior as the posterior distribution
associated with (B.40). Formally, the Jensen posterior is

pJ(θ | D) :∝ (B.41)

p(θ)

n∏
i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
. (B.42)

Given this object, can we relate its properties to the properties of the full posterior, and can
the Jensen posterior serve as a meaningful surrogate to the true posterior? We first observe
that pJ(θ | D) indeed defines a probability distribution over parameters: with a proper prior
p(θ), we have p(θ | D) ≥ pJ(θ | D) by (B.39–B.40), thus

∫
pJ(θ | D) dθ ≤

∫
p(θ | D) dθ <∞.

Jensen Prior. We now show that the Jensen posterior can be interpreted as a full Bayesian
posterior in a different model. In particular, we give a construction which retains the
likelihood of the original model but modifies the prior. In the function that re-weights the
prior the data set appears; this is not to be understood as a prior which depends on the
observed data. Instead, we can think of this as an existence proof, that is, if we were to have
chosen this modified prior then the resulting Jensen posterior under the modified Jensen
prior corresponds to the full Bayesian posterior under the original prior.

In a sense the result is vacuous because any desirable posterior can be obtained by
such re-weighting. However, the proof illustrates the structure of how the Jensen posterior
deviates from the true posterior through a set of weighting functions; each weighting function
measures a local Jensen gap related to each instance. Although we did not pursue this line,
the local Jensen gap (B.47) can be numerically estimated and may prove to be a useful
quantity in itself.

Proposition 2 (Jensen Prior). For a proper prior p(θ) and a fixed dataset D, we can define
a prior pJ(θ) such that when using this modified prior in the Jensen posterior we have

pJ(θ | D) = p(θ | D). (B.43)

In particular, this implies that any Jensen posterior can be interpreted as the posterior
distribution of the same model under a different prior.

B.11. DIRTY LIKELIHOOD FUNCTIONS 141

Proof. We have the true posterior

p(θ | D) = p(θ)
n∏

i=1

∫
p(yi |xi, zi,θ) p(zi) dzi, (B.44)

and the Jensen posterior as

pJ(θ | D) := p(θ)
n∏

i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
, (B.45)

respectively. If we define the Jensen prior,

pJ(θ) :∝ w(θ) p(θ), (B.46)

where we set the weighting function w(θ) :=
∏n

i=1wi(θ), with the individual weighting
functions defined as

wi(θ) :=

∫
p(yi |xi, zi,θ) p(zi) dzi

exp
(
Ezi∼p(zi)[log p(yi |xi, zi,θ)]

) . (B.47)

Due to Jensen’s inequality we have wi(θ) ≤ 1 and hence w(θ) ≤ 1 and thus pJ(θ) is
normalizable. Using pJ(θ) as prior in (B.45) we obtain

pJ(θ | D) (B.48)

∝ pJ(θ)
n∏

i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
, (B.49)

= p(θ)

(
n∏

i=1

wi(θ)

)
(B.50)

n∏
i=1

exp
(
Ezi∼p(zi) [log p(yi |xi, zi,θ)]

)
, (B.51)

= p(θ)
n∏

i=1

∫
p(yi |xi, zi,θ) p(zi) dzi (B.52)

∝ p(θ | D). (B.53)

This constructively demonstrates the result (B.43).

We now interpret current deep learning methods as optimizing the Jensen posterior.

B.11.3 Deep Learning Techniques Optimize Jensen Posteriors

Dropout. In dropout we sample random binary masks zi ∼ p(zi) and multiply network
activations with such masks (Srivastava et al., 2014). Specializing the above latent variable

142 APPENDIX B. APPENDIX FOR CHAPTER 5

model to dropout gives an interpretation of doing maximum aposteriori (MAP) estimation
on the Jensen posterior pJ(θ |X,Y).

The connection between dropout and applying Jensen’s bound has been discovered before
by several groups Noh et al. (2017), Nalisnick et al. (2019), Inoue (2019), and contrasts
sharply with the variational inference interpretation of dropout, (Kingma et al., 2015; Gal &
Ghahramani, 2016). Recent variants of dropout such as noise-in (Dieng et al., 2018) can
also be interpreted in the same way.

The Jensen prior interpretation justifies the use of standard dropout in Bayesian neural
networks: the inferred posterior is the Jensen posterior which is also a Bayesian posterior
under the Jensen prior.

Data Augmentation. Data augmentation is a simple and intuitive way to insert high-level
prior knowledge into neural networks: by targeted augmentation of the available training
data we can encode invariances with respect to natural transformation or noise, leading to
better generalization, Perez & Wang (2017).

Data augmentation is also an instance of the above latent variable model, where zi now
corresponds to randomly sampled parameters of an augmentation, for example, whether to
flip an image along the vertical axis or not.

Interestingly, the above model suggests that to obtain better predictive performance at
test time, the posterior predictive should be obtained by averaging the individual posterior
predictive distributions over multiple latent variable realizations. Indeed this is what early
work on convolutional networks did, He et al. (2015b, 2016b), improving predictive perfor-
mance significantly.

The Jensen prior interpretation again justifies the use of approximate Bayesian inference
techniques targeting the Jensen posterior. In particular, our theory suggests that the dataset
size n should not be adjusted to account for augmentation.

Batch Normalization. As a practical technique batch normalization (Ioffe & Szegedy,
2015) accelerates and stabilizes learning in deep neural networks. The model of Figure B.13
cannot directly serve to interpret batch normalization due to the dependence of batch
normalization statistics on the batch. We therefore need to extend the model to incorporate
a random choice of batches yielding continuous random batch normalization statistics as
proposed earlier (Atanov et al., 2018; Shekhovtsov & Flach, 2018).

B.11. DIRTY LIKELIHOOD FUNCTIONS 143

yiθ

x′
i

zi

xi

i = 1, . . . , n

Figure B.13: Augmented model with added latent variable zi.
Formally such variation of batch normalization corresponds to the model shown in

Figure B.14, where (xi)i → θ signifies the additional randomness in p(θ|X) due to random
batches, and (θ, xi, zi)→ x′i are the resulting random outputs of the network, where zi is a
per-instance randomness source (Atanov et al., 2018).

With the above modifications all derivations in Section B.11.2 hold and batch normaliza-
tion has a Jensen posterior. In particular, the Jensen interpretation also suggests to perform
batch normalization at test-time, averaging over multiple different batches composed of
training set samples.

B.11.4 Dirty Likelihood Experiment

The dirty likelihood hypothesis is plausible for the ResNet-20 experiments which use data
augmentation and batch normalization, however, our CNN-LSTM model does have a clean
likelihood function already.

To gain further confidence that this hypothesis cannot explain cold posterior we train a
ResNet-20 without batch normalization or data augmentation.

Clean Likelihood ResNet Experiment: we disable data augmentation and replace
batch normalization with filter response normalization, (Singh & Krishnan, 2019). Without
data augmentation and without batch normalization we now have a clean likelihood function
and SG-MCMC targets a true underlying Bayes posterior.

Figure B.15 on page 144 shows the predictive test performance as a function of temperature.
We clearly see that for small temperatures T ≪ 1 the removal of data augmentation and
batch normalization leads to a higher standard error over the three runs, so that indeed data
augmentation and batch normalization had a stabilizing effect on training and mitigated
overfitting. However, for test accuracy the best performance by the SG-MCMC ensemble
model is still achieved for T < 1. In particular, for test accuracy the best accuracy of
87.8 ± 0.16% is achieved at T = 0.0193, comparing to a worse predictive accuracy of
87.1 ± 0.13% at temperature T = 1. For test cross entropy the performance achieved at
T = 0.0193 with 0.393± 0.015 is comparable to 0.3918± 0.0021 achieved at T = 1.

The clean likelihood ResNet experiment is slightly inconclusive as there is now a less
marked improvement when going to lower temperatures. However, our CNN-LSTM IMDB
model already had a clean likelihood function. Therefore, while dirty likelihoods may play
a role in shaping the posterior that SG-MCMC methods simulate from they likely do not

144 APPENDIX B. APPENDIX FOR CHAPTER 5

10 4 10 3 10 2 10 1 100
0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y
SG-MCMC
Average ensemble member accuracy

10 4 10 3 10 2 10 1 100

Temperature T

0.5

1.0

1.5

2.0

Te
st

 c
ro

ss
 e

nt
ro

py

Figure B.15: ResNet-20 with filter response normalization (FRN) instead of batch normalization
and without any use of data augmentation.

account for the cold posterior effect.

B.12 Prior Predictive Analysis for Different Prior Scales

Our experiments in Section 5.6.2 clearly demonstrate that the prior p(θ) = N (0, I) is bad in
that it places prior mass on the same highly concentrated class probabilities for all training
instances.

What other priors could we use? The literature contains significant prior work on this
question. Neal (1995) examined priors for shallow neural networks and identified scaling
laws and correspondence to Gaussian process kernels. Recently a number of works added to
Neal’s analysis by extending the results to deep and wide neural networks (Lee et al., 2018;
de G. Matthews et al., 2018; Yang, 2019), convolutional networks (Garriga-Alonso et al.,
2019), and Bayesian neural networks (Novak et al., 2019).

A related line of work explores random functions defined by the initialization process of
a deep neural network. Glorot & Bengio (2010a) and He et al. (2015b) developed efficient
random initialization schemes for deep neural networks and a more formal analysis of
information flow in random functions defined by neural networks is given by Schoenholz et al.
(2017) and Hayou et al. (2018). All these works derive variance-scaling laws for independent
Gaussian priors. The precise scaling law depends on the network layer and the activation
function being used. For the same architecture and activation the scaling laws generally
agree with those obtained from the Gaussian process perspective. Figure 5.12 shows that
the cold posterior effect is present regardless of the scaling of the variance of the Normal

B.12. PRIOR PREDICTIVE ANALYSIS FOR DIFFERENT PRIOR SCALES 145

prior. In the following we investigate certain scaling laws of the prior more detailed.

B.12.1 He-Scaled Normal Prior, N (0, I) for Biases

To remain as close as possible to our existing setup we investigate a He-scaling prior,
equation (14) in (He et al., 2015b).

p(θj) = N
(
0,

2

bj

)
, (B.54)

where bj is the fan-in of the j’th layer.5

The scaling law derived by He et al. (2015b) does not cover the bias terms in a model.
This is due to the work considering only initialization—(He et al., 2015b) initialized all biases
to zero—whereas we would like to have proper priors for all model variables. We therefore
choose the original N (0, I) prior for all bias variables in our model.

He-scaled Prior Predictive Experiment: For our ResNet-20 setup on CIFAR-10 we
use our He-scaled-Normal prior to once again carry out the prior predictive experiment
that was originally done in Section 5.6.2, Figures 5.7 and 5.8. Figure B.16 show the prior
predictive results for the new prior. The basic conclusion remains unchanged: despite scaling
the convolution weights and dense layer weights by the He-scaling law in the prior the prior
predictive distributions remain highly concentrated around the same distribution for all
training instances.

Why do functions under this prior remain concentrated? Perhaps it is due to the loose
N (0, I) prior for the bias terms such that any concentration in early layers is amplified in
later layers? We investigate this further in Section B.12.2.

He-scaled Prior ResNet-20 CIFAR-10 Experiment: We also perform the original
cold posterior experiment from Chapter 5 with the He-scaling Normal prior. We show the
temperature-dependence curves for test accuracy and test cross-entropy in Figure B.17. The
overall performance drops compared to the N (0, I) prior, but the cold posterior effect clearly
remains. With this result and the result from the prior predictive study we can conclude
that a simple Normal scaling correction is not enough to yield a sensible prior.

B.12.2 He-Scaled Normal Prior, N (0, ϵI) for Biases

In this section we experiment with He-scaling and a very small scale for the bias prior. There
are two motivations for such experimentation: first, He-scaling was originally proposed by He
et al. (2015b) for initializing deep convolutional neural networks and in their initialization all
bias terms were initialized to zero. Second, bias terms influence a large number of downstream
activations and getting the scale wrong for our bias priors may have the large concentration
effect that we observe in the previous prior predictive experiments.

We therefore propose to use a He-scaling Normal prior for all Conv2D and Dense layer
weights and to use a N (0, ϵI) prior for all bias terms. Here we use ϵ = σ2 with σ = 10−6,

5For a Dense layer the fan-in is the number of input dimensions, for a Conv2D layer with a kernel of
size k-by-k and d input channels the fan-in is bj = k2d.

146 APPENDIX B. APPENDIX FOR CHAPTER 5

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0
Cl

as
s p

ro
ba

bi
lit

y Prior parameter sample 1
Train set class distribution

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 2

Train set class distribution

(a) Typical predictive distributions for 10 classes under the prior, averaged over the entire training set,
Ex∼p(x)[p(y|x,θ(i))]. Each plot is for one sample θ(i) ∼ p(θ). Given a sample θ(i) the average training
data class distribution is still highly concentrated around the same classes for all x.

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0
Cl

as
s p

ro
ba

bi
lit

y
Prior predictive average (S=100)

(b) Prior predictive Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10 classes for a Kaiming-scaling prior, estimated using
S = 100 samples θ(i) and all training images.

Figure B.16: ResNet-20/CIFAR-10 prior predictive study for a He-scaled Normal prior for
Conv2D and Dense layers and a N (0, I) prior for all bias terms. This prior concentrates prior
mass on functions which output the same concentrated label distribution for all training instances.
It is therefore a bad prior.

10 4 10 3 10 2 10 1 100
0.88

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y

SG-MCMC

10 4 10 3 10 2 10 1 100

Temperature T

0.2

0.3

0.4

0.5

Te
st

 C
ro

ss
 E

nt
ro

py SG-MCMC

Figure B.17: ResNet-20 on CIFAR-10 with He-scaling Normal prior (He-scaled Normal for
Conv2D and Dense layers, and N (0, I) for all bias terms). The cold posterior effect remains: the
poor predictive performance of the Bayes posterior at T = 1 holds for both accuracy and cross-
entropy.

B.13. TEMPERING THE OBSERVATION MODEL? 147

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 1

Train set class distribution

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y Prior parameter sample 2

Train set class distribution

(a) Typical predictive distributions for 10 classes under the prior, averaged over the entire training set,
Ex∼p(x)[p(y|x,θ(i))]. Each plot is for one sample θ(i) ∼ p(θ). Given a sample θ(i) the average training
data class distribution is still highly concentrated around the same classes for all x despite using a small
N (0, ϵI) prior for biases.

1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

Cl
as

s p
ro

ba
bi

lit
y

Prior predictive average (S=100)

(b) Prior predictive Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10 classes for a Kaiming-scaling prior with a N (0, ϵI)

prior for bias terms. We estimate the marginal distribution using S = 100 samples θ(i) and all training
images.

Figure B.18: ResNet-20/CIFAR-10 prior predictive study for a He-scaled Normal prior for
Conv2D and Dense layers and a N (0, ϵI) prior for all bias terms. This prior still concentrates prior
mass on functions which output the same concentrated label distribution for all training instances.
It is, therefore, a bad prior.

essentially sampling all bias terms close to zero as in the original initialization due to (He
et al., 2015b).

He-scaled Prior, N (0, ϵI) Bias Prior Experiment: We draw ResNet-20 models from
the prior and evaluate the predicted class distributions on the entire CIFAR-10 training set.
Figure B.18a shows two prior draws and the resulting class distributions marginalized over
the entire training set. Figure B.18b shows a marginal prior predictive, marginalized over
S = 100 prior draws and the entire training distribution of 50,000 images. The resulting
marginal prior predictive approaches the uniform distribution. However, the He-scaled prior
with N (0, ϵI) for bias terms remains a bad prior: random draws place prior mass on the
same concentrated class distribution for all training instances.

B.13 Tempering the Observation Model?

In (Wilson & Izmailov, 2020), Equation (4) a proposal is made to use a different likelihood
function of the form

pT (y|x,θ) :∝ p(y|x,θ)1/T . (B.55)

It is claimed that with this adjusted observation model the cold posterior is simply the
ordinary Bayes posterior of the modified model. Indeed, if we are to plug the right-hand
side of (B.55) directly into our posterior energy function (2.12), we obtain the cold posterior

148 APPENDIX B. APPENDIX FOR CHAPTER 5

energy function,

UT (θ) := −
n∑

i=1

1

T
log p(yi|xi,θ)− log p(θ). (B.56)

The mistake in this derivation is to ignore that renormalization of pT (y|x,θ) must be
carried out because the normalizing constant is not invariant of θ. In particular, this is
in contrast to typical applications of Bayes rule for posteriors, where we can indeed write
p(θ|D) ∝ p(D|θ)p(θ) without worries, as here the normalizing constant does not depend on
θ. One consequence of this mistake is that UT (θ) is not necessarily the energy function of a
Bayes posterior.

Instead, for the tempered observation model proposed by (Wilson & Izmailov, 2020) the
correctly normalized observation likelihood is

pT (y|x,θ) =
p(y|x,θ)1/T∫
p(y|x,θ)1/T dy

. (B.57)

Using this normalized observation model, the correct Bayes posterior energy corresponding
to pT (y|x,θ) is

ŨT (θ) := −
n∑

i=1

1

T
log p(yi|xi,θ)− log p(θ)

+
n∑

i=1

log

∫
p(y|xi,θ)1/T dy. (B.58)

Therefore, when the observation model is transformed as in (B.55) and as suggested by (Wilson
& Izmailov, 2020), then in order to obtain a normalized observation model we must include
the correction term (B.58) and this produces a modified energy function, ŨT (θ), that differs
from the actual cold posterior energy function UT (θ).

Is there a way to “fix” this mistake? I.e. can one construct an observation model such
that the resulting Bayes posterior corresponds to a tempered version of the Bayes posterior of
the original observation model? For classification we found a way: we assign probability to a
pseudo event “∅” which cannot occur. To see this, assume a classification model p(y|x) where
y ∈ {1, 2, . . . ,K}. Clearly

∑K
k=1 p(y = k|x) = 1. Given a temperature T ≤ 1 we define

p̃(y = k|x) := p(y = k|x)1/T . (B.59)

Clearly for 0 < T ≤ 1 we have that f(x) = x1/T is a monotonic function in x ∈ [0, 1] and
f(x) = x1/T ≤ x, and therefore

∑
k p̃(y = k|x) ≤ 1. We absorb the remaining probability

mass into a pseudo event “∅”,

p̃(y = ∅|x) := 1−
K∑
k=1

p̃(y = k|x), (B.60)

B.14. DETAILS: GENERATION OF A SYNTHETIC DATASET BASED ON AN MLP DRAWN FROM ITS PRIOR DISTRIBUTION149

such that the resulting distribution p̃ over K + 1 basic events sums to one,∑
k∈{1,2,...,K,∅}

p̃(y = k|x) = 1. (B.61)

Now observe that for any event in {1, 2, . . . ,K} that actually can occur we have

log p̃(y = k|x) = 1

T
log p(y = k|x), (B.62)

that is, we have achieved the effect of temperature scaling when using p̃ as observation model.
While formally possible, can we make sense of this transformation and introduction of a
pseudo event?

To us it seems entirely non-Bayesian to artificially introduce events into a model while
knowing with perfect certainty that these events cannot happen and then allow the model
to assign probability mass to those events. It is non-Bayesian because our knowledge with
respect to the new event is perfect: it cannot occur. Therefore a model should respect this
knowledge of the world.

B.14 Details: Generation of a Synthetic Dataset Based on an
MLP Drawn From its Prior Distribution

In this section, we describe how we generate a synthetic dataset based on a multi-layer
perceptron (MLP) drawn from its prior distribution, as used in Section 5.5.2.

We generate synthetic data by (i) drawing a MLP from its prior distribution, i.e., mlpθ
with θ ∼ p(θ), (ii) sampling input data point x’s ∈ R5 from a standard normal distribution
and (iii) sampling label y’s ∈ {1, 2, 3} from the resulting logits mlpθ(x). We take mlpθ to
be of depth 2, with 10 units and relu activation functions. We generate n = 100 points for
inference and 10,000 for evaluations.

The choice of p(θ) requires some care. On the one hand, a naive choice of normal priors
with unit standard deviation leads to a degenerated dataset that concentrates all its outputs
on a single class. On the other hand, normal priors with a smaller standard deviation6, e.g.,
0.05, lead to a less spiky label distribution but with little dependence on the input x’s.

As a result, we considered a He normal prior (He et al., 2015b) for the weights of mlpθ
and a normal prior, with standard deviation 0.05, for the bias terms. We similarly adapted
the choice of the priors for the MLPs used to learn over the data generated in this way.

B.15 Details about Hamiltonian Monte Carlo

In this section, we describe practical considerations about Hamiltonian Monte Carlo (HMC)
and present further results about its comparison with SG-MCMC (see Section 5.5.2).

HMC mainly exposes four hyperparameters that need to be set (Neal et al., 2011):
6Default value of tf.random_normal_initializer.

150 APPENDIX B. APPENDIX FOR CHAPTER 5

• The number L of steps of the leapfrog integrator,
• The step size ε in the leapfrog integrator,
• The number b of steps of the burn-in phase,
• The number S of samples to generate.

B.15.1 Hyperparameter choices

In our experiments with HMC, we have set S = 2500, generating a total of 25000 samples
after the burn-in phase and keeping one sample every ten samples.

For the burn-in phase, we investigated in preliminary experiments the effect of varying
the number of steps b ∈ {500, 1000, 5000}, noticing that our diagnostics (as later described)
started to stabilize for b = 1000, so that we decided to use b = 5000 out of precaution (even
though it may not be the most efficient option).

We thereafter searched a good combination of leapfrog steps and step size for L ∈
{5, 10, 100} and ε ∈ {0.001, 0.01, 0.1}.

B.15.2 Convergence monitoring

We monitor convergence by first inspecting trace plots and second by computing standard
diagnostics, namely the effective sample size (ESS) (Brooks et al., 2011) and the potential
scale reduction (PSRF) (Gelman & Rubin, 1992).

Trace plots. In Figures B.20-B.21-B.22, we detail the inspection of the 5 different chains
for the choice L = 100 and ε = 0.1 (which corresponds to the results of the sampler shown
in Chapter 5). As practical diagnostic tools, we consider trace plots where we monitor the
evolution of some statistics with respect to the generated HMC samples (e.g., see Section
24.4 in Murphy (2012), and references therein, for an introduction in a machine learning
context). We compute trace plots for different depths of the MLP (in {1, 2, 3}) and different7

temperatures, T ∈ {0.001, 0.0024, 0.014, 1.0}.
In addition to monitoring the evolution of the cross entropy for S′ ∈ {1, 2, . . . , S} HMC

samples (see Figure B.20), we also consider the following statistics:

• Mean of the predictive entropy: Let us denote by Dheld-out the held-out set of
pairs (x, y) and Eθ(x) the entropy of the softmax output at the input x

Eθ(x) = −
∑
c

p(y = c|x,θ) log p(y = c|x,θ),

together with its average over the held-out set

Eθ =
1

|Dheld-out|
∑

(x,y)∈Dheld-out

Eθ(x).

7We limit ourselves to four temperatures to avoid clutter.

B.15. DETAILS ABOUT HAMILTONIAN MONTE CARLO 151

For S′ ∈ {1, 2, . . . , S} samples collected along the trajectory of HMC, we report in
Figure B.21 the estimate

Ê =
1

S′

S′∑
s=1

Eθs ≈ Ē =

∫
Eθ · p(θ|D)dθ,

which we refer to as the mean of the predictive entropy.

• Standard deviation of the predictive entropy: We also consider the monitoring
of the second moment of the predictive entropy. With the above notation, we estimate

1

S′ − 1

S′∑
s=1

(Eθs − Ê)2 ≈
∫

(Eθ − Ē)2 · p(θ|D)dθ

and report its square root in Figure B.22, which we refer to as the standard deviation
of the predictive entropy.

As a general observation, we can see on Figures B.20-B.21-B.22 that, overall, the 5 different
chains tend to exhibit a converging behavior for the three examined statistics, with typically
more dispersion as the depth and the temperature increase (which is reflected by the ranges
of the y-axis in the plots of Figures B.20-B.21-B.22 that get wider as T and the depth become
larger).

ESS and PSRF. The effective sample size (ESS) (Brooks et al., 2011) measures how
independent the samples are in terms of the auto-correlations within the sequence at different
lags. The potential scale reduction factor (PSRF) Gelman & Rubin (1992) assesses the
convergence of the chains (to the same target distribution) by testing for equality of means.

We computed ESS and PSRF for our HMC simulation (with 100 leapfrog steps and a step
size of 0.1, as reported in Chapter 5). We used the TFP implementations tfp.mcmc.{effective_sample_size,
potential_scale_reduction}. Figure B.19 (left, middle) displays the ESS and PSRF with
respect to the different temperature levels, for the 3 MLP depths. Both ESS and PSRF were
averaged over the model parameters.

We observe that in the regime T in [0.05, 1], the diagnostics indicate an approximate
convergence (PSRF < 1.05 and ESS in [1800, S], with S = 2500 total samples) for the 3 MLP
depths. On the other hand, in the regime T in [0.001, 0.05], the diagnostics only continue to
indicate an approximate convergence for the depth 1. For depths 2 and 3, both diagnostics
substantially degrade, e.g., ESS down to ≈ 189 for depth 3.

B.15.3 KL divergence between predictive distributions

In Section 5.5.2, we compare side by side the cross-entropy of SG-MCMC and HMC for the
different temperature levels, exhibiting a close agreement.

152 APPENDIX B. APPENDIX FOR CHAPTER 5

As an alternative visualization of this comparison, we computed the (symmetrized) KL
divergence between the SG-MCMC and HMC predictive distributions (i.e., in our setting,
categorical distributions with 3 classes).

For SG-MCMC and HMC (instantiated with 100 leapfrog steps and a step size of 0.1, as
reported in Chapter 5), Figure B.19 (right) displays the (symmetrized) KL with respect to
the different temperature levels, for the 3 MLP depths (averaged over the seeds). We observe
that all KLs are small (in the order of ≈ 10−5 for depth 1, and ≈ 10−3 for depths 2 and 3).

B.15. DETAILS ABOUT HAMILTONIAN MONTE CARLO 153

10 3 10 2 10 1 100

Temperature T

500

1000

1500

2000

2500

ES
S

10 3 10 2 10 1 100

Temperature T

0.9

1.0

1.1

1.2

1.3

1.4

1.5

PS
RF

MLP depth = 1
MLP depth = 2
MLP depth = 3

10 3 10 2 10 1 100

Temperature T

0.000

0.001

0.002

0.003

0.004

(s
ym

m
et

riz
ed

) K
L

MLP depth = 1
MLP depth = 2
MLP depth = 3

Figure B.19: For HMC (instantiated with 100 leapfrog steps and a step size of 0.1, as reported
in Section 5.5.2), we report the effective sample size (left) and potential scale reduction factor
(middle) with respect to the different temperature levels. On the left plot, the black dash line
corresponds to the S = 2500 samples and ESS=S indicates no correlation in the sequences. For
PSRF, approximate convergence is generally considered when PSRF < 1.2 (Gelman & Rubin,
1992). (right) KL divergence between the predictive distributions of HMC and SG-MCMC.

yi

θ x′
i

zi

xi

i = 1, . . . , n

Figure B.14: Augmented model for batch normalization.

154 APPENDIX B. APPENDIX FOR CHAPTER 5

0 1000 2000

1.083

1.084

1.085

Cr
os

s e
nt

ro
py

depth=1, T=0.001
seed 0
seed 1
seed 2
seed 3
seed 4

0 1000 2000

1.082

1.084

1.086

depth=1, T=0.0024

0 1000 2000

1.070

1.075

1.080

1.085

1.090

depth=1, T=0.014

0 1000 2000

1.05

1.10

1.15

1.20

depth=1, T=1.0

0 1000 2000

1.1075

1.1100

1.1125

1.1150

1.1175

Cr
os

s e
nt

ro
py

depth=2, T=0.001

0 1000 2000

1.108

1.110

1.112

depth=2, T=0.0024

0 1000 2000

1.105

1.110

1.115

1.120

depth=2, T=0.014

0 1000 2000

1.1

1.2

1.3

depth=2, T=1.0

0 1000 2000

1.110

1.112

1.114

1.116

1.118

Cr
os

s e
nt

ro
py

depth=3, T=0.001

0 1000 2000

1.110

1.112

1.114

1.116

1.118
depth=3, T=0.0024

0 1000 2000
1.100

1.105

1.110

1.115

1.120
depth=3, T=0.014

0 1000 2000
1.05

1.10

1.15

1.20

depth=3, T=1.0

Cross entropy vs. HMC samples (leapfrog_steps: 100, step_size: 0.1)

Figure B.20: Trace plots of the cross entropy: We display the evolution of 5 different chains
with respect to the S = 2500 HMC samples collected after the burn-in phase, for various depths
(rows) and temperatures (columns). Overall, the chains exhibit a converging behavior, with typi-
cally more dispersion as the depth and the temperature increase (which is reflected by the ranges
of the y-axis that get wider as T and the depth increase).

B.15. DETAILS ABOUT HAMILTONIAN MONTE CARLO 155

0 1000 2000
0.9770

0.9775

0.9780

0.9785

0.9790

Pr
ed

ict
iv

e
en

tro
py

depth=1, T=0.001

seed 0
seed 1
seed 2
seed 3
seed 4

0 1000 2000

0.977

0.978

0.979

0.980

depth=1, T=0.0024

0 1000 2000
0.965

0.970

0.975

0.980

0.985

depth=1, T=0.014

0 1000 2000
0.900

0.925

0.950

0.975

1.000

1.025
depth=1, T=1.0

0 1000 2000

0.960

0.961

0.962

0.963

0.964

Pr
ed

ict
iv

e
en

tro
py

depth=2, T=0.001

0 1000 2000
0.960

0.961

0.962

0.963

0.964

0.965
depth=2, T=0.0024

0 1000 2000

0.955

0.960

0.965

0.970
depth=2, T=0.014

0 1000 2000
0.84

0.86

0.88

0.90

0.92

0.94
depth=2, T=1.0

0 1000 2000
0.962

0.964

0.966

0.968

Pr
ed

ict
iv

e
en

tro
py

depth=3, T=0.001

0 1000 2000

0.964

0.965

0.966

0.967
depth=3, T=0.0024

0 1000 2000

0.965

0.970

0.975

0.980
depth=3, T=0.014

0 1000 2000

0.88

0.90

0.92

0.94

0.96

depth=3, T=1.0

Mean predictive entropy vs. HMC samples (leapfrog_steps: 100, step_size: 0.1)

Figure B.21: Trace plots of the mean predictive entropy (see definition in Section B.15). We dis-
play the evolution of 5 different chains with respect to the S = 2500 HMC samples collected after
the burn-in phase, for various depths (rows) and temperatures (columns). See further discussions
in Figure B.20.

156 APPENDIX B. APPENDIX FOR CHAPTER 5

0 1000 2000

0.0005

0.0010

0.0015

0.0020

Pr
ed

ict
iv

e
en

tro
py

depth=1, T=0.001

seed 0
seed 1
seed 2
seed 3
seed 4

0 1000 2000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

depth=1, T=0.0024

0 1000 2000
0.002

0.004

0.006

0.008

0.010

0.012
depth=1, T=0.014

0 1000 2000

0.01

0.02

0.03

0.04

0.05

depth=1, T=1.0

0 1000 2000
0.0000

0.0005

0.0010

0.0015

0.0020

Pr
ed

ict
iv

e
en

tro
py

depth=2, T=0.001

0 1000 2000

0.001

0.002

0.003

0.004

depth=2, T=0.0024

0 1000 2000

0.002

0.004

0.006

0.008
depth=2, T=0.014

0 1000 2000
0.00

0.02

0.04

0.06

0.08
depth=2, T=1.0

0 1000 2000

0.0005

0.0010

0.0015

0.0020

Pr
ed

ict
iv

e
en

tro
py

depth=3, T=0.001

0 1000 2000

0.001

0.002

0.003

depth=3, T=0.0024

0 1000 2000
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

depth=3, T=0.014

0 1000 2000
0.00

0.02

0.04

0.06
depth=3, T=1.0

Standard deviation predictive entropy vs. HMC samples (leapfrog_steps: 100, step_size: 0.1)

Figure B.22: Trace plots of the standard deviation of the predictive entropy (see definition in
Section B.15). We display the evolution of 5 different chains with respect to the S = 2500 HMC
samples collected after the burn-in phase, for various depths (rows) and temperatures (columns).
See further discussions in Figure B.20.

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al. Tensorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp.
265–283, 2016.

Allen, J. Short term spectral analysis, synthesis, and modification by discrete fourier
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3):235–238,
1977.

Ashukha, A., Lyzhov, A., Molchanov, D., and Vetrov, D. Pitfalls of in-domain uncertainty
estimation and ensembling in deep learning. In Eigth International Conference on Learning
Representations (ICLR 2020), 2020.

Atanov, A., Ashukha, A., Molchanov, D., Neklyudov, K., and Vetrov, D. Uncertainty
estimation via stochastic batch normalization. arXiv preprint arXiv:1802.04893, 2018.

Babiański, M., Pokora, K., Shah, R., Sienkiewicz, R., Korzekwa, D., and Klimkov, V. On
granularity of prosodic representations in expressive text-to-speech. In 2022 IEEE Spoken
Language Technology Workshop (SLT), pp. 892–899, 2023. doi: 10.1109/SLT54892.2023.
10022793.

Bae, J., Zhang, G., and Grosse, R. Eigenvalue corrected noisy natural gradient. arXiv
preprint arXiv:1811.12565, 2018.

Baldock, R. J. and Marzari, N. Bayesian neural networks at finite temperature. arXiv
preprint, arXiv:1904.04154, 2019.

Barber, D. and Bishop, C. M. Ensemble learning for multi-layer networks. In Advances in
neural information processing systems, pp. 395–401, 1998a.

Barber, D. and Bishop, C. M. Ensemble learning for multi-layer networks. In Advances in
neural information processing systems, pp. 395–401, 1998b.

Berger, J. O. Statistical decision theory and Bayesian analysis. Springer, 1985.

Berger, J. O. Statistical decision theory and Bayesian analysis. Springer Science & Business
Media, 2013.

157

158 BIBLIOGRAPHY

Betancourt, M. and Girolami, M. Hamiltonian Monte Carlo for hierarchical models. Current
trends in Bayesian methodology with applications, 79:30, 2015.

Bhattacharya, A., Pati, D., Yang, Y., et al. Bayesian fractional posteriors. The Annals of
Statistics, 47(1):39–66, 2019.

Bińkowski, M., Donahue, J., Dieleman, S., Clark, A., Elsen, E., Casagrande, N., Cobo, L. C.,
and Simonyan, K. High fidelity speech synthesis with adversarial networks. International
Conference on Learning Representations, 2020.

Blackman, R. B. and Tukey, J. W. The measurement of power spectra from the point of view
of communications engineering—part i. Bell System Technical Journal, 37(1):185–282,
1958.

Blei, D., Ranganath, R., and Mohamed, S. Variational inference: Foundations and modern
methods. NIPS Tutorial, 2016.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015a.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 37:1613–1622, 2015b.

Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E., Pietquin, O., Sharifi, M., Roblek, D.,
Teboul, O., Grangier, D., Tagliasacchi, M., et al. Audiolm: a language modeling approach
to audio generation. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2023a.

Borsos, Z., Sharifi, M., Vincent, D., Kharitonov, E., Zeghidour, N., and Tagliasacchi, M.
Soundstorm: Efficient parallel audio generation. arXiv preprint arXiv:2305.09636, 2023b.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. Generating
sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Box, G. E. and Tiao, G. C. Bayesian inference in statistical analysis. John Wiley & Sons,
2011.

Bracewell, R. N. and Bracewell, R. N. The Fourier transform and its applications, volume
31999. McGraw-Hill New York, 1986.

Brannon, W., Virkar, Y., and Thompson, B. Dubbing in practice: A large scale study of
human localization with insights for automatic dubbing. Transactions of the Association
for Computational Linguistics, 2021.

BIBLIOGRAPHY 159

Brier, G. W. Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1–3, 1950.

Brooks, S., Gelman, A., Jones, G., and Meng, X. Handbook of Markov Chain Monte Carlo.
Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2011. ISBN
9781420079425. URL https://books.google.de/books?id=qfRsAIKZ4rIC.

Casanova, E., Weber, J., Shulby, C. D., Junior, A. C., Gölge, E., and Ponti, M. A. YourTTS:
Towards zero-shot multi-speaker tts and zero-shot voice conversion for everyone. In
International Conference on Machine Learning, pp. 2709–2720. PMLR, 2022.

Challis, E. and Barber, D. Concave gaussian variational approximations for inference in large-
scale bayesian linear models. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 199–207, 2011.

Chen, C., Ding, N., and Carin, L. On the convergence of stochastic gradient MCMC
algorithms with high-order integrators. In Advances in Neural Information Processing
Systems, pp. 2278–2286, 2015.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and Chan, W. Wavegrad: Estimating
gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020.

Chen, T., Fox, E., and Guestrin, C. Stochastic gradient Hamiltonian Monte Carlo. In
International Conference on Machine Learning, pp. 1683–1691, 2014.

Cho, H., Jung, W., Lee, J., and Woo, S. H. SANE-TTS: Stable And Natural End-to-End
Multilingual Text-to-Speech. In Proc. Interspeech, pp. 1–5, 2022. doi: 10.21437/Interspeech.
2022-46.

Chollet, F. et al. Keras, 2015.

Conneau, A., Baevski, A., Collobert, R., Mohamed, A., and Auli, M. Unsupervised cross-
lingual representation learning for speech recognition. In Interspeech, 2022.

de G. Matthews, A. G., Hron, J., Rowland, M., Turner, R. E., and Ghahramani, Z. Gaussian
process behaviour in wide deep neural networks. In ICLR, 2018.

Défossez, A., Copet, J., Synnaeve, G., and Adi, Y. High fidelity neural audio compression.
arXiv preprint arXiv:2210.13438, 2022.

Dieng, A. B., Ranganath, R., Altosaar, J., and Blei, D. M. Noisin: Unbiased regularization
for recurrent neural networks. arXiv preprint arXiv:1805.01500, 2018.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B.,
Alemi, A., Hoffman, M., and Saurous, R. A. Tensorflow distributions. arXiv preprint
arXiv:1711.10604, 2017.

https://books.google.de/books?id=qfRsAIKZ4rIC

160 BIBLIOGRAPHY

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and Neven, H. Bayesian sampling
using stochastic gradient thermostats. In Advances in neural information processing
systems, pp. 3203–3211, 2014.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. Hybrid Monte Carlo. Physics
letters B, 195(2):216–222, 1987.

Earl, D. J. and Deem, M. W. Parallel tempering: Theory, applications, and new perspectives.
Physical Chemistry Chemical Physics, 7(23):3910–3916, 2005.

Effendi, J., Virkar, Y., Barra-Chicote, R., and Federico, M. Duration modeling of neural
tts for automatic dubbing. In ICASSP 2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 8037–8041, 2022a. doi: 10.1109/
ICASSP43922.2022.9747158.

Effendi, J., Virkar, Y., Barra-Chicote, R., and Federico, M. Duration modeling of neural
tts for automatic dubbing. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 8037–8041. IEEE, 2022b.

Elias, I., Zen, H., Shen, J., Zhang, Y., Jia, Y., Weiss, R. J., and Wu, Y. Parallel tacotron: Non-
autoregressive and controllable tts. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5709–5713. IEEE, 2021.

Farquhar, S., Osborne, M., and Gal, Y. Radial Bayesian neural networks: Beyond discrete
support in large-scale bayesian deep learning. Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics, 2020a.

Farquhar, S., Smith, L., and Gal, Y. Try Depth instead of weight correlations: Mean-field is
a less restrictive assumption for variational inference in deep networks. Bayesian Deep
Learning Workshop at NeurIPS, 2020b.

Federico, M., Enyedi, R., Barra-Chicote, R., Giri, R., Isik, U., Krishnaswamy, A., and Sawaf,
H. From speech-to-speech translation to automatic dubbing. In IWSLT 2020, 2020.

Flam-Shepherd, D., Requeima, J., and Duvenaud, D. Mapping gaussian process priors to
bayesian neural networks. In NIPS Bayesian deep learning workshop, 2017.

Fushiki, T. et al. Bootstrap prediction and Bayesian prediction under misspecified models.
Bernoulli, 11(4):747–758, 2005.

Gal, Y. Uncertanity in Deep Learning. University of Cambridge, 2016.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–
1059, 2016.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L. Deep convolutional networks as
shallow gaussian processes. In ICLR, 2019.

BIBLIOGRAPHY 161

Geisser, S. An Introduction to Predictive Inference. Chapman and Hall, New York, 1993.

Gelfand, A. E. and Smith, A. F. Sampling-based approaches to calculating marginal densities.
Journal of the American statistical association, 85(410):398–409, 1990.

Gelman, A. and Rubin, D. B. Inference from iterative simulation using multiple sequences.
Statistical science, 7(4):457–472, 1992.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
Bayesian data analysis. Chapman and Hall/CRC, 2013.

Germain, P., Bach, F., Lacoste, A., and Lacoste-Julien, S. Pac-bayesian theory meets
bayesian inference. In Advances in Neural Information Processing Systems, pp. 1884–1892,
2016.

Gershman, S. and Goodman, N. Amortized inference in probabilistic reasoning. In Proceedings
of the annual meeting of the cognitive science society, volume 36, 2014.

Giordano, R., Broderick, T., and Jordan, M. I. Covariances, robustness and variational bayes.
The Journal of Machine Learning Research, 19(1):1981–2029, 2018.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pp. 249–256, 2010a.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pp. 249–256, 2010b.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of
the fourteenth international conference on artificial intelligence and statistics, pp. 315–323,
2011.

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Graves, A. Practical variational inference for neural networks. In Advances in neural
information processing systems, pp. 2348–2356, 2011a.

Graves, A. Practical variational inference for neural networks. In Advances in neural
information processing systems, pp. 2348–2356, 2011b.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pp. 6645–6649. Ieee, 2013.

162 BIBLIOGRAPHY

Griffin, D. and Lim, J. Signal estimation from modified short-time fourier transform. IEEE
Transactions on acoustics, speech, and signal processing, 32(2):236–243, 1984.

Grünwald, P., Van Ommen, T., et al. Inconsistency of Bayesian inference for misspecified
linear models, and a proposal for repairing it. Bayesian Analysis, 12(4):1069–1103, 2017.

Guo, Y., Du, C., Chen, X., and Yu, K. Emodiff: Intensity controllable emotional text-to-
speech with soft-label guidance. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2023.

Gupta, A. K. and Nagar, D. K. Matrix variate distributions. Chapman and Hall/CRC, 2018.

Hafner, D., Tran, D., Lillicrap, T., Irpan, A., and Davidson, J. Noise contrastive priors for
functional uncertainty. arXiv preprint arXiv:1807.09289, 2018.

Häggström, O. and Rosenthal, J. On variance conditions for markov chain clts. Electronic
Communications in Probability, 12:454–464, 2007.

Hayou, S., Doucet, A., and Rousseau, J. On the selection of initialization and activation
function for deep neural networks. arXiv preprint arXiv:1805.08266, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pp. 1026–1034, 2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pp. 1026–1034, 2015b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016b.

Heber, F., Trstanova, Z., and Leimkuhler, B. Tati-thermodynamic analytics toolkit:
Tensorflow-based software for posterior sampling in machine learning applications. arXiv
preprint arXiv:1903.08640, 2019.

Heek, J. and Kalchbrenner, N. Bayesian inference for large scale image classification. arXiv
preprint arXiv:1908.03491, 2019.

Hernández-Lobato, J. M. and Adams, R. Probabilistic backpropagation for scalable learning
of bayesian neural networks. In International Conference on Machine Learning, pp. 1861–
1869, 2015.

BIBLIOGRAPHY 163

Hinton, G. and Van Camp, D. Keeping neural networks simple by minimizing the description
length of the weights. In in Proc. of the 6th Ann. ACM Conf. on Computational Learning
Theory. Citeseer, 1993a.

Hinton, G. and Van Camp, D. Keeping neural networks simple by minimizing the description
length of the weights. In in Proc. of the 6th Ann. ACM Conf. on Computational Learning
Theory, 1993b.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hoffman, M. D. and Gelman, A. The no-u-turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

Hsu, W.-N., Zhang, Y., Weiss, R. J., Zen, H., Wu, Y., Wang, Y., Cao, Y., Jia, Y., Chen,
Z., Shen, J., et al. Hierarchical generative modeling for controllable speech synthesis. In
International Conference on Learning Representations, 2019.

Hunt, A. J. and Black, A. W. Unit selection in a concatenative speech synthesis system
using a large speech database. In 1996 IEEE international conference on acoustics, speech,
and signal processing conference proceedings, volume 1, pp. 373–376. IEEE, 1996.

Inoue, H. Multi-sample dropout for accelerated training and better generalization. arXiv
preprint arXiv:1905.09788, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Isik, U., Giri, R., Phansalkar, N., Valin, J.-M., Helwani, K., and Krishnaswamy, A. PoCoNet:
Better speech enhancement with frequency-positional embeddings, semi-supervised conver-
sational data, and biased loss. In Interspeech, 2020.

Jaakkola, T. and Jordan, M. A variational approach to bayesian logistic regression models and
their extensions. In Sixth International Workshop on Artificial Intelligence and Statistics,
volume 82, pp. 4, 1997.

Jansen, L. Robust Bayesian inference under model misspecification, 2013. Master thesis.

Jaynes, E. T. Probability theory: The logic of science. Cambridge university press, 2003.

Jia, Y., Zhang, Y., Weiss, R., Wang, Q., Shen, J., Ren, F., Nguyen, P., Pang, R.,
Lopez Moreno, I., Wu, Y., et al. Transfer learning from speaker verification to mul-
tispeaker text-to-speech synthesis. Advances in neural information processing systems, 31,
2018.

164 BIBLIOGRAPHY

Jia, Y., Ramanovich, M. T., Wang, Q., and Zen, H. CVSS corpus and massively multilin-
gual speech-to-speech translation. In Proceedings of Language Resources and Evaluation
Conference (LREC), pp. 6691–6703, 2022.

Jones, G. L. et al. On the Markov chain central limit theorem. Probability surveys, 1(299-320):
5–1, 2004.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. An introduction to variational
methods for graphical models. Machine learning, 37:183–233, 1999.

Karaletsos, T., Dayan, P., and Ghahramani, Z. Probabilistic meta-representations of neural
networks. arXiv preprint arXiv:1810.00555, 2018.

Kendall, A. and Gal, Y. What uncertainties do we need in bayesian deep learning for
computer vision? Advances in neural information processing systems, 30, 2017.

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and Srivastava, A. Fast
and scalable bayesian deep learning by weight-perturbation in adam. arXiv preprint
arXiv:1806.04854, 2018.

Kim, J., Kim, S., Kong, J., and Yoon, S. Glow-tts: A generative flow for text-to-speech
via monotonic alignment search. Advances in Neural Information Processing Systems, 33:
8067–8077, 2020.

Kim, J., Kong, J., and Son, J. Conditional variational autoencoder with adversarial learning
for end-to-end text-to-speech. In International Conference on Machine Learning, pp.
5530–5540. PMLR, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Kingma, D. P., Salimans, T., and Welling, M. Variational dropout and the local reparameter-
ization trick. In Advances in Neural Information Processing Systems, pp. 2575–2583, 2015.

Komaki, F. On asymptotic properties of predictive distributions. Biometrika, 83(2):299–313,
1996.

Kong, J., Kim, J., and Bae, J. Hifi-gan: Generative adversarial networks for efficient and
high fidelity speech synthesis. Advances in Neural Information Processing Systems, 33:
17022–17033, 2020a.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B. Diffwave: A versatile diffusion
model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020b.

BIBLIOGRAPHY 165

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009a.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009b.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Kullback, S. and Leibler, R. A. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

Kumar, A., Sattigeri, P., and Balakrishnan, A. Variational inference of disentangled latent
concepts from unlabeled observations. International Conference on Learning Representa-
tions, 2018.

Kumar, K., Kumar, R., De Boissiere, T., Gestin, L., Teoh, W. Z., Sotelo, J., De Brebisson, A.,
Bengio, Y., and Courville, A. C. Melgan: Generative adversarial networks for conditional
waveform synthesis. Advances in neural information processing systems, 32, 2019.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information Processing Systems
30. 2017.

Langevin, P. Sur la théorie du mouvement brownien. Compt. Rendus, 146:530–533, 1908.

Lao, J., Suter, C., Langmore, I., Chimisov, C., Saxena, A., Sountsov, P., Moore, D., Saurous,
R. A., Hoffman, M. D., and Dillon, J. V. tfp.mcmc: Modern Markov chain Monte Carlo
tools built for modern hardware, 2020.

LeCun, Y. and Cortes, C. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, A., Chen, P.-J., Wang, C., Gu, J., Popuri, S., Ma, X., Polyak, A., Adi, Y., He, Q., Tang,
Y., et al. Direct speech-to-speech translation with discrete units. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3327–3339, 2022.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. Deep
neural networks as gaussian processes. In ICLR, 2018.

Lee, S.-g., Ping, W., Ginsburg, B., Catanzaro, B., and Yoon, S. BigVGAN: A Universal Neural
Vocoder with Large-Scale Training. International Conference on Learning Representations,
2023.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

166 BIBLIOGRAPHY

Lee, Y. and Kim, T. Robust and fine-grained prosody control of end-to-end speech synthesis.
In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5911–5915. IEEE, 2019.

Leimkuhler, B. and Matthews, C. Molecular Dynamics. Springer, 2016.

Leimkuhler, B., Matthews, C., and Vlaar, T. Partitioned integrators for thermodynamic
parameterization of neural networks. arXiv preprint arXiv:1908.11843, 2019.

Li, C., Chen, C., Carlson, D., and Carin, L. Preconditioned stochastic gradient Langevin
dynamics for deep neural networks. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

Liao, J. and Berg, A. Sharpening jensen’s inequality. The American Statistician, 73(3):
278–281, 2019.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem, O.
Challenging common assumptions in the unsupervised learning of disentangled representa-
tions. In International Conference on Machine Learning, pp. 4114–4124. PMLR, 2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

Louizos, C. and Welling, M. Structured and efficient variational deep learning with matrix
gaussian posteriors. In International Conference on Machine Learning, pp. 1708–1716,
2016.

Louizos, C. and Welling, M. Multiplicative normalizing flows for variational bayesian neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2218–2227. JMLR. org, 2017.

Luong, H.-T., Takaki, S., Henter, G. E., and Yamagishi, J. Adapting and controlling dnn-
based speech synthesis using input codes. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4905–4909. IEEE, 2017.

Ma, Y.-A., Chen, T., and Fox, E. A complete recipe for stochastic gradient MCMC. In
Advances in Neural Information Processing Systems, pp. 2917–2925, 2015.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies-volume 1, pp. 142–
150. Association for Computational Linguistics, 2011.

MacKay, D. J. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

MacKay, D. J. et al. Ensemble learning and evidence maximization. In Proc. Nips, volume 10,
pp. 4083. Citeseer, 1995.

BIBLIOGRAPHY 167

Mandt, S., McInerney, J., Abrol, F., Ranganath, R., and Blei, D. M. Variational tempering.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
AISTATS, JMLR Workshop and Conference Proceedings, 2016.

Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic gradient descent as approximate
Bayesian inference. The Journal of Machine Learning Research, 18(1):4873–4907, 2017.

Marlin, B. M., Khan, M. E., and Murphy, K. P. Piecewise bounds for estimating bernoulli-
logistic latent gaussian models. In Proceedings of the International Conference on Machine
Learning, pp. 633–640, 2011.

Masegosa, A. R. Learning under model misspecification: Applications to variational and
ensemble methods. arXiv preprint, arXiv:19012.08335, 2019.

Masters, D. and Luschi, C. Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612, 2018.

Matoušek, J. and Vít, J. Improving automatic dubbing with subtitle timing optimisation
using video cut detection. In 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2385–2388. IEEE, 2012.

McGrayne, S. B. The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma
Code, Hunted Down Russian Submarines, & Emerged Triumphant from Two Centuries of
C. Yale University Press, 2011.

Miller, A. C., Foti, N. J., and Adams, R. P. Variational boosting: Iteratively refining posterior
approximations. In Proceedings of the 34th International Conference on Machine Learning,
pp. 2420–2429. JMLR. org, 2017.

Mishkin, A., Kunstner, F., Nielsen, D., Schmidt, M., and Khan, M. E. Slang: Fast structured
covariance approximations for bayesian deep learning with natural gradient. In Advances
in Neural Information Processing Systems, pp. 6245–6255, 2018.

Mitsui, K., Zhao, T., Sawada, K., Hono, Y., Nankaku, Y., and Tokuda, K. End-to-End Text-
to-Speech based on latent representation of speaking styles using spontaneous dialogue. In
Proc. Interspeech, pp. 2328–2332, 2022.

Murphy, K. P. Machine learning: a probabilistic perspective. MIT press, 2012.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining well calibrated probabilities using
bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Nalisnick, E., Hernandez-Lobato, J. M., and Smyth, P. Dropout as a structured shrinkage
prior. In International Conference on Machine Learning, pp. 4712–4722, 2019.

Neal, R. M. Bayesian learning via stochastic dynamics. In Advances in neural information
processing systems, pp. 475–482, 1993.

168 BIBLIOGRAPHY

Neal, R. M. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

Neal, R. M. et al. MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte
Carlo, 2(11):2, 2011.

Nemenman, I., Shafee, F., and Bialek, W. Entropy and inference, revisited. In Advances in
neural information processing systems, pp. 471–478, 2002.

Noh, H., You, T., Mun, J., and Han, B. Regularizing deep neural networks by noise: Its
interpretation and optimization. In Advances in Neural Information Processing Systems,
pp. 5109–5118, 2017.

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Hron, J., Abolafia, D. A., Pennington,
J., and Sohl-Dickstein, J. Bayesian deep convolutional networks with many channels are
gaussian processes. In ICLR, 2019.

Nowozin, S. Debiasing evidence approximations: On importance-weighted autoencoders and
jackknife variational inference. In Sixth International Conference on Learning Representa-
tions (ICLR 2018), 2018.

Ong, V. M.-H., Nott, D. J., and Smith, M. S. Gaussian variational approximation with
a factor covariance structure. Journal of Computational and Graphical Statistics, 27(3):
465–478, 2018.

Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., Driessche, G.,
Lockhart, E., Cobo, L., Stimberg, F., et al. Parallel wavenet: Fast high-fidelity speech
synthesis. In International conference on machine learning, pp. 3918–3926. PMLR, 2018.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,
N., Senior, A., and Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan,
M. E. Practical deep learning with Bayesian principles. arXiv preprint arXiv:1906.02506,
2019a.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan,
M. E. Practical deep learning with bayesian principles. arXiv preprint arXiv:1906.02506,
2019b.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Laksh-
minarayanan, B., and Snoek, J. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. arXiv preprint arXiv:1906.02530, 2019a.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Laksh-
minarayanan, B., and Snoek, J. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. In Advances in Neural Information Processing
Systems (NeurIPS 2019), 2019b.

BIBLIOGRAPHY 169

Pearce, T., Zaki, M., Brintrup, A., and Neely, A. Expressive priors in bayesian neural
networks: Kernel combinations and periodic functions. arXiv preprint arXiv:1905.06076,
2019.

Pearl, J. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan kaufmann, 1988.

Perez, L. and Wang, J. The effectiveness of data augmentation in image classification using
deep learning. arXiv preprint arXiv:1712.04621, 2017.

Peterson, C. A mean field theory learning algorithm for neural networks. Complex systems,
1:995–1019, 1987.

Popov, V., Vovk, I., Gogoryan, V., Sadekova, T., and Kudinov, M. Grad-tts: A diffusion
probabilistic model for text-to-speech. In International Conference on Machine Learning,
pp. 8599–8608. PMLR, 2021.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and Vesely, K. The kaldi
speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition
and Understanding. IEEE Signal Processing Society, December 2011. IEEE Catalog No.:
CFP11SRW-USB.

Prenger, R., Valle, R., and Catanzaro, B. Waveglow: A flow-based generative network for
speech synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3617–3621. IEEE, 2019.

Rabiner, L. and Schafer, R. Theory and applications of digital speech processing. Prentice
Hall Press, 2010.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and Sutskever, I. Robust
speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356, 2022.

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M. Using bayesian model
averaging to calibrate forecast ensembles. Monthly weather review, 133(5):1155–1174, 2005.

Ramamoorthi, R. V., Sriram, K., and Martin, R. On posterior concentration in misspecified
models. Bayesian Anal., 10(4):759–789, 12 2015. doi: 10.1214/15-BA941.

Ranganath, R., Gerrish, S., and Blei, D. Black box variational inference. In Artificial
Intelligence and Statistics, pp. 814–822, 2014.

Ranganath, R., Tran, D., and Blei, D. Hierarchical variational models. In International
Conference on Machine Learning, pp. 324–333, 2016.

Rattcliffe, D., Wang, Y., Mansbridge, A., Karanasou, P., Moinet, A., and Cotescu, M. Cross-
lingual Style Transfer with Conditional Prior VAE and Style Loss. In Proc. Interspeech
2022, pp. 4586–4590, 2022a. doi: 10.21437/Interspeech.2022-10572.

170 BIBLIOGRAPHY

Rattcliffe, D., Wang, Y., Mansbridge, A., Karanasou, P., Moinet, A., and Cotescu, M. Cross-
lingual Style Transfer with Conditional Prior VAE and Style Loss. In Proc. Interspeech
2022, pp. 4586–4590, 2022b. doi: 10.21437/Interspeech.2022-10572.

Recommendation, I. Bs. 1534-3: Method for the subjective assessment of intermediate quality
levels of coding systems. Geneva: International Telecommunications Union, 2015.

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y. Fastspeech: Fast,
robust and controllable text to speech. Advances in neural information processing systems,
32, 2019.

Ren, Y., Hu, C., Tan, X., Qin, T., Zhao, S., Zhao, Z., and Liu, T.-Y. Fastspeech 2: Fast
and high-quality end-to-end text to speech. In International Conference on Learning
Representations, 2020.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In International
Conference on Machine Learning, pp. 1530–1538, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate
inference in deep generative models. In International conference on machine learning, pp.
1278–1286. PMLR, 2014.

Robert, C. P. et al. The Bayesian choice: from decision-theoretic foundations to computational
implementation, volume 2. Springer, 2007.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10684–10695, 2022.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Saeki, T., Tachibana, K., and Yamamoto, R. DRSpeech: Degradation-Robust Text-to-
Speech Synthesis with Frame-Level and Utterance-Level Acoustic Representation Learning.
In Proc. Interspeech, pp. 793–797, 2022. doi: 10.21437/Interspeech.2022-294. URL
https://doi.org/10.21437/Interspeech.2022-294.

Salimans, T., Knowles, D. A., et al. Fixed-form variational posterior approximation through
stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.

Särkkä, S. and Solin, A. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-Dickstein, J. Deep information propaga-
tion. In ICLR, 2017.

Schucany, W., Gray, H., and Owen, D. On bias reduction in estimation. Journal of the
American Statistical Association, 66(335):524–533, 1971.

https://doi.org/10.21437/Interspeech.2022-294

BIBLIOGRAPHY 171

Seeger, M. Bayesian model selection for support vector machines, gaussian processes and
other kernel classifiers. In Advances in neural information processing systems, pp. 603–609,
2000.

Shang, X., Zhu, Z., Leimkuhler, B., and Storkey, A. J. Covariance-controlled adaptive
Langevin thermostat for large-scale bayesian sampling. In Advances in Neural Information
Processing Systems, pp. 37–45, 2015.

Shekhovtsov, A. and Flach, B. Stochastic normalizations as bayesian learning. arXiv preprint
arXiv:1811.00639, 2018.

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y.,
Wang, Y., Skerrv-Ryan, R., et al. Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions. In 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 4779–4783. IEEE, 2018.

Shen, K., Ju, Z., Tan, X., Liu, Y., Leng, Y., He, L., Qin, T., Zhao, S., and Bian, J.
Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing
synthesizers. arXiv preprint arXiv:2304.09116, 2023.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. Mastering the game of
go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Simsekli, U., Sagun, L., and Gurbuzbalaban, M. A tail-index analysis of stochastic gradient
noise in deep neural networks. arXiv preprint arXiv:1901.06053, 2019.

Singh, S. and Krishnan, S. Filter response normalization layer: Eliminating batch dependence
in the training of deep neural networks. arXiv preprint arXiv:1911.09737, 2019.

Skerry-Ryan, R., Battenberg, E., Xiao, Y., Wang, Y., Stanton, D., Shor, J., Weiss, R., Clark,
R., and Saurous, R. A. Towards end-to-end prosody transfer for expressive speech synthesis
with tacotron. In international conference on machine learning, pp. 4693–4702. PMLR,
2018a.

Skerry-Ryan, R., Battenberg, E., Xiao, Y., Wang, Y., Stanton, D., Shor, J., and Weiss,
Ron J. Rob Clark, R. A. S. Towards End-to-End Prosody Transfer for Expressive Speech
Synthesis with Tacotron. In International Conference on Machine Learning. PMLR, 2018b.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and Winther, O. How to train
deep variational autoencoders and probabilistic ladder networks. In 33rd International
Conference on Machine Learning (ICML 2016), 2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958, 2014.

172 BIBLIOGRAPHY

Sugita, Y. and Okamoto, Y. Replica-exchange molecular dynamics method for protein folding.
Chemical physics letters, 314(1-2):141–151, 1999.

Sun, G., Zhang, Y., Weiss, R. J., Cao, Y., Zen, H., and Wu, Y. Fully-hierarchical fine-
grained prosody modeling for interpretable speech synthesis. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6264–6268, 2020. doi: 10.1109/ICASSP40776.2020.9053520.

Sun, S., Chen, C., and Carin, L. Learning structured weight uncertainty in bayesian neural
networks. In Artificial Intelligence and Statistics, pp. 1283–1292, 2017.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional variational Bayesian neural networks.
arXiv preprint arXiv:1903.05779, 2019.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Swendsen, R. H. and Wang, J.-S. Replica Monte Carlo simulation of spin-glasses. Physical
review letters, 57(21):2607, 1986.

Tan, L. S. and Nott, D. J. Gaussian variational approximation with sparse precision matrices.
Statistics and Computing, 28(2):259–275, 2018.

Tan, X. Neural Text-to-Speech Synthesis. Springer Nature, 2023.

Taylor, P. Text-to-speech synthesis. Cambridge university press, 2009.

Tieleman, T. and Hinton, G. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 2012.

Titsias, M. and Lázaro-Gredilla, M. Doubly stochastic variational bayes for non-conjugate
inference. In International conference on machine learning, pp. 1971–1979, 2014.

Torresquintero, A., Teh, T. H., Wallis, C. G., Staib, M., Mohan, D. S. R., Hu, V., Foglianti,
L., Gao, J., and King, S. ADEPT: A Dataset for Evaluating Prosody Transfer. In Proc.
Interspeech, pp. 3880–3884, 2021. doi: 10.21437/Interspeech.2021-1610.

Tran, D., Dusenberry, M. W., Hafner, D., and van der Wilk, M. Bayesian Layers: A module
for neural network uncertainty. In Neural Information Processing Systems, 2019.

Turner, R. and Sahani, M. Two problems with variational expectation maximisation for
time-series models, pp. 109–130. Cambridge University Press, 2011.

Van Coile, B., Van Tichelen, L., Vorstermans, A., Jang, J., and Staessen, M. Protran: a
prosody transplantation tool for text-to-speech applications. In International Conference on
Spoken Language Processing. IEEE, 1994. URL http://www.isca-speech.org/archive/
icslp_1994/i94_0423.html.

http://www.isca-speech.org/archive/icslp_1994/i94_0423.html
http://www.isca-speech.org/archive/icslp_1994/i94_0423.html

BIBLIOGRAPHY 173

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Virkar, Y., Federico, M., Enyedi, R., and Barra-Chicote, R. Improvements to prosodic
alignment for automatic dubbing. In ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 7543–7574, 2021. doi: 10.1109/
ICASSP39728.2021.9414966.

Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., Williamson, M., Pino, J.,
and Dupoux, E. VoxPopuli: A large-scale multilingual speech corpus for representation
learning, semi-supervised learning and interpretation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 993–
1003, Online, August 2021. Association for Computational Linguistics. URL https:
//aclanthology.org/2021.acl-long.80.

Wang, C., Chen, S., Wu, Y., Zhang, Z., Zhou, L., Liu, S., Chen, Z., Liu, Y., Wang, H., Li,
J., et al. Neural codec language models are zero-shot text to speech synthesizers. arXiv
preprint arXiv:2301.02111, 2023.

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., Xiao, Y.,
Chen, Z., Bengio, S., et al. Tacotron: Towards end-to-end speech synthesis. arXiv preprint
arXiv:1703.10135, 2017.

Wang, Y., Stanton, D., Zhang, Y., Ryan, R.-S., Battenberg, E., Shor, J., Xiao, Y., Jia,
Y., Ren, F., and Saurous, R. A. Style tokens: Unsupervised style modeling, control and
transfer in end-to-end speech synthesis. In International Conference on Machine Learning,
pp. 5180–5189. PMLR, 2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pp.
681–688, 2011.

Wen, Y., Vicol, P., Ba, J., Tran, D., and Grosse, R. Flipout: Efficient pseudo-independent
weight perturbations on mini-batches. arXiv preprint arXiv:1803.04386, 2018.

Wen, Y., Tran, D., and Ba, J. BatchEnsemble: Efficient ensemble of deep neural networks
via rank-1 perturbation. 2019. Bayesian deep learning workshop 2019.

Weng, L. From autoencoder to beta-vae. lilianweng.github.io, 2018. URL https:
//lilianweng.github.io/posts/2018-08-12-vae/.

Wenzel, F., Roth, K., Veeling, B. S., Świątkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans,
T., Jenatton, R., and Nowozin, S. How good is the bayes posterior in deep neural networks
really? arXiv preprint arXiv:2002.02405, 2020.

https://aclanthology.org/2021.acl-long.80
https://aclanthology.org/2021.acl-long.80
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/

174 BIBLIOGRAPHY

Wilson, A. G. The case for Bayesian deep learning. NYU Courant Technical Report, 2019.
Accessible at https://cims.nyu.edu/~andrewgw/caseforbdl.pdf.

Wilson, A. G. and Izmailov, P. Bayesian deep learning and a probabilistic perspective of
generalization. arXiv preprint arXiv:2002.08791, 2020.

Wolpert, D. H. and Wolf, D. R. Estimating functions of probability distributions from a
finite set of samples. Physical Review E, 52(6):6841, 1995.

Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernández-Lobato, J. M., and Gaunt, A. L.
Deterministic variational inference for robust bayesian neural networks. In International
Conference on Learning Representations (ICLR 2019), 2019.

Wu, Y., Tan, X., Li, B., He, L., Zhao, S., Song, R., Qin, T., and Liu, T.-Y. Adaspeech 4:
Adaptive text to speech in zero-shot scenarios. arXiv preprint arXiv:2204.00436, 2022.

Yaida, S. Fluctuation-dissipation relations for stochastic gradient descent. arXiv preprint
arXiv:1810.00004, 2018.

Yang, G. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M. Soundstream: An
end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 30:495–507, 2021.

Zen, H., Tokuda, K., and Black, A. W. Statistical parametric speech synthesis. speech
communication, 51(11):1039–1064, 2009.

Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. Advances in variational inference.
IEEE transactions on pattern analysis and machine intelligence, 2018a.

Zhang, C., Ren, Y., Tan, X., Liu, J., Zhang, K., Qin, T., Zhao, S., and Liu, T.-Y. DenoiSpeech:
Denoising text to speech with frame-level noise modeling. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 7063–7067. IEEE, 2021.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy natural gradient as variational
inference. arXiv preprint arXiv:1712.02390, 2017.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy natural gradient as variational
inference. International Conference on Machine Learning, 2018b.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G. Cyclical stochastic gradient
MCMC for bayesian deep learning. arXiv preprint arXiv:1902.03932, 2019a.

https://cims.nyu.edu/~andrewgw/caseforbdl.pdf

BIBLIOGRAPHY 175

Zhang, Y., Cong, J., Xue, H., Xie, L., Zhu, P., and Bi, M. VISinger: Variational inference
with adversarial learning for end-to-end singing voice synthesis. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7237–7241. IEEE,
2022.

Zhang, Y.-J., Pan, S., He, L., and Ling, Z.-H. Learning latent representations for style control
and transfer in end-to-end speech synthesis. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6945–6949, 2019b.
doi: 10.1109/ICASSP.2019.8683623.

Zhang, Y.-J., Pan, S., He, L., and Ling, Z.-H. Learning latent representations for style
control and transfer in end-to-end speech synthesis. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6945–6949. IEEE, 2019c.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic noise in stochastic gradient
descent: Its behavior of escaping from sharp minima and regularization effects. In
Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 2019.

	Introduction
	List of publications
	Overview
	Deep learning
	Bayesian inference
	Variational inference
	Gaussian Mean-Field Variational Inference

	Variational Inference in Bayesian Neural Networks
	Bayesian Neural Networks
	Variational Inference Bayesian Neural Networks
	Gaussian Mean-Field Variatonal Inference Bayesian Neural Network

	SG-MCMC Bayesian Neural Networks
	Posterior Simulation using Langevin Dynamics
	Stochastic Gradient MCMC (SG-MCMC)

	Summary of Chapter 4
	Introduction
	Results

	Summary of Chapter 5

	Variational Inference in Neural Speech Synthesis
	Overview
	Speech Synthesis
	Task formulation
	Speech signal processing
	High-level system architecture
	Text analysis
	Acoustic models
	Vocoders
	Controllability

	Variational Auto-Encoder (VAE)
	Gaussian Mean-Field Variational Auto-Encoder
	Practical challenges with training VAEs

	VAE in Speech Synthesis
	VAE for Prosody Transfer
	VAE for Audio Representation Learning

	Machine Dubbing
	Summary of Chapter 6
	Summary of Chapter 7

	The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
	Overview
	Introduction
	Mean Field Posterior Standard Deviations Naturally Have Low-Rank Structure
	Methodology
	Experimental setting
	Main experimental observation
	Low-rank approximation of mean field posterior standard deviations

	The k-tied Normal Distribution: Exploiting Low-Rank...
	Experimental setting
	Experimental results

	Related Work
	Conclusion

	How Good is the Bayes Posterior in Deep Neural Networks Really?
	Overview
	Introduction
	Why Should Bayes (T=1) be Better?

	Cold Posteriors Perform Better
	Deep Learning Models: ResNet-20 and LSTM
	Why is a Temperature of T < 1 a Problem?
	Confirmation from the Literature

	Accurate SG-MCMC Simulation
	Inference: Is it Accurate?
	Hypothesis: Inaccurate SDE Simulation
	Hypothesis: Biased SG-MCMC
	Hypothesis: Stochastic Gradient Noise
	Hypothesis: Bias-Variance Trade-off

	Why Could the Bayes Posterior be Poor?
	Problems in the Likelihood Function?
	Problems with the Prior?
	Inductive Bias due to SGD?

	Alternative Explanations?
	Related Work on Tempered Posteriors
	Conclusion

	Cross-lingual Prosody Transfer for Expressive Machine Dubbing
	Overview
	Introduction
	Modelling
	Prosody Encoder
	Noise Modelling
	Training Setup

	Evaluations
	Perceptual Metrics
	Analysis of Prosody Embedding Space
	Objective Metrics For Other Language Pairs

	Conclusions

	Expressive Machine Dubbing Through Phrase-level Cross-lingual Prosody Transfer
	Overview
	Introduction
	Method
	Phrase-level reference encoder
	Length-based regularization
	Noise modelling at phrase-level
	Alignment of phrase-level audio reference embeddings to target text phonemes

	Experiments
	Training setup
	Data
	Evaluated systems
	Subjective Evaluation
	Objective Metrics

	Conclusions

	Appendix for Chapter 4
	Proof of the Matrix Variate Normal Parameterization
	He-scaled Normal Prior
	KL Annealing with Adam
	Experimental Details
	Models and datasets
	GMFVI training
	Low-rank structure analysis
	k-tied Normal posterior training

	Appendix for Chapter 5
	Model Details
	ResNet-20 CIFAR-10 Model
	ResNet-20 CIFAR-10 SGD Baseline
	CNN-LSTM IMDB Model
	CNN-LSTM IMDB SGD Baseline

	Deep Learning Parameterization of SG-MCMC Methods
	Connection to Stochastic Gradient Descent (SGD)
	Semi-Adaptive Estimation of Layerwise Preconditioner M
	Kullback-Leibler Scaling in Variational Bayesian Neural...
	Inference Bias-Variance Trade-off Hypothesis
	Cold posteriors improve uncertainty metrics.
	Details on the Experiment for the Implicit Initialization Prior...
	Diagnostics: Temperatures
	Kinetic Temperature Estimation
	Configurational Temperature Estimation

	Simulation Accuracy Ablation Study
	Dirty Likelihood Functions
	Augmented Latent Model
	Log-likelihood Bound and Jensen Posterior
	Deep Learning Techniques Optimize Jensen Posteriors
	Dirty Likelihood Experiment

	Prior Predictive Analysis for Different Prior Scales
	He-Scaled Normal Prior, N(0,I) for Biases
	He-Scaled Normal Prior, N(0,I) for Biases

	Tempering the Observation Model?
	Details: Generation of a Synthetic Dataset Based on an MLP Drawn From its Prior Distribution
	Details about Hamiltonian Monte Carlo
	Hyperparameter choices
	Convergence monitoring
	KL divergence between predictive distributions

