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A B S T R A C T

In the present work, we undertake two problems of computational
chemistry: retention time alignment and synthetic accessibility scoring.
For the former one, we present the Alignstein, an algorithm for LC-
MS retention time alignment by feature matching. We show that the
algorithm can find the correspondence appropriately even for signals
of swapped elution order. We achieve this by taking advantage of
the generalization of the Wasserstein distance as mass spectra and
feature dissimilarity measure. It allows us to incorporate all signal
information and compare features not only by monoisotopic mass
but also by their spatial properties or signal distribution. We validate
the algorithm on publicly available benchmark datasets obtaining
competitive results. Finally, we show that it can detect the information
contained in the tandem mass spectrum by the spatial properties of
LC-MS chromatograms.

For the latter problem, we design three different synthetic acces-
sibility scores. The first one is based on a manually prepared set of
descriptors, computed on molecules from the database. This model
uses stochastic gradient descent to model the distribution of descrip-
tors and predict the likelihood of molecule structure. The second
model is based on the same set of descriptors but applies supervised
learning to predict compound synthetic accessibility. It requires cre-
ating a part dataset representing infeasible molecules, for which we
use the bootstrap method. The last model is based on semisupervised
learning for outliers detection: One Class SVM. It does not require
creating part of the dataset corresponding to non-existent molecules.
Moreover, we trained it on extended-connectivity fingerprints, which
allows for capturing all possible structural patterns. In this work, we
discuss their applicability as a preretrosynthesis heuristic, their limi-
tations, as well as verify the correctness of their predictions. One of
the challenges of designing new synthetic accessibility scores is their
verification with a ground-truth dataset. To this point, we assess if
synthetic accessibility scores: SAscore, SCScore, RAscore, SYBA, and
previously described OCSVM-based score can reliably predict out-
comes and complexity of the retrosynthesis planning performed by the
AiZynthFinder tool. Moreover, by in-depth analysis of AiZynthFinder
search trees, we assess if synthetic accessibility scores can speed up
retrosynthesis planning by better prioritizing partial synthetic routes.
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S T R E S Z C Z E N I E

W niniejszej pracy podejmujemy dwa problemy chemii obliczeniowej:
problem uliniowienia czasu retencji w chromatografii cieczowej oraz
problem przewidywania syntezowalności cząsteczek. W przypadku
pierwszego z nich przedstawiamy Alignsteina, algorytm do uliniowie-
nia czasu retencji metodą mapowania cech. Pokazujemy, że algorytm
ten może poprawnie znaleźć odpowiedniość sygnałów nawet o zamie-
nionej kolejności elucji. Aby to osiągnąć, korzystamy z uogólnienia
dystansu Wassersteina jako miary podobieństwa widm masowych. Po-
zwala nam uwzględnić wszystkie informacje o cechach i porównywać
je nie tylko na podstawie różnicy masy monoizotopowej, ale także ich
właściwości przestrzennych, czy rozkładu sygnału. Weryfikujemy al-
gorytm na publicznie dostępnych zestawach danych porównawczych,
uzyskując konkurencyjne wyniki. Na koniec pokazujemy, że może
wykryć informacje zawarte w tandemowym widmie masowym za
pomocą przestrzennych właściwości chromatogramów.

Dla drugiego problemu projektujemy trzy różne modele oceny syn-
tezowalności cząsteczek. Pierwszy oparty jest na ręcznie przygotowa-
nym zestawie deskryptorów cząsteczek. Model ten wykorzystuje me-
todę stochastycznego spadku wzdłuż gradientu do modelowania roz-
kładu deskryptorów i przewidywania prawdopodobieństwa struktury
cząsteczki. Drugi model opiera się na tym samym zestawie deskryp-
torów, ale wykorzystuje uczenie nadzorowane do syntezowalności
związków chemicznych. Wymaga on, aby zbiór treningowy zawierał
elementy reprezentujące nieistniejące cząsteczki Tworzymy je stosując
metodę bootstrap. Ostatni model oparty jest na uczeniu częściowo
nadzorowanym stworzonym celu do wykrywania anomalii w zbiorach
treningowych: jednoklasowego SVM. Nie wymaga on tworzenia czę-
ści zbioru treningowego odpowiadającej nieistniejącym cząsteczkom.
Co więcej, wytrenowaliśmy go na ECFP, numerycznej reprezentacji
cząsteczek, która pozwala na zakodowanie obecności wszystkich moż-
liwych wzorców strukturalnych. W tej pracy omawiamy poprawność
predykcji modeli do przewidywania syntezowalności, a także ich ogra-
niczenia. Jednym z wyzwań związanych z projektowaniem nowych
modeli do oceny syntezowalności cząsteczek jest ich weryfikacja na
dobrze opisanym zbiorze danych. W tym celu analizujemy, czy mo-
dele do oceny syntezowalności: SAscore, SCScore, RAscore, SYBA a
także wcześniej opisany model oparty na jednoklasowym SVM mogą
wiarygodnie przewidywać wyniki i złożoność planowania retrosyn-
tetycznego. Ponadto dogłębnie analizujemy drzewa przeszukiwania
narzędzia AiZynthFinder i oceniamy, czy modele do oceny syntezo-
walności mogą przyspieszyć planowanie retrosyntetyczne poprzez
lepsze priorytetyzowanie częściowych wyników.
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Part I

C O M P U TAT I O N A L P R O B L E M S O F
C H E M I C A L S C I E N C E





1
I N T R O D U C T I O N

With the development of high-level programming languages, such as
Fortran, and the field of scientific computing, computational chemistry
spread in the 1960s. The term chemometrics emerged for the first time
in 1971 in Svante Wold’s grant proposal and one year later in his
article (in Swedish) [1]. Shortly after, in 1974 Kowalski joined him and
created an International Chemometrics Society [2–4]. In the beginning,
the main areas of chemometrics research were: processing datasets ob-
tained from instrumental analysis [5–7], computer-assisted synthesis
planning (CASP) [8, 9], automatic molecular structure prediction [2, 10].
Parallelly to chemometrics development, researchers were interested
in automated processing of chemical information [11, 12], such as:
2D and 3D quantitative structure-activity relationship [13], chemical
structure encoding [14–16], database deposition and searching [17],
molecular fingerprints and molecular similarity detection [18–20]. With
the development of public and commercial databases (e.g. Cambridge
Structural Database [21] or Chemical Abstracts Service [22]) and an
increasing amount of processed data, cheminformatics emerged in the
1980s [2]. In the 1990s, it became recognized as a distinct discipline [23].
The term cheminformatics was used for the first time in 1998 by Brown
in his work [24]. Recently, with continuously increasing computational
power and the development of machine learning (ML) techniques,
cheminformatics is also getting focused on other problems such as
computer-assisted drug discovery (CADD) or molecular dynamics sim-
ulations. This resulted in a spread of various computational models,
for example, molecular docking or molecular dynamics, which allow
for the design of new, unknown molecular structures [25–28].

In the present work, we undertake two computational problems
of chemistry: one originating from automatic analysis mass spec-
trometry (MS) results and the other one originating from CASP. The
former is the problem of retention time (RT) alignment for liquid
chromatography-mass spectrometry (LC-MS) experiments. MS is an
analytical instrumental method that allows for precise measuring a
mass-to-charge ratio (M/Z) of ions. A set of masses and measured
mass intensities are stored in a mass spectrum plot. Complex mixtures
require, however, prior separation usually done by liquid chromatog-
raphy (LC). It is less reproducible than MS due to the appearance of
RT drift, which needs to be corrected during the data analysis. This
correction is named RT alignment (see Section 1.1 for details). Here,
we present an Alignstein, a retention time alignment algorithm which
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4 introduction

is based on the Wasserstein distance a spectra dissimilarity measure
as described in Chapters 2-4.

The latter problem regards CASP and computational retrosynthe-
sis. It is a technique for finding synthetic routes of target molecules
from simple, available precursors. Although the existence of many
retrosynthetic algorithms, still their computation time is too high for
screening methods. One of the solutions is computing synthetic ac-
cessibility scores which allow for predicting if a given compound
is synthesizable (see Section 1.2 for details). Here, we design three
different accessibility scores (Chapter 5) and discuss their applicability
as a preretrosynthesis heuristic. Moreover, we assess the accuracy of
CASP tools and compare the available synthetic accessibility scores
(Chapter 6).

1.1 the problem of the retention time alignment

Advances in LC-MS have provided a remarkable insight into the func-
tioning of the organisms, ranging from protein level [29], through
tissue [30] to environmental networks [31]. All of these research stud-
ies benefit from the possibility of separating complex mixtures in
the liquid chromatographic column and then measuring the analytes
with a high throughput mass spectrometer. Although LC-MS systems
provide precise answers to both quantitative and qualitative biological
and medical questions, designing algorithms for efficient and precise
analysis of LC-MS datasets remains challenging.

One of these challenges is the correction of errors caused by reten-
tion time RT drift. It limits the reproducibility of LC separation, which is
important for experiments usually acquired in many (even hundreds)
replicates. RT drift became a significant obstacle with the emergence
of high-performance chromatography (HPLC) and ultra-performance
chromatography (UPLC) technologies. For example, nanoflow UPLC

column separation takes a relatively long time, usually up to several
hours. For these experiments, the elution time of peptides may vary
up to 5 minutes [32] or even 10 minutes [29].

RT drift can be corrected by the experimental protocol only to a
limited extent [33]. It may change the whole gradient or affect only
single peaks. These changes may be caused by various reasons such as
the unstable mobile phase, the column change or degradation, sample
chemical instability, or imprecise experiment setup [34–36].

RT drift requires a correction, usually named the RT alignment. It re-
sults in the correspondence of signals across runs [37]. For example, in
proteomics, the signal correspondence of the same peptides is needed
for further applying label-free quantification (LFQ) for which samples
must be measured separately [38, 39]. Moreover, for LFQ techniques,
we cannot obtain the correspondence any other way because analytes



1.1 the problem of the retention time alignment 5

do not have any additional information, such as metabolic labels, or
chemical tags [40, 41].

RT drift may swap the order of eluting analytes. For example, in
a dataset of Marine Mussels’ intestinal protein, we analyzed that
about 3 % of all identified feature pairs are swapped between two
chromatograms (cf. Section 4.3). Although many of the available algo-
rithms properly align most signals, still they fail to resolve swaps.

The vast majority of approaches to RT alignment are so-called warp-
ing algorithms, e.g. OpenMS [42], MetAlign [43], MZMine 2 [44],
SIMA [45], the solution proposed by Zhang [46], MS-Dial [47], DI-
AlignR [48], the solution proposed by Chiung-Ting Wu, et al. [49],
These algorithms consist of applying a warping function that trans-
forms the chromatograms by shifting, stretching, and squeezing. These
transformations result in a close distance between corresponding sig-
nals. After alignment, however, further feature detection and matching
are still required to obtain the signal correspondence. These algorithms’
applicability is limited because the warping function is applied under
the assumption that ions elute monotonically with RT. Thus, they are
not able to deal with elution order swaps.

Alternatively, a rarer implemented approach is feature matching,
e.g. OpenMS [42] (both warping and matching algorithm), MassUn-
tangler [50], LWBMatch [51], the solution proposed by Wandy, et
al. [52], Quandenser [53]. Algorithms by feature matching find the
correspondence between initially detected features of two or more
chromatograms. Features are convex sets of peaks representing the
signal of a single analyte. Corresponding features represent the same
analyte and further will be referred to as consensus features. To the
best of the authors’ knowledge, all matching algorithms reduce multi-
dimensional features to one-dimensional extracted ion chromatogram
or a single point with monoisotopic peak M/Z and average RT value,
ignoring the information of isotopic envelope or feature span over the
RT dimension. Without feature spatial characteristics and information
of coeluting ions, elution order swaps are practically undetectable [36].
The main reason for this simplification lies in the difficulty to find
multidimensional feature dissimilarity measures. Typically, Euclidean
distance between points or one-dimensional cosine-like spectra simi-
larity scores is applied [54, 55].

In this work, we present a feature matching RT alignment algorithm
named Alignstein. It overcomes the limitations of current algorithms
and properly resolves the correspondence of analytes of swapped
elution order. To achieve this, we take advantage of the generalization
of the Wasserstein distance (GWD) [56] to compare multidimensional
features as described in Chapter 2. It originates from the optimal trans-
port (OT) theory and has been recently attracting growing attention to
various problems of mass spectrometry [54, 57–60]. In brief, the Wasser-
stein distance describes the cost of the optimal way how to transform
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Figure 1.1: The optimal transport plan between two features. The Wasserstein
distance captures not only the distance of feature drift along the
RT dimension but also spatial differences between features. Here,
the left feature consists of three ions, right feature consists of four
ions. To properly capture this difference, part of the signal must
be transported between different ions (denoted with arrows) and
thus the transport cost (the Wasserstein distance) is higher.

one feature into the other one. The transformations include not only
shifting the signal from one feature to another but also splitting or
combining the signal between peaks (cf. Figure 1.1). To obtain the
most feasible alignment results, Alignstein has formulated a complex
optimization signal-matching problem, for which we use clustering
and network flow algorithms to achieve a computationally tractable
outcome as described in Chapter 3. We evaluated Alignstein on several
different datasets and achieved competitive results as described in
Chapter 4.

1.2 the problem of synthetic accessibility scoring

CASP consists of two tasks: reactions forward planning and retrosyn-
thesis. The former is predicting the outcomes of reaction for given
reactants. The latter is a method of planning the synthesis scheme of
chemical compounds from simple precursors available in stock, to syn-
thesized intermediates, and the target molecule. Synthesis planning
remained a laborious, manual task until the 1960s when Corey [61]
formalized the idea of CASP and then implemented it in LHASA [9]
software. Over the years, new solutions were developed that auto-
mated subsequent planning elements, required less human interven-
tion, and increased the speed and accuracy of algorithms [62–64].
Over the last decade, several modern, ML-based CASP tools were in-
dependently developed: from closed vendor software, e.g. Synthia
(previously Chematica) [65, 66], to the closed source with the available
interface, e.g. IBM RXN [67], and open-source ones, e.g. LillyMol [68],
AiZynthFinder [69–71], ASKCOS Tree-builder [72], AutoSynRoute [73].
Currently, a standard CASP tool [74] consists of three modules: (i) the
database of reaction templates and rules on how to apply them to ana-
lyzed molecules, (ii) algorithms searching for possible synthetic routes,
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(iii) a database of in-stock molecules. The aforementioned tools differ
significantly in the design of every module. For example, the database
of reaction templates may be manually encoded with a rule-based
algorithm for reaction prediction, e.g. Synthia. It may be also automat-
ically extracted and reactions may be predicted with a neural network,
e.g. LillyMol, AiZynthFinder, and ASKCOS Tree-builder. Finally, re-
actions may be predicted using a template-free seq2seq algorithm [75]
known from natural language processing as implemented IBM RXN.

Besides CASP tools’ strengths, their key bottleneck is computational
complexity. During retrosynthesis planning runtime, potentially expo-
nential in size search space of solution candidates (partial synthetic
routes) must be traversed. It makes CASP tools non-applicable when
numerous molecules need to be immediately checked for synthesiz-
ability. One example is a virtual screening (VS) method known in
CADD. During VS, even billions of compound candidates are evaluated
for desired properties; thus, searching for a synthetic route for each of
these candidates is computationally intractable.

This limitation may be overcome by scoring the synthetic acces-
sibility, i.e. by predicting how the molecule of a given structure is
synthesizable. Previously, synthetic accessibility scores were based on
single molecular properties selected manually by experts [76–79]. With
the emergence of machine learning and deep learning (DL) methods,
new scores were designed. They can be divided into structure-based
and reaction-based approaches. Structure-based approaches evaluate
the feasibility of molecular structure, e.g. SAscore [80], SYBA [81],
GASA [82]. Reaction-based approaches predict the synthetic accessibil-
ity by capturing the similarity of synthetic routes deposited in reaction
databases, e.g. SCScore [83], RAscore [84], CMPNN [85].

Here, we pose the question if synthetic accessibility scores can speed
up retrosynthesis planning by better prioritizing partial synthetic
routes. For this reason, we propose three different structure-based
models for scoring synthetic accessibility as described in Chapter 5.
The first one is based on a carefully curated set of descriptors, i.e.
structural patterns which encode compounds’ molecular properties.
We discuss whether special descriptors with an appropriately trained
model can overcome the limitations of existing synthetic accessibility
scores. Here, we use stochastic gradient descent to model the dis-
tribution of descriptors in existing molecules and predict molecule
likelihood. The second score is based on the same set of descriptors but
applies a supervised learning model to predict compound synthetic
accessibility. A challenging part of its design is part of the training set
representing infeasible molecules. It is created using bootstrap meth-
ods, i.e. by randomizing fragments of real molecules’ descriptors. The
last model is based on semisupervised learning for outliers detection:
One-class Support Vector Machines (OCSVM). This approach allows for
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omitting to create a negative set and the model predicts if the new test
molecule is similar to any molecule from the training set or not.

One of the challenges of designing new synthetic accessibility scores
is their verification with a ground-truth dataset. There is a lack of
critical assessment of synthetic accessibility scores on the standard-
ized dataset with common test conditions. Moreover, the majority of
aforementioned scores are publicly available and documented, but
their applicability as a pre-retrosynthesis heuristic is known to a lim-
ited extent. To this end, we assess if synthetic accessibility scores can
reliably predict outcomes of retrosynthesis planning as described in
Chapter 6. We also analyze if synthetic accessibility scores can speed
up the retrosynthesis planning by reducing the size of the search
space. Specifically, we analyze the outcomes and runtime of the ret-
rosynthetic tool AiZynthFinder on a specially prepared compounds
database. We assess if four scores: SAscore, SCScore, RAscore, and
SYBA properly predict the results of retrosynthesis planning and the
search complexity and compare them with the synthetic accessibility
score based on the OCSVM model (see Section 5.3). To do this, we
analyze the AiZynthFinder partial solutions search trees. Moreover, by
in-depth analysis of these search trees, we assess if synthetic accessibil-
ity scores can speed up retrosynthesis planning by better prioritizing
partial synthetic routes.

To the best of the authors’ knowledge, it is the first of this kind of as-
sessment. Although benchmarks are available in cheminformatics, they
focus on the outputs of the CASP tools [86] or synthetic accessibility
scores alone [87, 88].

1.3 author’s contribution

This thesis describes the author’s scientific research achieved during
Ph. D. studies. Results presented in Part ii were published in the
article:

Grzegorz Skoraczyński, Anna Gambin, and Błażej Miasojedow. “Align-
stein: Optimal Transport for Improved LC-MS Retention Time Align-
ment.” In: GigaScience 11 (Nov. 2022), giac101.

The author as the first author of this work, co-worked on the algorithm
design, as well as implemented and verified its accuracy. Section 2.2
partially summarizes the article:

Michał Aleksander Ciach, Błażej Miasojedow, Grzegorz Skoraczyński,
Szymon Majewski, Michał Startek, Dirk Valkenborg, and Anna Gam-
bin. “Masserstein: Linear Regression of Mass Spectra by Optimal
Transport.” In: Rapid Communications in Mass Spectrometry (Sept. 2020),
e8956.

For this article, the author implemented the analysis of human hemoglobin
spectra deconvolution, as well as co-worked on algorithm implemen-
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tation. Finally, the content of Chapter 6 comes from the article (a
preprint):

Grzegorz Skoraczyński, Mateusz Kitlas, Błażej Miasojedow, and Anna
Gambin. “Critical Assessment of Synthetic Accessibility Scores in
Computer-Assisted Synthesis Planning.” In: Chemrxiv (Nov. 2022),

which was accepted for publication in Journal of Cheminformatics re-
cently. The author led this project, and being one of the first authors,
performed statistical data analysis, and revised a tool for analysis of
synthetic accessibility scores and AiZynthFinder search trees.





Part II

L C - M S R E T E N T I O N T I M E A L I G N M E N T





2
S C O R I N G M A S S S P E C T R A S I M I L A R I T Y

One of the key bottlenecks of currently developed RT alignment algo-
rithms is the inability to effectively compare signal sets, e.g. spectra.
Typically, cosine-like similarity scores are used [91, 92]. These methods
treat mass spectra as vectors in one space and compare by measuring
the angle between them using a cosine or a similar statistic (dot-
product, correlation [55]). For this purpose, intensity vectors require to
have the same length. It is achieved by prior peak matching between
two spectra so that peaks of small M/Z difference (e.g. M/Z difference
smaller than 0.5 Da [93]) are treated as corresponding. Usually, it
is obtained by binning intensities in M/Z ranges of constant size or
by gathering the signal around the most intense peaks [93, 94]. If
a1, . . . ,an and b1, . . . ,bn are matched intensities of spectra then the
similarity between them is equal to the cosine between them:∑n

i=1 ai · bi√∑n
i=1 a

2
i ·
√∑n

i=1 b
2
i

.

These similarity scores have, however, several limitations:

• they rely on the arbitrary peak matching or M/Z domain unifica-
tion and thus are limited when comparing spectra of different
resolutions;

• they are non-scalable with dimension, e.g. not capable of com-
paring LC-MS features;

• they cannot reliably compare similar but highly distanced spec-
tra, e.g. peptide MS1 spectra with a single peptide modification
or post-translational modification, metabolomic spectra with
different TMS derivatization;

• they score precisely only highly similar spectra but for nonsimi-
lar spectra their precision drastically falls [95].

Although these limitations are known and well described, the majority
of similarity score improvements focus on details of computed statis-
tics leaving the aforementioned problems unsolved [55, 95]. Recently,
Huber et al. developed Spec2Vec [95], one of the few conceptually dif-
ferent approaches for spectra similarity. They apply techniques known
from ML and natural language processing. Here, we propose a differ-
ent approach to measuring spectra dissimilarity, which originates from
the OT theory – the Wasserstein distance [96] with further generaliza-
tions [56, 97]. Its design significantly differs from currently existing

13
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similarity scores and thus it overcomes the majority of their limitations.
The Wasserstein distance is also known in computer science literature
as an Earth Mover’s Distance [98] because it can be interpreted as
a way of transforming one pile of sand into the other with the least
used amount of work. We introduce its definition in Section 2.1 and
in Section 2.2, we show its applicability to mass spectrometry by the
presentation of masserstein package. Then in Section 2.3, we general-
ize the Wasserstein distance so that it allows us to compute it more
effectively and better deal with noise. Finally, we describe the most
successful application for algorithms in mass spectrometry, Alignstein,
the algorithm for LC-MS retention time alignment. For this algorithm,
we applied a Wasserstein distance to compare multidimensional sets of
signals and it emerged to be a key to resolving signal correspondence
of swapped order.

2.1 the wasserstein distance

Recently, the Wasserstein distance has emerged as a practical metric
for comparing probability measures. It transfers also naturally to
mass spectrometry. The mass spectrum represents the distribution of
charged ions in a spectrometer detector, and thus it corresponds to
some probability measure. Here, we introduce a formal definition of
the Wasserstein distance and provide a handy notation for generalizing
the Wasserstein distance in Section 2.3.

Suppose, that we have a spectrum represented by a measure µ. We
normalize the spectrum by its total ion current without substantial loss
of information and thus we assume that µ is a probability measure.
We evaluate centroided spectra, i.e. spectra in which continuous signal
was discretized by finding local signal maxima via peak-picking. Thus,
we also assume that the measure µ has discrete and finite support.

Further in the text, we denote spectrum and measure µ interchange-
ably. For given measure µ, we denote its support as Supp(µ) =

(x1, . . . , xn)T, which corresponds to M/Z values and measure masses
µ = (µ1, . . . ,µn)T corresponding to intensities located in Supp(µ).

Suppose we have two measures µ and ν with supports Supp(µ) =
(x1, . . . , xn)T and Supp(ν) = (y1, . . . ,ym)T and weights µ = (µ1, . . . ,µn)T

and ν = (ν1, . . . ,νm)T. For the Wasserstein distance formulation, we
define the cost matrix M ∈ R

n,m
>0 , so that:

Mi,j = |xi − yi|.

Cost matrix M describes the cost of transportation of the unit of ion
current from peak located in M/Z xi of spectrum µ to peak located in
M/Z yi of spectrum ν. Here, we use the `1 metric as a cost.

We define also set U as a set of all couplings between measures µ
and ν as:

U(µ,ν) =
{
T ∈ R

n,m
>0

∣∣∣ T · 1m = µ, T T · 1n = ν
}

.
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We name the coupling T ∈ R
n,m
>0 as a transport plan, where Ti,j

describes amount of ion current transported from xi of spectrum µ to
yi of spectrum ν. For given transport plan T and cost matrix M, we
define a transport cost as a sum of multiplied transported amounts of
ion current and costs, i.e.:∑

i,j

TijMij

The Wasserstein distance is the cost of the optimal transport plan, i.e.
cost of the solution to the OT problem:

OTM(µ,ν) = min
T∈U(µ,ν)

∑
i,j

TijMij. (2.1)

If T∗ is the optimal transport plan, then the Wasserstein distance is:

dW(µ,ν) =
∑
i,j

T∗ijMij.

The problem of finding optimal T∗ is an linear programming (LP)
problem, but for one-dimensional spectra, it can be computed in linear
time [99].

Example. Suppose that we want to compute the Wasserstein distance
between two spectra depicted in Figure 2.1. Spectra µ and ν can be
defined so that

µ =

(
1

3
,
2

3

)T

with Supp(µ) = (1, 2)T
and

ν =

(
2

3
,
1

3

)T

with Supp(ν) = (1, 3)T .

Then, the cost matrix is equal to:

M =

[
0 2

1 1

]
.

and the optimal transport plan, depicted with blue lines, is equal to:

T∗ =

[
1
3 0
1
3

1
3

]
.

The cost of optimal transport (the Wasserstein distance) equals:

dW(µ,ν) =
1

3
· 0+ 0 · 2+ 1

3
· 1+ 1

3
· 1 = 2

3
.

◦
The Wasserstein distance as spectra dissimilarity measure overcomes

limitations of existing similarity scores. It is not based on arbitrary
peak matching. Instead, for optimal transformation, the signal from a
single peak may be transported to several peaks of the other spectrum.
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Figure 2.1: Optimal transport between two simple spectra.

Thus, the Wasserstein distance can compare meaningfully even spectra
of different resolutions. Moreover, it is capable of transporting signals
over larger distances, so it is capable of comparing different spectra
giving intermediate values of similarity. Finally, it is easily scalable
with dimension so it is capable of comparing multidimensional signal
sets as described in Chapter 3.

2.2 wasserstein distance application

Although Wasserstein is attracting more and more research interest
in the scope of mass spectrometry, finding its working applications
remains challenging. One of the successful results is the masserstein

algorithm [57, 100]. It is an algorithm for linear regression of spectra,
also known as deconvolution. The problem of deconvolution consists
of estimating the proportions of identified reference spectra in the
experimental spectrum of a mixture. Suppose that we have an experi-
mental spectrum µ of the mixture to be deconvolved and n reference
spectra ν1, . . . ,νn of substances identified or expected to be present
in the analyzed mixture. We want to find a convex combination of
spectra that models the experimental spectrum. Define non-negative
proportions p = (p0,p1, . . . ,pn)T of these substances in a mixture
so that p0 + p1 + . . .+ pn = 1. p0 describes a fraction of signal that
is not explained by any reference spectrum (a noise) and p1, . . . ,pn
describe the proportions of spectra ν1, . . . ,νn in the experimental spec-
trum. Define a model spectrum νm, which describes the experimental
spectrum as a combination of reference spectra:

νm = p1 · ν1 + . . .+ pn · νn.
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We aim to find νm and p0, . . . ,pn that best explain the experimental
spectrum µ. To properly explain the amount of signal that is not
explained by reference spectra we introduce an additional auxiliary
spectrum ω (named a vortex, an abyss, or trash). We express the best
explanation of the experimental spectrum by model spectrum as a
Wasserstein distance minimization problem:

p∗ = argmin
p

dW(µ,p0 ·ω+ νm).

We interpret ω so that cost of transporting the signal into this spec-
trum is constant and equal to κ (cf. Figure 2.2). Such formulated
problems can be solved using LP techniques as described in the origi-
nal article [57]. The algorithm implementation is available publicly at
github.com/mciach/masserstein. This algorithm estimates ion pro-
portions without the requirement for extensive spectra preprocessing
and works correctly with both centroided and profile spectra. It was
benchmarked on several various datasets, which confirmed its accu-
racy as detailed in the original works [57, 100].

Figure 2.2: An example of a deconvolution of a simulated human hemoglobin
ESI MS1 spectrum for subunits α19+ and δ20+. The proportions
were estimated directly from the top-left spectrum, figure origi-
nates from the masserstein article [57].

2.3 generalized wasserstein distance derivation

2.3.1 Entropic penalizing

Previously defined OT problem (2.1) is an LP problem and can be
solved in polynomial time using the simplex algorithm [101]. We

github.com/mciach/masserstein
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propose, however, using the Sinkhorn-Knopp scaling approximation
algorithm [102] for speeding up computation and better numerical sta-
bility. For a broader introduction to Wasserstein distance computation,
consult the Peyre and Cuturi’s book [56].

We start with reformulating the previous OT problem (2.1) by regu-
larizing it with the entropic penalty:

OTεM(µ,ν) = min
T∈U(µ,ν)

∑
i,j

TijMij − εh(T ) (2.2)

where h(T ) is entropic penalty term:

h(T ) = −
∑
i,j

Tij log Tij.

Analogously, if Tε∗ is the transport plan that minimizes OTεM(µ,ν),
then the cost of optimal transport is:

dε(µ,ν) =
∑
i,j

Tε∗ij Mij.

Adding an entropic penalty makes the objective function strongly con-
vex (cf. Figure 2.3). This results in a unique solution, a better theoretical
convergence rate, and thus better numerical stability in comparison
with the original LP problem (2.1). Interpreting problem (2.2) geomet-
rically, the entropic regularization term moves the optimal solution of
the LP problem from the vertices of the polytope toward its interior (cf.
Figure 2.3). Indeed, as shown in [103] and [56] (Proposition 4.1), with ε
converging to 0, the solution of regularized OT problem (2.2) converges
to the solution of non-regularized problem (2.1) of maximum entropy
(cf. Figure 2.4):

Tε∗
ε→0−−−→ argmin

−h(T∗) : T∗ ∈ argmin
T∈U(µ,ν)

∑
i,j

TijMij

 .

On the other hand, with diverging ε, the solution of regularized
problem (2.2) converges to the coupling of the maximal entropy, i.e.
joint probability distribution of random variables distributed by µ and
ν as if they are independent:

Tε∗
ε→∞−−−→ µνT.

To compute the solution of problem (2.2), we use Sinkhorn-Knopp
algorithm [102]. It is one of the first algorithms for solving the matrix
scaling problem, i.e. for a quadratic matrix A with positive entries we
look for diagonal (scaling) matrices X and Y so that XAY is doubly
stochastic [104]. Recently, Cuturi proposed to apply it to solve optimal
transport problems [105]. The algorithm scheme consists of iterative
alternate scaling rows and columns of the input matrix as depicted in
Algorithm 2.1.
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Figure 2.3: Impact of ε parameter on the objective function for the two vari-
able minimization problem. For ε = 0, the problem reduces to a
non-regularized LP problem with the optimum in the vertex of the
polytope (first panel). With an increasing value of ε (second and
third panel) optimum moves towards the interior of the polytope.
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Figure 2.4: Optimal transport plans for various values of parameters ε and
λ. Suppose that we want to compute the distance between the
spectra of apigenin (A) and quercetin (B). The non-regularized
solution (C), even if finds the value of optimal transport, trans-
ports the signal between too-distant peaks. Properly chosen pa-
rameters of the regularized solution allow for finding a feasible
transport plan (D). For too large λ (E), transport is similar to a
non-regularized one. For large values of ε (F), solution converges
to µνT
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Algorithm 2.1: The scheme of the Sinkhorn-Knopp algorithm.
Data: A
Result: doubly-stochastic A
while not converged do

scale A rows such that rows sum up to 1;
scale A columns such that columns sum up to 1;

end
return A

To apply the Sinkhorn-Knopp algorithm for calculating optimal
transport, we start with Sinkhorn’s observation [106] that the optimal
solution Tε∗ is unique, and every element has the form:

Tε∗ij = uivje
−Mij/ε

for two scaling variables u ∈ Rn and v ∈ Rm. We define for x ∈ Rn,
the diag(x) as n× n matrix with diagonal containing vector x and
zero otherwise. We notice that we can rewrite transport plan T as:

T = diag(u)Kdiag(v)

for a matrix K = e−M/ε. Rows of the transport plan T should sum up
to µ and columns of T should sum up to ν, so we can rewrite it as:

diag(u)Kdiag(v) · 1m = u� (Kv) = µ (2.3)

and:

diag(v)KT diag(u) · 1n = v� (KTu) = ν, (2.4)

where the � operator is vector indexwise multiplication. The aim of
scaling iterations is to alternatively satisfy equations (2.3) and (2.4), i.e
for (l+ 1)-th iteration, scaling operations get the form:

u(l+1) ← µ

Kv(l)
and v(l+1) ← ν

KTu(l+1)

where vector division is done indexwise. Finally, the Sinkhorn-Knopp
algorithm for regularized OT problem (2.2) has the scheme as de-
picted in Algorithm 2.2. As shown by Altschuler et al., this algorithm
is the τ-approximation of the unregularized OT problem (2.1) with
O(n2 log(n)τ−3) time complexity [107]. Additionally, Franklin and
Lorentz showed linear convergence of Sinkhorn-Knopp scaling itera-
tions [108].
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Algorithm 2.2: The scheme of the Sinkhorn-Knopp algorithm
for computing regularized OT problems.
Data: M, ε,µ,ν
Result: optimal Tε∗

K← e−M/ε;
v← 1m;
while not converged do
u← µ

Kv ;
v← ν

KTu
;

end
return (ui ·Kij · vj)i,j

2.3.2 Dealing with noise

We observed that the Wasserstein distance does not deal well with
noise, trying to match it with signal and vice-versa (cf. Figure 2.4).
To cope with this problem, we implemented the generalization of
previous problems for unbalanced measures as proposed by Chizat et
al. [97]. This generalization allows for omit transporting too distant
peaks with a penalty proportional to the amount of not transported
signal. For this purpose, we rewrite problem (2.2) so that:

OTε,F
M (µ,ν) = min

T∈U(µ,ν)

∑
i,j

TijMij − εh(T ) + F(T · 1m|µ) + F(T T · 1n|ν).

(2.5)

F is a divergence that allows us to approximate the optimal solution to
µ and ν measures. There are several divergences F that can be applied
here. For example, the most trivial is identity divergence F = ι defined
as:

ι(x|y) =

0 if x = y

+∞ otherwise.

With ι divergence, the OTε,F
M problem (2.5) reduces to regularized

OT problem (2.2). For our application, the total variation divergence
achieved the best results:

F(x|y) = λTV(x|y) = λ||x−y||TV

which for our discrete setup is related to `1 norm as ||a||TV =
∑
i |ai|.

λ is a parameter of this problem and can be interpreted as a penalty
for not transporting a fragment of the signal. Analogously, if Tε,F∗ is
transport plan minimizing problem (2.5), the distance is equal to:

dε,F(µ,ν) =
∑
i,j

Tε,F∗
ij Mij+ F(T

ε,F∗ · 1m|µ) + F(Tε,F∗T · 1n|ν). (2.6)
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For this problem, the scaling steps of the algorithm need to be
extended by using the proximal operator:

proxKL
F/ε(z,p) = argmin

s∈Rn

{
F(s|p) + 1

ε KL(s|z)
}

,

where p is an intensity vector µ or ν respectively and KL(x|y) is
Kullback-Leibler divergence:

KL(x|y) =
∑
i

xi log
(
xi
yi

)
.

Operator proxKL
F/ε is the extension of the proximal operator on Eu-

clidean space E, which is defined for any lower semicontinuous func-
tion g as:

proxg(x) = argmin
y∈E

{
g(y) + 1

2‖x− y‖
2
}

.

The proxg operator, in turn, is an extension of the projection operator.
Indeed, when g = ιC is the convex indicator of set C then the proximal
operator is exactly a projection on set C. However, when we use
the proximal operator on a space of measures, we should replace
euclidean distance with another operator of similar properties. One
of the natural choices is KL divergence which has similar geometric
properties. Scaling steps with proximal operator have the form as
below:

u←
proxKL

F/ε(Kv,µ)

Kv

v←
proxKL

F/ε(K
Tu,ν)

KTu

and finally, the algorithm for finding optimal transport has the form
as in Algorithm 2.3. For its efficient computation, Chizat et al. derived
the closed-form formula for the proximal operator with total variation
divergence F = λTV:

proxKL
F/ε(s,p) = min

{
s · e

λ
ε , max{s · e−

λ
ε ,p}
}

.

Python-based implementations of algorithms described in this Chap-
ter are available in the POT package [109]. Moreover, recently, a Py-
Torch [110] implementation of these algorithms was released [111].
For handy application in mass spectrometry, we implemented these
algorithms in the MassSinkhornmetry package available at github.
com/grzsko/MassSinkhornmetry. This library is purely written in C++
using Eigen library [112] for matrix computations and has available
API for both C++ and Python languages.

github.com/grzsko/MassSinkhornmetry
github.com/grzsko/MassSinkhornmetry
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Algorithm 2.3: The scheme of the Sinkhorn-Knopp algorithm
for computing regularized OT problems with additional approx-
imations
Data: M, λ, ε,µ,ν
Result: optimal T
K← e−λM;
v← 1m;
while not converged do

u←
proxKL

F/ε(Kv,µ)

Kv
;

v←
proxKL

F/ε(K
Tu,ν)

KTu
;

end
return (ui ·Kij · vj)i,j
For the application of aforementioned algorithms in LC-MS, we

extend the spectrum to a multidimensional signal set, a feature (cf.
Figure 1.1). A feature is a convex set of peaks that corresponds to a
single analyte. It contains signals across multiple MS scans of different
RT and may not contain the full signal of any scan. Definitions and
algorithms for computing OT between features remain the same as for
spectra. For calculating cost, we use `1 metric, i.e. a sum of distances
in M/Z and linearly scaled RT as described in the next Chapter.



3
T H E A L I G N S T E I N

An example of one of the most effective applications of optimal trans-
port in mass spectrometry is the feature dissimilarity measure imple-
mented in Alignstein, the retention time alignment algorithm. It is
the algorithm by feature matching, i.e. it finds the correspondence
of already detected features. Its key strength is properly finding the
correspondence swapped order features of (cf. Figure 3.1). It is possi-
ble because the algorithm represents features by all signals contained
within their boundaries. To cope with this representation, we compare
features using generalized regularized optimal transport cost (2.6)
(further referred to as Generalized Wasserstein Distance, GWD) de-
scribed in the previous Chapter. We take advantage of computing
features’ similarity not only by the distance between them but also by
their spatial differences (cf. Figure 1.1) and efficient scalability with
dimension. Approximating of transport plan allows for comparing
noisy features by introducing an appropriate penalty for omitting
noise. This provides a highly flexible measure for effectively finding
feature similarities and detecting non-obvious specific chromatogram
patterns.

Alignstein runs in three phases (cf. Figure 5.6 and Section 3.1 for
details): after appropriate preprocessing, feature centroids are clus-
tered to find candidates for consensus features, which are then verified
by the feature matching phase. During the last phase, the algorithm
computes the optimal feature matching, which represents the most
similar feature pairs throughout all chromatograms. We solve this
problem by reducing it to finding the maximum flow of minimum
cost in an appropriate flow network (cf. Fig. 3.3). Consensus features
are then created from optimal feature matching with regard to initial
centroid clustering. The such formulation allows for aligning chro-
matograms without a requirement for a reference sample or a prior
feature identification. It also easily scales with a number of input
chromatograms. Finally, this algorithm is not limited to correcting RT

perturbations in repeated experimental runs, it also accurately aligns
the majority of detected corresponding biomarkers from samples of
different experimental treatments.

3.1 algorithm formulation

As an input, Alignstein takes chromatograms to be aligned and its
result is a list of consensus features, i.e. a set of corresponding features

25
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Figure 3.1: Example of swapped features representing four times charged
peptides: HTALYSSDSVRNVRKKDTTG (Feature 1) and HTAIYSS-
DSVRNVRKKDTTG (Feature 2). Isotopic envelopes were gener-
ated using the IsoSpec tool [113] and smoothed over RT with a
gaussian filter. Retention times were predicted using Pyteomics
package [114]. The Euclidean distance between corresponding
shifted features reduced to a point is 0.0 and 80.0, and be-
tween non-corresponding features is 40.0 and 40.0. Whereas
GWD for corresponding features equals 0.3 and 80.3, and for non-
corresponding features, to 46.3 and 46.3. For such an example, a
simple feature matching algorithm, using GWD, would match the
features correctly, and for the Euclidean distance, this solution
would be ambiguous.

Evaluation

ClusteringPreprocessing

   
    

Finding the optimal matching

- features compared
   by GWD

- reduction of feature
   matching to
   network flow
   problem
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Figure 3.2: The outline of the Alignstein algorithm. It starts with feature pre-
processing, for which then centroids are computed and clustered.
As a next step, the problem of optimal feature matching is solved.
The result is obtained with regard to prior clustering and can be
further analyzed and verified.
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Algorithm 3.1: Alignstein algorithm

Input: chromatograms ch1, . . . , chn,
Result: consensus features c1, . . . , cs
// Preprocessing phase
features1, . . . , featuresn ← preprocessFeatures(ch1, . . . , chn)
// Centroid clustering phase
forall featuresi do

centroids←
centroids∪ {centroids of all features from featuresi}

end
clusters← cluster centroids
// Matching phase
forall featuresi do

matchingi ← match features from featuresi to⋃
j∈{1,...,n}\i featuresj

end
c1 . . . , cm ←
createConsensuFeatures(matching1, . . . ,matchingn)

from distinct chromatograms. The Alignstein algorithm pseudocode
is shown as Algorithm 3.1.

preprocessing phase In this phase, features are collected and
prepared for further analysis as summarized in function preprocess-
Features. Features can be provided by the user. Otherwise, Alignstein
detects them using the Feature Finder Centroided algorithm from
OpenMS package [115] on the fly. Usually, software-detected features
are represented only by their boundaries (e.g. RT and M/Z spans or
convex hulls) and thus Alignstein collects all signal peaks contained
within feature boundaries before the run. In the beginning, features
are denoised by removing signals of the lowest intensity (about 1 % of
signal) and normalized by its total ion current. For further processing,
Alignstein scales RT so that the RT axis variation is roughly in the
same order of magnitude as the M/Z axis variation. Scaling is done
by dividing RT by a factor proportional to ALRT

AWM/Z
, where ALRT is

the average feature length (along the RT axis) and AWM/Z is average
feature width (along the M/Z axis).
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Function preprocessFeatures

Input: chromatograms ch1, . . . , chn,
Result: feature sets features1, . . . , featuresn
forall chi do

featuresdeti ← parse or detect features in chromatogram
chi
featuresi ← ∅
forall featuredet ∈ featuresdeti do

feature← collected signal from chi represented by
featuredet
feature← normalize feature
push feature to featuresi

end
end
ALRT ← average feature length from features1, . . . , featuresn
AWM/Z ← average feature width from
features1, . . . , featuresn

forall featuresi do
forall feature ∈ featuresi do

scale RT of feature by factor proportional to ALRT
AWM/Z

end
end

centroid clustering phase After preprocessing, Alignstein
starts with the centroid clustering phase which consists of collecting
centroids of all features and clustering them. Centroid clustering aims
to create candidates for consensus features, which are further verified
during the matching phase. Because the number of centroids from
all chromatograms may be significantly large, centroid clustering is
done in two steps: firstly, we split the whole space into several smaller
pieces using the Mini-batch K-Means algorithm [116], then we do final
precise clustering using hierarchical clustering [117].

matching phase During the matching phase, Alignstein searches
for feature similarities over chromatograms. It is done by matching
features from every chromatogram with features of the rest of the
chromatograms. Formally, for every chromatogram i, its set of features,
featuresi is matched to the union of features from the rest of the
chromatograms: RESTi =

⋃
j∈{1,...,n}\i featuresj. Matching can be

expressed as the problem of finding the optimal matching between
features from featuresi to the rest of features RESTi, so that:

• every feature from featuresi can be matched with at most one
feature from RESTi,

• every feature from RESTi can be matched by at most one feature
from featuresi,
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• for every cluster ck, at most one feature fj ∈ RESTi contained
within ck can be matched,

• for every cluster ck, either one feature contained within it is
matched or no feature is matched with a constant penalty,

• cost of matching two features f1, f2 is proportional to GWD

between f1 and f2,

• feature from featurei can be not matched with a constant
penalty,

• cost of matching is a sum of costs of matched features and
penalties for not matching,

• result matching is a matching of minimal cost.

The constant penalty of not matching allows omitting to match of too
different features (with GWD larger than a penalty threshold). More-
over, there is a restriction that for every cluster only one feature can
be matched. This assures that consensus features contain at most one
feature from every chromatogram. Further, every cluster consensus
feature is created as described below.

We reduce the above minimization problem to finding the maximal
flow of minimum cost in a network shown in Figure 3.3. Alignstein
finds the optimal solution using the primal network simplex algo-
rithm [118].

For efficiency reasons, we compute GWD only for pairs of features
that are in the same region of interest, i.e. are close enough to be
matched. It allows omitting computing GWD between obviously too
distant features, e.g. features with an M/Z distance larger than 10

Da. Checking if features are in the same region of interest is done by
computing feature centroids’ Euclidean distance.

consensus features creation The consensus feature for clus-
ter ck is obtained as a union of features matched to any feature
contained in ck as shown in Function createConsensusFeatures.

Function createConsensusFeatures
Input: matchings matching1, . . . ,matchingn,
// matchingi describes matching of features from i-th chromatogram

to clusters of features from the rest of chromatograms
Result: consensus features c1, . . . , cs
s← number of clusters
c1, . . . , cs ← ∅, . . . , ∅
forall matchingi do

forall 〈matched feature, cluster ck〉 ∈ matchingi do
ck ← ck ∪ {feature}

end
end
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Figure 3.3: Flow network for finding the optimal feature matching between
selected chromatogram, denoted by n features L1, . . . ,Ln and
m features from the rest of chromatograms, denoted by nodes
R1, . . . ,Rm. Clusters are denoted by s nodes C1, . . . ,Cs. Nonzero
costs are described by edge labels. The cost between features
Li and features Rj is equal to GWD between them. Additional
node Tr (‘trash’) gives the possibility to not match the feature
with cost c. Every edge has a capacity equal to 1, except the
edge between S (source) and Tr and the edge between Tr and
T (sink) with capacities equal to max{0, s−n} and max{0,n− s}

respectively (at most one of them has nonzero capacity). Edges
between R1, . . . ,Rm and C1, . . . ,Cs give the restriction that any
feature can be matched with at most one cluster. As a result, we
take all matchings (Li,Ck). We recognize the consensus feature
by its cluster.

the special case of two chromatograms In the special
case, when only two chromatograms are aligned, the clustering phase
is omitted and features are matched directly. Optimal matching is
computed by minimizing the global cost of matching, i.e. the sum
of GWDs between matched features and penalties for not matching.
Every feature can be either matched with exactly one feature from
another chromatogram or not matched with a constant penalty. Here,
the constant penalty for not matching can be interpreted as a maximal
distance up to which features are considered similar. Analogously
as in general algorithm formulation, we reduce the feature matching
problem to finding the maximum flow of minimal cost in the network
described in Figure 3.4.
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Figure 3.4: Flow network for finding the optimal feature matching between
one chromatogram, denoted by n features L1, . . . ,Ln and m fea-
tures from the other chromatogram, denoted by nodes R1, . . . ,Rm.
Nonzero costs are described by edge labels. The cost between
features Li and features Rj is equal to GWD between them. Ad-
ditional node Tr (‘trash’) gives the possibility to not match the
feature with cost c. Every edge has a capacity equal to 1, except
the edge between S (source) and Tr and the edge between Tr and
T (sink) with capacities equal to max{0, s−n} and max{0,n− s}

respectively (at most one of them has nonzero capacity). As a
result, we take all matchings (Li,Rj).

3.2 implementation details

Alignstein is implemented as a Python 3 package and available at
https://github.com/grzsko/Alignstein. It uses C++ implementa-
tion of GWD from the MassSinkhornmetry package. For centroid clus-
tering, we used clustering algorithms implemented in the scikit-learn
package [119]. For solving the minimum cost flow problem, we used
the data structures and algorithms implemented in NetworkX [120]
package.

https://github.com/grzsko/Alignstein




4
A L I G N S T E I N V E R I F I C AT I O N

To assess Alignstein’s accuracy, we compared it with other RT align-
ment algorithms on publicly available benchmark datasets. Moreover,
we checked Aligstein’s applicability as a biomarkers screening tool on
the dataset of Marine mussel’s intestinal proteins. Finally, on a par-
tially computationally generated dataset, we assessed how Aligstein
resolves the correspondence of signals of swapped elution order.

4.1 algorithm benchmarking

We evaluated the accuracy of Alignstein by assessing its alignment
quality on public benchmark datasets. We reproduced the evaluation
protocol from the Critical Assessment of Alignment Procedures (CAAP)
study [121]. It was the analysis and comparison of 7 alignment al-
gorithms: OpenMS [42], msInspect [122], MZmine 1 [123], SpecAr-
ray [124], XAlign [125], and XCMS [126]. This study was an analysis
of two proteomic datasets (P1 and P2) and two metabolomic (M1 and
M2) datasets. However, due to the currently limited data availability,
we omitted dataset M2. P1 set contained the analysis of E. coli pro-
tein extracts and consisted of 6 fractions at different salt bumps (0,
20, 40, 60, 80, and 100 mM ammonium chloride), every fraction in
2 different runs. Analogously, P2 contained the analysis of protein
extract from M. smegmatis in 5 fractions every in 3 replicated runs.
Datasets (P1 and P2) were originally available in Open Proteomic
Database http://data.marcottelab.org/MSdata/OPD/. M1 contained
the analysis of leaf tissue extract from A. thaliana in 44 repeated runs.

The original study describes preparation and analysis protocols for
both sample sets. For every dataset and salt bump fraction, the authors
prepared a set of ground truth consensus features, which represent
feature correspondence over chromatograms of significantly high con-
fidence. To assess the accuracy of alignment, the authors of the CAAP

study proposed the generalization of precision and recall as alignment
precision and alignment recall. Alignment precision measures how
the given ground truth consensus feature was split over tool consen-
sus features, i.e. it reflects the number of false positives. Alignment
recall measures how many features of a given ground-truth consensus
feature are found by the algorithm, i.e. it reflects the number of false
negatives. Both alignment precision and recall are calculated as an
arithmetic mean over all ground-truth consensus features. Further-
more, the authors of SIMA [45] and Wandy et al. [52] proposed the
F-score which is the harmonic mean of alignment precision and align-
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ment recall (2·P·RP+R , where P is alignment precision and R is alignment
recall) to express the balance of alignment precision and alignment
recall.

We used input chromatograms as mzML and mzXML files and
features as featureXML files, as well as alignment precision and align-
ment recall evaluation script provided by the authors. Originally, in
the CAAP study, only a fraction of all detected features were aligned.
The evaluation protocol lacks, however, a detailed description of ini-
tial feature filtering for further alignment. Thus, we decided to filter
features to those existing in ground-truth. The M1 dataset lacked
the spatial information of analyzed features. For this reason, we re-
produced feature detection using XCMS3 with parameters detailed
in the CAAP study (method = "centWave", peakwidth = c(20, 50),

snthresh = 5, ppm = 12). We matched features from the study with
newly generated features by checking if the previous feature represen-
tation falls within the bounding box of new features. Such matched
features were further input of the evaluation script.

We analyzed sets P1 and P2 and compared Alignstein with the
results of the OpenMS alignment algorithm [42] from the CAAP study.
We chose OpenMS because it achieved significantly better results
than the other tools and represented a state-of-the-art solution at the
time of the original study. Moreover, we included in comparison the
available results of algorithms published more recently: MZMine 2 [44],
SIMA [45], MassUntagler [50], and Wandy et al. [52]. MassUntangler
was compared on the P1 set because it was developed only for pairwise
alignment.

Alignstein obtained highly competitive results in CAAP evaluation.
For the P1 dataset, it perfectly matched almost all features, its precision
and recall were on average 0.94, similarly to MZmine 2 and OpenMS
(cf. Table 4.1). SIMA obtained slightly worse results and the rest of the
tools obtained lower values than SIMA. Interestingly, all tools achieved
average alignment precision and recall no higher than 0.94. It may
suggest that improperly matched features either are too distant to be
matched based on LC-MS information or ground truth is misspecified.

For the P2 set, we achieved the highest average alignment recall (on
average 0.82), i.e. our approach had a minimal number of unmatched
features (cf. Table 4.2). It had a lower precision on average equal to
0.73 and was second only to OpenMS. Overall, we obtained the best
average F-score value, equal to 0.77. For the M1 dataset, Alignstein
achieved competitive results: precision equal to 0.88, recall 0.91, F-score
0.89 (cf. Table 4.3). This confirms that Alignstein scales effectively with
the number of input chromatograms.

In the original CAAP study, the OpenMS alignment algorithm out-
performed other tools. The authors of this study evaluated the algo-
rithm from OpenMS version 1.0, which is no longer bundled with the
OpenMS package after reimplementation in 2012. We reproduced the
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0-20

P 0,94 0,86 0,86 0,75 0,86 0,87

R 0,94 0,86 0,86 0,79 0,83 0,76

F 0,94 0,86 0,86 0,77 0,84 0,81

20-40

P 0,90 0,93 0,93 0,95 0,97 0,86

R 0,90 0,93 0,93 0,95 0,94 0,73

F 0,90 0,93 0,93 0,95 0,95 0,79

40-60

P 0,92 0,93 0,94 0,89 0,94 0,87

R 0,92 0,93 0,94 0,86 0,91 0,8

F 0,92 0,93 0,94 0,87 0,92 0,83

60-80

P 0,94 0,96 0,97 0,86 0,94 0,8

R 0,94 0,96 0,97 0,9 0,92 0,68

F 0,94 0,96 0,97 0,88 0,93 0,74

80-100

P 0,98 0,97 0,97 0,92 0,98 0,93

R 0,98 0,97 0,97 0,92 0,96 0,89

F 0,98 0,97 0,97 0,92 0,97 0,91

100-120

P 0,94 0,96 0,96 0,9 0,96 0,89

R 0,94 0,96 0,96 0,92 0,95 0,87

F 0,94 0,96 0,96 0,91 0,95 0,88

Table 4.1: Detailed results for P1 set in CAAP comparison. P stands for align-
ment precision, R stands for alignment recall, and F stands for
F-score.
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0

P 0,72 0,77 0,49 0,49 0,55

R 0,84 0,65 0,56 0,48 0,61

F 0,77 0,70 0,52 0,48 0,58

20

P 0,67 0,92 0,78 0,79 0,75

R 0,79 0,76 0,93 0,81 0,89

F 0,72 0,83 0,85 0,80 0,81

40

P 0,82 0,76 0,77 0,78 0,81

R 0,88 0,74 0,78 0,82 0,75

F 0,85 0,75 0,77 0,80 0,78

80

P 0,78 0,80 0,61 0,68 0,74

R 0,86 0,70 0,61 0,66 0,63

F 0,82 0,75 0,61 0,67 0,68

100

P 0,70 0,90 0,75 0,85 0,77

R 0,80 0,75 0,88 0,85 0,89

F 0,74 0,82 0,81 0,85 0,83

Table 4.2: Detailed results for P2 set in CAAP comparison. P stands for align-
ment precision, R stands for alignment recall, and F stands for
F-score.

evaluation of the CAAP study on the current version of OpenMS (2.7).
Unfortunately, it achieved significantly worse results despite strenuous
attempts to adjust the algorithm parameters to the data. Its alignment
precision and recall are on average 60 percentage points lower than
the results reported in the CAAP study.

4.2 detecting repeating biomarkers

For assessment of Alignstein’s ability to detect specific biomarkers, we
analyzed chromatograms created in the work of Barranger et al. [31].
The original study aimed to measure the effects of polluting the
marine mussels (Mytilus galloprovincialis) environment with fullerene
(C60) and benzo[a]pyrene (BaP). For this purpose, the authors did a
proteomic analysis.
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alignstein openms mzmine 2 sima

P 0.88 0.69 0.74 0.75

R 0.91 0.87 0.91 0.92

F 0.89 0.77 0.82 0.83

Table 4.3: Comparison of alignment precision (P), alignment recall (R), and
F-score (F) for M1 set in CAAP study.

4.2.1 Data collection and curation

Mussels were collected in Trebar with Strand, Cornwall, UK, and were
exposed in vivo to C60 and BaP at concentrations 0, 5, 50, and 100

µg/L as described in the original study. For proteomic analysis, mussel
intestinal proteins were collected. After digestion and purification, the
peptides were analyzed by the liquid chromatography with tandem
mass spectrometry (LC-MS/MS) system with a data-dependent acquisi-
tion mode as described in Sequiera et al. [127]. In summary, peptides
were separated on Dionex Ultimate 3000 RSLC nanoflow system and
analyzed in an Orbitrap Velos Pro FTMS (Thermo Finnigan) with pos-
itive ion mode ionization with Proxeon nanospray ESI source. In each
run, the 10 most abundant ions were further analyzed with additional
collision-induced dissociation fragmentation (30 % collision energy) in
a linear ion trap spectrometer. For every BaP concentration from 0, 5, 50,
to 100 µg/L three replicates were obtained. Collected chromatograms
for all BaP exposure levels were deposited in the ProteomeXchange
Consortium PRIDE repository (PXD013805) [128, 129].

4.2.2 Data analysis

We started the analysis with peptide identification. We searched for
peptides in the Uniprot KnowledgeBase [130] database of taxa Mol-
lusca, subcategory Bivalvia from the original work, and contaminants
database from Global Proteome Machine, www.thegpm.org). We used
Comet tool [131, 132] for identification. The most important search
parameters were: peptide mass tolerance of 10 ppm, trypsin as search
enzyme, concatenated decoy search, and allowed missed enzyme
cleavages no higher than 2.

We detected features in chromatograms using the OpenMS algo-
rithm Feature Finder in the Centroided version. We annotated the
detected LC-MS features with MS/MS Comet identifications. Peptide
MS/MS identifications were represented in LC-MS by retention time in
seconds and the ratio of the precursor neutral mass to the assumed
charge. The feature was annotated with identification when LC-MS rep-
resentation of identification was enclosed within feature boundaries.
For further analysis, we considered annotated features.

www.thegpm.org
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Figure 4.1: Identification recall calculated separately for identifications re-
peating in every chromatogram subset. a) For replicates of the
sample with 0 µg/L BaP. b) For replicates of the sample with 5

µg/L BaP. c) For replicates of the sample with 50 µg/L BaP. d)
For replicates of the sample with 100 µg/L BaP. Sets represent
repeated runs of the same experiments, intersections contain iden-
tification recall and non-overlapping parts of the set contain the
number of feature-annotated identifications.

We checked if Alignstein recognizes MS/MS information by spatial
properties of LC-MS features. To quantify the accuracy of this recog-
nition we proposed measuring the identification recall (IR) defined
as follows. For every identification that repeats over chromatograms,
we checked if its annotated features were properly matched by Align-
stein. IR was calculated as a ratio of the number of correctly aligned
annotated repeating identifications and the total number of annotated
repeating identifications. For every BaP concentration, we computed IR

for all aligned technical replicates of the sample. We achieved satis-
factory results IR equal to 75 %, 78 %, 81 %, 86 % respectively for BaP

concentrations 0, 5, 50, and 100 µg/L. As a baseline, we repeated this
analysis for the OpenMS algorithm, which achieved similar results
with IR equal to 81 %, 76 %, 85 %, and 83 %. Moreover, we calculated
the IR separately for every subset of all aligned chromatograms. This
demonstrated that our approach uniformly treats all chromatograms
(cf. Figure 4.1).
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Figure 4.2: Identification recall calculated separately for identifications re-
peating every chromatogram subsets, for aligned chromatograms
over all BaP concentrations. Sets represent chromatograms, the in-
conjunct part of the set contains the number of feature-annotated
identifications, and conjunctions contain identification recall.

Moreover, we checked if Alignstein can also detect corresponding
biomarkers for LC-MS measurements of samples under different exper-
imental conditions. For this purpose, we repeated the analysis above
by aligning chromatograms across all BaP concentrations. The overall
IR was equal to 85 %. Contrary to the previous experiment, IR for
OpenMS has fallen to 0.75 %. Alignstein’s results were also uniform
over all chromatogram subsets (cf. Figure 4.2) with IR values not lower
than 67 %, reaching even 100 % for some subsets of repeated identifi-
cations. This proves that, despite the varying experimental conditions,
our solution can correctly align the vast majority of corresponding
features without accuracy loss. Finally, this experiment shows that it
may be applied as a tool for biomarkers screening in LC-MS analysis.

4.3 swaps experiment

As mentioned in Section 1.1, the number of swapped features may
reach even 3 % of all feature pairs. To approximate this number, we
analyzed two replicates of 0 µg/L BaP concentration in the dataset
described in Section 4.2.2. Computation was done for all pairs of an-
notated features with repeating identification in both chromatograms.
We computed the fraction of these pairs that were swapped, i.e. a
feature pair was considered as a swap when the feature RT means of
the same identifications in two replicates were in a different order.
Depending on chosen replicates, a fraction of swapped feature pairs
varied from 3 % to 5 %.
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We assessed that Alignstein properly matches swapped features.
For this purpose, we collected over 580 identified features from the
chromatograms obtained from Barranger et al.’s work [31] described
in the previous section. We simulated RT drift by randomly moving
features within range (-150 s, 150 s) in the RT dimension and within
range (-0.3 Da, 0.3 Da) in the M/Z dimension. These two sets of fea-
tures: one with original features and the second with drifted features
represented chromatograms to be aligned. For such a formulation, we
had full information on the fraction of feature pairs that were swapped,
equal to 2 % (ca. 3400 feature pairs). We aligned these two sets and
measured a number of properly matched features and a fraction of
properly resolved swapped feature pairs. Our tool matched practically
all drifted features (96 %) and the vast majority of swapped feature
pairs (91 %). We compared our results with two open-source feature-
matching algorithms: OpenMS, and LWBMatch. OpenMS had high
feature matching precision, it matched the majority of drifted features
(80 %). However, its accuracy drastically decreased when analyzing
only swapped feature pairs (61 %). LWBMatch had a significantly
lower matching precision, it matched 24 % of drifted features and only
3 % of swapped feature pairs.

4.4 comments on alignstein’s results

Alignstein is a novel, original algorithm for LC-MS alignment based on
the GWD feature dissimilarity measure. This allows for incorporating
not only distances between features, but also their spatial differences
and thus more accurate feature alignment. The GWD emerges to be
a key solution for correctly aligning signals with a swapped elution
order, as demonstrated above.

In addition to correctly resolving feature swaps, Alignstein has more
advantages over the majority of alignment algorithms. It requires no
prior feature identification, so LC-MS data without additional tandem
mass spectra suffice as input to the algorithm. Moreover, our approach
makes no assumptions about the characteristics of the analyzed chro-
matograms, so it is not limited to one type of data (e.g. proteomic
or metabolomic). Still, specific properties of the analyzed data (e.g.
maximum drift size) can be passed as algorithm parameters. Finally,
it treats uniformly all analyzed chromatograms, and thus it does not
require a reference sample.

Alignstein requires only the prior feature detection as a data pre-
processing step. Although approaches with this requirement are criti-
cized [36, 48], we argue that the analysis with detected features is more
accurate than the analysis of raw chromatograms. Properly executed
feature detection effectively discriminates regions of high signal-to-
noise ratio from chromatograms [133]. Moreover, multidimensional
feature detection is crucial for collecting information about coelut-
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ing ions (e.g. isotopic envelopes of compounds). Without this, any
alignment algorithm might yield inaccurate results by aligning signals
across isotopic envelopes.

Besides advantages, Alignstein has also limitations. It correctly
matches the vast majority of features, but it happens to fail to match
distant features. This mismatch can be explained by interpreting GWD

as a sum of two costs: the cost of transporting the feature along the
RT (to eliminate drift) and the cost of transformation (to incorporate
feature-feature spatial differences). For a pair of distant, corresponding
features, the cost of transport along the RT far exceeds the cost of
transformation. For this reason, even highly dissimilar but much
closer features may camouflage the correct feature correspondence.
This can be particularly troublesome for complex datasets having
a significant number of features, which are densely packed within
chromatograms. This limitation can be only partially corrected by
adjusting GWD parameters because the majority of corresponding
feature pairs have RT differences of less than 10 seconds (cf. Figure 4.3)
and thus the GWD parameters must be optimized for small feature
distances. One of the possible solutions is to incorporate additional
information for alignment, for example, MS/MS data. Thus, we plan
to extend our algorithm to deal with LC-MS/MS datasets in a data-
independent acquisition mode.

Figure 4.3: Histogram of average RT differences between feature pairs anno-
tated with the same identification. The histogram is computed
for chromatograms from Barranger et al. work [31], replicates
of a sample with 0 µg/L BaP. For better readability, outliers over
200 seconds are omitted. The majority of RT differences are not
greater than 10 seconds.
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The majority of alignment algorithms are not compared with any
other tool [134]. This results in difficulties in comprehensively com-
paring Alignstein with the majority of algorithms. Thus, there is a
constant need for dedicated LC-MS alignment assessment of currently
being state-of-the-art alignment software that not only complements
CAAP with other datasets but also selects the best currently available
alignment algorithm. To the best of the authors’ knowledge, CAAP

is the only assessment of LC-MS alignment algorithms done on real
datasets and thus it is widely used for validation. The limited availabil-
ity of benchmark datasets may result in a growing tendency to analyze
algorithms only on data from CAAP work and, therefore, to overfit to
this dataset. The presented results verify that Alignstein is not affected
by this problem. Not only it was validated on multiple datasets, but
also almost all results are not significantly outstanding than other
best-performing tools. One exception is an outstanding average recall
for the P2 dataset, but it is consistent with the algorithm’s design
so that it maximizes the number of matches up to the user-defined
parameter of the cost threshold.

In conclusion, Alignstein correctly aligns chromatograms as we have
shown in the biomarkers detection experiment, by reproducing the
CAAP evaluation study, as well as in swaps resolving computational
comparison. Its highly competitive matching accuracy is the result
of applying the generalization of the Wasserstein distance as a fea-
ture dissimilarity measure, which allows matching features without
reducing feature spatial information or the dimension of data. Thus,
Alignstein is capable of detecting non-obvious signal patterns and
finding optimal alignment. Our solution provides a solid basis for fur-
ther applications of optimal transport theory to the multidimensional
problems of automated analysis in mass spectrometry. We hope that
the optimal transport-based distances will become a new paradigm as
a measure of spectra dissimilarity and will allow the construction of
highly effective, robust, and accurate algorithms for mass spectrometry
analysis.
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A P P R O A C H E S T O S Y N T H E T I C A C C E S S I B I L I T Y
S C O R I N G

Retrosynthesis planning is a method of creating the synthesis scheme
of chemical compounds, from low-priced, widely available precursors
into target compounds. It requires, however, examining a substantial
number of synthetic pathways. For this reason, the CASP approach
successfully improves the retrosynthesis performance. However, the
challenging problem of CASP is to properly prioritize potential syn-
thetic pathways to those which are feasible and most promising. There
is a need for an ‘oracle’ that can efficiently predict which potential
intermediate molecule should be the object of interest. One of the po-
tential solutions is predicting the synthetic accessibility of molecules.
Here, we propose three approaches for the ML-based prediction of
compounds’ synthetic accessibility. The first one uses stochastic gra-
dient descent to model the distribution of a specially crafted set of
descriptors and predict the likelihood of molecule structure. The sec-
ond model is a supervised learning model. Its challenging element is
creating a part dataset representing infeasible molecules, for which we
use the bootstrap method. The last model is based on semisupervised
learning designed for outliers detection. It does not require creating
part of the dataset corresponding to non-existent molecules.

5.1 approach by modeling motifs co-occurrences

We present a model based on the analysis of molecules’ structural
patterns. The model predicts the likelihood of a molecule of a given
structure. We represent a molecule using a Markov random field with
nodes corresponding to the distribution of occurrences of specific
structural patterns and edges corresponding to their co-occurrences.
The model was trained using stochastic proximal gradient descent on
a database consisting of 6 million molecules.

5.1.1 Dataset

One of the challenges of chemoinformatics is finding the proper trans-
lation of human knowledge and intuition to computer-readable rep-
resentation. To implement the expert knowledge into the model we
designed a method of translating a molecule structural formula into a
set of descriptors reflecting the existence of specific structural patterns
in the molecule. We used a collection of over 250 carefully curated
motif patterns, of which several examples are depicted in Table 5.1.

45
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Motif patterns (shorter referred to as motifs) are specific fragments of
molecule structure, which correspond to specific molecular features
e.g. functional groups. They are encoded in the SMARTS notation [135],
a line notation for specifying substructural patterns. We used them
to translate the structure of molecules into new-kind descriptors of
constant size by annotating molecules with numbers of their motifs.
These descriptors are further referred to as motif content descriptors.

Example. For the sake of simplicity, suppose that our toy motif database
consists of five motifs:

• carboxylic acid [#6][CX3](=O)[OH],

• ketone [#6][CX3](=O)[#6],

• phenyl c1ccccc1,

• benzyl c[CX4!H0],

• amine [CX4,c][NX3]([#1,CX4,c])[#1,CX4,c].

Suppose that we want to find motif content descriptors of ketoprofen,
a popular anti-inflammatory drug. Its structure can be encoded in
SMILES notation as

CC(C1=CC(=CC=C1)C(=O)C2=CC=CC=C2)C(=O)O

and its structural formula is depicted below

OH

O

O

.

It contains one carboxylic acid group, one ketone group, two phenyl
groups, one benzyl group, and no amine group, so its motif content
descriptors are [1, 1, 2, 1, 0]. ◦

Calculating the motif content is an NP-complete problem because it
is reducible to the subgraph isomorphism problem. To overcome this
difficulty, we used rdkit [136] implementation of structural match-
ing algorithms. They use well-tailored heuristics to decrease calcula-
tion time [137] and algorithms with assumed specific properties of
molecules [138].

5.1.2 The model

As a training set, we used a database of over 6000000 molecules
encoded in SMILES notation [16]. By analysis of the distribution of
motif content descriptors of molecules from the database, we claimed
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name smarts formula

ester [#6][CX3](=O)[O][CX4,c]
C

O

O
C

(or aromatic)

phenyl c1ccccc1

thioether [CX4,c][SX2][CX4,c]

C

(or aromatic)

S C

(or aromatic)

Table 5.1: Example motif patterns with their encoding in the SMARTS no-
tation and a corresponding structural formula. The ester motif is
described as the ester group bonded on one side with the carbon
atom and the other side with the 4-valence or aromatic carbon atom.
Phenyl is described as the 6-atom aromatic ring and thioether as a
sulfur atom bonded with two 4-valence or aromatic carbon atoms.

100 101

Number of motifs in molecules

100

101

102

103

104
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Distribution of motifs frequency
Motifs

cyclopropane
epoxide
diazo compound
primary alkyl amine
hydroxylamine

Figure 5.1: Distribution of several motifs over molecules database. For every
motif, a histogram of a number of occurrences is depicted. On the
log− log scale this distribution can be approximated as linear.
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allyl alcohol

benzyl alcohol
phenol

hemiacetal
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thioacetal
aminoacetal
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hydroxylamine
oxime

alkyl carboxylic acids
aryl carboxylic acids

lactone
alkyl ester
aryl ester
anhydride
thioester

alkyl thiols
aryl thiol
thioether
disulfide
sulfoxide

Motifs interactions

Figure 5.2: Interactions among the subset of motifs. Every cell colour corre-

sponds to value of log
(
aij
ai·aj

)
where aij is average frequency

of two motifs i and j together in molecules and ai, aj are aver-
age frequency of motifs i and j. The highest values (orange) are
noticeable for motifs of similar structure or function e.g. among
alcohols.

that they had the zeta distribution (cf. Figure 5.1). However, motifs are
not independently distributed (cf. Figure 5.2). For example, alcohols
or sulfur functional groups are more likely to coexist in a single
molecule. By resolving motif content distribution parameters and
characteristics of their co-occurrences, we derived the joint distribution
of motif content descriptors. Having a joint distribution, we were able
to provide a synthetic accessibility score that describes a structural
likelihood of an input molecule.

For deriving motif content distribution, denote M as a number of
motifs, K as a number of observations (molecules in the database),
and motif content of a single molecule as m = (m1, . . . ,mM)T. Motif
marginal distributions may be approximated with zeta distribution,
i.e.:

P(Xi = mi) =
(mi + 1)

−αi

ζ(αi)

for given coefficients vector α = (α1, . . . ,αi, . . . ,αM)T, where ζ is
Riemann zeta function and Xi is a random variable with distribution
of i-th motif.

To propose joint motif content distribution, we included fluctuating
motif coincidences, referred to as motif interactions. We describe motif
interactions by θ ∈ RM,M, where θij describes the interaction between
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i-th and j-th motifs. Then, joint motif content distribution is a product
of marginal distributions with included interactions, i.e.:

Pαθ(X =m) ∝ exp

∑
i

αi log(mi + 1) +
∑
i<j

θij1(mi 6= 0)1(mj 6= 0)

 .

(5.1)

Such formulation is a Markov random field [139, 140], for which
random variables of nodes correspond to distribution of mi and edges
correspond to interactions θij. Parameters α can be derived using
maximum likelihood estimator (MLE) for zeta distribution. We cannot,
however, derive analytically an explicit version of the formula (5.1),
and estimation of the coefficients θ posed a challenge. We obtained
α and θ by maximizing the probability Pαθ(X =m). Because of the
quadratic number of unknown parameters, we wanted to encompass
only the most substantial ones and thus we regularized this problem
by LASSO `1 penalty [141]:

(α̂, θ̂) = argmin
αθ

{− log Pαθ(X =m) + λ||θ||1}, (5.2)

where λ is parameter of `1 penalty. We solved this optimization prob-
lem (5.2) using a proximal gradient method [142] as proposed by
Atchadé, Fort, and Moulines [143] or by Miasojedow and Rejchel [144]
for the Ising model [145]. Because we could not calculate explicitly
a gradient of the function log Pαθ(X = m) in formula (5.2), we esti-
mated it instead using a stochastic version of the proximal gradient
method. To this end, we used a Gibbs sampler [140], one of the
Markov chain Monte Carlo methods for approximating joint distri-
bution by creating a sequence of observations. It iteratively updates
coordinates by sampling from full conditional distributions. Here,
we used Metropolis-Hastings within Gibbs algorithm [146, 147], i.e.
for each coordinate we did a step of Metropolis-Hastings algorithm
instead of sampling from conditional distribution. The workflow of
this algorithm is depicted in Figure 5.3.

To estimate a gradient, we introduced statistic t ∈ RM averaging
numbers of motifs over molecules, so that:

ti =
1

K

K∑
l=1

log(mli + 1)

where l iterates over molecules in the database. We also introduced the
statistic s ∈ RM,M averaging the number of motif-motif interactions
over molecules, so that:

sij =
1

K

K∑
l=1

1(mi 6= 0)1(mj 6= 0).
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Init ? (0) to 0 and 
estimate ? (0) 
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zeta distribution.

Use ? and ?  to 
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molecule 
likelihood.

Update ?  and ?  
as in

Formula (5.3).

Iteratively 
resample

motif content 
descriptors using 
Gibbs sampler.

x1000

Figure 5.3: Workflow of stochastic gradient descent algorithm for detection
of motif interactions.

We denoted TGibbs =
〈
tG, sG

〉
as t and s statistics over results of

Gibbs sampler run and Tobs = 〈to, so〉 as t and s statistics over
observations. The stochastic proximal gradient can be approximated
using the Fisher score formula:

−∇α,θ log P(X =m) = ET − Tobs ≈ TGibbs − Tobs,

with index-wise tuple calculations.

Algorithm

We initialized θ(0) to zero and estimated α(0) using MLE for zeta
distribution [148]. For every step s ∈ {0, . . . 1000} of gradient descent, a
Gibbs sampler was run g times (g > 1000) and coefficients α, θ were
updated as below〈

α(s+1),θ(s+1)
〉
= prox1

(〈
α(s),θ(s)

〉
−

1

(s+ 1)ξ
H

)
(5.3)

where H = TGibbs − Tobs, ξ is a parameter (0.5 < ξ 6 1). prox1 is a
proximal operator defined below:

prox1 (〈α,θ〉) = 〈α,θ ′〉,

where θ ′ is created from θ with index-wise operations:

θ ′ij = sign(θij) ·max
(
0, |θij|−

λ

(s+ 1)ξ

)
.
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One Metropolis within Gibbs sampler turn consisted of an iteration
over motifs in a natural order and resampling motif content of some
abstract molecule. This molecule was passed over steps and for the
first step, its values are randomized. Content of i-th motif m̃i was
sampled as below:

1. sample its new value from the zeta distribution m̃i ∼ zeta(αi)
(Metropolis step),

2. accept new value and actualize mi with probability equal to
min(1, exp(Accept(m̃i,m))), where:

Accept(m̃i,m) =


0 mi 6= 0, m̃i 6= 0∑
j θij1(mj 6= 0) mi = 0, m̃i 6= 0

−
∑
j θij1(mj 6= 0) mi 6= 0, m̃i = 0.

The complexity of the algorithm is O(M) for every step s. To speed
up calculations we used the active set technique [149]. A training
model phase usually takes about 20 hours of computation on a single
processor.

Figure 5.4: Heatmap of θ coefficients describing motifs interactions for λ =

0.019. For better visibility only selected rows are displayed.
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Figure 5.5: Distribution of scores over the test set for several `1 penalty values
of λ. With decreasing λ, it is getting more binomial.

5.1.3 Comments on model accuracy

The model required hyperparameter tuning. While parameter ξ is
rather straightforward, it is usually equal to 0.6 [150, 151], the param-
eter λ poses more challenges. We chose 20 possible values equally
logarithmically distributed over [0.01 · l, l], where l is maximal value
of θ after first step, i.e. max

(
θ(1)

)
. For every λ value, we separately

trained and tested the model. Training consisted of running 1000 steps
s with resampling consisting of 1000 Gibbs sampler runs. The training
set consisted of over 5983000 molecules and the test set consisted of
over 60000 molecules. Figure 5.4 shows a heatmap of interactions θ
for λ equal to 0.019.

We noticed that the main limitation of this model is that it overfits
to known and highly co-occurring interactions, for example, similar
or overlapping structures of various kinds of alcohols. The design
of the model was not robust to these kinds of interactions and as a
result, they camouflaged non-trivial interactions appearing to only
a tiny fraction of compounds. Moreover, as depicted in Figure 5.5,
we notice that with decreasing value of λ distribution becomes more
bimodal. Probably, it detected the subpopulation of molecules for
which calculated model parameters are inappropriate.

Concluding, as shown by this model, molecular structural properties
are non-homogenous and consist of several various subpopulations
of different motif interaction schemes. The proposed model detects
only a fraction of them and appears to be too general to address these
issues. One of the possible solutions is changing the model design, as
well as better molecular structural description, e.g. by incorporating
motif spatial properties.

5.2 approach by supervised learning

To address the limitations of the previous model, we implemented a
new one, named Motif Feasibility Score (MF-Score). We incorporated
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spatial properties of motif interactions in its design. To this end, we
added additional two types of descriptors. Such defined descriptors
were then the input of the ensemble of GBM models. The training
set consisted of two fractions: representing feasible and infeasible
molecules. The former one was the descriptors of molecules from the
ZINC15 database [152]. The latter one was so-called decoys generated
by randomizing fragments of descriptors from the feasible fraction
with preserving observed motif interactions. Both the training and
prediction protocols are summarized in Figure 5.6.

5.2.1 Descriptors and dataset

The descriptors of this model consist of three components:

• motif content descriptors,

• molecular mass,

• motif spatial descriptors.

Motif content descriptors express the existence of structural patterns
in the molecule as described in Section 5.1.1. Molecular mass corre-
sponds to molecule size and describes how motifs are packed within
the molecule. Motif spatial descriptors reflect whether motif instances
mutually interact and disturb the molecule stability. To create accurate
motif spatial descriptors, we analyzed motif content over molecules
of existing compounds. As a representative dataset of existing com-
pounds, we used the ZINC15 database [152], from which we obtained
a dataset of over 1.5 billion known organic molecules. For every
molecule from the database, we calculated the motif content descrip-
tors and interactions statistics. We defined the motif-motif interaction
when almost all (over 97 %) nonzero existences of one motif imply not
smaller existences of the other motif. We created 14 motif groups of
highly interacting (co-occurring) motifs and 41 single non-interacting
motifs. Motif spatial descriptors were represented as a matrix of maxi-
mal and minimal distances between all pairs of motif groups. Here,
the distance between two motifs was defined as the length of the
shortest path between motif instances in a graph corresponding to the
molecule structure. Due to the high sparseness of this matrix, we re-
duced its dimensionality using a principal component analysis (PCA).
We projected motif group interaction matrix onto 5 first principal
components covering over 50 % of initial variance.

Example. Recall that ketoprofen has the motif content

[1, 1, 2, 1, 0]

in example toy motif database (cf. previous Example). Its molecular
mass is 254.09 u. Motifs from the toy database belong to three motif
groups:
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1. Randomly choose SMILES-es from
the ZINC15 database.

CC(=O)Nc1ccccc1NC(=O)COc2ccccc2
O=Cc1ccc(O)c(OC)c1
...

1 0 0 0 2 1 1

0 0 0 0 1 1 1

...

2. For every chosen SMILES generate
descriptors.

Training

1 0 0 0 2 1 1

0 0 0 0 1 1 1

0 2 1 1 1 0 0

0 1 1 1 0 0 0

3. Generate the set of decoy descriptors basing on real molecule descriptors set.

DecoysReal molecules

4. Train the gradient boosting model on generated descriptors.
Y X
1 1 0 0 0 2 1 1

1 0 0 0 0 1 1 1

Y X
0 0 2 1 1 1 0 0

0 0 1 1 1 0 0 0
+

5. Repeat steps 1-4 to obtain a 
collection of models.

...

Prediction

6. For the molecule of the unknown
feasibility compute descriptors.

COc1ccccc1OC(=O)c1ccccc1

2 1 0 0 1 0 0

7. For every model from collection
predict score.

...

0.92 0.90 0.81

8. The MF-Score is a median of 
models’ predictions.

0.92 0.90 0.81 …

0.90

DecoysReal molecules

Figure 5.6: The workflow of the model training and prediction. Training
phase: 1. The set of about 100000 SMILES-es of real molecules
is randomly chosen from the ZINC15 database. 2. For every
randomized molecule, descriptors are generated. 3. For the set of
descriptors of real molecules, the set of decoys is generated using
bootstrap methods. 4. The model is trained on real molecule
descriptors as features with the result variable assigned to 1

(meaning feasible molecule) and the set of decoys as features with
the result variable assigned to 0 (meaning infeasible molecule). 5.
To obtain the collection of GBM models, procedure 1.-4. is repeated
40 times. Prediction phase: 6. Suppose, we have a molecule, which
feasibility we want to predict. For this purpose, its descriptors
are computed. 7. Every GBM model predicts molecule feasibility.
8. The MF-Score is the median of all model predictions.



5.2 approach by supervised learning 55

• group A: carboxylic acid, ketone,

• group B: phenyl, benzyl,

• group C: amine.

It contains 5 motif instances — one carboxylic acid instance, one ketone
instance, two phenyl instances, and one benzyl instance. Four of them
are depicted below: Phenyl is annotated with orange, ketone with blue,

CC5

C4

O

C3 C1

CC

O

OHC2

benzyl with green and carboxylic acid with burgundy. The maximal
distance between instances of motifs from groups A (carboxylic acid,
ketone) and B (phenyl, benzyl) is 5, i.e. the length of the shortest path
between atoms of orange and green instances is 5 (enumerated with
rose). The minimal distance between instances of motifs from groups A
and B is 0 because blue and green instances are overlapping. Maximal
and minimal distances between motif groups are listed in Table 5.2
which further after PCA reduction became motif spatial descriptors.

group A group B group C

group A 3 5 NA

group B 0 4 NA

group C NA NA NA

Table 5.2: Distances between instances of nonzero motif groups. The up-
per triangular part contains the maximal distance between motif
instances of selected groups. The lower triangular part contains
minimal distances between motifs of selected groups. Diagonal
contains maximal distances between instances of the same group
(minimal distances are always equal to 0). NA (not available) indi-
cates no existing instance of a given group.

◦

5.2.2 The model training

We used descriptors as predictors of molecule feasibility. The response
variable was binary with 0 corresponding to non-existing (infeasible)
molecules and 1 corresponding to the feasible molecule. Descriptors
of the molecules randomized from the database represented part of
the training dataset corresponding to feasible molecules. To represent
infeasible ones we created a set of so-called decoys using the bootstrap
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method [153]. Bootstrap is a technique of repeatedly sampling with
replacement observations from the input dataset so that statistics of
the input dataset are preserved. Here, we followed the assumption that
randomly generated decoys may break some implicit properties of the
feasible molecules and represent all possible structures that may not
be feasible. Decoys were generated separately for every component
of descriptors. Decoy motif content was generated for every group
of motifs by copying the motif content of random feasible molecule.
Decoy molecular mass was predicted by a ridge regression model
trained on the motif content descriptors of feasible molecules. To
create decoy spatial descriptors, we created a matrix of maximal and
minimal distances between all motif groups. For every pair of motifs,
the distance matrix was filled by copying distances from the randomly
selected molecule with the same motif content of the given group pair.
Then, we reduced the dimensionality of the distance matrix using the
PCA components from the feasible part of the training set.

This dataset was the input of the GBM [154]. It is the method of
iterative creating the ensemble of weaker models — here decision
trees. Every new decision tree is created on the modified version of the
initial data set — specifically, the dependent variable is updated with
the value of current residuals. For our model, we used LightGBM [155]
implementation of GBM. To obtain better stability of results and better
memory usage, we created 40 GBM models trained on over 100000

molecules randomized from the database and the same number of
decoys. Finally, the MF-Score was the median of all model predictions.

5.2.3 Model validation

We verified if the MF-Score correctly discriminates synthesizable
molecules from non-synthesizable ones. We randomized 10000 molecules
from the database for which we calculated descriptors. We also gen-
erated the same number of decoys. For both sets of descriptors, we
predicted MF-Score. For the set of real molecules the average MF-Score
value was ca. 0.7, for decoys ca. 0.3 (cf. Figure 5.7). To measure how
MF-Score discriminates descriptors of real molecules from decoys, we
computed the receiver operating characteristic (ROC) curve (cf. Fig-
ure 5.7). It allows for finding the best balance between the sensitivity
and specificity of the classifier. We assessed the discrimination quality
by calculating the area under the curve (AUC) which describes the
probability that a randomly chosen real molecule would be scored
better than a randomly chosen infeasible molecule. The AUC value
equals 0.92 which means well discrimination between real molecules
and decoys.
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Figure 5.7: Left panel: Boxplots of MF-Score for real molecules and decoys.
Right panel: ROC curve for different feasibility probability thresh-
olds. The AUC is equal to 0.92.

5.2.4 Comparison with existing solutions

We compared the results of MF-Score with the SAscore and the SC-
Score on 40 molecules obtained from original SAscore work [80]. A
group of chemists also manually analyzed these molecules (a chemist
score).

SAscore [80] is designed as a synthetic accessibility score of drug-like
molecules for virtual screening exploration. It is calculated as a sum of
fragment scores and complexity penalty. Fragment score is based on
statistics of the frequency of extended-connectivity fingerprints of di-
ameter 4 (ECFP4) [156] fragments from Pipeline Pilot [157] on almost
one million molecules obtained from the PubChem database [158].
ECFP4 is a method of creating a numeric representation of a chemical
structure by traversing it, enumerating atoms, and hashing their rep-
resentation. The fragment score aims to capture if fragments observed
previously in the database are present in the analyzed molecule. The
complexity penalty aims to capture if a molecule does not contain too
many complex structures to be synthesized. It incorporates among oth-
ers number of aromatic rings, stereocenters, macrocycles, or the size of
the molecule. SAscore achieves values from 1 (easy to synthesize) to
10 (hard to synthesize). It is publicly available in RDKit package [136].

SCScore is a score for assessing the molecular complexity expressed
as the expected number of reaction steps required to produce a target.
This score was trained using neural networks [159] on the set of 12

million reactions obtained from the Reaxys database [160]. Molecules
for this score are represented as 1024-bit Morgan fingerprints of radius
2 [20] which are similar to ECFP4. It achieves values from 1 (simple
molecule) to 5 (complex molecule). This score was used as precursor
prioritizer in ASKCOS Tree builder tool [72] and is publicly available
in GitHub repository https://github.com/connorcoley/scscore.

We scaled the scores linearly to fit their values to the range [0, 1].
The results are depicted in Figure 5.8. We computed the Spearman

https://github.com/connorcoley/scscore
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Figure 5.8: Comparison of different scores for the set of 40 molecules ana-
lyzed in Ertl et al. work [80]. Upper left: values of MF-Score for
molecules ordered by the MF-Score value. Upper-right: compari-
son of MF-Score with scaled SAscore (correlation coefficient equal
to 0.58). Bottom-left: comparison of MF-Score with scaled SCScore
(correlation coefficient equal to 0.43). Bottom-right: comparison
of MF-Score with scaled chemist score obtained from SAscore
work [80].

rank correlation coefficient [161] of MF-Score versus SAscore and
SCScore. All scores correlate, the Spearman correlation coefficient
between MF-Score and SAscore equals 0.58 (p-value < 10−5) and the
correlation between MF-Score and SCScore equals to 0.43 (p-value
< 5 · 10−3).

We also analyzed the distribution of scores of the different types of
molecules. We obtained three groups of compounds from the ZINC15

database: drugs approved by the Food and Drug Administration (FDA
accepted), a randomly chosen subset of secondary metabolites, which
exist in nature (natural), and substances that can be easily purchased
directly from the manufacturer (in-stock). Histograms of MF-Score for
these substances are depicted in Figure 5.9. All substances are pre-
dicted as feasible in general (average MF-Score values between 0.6 and
0.65). SAscore distribution discriminates in-stock and FDA-accepted
substances versus natural substances while the MF-Score does not.
We explained this so that in-stock and FDA-accepted substances are
mostly manufactured. This means that they are synthetically accessi-
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Figure 5.9: Comparison of score distributions for three substance types. Left
panel: SAscore, right panel: 1−MF-Score. For every score kernel
density estimator is depicted. All substances are obtained from
ZINC15 database.

ble enough to be easily purchased without delivery delay. SAscore is
trained with a focus on synthesizability while MF-Score focuses on
more general feasibility. Secondary metabolites (natural products) are
frequently difficult to synthesize but exist in nature (i.e. are feasible)
and thus have different SAscore values.

5.2.5 GBM model predictive efficiency

We analyzed the decision structure of the single GBM model. We fo-
cused on preventing the model from overfitting. By feature importance
analysis, we observed that the model primarily fits to molecular mass
and spatial descriptors due to their larger variance (cf. Figure 5.10). We
also observed that for motif content descriptors, the model mainly fits
to motifs that contain nitrogen atoms (e.g. amide, urea), or aromatic
rings (e.g phenyl, benzyl).

5.2.6 Comments on model accuracy

As previously validated, the model correctly discriminates descriptors
of feasible molecules from decoys. Comparison with existing tools
did not reveal any inconsistencies with the expectation of results.
Moreover, a massive analysis of different types of substances revealed
the correct pattern of MF-Score predictions.

Analysis of single GBM model revealed, however, the risk of overfit-
ting to obvious structural patterns. Here, feature importance analysis
showed that the model may be overfitted to aromatic groups or those
containing nitrogen. One of the possible reasons is the difficulty to gen-
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Figure 5.10: Descriptors feature importance for most important descriptors.

erate non-trivial decoys which would correctly describe non-existing
molecules. This may be partially confirmed by the high accuracy of
discrimination of real molecules from decoys. The additional reason
may lie in the cognitive difficulty of creating a set the structural pat-
terns that fully cover the variability of chemical compounds. Usually,
their description focuses on traditional description molecules by their
functional groups which in this case may be not enough.

Finally, we also considered GBM parameter tuning. We observed,
however, its little impact on the decision structure. Moreover, it turned
out that the most important factor for model correctness is the appro-
priate preparation of the training set, e.g. with a description of motif
interactions that reflect real dependencies between motifs.

5.3 approach by semisupervised learning

5.3.1 The model and training

To address the limitations of both previous models, we designed an
OC-MF-Score based on the one-class classification approach. It allowed
us to overcome the difficulty of creating appropriate decoys. Here,
we used One-class Support Vector Machines (OCSVM) [162] model
with radial basis function (RBF) kernel. Moreover, instead of creating
descriptors of predefined structural patterns, we encoded the molecule
structure using ECFP4 [156], which recently have been proven to be
effective for predicting various molecular properties in ML [80, 83,
163–165]. It has the advantage over manually prepared motifs because
it encodes all possible structural patterns.

ECFP4 is a method of creating a numeric representation of a molecule’s
chemical structure. To compute them, every non-hydrogen atom has
assigned a numeric value (so-called atomic invariant), e.g. molecular
mass or identifier. Atoms are then traversed in a bread-first search-like
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manner starting from a randomly chosen atom up to a predefined
size threshold (radius). Traversal subgraphs are encoded using atom
invariants, then hashed, and deduplicated. Finally, all subgraphs are
encoded in a bit array where the bit index corresponds to the hash
value of the traversal subgraph.

OCSVM is the extension of Support Vector Machines (SVM), designed
for outliers detection. It allows for detecting if the newly classified
object is similar to those already observed or is an anomaly. Here,
observation corresponds to ECFP4 representation of the molecule. The
basic idea of SVM is to find a hyperplane that separates two sets
of points of given space so that margin between separated sets is
maximized. Specifically, consider a set of observations {(xi,yi) : i =
1, 2, . . . ,n} where xi ∈ Rr and yi ∈ {−1,+1}. We want to separate
points with positive yi values from negative ones. SVM is capable of
solving problems even with non-linear decisions boundary. It is done
by non-linear transforming observations by a feature map Φ : Rr →
H into highly dimensional feature space H with inner product 〈·, ·〉
and norm || · ||, in which mapped sets became linearly separable. We
separate them by a hyperplane in a feature space H:

β0 + x
Tβ = 0 (5.4)

where β is weight vector in feature space and β0 ∈ R is bias. The
input dataset may, however, be noisy and contain erroneous points.
To avoid overfitting to these points, a nonnegative slack variable ξ =

(ξ1, . . . , ξn)T > 0n is introduced. It allows for a fraction of points to
lie within the margin (cf. Figure 5.11). The hyperplane (5.4) is obtained
by solving the minimization problem for β0, β, and ξ:

minimize
β0, β, ξ

1

2
||β||2 +C

n∑
i=1

ξi,

subject to ξi > 0,

yi(β0 +Φ(xi)
Tβ) > 1− ξ1 i = 1, 2, . . . ,n,

(5.5)

where C > 0 is a regularization parameter that controls the trade-off
between maximizing the margin and minimizing the point correction.

Using explicit observation mapping and solving the minimization
problem (5.5) may be computationally expensive due to the high di-
mensionality of the feature space. Fortunately, so-called kernel-trick
allows for avoiding computing inner products in space H and ex-
changing them with a kernel function K : Rr ×Rr → R. The kernel of
two vectors in Rr gives the value of the inner product of their map-
pings into a feature space H, i.e. K(x,y) = 〈Φ(x),Φ(y)〉. It should
be symmetric, reproducing, i.e. satisfying 〈K(x, ·),K(·,y)〉 = K(x,y),
satisfy a Cauchy-Schwarz inequality, and be nonnegative-definite. The
Mercer theorem assures that a kernel satisfying these properties is the



62 approaches to synthetic accessibility scoring

1 0 1 2 3 4
1

0

1

2

3

4

5

6

Figure 5.11: A hyperplane (solid line) separating blue data points from or-
ange ones. The dashed line indicates the margin. Several points
exceed the margin by a distance described by a slack variable.
Points lying on the margin are support vectors.

inner product in a feature space H. For our application, we used the
RBF kernel:

K(x,y) = exp

(
−γ

r∑
i=1

(xi − yi)
2

)

where γ is a positive parameter of Gaussian function (cf. Figure 5.12).
OCSVM is a modification of SVM that separates observations of the

one class into two sets: the origin and outliers. The parameter ν may
be interpreted as an upper bound on the fraction of observations that
would be treated as outliers and a lower bound of the fraction of
support vectors, i.e. vectors lying on the margin. For such formulation,
previous minimization problem (5.5) gets the form

minimize
β, ξ, ρ

1

2
||β||2 +

1

νn

n∑
i=1

ξi − ρ,

subject to ξi > 0,

(Φ(xi)
Tβ) > ρ− ξ1 i = 1, 2, . . . ,n.

(5.6)

Here, ρ moves all observations closer to the origin and thus the prob-
lem can be interpreted as finding the optimal trade-off between mov-
ing all points to the origin and a fraction of points to outliers.
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Figure 5.12: Simple example of separation two sets of points with RBF kernel
(upper panel) and how they may become linearly-separable in
three-dimensional feature space (bottom panel).

5.3.2 Model training and verification

The OC-MF-Score was trained as a OCSVM model on a representative
subset of the ZINC15 database consisting of 100000 molecules (cf.
Figure 5.13). All of them were encoded as ECFP4 fingerprints of length
128. We set parameter ν to 10 % and parameter γ to 1/128.

We verified the results similarly to MF-Score by comparing with
the SAscore, the SCScore, and the chemist score on 40 molecules
obtained from original SAscore work (cf. Section 5.2.4). Results are
depicted in Figure 5.14. OC-MF-Score highly correlates with SAscore
and chemist score (Spearman correlation coefficient equal to 0.79 and
0.75 respectively) which suggests that the OC-MF-Score results are in
line with expectations.
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Figure 5.13: Visualization of OCSVM model on training dataset. For pictorial
purposes, ECFP4 is reduced using PCA. Data points are marked
with yellow, the decision boundary is marked with red. Blue dots
correspond to data points of aspirin (first formula), morphine
(second formula), and cholesterol (third formula). Cholesterol,
being a complex molecule, is close to the support vector.

Relying on a comparison with a single score may, however, result
in overfitting to the verification set. Thus, the OC-MF-Score predic-
tions may be partially unreliable. Moreover, benchmark datasets for
synthetic accessibility scores are not available. We do not have any
ground-truth data for synthetic accessibility scores accuracy assess-
ment. To this end, for reliable verification of OC-MF-Score, we created
a critical assessment of synthetic accessibility scores for application in
retrosynthesis as described in Chapter 6.
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Figure 5.14: Comparison of different scores for the set of 40 molecules ana-
lyzed in Ertl et al. work [80]. Upper left: values of MF-Score for
molecules ordered by the MF-Score value. Upper-right: compari-
son of OC-MF-Score with scaled SAscore (correlation coefficient
equal to 0.79, p-value smaller than 0.001). Bottom-left: compari-
son of OC-MF-Score with scaled SCScore (correlation coefficient
equal to 0.47, p-value equal to 0.002). Bottom-right: comparison
of MF-Score with scaled chemist score (correlation coefficient
equal to 0.75, p-value smaller than 0.001).
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A S S E S S M E N T O F S Y N T H E T I C A C C E S S I B I L I T Y
S C O R E S I N C O M P U T E R - A S S I S T E D S Y N T H E S I S
P L A N N I N G

Every empty tree is a full tree.

— Michał Startek, Ph.D.

A wide range of ML approaches to synthetic accessibility scoring
was recently designed, however, their applicability and correctness
were studied to a limited extent. Moreover, there is a lack of critical
assessment of synthetic accessibility scores with common test con-
ditions. To this end, we assess if synthetic accessibility scores can
reliably predict the outcomes of retrosynthesis planning. Using a spe-
cially prepared compounds database, we examine the outcomes of
the retrosynthetic tool AiZynthFinder. We test whether synthetic ac-
cessibility scores: SAscore, SYBA, SCScore, and RAscore accurately
predict the results of retrosynthesis planning and compare them with
OC-MF-Score. Furthermore, we investigate if synthetic accessibility
scores can speed up retrosynthesis planning by better prioritizing
explored partial synthetic routes and thus reducing the size of the
search space. For that purpose, we analyze the AiZynthFinder partial
solutions search trees, their structure, and complexity parameters,
such as the number of nodes, or treewidth.

This assessment is easily reproducible and is designed as a frame-
work for evaluating and comparing novel synthetic accessibility scores.
Its source code with usage instructions is publicly available at https:
//github.com/grzsko/ASAP.

6.1 analyzed synthetic accessibility scores

We analyzed four scores: SAscore, SCScore, SYBA, and RAScore, and
compared them with OC-MF-Score. SAscore and SCSore were de-
scribed in Section 5.2.4 and OC-MF-Score was described in Section 5.3.

The idea of the SYBA score is to train a model on comprehensive
representations of both existing, easy-to-synthesize compounds as well
as non-existing, hard-to-synthesize compounds. The former set was
randomized from the ZINC15 database and the latter set was created
from an easy-to-synthesize one using Nonpher tool [166] by the iterative
perturbing structure of the input molecules (adding/removing of
atom or bond) up to a predefined complexity threshold. SYBA is a
Bernoulli naïve Bayes classifier trained on both sets. Its implementation
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is available as a Conda package or at https://github.com/lich-uct/
syba.

RAscore is designed as a retrosynthetic accessibility score, i.e. score
for fast prescreening molecules for the AiZynthFinder tool. It was
trained on over 200000 molecules from ChEMBL [167]. For every
molecule, a synthesis route was generated using AiZynthFinder to
assess if the molecule is synthesizable. Two models were trained on
these outcomes: neural network [159] and gradient boosting machines.
RAscore implementation is publicly available at https://github.com/
reymond-group/RAscore.

6.2 aizynthfinder , the analyzed casp tool

AiZynthFinder is an algorithm for computational synthesis planning.
It utilizes the Monte Carlo tree search (MCTS) algorithm [168, 169],
which is used for searching the tree of possible partial solutions to
the analyzed problem. Here, solutions correspond to synthetic routes
of the target molecule. Single MCTS round consists of 4 steps [170]: 1)
selection of random leaf node, 2) expansion during which new nodes
from leaf are created, 3) rollout, i.e. search simulation from new node
till the complete solution or a partial solution exceeding a predefined
depth, 4) backpropagation during which nodes are actualized after
rollout. The node containing a partial solution is represented by i) its
depth, ii) the set of in-stock molecules, and iii) the set of expandable
molecules which need to be further transformed into simpler, buyable
molecules. The depth of the node is defined as the maximal number
of transformations that each of its molecules has to undergo to the
target. A leaf node represents a complete solution if it does not need
to be expanded, i.e. its list of expandable molecules is empty and
its depth does not exceed a predefined threshold. Otherwise, a leaf
node represents an infeasible partial solution with a depth exceeding
a threshold i.e. it corresponds to the too-long synthetic route. The
root node of the search tree contains a single expandable molecule
representing the target compound. Nodes are connected with directed
edges representing a reaction whose product is a single expandable
molecule. Leaf selection is made by recursively traversing a search
tree starting from the root by selecting children of maximum upper
confidence bound (UCB) which expresses current node exploitation
and how it is promising:

UCB =
Q

Np
+U. (6.1)

U describes how the node was already explored, i.e.:

U = 1.4 ·

√
2 · lnN−1

Np
,

https://github.com/lich-uct/syba
https://github.com/lich-uct/syba
https://github.com/reymond-group/RAscore
https://github.com/reymond-group/RAscore
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Figure 6.1: Classfication of AiZynthFinder search tree nodes. Nodes are clas-
sified as: internal (I), solved (S), and not solved (NS). Internal
nodes have a non-empty list of expandable molecules, but their
depth is below a predefined depth. Solved nodes are leaves with
all molecules in the in-stock list. A leaf marked as not solved
means that it contains at least one expandable molecule and its
depth exceeds a predefined threshold. Because we aim to dis-
criminate promising nodes from non-promising ones as early as
possible, we define a not solved node as all nodes that have no
path to a solved leaf. In the majority of cases, we focus on roots
of subtrees of not solved nodes.

where Np is the number of times the child node has been visited,
and N−1 is the number of times the parent node has been visited. Q
describes how the node is promising, i.e. it is a sum of rewards from
previous backpropagations. A single reward equals:

0.95 ·Ms

M
+ 0.05

1

1+ exp(m− 4)
, (6.2)

where M is the number of molecules in the node, Ms is the number of
solved molecules and m is the maximum number of transformations
that every molecule have to undergo to become the root. A reward
assesses how molecules of a given node are already expanded and how
many steps are used. Nodes are expanded using a neural network
applying reaction templates on expandable molecules in the node.
Reactions are chosen so that the UCB of the product is maximized.

6.3 evaluation of synthesis planning and scores

6.3.1 Dataset

We prepared a database of 49 compounds. The majority of these com-
pounds are drugs or plant metabolites, of which 44 have documented
synthesis. Molecules in our database were collected to represent var-
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ious synthesis complexity, starting from easily synthesizable ones
such as acetylsalicylic acid, to compounds of known synthesis but
the more complex structure, such as morphine, compounds of known
low-yielding synthesis, such as isocorydine, and not known to be
synthesizable. On the other hand, the molecules were collected to
represent several examples of high demand for synthesizability, such
as drugs, plant metabolites, human metabolites, etc. All compounds
have their structure encoded in SMILES notation from PubChem incor-
porating stereo orientation. Molecules from this database were further
input dataset of AiZynthFinder tool and synthetic accessibility scores
for their analysis.

A
I

I NS

B
I

I NS

Figure 6.2: Configurations of analyzed nodes. Panel A: We checked if two
nodes, internal and not solved which have the same internal par-
ent can be discriminated by synthetic accessibility scores. Panel B:
We checked also if synthetic accessibility scores can discriminate
internal parents from their not solved children.

6.3.2 Analysis of the search trees

In the first analysis, we assessed if synthetic accessibility scores can
model and predict outcomes of retrosynthesis planning. To express the
complexity of retrosynthesis planning, we analyzed the search trees
of AiZynthFinder runtime for molecules from our database. For these
trees, we calculated statistics, such as the number of nodes, treewidth,
and the number of leaf nodes that are not solved. We omitted to
analyze tree depth because AiZynthFinder has strict limits for the
depth of the search tree and the results would be uninformative.

Moreover, we checked if synthetic accessibility scores can act as
nodes’ prioritization heuristics. To this end, we classified all nodes into
three groups: solved, not solved, and internal (cf. Figure 6.1). Solved
nodes correspond to complete solutions, i. e. all their molecules are
available in stock. Not solved nodes correspond to partial solutions
of an infeasible synthetic route. We define not solved nodes as nodes
for which there is no path leading to a solved node. The rest of the
nodes are internal, i.e. nodes having a path to the solved leaf node.
They correspond to these partial solutions which eventually lead to a
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auc accuracy

SAscore 0.90 0.81

RAscore 0.85 0.85

SCScore 0.67 0.69

SYBA 0.66 0.67

OC-MF-Score 0.53 0.51

Table 6.1: Comparison of analyzed synthetic accessibility scores in predicting
the AiZynthFinder outcomes.

complete solution. For such nodes definition, if the root of a tree is not
solved then the algorithm has not found any feasible synthetic route
for a given target molecule. We express a score value of a node as
one of the statistics (maximum, minimum, arithmetic mean) over all
molecules in the node. For making calculations comparable, all scores
were transformed so that they achieve values from the range [0,1]
with 0 corresponding to an infeasible (non-synthesizable) molecule
and 1 corresponding to a feasible (easily synthesizable) molecule. To
check if synthetic accessibility scores properly prioritize nodes, we
analyzed if synthetic accessibility scores discriminate internal nodes
from not solved ones. Firstly, we considered these pairs connected
with a single reaction step. We analyzed two configurations: i) siblings
nodes internal and not solved with internal parent and ii) internal
parent from not solved child (cf. Figure 6.2). Secondly, we checked
if synthetic accessibility scores correctly discriminate internal nodes
from not solved ones in general.

Finally, we checked if modified leaf selection, which incorporates
nodes’ synthetic accessibility scores, may speed up retrosynthesis
planning. To this end, we modified UCB (Equation (6.1)) by substituting
a fraction of a reward with one of the synthetic accessibility scores.
Specifically, a reward (Equation (6.2)) was replaced with the value:

c · SA+ (0.95− c) ·Ms

M
+ 0.05

1

1+ exp(m− 4)
, (6.3)

where c is a replaced fraction of reward (14 · 0.95, 24 · 0.95, 34 · 0.95) and
SA is one of appropriately transformed synthetic accessibility scores.

6.4 results and discussion

For all compounds from our database, we performed retrosynthesis
planning using AiZynthFinder with default parameters. AiZynthFinder
found a synthetic route for 22 compounds. For all found synthetic
routes, 20 of them are known (precision 0.91), and for all known
synthetic routes, 20 of them are found (sensitivity 0.45).
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Figure 6.3: ROC curve for synthetic accessibility scores prediction of
AiZynthFinder outcomes. Dots mark the best score threshold.
AUC for curves are listed in Table 6.1.
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Figure 6.4: Heatmap of correlation between synthetic accessibility scores
and complexity search tree parameters. The color indicates the
value of the Spearman correlation, the white number indicates
the p-value of the correlation test.

We assessed if synthetic accessibility scores correctly predicted the
results of retrosynthetic planning. To find the optimal score thresholds
that discriminate synthesizable target molecules from non-synthesizable
ones, we analyzed ROC curve, cf. Figure 6.3. For every score and its opti-
mal threshold, we computed the prediction accuracy of AiZynthFinder’s
outcomes. We also measured the quality of scores by calculating



6.4 results and discussion 73

< 0.001 < 0.001< 0.001

< 0.001 < 0.001< 0.001

< 0.001 < 0.001< 0.001

1 11

< 0.001 < 0.0010.002

0.998 0.9581

< 0.001 0.007< 0.001

< 0.001 0.016< 0.001

< 0.001 0.011< 0.001

< 0.001 < 0.001< 0.001

0.969 10.292

< 0.001 0.679< 0.001

< 0.001 < 0.001< 0.001

< 0.001 1< 0.001

< 0.001 0.826< 0.001

SAscore maximum

SAscore minimum

SAscore mean

SCScore maximum

SCScore minimum

SCScore mean

RAscore maximum

RAscore minimum

RAscore mean

SYBA maximum

SYBA minimum

SYBA mean
OC−MF−Score

maximum
OC−MF−Score

minimum
OC−MF−Score

mean

Internal − Not Solved
all molecules

Solved − Not Solved
all molecules

Internal − Not Solved
expandable molecules

A 1 0.005

< 0.001 < 0.001

< 0.001 < 0.001

1 1

1 1

1 1

1 1

1 1

1 1

0.765 0.993

1 1

1 1

0.807 1

1 1

1 1

SAscore maximum

SAscore minimum

SAscore mean

SCScore maximum

SCScore minimum

SCScore mean

RAscore maximum

RAscore minimum

RAscore mean

SYBA maximum

SYBA minimum

SYBA mean
OC−MF−Score

maximum
OC−MF−Score

minimum
OC−MF−Score

mean

Internal − Not Solved
all molecules

Internal − Not Solved
expandable molecules

0.01

1.00
p−value

B

Figure 6.5: Heatmaps of t-test p-values for hypothesis whether synthetic
accessibility scores discriminate node types. Panel A: For internal
and not solved siblings node pairs and solved and not solved node
pairs if their scaled score differences are greater than 0. Panel B:
For internal parent and not solved child node pairs if their scaled
score differences are greater than 0. Here, discrimination between
solved and not solved is not applicable.

the AUC. Results are depicted in Table 6.1. For both AUC and accuracy,
SAscore and RAscore achieve high results (both measures were over
0.81). On the contrary, for both SCScore and SYBA, the results are
worse by about 20 percentage points. Unfortunately, OC-MF-Score
achieves the worst results. RAscore’s good result is not surprising, be-
cause it was trained on the outcomes of the AiZynthFinder algorithm.
This, combined with the low sensitivity of AiZynthFinder, allows us to
claim that RAscore is a precise heuristic of AiZynthFinder outcomes,
but not necessarily a synthetic accessibility score in general. The re-
sults of the SAscore may seem surprising. It is a slightly different score
from the rest because it is not a standard ML model. It is designed
as a combination of scores and penalties derived by experts from the
presence of structural fragments in the PubChem database. From this,
we infer that in retrosynthesis, human intuition and the power of the
human mind still play an important role in planning a synthesis route
especially in noticing the irregularities in the general synthesis rules.
On the opposite, ML models are prone to imperfections, imbalance,
bias, or gaps in training data. This lies in line with recent studies
indicating ML limits in cheminformatics, for example for reaction yield
prediction [171], for CADD [26], or for graph-based DL models for drug
representation [172].

We checked also if synthetic accessibility scores can model the com-
plexity of the retrosynthesis planning. We computed a Spearman rank
correlation [161] between scores of target compounds and their search
tree complexity parameters, such as treewidth, number of nodes, and
number of not solved leaf nodes. Results are available in Figure 6.4.
All of RAscore, SAscore, OC-MF-Score, and SCScore correlate nega-
tively by at least one node aggregating statistic with all complexity
parameters with significance below 0.04. On the contrary, SYBA does
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Figure 6.6: ROC curves for discrimination of internal and not solved nodes
by appropriately scaled synthetic accessibility scores. AUCs are
depicted in Figure 6.8.

not correlate with any of the complexity parameters. Analogously as
earlier, RAscore and SAscore performed best, the strongest negative
correlation was observed between these two scores and the number of
nodes.

As a next step, we checked if scores can be a good heuristic for
prioritizing nodes corresponding to partial solutions. Well-prioritized
nodes would preferably select routes that are more promising for
further search and boost the efficiency of retrosynthesis planning.
To this end, we checked if synthetic accessibility scores can detect
potentially infeasible partial synthesis routes. We assessed this by
taking all pairs of internal and not solved siblings nodes and checking
if the average score of internal nodes is greater than the score of
not solved nodes (cf. Figure 6.2A). We used a one-sample t-test [173]
for score differences of node pairs. The alternative hypothesis was
that the mean of the pair differences distribution is greater than 0.
We checked also if incorporating in-stock set molecules would not
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Figure 6.7: ROC curves for discrimination of solved and not solved nodes
by appropriately scaled synthetic accessibility scores. AUCs are
depicted in Figure 6.8.

bias the node statistics. Thus, we repeated the same test on node
scores incorporating only expandable molecules. Results are depicted
in Figure 6.5A. Practically, all scores with at least one aggregating
statistic can correctly discriminate internal nodes from not solved and
solved nodes from not solved. Omitting the set of in-stock molecules
did not change the results.

We repeated the same analysis for pairs of the internal parent node
and not solved child (cf. Figure 6.2B). Contrary to previous results,
only SAscore can significantly discriminate the parent internal node
from its not solved child (cf. Figure 6.5B).

Moreover, we checked in-depth if synthetic accessibility scores can
correctly discriminate internal nodes from not solved ones and solved
nodes from not solved ones. We collected all internal, solved, and not
solved nodes. To find a threshold properly discriminating nodes, we
analyzed ROC curves of synthetic accessibility scores, cf. Figure 6.6 and
Figure 6.7. AUCs are depicted in Figure 6.8. Practically, all scores except
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Figure 6.8: Heatmap of AUC of discrimination between internal and not
solved nodes (left) and solved and not solved nodes (right).

SYBA correctly discriminate internal nodes from not solved and solved
from not solved. Note that for each of the rest of the scores, only the
mean and minimum aggregating functions are efficient. It is because
minimum detects the presence of non-synthesizable outliers while
maximum reports the best synthesizable molecules. Here, SAscore
achieved the best results, and RAscore and OC-MF-Score were slightly
worse. The rest of the scores were considerably worse.

Finally, we analyzed if directly replacing a fraction of the reward
with an appropriately scaled synthetic accessibility score may boost
the retrosynthesis planning as in Equation 6.3. If so then nodes during
leaves selection would be better prioritized by UCB and thus computa-
tion time decreased. However, it turned out that this replacement did
not improve significantly any parameter of search tree complexity. It
may be caused by undermined reward fraction in UCB formula (6.1)
or high fitting of search algorithm design to its internal scorings.

To conclude, we analyzed if synthetic accessibility scores can ef-
fectively boost the retrosynthesis process. Our analyses consisted of
checking if synthetic accessibility scores correctly model retrosynthe-
sis planning outcomes and effectively discriminate feasible partial
synthetic routes from infeasible ones. We confirmed that synthetic
accessibility scores can in the majority of cases well discriminate fea-
sible molecules from infeasible ones and can be potential boosters of
retrosynthesis planning tools.

Today, the big-data era requires retrosynthesis planning tools to be a
fast and accurate replacement for laborious, human-mind-based man-
ual work. We show, however, that designing retrosynthesis planning
algorithms is still a challenging task and require constant improvement
for faster runtime and more accurate results. For example, replacing
a fraction of UCB failed to improve AiZynthFinder accuracy which
suggests that synthetic accessibility scores need to be carefully crafted
for the target tool.
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Moreover, high, outlying SAscore results suggest that currently,
pure ML techniques still do not replace completely a human mind in
the retrosynthesis planning process. This implies that the accuracy
of scores, although increasing, is still limited. This results in a con-
stant need for improving the quality of training datasets, because
ML models may overfit to specific properties of training datasets that
appeared to be unbalanced or biased. Also, there should be constant
pressure for better model design. We conclude that hybrid ML and
human intuition-based synthetic accessibility scores with carefully
crafted retrosynthesis planning algorithms can still efficiently boost
the effectiveness of computer-assisted retrosynthesis planning. These
tools may help for both finding synthetic routes of newly designed
compounds as well as recognizing what is still unknown in chemistry.
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and Anna Gambin. “Critical Assessment of Synthetic Acces-
sibility Scores in Computer-Assisted Synthesis Planning.” In:
Chemrxiv (Nov. 2022).

[91] Katty X. Wan, Ilan Vidavsky, and Michael L. Gross. “Compar-
ing Similar Spectra: From Similarity Index to Spectral Contrast
Angle.” In: Journal of the American Society for Mass Spectrometry
13.1 (Jan. 2002), pp. 85–88.

[92] Stephen E. Stein and Donald R. Scott. “Optimization and Test-
ing of Mass Spectral Library Search Algorithms for Compound
Identification.” In: Journal of the American Society for Mass Spec-
trometry 5.9 (Sept. 1994), pp. 859–866.

[93] Ari M Frank, Matthew E Monroe, Anuj R Shah, Jeremy J Carver,
Nuno Bandeira, Ronald J Moore, Gordon A Anderson, Richard
D Smith, and Pavel A Pevzner. “Spectral Archives: Extending
Spectral Libraries to Analyze Both Identified and Unidentified
Spectra.” In: Nature methods 8.7 (2011), pp. 587–591.

[94] Ryan Peckner, Samuel A. Myers, Alvaro Sebastian Vaca Jacome,
Jarrett D. Egertson, Jennifer G. Abelin, Michael J. MacCoss,
Steven A. Carr, and Jacob D. Jaffe. “Specter: Linear Deconvo-
lution for Targeted Analysis of Data-Independent Acquisition
Mass Spectrometry Proteomics.” In: Nature Methods 15.5 (May
2018), pp. 371–378.

[95] Florian Huber, Lars Ridder, Stefan Verhoeven, Jurriaan H.
Spaaks, Faruk Diblen, Simon Rogers, and Justin J. J. van der
Hooft. “Spec2Vec: Improved Mass Spectral Similarity Scoring
through Learning of Structural Relationships.” In: PLOS Com-
putational Biology 17.2 (Feb. 2021). Ed. by Lars Juhl Jensen,
e1008724.

[96] L. V. Kantorovich. “Mathematical Methods of Organizing and
Planning Production.” In: Management Science 6.4 (July 1960),
pp. 366–422.

[97] Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-
Xavier Vialard. “Scaling Algorithms for Unbalanced Optimal
Transport Problems.” In: Mathematics of Computation 87.314 (Feb.
2018), pp. 2563–2609.

[98] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “The
Earth Mover’s Distance as a Metric for Image Retrieval.” In:
International Journal of Computer Vision 40 (2000), p. 2000.



88 bibliography

[99] Filippo Santambrogio. Optimal Transport for Applied Mathemati-
cians. First. Progress in Nonlinear Differential Equations and
Their Applications. Birkhäuser Cham.

[100] Szymon Majewski, Michal Aleksander Ciach, Michal Startek,
Wanda Niemyska, Blazej Miasojedow, and Anna Gambin. “The
Wasserstein Distance as a Dissimilarity Measure for Mass Spec-
tra with Application to Spectral Deconvolution.” In: 18th Inter-
national Workshop on Algorithms in Bioinformatics (WABI 2018).
Ed. by Laxmi Parida and Esko Ukkonen. Vol. 113. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 25:1–25:21.

[101] George B. Dantzig. Origins of the Simplex Method. Ed. by Stephen
G. Nash. 1990.

[102] Paul Knopp and Richard Sinkhorn. “Concerning Nonnegative
Matrices and Doubly Stochastic Matrices.” In: Pacific Journal of
Mathematics 21.2 (1967), pp. 343–348.

[103] R. Cominetti and J. San Martín. “Asymptotic Analysis of the
Exponential Penalty Trajectory in Linear Programming.” In:
Mathematical Programming 67.1 (Oct. 1994), pp. 169–187.

[104] Zeyuan Allen-Zhu, Yuanzhi Li, R. Oliveira, and A. Wigderson.
“Much Faster Algorithms for Matrix Scaling.” In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS)
(2017).

[105] Marco Cuturi. “Sinkhorn Distances: Lightspeed Computation
of Optimal Transport.” In: Advances in Neural Information Pro-
cessing Systems. Vol. 26. Curran Associates, Inc., 2013.

[106] Richard Sinkhorn. “A Relationship between Arbitrary Positive
Matrices and Doubly Stochastic Matrices.” In: The Annals of
Mathematical Statistics 35.2 (June 1964), pp. 876–879.

[107] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigol-
let. “Near-Linear Time Approximation Algorithms for Optimal
Transport via Sinkhorn Iteration.” In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Vol. 30. Curran Associates, Inc., 2017.

[108] Joel Franklin and Jens Lorenz. “On the Scaling of Multidimen-
sional Matrices.” In: Linear Algebra and its Applications. Spe-
cial Issue Dedicated to Alan J. Hoffman 114–115 (Mar. 1989),
pp. 717–735.

[109] Rémi Flamary et al. “POT: Python Optimal Transport.” In:
Journal of Machine Learning Research 22.78 (2021), pp. 1–8.



bibliography 89

[110] Adam Paszke et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library.” In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc.,
2019.

[111] Thibault Sejourne, Francois-Xavier Vialard, and Gabriel Peyré.
“The Unbalanced Gromov Wasserstein Distance: Conic Formu-
lation and Relaxation.” In: Advances in Neural Information Pro-
cessing Systems. Vol. 34. Curran Associates, Inc., 2021, pp. 8766–
8779.

[112] Gaël Guennebaud, Benoît Jacob, et al. Eigen V3. 2010.

[113] Mateusz K. Lacki, Dirk Valkenborg, and Michal P. Startek.
“IsoSpec2: Ultrafast Fine Structure Calculator.” In: Analytical
Chemistry 92.14 (June 2020), pp. 9472–9475.

[114] Lev I. Levitsky, Joshua A. Klein, Mark V. Ivanov, and Mikhail
V. Gorshkov. “Pyteomics 4.0: Five Years of Development of a
Python Proteomics Framework.” In: Journal of Proteome Research
18.2 (Dec. 2018), pp. 709–714.

[115] Hannes L Röst et al. “OpenMS: A Flexible Open-Source Soft-
ware Platform for Mass Spectrometry Data Analysis.” In: Na-
ture Methods 13.9 (Aug. 2016), pp. 741–748.

[116] D. Sculley. “Web-Scale k-Means Clustering.” In: Proceedings of
the 19th International Conference on World Wide Web - WWW 10.
ACM Press, 2010.

[117] Cecil C. Bridges. “Hierarchical Cluster Analysis.” In: Psycholog-
ical Reports 18.3 (June 1966), pp. 851–854.

[118] Zoltán Király and Péter Kovács. “Efficient Implementations
of Minimum-Cost Flow Algorithms.” In: Acta Univ. Sapientiae,
Inform. 4.1 (2012), pp. 67–118.

[119] F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[120] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Explor-
ing Network Structure, Dynamics, and Function Using Net-
workX.” In: Proceedings of the 7th Python in Science Conference.
Ed. by Gael Varoquaux, Travis Vaught, and Jarrod Millman.
Pasadena, CA USA, 2008, pp. 11–15.

[121] Eva Lange, Ralf Tautenhahn, Steffen Neumann, and Clemens
Gröpl. “Critical Assessment of Alignment Procedures for LC-
MS Proteomics and Metabolomics Measurements.” In: BMC
Bioinformatics 9.1 (Sept. 2008).



90 bibliography

[122] Matthew Bellew, Marc Coram, Matthew Fitzgibbon, Mark Igra,
Tim Randolph, Pei Wang, Damon May, Jimmy Eng, Ruihua
Fang, ChenWei Lin, et al. “A Suite of Algorithms for the Com-
prehensive Analysis of Complex Protein Mixtures Using High-
Resolution LC-MS.” In: Bioinformatics (Oxford, England) 22.15

(2006), pp. 1902–1909.

[123] Mikko Katajamaa and Matej Orešič. “Processing Methods for
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