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Abstract

The goal of the dissertation is a formal analysis of the problem of selecting winning projects
in participatory budgeting (PB), a problem in the field of computational social choice with
multiple applications within and beyond computer science (for example, in the political domain,
blockchain protocols, search engines or genetic algorithms). It can be formulated as follows:
we have a set of projects and certain amount of available funds. Each project is associated with
some cost. There is a set of voters who gain utilities from the projects (the form of which may
differ depending on the model). The problem is to choose the subset of projects whose joint total
cost does not exceed the available budget and is fair with respect to the voters’ preferences. In
this dissertation we will focus on the problem of group fairness, called proportionality. Here we
assume that each group of voters should get a representation proportional to its size ("every x%
of the voters should decide about spending x% of the budget"). The meaning of this phrase
is intuitive in simple cases when we can split voters into separate groups supporting identical
projects. However, in many applications of the participatory budgeting problem it is not the
case: the groups of voters supporting certain projects may overlap and their preferences are not
fully cohesive. In such cases, a formal analysis is required to compare different outcomes to
one another.

Before our research this problem has been studied only under some simplifying assumption
(like equal costs of the projects or specific forms of voters’ preferences) and the obtained results
still appeared to be complex. In particular, it turns out that the idea of proportionality can be
formalized in many substantially different ways. The well-established approach in the compu-
tational social choice is then to try to formalize this idea via multiple axioms specifying desired
properties of outcomes.

We contribute to the studies of this model in the following way: in the first part of the
dissertation we propose a new algorithm, called Method of Equal Shares, together with an
extensive theoretical and experimental study of its properties. It is notable that our results have
lead to changing the statutes of participatory budgeting, switching from the simple majoritarian
rules to Method of Equal Shares, in two Polish communities (Wieliczka and Świecie) and in
one Swiss city (Aarau). It shows the practical impact of our results.

The second part of the dissertation is focused on designing strict mathematical definitions
(axioms) capturing the idea of proportionality in the PB setting, analyzing the logical connec-
tions between various axioms as well as their satisfiability. We focus here on the strongest
possible guarantees, in particular, stronger than the ones provided by Method of Equal Shares.
However, we show that without additional assumptions they are not satisfiable in general by
polynomial-time computable algorithms.

Our results have been published in the form of four separate papers:

(1) Dominik Peters, Grzegorz Pierczyński, Nisarg Shah, and Piotr Skowron. Market-based
explanations of collective decisions. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI-2021), 2021a



(2) Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory
budgeting with additive utilities. Advances in Neural Information Processing Systems
(NeurIPS-2021), 34:12726–12737, 2021b

(3) Grzegorz Pierczyński and Piotr Skowron. Core-stable committees under restricted do-
mains. In Proceedings of the 18th Conference on Web and Internet Economics (WINE-
2022), pages 311–329, 2022

(4) Piotr Faliszewski, Jarosław Flis, Dominik Peters, Grzegorz Pierczyński, Piotr Skowron,
Dariusz Stolicki, Stanisław Szufa, and Nimrod Talmon. Participatory budgeting: Data,
tools and analysis. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI-2023), pages 2667–2674, 2023

Keywords: computational social choice, voting, participatory budgeting, committee elec-
tions, Method of Equal Shares, proportionality, fairness, core, priceability



Streszczenie

Celem ninejszej rozprawy doktorskiej jest formalna analiza problemu wyboru zwycięskich pro-
jektów w budżecie partycypacyjnym (ang. participatory budgeting, PB), problemu z zakresu
obliczeniowej teorii wyboru społecznego, mającego wiele zastosowań zarówno w dziedzinie
informatyki, jak i poza nią (np. w głosowaniach politycznych, protokołach blockchain, wyszu-
kiwarkach internetowych czy algorytmach genetycznych). Problem ten można sformułować w
następujący sposób: mamy zbiór projektów oraz pewną ilość dostępnych środków. Realizacja
każdego projektu wiąże się z pewnym kosztem. Oprócz tego mamy zbiór wyborców, różnią-
cych się preferencjami na temat projektów (forma wyrazu tych preferencji może się różnić
w zależności od modelu). Problem polega na wyborze podzbioru projektów, których łączny
koszt nie przekracza dostępnego budżetu i który sprawiedliwie (proporcjonalnie) odzwierciedla
preferencje wyborców. Zakładamy tutaj, że każda grupa wyborców powinna mieć reprezen-
tację proporcjonalną do swojego rozmiaru ("każda grupa x% wyborców powinna decydować
o przeznaczeniu x% dostępnych środków"). Zasada ta jest intuicyjnie zrozumiała w prostych
przypadkach, gdy możemy podzielić wyborców na rozłączne grupy, głosujące na projekty o
kosztach proporcjonalnych do swoich rozmiarów. Jednak w wielu zastosowaniach problemu
budżetu partycypacyjnego nie jest to możliwe: grupy wyborców wspierających określone pro-
jekty mogą się pokrywać, a ich preferencje nie być w pełni spójne. W takich sytuacjach, do
oceny proporcjonalności wybranego zbioru projektów i porównywania różnych wyników ze
sobą, wymagana jest formalna analiza.

Problem ten był dotychczas badany głównie w uproszczonej wersji, przy dodatkowych za-
łożeniach (takich jak jednakowe koszty projektów albo uproszczone preferencje wyborców), co
i tak prowadziło do złożonych rezultatów. W szczególności, okazuje się wówczas że ideę pro-
porcjonalności można sformalizować na wiele istotnie róznych sposobów. Stąd też powszech-
nie przyjętym podejściem w obliczeniowej teorii wyboru społecznego jest podejście aksjoma-
tyczne, określające pożądane właściwości zwycięskich podzbiorów w poszczególnych sytu-
acjach.

Nasz wkład w badania nad tym problemem jest następujący: w pierwszej części rozprawy
proponujemy nowy algorytm, Metodę Równych Udziałów, wraz z głęboką teoretyczną i ekspe-
rymentalną analizą jej własności. Warto wspomnieć, że nasze wyniki doprowadziły do zmiany
statutów budżetu partycypacyjnego i używania Metody Równych Udziałów w praktyce, w
dwóch polskich gminach (Wieliczka i Świecie) i jednym szwajcarskim mieście (Aarau). Do-
wodzi to istotnego znaczenia praktycznego wyników opublikowanych w niniejszej rozprawie.

Druga część rozprawy skupia się na projektowaniu aksjomatów formalizujących ideę pro-
porcjonalności w modelu PB oraz analizie zależności logicznych i spełnialności tych aksjoma-
tów. Skupiamy się tu na możliwie najsilniejszych gwarancjach sprawiedliwości, w szczegól-
ności silniejszych od tych gwarantowanych przez Metodę Równych Udziałów. Jednak nasze
wyniki wskazują na to, że w ogólnym modelu, bez dodatkowych założeń, nie są one możliwe
do spełnienia w czasie wielomianowym.

Nasze wyniki zostały opublikowane w formie czterech osobnych artykułów naukowych:
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Chapter 1

Introduction

A growing list of cities nowadays uses Participatory Budgeting (PB) to decide how to spend a
part of their budgets [De Vries et al., 2022, Wampler et al., 2021]. Through voting, PB allows
the residents of a city to decide which from the considered projects will be funded by the city.
The advantages of such initiatives are numerous—thanks to it, the citizens are encouraged to get
involved in the problems of their local community and to propose socially valuable initiatives.

The overall process is quite complex. First, groups of citizens register projects. Each project
is described in detail, and its cost is estimated. Typically, project proposals are verified by a
special commission—projects not meeting certain formal criteria might be rejected. Second,
citizens vote for the projects, by casting paper or online ballots. There are several possible
types of ballots—for example, in Warsaw citizens choose up to a few projects they approve (an
example of an approval ballot is presented in Figure 1). The third and final step of the procedure
is running a voting rule—an algorithm, which takes as input the voters’ ballots and returns the
subset of winning projects. The total cost of the winning outcome should not exceed the budget
constraint. In this dissertation, we focus on this last stage—we want to design algorithms,
which elect outcomes that proportionally represent the views of the voters. What does it mean
in practice and why is it so important?

To answer these questions, let us take a look at the most commonly used voting rule, here-
inafter called Utilitarian Greedy. It works as follows: initially, the elected outcome is empty.
Then we iterate over projects starting from the ones with the highest total number of approvals
and add them to the outcome until the budget is exhausted. If adding a project would exceed the
budget, it is skipped. While simple and intuitive, it is an example of an algorithm which may
elect outcomes not reflecting the actual views of the society. To see this, consider the following
simple example:

Example 1.1. Suppose that all the projects have the same cost and the budget limit allows to
fund any 10 of them. Each project belongs to one of three categories. We have 10 red projects
approved by 40% of voters, 10 blue projects approved by another 30% of voters and 10 green
ones approved by yet another 30% of voters. For example, each color might represent a district
of the city where the corresponding project will be conducted. Each group of voters approves
projects from only a single category.
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Figure 1: An example of an approval ballot.

In this case, the Utilitarian Greedy rule selects only red projects (Figure 2a) and 60% of the
voters are left empty-handed. ⌟

We can intuitively see that the outcome elected above is severely unfair. We would rather
expect selecting only 4 red projects (costing 40% of the overall budget), together with 3 blue
and 3 green ones (Figure 2b). This example illustrates the fact that under Utilitarian Greedy the
winner takes all: the majority (or rather the largest minority) of voters may decide about the full
budget, leaving the remaining part of the society with nothing. If a city implemented this rule
directly, it could lead to, for example, the domination of large districts over smaller ones.

Note that under Utilitarian Greedy, project submitters have an incentive to follow a very
simple strategy: in Example 1.1 submitters of blue and green projects could merge them into 10
artificial blue-green projects costing twice more each. Then such projects could receive 60%
of votes and dominate the election. This process is indeed observable in practice: for exam-
ple, in Wieliczka in 2021,1 the whole election was completely dominated by the rivalry of
two projects, with names: "Improving the level of security in the towns: Mietniów, Pawlikow-
ice, Chorągwica, Grajów, Dobranowice, Jankówka, Raciborsko, Lednica Górna, Podstolice,
Gorzków, Janowice" (southern towns of the municipality) and "Improving life conditions and
the level of security in towns: Brzegi, Byszyce, Czarnochowice, Grabie, Kokotów, Mała Wieś,
Strumiany, Sułków, Śledziejowice, Węgrzce Wielkie, Zabawa" (northern towns of the munici-

1All the data concerning real-life elections presented in the dissertation are publicly available within our par-
ticipatory budgeting library: https://pabulib.org

2
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40% 30% 30%

(a) Outcome elected by Utilitarian Greedy

40% 30% 30%

(b) The proportional outcome

Figure 2: Illustration of Example 1.1. Each project is depicted as a red, blue or green box,
depending on the project’s category. The percentages mean the quantities of disjoint groups of
voters approving the same projects (the ones placed above them). Projects marked with more
intense colors are elected. Emojis depict (informally) levels of satisfaction of each group. For
example, in Figure 2a only the projects supported by the first 40% of voters and so these voters
have high satisfaction. The remaining voters are left empty-handed and so they are highly
dissatisfied.

pality). In this situation, no smaller and more specific projects had even a chance of winning.
To avoid this problem, city councils modify Utilitarian Greedy in the following way: they

divide voters and projects into districts upfront. Then the budget is split among districts propor-
tionally to their population and the rule is run in each district separately. Besides, some projects
are marked as "citywide" and some fixed fraction of the budget is allocated to them.

There are numerous problems with this approach. First of all, it does not actually solve the
problem of proportionality—it only takes into account territorial groups of interests, while in a
city we can have also non-territorial ones. For example, we can easily imagine that the colors of
projects from Example 1.1 do not correspond to different districts, but rather to different topics,
like building green areas, bicycle infrastructure or playgrounds—and the voters do not actually
care whether the selected projects are close to them or not.

Even if we care only about territorial groups of interests, the problems remain—first, the
borders of the districts are also defined arbitrarily. Voters living close to the border of their
district may gain satisfaction from projects located on the other side of the border, yet they
cannot vote for them. Second, a voter can work or spend her free time in a different district
than the one she lives—in this case, her assignment to only one district is artificial as well. For
example, in Gdańsk in 2020, where voters could vote for projects from various districts, over
15% of voters did so. Third, and most importantly, the problem of proportionality within each
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district still remains untouched.
In fact, even under the most mild and favorable assumption—that we take into account only

districtwise groups of interests—the current solution is still not satisfactory. Note that it is ar-
bitrary whether a project should be classified as citywide or districtwise, and how much money
should be spent on citywide projects. It may result in electing inefficient outcomes, which is
indeed easily observable in practice. For example, in Warsaw in 2021 a project "A pavement on
the Modlińska Street" costing 630,000 PLN was funded in Białołęka district, receiving 1,932
votes. On the other hand, a cheaper project "Trees and shrubs on the Modlińska Street", costing
only 430,000 PLN and concerning the very same street, was registered as a citywide project.
Since the competition between citywide projects was much more fierce than between district-
wise ones, the latter project was not selected despite receiving 12,463 votes in total (including
4,365 from the voters in Białołęka district). As a result, instead of electing a cheaper and more
popular projects, a more expensive and less popular one was chosen. Similar examples can be
found in participatory budgeting elections from various years and cities.

As we can see, there is an actual need for proportional voting rules—the ones that would
endogenously identify coherent groups of voters (without any arbitrary decisions) and satisfy
them proportionally to their size. However, the idea of proportionality is still very vague. The
meaning of this term is clear only in simple examples like Example 1.1, which appear extremely
rarely in practice. For example, what would be the proportional outcome, if we modified this
example by adding 2 yellow projects, approved by the supporters of blue and green projects,
and 2 violet projects, approved by the supporters of blue and red projects (see Figure 3)?

Now it is much harder to indisputably call only one outcome proportional. We probably
feel that the original outcome (4 red, 3 blue and 3 green projects, depicted in Figure 3a) is still
an acceptable choice and approving additional projects should at the very least not affect the
voters’ guarantees negatively. At the same time, we might allow for replacing some red/blue
projects with violet ones, and some blue/green projects with yellow ones. But can we do it in
any way? For example, is the outcome containing 2 violet, 2 yellow, 2 red, 1 green and 3 blue
projects (Figure 3b), clearly favoring the middle 30% of the voters, proportional? Or shall we
prefer a replacement that is more "balanced" with respect to the voters’ satisfaction (like the
one in Figure 3c)?

This example shows that in more complex scenarios, the question whether an outcome is
proportional is no longer straightforward and needs to be analyzed formally. The most typical
approach is to say that every outcome satisfying certain formal conditions (axioms) is propor-
tional. However, axioms need to be designed with care. Consider for example, the following
definition, formalizing the aforementioned "feeling".

Definition Attempt 1.2. We say that an outcome W is proportional, if for every group S of x%
of voters, approving jointly some projects worth at least x% of the budget, every voter from S
approves some elected projects from W worth at least x% of the budget.

According to this definition, in the modified Example 1.1 every outcome depicted in Figure 3
is proportional. At the first sight, Definition Attempt 1.2 appears then to be quite intuitive
and reasonable, maybe even a bit weak—yet there exist elections where it is impossible to be

4



voters:

satisfaction:

40% 30% 30%

4 3 3

(a)

40% 30% 30%

4 7 3

(b)

40% 30% 30%

6 5 4

(c)

Figure 3: A modified Example 1.1 with three examples of possibly proportional outcomes.
Numbers below the groups of voters denote their satisfaction from the outcome (numbers of
approved elected projects).

satisfied.

Example 1.3 ([Aziz et al., 2018]). Consider an election with four projects a, b, c, d, and 12
voters, with the following approval sets:

1: {a, d} 4: {a, b} 7: {b, c} 10: {c, d}
2: {a} 5: {b} 8: {c} 11: {d}
3: {a} 6: {b} 9: {c} 12: {d}.

Suppose that each project costs 100,000 dollars and the budget is 300,000 dolars. Hence, the
budget allows to fund any three projects. Now, according to Definition Attempt 1.2, the group of
one third of the voters {1, 2, 3, 4} deserves one project, as it has a commonly approved project
(a) costing one third of the budget. Since voters 2 and 3 approve only a, definition Definition
Attempt 1.2 actually requires that a is elected. Now observe that we can repeat this reasoning
also for groups {4, 5, 6, 7}, {7, 8, 9, 10}, and {10, 11, 12, 1} and projects b, c, and d respectively.
Thus, all four projects have to be in a winning committee, which would exceed the budget. ⌟

As we can see, defining proportionality axioms is not straightforward when the groups of
voters may overlap. Note that in Example 1.3 still the costs of all the projects are equal and
the voters vote via approval ballots—considering elections with unequal costs or more complex
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voters’ ballots makes the problem naturally even more difficult. Another challenge is that, since
real-life elections usually contain large numbers of voters and projects, we prefer definitions
that are satisfiable by polynomial-time computable voting rules.

1.1 Our contribution
The dissertation is based on the following research papers:

(1) Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory
budgeting with additive utilities. Advances in Neural Information Processing Systems
(NeurIPS-2021), 34:12726–12737, 2021b

(2) Piotr Faliszewski, Jarosław Flis, Dominik Peters, Grzegorz Pierczyński, Piotr Skowron,
Dariusz Stolicki, Stanisław Szufa, and Nimrod Talmon. Participatory budgeting: Data,
tools and analysis. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI-2023), pages 2667–2674, 2023

(3) Grzegorz Pierczyński and Piotr Skowron. Core-stable committees under restricted do-
mains. In Proceedings of the 18th Conference on Web and Internet Economics (WINE-
2022), pages 311–329, 2022

(4) Dominik Peters, Grzegorz Pierczyński, Nisarg Shah, and Piotr Skowron. Market-based
explanations of collective decisions. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI-2021), 2021a

All the publications have several authors. I participated in every technical contribution
presented in the dissertation.

The results published within the first two papers form the first part of the dissertation. The
remaining ones are included in the second part. Now let us briefly summarize our contribution
within both of them.

Method of Equal Shares for Participatory Budgeting
Our main contribution is the following: we designed a polynomial-time computable voting rule,
called Method of Equal Shares (or Equal Shares, in short). It is based on the idea that voters
should pay for the projects they support with the fictional money. Intuitively, this fictional
money represents their voting power. The formal description of this algorithm together with
illustrative examples is included in Chapter 3. In the case of Example 1.1, Method of Equal
Shares elects the outcomes depicted in Figure 2b and for its modified version, the outcome
depicted in Figure 3c. Thus, the outcomes returned in these cases by the rule are proportional
according to our intuition.

To prove formally that Equal Shares elects arguably proportional outcomes in any case, we
extend the literature with new axioms of proportionality and show that these axioms are satisfied
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by our algorithm (see Chapter 4). The first axiom is Extended Justified Representation up to one
project (EJR-1), which is similar in spirit to Definition Attempt 1.2, yet slightly weaker—and
therefore, satisfiable. Intuitively, both definitions can be formulated as "every group of voters
whose members have cohesive preferences, shall be represented proportionally to its size". The
differences between them follow from different ways of formalizing the vague phrases cohesive
preferences and a group shall be represented. Our next axiom, priceability, extends the notion
introduced by Peters and Skowron [2020]. Similarly to Equal Shares, it is based on the idea of
"paying" for projects by the voters and specifies conditions under which these payments form
a fair market. Method of Equal Shares satisfies this axiom, which intuitively ensures that all
voters have a similar amount of influence on the elected outcome. Additionally, we consider
the very strong and well-established notion of core-stability [Aziz et al., 2017a], derived from
cooperative game theory. It is not satisfiable for unconstrained voters’ preferences [Fain et al.,
2018], yet we show that Equal Shares provides its good approximation.

Further, in Chapter 5 we present an experimental analysis, showing which outcomes Equal
Shares would elect in practice, if it was used in real-life PB elections. First, we collected data
from over 800 hundred elections (mainly from Poland) which are publicly available within
our participatory budgeting library, called Pabulib (https://pabulib.org). Second, we
compared the quality of outcomes elected by Method of Equal Shares to the ones elected by
Utilitarian Greedy, using various metrics. These metrics measure both efficiency of an outcome
(how much satisfaction it provides in total to the voters) and its fairness (how equally the satis-
faction is distributed among the voters). For example, one of our metrics of efficiency measures
the average number of selected projects that are approved by a voter.

Note that there might appear a trade-off between efficiency and proportionality—in Ex-
ample 1.1, the average satisfaction of the voters from the outcome depicted in Figure 2a
is 4 (40% · 10 + 60% · 0), while for the outcome depicted in Figure 2b it is only 3.4
(40%·4+30%·3+30%·3). Moreover, we can see that Utilitarian Greedy is an efficiency-driven
voting rule. One could therefore expect that Equal Shares is better than Utilitarian Greedy in
terms of fairness, yet worse in terms of efficiency. Surprisingly, our experiments show that it is
not the case—outcomes elected by Method of Equal Shares have comparable efficiency to the
ones elected by Utilitarian Greedy, at the same time being much more fair. Hence, proportion-
ality does not require sacrificing much efficiency in practice.

Finally, we show that Equal Shares is more robust to changing the type of the ballot used in
the election. The code used for the experiments is publicly available for researchers conducting
similar experiments in the future, within the Python package Pabutools (https://pypi.
org/project/pabutools).

Voters’ preferences over projects can be provided in various forms—in the definition of
Equal Shares and its aforementioned analysis we assumed that voters’ preferences are cardinal,
which means that the utility of each voter from each project can be expressed as a number, for
example from 0 to 10. However, our rule is very flexible and can be also adapted to the very
different setting of ordinal preferences. Here, each voter provides only a ranking of projects,
from the most preferred one to the least preferred one, and compares the outcomes lexicograph-
ically. In Chapter 6 we present this alternative variant of Equal Shares and prove that it satisfies
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Inclusion Proportionality for Solid Coalitions [Aziz and Lee, 2021]. To our knowledge, it is the
strongest satisfiable proportionality axiom for ordinal preferences.

Beyond Equal Shares: Stronger Notions of Proportionality
In the second part of the dissertation, we consider several other notions of proportionality, that
are stronger than those satisfied by Method of Equal Shares. We start with the significant
strengthening of the EJR-1 axiom—Full Justified Representation (FJR), presented in Chap-
ter 7. It is notable that, according to our results, FJR is the strongest notion of proportionality
which is known to be always satisfiable—unfortunately, the problem of finding outcomes satis-
fying it is NP-hard. Further, we present an exponential algorithm satisfying FJR, called Greedy
Cohesive Rule (GCR) and study its properties. We prove that, on one hand, together with a spe-
cific completion GCR satisfies priceability, which suggests that it might have better theoretical
properties than Equal Shares. On the other hand, apart from the running time (which makes it
impossible to use in large-scale elections), it also behaves less naturally than Equal Shares on
certain specific classes of elections. Besides, unlike Equal Shares, GCR loses its proportionality
properties when adapted to ordinal preferences.

In Chapter 8 we consider the axiom of the core-stability, mentioned in the previous part.
Determining whether it is satisfiable for approval-based preferences is a famous long-standing
open problem in computational social choice [Aziz et al., 2017a], while it is known not to be
satisfiable for other types of preferences [Fain et al., 2018, Aziz et al., 2017b]. Moreover, veri-
fying whether a given outcome is in the core is CoNP-complete even for approval-based prefer-
ences [Brill et al., 2022]. Since this axiom is so demanding, there are multiple papers consider-
ing various approximated [Jiang et al., 2020, Peters and Skowron, 2020] or randomized [Cheng
et al., 2019] variants of the core. We study this problem from a different perspective—instead of
weakening the axiom, we check whether it is satisfiable under the additional assumptions about
voters’ preferences. We prove that core-stability is satisfiable in polynomial time for some spe-
cific well-known classes of elections, where the voters’ preferences are somehow structured
(that is, there are no weird votes). For example, the classes we consider cover and generalize
the structure in which both voters and candidates can be placed in one-dimensional Euclidean
space and all the voters prefer closer projects to the further ones. Our algorithm works for both
approval-based and ordinal voters’ preferences. However, it is custom-engineered to work only
for elections where the preferences of 100% of voters are well-structured. This fact blocks the
possibility to use this algorithm in practice, since it is naturally not the case for real-life elec-
tions. Hence, an interesting open question for future research is whether there exist voting rules
satisfying the strongest proportionality notions in general and at the same time core-stability
under restricted domains. Our results show that it is not the case for the all most important
voting rules considered in the literature.

Finally, in Chapter 9 we aim to design the strongest possible axioms of proportionality—
even stronger than core-stability—for the case of approval-based voters’ utilities. We designed
two such axioms, stable priceability and balanced stable priceability. Stable priceability has an
advantage in being strictly stronger than core-stability for all elections, while balanced stable
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priceability is incomparable to both notions in general, but in many specific cases seems to
be the most intuitive and restrictive axiom. For example, in the modified Example 1.1, core-
stability still accepts all three considered outcomes. Meanwhile, both our new axioms rule out
the outcome depicted in Figure 3a and balanced stable priceability additionally rules out the
one depicted in Figure 3b. It is notable that stable pricebility, in contrast to core-stability, is
verifiable in polynomial time.

Both axioms are similar in spirit to priceability—they view the election as a market, in
which voters pay for the projects with their voting power—yet they are much stronger, requiring
that the payments in general satisfy a specific market equilibrium. In particular, we show that
stable priceability can be viewed as Lindahl equilibrium [Foley, 1970] for the model with public
indivisible goods.

In general, both of them are not satisfiable—however, since stable priceability can be formu-
lated as an integer linear program and we desinged a polynomial heuristic algorithm for finding
balanced stable priceable outcomes, we were able to check that both axioms are usually possible
to be satisfied in more than 90% of randomly generated elections from various distributions.

Summarizing this part of the dissertation, as we can see, no currently known polynomial-
time computable algorithm can provide stronger proportionality guarantees for unrestricted vot-
ers’ preferences than Equal Shares. Therefore, it still remains our main proposition for large-
scale real-life PB elections.

1.2 Impact of Our Results on the Real World
The results presented in the dissertation lead to implementing Method of Equal Shares in prac-
tice in 2023, in two Polish municipalities (Wieliczka and Świecie) and in one Swiss city (Aarau).
Since in Wieliczka and Aarau the voting process has already finished, let us present the overall
results, showing that the choice of a voting rule actually does matter in practice.

Equal Shares in Wieliczka
In 2023, Wieliczka organized the "Green Million" PB election. Within this event, voters could
decide about spending 1,000,000 Polish zlotys on ecological projects. In total, 64 projects were
submitted (and positively verified) and 6586 city residents participated in the election. Voters
voted via approval ballots and there was no restriction on the number of projects one could
approve.

The full list of submitted and elected projects is available for example, under the following
link: https://equalshares.net/resources/zielony-milion. Under this link,
we can also find the comparison of the results elected by Equal Shares to the ones that would
have been elected if Utilitarian Greedy rule was used. Let us now discuss the benefits from
using our voting rule.
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Fewer excluded voters. Using Equal Shares, 18% of voters did not receive any of the projects
they voted for. If Utilitarian Greedy was used, this percentage would grow up to 28% . This
means that our method allowed to significantly limit the number of voters who had no real
influence on the outcome of the elections. Moreover, as we can see in Figure 4, most of the
voters who did not receive any projects voted for only one project—among voters who voted
for at least 3 projects, this percentage was only 3% for Equal Shares, compared to 9% under
Utilitarian Greedy.

Figure 4: Percentage of voters in Wieliczka who did not receive any project that they voted for.

Higher efficiency. Utilitarian Greedy would select 4 projects that Method of Equal Shares
does not select. These 4 projects together received 1453 votes. With the money saved, Method
of Equal Shares selects 11 other projects, which together received 2414 votes. On average,
a voter approves 1.61 projects in the outcome selected by Method of Equal Shares, while for
Utilitarian Greedy, it would be 1.47. Hence, our algorithm translates about 1,000 votes more
into the final result and is better by 10% in terms of average satisfaction.

No regional bias. Based on GPS coordinates, in Figure 5 we marked projects on the map
of Wieliczka that were selected using Method of Equal Shares and which would be selected
using Utilitarian Greedy. Thanks to Method of Equal Shares, we see a more even distribution of
projects; in particular, we see that the residents of southern and western part of the municipality
were not excluded from the decision-making process. In the case of Method of Equal Shares,
for each resident of the municipality, their distance from the nearest selected project is no more
than 3.4 km; in the case of Utilitarian Greedy, this value would be as much as 6.1 km. This
improvement is also depicted in Figure 6, where for each point on the map we show the distance
to the nearest elected project.

Equal Shares in Aarau
Contrary to Wieliczka, we do not have direct access to the voting data from Aarau, hence
we cannot present a detailed analysis in this case. However, at the official website of Aarau
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(a) Equal Shares (b) Utilitarian Greedy

Figure 5: Map of elected projects in Wieliczka. The sizes of the circles marked on the map
correspond to the costs of the selected projects.

(https://www.stadtidee.aarau.ch/abstimmung.html/2114) we can see two
diagrams comparing the actual results elected by Method of Equal Shares to the hypothetical
scenario if Utilitarian Greedy was used. The first one is presented in a slightly modified way
in Figure 7. It shows that under Utilitarian Greedy, the whole budget would have been spent
only on citywide projects and the projects from the Centrum district (7 projects in total). On the
other hand, Equal Shares elected 17 projects, representing districts more proportionally to their
population. The same effect is visible in Figure 8 (an analogous map to Figure 5), showing that
thanks to using Equal Shares, projects from different parts of the city were elected instead of
only those from the central one.
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(a) Equal Shares (b) Utilitarian Greedy

Figure 6: Heatmap presenting distances to the closest project in Wieliczka. Darker points
indicate that there is no selected project near a given location.

(a) Percentage of votes (b) Equal Shares (c) Utilitarian Greedy

Figure 7: Distribution of the budget among districts in Aarau.
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(a) Equal Shares (b) Utilitarian Greedy

Figure 8: Map of elected projects in Aarau. The size of the circles marked on the map corre-
sponds to the costs of the selected projects.

1.3 Other Possible Applications of our Research
Improving the organization of real-life PB elections in cities is probably the most natural real-
life application of our research. However, the mathematical framework developed within the
dissertation has also other possible applications, from and beyond the field of computer science.

It is especially true for the special case of the PB model where all the projects have the same
costs. This case is often called in the literature the committee election model, since in this case
participatory budgeting election boils down to electing up to a certain number of projects (as we
could earlier see in Example 1.1 and Example 1.3). This problem can be therefore interpreted
as electing a committee of fixed size from the set of possible candidates. Naturally, our theory
developed for the general PB model applies to the committee election model as well.

Below, we present a few applications that match the model of committee elections.

Elections of Representative Bodies
The committee election model can be directly applied to model various elections of representa-
tive bodies, for example, municipal councils, or supervisory boards in companies and non-profit
organizations. Note that in these cases it is usually desirable that a committee proportionally
represents different groups of voters.

In the case of national parliamentary elections, some countries require that the elections
should be proportional. However, here in the vast majority of cases it is ensured by grouping
candidates into parties, which makes the problem theoretically simpler. The notable counterex-
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amples are Ireland, Australia and Malta [Bowler and Grofman, 2000], which use the propor-
tional voting rule called Single Transferable Vote [Tideman, 1995]. The same rule is used for
local political elections in Australia, Ireland, New Zealand, Canada, United Kingdom, and the
United States of America. However, this rule requires using ranking ballots, that are typically
considered to be cognitively harder than approval ones [Zwicker, 2016]. Moreover, the rule
itself has some important axiomatic flaws.2 The theory presented within the dissertation may
therefore lead to using better voting rules in such scenarios.

Blockchain Protocols
Every blockchain architecture needs to provide a mechanism for obtaining consensus in its
peer-to-peer network. The first proposed idea was Proof-of-Work (PoW)—in order to add a
new block, an agent should show the validation that certain amount of a specific computational
effort has been expended. However, this approach has been recently criticized since it requires
a high consumption of energy.

Therefore, a lot of newest blockchain projects replace the PoW protocol with Proof-of-
Stake (PoS), in which validators participate in block production with a frequency proportional
to their token holdings, as opposed to their computational power. One of the variants of PoS is
Nominated Proof-of-Stake (NPoS), introduced by the designers of Polkadot network in 2020.
In this variant, only certain k users are validators and they are elected each day (era) in approval
elections by all the users in the network [Cevallos and Stewart, 2021, Burdges et al., 2020].

For aggregating votes, the designers of Polkadot used a polynomial proportional algorithm,
called the Phragmén’s rule. It is a well-established voting rule for the committee election model,
first proposed in XIX century [Phragmén, 1894]. Phragmén’s rule is very similar in spirit to
Method of Equal Shares, since both rules are based on the concept of buying candidates by
voters. In the dissertation we build a theory that allows to design and analyze such and similar
voting rules.

Search Engines
Imagine that the word "tree" is typed in a search engine. What results should be displayed for
an anonymous search—the ones about plants, graph theory, algorithms and data structures, or
maybe STL library? Should the engine concentrate on news, tutorials, videos, encyclopedic
information or pictures (and within the last category—photos, gifs or icons)?

Usually an engine needs to select a specific number (let it be 10) of the most relevant re-
sults. If we have already obtained profiles of potential users of our engine and their popularity,
we know that for example, 60% of users typing "tree" would be interested in results about
plants, and 35% in the ones about data structures. In such case, probably the "winner-takes-
all" solution (display 10 results about plants) would be undesirable—typically, an engine would

2For example, under STV there might happen a paradoxical situation in which improving the position of a can-
didate in some voters’ rankings decreases her chances of winning. Formally, it means that STV is not monotonous
[Woodall, 1997].

14



display ca. 6 results about plants and 3-4 about data structures. Naturally, the groups may
also overlap (for example, some users may be interested both in graph theory and in the imple-
mentation of trees in C++). Note that this problem can be solved by using algorithms for the
committee election model, where profiles of the users correspond to the groups of voters (the
popularity of the profile is the size of corresponding group) and potential results are candidates
[Dwork et al., 2001, Skowron et al., 2017].

Facility Location
Consider a situation where a city council has to decide about the location of k new public
facilities (for example, schools) in a city. The goal is to minimize the citizens’ travel time to the
nearest school. Such situations can be modelled as committee elections: possible locations of
the schools are candidates, citizens are voters and the utility of each citizen from each location is
inversely proportional to the travel time she needs to reach it. Indeed, there are multiple papers
applying different concepts from committee elections in this problem [Faliszewski et al., 2017,
Anshelevich and Zhu, 2021, Feldman et al., 2016]. Note that if we assume that each school
has some fixed capacity, then the ideal choice of locations should be proportional with respect
to distribution of the density of population: the more populous an area is, the more schools it
requires.

Genetic Algorithms
Recently, committee elections have also found application in improving selection procedures
for genetic algorithms [Faliszewski et al., 2016]. In this context, in every epoch the population
of individuals is both the set of voters and candidates; individuals need to "elect" some fixed
number of them to survive. The (ordinal) utilities are constructed with respect to (1) the spec-
ified fitness function, and (2) selfish desires of the individuals (first, each individual wants to
survive itself; second, it wants other individuals with similar genes to survive).

After testing several committee election rules, the authors have found that proportional ones
behave best (in particular, they avoid selecting individuals from large clusters only). However,
they have tested only few methods and this approach is still preliminary—the theory presented
in the dissertation may help to achieve even better results in this area.
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Chapter 2

The Model

A participatory budgeting (PB) election is a tuple (N,C, b), where N = {1, 2, . . . , n} is the set
of voters and C = {c1, c2, . . . , cm} is the set of candidate projects (projects, in short). Each
project c is associated with its cost, denoted as cost(c) ∈ N. We assume that the cost function
is additive, that is the cost of the set of projects is the sum of costs of the projects in the set:

cost(T ) =
∑
c∈T

cost(c) for each T ⊆ C.

The parameter b ∈ N is the budget constraint: we say that a subset of projects (out-
come) T ⊆ C is feasible if cost(T ) ≤ b. The goal is to elect a feasible outcome that, in
some sense, best reflects the voters’ preferences.

2.1 Preferences
The voters have preferences over the candidates. In this dissertation we consider two types of
preferences:

Cardinal Preferences. Here, we assume that for each voter i ∈ N we are given a utility func-
tion ui : C → N that quantifies the voter’s level of appreciation towards different projects.
We say that a voter i supports (or is a supporter of) a project c if ui(c) > 0.

Ordinal Preferences. Here, the projects are not compared quantitatively. Instead, each
voter i ∈ N has a strict ranking (a linear order) ≻i over projects. A voter i ∈ N
prefers project c over c′ if c ≻i c

′.

Since our goal is to select a subset of projects, we need a way to compare different sets from
the perspective of a voter. For that we extend the voters’ preferences over individual projects to
their preferences over the sets as follows. Whenever we speak of cardinal preferences, we will
assume that the corresponding utility functions are additive, that is:

ui(T ) =
∑
c∈T

ui(c), for each i ∈ N and T ⊆ C.
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The ordinal preferences, on the other hand, are extended in a lexicographical way. Specifically,
a voter i ∈ N prefers an outcome W1 to an outcome W2 if and only if there exists a project c ∈
W1 \W2 such that c ≻i c

′ for each c′ ∈ W2 \W1.
Note that it is also common in the literature to assume that the preferences over the sets are

given directly [Benoit and Kornhauser, 1991, Lacy and Niou, 2000, Lang and Xia, 2016]. This,
however, implies that the preferences might have an exponential size in the number of projects
and such preferences are typically hard to elicit. For that reason in this dissertation we only
consider the voters’ preferences over the individual projects, which are then extended to the
preferences over the sets, as we mentioned before.

2.2 Ballots
The voters express their preferences by casting ballots. Perhaps the most common examples of
ballots are:

Approval ballots. Each voter simply indicates which projects she supports. In other words, a
voter submits a subset of projects she approves of (see Figure 1). Such ballots are used in
participatory budgeting elections, for example, in Warsaw, Wrocław and Zabrze.

Score ballots. Here, a voter assigns points to each project. A higher number of points assigned
to a project means that the voter more strongly supports the respective project (this type
of ballots is used in Częstochowa and Gdańsk).

Ranking ballots. Here, a voter provides a ranking (a linear order) over projects. Such ballots
are used, for example, in Kraków.

The types of ballots listed above are a bit idealized compared to their practical analogues.
For approval ballots there is usually a restriction that one can approve at most only x projects
(x = 15 in Warsaw, x = 1 in Zabrze and Wrocław). For score ballots, there is typically a
restriction that the total number of points assigned to projects should not exceed some x (x = 10
in Częstochowa, x = 20 in Gdańsk). Finally, ranking ballots are typically truncated to only x
top projects (x = 3 in Kraków).

2.3 Relation Between Preferences and Ballots
Typically, an election designer does not have a direct access to the voters’ preferences; we
can use only the ballots cast by the voters. However, in this dissertation, we assume there is
no distortion caused by the imperfect preference elicitation [Procaccia and Rosenschein, 2006,
Boutilier et al., 2015, Anshelevich et al., 2018, 2021] and we do not consider strategic aspects of
voting [Gibbard, 1973, Conitzer and Walsh, 2016]. In other words, we assume that the ballots
perfectly reflect the voters’ preferences. In further chapters we will then mostly assume that
the voters’ preferences are a part of the model; the only part where we make a clear distinction
between preferences and ballots is Chapter 5.
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Below we precisely describe how the preferences can be inferred from the ballots.

2.3.1 Approval and Score Ballots
When a voter i ∈ N casts an approval or a score ballot, she directly assigns some kind of score
to each project c ∈ C (approval ballots can be viewed in this context as a special case of score
ballots, where each project is given either 0 or 1 point). The most straightforward interpretation
of this score is to assume that it directly corresponds to ui(c), the cardinal utility gained from c
by voter i. In this case we speak of direct score-utility mapping.

This approach is undoubtedly very intuitive, yet it is not the only possible one. Let us once
again consider the ballot depicted in Figure 1. There, the voter approves two projects, "Sports
Equipment in the Park", costing $50,000, and "Additional Public Toilets", costing $600,000.
Under the direct score-utility mapping we would assume that the voter would be equally happy
from funding any of these two projects, even though the latter costs 12 times more than the
former. An alternative approach is to assume that expensive projects generally carry more value
to the voters, independently from the differences in score. In such case, we speak of the costwise
score-utility mapping. Formally, ui(c) is defined as a multiplication of cost(c) and the number
of points assigned to c by i. This mapping has also an intuitive interpretation. For example,
for approval ballots the voter’s utility from an outcome W corresponds to the total amount of
money designated to the projects that the voters approves.

When analyzing voters’ preferences, we will be particularly interested in the ones obtained
from approval ballots. Hence, we define two classes of approval-based utilities and approval-
based cost utilities that are special cases of cardinal utilities. In the first class we assume
that ui(c) ∈ {0, 1} for each i ∈ N , c ∈ C (which corresponds to the direct score-utility
mapping), while in the second class we assume that ui(c) ∈ {0, cost(c)} for each i ∈ N , c ∈ C
(which corresponds to the costwise score-utility mapping).

2.3.2 Ranking Ballots
Given ranking ballots, we can directly infer the voters ordinal preferences over the projects.
However, this is not the only possible interpretation. In practice, cities use ranking ballots rather
to elicit cardinal utilities, by assuming that placing a project at a specific position in a ranking
corresponds to assigning a specific number of points to her. For example, Kraków uses the so
called Borda score [Black, 1976] which assumes that, given a ranking, the scores of projects
ranked from the bottom to the top position are consecutive natural numbers (1, 2, 3, . . . ). In
such case, the above discussion about the direct and the costwise score-utility mappings applies
also to ranking ballots.

2.4 Voting Rules
Algorithms which compute feasible outcomes, given PB election are called voting rules (or
rules in short). Each such rule takes an election as input and returns a set of winning outcomes
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(we are mostly interested in electing a single winning outcome, but ties are allowed).
In the dissertation we analyze voting rules mostly from the axiomatic perspective. Axioms

in computational social choice are formal conditions specifying how a voting rule should behave
in certain situations. In particular, proportionality axioms for the PB setting attempt to formally
define the requirements needed to claim that a rule is proportional. They are typically defined
only with respect to outcomes (like our Definition Attempt 1.2 from Chapter 1), specifying
which outcomes are proportional for a given election. However, in such case, they can be
naturally extended to voting rules—we say that a voting rule satisfies a proportionality axiomA,
if for each election it selects only outcomes satisfyingA. We say that a proportionality axiomA
is satisfiable, if for every election there exists an outcome satisfying A.

2.5 The Committee Election Model
An interesting special case of our model is the committee election model: here cost(c) = 1
for all c ∈ C (the unit costs assumption). Note that then feasibility boils down to choosing
an outcome of size at most b. As discussed in Chapter 1, the most common application of
this model are various elections of representative bodies, such as parliaments or supervisory
boards—hence, in this model we will typically refer to the candidate projects as candidates
and outcomes as committees. Note that in the committee election model there is no difference
between direct and costwise score-utility mapping.

Since the unit cost assumption is often studied together with the assumption that voters’
utilities are approval-based [Lackner and Skowron, 2022], we will use the term approval-based
committee election model for the model with both assumptions.
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Part I

Method of Equal Shares for Participatory
Budgeting
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Chapter 3

The Description of Method

In this chapter we introduce Method of Equal Shares (for brevity, we often refer to the rule
as simply Equal Shares). Our rule is an extension of the algorithm designed by Peters and
Skowron [2020] for approval-based committee election model, initially known as Rule X. We
generalized this idea to the model with arbitrary costs and utilities. Before presenting its formal
definition, let us start with the general intuition standing behind the algorithm.

A natural approach to ensure that selected projects proportionally correspond to the views of
different voters is to directly map each selected project c to a subset of voters whose views are
meant to be "represented" by c. Our idea is the following: we interpret an election as a market
in which voters have some fictional money, corresponding to their voting power. A voter pays
for a project only if she supports it (and hence, the project, if selected, would be compatible
with her views). The projects are purchased (elected) sequentially. We adopt here the following
principles:

1. Voters pay only for elected projects and the cost of every such project needs to be covered.
The rule stops if no project can be afforded by her supporters.

2. Each voter has equal initial endowment. Because the price of each project is equal to its
cost, and the total amount of spent money should not exceed b, the most natural value of
the voter’s initial endowment is b/n.

3. The rule prefers (caeteris paribus):

(a) cheaper projects to more expensive ones,

(b) projects with higher support to the ones from which each voter gains strictly lower
utility.

4. The price of each elected project is distributed among her supporters proportionally to
their utilities—or at least, as proportional as possible, without violating the previous prin-
ciples. That is, if from some project voter 1 gains utility 1, voter 2 gains utility 3, and
voter 3 gains utility 6—then voter 1 should ideally pay 10% of the project’s cost, voter 2
should pay 30% and voter 3 should pay 60%. However, if for example, voter 3 does
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not have enough remaining money, she is allowed to pay less. In general, we say that
payment distribution should minimize the maximal "payment-per-utility" ratio of all the
voters gaining nonzero utility from a project—for an ideally proportional distribution this
ratio is equal for all the voters, as we can see in Figure 9.
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Figure 9: Consider a project c worth 18 dollars and 4 voters. The utilities of the voters from c
are 3, 5, 10 and 0 respectively. Since 4 is a non-supporter, she does not participate in paying
for c. In the scenario depicted in the left-hand side picture, each voter has 10 dollars left. Then,
if the payments are distributed proportionally to the utilities, the payment-per-utility ratio of
each supporter is 1. Note that under any other distribution, this ratio for some voter would be
greater. In the right-hand side scenario, each voter has 8 dollars left. Now the proportional
payment distribution is impossible, since 3 does not have enough money. Therefore we split
the payment as follows: 3 pays all her savings (8 dollars). The remaining cost of c (10 dollars)
needs to be covered by 1 and 2. From the previous observation, we know that the maximal
payment-per-utility will be minimized, if they pay proportionally for this rest (so that voter 1
pays 3.75 dollars and voter 2 pays 6.25 dollars). Indeed, then the payment-per-utility ratio for 1
and 2 will be 3.75/3 = 6.25/5 = 1.25 and for 3 it will be 8/10 = 0.8—hence, the maximal payment-
per-utility ratio will be 1.25.

Let us denote this maximal payment-per-utility ratio of some project c by ρ. Note that then
every voter i ∈ N pays for c either her all savings or ui(c) · ρ dollars.

Now we can observe that if in each round, we will choose a project minimizing ρ, both
conditions mentioned in the third principle are achieved. Indeed, both decreasing the cost of a
project and increasing voters’ satisfaction from it would result in decreasing ρ.

Having this intuition, we are now ready to present the formal definition of Equal Shares:

Definition 3.1 (Method of Equal Shares). Each voter is initially given an equal fraction of
the budget, that is, each voter i ∈ N is given bi ← b/n dollars. For ρ ≥ 0, we say that a
project c ̸∈ W is ρ-affordable if∑

i∈N

pi(c) = cost(c), where pi(c) = min (bi, ui(c) · ρ) .

The algorithm starts with an empty committee W . Then it greedily chooses a project c that
is ρ-affordable for minimal ρ and updates the voters’ individual budgets: bi ← bi − pi(c) for
each i ∈ N (the value of pi(c) is the i’s payment for an elected project c, for which she is
charged). If no project is ρ-affordable for any ρ, Method of Equal Shares stops and returns W .
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3.1 Technical Details
Algorithm 1 shows an implementation of Definition 3.1 as a pseudocode.

Algorithm 1: Implementation of Method of Equal Shares
1 W ← ∅.
2 For each voter i ∈ N , bi ← b/|N |
3 while true do
4 for c ∈ C \W do
5 if

∑
i∈N :ui(c)>0 bi < cost(c) then

6 ρ(c)←∞ (project c is not affordable)
7 else
8 Let 1, . . . , t be a list of all voters i ∈ N with ui(c) > 0, ordered so

that b1/u1(c) ≤ · · · ≤ b[t]/ut(c) .
9 for s = 1, . . . , t do

10 ρ(c)← (cost(c)− (b1 + · · ·+ b[s− 1]))/(us(c) + · · ·+ ut(c))
11 if ρ(c) · us ≤ b[s] then
12 break (we have found the ρ-value)
13 if minc∈C\W ρ(c) =∞ then
14 return W
15 c← argminc∈C\Wρ(c) (break ties arbitrarily)
16 W ← W ∪ {c}
17 for i ∈ N such that ui(c) > 0 do
18 bi ← bi −min{bi, ρ(c) · ui(c)}

The only non-obvious part of the computation is how to determine the value of ρ for each
project—we will use here the intuition described in the caption of Figure 9. Suppose that the
algorithm has selected the set W thus far. To calculate the value of ρ for a project c ∈ C \W ,
note first that only voters with positive utility for c (its "supporters") will pay for it. Label the
supporters of c as 1, . . . , t. Some of the supporters will spend all their remaining money for c,
and others only part of it. Like in the pseudocode of the algorithm, write b[i] = b/n− pi(W ) for
the amount of money leftover for i at the current point in time. Rewriting the defining equation
of ρ, we have that c is ρ-affordable if and only if∑

i∈N

ui(c) ·min (b[i]/ui(c), ρ) = cost(c).

Note that the supporters who spend all their remaining money will have the minimum attained
in the first coordinate; hence these voters have the lowest values of bi/ui(c). Algorithm 1 sorts
the supporters of c by this value, and then iterates through all s ∈ [t] and checks whether the
cost of c can be covered with voters 1, . . . s− 1 spending all their remaining money and s, . . . , t
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spending ρ · ui(c) for some ρ. If that is possible, then we can choose ρ such that

(b[1] + · · ·+ b[s− 1]) +
t∑

j=s

ρ · uj(c) = cost(c) ⇐⇒ ρ =
cost(c)− (b[1] + · · ·+ b[s− 1])

us(c) + · · ·+ ut(c)
.

Note that it is only possible if ρ satisfies ρ · us ≤ b[s]. If this last condition fails, the algorithm
needs to continue its iteration and try the next value for s. If the condition is satisfied, we have
found the correct value of ρ.

This algorithm can easily be implemented to run in time O(m2n log n), assuming we can
do arithmetic in constant time. To achieve this time bound, we need to store the current values
of the partial sums b[1] + · · · + b[s] and us+1(c) + · · · + ut(c), so that in each iteration of the
inner for-loop, we can update these sums in constant time.

3.2 Examples
Let us now present three examples illustrating how the rule works. As a warm-up, let us first
consider how Equal Shares would work in special cases where voters have approval-based util-
ities or approval-based cost utilities. Then we will present an example for arbitrary cardinal
utilities.

3.2.1 Special Case: Approval-Based Utilities
In the case of approval-based utilities, the definition of the algorithm becomes more straightfor-
ward. At each step, a project c ̸∈ W is ρ-affordable if and only if the cost of c can be covered
by the voters approving c in such a way that the maximum payment of any voter is ρ. Voters
who have less than ρ dollars left, spend all their money, and the other voters pay exactly ρ.
This way, the cost is shared as equally as possible among the supporters of a project. See the
following example for an illustration of the determination of ρ. Suppose we have 5 projects, 10
voters N = {1, . . . , 10} with approval-based utilities, and a budget of b = $100. The project
costs and utilities are shown in the table below.

cost 1 2 3 4 5 6 7 8 9 10

Project 1 $40 0 0 0 0 0 0 1 1 1 1

Project 2 $36 1 1 1 1 1 1 0 0 0 0

Project 3 $25 1 1 1 1 1 0 0 0 0 0

Project 4 $24 0 0 0 1 1 1 1 0 0 0

Project 5 $24 0 0 0 0 0 1 1 1 1 0

Sharing the available budget equally among the voters, everyone starts with $10. We can now
calculate, for each project, the value ρ such that the project is ρ-affordable. As discussed above,
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because we have approval-based utilities, this just entails spreading the cost as equally as pos-
sible among the project supporters. The values of ρ for different projects and the payment
distribution is depicted below, in a way similar to Figure 9. In particular, columns represent
the remaining money of the voters—gray for the non-supporters, violet for the supporters. The
amount of money that would have been paid if a specific project was selected is marked with a
darker shade of violet.
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Equal Shares will choose to implement Project 3, since it has the lowest value of ρ.
Then voters 1 through 5 each pay $5 for it. We can note that Project 2, costing $36, is now

not affordable anymore: its supporters have $35 left. However, Projects 1, 4 and 5 are still
affordable. For Projects 1 and 5 the values of ρ remain unchanged, since their supporters did
not pay for Project 3. For Project 4, however, it is not the case:
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Note that even though Projects 4 and 5 have the same cost and the same number of support-
ers, we can see that they now induce different ρ-values. The reason for this difference is that
voters 4 and 5 supporting Project 4 have already been satisfied by Project 3. Hence, electing
Project 4 would overrepresent these two voters at the expense of the supporters of Project 5.

Thus, Equal Shares next selects Project 5, and voters 6 through 9 each pay $6 for it. We
can check that at this point, no project is affordable. Thus, Equal Shares stops and selects the
winning outcome W = {Project 3,Project 5}. Note that cost(W ) = $49 while b = $100, and
thus a large part of the budget was not spent by Equal Shares. We will discuss this issue in
Section 3.3.

3.2.2 Special Case: Approval-Based Cost Utilities
In the case of approval-based cost utilities, the definition of Method of Equal Shares is quite
similar to the one for approval-based utilities. Here, since all the supporters of each project c ∈
C gain the same utilities from it, we again aim to spread the voters’ payments for c as equally
as possible. However, now the value of ρ corresponds no longer to the maximal payment of a
voter, yet rather to the maximal payment of a voter divided by a project’s cost. Intuitively, it
favors more expensive projects, assuming they provide more satisfaction to the voters.
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In fact, the process of determining which project should be selected in a given round can be
even more simplified in this setting. Fix any round and a project c ∈ C. Suppose that we have
already divided the payments for the cost of c as equally as possible. Then every voter i ∈ N
pays for c either bi or some p(c) dollars (equal to cost(c) · ρ). Let us denote by X the set of
voters i such that p(c) ≤ bi. We have that:

cost(c) =
∑
i∈X

p(c) +
∑

i∈N\X

bi,

cost(c) = |X| · p(c) +
∑

i∈N\X

bi,

cost(c)

p(c)
= |X|+

∑
i∈N\X

bi
p(c)

,

1

ρ
= |X|+

∑
i∈N\X

bi
p(c)

.

The last equality can be interpreted as follows: instead of choosing a project c minimizing ρ,
we can choose the one maximizing the number of supporters. However, if a voter does not
have enough money to pay the equal share p(c), her vote is counted fractionally, as bi/p(c)—for
example, if a voter pays only 70% of the amount someone else needs to pay, her vote is counted
with weight 0.7. The presented formulation is usually seen as more intuitive for the general
audience than the original one. In particular, it has been used to define Method of Equal Shares
in the PB statutes of Wieliczka and Świecie.

An interesting corollary from the presented observation is that in the first round the afford-
able project with the highest number of votes is always selected (since in the first round all the
values of bi are equal, a project that is affordable is paid equally by all the voters), which was
not the case for approval-based utilities. Let us consider once again the previous example, yet
assuming now approval-based cost utilities.

cost 1 2 3 4 5 6 7 8 9 10

Project 1 $40 0 0 0 0 0 0 40 40 40 40

Project 2 $36 36 36 36 36 36 36 0 0 0 0

Project 3 $25 25 25 25 25 25 0 0 0 0 0

Project 4 $24 0 0 0 24 24 24 24 0 0 0

Project 5 $24 0 0 0 0 0 24 24 24 24 0

All the projects are affordable and the distribution of payments in the first round is the same
as in the previous example. Therefore, as we noted before, we choose the project with the
highest number of approvals, namely Project 2. After that, Project 3 and Project 4 are no longer
affordable. Let us consider now Project 1 and Project 5. Both projects gained 4 approvals. Since
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no supporter of Project 1 paid for Project 2, the payment distribution is still equal and Project 1
gains 4 full votes in the second round. For Project 5 the situation is different:
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As we can see, Project 5 gained 3 "full" votes and 1 "fractional" one, counted as 0.6
vote (4 divided by 20/3). Hence, Project 1 is better and it is elected. After that, no
project is affordable (voters 7 to 10 run out of money) and the rule stops, returning the out-
come {Project 1,Project 2}. Comparing this result to the one under approval-based utilities,
note that we have elected two strictly more expensive projects and have spent a significantly
greater amount of the budget ($76 instead of $49). However, we still could have selected one
more project, either Project 4 or Project 5, to spend the whole available budget of $100. Let us
once again leave this discussion for later (see Section 3.3) and, to ensure the definition is fully
clear, present the final example for general cardinal utilities.

3.2.3 General Case
Let us once again consider an analogous example to the previous ones, yet with some arbitrary
cardinal utilities.

cost 1 2 3 4 5 6 7 8 9 10

Project 1 $40 0 0 0 0 0 0 10 10 10 10

Project 2 $36 3 4 5 1 2 3 0 0 0 0

Project 3 $25 5 4 4 1 1 0 0 0 0 0

Project 4 $24 0 0 0 4 1 3 4 0 0 0

Project 5 $24 0 0 0 0 0 6 4 10 10 0

The budget is still $100, so again every voter starts with $10. Now to speed up the calcu-
lations, let us first calculate the best-case ρ for every project—the minimal possible value of ρ
under which each voter would pay their proportional share of the cost of the project (possibly
not attainable). For each project c ∈ C, it is equal to cost(c) divided by

∑
i∈N ui(c). We obtain:
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best-case ρ

Project 1 1
Project 2 2
Project 3 2.27
Project 4 2
Project 5 0.8

Now let us start from computing the actual ρ for Project 5, according to the procedure
described in Algorithm 1. It is simple, since it is possible to split the payments proportionally
to the utilities:
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Note that now we can immediately say that Project 5 is elected in the first round—we do not
need to compute the values of ρ for remaining projects, since they would be greater or equal to
their values of "best-case ρ", which are higher than the ρ of Project 5.

In the second round, let us consider the next projects with the lowest "best-case ρ". The first
one is Project 1, which is yet not affordable after electing Project 5. The next possible choices
are Project 4 or Project 2. Now we can see that for both of them the values of "best-case" and
"actual" ρ differ:
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Since for Project 2 the value of ρ is smaller both from the ρ of Project 4 and from "best-
case ρ" of Project 3, we can again say immediately that Project 2 is elected. Note that now the
value of "best-case ρ" of Project 4 can be updated to 2.4 (since in further rounds its ρ can only
get worse). Finally, we observe that no project is affordable in the next round and the algorithm
stops, returning the outcome W = {Project 2,Project 5}.

Our publicly available implementation of Equal Shares in the Pabutools Python package
actually includes the presented optimization, keeping in memory the values of "best-case ρ"
and sorting the projects by them in each round. Even though the worst-case time complexity of
the optimized algorithm is the same as in the standard implementation presented in Algorithm 1
(assuming m ≤ n), for large real-life elections it is faster by more than 95% on average.

We can intuitively see that Equal Shares behaves in a proportional way and balances the
influence of the voters on the elected outcome—the number of unrepresented voters is at most
one in every case. Let us now consider how to modify it so that it would utilize a greater fraction
of the initial budget.

3.3 Exhaustive Variants of Equal Shares
We have already noticed that in all the examples in Section 3.2, Equal Shares spent intuitively
too little fraction of the budget. Of course, when the costs of the projects are unequal, we can
never guarantee that a rule will spend exactly the entire budget. However, we can require that
no project can be added to the elected outcome without violating the budget constraint.

Definition 3.2 (Exhaustiveness, Aziz and Lee, 2021). An election rule R is exhaustive if for
each election E and each non-selected candidate c /∈ R(E) it holds that:

cost(R(E) ∪ {c}) > b.

Under the unit cost assumption, the above definition boils down to the requirement that we
should elect a committee of size exactly b. Note that no outcome returned by Equal Shares in
the examples presented in Section 3.2 was exhaustive.

In some contexts, violating this property may actually be a desirable feature of Equal Shares,
especially if unspent budget can be used in other productive ways (such as in the next year’s PB
election). Arguably, when an outcome is non-exhaustive under this rule, no remaining project
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has sufficient support to justify its expense; on that view, no further projects should be funded.
In other situations, unspent budget may not be reusable, such as when the budget comes from a
grant where unspent money needs to be returned (and the relevant decision makers do not obtain
value from the grant-maker’s alternative activities), or when the "budget" is time (for example,
when we use PB to plan activities for a day-long company retreat). In such situation, one might
prefer an exhaustive rule.

Let us now present a few strategies to "complete" Method of Equal Shares.

Completion by Utilitarian Greedy The simplest way to complete the outcome elected by
Equal Shares is to use another rule that is known to be exhaustive. The natural candidate is the
Utilitarian Greedy protocol intuitively described in Chapter 1 for approval ballots. In fact, this
is practically the only rule used in practice for Participatory Budgeting.1 For score or ranking
ballots, the protocol picks in each round the project maximizing the total score. When defining
this procedure formally, one could wonder, whether the above description assumes direct or
costwise score-utility mapping. In our opinion, the second option is much more reasonable;
then the definition for the general case is the following:

Definition 3.3 (Utilitarian Greedy (UG)). We start with an empty outcome W = ∅, and repeat-
edly select a project c maximizing the ratio:

(∑
i∈N ui(c)

)
/cost(c). If cost(W ) + cost(c) ≤ b

then we add project c to W ; otherwise, we remove the project from consideration and repeat,
until no more projects remain.

The above definition has a very clear goal: it aims at maximizing the total utility of the
voters,

∑
i∈N ui(W ). Indeed, the Utilitarian Greedy rule is optimal up to one project for this

objective [Dantzig, 1957], that is, for each outcome W returned by UG there exists p /∈ W s.t.:∑
i∈N

ui(W ∪ {p}) ≥ max
W ′ : cost(W ′)≤b

∑
i∈N

ui(W
′).

An advantage of completing Equal Shares with Utilitarian Greedy is that it is intuitively
efficiency-driven—it spends the remaining budget aiming for maximizing the highest total util-
ity.

Completion by varying the budget In this variant, we evaluate the method with a bud-
get b′ ≥ b that is higher than the actually available budget b. We increase the value of b′ gradually
(each time by some fixed amount ε), and after each increase we recompute the outcome from
scratch using Equal Shares. We stop when we reach an exhaustive outcome or when the next
increase of b′ would cause us to exceed the original budget b. The selected outcome is then
typically exhaustive, but formally there is no guarantee that the budget is exhausted, as it can be
seen in the following example.

1The only notable exception is Paris, using the rule called Majority Judgment [Balinski and Laraki, 2010].
We skip this rule in our analysis, since it focuses neither on maximizing utilitarian welfare, nor on providing
proportionality guarantees. It has been proved that in some cases it returns highly unintuitive outcomes [Laslier,
2019].
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Example 3.4. Suppose that b = 1, we have 3 candidates and 3 voters. The first 2 voters
approve {c1}, and the third one approves {c2, c3}. We have cost(c1) = 1 and cost(c2) =
cost(c3) = 1/3. The only exhaustive outcomes are {c1} and {c2, c3}. However, neither of them
is elected by Equal Shares completed by varying the budget—indeed, to buy both c2 and c3, the
third voter needs to control at least 2/3 dollars. Then the first two voters control 4/3 dollars and
can buy candidate c1, a contradiction. On the other hand, to buy c1, the first two voters need to
control at least 1 dollar. Then, the third voter controls at least 1/2 dollars and buys c2 or c3, a
contradiction.

⌟

However, our experiments in Chapter 5 suggest that Equal Shares with varying the budget
spends nearly the whole budget on real-life elections, especially on the larger ones (about 98% ·
b), and therefore is "nearly" exhaustive. In order to spend the remaining small fraction of the
budget, we can complete the outcome with the use of another rule as in the previous variant.

One could ask why we increase the budget gradually, instead of using binary search to find
the optimal value of b′ faster. We may intuitively feel that giving more money to the voters
should result in electing a more expensive outcome. However, it is not the case, even for the
committee election model, as presented in Example 3.5.

Example 3.5. Consider the following committee election with n = 14 voters and m = 15
candidates.

4 voters : {a1, ..., a8, b1}
4 voters : {a1, ..., a8, b2}
1 voter : {c1, c2, c3, b1, b2}
2 voters : {c1, c2, c3}
1 voter : {d1, d2, d3, b1, b2}
2 voters : {d1, d2, d3}

If we set the budget to b′ = 14 (so that each voter is given 1 dollar), then Equal Shares
chooses a1, . . . , a8, c1, c2, c3, d1, d2, d3, that is, it selects 14 candidates. However, if we in-
crease the budget to b′ = 49/3 (so that each voter is given 7/6 dollar), then the rule first
chooses a1, . . . , a8, and next it selects b1 and b2. For b1, b2 each voter pays 1/6. Thus, each
voter who approve both b1 and b2 is left with 5/6 dollar. Then we can see that the supporters
of c- and d- candidates have less than 3 dollars in total. Thus, only two c- and d-candidates
can be selected. It means that at most 13 candidates can be selected, which shows the lack of
monotonicity. ⌟

An advantage of varying the budget is that a larger part of the budget is spent in a way such
that the voting power is equally shared. Besides, this variant appeared to the best one according
to our experiments on real-life data described in Chapter 5. Hence, it has been recommended
by us to use in practice and implemented in Wieliczka, Świecie and Aarau.
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Completion by perturbation Since Equal Shares works for general additive valuations, there
is another way for us to make it exhaustive. Recall that Equal Shares fails to be exhaustive in
situations where the remaining projects’ supporters do not have sufficient funds left. However,
in elections where ui(c) > 0 for all i ∈ N and c ∈ C, every voter supports every candidate, and
thus this problem never occurs. In fact, Equal Shares is exhaustive when run on profiles of this
type.

Proposition 3.6. Consider an election E such that ui(c) > 0 for each i ∈ N and c ∈ C. The
outcome returned by Method of Equal Shares for E is exhaustive.

Proof. For the sake of contradiction assume that an outcome W returned by Equal Shares for an
election E is not exhaustive. Then, there exists a candidate c /∈ W such that cost(W ∪ {c}) ≤
b. The voters paid in total cost(W ) for W ; their total initial budget was b, thus after W is
selected they all have at least cost(c) unspent money. However, this means that at the end of the
execution of Equal Shares there exists a possibly very large value of ρ such that∑

i∈N

min

(
b

n
− pi(W ), ui(c) · ρ

)
=

∑
i∈N

(
b

n
− pi(W )

)
≥ cost(c).

Consequently, c (or some other candidate) would be selected by Equal Shares, a contradiction.

The most straightforward way to use this idea is to override each ui(p) = 0 with ui(p) = ε
for some very small value of ε. However, in the Pabutools package we have included an imple-
mentation which in fact does not depend on the ε: in the first step, we run the standard Equal
Shares algorithm for the original election. Then, in the second step, for each unelected project c
we assume that all the voters with positive score over c spend all their remaining money to
cover as much of the cost of c as possible. The remaining part of the cost is covered by the
voters i ∈ N such that ui(c) = 0 so that the maximal payment of such a voter, β, is minimized.
We select the project minimizing β and update voters’ individual budgets. Intuitively, this im-
plementation corresponds to setting ε to some infinitely low value, so that tweaking the utilities
has no effect until no projects are affordable by their supporters.

An advantage of this variant is that it is probably the most natural one; it uses purely the
internal mechanism of Equal Shares to elect the whole exhaustive outcome.

In Chapter 5 we will present the comparison of all the variants, based on the real-life data
analysis. However, independently from which variant we choose, the most important axiomatic
properties of Equal Shares are actually the same—therefore in the next chapter we will consider
only the basic variant of Equal Shares, presented in Definition 3.1.
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Chapter 4

Axiomatic Properties of Equal Shares

After reading the definition of Method of Equal Shares and seeing how it works on the examples
from Section 3.2, we probably already have an intuition that this rule in some sense represents
groups of voters proportionally to their size. Indeed, consider a simple election from Exam-
ple 1.1. Now, under Method of Equal Shares, the first 40% of voters control 40% of the budget,
while the next two groups of 30% of voters control 30% of the budget, each. Hence, since the
groups do not overlap, the voters will eventually buy 4 red projects, 3 blue and 3 green ones.

Observation 4.1. Note that the above argumentation is valid independently from the way how
exactly particular projects are chosen in each round. To claim that Equal Shares is proportional
in such simple cases it is enough to note it constructs a system of payments satisfying the
following simple conditions: (1) every project needs to have its cost covered in order to be
selected, (2) all the voters have equal initial endowments, specifically equal to at least b/n, (3)
the voters spend money only on the selected projects they support, and (4) the rule stops only if
no project is affordable.

We further explore the above observation in Section 4.3, combining the aforementioned
conditions into the priceability axiom [Peters and Skowron, 2020]. However, let us first focus
on perhaps the most important axiomatic property of Equal Shares—Extended Justified Repre-
sentation (EJR) [Aziz et al., 2017a]. This axioms indicates that the rule is proportional also in
the most general PB setting, that is the setting with arbitrary costs of the projects and arbitrary
cardinal utilities. Here, the exact way the rule is designed would be crucial—specifically, the
fact that in each round we select a project and the corresponding voters’ payments so that the
value of ρ is minimal.

4.1 Extended Justified Representation (EJR)
Extended Justified Representation (EJR) was first proposed for approval-based committee elec-
tion model [Aziz et al., 2017a]. Even for approval-based utilities, only few rules are known to
satisfy EJR and Method of Equal Shares is one of them [Peters and Skowron, 2020]. In this
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section, we introduce a generalization of EJR to the PB model with cardinal utilities and show
that Equal Shares still satisfies EJR.

We first present the original definition of EJR by Aziz et al. [2017a]. The intuition behind
this axiom is similar to the already presented one in Definition Attempt 1.2—as a warm-up,
let us recall this definition in a slightly adapted way for the approval-based committee election
model:

Definition Attempt 4.2. We say that an outcome W is proportional, if for every group of
voters S, approving jointly at least some ℓ ≥ |S|/n · b candidates, every voter from S approves ℓ
candidates in W .

As we already noticed in Example 1.3, this definition is not always satisfiable. The idea
of Extended Justified Representation is therefore to keep the premise of this condition (we
call groups S satisfying this premise ℓ-cohesive groups), yet weaken the conclusion—now we
require that only one member of S is satisfied, not all of them.

Definition 4.3 (Extended Justified Representation for the approval-based committee election
model [Aziz et al., 2017a]). A group of voters S is ℓ-cohesive for ℓ ∈ N if

|S| ≥ ℓ

b
· n and |

⋂
i∈S

Ai| ≥ ℓ.

We say that an outcome W satisfies Extended Justified Representation (EJR), if for every ℓ-
cohesive group of voters S, at least one voter from S approves ℓ candidates in W .

After this weakening, outcomes satisfying EJR not only always exist [Aziz et al., 2017a],
but also are possible to be found by polynomial-time computable algorithms [Aziz et al., 2018,
Peters and Skowron, 2020].

At first sight, one could worry that with only the at-least-one guarantee, EJR is a weak
property. However, it is not the case—in particular, it implies that the members of a cohesive
group have high utility on average [Aziz et al., 2018, Skowron, 2021]. The intuition here is the
following: consider an ℓ-cohesive group S. EJR requires that there exists i ∈ S approving ℓ
candidates. However, the group S \{i} is still at least (ℓ− 1)-cohesive. Hence, there also exists
a voter j ∈ S, j ̸= i, approving ℓ − 1 canididates. Continuing this reasoning, we obtain that
voters in S have an average utility of ℓ−1/2.

The generalization of this axiom to the PB model is not straightforward and to the best of
our knowledge none has been proposed in the literature. To warm up, let us first relax the unit
cost assumption, but keep the assumption that the voters have approval-based utilities, that is,
they gain from each selected approved project utility 1, regardless of the project’s cost.

Example 4.4. Consider an election with approval-based utilities. Let n = 1000 and b = 100.
Consider five disjoint groups of voters, S1, S2, S3, S4 and S5, each of which consists of 30
voters with the same approval sets. Hence, looking only at sizes of groups, intuitively each of
them is large enough to have the right to decide about spending 3 dollars (the fraction of the
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budget proportional to their sizes). Moreover, we assume that each group approves the projects
worth at least 3 dollars (which was the condition stated in Definition Attempt 1.2). However,
looking closer at the approval sets, we can see they are very different:

– Group S1 approves three projects a1, a2, a3, each of which costs 1 dollar,

– Group S2 approves two projects, b1 costing 2 dollars and b2 costing 1 dollar,

– Group S3 approves two projects, c1 and c2, costing 2 dollars each, and a project c3 cost-
ing 1 dollar,

– Group S4 approves one project d, costing 3 dollars,

– Group S5 approves one project e, costing 4 dollars.

It is therefore crucial to notice that each group has a right to spending 3 dollars only if they can
do it without exceeding this treshold. Now we probably intuitively feel that:

– Group S1 clearly deserves all the 3 projects they approve, as they would do in the com-
mittee election model,

– So does group S2—the total cost of the set {b1, b2} they approve does not exceed 3.

– Group S3 does not deserve all the projects they approve, because their total cost of 5
exceeds the proportional share of the budget. However, there exists a subset, for exam-
ple, {c1, c3} approved by S3 which has cost 3, and approving additional projects should
not affect their guarantees negatively. Hence, S3 is entitled to the set {c1, c3}.

– Group S4 deserves project {d},

– Group S5 does not deserve anything—the only way to give them any satisfaction is to
select e, which would exceed their proportional share of the budget. ⌟

As we can see, if the projects have different costs then instead of speaking about ℓ-cohesive
groups (groups that are large enough to be entitled to some ℓ candidates they jointly approve) it
is more convenient to speak about T -cohesive groups for some T ⊆ C—groups that are large
enough to be entitled to some subset of projects T they jointly approve. Naturally, the fact that a
group is T -cohesive does not mean that exactly set T should be funded—otherwise, the problem
of satisfiability would remain (recall Example 1.3). We would rather say that, analogously to
the committee election model, EJR should require that at least one voter from a T -cohesive
group should be satisfied from the elected outcome as if T was elected—hence, should get at
least the utility of |T |.

Definition 4.5 (Extended Justified Representation for elections with approval-based utilities).
We say that a group of voters S is T -cohesive for T ⊆ C if

|S|
n
≥ cost(T )

b
and T ⊆

⋂
i∈S

Ai.
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An outcome W satisfies Extended Justified Representation if for each T ⊆ C, and each T -
cohesive group S of voters there exists a voter i ∈ S such that |Ai ∩W | ≥ |T |.

The definition for the approval-based cost utilities would be the same, with the only change
that in the last inequality we should have |Ai ∩ R(E)| ≥ cost(T ). Intuitively, when we are
entitled to some set T of approved projects, then under approval-based utilities we would be
equally happy from any other |T | approved projects as we would be from T . Under the approval-
based cost utilities it is no longer the case and instead we require a set of projects worth cost(T )
from which we would gain the same utility as from T .

As we can see, while in the premise of the EJR definition (the definition of a cohesive group)
we are interested in projects’ costs, in the conclusion we only care about voters’ utilities from
them—the fact that in the committee election model we had the same value of ℓ in both parts,
turned out to be merely coincidential.

If we try to generalize EJR beyond approval-based utilities, the definition of T -cohesiveness
becomes meaningless, because the notion of set T approved by all voters in S does not have an
analogue. However, if we keep the intuition that from every project c ∈ T every voter in S gains
an identical utility, we can actually resign from this condition. Let us consider the following
(not-yet-final) definition:

Definition Attempt 4.6 (First attempt to define EJR for cardinal utilities). We say that a group
of voters S is T -cohesive for T ⊆ C if

|S|
n
≥ cost(T )

b
and ui(c) = uj(c) for each c ∈ T, i, j ∈ S.

An outcome W satisfies Extended Justified Representation if for each T ⊆ C, and each T -
cohesive group S of voters there exists a voter i ∈ S such that ui(W ) ≥ ui(T ).

Note that this definition in the approval-based (cost) model, boils down to the previous ones.
We do not even need to add the condition that voters from S gain nonzero utilities from projects
in T , since adding such projects to T never helps group S to improve their satisfaction.

However, the above definition is still somewhat weak. Suppose, for example, that a group
of three voters S = {1, 2, 3} is large enough to be entitled to a project c. However, they gains
utilities of 10, 5 and 7 from c respectively. According to the above definition, they do not deserve
anything. On the other hand, if they all gained utility 5 from c, they would form a {c}-cohesive
group entitled to satisfaction of 5.

Now we should have the proper intuition to formulate the final definition of EJR: we want to
strengthen Definition Attempt 4.6 so that increasing a voter’s utility from a project would never
reduce her proportionality guarantees. In the above example, if all the voters from S agree that c
is worth at least 5, at least one of them should gain utility 5 from the elected outcome. This
leads us to the final definition of EJR:

Definition 4.7 (Extended Justified Representation). A group of voters S is (α, T )-cohesive,
where α ∈ N and T ⊆ C, if

|S|
n
≥ cost(T )

b
and α ≤

∑
c∈T

min
i∈S

ui(c).
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An outcome W satisfies Extended Justified Representation if for each α ∈ N, T ⊆ C, and
each (α, T )-cohesive group of voters S there exists a voter i ∈ S such that ui(W ) ≥ α.

Again, an (α, T )-cohesive group of voters S can propose the projects in T , since they are
affordable with S’s share of the budget. The value α denotes how much the coalition S agrees
about the desirability of the projects in T . Consequently, Definition 4.7 prohibits any outcome
in which every voter in S gets utility strictly lower than α.

Now EJR is a much more demanding property in the model with general cardinal util-
ties than its approval-based counterpart. Consider the special case where there is only one
voter, N = {1}. Then any outcome W satisfying EJR must solve the knapsack problem, that
is, it must maximize

∑
c∈W u1(c) subject to the budget constraint, since otherwise an optimum

knapsack T would witness an EJR violation. Because the knapsack problem is weakly NP-
hard, this presents a difficulty for a rule to satisfy EJR. Knapsack is also weakly NP-hard when
assuming that the value of each item equals its weight (this is the subset sum problem), so
satisfying EJR is weakly NP-hard even for approval-based cost utilities.

Proposition 4.8. Unless P = NP, no aggregation rule that can be computed in strongly polyno-
mial time can satisfy EJR in the general PB model.

Equal Shares can be computed in strongly polynomial time, and indeed it fails EJR when
the utilities are not approval-based, even with keeping the unit cost assumption.

Example 4.9 (Equal Shares fails EJR.). Suppose that the budget is 2 dollars. There are two
voters 1, 2, and three projects: c1, c2, c3. The utilities are the following: u1(c1) = u2(c1) =
2, u1(c2) = u2(c3) = 3, and u1(c3) = u2(c2) = 0. Then c1 is 1/4-affordable and c2 and c3 are
both 1/3-affordable. So c1 is elected (with both voters paying equal amounts). Now nothing is
affordable, and thus W = {c1}. But then S = {1} and T = {c2} witness the EJR violation. ⌟

In the second part of the dissertation (specifically, in Chapter 7) we will prove that for every
election, an EJR outcome does exist, but we do not know an efficiently computable method
that finds such an outcome. However, we can show that Equal Shares selects an outcome that
satisfies a mild relaxation of EJR, which requires that EJR holds "up to one project".

Definition 4.10 (Extended Justified Representation up to one project (EJR-1)). A rule R satis-
fies Extended Justified Representation up to one project if for each election E and each (α, T )-
cohesive group of voters S there exists a voter i∗ ∈ S such that either ui∗(R(E)) ≥ α or for
some c∗ ∈ T it holds that ui∗(R(E) ∪ {c∗}) > α.

It is worth emphasizing that in the approval-based utilities model, Definitions 4.7 and 4.10
are actually equivalent, because the "up to one project" option never applies: Consider
an (α, T )-cohesive group of voters S. Since voters’ utilities are score and approval-based,
we may assume that α = |T |: indeed, for each c ∈ T , if mini∈S ui(c) > 0 then mini∈S ui(c) =
maxi∈S ui(c) = 1; otherwise, as we have mnetioned earlier, we can remove c from T with-
out losing cohesiveness. Finally, note that in the approval-based model, due to the strict
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Approval-based
utilities

Approval-based
cost utilities Cardinal utilities

Unit costs EJR EJR EJR-1

General costs EJR EJR-1 † EJR-1 †

Table 4.1: Equal Shares and Extended Justified Representation (see Theorem 4.11 and Exam-
ple 4.9).
†: Unless P = NP, no strongly polynomial time method (such as Equal Shares) can satisfy EJR.

inequality, both conditions ui∗(R(E)) ≥ α and ∃c∗∈T .ui∗(R(E) ∪ {c∗}) > α boil down
to |Ai∗ ∩R(E)| ≥ α = |T |.

Our main result is that Method of Equal Shares satisfies EJR up to one project in the general
PB model. By the previous observation, it hence satisfies EJR in the approval-based utilities
model (even when not imposing unit costs), see Table 4.1.

Theorem 4.11. Method of Equal Shares satisfies EJR up to one project in the participatory
budgeting model.

Proof. Let S ⊆ N be a non-empty group of voters, and let T ⊆ C be a proposal
with cost(T )/b ≤ |S|/n. For each c ∈ C, write αc = mini∈S ui(c) We assume that αc > 0 for
all c ∈ T (otherwise we can delete c from T ). If W is the output of Equal Shares, we will show
that there exists a voter i∗ ∈ S such that either ui∗(W ) ≥ α, or there is a project c∗ ∈ T such
that ui∗(W ∪ {c∗}) > α.

In this proof, we will consider three runs of Equal Shares in different variations:

(A) Equal Shares run on the original election (thus, outputting W ).

(B) Equal Shares run so that voters in S are not bound by their budget constraint when paying
for projects in T . To make this formal, in the definition of Equal Shares, we redefine the
notion of ρ-affordability so that c ∈ T is ρ-affordable if∑

i∈S

ρ · ui(c)︸ ︷︷ ︸
no budget limit

+
∑

i∈N\S

min{bi, ρ · ui(c)}︸ ︷︷ ︸
with budget limit

= cost(c), (4.1)

and c ∈ C \ T is ρ-affordable if∑
i∈S

min{max{bi, 0}︸ ︷︷ ︸
bi may be < 0

, ρ · ui(c)}+
∑

i∈N\S

min{bi, ρ · ui(c)} = cost(c),

with payments defined as these equations suggest (namely, i’s payment is the value of
the ith term of the sum).
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(C) Equal Shares run on a smaller election where only projects in T and only voters in S
exist, and each voter has an unlimited budget bi = ∞. In addition, we set ui(c) = αc for
all i ∈ S and c ∈ T .

Note that in variations (B) and (C), all projects in T will be elected (eventually) as αc > 0 for
all c ∈ T , and the voters in S have unrestricted budgets when buying projects in T .

If at the end of the execution of (B) all voters in S have spent strictly less than b/n, then (B)
has selected all projects in T and no voter has overshot their budget. Thus (A) also elects all
of T , so ui(W ) ≥ ui(T ) ≥ α for all i ∈ S, and we are done. Otherwise, let i∗ ∈ S be the first
voter in S who during the execution of (B) spends at least b/n. Suppose this happens just after
(B) adds project c∗ to the outcome. Write W(B) for the set of projects selected by (B) up to but
excluding c∗. Note that (A) has also selected all projects in W(B), because until that point the
two rules behave identically.

x

f(B)(x)

0

ui(d)

pi(d)

Can be non-convex for d ̸∈ T
if i has not enough budget left

Slope = ρ(d)

x

f(C)(x)

0

αc3

αc3 · σc3

Slope = σc3

Figure 10: Illustration of functions f(B)(x) and f(C)(x).

Next, we will lower bound the utility that i∗ receives under (B) by the time i∗ has spent at
least b/n. To do so, we define a function f(B) so that for a number x, f(B)(x) is the amount of
money that i∗ had to spend during the execution of (B) until i∗ receives utility x. We make this
into a continuous, piecewise linear function, so that to get a β-fraction of the utility of a project
one needs to spend a β-fraction of the total spending for that project. See Figure 10. In other
words, f(B) consists of a sequence of line segments where the segment corresponding to d ∈ C
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has length ui(d) and height pi(d) (the amount that i∗ paid for d). Note that the segment has
a slope of usually ρ(d), but it can be lower than ρ(d) in case d ̸∈ T and i∗’s budget was not
enough to pay the full amount ρ(d) · ui∗(d) for d.

We can define a function f(C) in exactly the same way with respect to the execution of (C),
based on the same voter i∗. The function f(C) is easy to understand. For each c ∈ T , let us
write σc = cost(c)/(|S|αc), and let us label T = {c1, . . . , cr} such that σc1 ≤ · · · ≤ σcr . Note
that under (C) each not-yet-selected c ∈ T is σc-affordable, because all voters have unlimited
budgets and ∑

i∈S

σc · αc = |S| · σc · αc = cost(c).

It follows that f(C) consists of a sequence of line segments of length αc and slope σc, one for
each c ∈ T . These line segments come in increasing order of σc, that is,in the order c1, . . . , cr,
because Equal Shares always selects the ρ-affordable project with lowest ρ.

We claim that
f(C)(x) ≥ f(B)(x) for all x ∈ [0, α]. (4.2)

(Intuitively, this says that under (C) the money of i is used less efficiently for i than under (B).)
The inequality certainly holds at x = 0 because both functions take the value 0. To establish
(4.2) for other x, we will show that the slope of f(C) is always at least as high as the slope of f(B)

(except of course when x is a point joining two line segments, where the slope is not defined,
but this only applies to finitely many points).

Let us first note the following useful fact:

Under (B), at each step, any not-yet-selected c ∈ T is ρ-affordable for some ρ ≤ σc. (4.3)

Informally, the fact holds because there are extra voters in (B) compared to (C), and the vot-
ers in S have weakly higher utility for c in (B). Formally, looking at the definition (4.1) of
affordability in (B), fact (4.3) follows because∑

i∈S

σc · ui(c) +
∑

i∈N\S

min{bi, σc · ui(c)} ≥
∑
i∈S

σc · ui(c) ≥
∑
i∈S

σc · αc = cost(c),

where the last step holds because c is σc-affordable during the execution of (C).
Now, let x′ ∈ [0, α] be any point that is not a boundary point (for either f(B) or f(C)). Say

that x′ lies in the interior of the line segment corresponding to d ∈ C of f(B) (call this Segment 1)
and in the interior of the line segment corresponding to cs ∈ T of f(C) (call this Segment 2). See
Figure 11 for an illustration. Consider the time point t when (B) chose to add d to its outcome
(but before it actually added d). At time t, i∗’s utility under (B) was equal to the x-coordinate
of the left endpoint of Segment 1, and thus less than x′. Further, at time t, it cannot be the case
that (B) has already selected all of the candidates c1, . . . , cs, because then i∗’s utility would be
at least αc1 + · · · + αcs which is the x-coordinate of the right endpoint of Segment 2 and thus
more than x′. Hence there is some cp, p ∈ [s], such that (B) has not selected cp before time t.
By fact (4.3), cp is ρ′-affordable in (B) at time t for some ρ′ ≤ σcp . Since (B) always selects
a candidate that is ρ-affordable for the smallest ρ, it must be the case that d is ρ-affordable for
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x

f(B)(x)f(C)(x)

0

Segment 1

Segment 2

x′

i’s utility at t min. utility if c1, . . . , cs all selected

Figure 11: Illustration of the proof of claim (4.2).

some ρ ≤ ρ′. Thus, the slope of Segment 1 is at most ρ and hence at most σcp . On the other
hand, Segment 2 has slope σcs . Note that σcp ≤ σcs because p ≤ s. Thus Segment 1 has slope
weakly lower than Segment 2. Since this is true for all x′ (not on boundary points), our claim
(4.2) follows.

Next, note that

f(C)(α) =
∑
c∈T

σc · αc =
∑
c∈T

cost(c)

|S|
=

cost(T )

|S|
≤ b

n
.

Using (4.2), it follows that

f(B)(α) ≤
b

n
. (4.4)

Finally, consider the point in time just after (B) adds c∗ to its output. Voter i∗ has spent at
least b/n at this point. There are two cases:

(i) i∗ has spent exactly b/n. In this case c∗ is also selected by (A) because the rules behave
identically until this point. Now (4.4) implies that ui∗(W(B)∪{c∗}) ≥ α. Hence ui∗(W ) ≥
α.

(ii) i∗ has spent strictly more than b/n. In this case, by definition of (B), we have c∗ ∈ T .
Now (4.4) implies that ui∗(W(B) ∪ {c∗}) > α. Because W(B) ⊆ W , this implies ui∗(W ∪
{c∗}) > α.

In both cases, we conclude that W satisfies EJR up to one project.

To emphasize the importance of Theorem 4.11 and show how demanding EJR-1 is, let us
consider another well-established voting rule, Proportional Approval Voting (PAV).

Definition 4.12 (Proportional Approval Voting (PAV)). For approval-based voters’ preferences,
Proportional Approval Voting (PAV) selects a feasible outcome maximizing

∑
i∈N H(|Ai∩W |),

where H(r) is the rth harmonic number, namely:

H(r) =
r∑

j=1

1

j
.
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Apart from Equal Shares, it is the only natural voting rule known to satisfy EJR in the com-
mittee election model with approval-based preferences. Besides, in this model it is known
to provide the highest possible guarantees regarding the average satisfaction of the voters
[Skowron, 2021]. However, it completely loses its proportional properties when the costs of
the projects are unequal. Example 4.13 shows that, PAV does not even satisfy EJR up to r
projects, for any r ≥ 0.

Example 4.13 (PAV fails EJR). Let r ∈ N (r ≥ 2), b = r3, and consider the following approval-
based profile:

r2 − 1 voters: {a1, a2, . . . , ar},
1 voter: {b1, b2, . . . , br}.

The candidates a1, a2, . . . , ar cost r2 dollars each; the candidates b1, b2, . . . , br cost 1 dollar each.
EJR requires that the one voter who approves candidates b1, . . . , br must approve at least r can-
didates in the outcome. However, PAV selects {a1, a2, . . . , ar}, leaving the voter with nothing.
⌟

4.2 Approximation of the Core
Looking how challenging it was to extend the idea of cohesive groups beyond approvals, one
could wonder what would happen if we resigned from this requirement at all—and provide the
same guarantees as in Definition Attempt 4.6 to every group of voters that is large enough to
deserve a certain set of projects. Then we obtain an important notion of proportionality, adapted
from cooperative game theory, called the core [Aziz et al., 2017a, Fain et al., 2018].

Definition 4.14 (The Core). For an election E = (N,C, b), an outcome W is core-stable if for
every S ⊆ N and T ⊆ C with

|S|
n
≥ cost(T )

b

there exists i ∈ S such that ui(W ) ≥ ui(T ). The set of all core-stable outcomes is called the
core of E.

Core-stability is a stronger guarantee than EJR. It allows any group S to present an arbitrary
"counter-proposal" T that they can afford, and guarantees that at least one member i ∈ S would
prefer to stick with the core-stable outcome W , so ui(W ) ≥ ui(T ). EJR only guarantees
that ui(W ) ≥

∑
c∈T minj∈S uj(c). Thus, EJR only respects counter-proposals T if they have

broad agreement within the coalition S. This is arguably a reasonable restriction, since such
coalitions can more easily coordinate to "complain" against the selected W . Still, it is interesting
whether we can provide the strong core guarantee.

Unfortunately, there are elections where the core is empty, even with unit costs.
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Example 4.15 (Core might be empty). 1 We have 6 voters and 6 candidates with unit costs,
and b = 3. Utilities satisfy

u1(c1) > u1(c2) > 0, u2(c2) > u2(c3) > 0, u3(c3) > u3(c1) > 0;

u4(c4) > u4(c5) > 0, u5(c5) > u5(c6) > 0, u6(c6) > u6(c4) > 0,

and all other utilities are equal to 0. Let W ⊆ C be any feasible outcome, so |W | ≤ 3. Then
either |W ∩ {c1, c2, c3}| ≤ 1 or |W ∩ {c4, c5, c6}| ≤ 1. Without loss of generality assume the
former, and assume that c2 ̸∈ W and c3 ̸∈ W . Then S = {2, 3} and T = {c3} block W ,
since 1/3 = |S|/n ≥ cost(T )/b = 1/3 and both u2(c3) > u2(c1) ≥ u2(W ) and u3(c3) >
u3(c1) ≥ u3(W ). ⌟

Notably, in this example we do not have approval-based utilities. It is unknown whether
the core-stability is always satisfiable under this additional assumption (even if the costs are
unequal). The further investigation of this problem is presented in Chapter 8.

In this section, let us generalize the result of Peters and Skowron [2020]: Equal Shares
provides a multiplicative approximation of the core. It is actually not the best possible result—
for general cardinal utilities, a constant factor 9.27-approximation always exists and a constant
factor 67.37-approximation is polynomial-time computable (both results are by Munagala et al.
[2022])—yet it shows that Equal Shares returns an outcome that never violates core-stability
too badly.

Definition 4.16. For an election (N,C, b) and α ≥ 1, an outcome W is α-core-stable if for
every S ⊆ N and T ⊆ C with

|S|
n
≥ cost(T )

b

there exists i∗ ∈ S and c∗ ∈ T such that ui∗(R(E) ∪ {c∗}) ≥ ui∗ (T )/α.

The above definition means that the α-core provides guarantees the same guarantees as the
core for α times larger groups—for example, in the committee election model, under 2-core
each group needs to contain at least 2 · n/b voters instead of n/b to have a right to one candidate.

Theorem 4.17. Given an election E, let umax be the highest utility a voter can get from a
feasible outcome. Let umin we denote the smallest, yet positive utility a voter can get from a
feasible outcome:

umax = max
i∈N

max
W :cost(W )≤1

ui(W ) and umin = min
i∈N

min
W :ui(W )>0

ui(W ).

Then the outcome selected by Equal Shares is always α-core-stable for α = 4 log(2 · umax/umin).

Proof. For notational simplicity, without loss of generality we assume b = 1 (by scaling the
costs of all projects appropriately). Towards a contradiction, assume there exist an election E,
a winning outcome W ∈ R(E), a subset of voters S ⊆ N , and a subset of candidates T ⊆ C

1This example is adapted from [Fain et al., 2018, Appendix C] so as to satisfy the unit cost assumption.
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with
∑

c∈T cost(c) ≤ |S|/n such that for every i ∈ S and c ∈ T it holds that ui(W ∪ {c}) <
ui(T )/α.

Now consider a fixed subset S ′ ⊆ S, and let

∆(S ′) =
∑
i∈S′

(
ui(T )− ui(W )

)
.

Similarly as in the proof of Theorem 4.11, assume for the moment that the voters from S ′

can spend more than their budgets when paying for candidates in T . Let us analyze how Equal
Shares would proceed in this case. By the pigeonhole principle it follows that in each step of
the rule, there exists a not-yet-elected candidate c ∈ T \W such that

uS′(c)

cost(c)
≥ ∆(S ′)

cost(T )
.

Indeed, if for each c ∈ T \W we had uS′ (c)/cost(c) < ∆(S′)/cost(T ), then

∆(S ′) ≤
∑

c∈T\W

uS′(c) <
∑

c∈T\W

cost(c) · ∆(S ′)

cost(T )
≤ ∆(S ′),

a contradiction.
Thus, in each step of the rule there exists a not-yet-elected candidate c ∈ T \ W that

is ρ-affordable for some ρ ≤ cost(T )/∆(S′). Thus, in each step, Equal Shares selects some can-
didate c ∈ C \ W that is ρ-affordable for some ρ ≤ cost(T )/∆(S′), because Equal Shares al-
ways minimizes ρ. Hence, the cost-per-utility that voters pay for the selected candidates is at
most cost(T )/∆(S′). Now, consider the first moment when some voter in S ′, say i, uses more than
the voter’s initial budget 1/n. Until this time moment, Equal Shares behaves exactly in the same
way as if the voters from S ′ had their initial budgets set to 1/n. Further, we know that in this
moment, if we chose a candidate c ∈ T that would be chosen if the voters had unrestricted
budgets, then the voter i would pay more than 1/n in total, and thus, would get utility more
than ∆(S′)/cost(T )·n. Since we assumed ui(W ∪ {c}) < ui(T )/α, we get that

ui(T )

α
> ui(W ) + ui(c) >

1

n
· ∆(S ′)

cost(T )
.

Since α ≥ 2, and so ui(T )− ui(W ) ≥ ui(T )/2, we get that

ui(T )− ui(W ) ≥ ui(T )

2
>

α∆(S ′)

2n · cost(T )
.

Let S” = S ′ \ {i}. Clearly, we have

∆(S”) = ∆(S ′)− (ui(T )− ui(W )) ≤ ∆(S ′)

(
1− α

2n · cost(T )

)
.
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The above reasoning holds for each S ′ ⊆ S. Thus, we start with S ′ = S and apply it recursively,
in each iteration decreasing the size of S ′ by 1. After |S|/2 iterations we are left with a subset Se

such that

∆(Se) ≤ ∆(S)

(
1− α

2n · cost(T )

) |S|
2

≤ ∆(S)

(
1− α

2n · cost(T )

) cost(T )n
2

< ∆(S)

(
1

e

)α
4

.

Now, observe that ∆(Se) ≥ |S|/2 · umin (for each i ∈ S it must hold that ui(T ) − ui(W ) > 0)
and that ∆(S) ≤ |S| · umax. Thus, we get that

|S|
2
umin · e

α
4 < |S| · umax,

which is equivalent to eα/4 < 2 · umax/umin and, further, to α < 4 log(2 · umax/umin). This gives a
contradiction and completes the proof.

The bound of α = 4 log(2 · umax/umin) is asymptotically tight, and the hard instance
can be constructed even for the committee-election model with approval-based utilities
(there, umax/umin ≤ b). The precise construction is given by Peters and Skowron [2020].

4.3 Priceability of Equal Shares
At the beginning of this chapter, we have noticed (within Observation 4.1) that the basic pro-
portionality of Equal Shares follows just from the fact that it simulates a market satisfying some
few basic fairness conditions. The possibility to justify an outcome via such a mechanism can
be seen as a yet another proportionality notion [Peters and Skowron, 2020].

Let us first introduce some notation. Fix an election E = (N,C, b). We say that a tuple p =
(end, Cp, {pi}i∈N) is a price system, where end ≥ b/n is the initial endowment, Cp ⊆ C is the
supported outcome, and {pi}i∈N is the collection of voters’ payment functions (pi : Cp → R≥0

for each i ∈ N ), if the following conditions are satisfied:

1. Each voter pays only for projects she supports:

ui(c) = 0 =⇒ pi(c) = 0 for each i ∈ N and c ∈ Cp.

2. Each voter has the same initial endowment of end:∑
c∈Cp

pi(c) ≤ end for each i ∈ N.

3. The cost of each project from Cp is fully paid:∑
i∈N

pi(c) = cost(c) for each c ∈ Cp.
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Now the priceability axiom can be formulated as follows:

Definition 4.18 (Priceability). An outcome W is said to be priceable if there exists a price
system supporting W , that is, p = (end, Cp, {pi}i∈N) where W = Cp, satisfying the following
condition:

(P) For each project c ̸∈ Cp, the unspent budget of her supporters is at most cost(c):

∑
i∈N :ui(c)>0

end−
∑
c′∈Cp

pi(c
′)

 ≤ cost(c) for each c /∈ Cp.

Intuitively, condition (P) ensures that the amount of unspent money is small enough so that
no unsupported candidate can be additionally purchased.2 We separate here this condition from
the 3 aforementioned ones (in contrary to Peters and Skowron [2020]), since in Chapter 9 we
will consider price systems not satisfying this conditon.

Hence, the priceability axiom requires that each outcome is possible to be justified by a
fair market. Priceability does not place any restrictions on how the rule splits the project’s
cost among supporters. The concept also allows initial voters’ endowments higher than b/n; an
outcome is priceable if there exists some budget limit for which it is priceable.

It is known that Equal Shares is priceable in the committee election model with approval-
based utilities [Peters and Skowron, 2020], and in the general PB model this property is also
preserved—indeed, the rule explicitly constructs a price system satisfying the above conditions.

One could wonder why this axiom is important—for example, what are the advantages
of priceability over EJR or core-stability. Let us present then an example showing that in some
cases priceability rules out some clearly unfair outcomes that do not violate the core (and hence,
EJR).

Example 4.19. Fix an integer b as the budget constraint. Consider the following committee
election with n = b2 voters divided into b + 1 groups G0, G1, . . ., Gb. Group G0 consists of b
voters approving some b candidates. The remaining groups contain b − 1 voters each. Each of
these groups approve one unique candidate. This election together with two sample outcomes
(a green one and a blue one) are depicted in Figure 12.

For this election, the subset W1 = {c1, . . . , cb} (the candidates marked green) is core-stable
(and hence, also satisfies EJR). In fact W1 would be uniquely selected by the following natural
rule: "among all committees satisfying EJR, select the one which garnered most approvals".

This outcome gives zero satisfaction to a majority of the voters. Naturally, it is not possible
to give a nonzero utility to all the groups of voters (since there are b + 1 of them), yet one can
argue that, for example, the blue committee W2 = {c1, cb+1, . . . , c2b−1}, is a much fairer choice.
This committee is priceable, as witnessed by any price system supporting W2 with end = 1/b−1.

2One could argue that then the inequality in the condition should be strict. The role of weak inequality here is
to allow tie-breaking—otherwise, priceability would be unsatisfiable for simple symmetrical elections (for exam-
ple b = 1, C = {c1, c2}, 50% of voters approving only c1 and the other 50% approving only c2).
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Figure 12: An illustration of Example 4.19. To interpret it, recall Figure 2 and Figure 3—here
again we assume that candidates correspond to the boxes and the voters approve the candidates
placed above them.

Then condition (P) is satisfied (note that group Gb has exactly 1 unspent dollar in total, yet to
violate (P) they would need to have strictly more than 1 dollar). On the other hand, to purchase
any committee containing at least two candidates approved by G0 (for example, W1), this group
should have at least 2 dollars in total. Then the initial endowment should be equal to at least 2/b
and every neglected group of voters would have enough unspent money to violate (P). ⌟

Intuitively, the problem with core-stability here is that the guarantees provided by this axiom
are based on the fixed quota n/b—hence, groups containing n/b − 1 voters are not entitled to
anything. Priceability is much more flexible here, since instead of a fixed quota it uses the
variable end.

In the approval-based committee election model there always exist outcomes that are both
priceable and exhaustive (recall Definition 3.2) [Peters and Skowron, 2020]. In the general PB
model, these two properties are mutually exclusive—it can be seen in Example 3.4. There-
fore, in particular, no exhaustive variant of Equal Shares presented in Section 3.3 is priceable.
However, the "completion by varying the budget" is priceable unless it is further completed by
another rule—it might be therefore seen as a good compromise between the priceability condi-
tion and the desire to spend a larger part of the budget than the basic variant of Equal Shares.

To conclude this chapter, we can see that Method of Equal Shares has very strong fairness
properties. It provides very strong proportionality guarantees to groups of voters with cohesive
preferences (EJR-1), approximates the strongest known notions of proportionality (the core)
and balances the influence of the voters on the elected outcome (priceability). In our opinion,
all these factors combined establish this rule as a prime candidate for voting in the model with
additive utilities and arbitrary costs. In the next chapter we will analyze whether these good
theoretical properties translate into good behavior in practice.
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Chapter 5

Evaluation of Equal Shares on the
Real-Life Data

In this chapter we take a step towards understanding how various voting rules for participatory
budgeting operate in practice. We do this by collecting and analyzing data from over 800 PB
elections. The data collected by us has been published as the open library, called Pabulib. In
Appendix A we define the .pb format, which we recommend for representing PB elections, and
which is used in our library.

The aim of Pabulib is to gather participatory budgeting data from as many cities and as
many countries as possible, but currently most of the elections come from several large cities
in Poland1 (in particular, from Warsaw, with a population of 1.7 million people; from Kraków,
Wrocław, and Gdańsk, with populations between 500 000 and 1 million; and from Częstochowa,
Zabrze, and Katowice, with populations between 150 000 and 300 000).

Having this data, we have performed a comparative analysis of the Utilitarian Greedy rule
(recall Definition 3.3), which is currently used for all the elections in Pabulib to the three exhaus-
tive variants of Method of Equal Shares presented in Section 3.3. Specifically, we considered:

– The completion by Utilitarian Greedy (for brevity, we will call it further ES-U),

– The completion by increasing gradually voters’ endowments (by 1% in each step), addi-
tionally completed by Utilitarian Greedy if needed (further called ES-Inc),

– The completion by the perturbation of utilities (further called ES-Eps), yet implemented
without their actual perturbation as described in Section 3.3.

Additionally, we assumed that each of these four voting rules can be run in four variants.
First of all, recall the discussion over the relation between ballots and voters’ preferences, pre-
sented in Section 2.3. All the cities that we analyze (even those using ranking ballots) map the
ballots to cardinal utilities. Our analysis includes the comparison whether it is better for a rule to

1Poland is a good source of PB elections because the law requires every major city to spend at least 0.5%
of its annual budget through PB. In 2022, over 43% of Polish cities with populations above 5,000 organized PB
elections, spending 630.5 million PLN in total [Martela et al., 2023].
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use the direct or the costwise score-utility mapping. For simplicity, we will refer to a ruleR us-
ing direct/costwise score-utility mapping as a direct-mapping/costwise-mapping variant of R,
respectively.

Next, there are two different ways of applying each rule to a specific election in a city.

– The districtwise (D) variant which corresponds to how the cities currently organize their
elections: a separate election is run in each city district; typically there is also one addi-
tional election involving the same set of voters but concerning citywide projects (these are
projects that are potentially interesting to voters from multiple districts). The outcome for
a given city and year is obtained by adding together the outcomes of these smaller elec-
tions.

– The citywide (C) variant, a natural alternative to the current solution. Here we put all the
projects from different districts and categories in the same pool, and we kept the original
voters’ ballots. Thus, for a fixed city and year we have a single election.

The combination of direct-mapping/costwise-mapping and districtwise/citywide variants
yields four possible variants of each rule. All the studied cities currently use the costwise-
mapping districtwise variant of Utilitarian Greedy.

Our results lead to several observations that should be taken into account by election de-
signers.

1. We see that costwise-mapping variants of the rules select fewer but larger projects com-
pared to their direct-mapping counterparts.

2. The proportional methods such as the all variants of Equal Shares result in much fairer
solutions, where the different voters’ opinions are better represented; the difference is
substantial.

3. Running citywide elections instead of districtwise ones result in a significant improve-
ment in terms of the average utility as well as the number of voters whose opinions are
taken into account.

4. Among the considered completions of Equal Shares, ES-Inc seems to give the best results
with respect to fairness and comparable results to ES-UG with respect to efficiency, while
ES-Eps is the worst with respect to both criteria.

5. The additional restrictions placed for ballots (like the ones mentioned in Section 2.2)
affect the process of preparing project proposals. For example, restricting approval ballots
to voting for only one project discourage submitting small and medium projects.

6. Equal Shares is more robust to changing the ballot types than the Utilitarian Greedy rule.

To conclude the above observations, we suggest that the cities should use the costwise and
citywide variant of the ES-Inc rule. The question which type of ballots is the best is typically
seen as a trade-off between the simplicity and the expressiveness of a voting process (approval
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ballots are the simplest yet the least expressive; score ballots are the most expressive yet the
most demanding; ranking ballots are in the middle with respect to both categories). However,
the recent lab experiments by Benade et al. [2023] suggest that the majority of people do not see
the additional expressiveness provided by score ballots as an advantage; what is more, they often
subjectively claim that approval ballots are even more (!) expressive for them. Nevertheless,
our recommended rule is very robust to changing the type of ballots (on average, under score
and approval ballots approximately 80% of an outcome remains unchanged), which suggests
that the choice of a ballot type is a less important problem than the choice of a voting rule.
However, based on the fifth aforementioned observation, we discourage the cities from adding
too restrictive additional conditions on the ballots.

5.1 Basic Metrics of Fairness and Efficiency
In this section we describe several basic metrics for comparing outcomes returned by different
voting rules and present the results of our analysis. We want to measure both efficiency (the
total social welfare generated by a rule) and fairness (the level of egalitarian spread of the social
welfare among voters) of voting rules.

Average utility. It is probably the most natural metric of efficiency. We define it for each
outcome W as 1/n

∑
i∈N ui(W ).

Dominance margin. It is a metric for comparative analysis of two rules, R1 and R2, defined
as the fraction of voters who enjoy a strictly higher utility from the outcome of R1 than from the
one of R2. A related metric is the improvement margin, defined for given rules R1 and R2 as
the dominance margin of R1 over R2 minus the dominance margin of R2 over R1. Note that such
a way of comparing outcomes can be viewed as a metric balancing fairness and efficiency (a
rule may be better according to the dominance/improvement margin either because it generates
more social welfare, or because it spreads it more equally).

Exclusion ratio. This metric is defined as the fraction of voters who support none of the
selected projects (intuitively, they were excluded by the voting process).

Power inequality. This fairness metric is based on the concept recently introduced by Lackner
et al. [2021] which, informally speaking, measures the amount of spending that different voters
had an influence on [Maly et al., 2023]. The measure assumes that the supporters of a selected
project contributed to the decision on spending money on this project proportionally to their
utilities. Consequently, given an outcome W , voter i’s share is:

sharei(W ) =
∑
p∈W

ui(p)∑
j∈N uj(p)

· cost(p).
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Note that the shares of the voters sum up to the total cost of the selected projects. In an ideally
fair solution we would like all these shares to be equal (that is, equal to b/n). Hence, power
inequality is defined as a normalized ℓ1-distance between these two distribution:

1

n
·
∑
i∈N

|sharei(W )− b/n|
b/n

.

We used the aforementioned metrics to compare the outcomes of various election rules on
the data from Pabulib. In our plots we show only cities for which we have data for at least
3 years (Warsaw, Kraków, and Wrocław). The analysis of the remaining cities is publicly
available through our web application, Pabustats (http://pabulib.org/pabustats)
and it leads to similar conclusions.

5.2 The Comparison of Different Completions of Equal
Shares

We present results for each city averaged over all years, with figures showing error bars corre-
sponding to standard deviations over the years. While we consider averages, the conclusions of
our analysis also hold for each year separately. The results for separate editions can be checked
though Pabustats.

In our first set of simulations, we compare the three aforementioned variants of making
Method of Equal Shares exhaustive. We observe that the completion strategy plays a critical
role. For example, in citywide and districtwise elections, Equal Shares without completion
uses, on average, only 32% and 50% of the available funds, respectively. The ES-Inc rule after
the first step (increasing the budget) uses on average 98% and 88% , and after the second one
(completion by UG)—99.9% and 95% of the funds, respectively.

In Figures 13 and 14, we compare our metrics for the three completion strategies, within all
the four variants. These figures are quite involved, so let us provide some guidance on how to
read it. First, we have a separate plot for each of the metrics, that is, for (1) average utility, (2)
the improvement margin over ES-Inc, (3) power inequality and (4) exclusion ratio. Within each
of the plots, different shades of each color correspond to different completion types (darkest for
ES-Inc, middle for ES-U, and lightest for ES-Eps). The green and blue shades correspond to
the districtwise elections, and red and yellow shades to citywide elections. Costwise-mapping
variants correspond to green and red, whereas direct-mapping variants correspond to blue and
yellow. We conclude the following:
1. The results for exclusion ratio are the best for elections in Kraków and the worst for elections

in Wrocław. It follows from the fact that Kraków uses ranking ballots truncated to top 3
projects, by which it enforces voters to assign a nonzero score to at least 3 projects, while
Wrocław, on the other hand, enforces all the voters to approve only a single project.

2. ES-Eps gives the worst results in terms of the average utility, power inequality, exclusion
ratio, and improvement over ES-Inc.
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3. ES-U (middle shades) gives a bit higher average utility than ES-Inc (darkest shades), but also
a worse power inequality and exclusion ratio.

4. Among the direct-mapping variants (blue and yellow), the ES-U (middle shade) and ES-Inc
(darkest shade) are comparably good. Among costwise-mapping variants (green and red),
ES-Inc (darkest shade) has a large advantage, especially for improvement margins (the other
rules have negative values in almost all settings).

Based on these observations, we advise using primarily the ES-Inc completion of Equal Shares.
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Figure 13: Comparison of different completion variants for Equal Shares with respect to the (1)
average utility (for costwise-mapping variants it is presented in millions) and (2) the improve-
ment margin for all the rules compared to ES-Inc. The label "Cost" means that we are referring
to the costwise-mapping variant of the method; otherwise we are referring to its direct-mapping
variant. The symbols "D" and "C" stand for the districtwise and citywide variants, respectively.
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Figure 14: Comparison of different completion variants for Equal Shares with respect to (1) ex-
clusion ratio, (2) power inequality. The label "Cost" means that we are referring to the costwise-
mapping variant of the method; otherwise we are referring to its direct-mapping variant. The
symbols "D" and "C" stand for the districtwise and citywide variants, respectively.

5.3 The Comparison of Equal Shares and Utilitarian Greedy
From now (until the end of the chapter) let us fix ES-Inc as the default variant of Method of
Equal Shares. In this section we compare it to Utilitarian Greedy (especially to its costwise-
mapping districtwise variant).

5.3.1 Basic Metrics
Let us start by comparing the ES-Inc with Utilitarian Greedy according to the metrics presented
in Section 5.1. The results are depicted in Figure 15. In these figures, each scenario corresponds
to a color. The darker shades represent Equal Shares and the lighter ones represent Utilitarian
Greedy. Our findings can be summarized as follows:
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Figure 15: Comparison of ES-Inc and Utilitarian Greedy (UG). The presentation is analogous
to Figure 13 and Figure 14.
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1. Among direct-mapping variants of the rules (blue and yellow), the results of Method of
Equal Shares and of Utilitarian Greedy are comparable. Equal Shares selects outcomes
with slightly lower exclusion ratio as well as lower power inequality, at the cost of lower
average utility. However, these differences are relatively small.

2. For costwise-mapping variants (green and red), we see a significant difference between
the two rules. Unsurprisingly, the outcomes of Utilitarian Greedy have better average
utility, but the difference is relatively small (for example, it is the largest in Warsaw for
citywide elections, 13% ). For all other metrics, Equal Shares outperforms Utilitarian
Greedy by a large margin. For example, for citywide elections in Warsaw, the average
score utility of the outcomes of Equal Shares is 43% higher, and using Equal Shares
would result in a drop of the exclusion ratio from 16% to 6% . The improvement margin
over UG is on average, respectively, 59% and 17% .

3. We observe a significant difference between the citywide (red and yellow) and districtwise
(blue and green) variants of the rules. Citywide elections result in a much higher average
utility and much lower exclusion ratio, for Equal Shares. The large difference between
districtwise and citywide elections arises because in some districts no popular projects
are submitted, and their residents would prefer to fund citywide projects instead (recall
the example of the two projects on Modlińska Street in Warsaw 2021, from Chapter 1).

Finally, since our findings suggest to replace the current districtwise elections with citywide
ones, it is interesting to see how fairly the budgets were distributed among districts when using
the citywide variant. Let D = {D1, D2, . . . , Dt} be the set of districts, which is formally a
partition of N . Ideally, the voters from a district D ∈ D should get a share of the budget that is
proportional to the size of D.2 Now we introduce the fairness metric, capturing this intuition:

Dispersion of the budget allocation This metric captures the average relative difference be-
tween how much money the district got and how much we would expect it to get (defined
as the ℓ1 distance, similarly as in the power inequality metric). Formally:

1

|D|
·
∑
D∈D

∣∣∑
i∈D sharei(W )− |D|/n · b

∣∣
|D|/n · b

.

Table 5.1 shows average dispersion values, which are lower for Equal Shares than for Utili-
tarian Greedy.

2This assumes that the budget should be divided proportionally to the number of voters and not to the number of
residents of a district. If turnout varies between districts, the difference matters. Being proportional to the number
of voters promotes participation, incentives districts to encourage their residents to vote, and follows the "one
person, one vote" principle. If the city prefers being proportional to the number of residents, the citywide variant
of Equal Shares can be adapted by giving voters from districts with lower turnout a larger initial endowment.
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City ES-Inc, C Util. G, D Util. G, C

Częstochowa 0.23 0.28 0.39
Gdańsk 0.27 0.33 0.46
Katowice 0.19 0.26 0.51
Kraków 0.08 0.24 0.23
Warsaw 0.20 0.41 0.41
Wrocław 0.15 0.26 0.22
Zabrze 0.38 1.24 0.41

Table 5.1: Average dispersion of the budget allocation. We compare costwise-mapping variants
of ES-Inc and Utilitarian Greedy (both the districtwise and the citywide variants).

5.3.2 Budget Distribution among Categories
Cities often organize projects by topics (such as public space, environment, education) to make
browsing the list of projects easier. Warsaw, for example, categorizes projects using 10 different
tags (where projects can get multiple tags). This allows us to ask whether voter preferences
across categories are well-reflected by the spending of the rules.

We focus on Warsaw district elections (2020–23), which use approval voting. Denote by Ai

the set of projects approved by i ∈ N . For each project p, denote by tags(p) the subset of tags
assigned to p. For each tag t, we can then compute its vote share:

1

n

∑
i∈N

∑
p∈Ai:t∈tags(p)

1

|Ai| · |tags(p)|

This intuitively counts the fraction of the votes that went to projects with tag t, in a way that
each voter contributes the same amount to the vote share, and for projects with multiple tags,
splitting their contribution equally between them. Note that the vote shares of all the tags sum
to 1. For an outcome W , we can similarly define the spending share of the tag:

1

cost(W )

∑
p∈W :t∈tags(p)

cost(p)

|tags(p)|
.

We can now compute the ℓ2 distance between the vector of vote shares and the spending
shares of all the tags, to see how well they align. While it is not necessarily desirable for the
two vectors to perfectly coincide, a large distance indicates that an outcome neglects certain
categories.

We find that for 93% of districts, Utilitarian Greedy gives outcomes with a larger distance to
the vote shares than the (costwise) ES-Inc outcome, see Figure 16. In some cases, the distance is
much larger, like in the district Bielany, where in each year, Utilitarian Greedy spends much less
on education projects than suggested by the vote shares. For example, in 2020, when education
had a vote share of 33% , Utilitarian Greedy spent only 5% of the budget on these projects
(Equal Shares spent 26% ), see Figure 17.
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Figure 16: Comparison of costwise-mapping variants of ES-Inc and Utilitarian Greedy with
respect to how well the voters’ preferences across categories are reflected by the spending of
the rules. Each Warsaw district in each year 2020–23 is represented by a blue point, placed
according to the ℓ2-distance between the vote share vector and the spending shares for the two
rules. For points below the green line, Utilitarian Greedy has a higher ℓ2-distance. Points with
a particularly large imbalance are labelled.

(a) Vote share (b) Equal Shares (c) Utilitarian Greedy

Figure 17: The vote share and the spending share of different tags in district Bielany, Warsaw
2020. The picture would be similar for 2021–23.

58



5.3.3 Maps of Participatory Budgeting Elections
We provide easy-to-interpret visualisations of the outcomes of different voting rules. For elec-
tions that were carried out in Warsaw between 2020 and 2023, most of the projects (but not
all) were associated with their GPS locations. Thus, we can depict those submitted projects
that have GPS data in such a way that their relative locations correspond to their physical loca-
tions in the respective districts. We present such visualisations for Warsaw 2023.3 in Figure 18
The legend of the maps is the following: each project is represented by two glued-together
half-discs. The size of the left half is proportional to the project’s cost, whereas the size of the
right half is proportional to the total number of votes the project received. The figures compare
the outcomes of the costwise-mapping variant of ES-Inc, with the outcomes of the Utilitarian
Greedy rule. Specifically, gray projects were not selected by either of the rules, green projects
were selected by both, blue projects were selected only by Equal Shares, and red projects were
selected only by Utilitarian Greedy.

A different approach is to create a map that illustrates voters’ preferences rather than geo-
graphic locations of the projects. Here, for a given approval PB election we first compute the
Jaccard distances between all pairs of projects. Recall that for two projects, p1 and p2, their
Jaccard distance is

|N(p1)△N(p2)|
|N(p1) ∪N(p2)|

,

where N(p) denotes the set of voters who support project p (in other words, we assume
that two projects are similar if similar groups of voters voted for them). Next, based on these
distances, we create a two-dimensional embedding, using the Multidimensional Scaling Algo-
rithm MDS [Kruskal, 1964, de Leeuw, 2005] (all the distances lie between 0 and 1, but most
of them are relatively high, with very few being below 0.5—thus, we normalize the distances
by subtracting 0.5, that is, d′ = max(0, d − 0.5)). . Intuitively, we obtain a plot where the
closer two projects are, the larger is the fraction of their common supporters (however, note that
MDS is only a heuristic and, more importantly, a perfect embedding may not exist). This type
of maps for Warsaw 2023 (see Footnote 3) is depicted in Figure 19.

We observe that Equal Shares selects more diverse and more representative sets of projects
both in terms of their geographic locations and in terms of their supporters. We further ob-
serve that Utilitarian Greedy mainly selects large and expensive projects, whereas Equal Shares
selects a mixture of projects, including some large and some small ones.

3 The results for other Warsaw elections are consistent and are publicly available in [Faliszewski et al., 2023].
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Figure 18: Visualization of projects in PB elections from Warsaw 2023 using the GPS data.
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Figure 19: Visualization of projects in PB elections from Warsaw 2023 using the Jaccard dis-
tance.
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5.4 Discussion over the Types of Ballots
The results from the previous section support our recommendation for the cities that Equal
Shares (specifically, ES-Inc) in its costwise-mapping citywide variant should be used instead of
the currently used costwise-mapping districtwise Utilitarian Greedy. Let us now complete our
analysis with a short discussion over the types of ballots. One could wonder which one should
be used in practice.

Answering this question requires performing lab experiments. Recently, such research has
been done by Benade et al. [2023]. The participants of their experiments found approval ballots
superior (simpler and more expressive) to all the other types. At the same time, one of their
findings was that Method of Equal Shares is robust to changing the type of ballots (checked
on synthetic data). In this section we reinforce this conclusion by analyzing data from real PB
elections.

For each election where voters used cardinal ballots, we construct a corresponding approval
election by letting a voter approve all the projects to which she assigned a positive score. Then,
we compare the outcomes of different rules for these two elections. Let W and Wappr be the
outcomes of a given voting rule for the original and the approval elections, respectively. We
define the robustness ratio as cost(Wappr ∩W)/cost(W). Table 5.2 summarizes the results of
our analysis. We can see that the outcomes of Equal Shares change much less after switching to
approval compared to Utilitarian Greedy. For users of Equal Shares, this provides an argument
in favor of approval ballots.

City ES-Inc, C Util. G, D Util. G, C

Częstochowa 0.80 0.35 0.39
Gdańsk 0.87 0.26 0.39
Katowice 0.83 0.56 0.42
Kraków 0.78 0.52 0.41

Table 5.2: Robustness ratio for different voting rules.

Recall now from Section 2.2 that the approval ballots are typically modified so that the
maximal possible number of approved projects is limited. It is then interesting to check if we
can see from the data analysis how it affects the voting process. We believe that approval ballots
modified in a way it is done in Wrocław or Zabrze (that is, in a way that a voter can approve
only one project) lead to discourage submitting smaller and cheaper projects, in contrast to less
restricted approval ballots (for example, to Warsaw ballots, where the voters can approve up
to 15 districtwise projects and up to 10 citywide ones). In Figures 20 and 21, we illustrate the
distribution of project costs and the total numbers of votes per project for the cities collected in
Pabulib.

To sum up, our findings show that if Equal Shares is used, the problem of the choice of
the ballot type becomes less critical. Based on the experiments of Benade et al. [2023] we
recommend to use rather approval ballots, yet we advise not to restrict too much the maximal
number of projects one can approve.
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Kraków 2020-2022 Katowice 2020-2021 Gdańsk 2020 Częstochowa 2020

Warsaw 2020-2023 Wrocław 2019-2021 Zabrze 2020-2021

Figure 20: The distribution of costs per project. The histogram for each city contain aggregated
data from different years. For each PB election we normalize the costs by dividing them by the
total budget.

Kraków 2020-2022 Katowice 2020-2021 Gdańsk 2020 Częstochowa 2020

Warsaw 2020-2023 Wrocław 2019-2021 Zabrze 2020-2021

Figure 21: The distribution of the total number of approvals per project. The histograms for
each city contain aggregated data from different years. For each PB election we normalize the
number of approvals by dividing it by the number of voters in a given election.

63



Chapter 6

Method of Equal Shares for Ordinal
Preferences

In this chapter we discuss how Method of Equal Shares can be adapted for the setting where
voters have ordinal preferences, that is, voters express their preferences by ranking the projects.
Recall from Chapter 2 that in this case we assume that the voters’ preferences over outcomes
are lexicographical with respect to their rankings—-which intuitively means that the voters care
infinitely more about projects ranked higher than the ones ranked lower. We will show that in
this model Equal Shares satisfies an axiom called Inclusion Proportionality for Solid Coalitions
(IPSC) introduced by Aziz and Lee [2021], which is a recent extension of a well-established
Proportionality for Solid Coalitions (PSC) axiom for the committee election setting, introduced
by Dummett [1984]. This result is interesting, because it shows that Equal Shares is a very
flexible method—it can be reasonably defined for all the most important types of preferences
studied in the literature and satisfies strong notions of proportionality in a number of various
settings.

To adapt Equal Shares to ordinal preferences, we need to somehow cast them to cardinal
ones. We follow here two principles:

Assumption 1 If two voters i, j ∈ N have at the kth position in their rankings (k ≤ m)
projects c1 and c2 respectively, the utility of i from c1 is the same as the utility of j
from c2.1

Assumption 2 If a voter i prefers project a to project b, she gains infinitely more utility from a
than from b. This is the general intuition behind the lexicographical comparison of out-
comes.

By combining these two assumptions, we obtain the following observation:

Observation 6.1. If two voters i, j ∈ N have at the kth and k′th position in their rankings
(k < k′ ≤ m) projects c1 and c2 respectively, the utility of i from c1 is infinitely greater than
the utility of j from c2.

1An alternative reasonable assumption would be to assume that the relative comparison of utilities of i and j is
proportional to the costs of c1 and c2. We consider this alternative in Section 6.2.
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The phrase "infinitely greater" may seem vague, yet it is enough to understand it on an
intuitive level.

These two assumptions are sufficient to determine which project should be elected by Equal
Shares in a specific round and how the payments should be distributed—even though it does
not determine the exact value of its "payment-per-utility". For example, let us consider the
following voters’ preferences:

1: c1 ≻ c2 ≻ c3

2: c3 ≻ c2 ≻ c1

3: c2 ≻ c3 ≻ c1

4: c2 ≻ c3 ≻ c1

Here, we have 4 voters are we are interested in determining which project out of c1, c2, c3 should
be elected. Assume that projects c1 and c2 cost 18 dollars each and project c3 costs 24 dol-
lars. Let b = 48—consequently, every voter is initially endowed with 12 dollars. Now when
distributing payments among the voters, Assumption 1 implies that voters 2, 3, 4 should pay
equal amounts of money for project c1 and voters 3, 4 should pay equal amounts of money for
projects c1, c2 and c3. On the other hand, Observation 6.1 implies that voter 1 should pay in-
finitely more for c1 than voters 2, 3, 4. It is naturally not possible—in this case, the standard
Equal Shares mechanism allows voter 1 to pay less, that is, her whole remaining money. There-
fore, the fair distribution of payments for c1 should be the following: voter 1 pays 12 dollars,
voters 2, 3, 4 pay 2 dollars each. For project c2, we can see that voters 3, 4 actually have enough
money to afford c2 on their own (paying 9 dollars each), hence the remaining voters—having
infinitely smaller utility from c2—should not pay anything. For project c3, we can see that vot-
ers 2, 3, 4 have enough money to afford c3 on their own, and the payments, analogously to c1,
should be divided so that voter 2 pays 12 dollars and voters 3, 4 pay 6 dollars each. These
payment distributions are depicted below (in a way similar to the examples in Section 3.2).
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Here we cannot determine the exact values of "payment-per-utility" ρ for each project, yet
we can determine for which one it is the lowest. The explanation is the following: for each
project c, we should find a voter i such that (1) i pays a nonzero amount of money for c, (2)
among all the voters satisfying the previous condition, i has c at the lowest position in her
ranking (let it be k), (3) among all the voters satisfying previous two conditions, i pays the most
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for c. Note that only voters satisfying all these conditions are allowed to pay less for c than their
whole remaining endowment. In the standard Equal Shares mechanism, the payment of i for c
would be therefore equal to the maximal "payment-per-utility" multiplied by i’s utility from c.

Now consider the another project c′ (for c′, we denote the analogues of i and k by i′ and k′

respectively) such that k′ < k. From Observation 6.1, voter i′ has infinitely greater utility
from c′ than i from c, hence the maximal "payment-per-utility" is greater for c than for c′. In
such a case, c′ should be elected instead of c.

In our example, this means we should elect project c2 in the first round (the second-best
option was c3, the least one—c1). Voters 3 and 4 pay 9 dollars for c2 each. Now let us split the
payments again in the second round:
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Now we can see that voters 2, 3, 4 no longer have enough money to afford c3 on their own
and voter 1 needs to participate in paying for c3 (paying 6 dollars). Since for c1 voters 2, 3, 4
pay only 2 dollars each and their utilities from c1 are equal to the utility of voter 1 from c3 (from
Assumption 1), we can see that the "payment-per-utility" ratio is now lower for c1. Hence, c1 is
elected and the outcome {c1, c2} is returned.

The detailed pseudocode of the algorithm is presented in Algorithm 2—by posi(c) we
denote here the position of project c in the ranking of voter i. Note that the algorithm is
exhaustive—indeed, we assume here that every voter gains here a nonzero utility from every
project and is able to eventually pay for it (recall Proposition 3.6).
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Algorithm 2: Implementation of Method of Equal Shares for Ordinal Utilities
1 W ← ∅.
2 for i ∈ N do
3 bi ← b/n
4 while true do
5 for k ∈ [m] do
6 for c ∈ C \W do
7 if

∑
i∈N :posi(c)≤k bi < cost(c) then

8 p(c)←∞ (project c is not affordable by voters ordering it on at
most kth position)

9 else
10 price← cost(c)−

∑
i∈N : posi(c)<k bi

11 Let 1, . . . , t be a list of all voters i ∈ N with posi(c) = k, ordered so
that b1 ≤ · · · ≤ bt.

12 for s = 1, . . . , t do
13 p(c)← (price− (b1 + · · ·+ bs−1))/(t− s+ 1)
14 if p(c) ≤ bs then
15 break (the maximal payment among the voters ranking c at

the kth position is p(c))
16 if minc∈C\W p(c) =∞ then
17 return W
18 c← argminc∈C\Wp(c) (break ties arbitrarily)
19 W ← W ∪ {c}
20 for i ∈ N such that posi(c) < k do
21 bi ← 0
22 for i ∈ N such that posi(c) = k do
23 bi ← bi −min{bi, p(c)}

6.1 Equal Shares and Proportionality for Solid Coalitions
Now we will show that the presented algorithm provides good proportional properties in the
considered setting. For simplicity, in this section we will write X ≻i Y for a voter i ∈ N and
sets X, Y ⊆ C, to denote that for each x ∈ X , y ∈ Y , voter i prefers x to y. The formal
definition of the Proportionality for Solid Coalitions axiom for the committee election model is
the following:

Definition 6.2 (Proportionality for Solid Coalitions (PSC)). An outcome W satisfies Pro-
portionality for Solid Coalitions (PSC) if for each ℓ ∈ [b], each subset of voters S ⊆ N
with |S| ≥ ℓ · n/b, and each subset of candidates T such that T ≻i C \ T for all i ∈ S, it
holds that |W ∩ T | ≥ min(ℓ, |T |).

Intuitively, each group of voters S should be able to "control" the fraction of the committee
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that is proportional to its size. To better understand this axiom, consider the following simple
example:

Example 6.3. Consider three voters with the following preference orders over the set of candi-
dates C = {c1, c2, . . . , c100}:

1: c1 ≻ c2 ≻ c3 ≻ . . .

2: c2 ≻ c3 ≻ c1 ≻ . . .

3: c4 ≻ c5 ≻ . . .

4: c5 ≻ c4 ≻ . . .

The omitted parts of the rankings (. . .) are arbitrary. Assume b = 2. In this example PSC would
require that one candidate from {c1, c2, c3} and one candidate from {c4, c5} are elected. ⌟

We can easily see that the definition of PSC assumes lexicographic preferences over com-
mittees: indeed, we do not even need to know the missing parts of the rankings to know that
they would not affect the PSC guarantees.

The problem of extending PSC to the PB setting has been considered by [Aziz and Lee,
2021].2 The particularly interesting extension (to the best of our knowledge, the only proposed
one that is always satisfiable and possible to be found in polynomial time) is the following one:

Definition 6.4 (Inclusion Proportionality for Solid Coalitions (IPSC)). An outcome W satisfies
Inclusion Proportionality for Solid Coalitions (IPSC) if for each subset of voters S ⊆ N , each
subset of projects T ⊆ C such that T ≻i C \ T for all i ∈ S, and each project c ∈ T \W , it
holds that:

cost(W ∩ T ) + cost(c) >
|S|
n
· b.

Note that this approach is similar in spirit to our Extended Justified Representation up to
one project—in both axioms the fraction of the budget "controlled" by the group of voters can
be smaller than the fraction proportional to its size only with respect to one project.

For the committee election model, Method of Equal Shares as defined in Algorithm 2 is
an example of the class of Expanding Approvals rules [Aziz and Lee, 2020, 2021]. All such
rules satisfy PSC [Aziz and Lee, 2021], and thus Equal Shares satisfies PSC. For the general
PB model and IPSC it is also the case.

Theorem 6.5. Method of Equal Shares for ordinal preferences satisfies IPSC.

Proof. Consider an outcome W returned by Equal Shares for an election (N,C, b). Suppose
that IPSC is violated and let S ⊆ N , T ⊆ C and c ∈ T \W witness this violation. The voters
in S initially have the endowment of |S| · b/n dollars.

Since the voters initially had |S| · b/n dollars and cost(W ∩ T ) + cost(c) ≤ cost(W ∩ T ) +
cost(c) ≤ |S|/n · b, we can see that the voters had initially enough money to afford c. Now it

2The definition presented in the dissertation is a much simpler reformulation of the definition presented in [Aziz
and Lee, 2021], defined originally for non-strict voters’ rankings.
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is enough to note that no project ranked below the |T |th position by voters from S was paid
for them in any round. Indeed, in every round of the algorithm, voters from S were able to
purchase project c on their own so that no voter would pay for a project ranked below the |T |th
position. Since Equal Shares while choosing a project, minimizes its worst-case position in the
rankings of its payers, the rule prefers c to any project from C \ T that would require a voter
from S to pay for it. Since the rule stops when no project is affordable, c was purchased, a
contradiction.

One may wonder, whether satisfying IPSC is just a consequence of Equal Shares satisfying
EJR (as defined in Definition 4.10, adapted to ordinal utilities with respect to Assumptions 1
and 2). Example 6.6 below shows that this is not the case even for the committee election model
and that the two axioms are logically incomparable in this context.

Example 6.6 (PSC is logically incomparable to EJR). Consider a committee election and two
voters with the following preferences:

1: c1 ≻ c2 ≻ c3 ≻ c4

2: c4 ≻ c1 ≻ c3 ≻ c2.

Assume b = 1. Here, group {1, 2} agrees that candidate c2 is worth at least the utility derived
from the second position in a ranking. Hence, EJR requires that at least one voter would gain
this utility, which would be the case if c1, c2, or c4 was selected. On the other hand, {c3} is a
committee that satisfies PSC. Thus, PSC does not imply EJR.

Consider now three voters with the following preferences:

1: c1 ≻ c2 ≻ c3 ≻ c4

2: c2 ≻ c3 ≻ c1 ≻ c4

3: c3 ≻ c1 ≻ c2 ≻ c4.

Assume b = 2. In this example the group {1, 2} again agrees that candidate c2 is worth at least
the utility derived from the second position in a ranking. It is also the case for groups {1, 3}
and {2, 3} and candidates c1, c3, respectively. All these groups can be satisfied by electing c1,
hence the committee {c1, c4} satisfies EJR. However, PSC requires here that two candidates
from {c1, c2, c3} are elected. Thus, EJR does not imply PSC. ⌟

6.2 The Costwise Ordinal Variant of Equal Shares
In this section let us consider the alternative version of Assumption 1, mentioned at the begin-
ning of the chapter.

Assumption 1∗ If two voters i, j ∈ N have at the kth position in their rankings (k ≤ m)
projects c1 and c2 respectively, the relation between the utility of i from c1 and the utility
of j from c2 is the same as the relation between cost(c1) and cost(c2).
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In fact, the major part of the algorithm does not change after this modification. First, note
that Observation 6.1 still holds as a conclusion from Assumptions 1∗ and 2. Moreover, for
every project c ∈ C, the voters ranking it at the same position still gain the same utility from it.
Hence, the way of dividing payments for c among the voters remains unchanged. Besides, the
rule in each round still chooses the project minimizing its worst-case position in the rankings of
its payers.

Now, the only place in the algorithm where the difference appears is the choice of a project
when for several projects this worst-case position k is the same. In the original algorithm we
choose the project c minimizing the maximal payment of a voter ranking c at the kth position.
Under Assumption 1∗, we would rather choose the project c minimizing the maximal payment
of a voter ranking c at the kth position divided by cost(c) (in line 18 of Algorithm 2, there would
be c ← argminc∈C\Wp(c)/cost(c)). Note that it is an analogous difference to the one between
Equal Shares for approval-based and approval-based cost utilities (presented in Section 3.2).
Therefore, we call this variant of Equal Shares for ordinal preferences the costwise variant.

The considered change does not affect the proof of Theorem 6.5. The further exploration of
differences in axiomatic properties between the two ordinal variants of Equal Shares is left for
future research.

As we can see, Equal Shares is a flexible voting rule and it can be adapted to various settings,
satisfying the strongest proportionality notions in each of them.
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Part II

Beyond Equal Shares: Stronger Notions of
Proportionality
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Chapter 7

Full Justified Representation and the
Greedy Cohesive Rule

In Chapter 4, we discussed the EJR axiom for the PB model, and saw that in its "up-to-one"
variant it is satisfied by Method of Equal Shares.

We will now propose a strengthening of EJR, called Full Justified Representation (FJR),
which is substantially stronger even in the approval-based committee election model. We also
prove that this axiom is satisfiable, by presenting an voting rule satisfying it. This new rule,
called Greedy Cohesive Rule (GCR) provides the strongest known proportionality guarantees.
On the other hand, we will argue that, compared to Equal Shares, it is computationally more
expensive, less flexible and less natural.

Our new proportionality axiom strengthens EJR by weakening its requirement that groups
must be cohesive. Thus, the new axiom guarantees representation to groups that are only par-
tially cohesive.

Definition 7.1 (Full Justified Representation (FJR)). We say that a group of voters S is
weakly (β, T )-cohesive for β ∈ R and T ⊆ C, if

|S|
n
≥ cost(T )

b
and ui(T ) ≥ β

for every voter i ∈ S.
A rule R satisfies Full Justified Representation (FJR) if for each election E and each

weakly (β, T )-cohesive group of voters S there exists a voter i ∈ S such that ui(R(E)) ≥ β.

For a better understanding, let us first consider the above definition in the approval-based
committee election model. Then FJR boils down to the following requirement: Let S be a
group of voters, and suppose that each member of S approves at least β candidates from some
set T ⊆ C with |T | ≤ ℓ, and let |S| ≥ ℓ/b · n. Then at least one voter from S must have at
least β representatives in the committee. The difference between EJR and FJR can be seen in
Example 7.2.
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Example 7.2. Consider an approval-based committee election with b = 10 and a group S
of 30% of voters. All the members of S approve some candidate c1. Additionally, half of
group S approve a candidate c2 and the other half approve candidate c3. Now according to
EJR, at least one voter from S should have at least one representative in the elected committee
(because even though they are large enough to claim 3 candidates, they jointly approve only
one). On the other hand, according to FJR, at least one voter from S should have at least two
representatives—because all the voters from S approve some 2 candidates in the three-element
set {c1, c2, c3}, the group is weakly (2, {c1, c2, c3})-cohesive. ⌟

It is clear that in the special case of β = ℓ, we obtain Definition 4.3, hence FJR implies EJR
in the approval-based committee election model. The same implication holds in the general PB
model.

Proposition 7.3. FJR implies EJR in the general PB model.

Proof. Suppose that rule R satisfies FJR and take an (α, T )-cohesive group of voters S for
some α ∈ N, T ⊆ C. We set β = α; clearly, we have also ui(T ) ≥ β, thus S is weakly
cohesive. AsR satisfies FJR, we have that ui(R(E)) ≥ β = α, which completes the proof.

In turn, it is easy to see that FJR is implied by core-stability (cf. Definition 4.14). Figure 22
shows the logical relationships between these axioms. On the other hand, FJR is stronger than
some other relaxations of core-stability discussed by Peters and Skowron [2020].

Core FJR EJR EJR-1
Full Justified

Representation
Extended Justified

Representation
EJR up to

one project

Figure 22: Implications between the axioms considered in the dissertation.

To the best of our knowledge, no rule known before our work satisfies FJR for approval-
based committee elections, let alone for the general PB model. In particular, it is the case of
Method of Equal Shares.

Example 7.4 (Equal Shares fails FJR). Consider the following approval-based committee elec-
tion for n = 22 voters, m = 13 candidates, and where the goal is to select a committee of
size b = 11:

voters 1-3 : {c1, c2, c3, c4, c8} voters 13-15 : {c1, c2, c3, c4, c12}
voters 4-6 : {c1, c2, c3, c4, c9} voters 16-18 : {c5, c6, c7, c8, c9, c10, c11, c12}
voters 7-9 : {c1, c2, c3, c4, c10} voters 19-21 : {c5, c6, c7}
voters 10-12 : {c1, c2, c3, c4, c11} voter 22 : {c13}.

In the first 4 steps, Equal Shares chooses candidates c1, c2, c3, c4 (this happens for ρ = 1/15).
After that, each of the first 15 voters has a remaining budget of 11/22 − 4/15. In next 3 steps,
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for ρ = 1/6, candidates c5, c6, c7 are chosen: the 6 voters who support them spend all their
money (11/22 − 3 · 1/6 = 0). After that, the algorithm stops. Each of the first 15 voters has 4
candidates she approves; voters 16-18 approve 3 selected candidates. Thus, no member of the
weakly (5, {c1, c2, c3, c4, c8, c9, c10, c11, c12})-cohesive group of the first 18 voters has 5 repre-
sentatives.

⌟

The provided example works for the base version of Equal Shares, yet we conjecture that
the answer is negative for any completion variant of this rule. This is one of the questions that
we leave for the future research.

Still, it turns out that FJR can always be satisfied: we present a (somewhat artificial) rule
satisfying this strong notion of proportionality.1

Definition 7.5 (Greedy Cohesive Rule (GCR)). The Greedy Cohesive Rule (GCR) is defined
sequentially as follows: we start with an empty outcome W = ∅ and label all voters as active.
At each step, we search for a value β > 0, a set of voters S ⊆ N who are all active, and a
set of candidates T ⊆ C \W such that S is weakly (β, T )-cohesive. If such values of β, S,
and T do not exist, then we stop and return W . Otherwise, we pick values of β, S, and T that
maximize β, breaking ties in favor of smaller cost(T ).2 We add all the candidates from T to W ,
and then label all voters in S as inactive.

Let us first check that the Greedy Cohesive Rule always selects an outcome that does not
exceed the budget limit. Indeed, whenever the algorithm adds some set T to W , then by def-
inition of weakly cohesive groups, we have |S|/n ≥ cost(W )/b, and hence the algorithm labels at
least cost(W )/b · n voters as inactive after this step. Thus, if GCR selects an outcome with total
cost cost(W ), then it must have inactivated at least cost(W )/b · n voters during its execution.
Because there are n voters, we have cost(W )/b · n ≤ n, and hence cost(W ) ≤ b.

In Example 7.4, GCR explicitly finds in the first step the weakly (5, T )-cohesive group
of the first 18 voters where T = {c1, c2, c3, c4, c8, c9, c10, c11, c12} and elects outcome T . After
that, the rule marks these voters as inactive and, since there are no more weakly cohesive groups
among active voters, terminates. As we can see, Greedy Cohesive Rule is designed specifically
to satisfy FJR.

Theorem 7.6. The Greedy Cohesive Rule satisfies FJR.

Proof. Assume for a contradiction that there exists a weakly (β, T )-cohesive group S which
witnesses that FJR is not satisfied by the outcome selected by GCR. Consider the voter i ∈ S
who was first labeled inactive by GCR, and the outcome W right after that step (since S is
weakly cohesive, such an i always exists). Since i ∈ S and S witnesses the FJR failure, we

1A similar rule is used by Aziz and Lee [2021] to prove that there always exists an outcome satisfying their
axiom BPJR-L for approval-based elections. That axiom is weaker than FJR even when applied to a utility profile
where ui(c) = cost(c) whenever i approves c, and ui(c) = 0 otherwise.

2This way of breaking ties matters in Section 7.1 (to show that GCR can be extended to a priceable outcome),
but it does not matter how we break ties for the proof of Theorem 7.6 (to show that GCR satisfies FJR).
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have ui(W ) < β. We know that i was inactivated as a member of some weakly (β′, T ′)-cohesive
group S ′. Just before S ′ was labeled inactive, all of the members of S were active. Thus, we
have β′ ≥ β, as GCR maximizes this value. However, since T ′ ⊆ W , we have

β′ ≤ ui(T
′) ≤ ui(W ) < β,

a contradiction to β′ ≥ β. Hence, such a group S does not exist.

What is particularly interesting, GCR provides proportionality guarantees also for much
stronger model than the one considered in the dissertation.

Observation 7.7 (GCR and FJR do not require additivity). In this dissertation, we have as-
sumed additive utility functions throughout. But the definitions of FJR and of GCR make sense
for any utility functions ui : 2C → R≥0 over subsets of C that are monotone in the sense
that ui(T1) ≥ ui(T2) whenever T1 ⊇ T2. Monotone utility functions allow us to encode, for
example, complementarities and substitutes. The proof of Theorem 7.6 only used monotonicity,
and hence GCR satisfies FJR for all monotone utility functions. In contrast, the definition of
EJR relies on additivity. ⌟

7.1 Priceability of the Greedy Cohesive Rule
GCR satisfies neither priceability (Definition 4.18) nor exhaustiveness (Definition 3.2). How-
ever, we will prove that an outcome elected by this rule can always be completed to a priceable
one; this suggests that GCR never elects outcomes that are "too unbalanced". In the proof
of Theorem 7.10 we describe precisely how such a completion can be implemented. Using a
somewhat different completion scheme, we can complete GCR to an exhaustive outcome. This
way we obtain an outcome that is both exhaustive and also close to being priceable.

We start by proving two useful lemmas, which establish a kind of "Hall condition" for
priceability which may of independent interest.

Lemma 7.8. Let S be a (β, T )-cohesive group which is selected in some step of GCR. For every
subset A ⊆ T , the size of the set of voters S ′ := {i ∈ S : ui(A) > 0} is at least cost(A) · n/b.

Proof. The statement is trivial for cost(A) = 0, so assume that cost(A) > 0. Assume for
a contradiction that the set S ′ ⊆ S defined above has size |S ′| < cost(A) · n/b. Then the
group S \ S ′ together with the set T \ A is (β, T \ A)-cohesive because

|S \ S ′| > |S| − cost(A) · n
b
≥ cost(T ) · n

b
− cost(A) · n

b
= cost(T \ A) · n

b
.

Further, as cost(A) > 0, we have cost(T \ A) < cost(T ). Thus, GCR would select S \ S ′

instead of S, a contradiction.

Lemma 7.9. For every outcome W elected by GCR, there always exists a price system p =
(b/n,W, {pi}i∈N), possibly not satisfying (P).
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Proof. Consider a single step of GCR and let S be a (β, T )-cohesive group considered in that
step. We will prove that there exists a price system in which voters from S pay cost(c) dollars
for each candidate c ∈ T . By combining these price systems for all the (pairwise disjoint)
groups S selected by GCR, we obtain a price system for the outcome of GCR.

Without loss of generality, we assume that b/n is an integer and that cost(c) is an integer for
all c ∈ C (we can just appropriately scale up all costs and the budget, because we assumed that
the budget and the costs are integers).

We now imagine that each candidate c ∈ T is split into cost(c) many pieces, each with
cost 1. Let AT be the set of all pieces. We also imagine that each voter i ∈ S has b/n many
coins, each worth 1, and let AS be the set of all coins. Note that one coin can pay for one piece.

Consider the bipartite graph G = (AS + AT , E), where there is an edge between a coin
belonging to voter i ∈ S and a piece of a candidate c ∈ T if and only if ui(c) > 0.

Now, consider any subset of pieces A ⊆ AT , and let us assess the size of the neighbor-
hood NG(A) ⊆ AS . Let C(A) denote the set of candidates who have at least one piece in A.
Then NG(A) consists of all the coins of those voters who assign a positive utility to some can-
didate from C(A). By Lemma 7.8 there are at least cost(C(A)) · n/b such voters, each of whom
have b/n many coins. Thus

|NG(A)| ≥ cost(C(A)) · n
b
· b
n
= cost(C(A)) ≥ |A|.

Hence, by Hall’s theorem, there is a one-to-one mapping between coins and pieces. This
allows us to construct payment functions as follows: For every voter i ∈ S and candidate c ∈ T ,
if exactly q coins of i are mapped to some parts of c, then pi(c) = q. It is straightforward to
check that such a payment function satisfies conditions for a price system for initial endowment
equal to b/n and supported outcome W , which completes the proof.

Finally, we can state the main result of this section.

Theorem 7.10. Every outcome W elected by GCR can be completed to a priceable outcome.

Proof. From Lemma 7.9, we know that there exists a price system p = (b/n,W, {p}i∈N), pos-
sibly not satisfying (P). Now, to complete W to a priceable outcome W ′ ⊇ W , it is enough
to run Equal Shares for this election with the initial elected outcome set to W and the initial
endowment of each voter i ∈ N set to b/n−

∑
c∈W pi(c).

7.2 Drawbacks of the Greedy Cohesive Rule
Since Greedy Cohesive Rule with a proper completion is priceable and, contrary to Equal
Shares, satisfies FJR, we may conclude that GCR is a better voting rule. However, the fact
that GCR is custom-engineered to satisfy FJR, makes it deficient in other dimensions. In this
section we consider a few drawbacks of this rule compared to Equal Shares.
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7.2.1 Inefficiency on (Nearly) Laminar Profiles
We begin by discussing a property that Peters and Skowron [2020] call laminar proportionality.
The axiom is defined for the case of approval-based committee election model.

This property identifies a family of well-behaved preference profiles and specifies the out-
come on those profiles. Equal Shares satisfies it; Example 7.11 shows that GCR does not.

Example 7.11 (GCR fails laminar proportionality). Let N = {1, 2, 3, 4} and b = 8, and intro-
duce the candidate sets X = {c1, . . . , c4}, Y = {c5, . . . , c10}, and Z = {c11, c12}. The first
three voters approve X ∪ Y , and the fourth one approves X ∪ Z. Two copies of the profile are
depicted below. The candidates are represented by boxes; each candidate is approved by the
voters who are below the corresponding box.

voters:
utilities:

1 2 3 4
7 7 7 5

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

1 2 3 4
6 6 6 2

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

In this election, laminar proportionality would require that the voting rule selects all the
candidates from X since they are approved by everyone. After electing the candidates in X , four
seats are left to fill. Since the group {1, 2, 3} the three times as large as the group {4}, laminar
proportionality requires that we elect three candidates from Y and one candidate from Z. Thus,
the committee indicated by the green boxes on the left-hand figure is laminar proportional.

On the other hand, in the first step GCR can choose the weakly (6, Y )-cohesive
group {1, 2, 3} and in the second step it can select the weakly (2, Z)-cohesive group {4}. This
results in the blue committee depicted in the right-hand figure; this committee fails laminar
proportionality. ⌟

As we can see, GCR on laminar profiles can be severly inefficient—instead of electing
an outcome providing utility 7 for the first three voters and utility 5 for the last one, it elects
an outcome providing them utility 6 and 2 respectively. However, this example is not fully
satisfactory, as it depends on tie-breaking. For example, in the first step we could choose the
weakly (6, {c2, c3, c4, c5, c6})-cohesive group containing the first three voters, and in the second
step the weakly (2, {c1, c11})-cohesive group containing the last voter. An open question is
whether GCR can always elect a committee satisfying laminar proportionality (among others).
However, the following example shows that for some "nearly laminar" elections, GCR does not
match the general intuition standing behind this axiom.
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Example 7.12. Modify the election described in Example 7.11 in the following way: we have
now 4000 voters. Voter 1 approves only candidates from Y , voters 2 to 3000 approve X ∪ Y ,
voters 3001 to 3999 approve X ∪ Z and voter 4000 approves Z.

voters: 1 2− 3000 3001− 3999 4000

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

This election is not laminar (because of the two voters not approving X), but it is close to being
laminar and it is reasonable to expect that the elected committee should be the same as the green
one from Example 7.11. Equal Shares uniquely elects that committee. On the other hand, GCR
selects first the weakly (6, Y )-cohesive group containing the first 3000 voters and in the second
step the weakly (2, Z)-cohesive group containing the last 1000 voters. After that the algorithm
stops, electing committee Y ∪Z, as depicted above. Note that in this case, the choice of weakly
cohesive groups is unique. ⌟

Examples 7.11 and 7.12 do not rule out the existence of an FJR rule that is also laminar
proportional; the existence of a natural example of such a rule is an interesting open problem.

7.2.2 Unproportionality for Ordinal Preferences
Let us now adapt GCR to ordinal preferences. Similarly to Method of Equal Shares (recall
Chapter 6), the idea is to convert rankings to utilities. In case of GCR, to force the voters to
compare outcomes lexixographically, it is sufficient to assume that the utilities are exponentially
decreasing with the positions: for each i ∈ N and c ∈ C we set ui(c) = m−posi(c). Then, for
each c we have that ui(c) >

∑
c′≺ic

ui(c
′), and so the utility a voter assigns to a project in

position p is higher than the utility that it would assign to any outcome all of whose members
are ranked below p.

This is sufficient, because in GCR utilities are only used to compare sets of candidates in
order of preference. For Equal Shares, we needed to use infinite utilities because these values
were also used to decide how much each voter pays.

Now we will show that GCR in the model of ordinal preferences fails Proportionality for
Solid Coalitions (Definition 6.2) for the model of committee elections (which implies it fails
IPSC for the general PB model).
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Example 7.13. Consider the following preference profile:

1: c1 ≻ c7 ≻ c8 ≻ c6 ≻ c4 ≻ c5 ≻ c2 ≻ c3 ≻ c9 ≻ c10 ≻ c11 ≻ c12

2: c1 ≻ c7 ≻ c8 ≻ c6 ≻ c4 ≻ c5 ≻ c2 ≻ c3 ≻ c9 ≻ c10 ≻ c11 ≻ c12

3: c1 ≻ c2 ≻ c3 ≻ c6 ≻ c4 ≻ c5 ≻ c7 ≻ c8 ≻ c9 ≻ c10 ≻ c11 ≻ c12

4: c1 ≻ c2 ≻ c3 ≻ c6 ≻ c4 ≻ c5 ≻ c7 ≻ c8 ≻ c9 ≻ c10 ≻ c11 ≻ c12

5: c1 ≻ c2 ≻ c3 ≻ c6 ≻ c4 ≻ c5 ≻ c7 ≻ c8 ≻ c9 ≻ c10 ≻ c11 ≻ c12

6: c1 ≻ c2 ≻ c3 ≻ c6 ≻ c4 ≻ c5 ≻ c7 ≻ c8 ≻ c9 ≻ c10 ≻ c11 ≻ c12

7: c2 ≻ c3 ≻ c1 ≻ c7 ≻ c8 ≻ c4 ≻ c5 ≻ c6 ≻ c9 ≻ c10 ≻ c11 ≻ c12

8: c3 ≻ c2 ≻ c1 ≻ c7 ≻ c8 ≻ c4 ≻ c5 ≻ c6 ≻ c9 ≻ c10 ≻ c11 ≻ c12

9: c4 ≻ c5 ≻ c9 ≻ c7 ≻ c8 ≻ c1 ≻ c2 ≻ c3 ≻ c6 ≻ c10 ≻ c11 ≻ c12

10: c5 ≻ c4 ≻ c9 ≻ c7 ≻ c8 ≻ c1 ≻ c2 ≻ c3 ≻ c6 ≻ c10 ≻ c11 ≻ c12

11: c10 ≻ c11 ≻ c12 ≻ c7 ≻ c8 ≻ c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5 ≻ c6 ≻ c9

12: c11 ≻ c10 ≻ c12 ≻ c7 ≻ c8 ≻ c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5 ≻ c6 ≻ c9.

Assume b = 4. Here, GCR will first pick S = {1, . . . , 6} as a weakly cohesive group, with
the corresponding set of candidates T = {c1, c6}. Indeed, if T consisted of 3 candidates, then S
would need to have at least 9 voters. However, any 9 voters rank at least 4 different candidates
at the top position, thus at least one of them would have a lower satisfaction than the voters
from S have from T . By the same argument, T cannot consist of 4 candidates. If T consisted
of 2 candidates but S included one voter from 7, . . . , 12, then the satisfaction of voter 1 or 2
would also be lower. Indeed, these two voters rank c2, c3, c4, c5, c10, and c11 (that is candidates
that appear in the top positions) below c6.

Hence, GCR picks c1 and c6, and labels the first 6 voters as inactive. In the second step, the
rule picks c7 and c8. This is because each other candidate appears at most twice before c7 and c8
in the remaining voters’ rankings. Thus, the rule picks c1, c6, c7 and c8.

On the other hand, by looking at voters 3, . . . , 8 we observe that PSC requires that two
candidates from c1, c2, c3 should be selected. ⌟
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Chapter 8

The Core under Restricted Domains

In this chapter we focus on the proportionality in the committee election model, specifically
on notion of the core, first defined in Definition 4.14. Let us recall this definition in a slightly
adapted way:

Definition 8.1 (The Core). For a committee election E = (N,C, b), a committee W is core-
stable if for every S ⊆ N and T ⊆ C with

|S|
n
≥ cost(T )

b

there exists a voter i ∈ S who weakly prefers W to T . The set of all core-stable committees is
called the core of E.

Formulated in this way, this definition applies to all the types of voters’ preferences consid-
ered in the dissertation, in particular to ordinal and approval-based ones. From now, we focus
on these two types only. The main question is the following: is core-stability always satisfiable
in these settings? For general cardinal utilities, the answer was negative, as we could see in
Example 4.15. The same answer holds for ordinal preferences:

Example 8.2 (The core may be empty for ordinal preferences).1 Consider a committee election
with 6 voters and 6 candidates. Voters’ preferences are the following:

1: c1 ≻ c2 ≻ c3 ≻ . . . 4: c4 ≻ c5 ≻ c6 ≻ . . .

2: c3 ≻ c1 ≻ c2 ≻ . . . 5: c6 ≻ c4 ≻ c5 ≻ . . .

3: c2 ≻ c3 ≻ c1 ≻ . . . 6: c5 ≻ c6 ≻ c4 ≻ . . .

1This example is a simplified version of the one from [Aziz et al., 2017b]. In this paper, the authors implicitly
prove that the core may be empty for ordinal preferences, since the notion of local stability they consider is very
closely related to core-stability (see the discussion in Section 8.5.1).
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Fix b = 3. Now let us prove that at least two candidates out of {c1, c2, c3} need to be elected.
Indeed, suppose that only one candidate is elected. Without loss of generality (the election
is symmetrical) let it be c1. Then voters 2 and 3, forming together a group of n/b voters, and
candidate c3 witness the violation of core-stability. Analogously, we can prove that at least two
candidates out of {c4, c5, c6} need to be elected. This is a contradiction, since we have only
place for 3 candidates in the committee. ⌟

For approval-based elections, the question whether core-stability is satisfiable, is one of the
major open problems in computational social choice. Given the property is so demanding, so
far the literature focused on its relaxed versions—either the weaker properties which we have
analyzed in previous chapters, or the approximate [Jiang et al., 2020, Peters and Skowron, 2020]
and the randomized [Cheng et al., 2019] variants of the core.

In this chapter we explore a different, yet related approach. Our point is that before we look
at how a voting rule works in the general case, at the very minimum we shall ensure that it
behaves well on well-structured preferences. Thus, the main question that we state is whether
core-stability can be satisfied for certain natural restricted domains of voters’ preferences, and
what is the computational complexity of finding committees that are core-stable, given elections
where the voters’ preferences come from restricted domains. The idea to restrict the scope only
to elections in which the preferences are somehow well-structured is not new [Elkind et al.,
2017], yet to the best of our knowledge it has never been considered in the context of the core.

Our contribution is the following: first, we prove a number of structural theorems that de-
scribe existing domain restrictions. In particular, our results give a more intuitive explanation
of the class of top-monotonic preferences. The original definition of this class is somewhat
cumbersome. We show two independent conditions that provide alternative characterizations of
top-monotonic preferences provided the voters’ preference rankings have no ties.

We also introduce two new domain restrictions which are natural, and which provide suf-
ficient conditions for the existence of core-stable rules. One of our new classes generalizes
voter-interval and candidate-interval domains [Elkind and Lackner, 2015], and the other class
is a weakening of the domain of top-monotonic preferences; yet our class still includes single-
peaked [Black, 1948] and single-crossing preferences [Mirrlees, 1971, Roberts, 1977].

Second, we prove the existence of core-stable rules under the assumption that the voters’
preferences come from certain restricted domains, in particular from domains of voter-interval,
candidate-interval, single-peaked, and single-crossing preferences. Interestingly, we show a
single algorithm that is core-stable for all four aforementioned domains. At the same time, we
show that if we restrict our attention to top-monotonic elections no core-stable rule exists.

8.1 Restricted domains
A voting rule specifies an outcome of an election independently of how the voters’ preferences
look like. Similarly, core-stability puts certain structural requirements on the selected commit-
tees that should be satisfied in every possible election. However, the space of all elections is
reach and it might be too demanding to expect a voting rule to satisfy a strong property in each

81



possible case. For example, this is the case for the core: there are elections with strict rankings
where no committee belongs to the core [Fain et al., 2018, Cheng et al., 2019]; the question
whether core-stability is satisfiable assuming approval preferences is still open. Instead, what
is often desired is that a voting rule should satisfy strong notions of proportionality when the
voters’ preferences are in some sense logically consistent. This motivates focusing primarily
on elections where the voters’ preferences are well-structured, or—in other words—come from
certain restricted domains.

In this section we describe a few known and introduce one new preference domain. We show
that the commonly known voting rules are not core-stable even for the most restricted preference
domains. We also provide alternative conditions characterizing some of the considered domains.
These results will help us in our further analysis of voting methods, but are also interesting on
their own.

8.1.1 Ordinal preferences
For ordinal preferences we start by recalling the definitions of the following two known prefer-
ence classes.

Definition 8.3 (Single-crossing preferences). Given an election E = (N,C, b), we say that E
has single-crossing preferences if there exists a linear order = over voters such that for each
voters x = y = z and candidates a, b ∈ C such that a ≻y b we have that b ≻x a =⇒ a ≻z b.

Intuitively, we say that preferences are single-crossing if the voters can be ordered in such
a way that for each pair of candidates, a, b ∈ C, the relative order between a and b changes at
most once while we move along the voters. For the definition of single-peaked preferences, let
us denote by topi the top-preferred option of voter i ∈ N .

Definition 8.4 (Single-peaked preferences). Given an election E = (N,C, b), we say that E
has single-peaked preferences if there exists a linear order = over candidates such that for each
voter i ∈ N and candidates a = b = c we have that topi = a =⇒ b ≻i c and topi = c =⇒
b ≻i a.

Definition 8.5 (1D-Euclidean preferences). Given an election E = (N,C, b), we say that E has
1D-Euclidean preferences if there exists a 1D-Euclidean metric space in which both voters and
candidates are located, such that each voter i ∈ N prefers a candidate a to a candidate b if and
only if a is closer to i than b.

Every 1D-Euclidean election is both single-peaked and single-crossing.
We will now present the definition of the top monotonic domain [Barberà and Moreno,

2011], generalizing both the single-peaked and single-crossing domains. This domain is defined
assuming the voters submit their preferences as weak orders {≿i}i∈N—in exception, note that
a voter i ∈ N may here have a few top-preferred candidates. We call all candidates that are
ranked top by at least one voter top candidates.
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Definition 8.6 (Top monotonicity (TM)). 2 Given an election E = (N,C, b), we say that E
has top monotonic preferences if there exists a linear order = over candidates such that the two
following conditions hold:

• for each candidates a, b, c and voters i, j such that a is top-preferred by i and b is top-
preferred by j, it holds that:

(a = b = c or c = b = a) =⇒ b ≿i c if c is top-preferred by both i and j

b ≻i c otherwise

• the same implication holds also for each top candidates a, b, c and voters i, j such that a ≿i

b, c and b ≿j a, c.

The definition of top-monotonic preferences is complex and somewhat counterintuitive. We
will first show that for strict ordinal preferences this definition can be equivalently characterized
by two much simpler and more intuitive conditions.

Definition 8.7 (Single-top-peaked (STP) preferences). Given an election E = (N,C, b), we
say that E has single-top-peaked preferences if there exists a linear order = over candidates
such that for each candidates a = b = c such that b is a top candidate, and a voter i it holds
that topi = a =⇒ b ≻i c and topi = c =⇒ b ≻i a.

Proposition 8.8. In the strict model, single-top-peakedness is equivalent to top-monotonicity.

Proof. Observe that the first condition in the definition of TM implies STP. Now, we will show
the reverse implication. Consider an STP election. We will show that it satisfies the two condi-
tions specified in Definition 8.6.

Note that in the strict model if the premise of the first condition is satisfied, then topi = a
and topj = b and hence c is not top-ranked by neither i nor j. Hence, the first condition follows
from the condition for STP.

Consider now the second condition. If a ≿i b, c and b ≿j a, c, then in the strict model it
holds that a ≻i b, c and b ≻j a, c. Let us consider two cases: first assume that a = b = c. We
know that topi = {d} for some d ∈ C \ {b, c}. If d = b, then b ≻i c follows from the definition
of STC (for voter i and candidates d, b, c). Suppose now that b = d. But then from the definition
of STP (for voter i and candidates a, b, d) we obtain that b ≻i a, a contradiction. The reasoning
for the case when c = b = a is analogous.

It is clear that the definition of STP is closely connected to the definition of single-peaked
preferences (only the condition is partially weakened to the candidates that are ranked top by
some voter). One could also consider the analogous weakening for single-crossing preferences.

Definition 8.9 (Single-top-crossing (STC) preferences). Given an election E = (N,C, b), we
say that E has single-top-crossing preferences if there exists a linear order = over voters such
that for each voters x = y = z and a candidate a ∈ C, we have that a ≻x topy =⇒ topy ≻z a.

2This definition presented here is a slightly adapted, yet equivalent version of the one in [Barberà and Moreno,
2011].
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Although the definitions of STC and STP look different, they are in fact equivalent.

Proposition 8.10. In the strict model, single-top-peakedness is equivalent to single-top-
crossingness.

Proof. Consider an STC election E and a linear order = over voters given by the definition of
STC. We say that i preceds j if j = i. We construct the linear order over candidates as follows:

1. Consider some a, b ∈ C such that a is the top preference for some voter i ∈ N . From the
definition of STC, we know that voters preferring b to a can all either succeed or precede i.
If they succeed i, then we add constraint b = a, otherwise we add constraint a = b. If
there are no voters prefering b to a, we add no constraint. We repeat this step for each
pairs a, b ∈ C.

2. Finally, if after the previous step some pairs are still uncomparable, we complete the order
in any transitive way.

We will show that the constraints placed during the first step of the procedure are transitive.
Indeed, consider (for the sake of contradiction) three candidates a, b, c such that the procedure
placed constraints a = b, b = c and c = a. Hence, we know that at least two out of these
three candidates are top candidates. Assume without the loss of generality that a and b are
top candidates. Let ia, ib be voters ranking top respectively a and b (naturally, ia = ib). We
know that all the voters preceding ia prefer a to c and all the voters preceding ib prefer c to b.
There exists at least one voter i preferring c to b (as otherwise constraint b = c would not
be added) and ib = i. By transitivity of the preference relation, we know that i prefers a
over b. Consequently, ia, ib and i together with candidate a witness STC violation. The obtained
contradiction shows that the order = is indeed transitive.

We will now prove that such linear order = over candidates satisfies the conditions of STP.
Indeed, consider any three candidates a = b = c such that b is a top candidate and a voter i ∈ N .
Let topi = {a}. As b is a top candidate, there exists a voter j such that topj = {b}. As a = b,
it holds that i = j. Then if we had that c ≻i b, our procedure would place constraint c = b, a
contradiction. Hence b ≻i c. The proof for the case topi = {c} is analogous.

Now we will prove the reverse implication. Let E be an STP election with a linear order =
over the candidates. Consider the following linear order = over the voters: for each i, j ∈ N
we have that if topi = topj then i = j. Now consider three voters x, y, z and a candidate a such
that a ≻x topy. Suppose that a = topy. Then from the properties of top monotonocity and the
fact that topy = topz, we have that z has preference ranking topz ≻z topy ≻z a. Suppose now
that topy = a. But since topx = topy = a, the fact that a ≻x topy leads to the contradiction
with the definition of top monotonicity, which completes the proof.

Recall that single-crossingness implies single-peakedness for narcissist domains, that is,
under the assumption that each candidate is ranked top at least once [Elkind et al., 2014]. Since
for narcissist domains a single peaked profile is also single-top-peaked, we get a related result:
that single-peakedness is equivalent to single-top-crossingness assuming narcissist preferences.
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The class of top monotonic preferences (TM) puts a focus on the top positions in the voters’
preference rankings. For example, an election in which the voters unanimously rank a single
candidate as their most preferred choice is top-monotonic, independently of how the other can-
didates are ranked. This suggests that TM offers a combinatorial structure that might be useful
in the analysis of single-winner elections, but which might not help to reason about committees.
Indeed, below we define a new class which is a natural strengthening of TM. In Section 8.4 we
show that the core-stable committees always exist for elections belonging to our newly defined
class, and we show that this is not the case for the original class of TM.

Definition 8.11 (Recursive single-top-crossing (r-STC) preferences). Given an election E =
(N,C, b), we say that E has recursive single-top-crossing preferences if every subelection of E
obtained by removing some candidates from E is STC.

Although r-STC is stricter than STC, it still contains both single-peaked and single-crossing
preferences. This follows from the fact that both single peaked and single-crossing prefer-
ences are top monotonic [Barberà and Moreno, 2011], and that single-peakedness and single-
crossingness is preserved under the operation of removing candidates from the election.

8.1.2 Approval-based preferences
In the approval model we first recall the definitions of two classic domain restrictions, the voter-
interval and the candidate-interval models [Elkind and Lackner, 2015].

Definition 8.12 (Voter-interval (VI) preferences). Given an election E = (N,C, b), we say
that E has voter-interval preferences if there exists a linear order = over N such that for all
voters i, j, k ∈ N and for each candidate c ∈ Ai ∩ Ak, we have that i = j = k =⇒ c ∈ Aj .
Intuitively, each candidate is approved by a consistent interval of voters.

Definition 8.13 (Candidate-interval (CI) preferences). Given an election E = (N,C, b), we say
that E has candidate-interval preferences if there exists a linear order = over C such that for
each voter i ∈ N and all candidates a, c ∈ Ai, b ∈ C we have that a = b = c =⇒ b ∈ Ai.
Intuitively, each voter approves a consistent interval of candidates.

Below we introduce a new class that generalizes both CI and VI domains. In Section 8.4.2
we will prove that core-stable committees always exist if preferences come from our new re-
stricted domain.

Definition 8.14 (Linearly consistent (LC) preferences). Given an election E = (N,C, b), we
say that E has linearly consistent preferences, if there exists a linear order = over N ∪ C such
that for each voters i, j ∈ N (i = j) and candidates a, b ∈ C (a = b), if b ∈ Ai and a ∈ Aj ,
then a ∈ Ai (as depicted in Figure 23).

Proposition 8.15. Each VI election is LC. Each CI election is LC.
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Figure 23: An illustration of the definition of linearly consistent preferences.

Proof. The case of voter-interval preferences. Let = be a linear order over N that witnesses
that preferences are voter-interval. Let us sort N by this order. For each candidate c, by firstc
we denote min{i ∈ N : c ∈ Ai}. Let us now associate each candidate c to firstc (breaking the
tie between c and firstc arbitrarily). If two candidates a, b are associated to the same point, we
also break the tie between them arbitrarily. In such a way we obtained an order = over N ∪ C.
For simplicity, for each x, y ∈ N ∪ C by x ⊒ y we denote "x = y or x = y".

Consider two voters, i and j, with i = j, and two candidates, a and b, with a = b. As-
sume i approves b and j approves a. We will prove that i approves a. Since a = b, by our
definition firsta ⊒ firstb. Since i approves b, firstb ⊒ i, and so firsta ⊒ i. If i = firsta,
then i approves a. Otherwise, firsta = i. Consequently, firsta, i, and j are three voters, such
that firsta = i = j. Since the preferences are voter-interval we infer that i approves a.

The case of candidate-interval preferences. Let = be a linear order on C witnessing the
candidate-interval property. Let us sort C by this order. We associate each voter i ∈ N
with (minAi), again breaking all the ties arbitrarily. Consider two voters, i and j with i = j,
and two candidates a and b, with a = b. Further, assume that i approves b and j approves a.
Since i = j, we get that (minAi) ⊒ (minAj), and since j approves a, we have (minAj) ⊒ a.
Consequently, (minAi) ⊒ a. If (minAi) = a, then i approves a. Otherwise, (minAi), a and b
are three candidates, such that (minAi) = a = b. Given that preferences are candidate-interval,
and that i approves b, we get that i approves a.

8.2 The Analysis of Known Voting Rules
To the best of our knowledge, none of the known voting rules is core-stable, even under the
more restricted domains than the ones considered in our work. For ordinal preferences, we
show that it is the case for 1D-Euclidean elections, that is, elections where both voters and
candidates can be placed on the line and voters prefer closer candidates to the further ones. This
class is known to be more restrictive class than the intersection of single-peaked and single-
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crossing elections [Elkind et al., 2020]. First, we show this for the ordinal variant of Equal
Shares presented in Chapter 6.

Example 8.16 (Equal Shares for ordinal preferences fails core-stability). Let b = 2. Voters’
preferences are the following:

1: c ≻ b ≻ a ≻ d ≻ e ≻ f ≻ g ≻ h

2: e ≻ d ≻ c ≻ b ≻ a ≻ f ≻ g ≻ h

3: f ≻ e ≻ g ≻ h ≻ d ≻ c ≻ b ≻ a

4: h ≻ g ≻ f ≻ e ≻ d ≻ c ≻ b ≻ a

This election is 1D-Euclidean as presented in Figure 24.
Here in the first round nothing is selected (no project can be afforded if only top-ranked

choices are taken into account). In the second round, the rule selects project e, afforded by
voters 2 and 3. After that, these two voters lose all their money. The next round in which
anything is purchased, is the 5th round, in which candidate d is bought by 1 and 4.

As a result, the committee {e, d} is elected by Equal Shares, but group S = {3, 4} and T =
{f} witness the violation of core-stability. ⌟

2 1 2 2 1 4 3 2 1

a, b 1 c d 2 e 3 f g, h 4

Figure 24: An illustration of Example 8.16. White and black points mean the positions of
respectively the voters and the candidates.

The same example also works for the ordinal version of Greedy Cohesive Rule, presented
in Section 7.2.2—note that there are no weakly cohesive groups of voters, hence GCR elects
nothing and, for example, it can be further completed with Equal Shares (as proposed in The-
orem 7.10) so that the core is violated. Next, let us consider two other archetypal proportional
rules, the Monroe rule and STV.

Definition 8.17 (The Monroe Rule). Consider an election E with ordinal preferences and as-
sume that n/b is integral. For a committee T ⊆ C, a balanced matching is a collection of
subsets of voters {Nc}c∈T such that for every c ∈ T , |Nc| = n/b. The value of a matching is
the sum

∑
c∈T

∑
i∈Nc

posi({c}). The matching {Nc}c∈T is minimal, if it has the minimal value
among all matchings for T . The Monroe Rule returns the committee W minimizing the value
of the minimal balanced matching.

Definition 8.18 (Single Transferable Vote (STV)). Consider an election E with ordinal prefer-
ences. STV proceeds sequentially: at each round we elect a candidate that is ranked top by at
least n/b+1 + 1 voters and remove any n/b+1 + 1 of these voters from the election. If there are
no such candidates, we remove from the election a candidate ranked top by the least number of
voters.
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Both the Monroe Rule and STV are not core-stable even for 1D-Euclidean elections, as
shown in Example 8.19 and Example 8.20, respectively.

Example 8.19 (The Monroe Rule fails core-stability). Let b = 2. Voters’ preferences are the
following:

1: b ≻ a ≻ c ≻ d ≻ e

2: c ≻ b ≻ d ≻ a ≻ e

3: c ≻ d ≻ b ≻ e ≻ a

4: d ≻ e ≻ c ≻ b ≻ a

This election is 1D-Euclidean as presented in Figure 25.

2 1 2 1 1 2 1 2

a 1 b 2 c 3 d 4 e

Figure 25: An illustration of Example 8.19. White and black points mean the positions of
respectively the voters and the candidates.

Here the committee {b, d} is elected by Monroe, but group S consisting of middle vot-
ers {2, 3} and T = {c} witness the violation of core-stability. ⌟

Example 8.20 (STV fails core-stability). Let n = 60, b = 2. The value of the STV quota
is n/b+1 + 1 = 21. Voters’ preferences are divided into 5 groups:

G1 (18 voters) : a ≻ b ≻ c ≻ d ≻ e

G2 (7 voters) : b ≻ c ≻ d ≻ e ≻ a

G3 (5 voters) : c ≻ d ≻ e ≻ b ≻ a

G4 (16 voters) : d ≻ e ≻ c ≻ b ≻ a

G5 (14 voters) : e ≻ d ≻ c ≻ b ≻ a

This election is 1D-Euclidean as presented in Figure 26.
Here candidate c is eliminated at the first round and all votes for her are transferred to d.

Second, candidate d is elected (in the second round she gains exactly 21 votes) and the votes
from groups 3 and 4 are removed. Third, candidate b is eliminated and all votes for her are
transferred to e. Fourth, candidate e is elected (gaining in the final round exactly 21 votes) and
the committee {d, e} is returned. However, 30 voters from the three first groups and candidate c
witness the violation of core-stability. ⌟

In the case of approval-based preferences, the fact that GCR is not core-stable follows
from the fact it violates laminar proportionality—in Example 7.11 the preferences of the voters
clearly belong to the intersection of VI and CI.

Now let us show the same fact for Method of Equal Shares.
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Figure 26: An illustration of Example 8.20. Black points mean the positions of both candidates
and groups of voters (ties can be broken arbitrarily).

Example 8.21 (Equal Shares for approval-based preferences fails core-stability). Let n =
42, b = 14. Voters’ preferences are divided into the following groups:

G1 (1 voter) : {c1, c2, c3, x1, x2}
G2 (8 voters) : {c1, c2, c3, x1, x2, a1, a2, a3, a4}
G3 (12 voters) : {c1, c2, c3, a1, a2, a3, a4, b1, b2, b3, b4, e1, e2}
G4 (12 voters) : {d1, d2, d3, b1, b2, b3, b4, a1, a2, a3, a4, e1, e2}
G5 (8 voters) : {d1, d2, d3, y1, y2, b1, b2, b3, b4}
G6 (1 voter) : {d1, d2, d3, y1, y2}

Let us denote the groups of candidates by X = {x1, x2}, Y = {y1, y2}, A =
{a1, a2, a3, a4}, B = {b1, b2, b3, b4}, C = {c1, c2, c3}, D = {d1, d2, d3} and E = {e1, e2}.

Assuming

G1 = G2 = . . . = G6

and

X = C = A = E = B = D = Y

(voters and candidates within each group can be ordered arbitrarily), it is clear that the election
is both VI and CI.

At the beginning each voter has 1 dollar and the price for candidates is p = n/b = 3. First
Equal Shares elects candidates from A∪B; for each of them 32 out of 40 middle voters pay (each
of them pays 3/32). Second, Equal Shares elects candidates from E, and the middle 24 voters run
out of money; indeed, each of them pays 8 · 3/32 + 2 · 3/24 = 1 for the so far elected candidates.
Next Equal Shares elects candidates from X ∪ Y . We have elected the committee A∪B ∪E ∪
X ∪ Y which is not even Pareto-optimal as the committee A ∪ B ∪ C ∪ D is better for every
voter. Thus, in particular, the elected committee does not belong to the core. ⌟

Besides, we show that it is also the case for Proportional Approval Voting (PAV) (recall
Definition 4.12).
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Example 8.22 (PAV fails core-stability). Let n = 3, b = 8. Voters’ preferences are the follow-
ing:

1: {b1, b2, b3, b4, a}
2: {b1, b2, b3, b4, c}
3: {d1, d2, d3, d4}

Assuming

1 = 2 = 3

and

a = b1 = . . . = b4 = c = d1 = . . . = d4,

it is clear that the election is both VI and CI.
Here PAV elects candidates {b1, . . . , b4, d1, . . . , d4}. However, this committee does not be-

long to the core, which is witnessed by the groups S = {1, 2} and T = {a, b1, . . . , b4, c}.
⌟

As we can see, no well-established voting rule is core-stable even for very restricted prefer-
ence domains. In the next section, we will present the algorithm that has this property.

8.3 The Description of the Main Algorithm
In this section we describe our main algorithm, called Quantile Rule. Its name refers to the fact
that it chooses b candidates that are top-preferred by voters 1st, (n/b+1)st, . . ., (b− 1) · n/b+1st
if these candidates are unique for each voter and all different. However, in order to handle the
case where these candidates repeat, its definition is slightly more complex.

The rule works in polynomial time, assuming that we are given the linear order = over N ∪
C, existence of which is ensured by the definitions of these preference classes. For approval-
based preferences, such an order can be found in polynomial time for candidate-interval and
voter-interval domains [Elkind et al., 2017]. It is not known whether it is the case for general LC
preferences—hence, for this class we show only that core-stability is satisfiable. However, LC is
mainly a technical domain, allowing us to present a coherent algorithm for both voter-interval
and candidate-interval preferences. In case of r-STC preferences, the linear order witnessing
this class is the same as the one witnessing top monotonicity which can be found in polynomial
time [Magiera and Faliszewski, 2019].

Since Quantile Rule works both for ordinal and approval-based preferences, we need to start
by introducing a common framework capturing both types of preferences (namely weak ordinal
preferences, briefly mentioned before in the context of Definition 8.6). Next, we will present
the main idea of fractional committees that the algorithm is based on. Finally, we will present
the formal definition of Quantile Rule and illustrative examples.
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8.3.1 Weak Ordinal Preferences
From now, we assume that each voter i ∈ N submits a weak ranking ≿i over the candidates—
for each i ∈ N and a, b ∈ C, we say that voter i weakly prefers candidate a over candidate b
if a ≿i b. We set a ∼i b if a ≿i b and b ≿i a, and we write a ≻i b if a ≿i b and a ≁i b.
For a voter i ∈ N and j ∈ [m], by posi(j) we denote the equivalence class of candidates
ranked at the jth position by voter i. Formally, a candidate c belongs to posi(j) if there are (j−
1) candidates a1, . . . , aj−1 such that a1 ≻i a2 ≻i . . . ≻i aj−1 ≻i c and if there exist no j
candidates a1, . . . , aj for which a1 ≻i a2 ≻i . . . ≻i aj ≻i c. By di we denote the number
of the nonempty positions in the i-th voter’s preference list. For each j ∈ [di], by posi([j])
we denote

⋃
q≤j posi(q). For each i ∈ N , by topi and boti we denote the sets of candidates

ranked respectively at the highest and the lowest position (note that topi = posi(1) and boti =
posi(di)).

Now, both types of voters’ preferences that we focus on, can be defined as follows:

Approval-based preferences. The preferences are approval-based, if for each candidate c ∈ C
and each voter i ∈ N either c ∈ topi or c ∈ boti. We say that i approves c if c ∈ topi.

Ordinal preferences. The preferences are (strictly) ordinal, if for all a, b ∈ C (a ̸= b) and
each i ∈ N it holds that a ≁i b.

The extension of the preferences over candidates to the preferences over committees is done
is the following way: voters compare committees lexicographically with respect to the numbers
of candidates in specific equivalence classes. It generalizes both the lexicographical extension
for ordinal preferences and additive extension for approval-based ones. Formally:

W ▷i T ⇐⇒ ∃σ ∈ [di]. |posi(σ) ∩W | > |posi(σ) ∩ T |
and ∀ϱ < σ. |posi(ϱ) ∩W | = |posi(ϱ) ∩ T |.

(8.1)

An alternative preference extension is considered in Section 8.5.

8.3.2 Fractional Committees
Further, we extend the definition of a committee to the continuous model as follows: a fractional
committee is a function p : C → [0, 1] that assigns to each candidate from c ∈ C a value p(c)
such that 0 ≤ p(c) ≤ 1; intuitively p(c) can be thought of as the probability that candidate c is a
member of the selected committee. We extend this notation to sets, defining p(T ) =

∑
c∈T p(c)

for each T ⊆ C. The value of p(C) is the size of the fractional committee. If for a candidate c it
holds that p(c) = 1, then we say that c is elected, otherwise she is unelected. If for an unelected
candidate c it holds that p(c) > 0, then c is partially elected. If there are no partially elected
candidates in p, then we say that p is a discrete committee (or simply a committee) and associate
it with the set {c ∈ C : p(c) = 1}.

The notion of a fractional committee is similar to several probabilistic concepts considered
in the literature. For instance, in probabilistic social choice (see the book chapter [Brandt,
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2017]) we also assign fractional values to candidates. The main difference is that in probabilistic
social choice, the whole value that we want to divide among the candidates can be assigned to
fewer than b candidates; in particular it is feasible to set p(c) = b for one candidate and p(c′) = 0
for all c′, c′ ̸= c. Thus, intuitively, in probabilistic social choice each candidate is divisible and
appears in an unlimited quantity. Viewed from this perspective, probabilistic social choice
extends the discrete model of approval-based apportionment [Brill et al., 2022]. Several works
have considered axioms of proportionality for probabilistic social choice [Aziz et al., 2019, Fain
et al., 2016], yet unfortunately their results do not apply to fractional committees.

Another concept related to fractional committees is where we assign probabilities to com-
mittees instead of individual candidates. The notions of proportionality in this setting have
been considered, for example, by Cheng et al. [2019]. It is worth noting that fractional commit-
tees can induce probability distributions over committees, for example, by applying sampling
techniques, such as dependent rounding [Srinivasan, 2001], that ensure we always select b can-
didates. Yet, there is no one-to-one equivalence between the two settings, thus the results of
Cheng et al. [2019] do not apply to fractional committees.

Now, note that Definition 8.1 naturally extends to fractional committees:

Definition 8.23 (Core-stability (for fractional committees)). Given an election E = (N,C, b),
we say that a fractional committee p is core-stable, if for each S ⊆ N and each fractional
committee p′ with p′(C) ≤ b · |S|/n, there exists a voter i ∈ S such that i weakly prefers p
over p′.

So does the lexicographical extension of weak rankings (equation (8.1)).

p ▷i p
′ ⇐⇒ ∃σ ∈ [di]. p(posi(σ)) > p′(posi(σ))

and ∀ϱ < σ. p(posi(ϱ)) = p′(posi(ϱ)).

8.3.3 Quantile Rule
We can now formally describe the algorithm. Hereinafter we assume that the fraction n/b is
integral—if it is not the case, we multiply each voter b times (note that if a committee is in the
core of the modified election, it is also in the core of the original one).

Intuitively, it consists of two phases: first we construct a fractional committee and then we
discretize it. The first part of the algorithm (Phase 1) is the following: imagine that each voter
has an equal probability portion b/n to distribute, and that we want to choose one candidate (her
representative) who gets this portion. Initially, the fractional committee p is empty. We iterate
over the set of voters, sorted according to the relation =. Let us denote by Pi the set of unelected
candidates at the moment of considering voter i ∈ N . The representative of i is defined as a
candidate ri ∈ Pi such that for each c ∈ Pi it holds that either ri ≻i c or that ri ∼i c and ri = c.
Next, p(ri) is increased by b/n. Note that, as n/b is integral, the election probability of each
candidate does not exceed 1.

In Section 8.4.1 we prove that after this phase the obtained fractional committee p is in the
core for all strict elections and all LC approval elections. Denote by W1 the set of candidates c
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such that p(c) = 1. Before the second phase of the algorithm, remove candidates from W1

from the election together with the voters who are represented by them, obtaining a smaller
election E2. By b′ we denote b−|W1| (remaining seats in the committee) and by n′ we denote n−
|W1| · n/b (remaining voters). Renumerate the voters so that they are numbers from [n′] (and in
case of r-STC elections, resort them so that E2 is still r-STC). Note that if b′ ̸= 0 then by
definition:

n′

b′
=

n− |W1| · n/b
b− |W1|

=
n

b
· b− |W1|
b− |W1|

=
n

b
.

Phase 2 is simple: for each q ∈ [b′] denote by mq the voter (q − 1) · n/b+ 1. Further we will
refer to these voters as quantile voters. Then elect committee W2 = {rmq : q ∈ [b′]}.

Finally, we return the committee W = W1∪W2. This algorithm is presented in Algorithm 3.

Algorithm 3: Implementation of Quantile Rule
1 If n/b is not integral, multiply each voter b times.
2 Each time we iterate over sets N and C, we assume they

are sorted according to the order = witnessing the
membership of the election to a specific class.

3 Phase 1:
4 for c ∈ C do
5 p[c]← 0
6 for i ∈ N do
7 Pi ← {c ∈ C : p[c] < 1}
8 ri ← the first c ∈ Pi such that p[ri] < 1
9 for c ∈ C do

10 if c ∈ Pi and c ≻i ri then
11 ri ← c

12 p[ri]← p[ri] + b/n

13 W1 ← {c : p[c] = 1}
14 C ← C \W1

15 N ← N \ {i : ri ∈ W1}
16 Phase 2:
17 Resort the voters if needed, so that = still witness the

membership of the election to a specific class.
18 W2 ← ∅
19 t← 0
20 for i ∈ N do
21 if t · b mod n = 0 then
22 W2 ← W2 ∪ {ri}
23 t← t+ 1

24 return W1 ∪W2

For better understanding of the rule, let us now analyze the behavior of Quantile Rule on
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the five examples presented in Section 8.2 (we assume that the linear orders over voters and
candidates are the same as in the descriptions/illustrations of these examples).

Example 8.16 Here, b = 2 and every candidate is ranked top by only one out of 4 voters,
hence after Phase 1 we have that p(c) = 1/4 for each c ∈ C and W1 = ∅. After Phase 2,
candidates c and f are elected.

Example 8.19 Here, after Phase 1 candidate c is elected. For Phase 2, we remove c and two
middle voters from the election and, since no resorting is needed, candidate b is addition-
ally elected.

Example 8.20 Here, after Phase 1 we have that p(a) = 3/5, p(b) = 7/30, p(c) = 1/6, p(d) = 8/15
and p(e) = 7/15. Hence, W1 = ∅. After Phase 2, the representatives of the first voter (one
from the group G1) and 31st voter (one from the group G4) is elected, namely a and d.

Example 8.21 Let us assume here that the candidates each group are sorted by indexes. Con-
sider Phase 1. The 9 voters from G1 ∪ G2 make candidates {x1, x2, c1} elected. The
next 12 voters from G3 make candidates {c2, c3, a1, a2} elected. The next 12 voters
from G4 make candidates {a3, a4, e1, e2} elected. The next 6 voters from G5 make can-
didates {b1, b2} elected. Finally, b3 becomes the representative of the last two voters
from G5, and d1 becomes the representative of the last voters from G6—yet these two
candidates are only partially elected after Phase 1. After Phase 2, b3 is elected and the
committee X ∪ C ∪ A ∪ E ∪ {b1, b2, b3} is returned by Quantile Rule.

Example 8.22 Here, n/b is not integral, therefore each voter is replaced by 8 voters with the
same preferences. After Phase 1, candidates {a, b1, b2, b3, b4, d1, d2} are elected and can-
didates c (the representative of one voter from the middle group) and d3 (the representative
of two voters from the last group) are partially elected. After Phase 2, c is elected and the
committee {a, b1, b2, b3, b4, d1, d2, c} is returned.

It is straightforward to check that for all these examples, the committees returned by Quantile
Rule are core-stable. Now it is time to prove that it is true in the general case.

8.4 The Analysis of Quantile Rule
In this section we prove that Quantile Rule is core-stable for all the restricted domains men-
tioned in Section 8.1. We divide its content into three parts: first, we prove that after Phase 1,
the fractional committee p is in the core for LC approval elections and for all elections with
ordinal preferences. The proof is the same for those two models; we will refer only to the
following property:

Definition 8.24. Given an election E = (N,C, b), we say that E is well-ordered, if there exists
a linear order = over N ∪ C such that for each voters i, j ∈ N (i = j) and candidates a, b ∈ C
(a = b), if a ∼j b and a, b /∈ botj , then a ≿i b.

94



It is clear that every strict election is well-ordered for every order = (the premise is never
satisfied). For approval elections this definition is a weakening of Definition 8.14 (because for
approval elections a, b /∈ botj =⇒ a ∈ Aj and the condition a ≿i b boils down to "if i
approves b, then she approves also a"), hence every LC election is well-ordered.

Second, we prove that after Phase 2, the committee W elected by Quantile Rule is in the
core for approval LC preferences. Third, we prove the same fact for ordinal r-STC preferences.
Contrary to the first part, here the proofs that the rule satisfies core-stability for both preference
types differ significantly.

8.4.1 Core-Stability for Fractional Committees
For convenience, for i ∈ N by pi we denote the fractional committee p after considering voter i.
Let σi ∈ [m] be the number such that ri ∈ posi(σi). From how Phase 1 works, we have that for
every voter i ∈ N and a candidate c ∈ posi([σi−1]) it holds that pi−1(c) = 1 (and also pj(c) = 1
for every j ≥ i).

Before proving that Phase 1 returns committees belonging to the core, let us start from the
following observation.

Observation 8.25. For each i ∈ N and c ∈ C, there exists q ∈ [n/b] such that pi(c) = q · b/n. In
particular, q is the number of voters for whom c is a representative.

Theorem 8.26. Each fractional committee elected by Phase 1 belongs to the core for well-
ordered elections.

Proof. We will prove the following invariant: for each i ∈ N , pi satisfies the condition of the
fractional core (see Definition 8.23) with the additional restriction that S ⊆ [i]. We will prove
the invariant by induction.

For the first voter the invariant is clearly true. Assume, there exists i ∈ N satisfying the
invariant. We will prove that the invariant holds also for voter (i+ 1).

For the sake of contradiction suppose that there exists a group S ⊆ [i + 1] and a fractional
committee p′i+1 such that for each v ∈ S we have that v prefers lexicographically p′i+1 to pi+1.

First, note that if (i+1) /∈ S, then the invariant does not hold also for i, a contradiction. This
is the case becasue the election probability of no candidate is decreased during a loop iteration.
Hence, (i+ 1) ∈ S.

By the definition of Phase 1, we have that for each ϱ < σi+1 and c ∈ posi+1(ϱ) it holds
that pi+1(c) = 1. From that, in particular we have the following equation:

∀ϱ < σi+1. p
′
i+1(posi+1(ϱ)) ≤ |posi+1(ϱ)| = pi+1(posi+1(ϱ))

Hence, as (i+ 1) prefers lexicographically p′ to p:

∀ϱ < σi+1. p
′
i+1(posi+1(ϱ)) = pi+1(posi+1(ϱ)) (8.2)

It also needs to hold that:

p′i+1(posi+1([σi+1])) > pi+1(posi+1([σi+1])) (8.3)
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We can conclude that σi+1 < di+1, as otherwise voter (i+1) could not prefer p′i+1 over pi+1.
Consequently:

ri+1 /∈ boti+1 (8.4)

Suppose that p′i+1(ri+1) = 0. From (8.3) and the fact that for all c ∈ posi+1(σi+1)
with c = ri+1 we have p(c) = 1, we infer that there exists a ∈ posi+1(σi+1) such that ri+1 = a
and p′i+1(a) > 0. From Observation 8.25 we have that p′i+1(a) ≥ b/n. Now we modify p′i+1

by moving the fraction of b/n from a to ri+1. By Definition 8.24 and (8.4) we have that for
every v ∈ S (naturally, v = (i + 1)) it holds that ri+1 ≿v a. Thus, after the change p′i+1 still
witnesses core violation for S.

Now consider a fractional committee p′i obtained from p′i+1 by decreasing the probability
portion of ri+1 by b/n. We will show that p′i together with S \{(i+1)} witness the core violation
for pi. Indeed, the election probability of no candidate except ri+1 changed, and the election
probability of ri+1 changed in the same way: in pi+1 and p′i+1 it is higher by b/n than in pi and p′i,
respectively. Hence, if for a voter v ∈ S it holds that p′i+1 ▷v pi+1, then also p′i ▷v pi. Besides,
we have that p′i(C) ≤ b· |S−1|/n, so we obtain a contradiction with our inductive assumption.

8.4.2 Discrete Core-Stability for Approval LC Elections
Let us continue with the following observation.

Observation 8.27. Consider an approval LC election E and two voters i, j who were not re-
moved from the election after the first phase, such that i = j. Then either ri = rj or ri = rj .

Proof. Towards a contradiction assume that rj = ri. From LC we have that i approves rj and rj
should be i’s representative.

Next, we prove that Quantile Rule elects exactly b candidates.

Lemma 8.28. Quantile Rule for an approval LC election E elects exactly b candidates.

Proof. We will show that Phase 2 elects exactly b′ candidates. Suppose for the sake of contra-
diction that there are two quantile voters i, j in E2 such that ri = rj . Without loss of generality
assume i = j. Consider now any voter v between these quantile voters. If rv = ri then from the
definition of LC, i approves rv, and so rv should be selected as i’s representative, a contradic-
tion. If rj = ri = rv, then from the definition of LC, v approves rj , and so rj should be selected
as v’s representative, a contradiction. Hence, rv = ri. But then we have that after running
Phase 1, ri was a representative for at least n/b voters and was not elected, a contradiction.

Note that every LC election remains LC for the same order = after removing any number of
voters and candidates.

Finally, we are ready to prove the main technical lemma together with the main result.

Lemma 8.29. For each voter i ∈ N it holds that |W ∩ topi|+ 1 > p(topi).
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Proof. Consider a voter i ∈ N . Define parti as p(topi) − |W1 ∩ topi|. As W1 contains all
candidates c such that p(c) = 1, then parti is intuitively the joint sum of election probabilities
of partially elected candidates in topi. From Observation 8.25 we have that:

parti = q · b/n (8.5)

where q is the number of voters for whom a candidate from topi \ W1 is a representative.
Naturally, such voters could not be removed from the election after the execution of Phase 1.

We will prove that parti < |W2∩topi|+1. From the fact that W = W1∪W2 and W1∩W2 =
∅, it will imply the desired statement. We will now focus on upper-bounding q from (8.5).

Consider three voters x, y, z such that x = y = z and rx, rz ∈ topi. We will prove that
then also ry ∈ topi. Indeed, from Observation 8.27 we have that either ry ∈ {rx, rz} (and the
statement is true) or rx = ry = rz. First, consider the case, when y = i. Since i approves rx by
LC applied to voters y, i and candidates rx and ry, we get that also y approves rx, a contradiction
with Observation 8.27. Second, we look at the case when i = y. From LC applied to y, i and
candidates ry and rz and by the fact that i approves rz we get that i also approves ry, which is
what we wanted to prove.

Hence, these q voters from (8.5) need to form a consistent interval among all non-removed
voters. Besides, we know that there is no more than |W2 ∩ topi| quantile voters inside this
interval and that between each two quantile voters there is n/b− 1 non-removed voters. Hence:

q ≤ (|W2 ∩ topi|+ 1) · (n/b− 1) + |W2 ∩ topi| = (|W2 ∩ topi|+ 1) · n/b− 1

and:
parti = q · b/n < (|W2 ∩ topi|+ 1) · n/b · b/n = |W2 ∩ topi|+ 1

which completes the proof.

Theorem 8.30. For approval LC elections, Quantile Rule elects committees from the core.

Proof. We know that fractional committee p elected by Phase 1 belongs to the core. Suppose
now that W is not in the core. Hence, there exists a nonempty set S ⊆ N and a committee T of
size |S| · b/n such that |W ∩ topi| < |T ∩ topi| for each i ∈ S—alternatively, |W ∩ topi|+ 1 ≤
|T ∩ topi|.

From Lemma 8.29 we know that for each voter i ∈ S we have p(topi) < |W ∩ topi|+ 1 ≤
|T ∩ topi|. Let us define a fractional committee p′ such that p′(c) = 1 for c ∈ T and p′(c) = 0
otherwise. Hence, S and p′ witness also the violation of the core for p, which is contradictory
with Theorem 8.26.

8.4.3 Discrete Core-Stability for Ordinal r-STC Elections
We will now assume that E is a strict r-STC election. Similarly as in case of approval prefer-
ences, we start by proving that the Quantile Rule elects exactly b candidates.

Lemma 8.31. Quantile Rule for strict r-STC election E elects exactly b candidates.
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Proof. We need to show that Phase 2 elects exactly b′ candidates. Suppose for the sake of
contradiction that there are two quantile voters i, j in E2 such that ri = rj . From STC it follows
that rv = ri. But this means that after running Phase 1, ri was a representative for at least n/b
voters and was not elected, a contradiction.

Now we prove a general statement about the application of Phase 2 to STC elections.

Lemma 8.32. Consider an STC election E = (N,C, b) and apply Phase 2 to E to obtain the
committee W . If |W | = b, then W is in the core.

Proof. Towards a contradiction suppose that the statement of the lemma is not true. Without
loss of generality, assume that E is an election with the smallest b among those for which
the statement of the lemma does not hold. Let S and T be subsets of voters and candidates,
respectively, that witness that the committee returned by Phase 2 does not belong to the core.

Observe that there are at least two candidates from W that do not belong to T . Indeed, if
there were only one such candidate, we would have that |T | = |W | (as T \W is nonempty)
and |S| = n. In particular, in such a case all quantile voters would belong to S. Consequently,
the most preferred candidates of the quantile voters would belong to T , hence W ⊆ T , a
contradiction.

Let us fix a candidate a ∈ W \ T that is elected by the greatest quantile voter (i · n/b + 1).
In particular, i ̸= 0. For a candidate b ∈ T by Sb ⊆ S we denote the subset of voters in S
preferring b to a. Since E is single-top-crossing, it holds that either Sb ⊆ [i · n/b] or Sb ⊆
N \ [i · n/b].

Now we split E into two smaller elections Elow = ([i · n/b], C, i) and Egrt = (N \ [i ·
n/b], C, b−i). By Wlow and Wgrt we denote the committees elected by Phase 2 for Elow and Egrt,
respectively. Observe that Wlow ⊔Wgrt = W .

Let us also split S and T into two parts, as follows:

Slow = S ∩ [i · n/b], Sgrt = S ∩ (N \ [i · n/b]),
Tlow = {c ∈ T : Sc ⊆ [i · n/b]}, Tgrt = {c ∈ T : Sc ⊆ N \ [i · n/b]}.

Note that Slow ∪ Sgrt = S and Tlow ∪ Tgrt = T . Hence, if we had that both |Tlow| > |Slow| · n/b
and |Tgrt| > |Sgrt| · n/b = (|S| − |Slow|) · n/b, then we would have also |T | > |S| · n/b, a
contradiction. Hence, for at least one of the pairs (Slow, Tlow), (Sgrt, Tgrt) the opposite inequality
holds. Without the loss of generality, assume that |Tlow| ≤ |Slow| · n/b.

We claim that the pair (Slow, Tlow) witnesses the core violation for Elow and committee Wlow.
Consider a voter j ∈ Slow. We know that there exists a candidate c ∈ T \W such that c ≻j

W \ T . First observe that Wlow and Tgrt are disjoint—indeed, for every candidate b ∈ Tgrt we
have that Sb ⊆ N \ [i · n/b]. As a result, there is no quantile voter in [i · n/b] who prefers b
to a, hence b /∈ Wlow. From this fact we conclude that Wlow \ Tlow = Wlow \ T ⊆ W \ T .
Consequently, c ≻j Wlow \ Tlow.

Further, observe that c ∈ Tlow. Indeed, voter j prefers c to W \ T , thus in particular j
prefers c to a. Consequently, j ∈ Sc, and thus Sc ⊆ Slow, from which we get that c ∈ Tlow.
Since c ∈ Tlow and c ≻j Wlow \ Tlow, we get that j prefers lexicographically Tlow to Wlow.

98



Finally, we obtain that if the core was violated for E, it also needs to be violated for Elow,
which is contradictory to our assumption that E minimizes the value of b.

Corollary 8.33. In Phase 2, the committee W2 is in the core for election E2.

Now we are ready to prove the main theorem in this subsection:

Theorem 8.34. Committees elected by Quantile Rule are core-stable.

Proof. For the sake of contradiction suppose that the statement of the theorem is not true. Then
there exist a set S ⊆ N and a set T ⊆ C witnessing the violation of the condition of the
core. For every candidate c ∈ C, by R(c) we denote set {i ∈ N : ri = c}. Note that for a
candidate c ∈ W1 and a voter i ∈ S such that i ∈ R(c), we have c ∈ T . Hence,

S ∩
⋃

c∈T∩W1

R(c) = S ∩
⋃

c∈W1

R(c).

Consider now sets S ∩N ′ and T ∩C ′ (recall that E2 = (N ′, C ′, b′) is the election obtained after
the first step of our algorithm). It holds that:

|T ∩ C ′| = |T | − |T ∩W1|

≤ |S| · b/n−

∣∣∣∣∣ ⋃
c∈T∩W1

R(c)

∣∣∣∣∣ · b/n ≤ |S| · b/n−
∣∣∣∣∣S ∩ ⋃

c∈T∩W1

R(c)

∣∣∣∣∣ · b/n
≤ |S \

⋃
c∈W1

R(c)| · b/n = |S ∩N ′| · b/n = |S ∩N ′| · b′/n′.

Further, for each voter i ∈ S ∩N ′ we have that:

T ▷i W =⇒ (T \W1) ▷i (W \W1) =⇒ (T ∩ C ′) ▷i W2.

Consequently, S ∩ N ′ and T ∩ C ′ witness the violation of core-stability for committee W2,
which is contradictory to Corollary 8.33.

Corollary 8.35. The core is always non-empty and committees satisfying this condition can be
found in polynomial time for the following classes of voters’ preferences: (1) voter-interval,
(2) candidate-interval, (3) single-peaked, and (4) single-crossing preferences.

In Theorem 8.36 below we show that the condition of recursiveness in the definition of the
class of r-STC preferences is necessary for the existence of the core. Thus, in a way Theo-
rem 8.34 gives a rather precise condition on the satisfiability of core-stability for strict voters’
preferences. For approval preferences one cannot easily argue that the conditions are precise,
since it is still a major open question whether a core-stable committee exists in each approval
election.

Theorem 8.36. There is a top-monotonic election with ordinal preferences, where no committee
is core-stable.
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Proof. Let A be a Condorcet cycle consisting of r = 100 candidates:

a1 ≻ a2 ≻ . . . ≻ ar

a2 ≻ a3 ≻ . . . ≻ ar ≻ a1

. . .

ar ≻ a1 ≻ a2 ≻ . . . ≻ ar−1

Now let B,C,D,E and F be five clones of A. Thus in A ∪ B ∪ . . . ∪ F we have 6r = 600
candidates. We add two more candidates, namely g and h.

Consider the following profile with 600 voters:

g ≻ A ≻ B ≻ C ≻ D ≻ E ≻ F ≻ h

g ≻ B ≻ C ≻ A ≻ E ≻ F ≻ D ≻ h

g ≻ C ≻ A ≻ B ≻ F ≻ D ≻ E ≻ h

h ≻ D ≻ E ≻ F ≻ A ≻ B ≻ C ≻ g

h ≻ E ≻ F ≻ D ≻ B ≻ C ≻ A ≻ g

h ≻ F ≻ D ≻ E ≻ C ≻ A ≻ B ≻ g

For example, the first two votes in this profile are:

g ≻ a1 ≻ a2 ≻ . . . ≻ ar ≻ b1 ≻ b2 ≻ . . . ≻ br ≻ . . . . . . ≻ f1 ≻ f2 ≻ . . . ≻ fr ≻ h

g ≻ a2 ≻ a3 ≻ . . . ≻ a1 ≻ b2 ≻ b3 ≻ . . . ≻ b1 ≻ . . . . . . ≻ f2 ≻ f3 ≻ . . . ≻ f1 ≻ h

The above profile is single-top-crossing since there are only two top-candidates, g and h, and
each of them crosses with each other candidate only once.

Let b = 7, and consider a committee W . We will show that W does not belong to the core.
Without loss of generality, we can assume that g, h ∈ W , as there exists more than 600/7 voters
who rank each of these candidates as their favorite one. Further, since the profile is symmetric,
without loss of generality we can also assume that it contains at most two candidates from A ∪
B ∪ C. If the two candidates belong to the same clone, say A, then we take a candidate c ∈ C,
and observe that 200 voters (the second and the third group) prefer {c, g} over W . Otherwise,
if the two candidates are from two different clones, say A and B (the situation is symmetric),
then we take the clone which is preferred by the majority (in this context A) and select the
candidate a ∈ A that is preferred by r−1 voters to the member of W∩A. There are 2r−2 = 198
voters who prefer {g, a} to W . Thus, W does not belong to the core.

8.5 Extensions, Discussion and Open Questions
Let us conclude the results presented in this chapter with two interesting observations, relating
our definitions to the ones already existing in the literature, and discuss the most important open
questions.
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8.5.1 Core-Stability versus (Full) Local Stability
Aziz et al. [2017b] proposed the concept of full local stability, which is equivalent to the defi-
nition of core-stability for ordinal preferences. Interestingly, while the concept of the core has
been studied before in the context of ordinal committee elections, the equivalence of the two
concepts has never been claimed so far. Yet, most of the results in the work of Aziz et al. [2017b]
are formulated for the concept of local stability. Interestingly, this concept is also equivalent
to the core-stability for ordinal preferences, but for a different preference extension: we say
that voter i weakly prefers W over T according to ▷max preference extension if and only if
she ranks her most preferred candidate in W as high as her most preferred candidate in T . In
words, according to the ▷max extension we focus only on the single top preferred candidate in
the committee and do not break ties lexicographically.

Definition 8.37 (Local stability). Consider an election E and a value q ∈ Q. A committee W
violates local stability for quota q if there exists a group S ⊆ N with |S| ≥ q and a candidate c ∈
C \W such that each voter from S prefers c to each member of W .

Proposition 8.38. Local stability for quota ⌈n/b⌉ is equivalent to core-stability for the ▷max

preference extension.

Proof. The fact the core-stability with ▷max implies local stability is straightforward—local
stability is a special case of the core condition for |T | = 1. Now consider any election E and a
committee W that is not core-stability with ▷max. Let S ⊆ N and T ⊆ C be the witness that W
is not in the core. For a candidate c ∈ T let Rc ∈ S denote a set of voters i such that c ≻i W .
Since for every i ∈ S there exists c ∈ T with i ∈ Rc:

|S| ≤
∑
c∈T

|Rc|

Hence, there exists a candidate c ∈ T such that |Rc| ≥ |S|/|T | ≥ n/b. Yet, Rc together with
the candidate c witness the violation of local stability, which completes the proof.

8.5.2 Linearly Consistent versus Seemingly Single-Crossing Preferences
Let us now compare the domain of linearly consistent preferences with the one of seemingly
single-crossing (SSC) preferences [Elkind et al., 2017]—another known class that generalizes
VI and CI domains. We say that preferences are seemingly single-crossing if there is a linear
order over voters such that for each a, b ∈ C, the voters approving a and not b either all succeed
or all precede the voters approving b and not a.3

Observe that LC implies SSC. Indeed, consider an LC election, two candidates a, b ∈ C
such that a = b, and two voters i, j ∈ N . Let i approve a but not b, and j approve b, but not a.

3There is also another class, generalizing both VI and CI—namely, the class of possibly single-crossing (PSC)
preferences. This is the class of approval preferences that can be obtained from some strict single-crossing ones
(assuming that every voter approves a consistent prefix of her ranking). Interestingly, PSC is equivalent to the class
of seemingly single-crossing preferences [Elkind et al., 2017].
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Then, if j = i, we would obtain a contradiction with the condition for linear consistence (LC
would require that j approves a). Hence, i = j, and the same linear order over voters witnessing
linear consistence witnesses also seemingly single-crossingness.

The reverse implication does not hold, as we show in Example 8.39 below.

Example 8.39. Consider the election with 3 voters and the following preferences:

1: {a, c}
2: {a, b}
3: {b, c}

It is straightforward to check that these preferences are SSC for all pairs of candidates and any
linear order over voters.

Suppose that this election is LC and let = be the required linear order over N ∪C. Without
the loss of generality, let a = b. Then we have that 1, 2 = 3 (otherwise, LC would be violated
for voter 3, a voter j ∈ {1, 2} such that 3 = j, and candidates a, b).

Further, suppose that b = c. Then, voters 1 and 3 together with candidates b, c witness
the violation of LC, a contradiction. Hence, c = b. But then, voters 2 and 3 together with
candidates b, c witness the violation of LC. The obtained contradiction completes the proof. ⌟

8.5.3 Open Questions
In Section 8.2 we have shown that the classic committee election rules that are commonly
considered proportional are not core-stable even if the voters’ preferences come from certain
restricted domains. Since these domains are natural and can be intuitively explained, one would
expect a good rule to behave well for such well-structured elections. On the other hand, we often
require a rule which is well-defined for all preference profiles. This leads us to the following
important open question.

Question 8.40. Is there a natural voting rule that satisfies the strongest axioms of proportion-
ality, and which at the same time satisfies core-stability for restricted domains.

The requirement that a rule should be "natural" says in particular that its definition cannot
conditionally depend on whether the election at hand comes from a restricted domain or not.
Question 8.40 is valid for both approval and ordinal voters’ preferences.

Additionally, it would be interesting to check how often the classic rules violate the core,
especially in the case of restricted domains. One can make such a quantitative comparison via
experiments. This however raises the algorithmic questions of how hard it is to verify if a given
committee (in our case the committee returned by the particular rule) belongs to the core. This
question is easy for the ▷max preference extension.

Proposition 8.41. There exists a polynomial-time algorithm for deciding whether a given com-
mittee is core-stable for the ▷max preference extension.
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Proof. Given a committee W it is sufficient to iterate over all candidates c ∈ C \W and check
if the number of voters who prefer c over W is no-greater than ⌈n/b⌉.

However, for ordinal preferences the question is much less obvious.

Question 8.42. What is the computational complexity of deciding whether a given committee
belongs to the core?

This question has been already answered for general elections with approval-based prefer-
ences by Brill et al. [2022]—the problem is CoNP-complete. It still remains open for general
elections with ordinal preferences as well as for both types of preferences under each restricted
domain studied in this work.
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Chapter 9

Market-Based Axioms

Let us now go back to the general PB model, with approval-based preferences. Recall the
idea of priceability introduced in Definition 4.18, in particular, the condition (P) for a price
system p = (end, Cp, {pi}i∈N):

(P) For each project c ̸∈ Cp, the unspent budget of her supporters is at most cost(c):

∑
i∈N :ui(c)>0

end−
∑
c′∈Cp

pi(c
′)

 ≤ cost(c) for each c /∈ Cp.

Intuitively, priceability seeks outcomes which can be explained via the process of paying
for the projects by voters with the virtual money corresponding to their voting power. This way,
priceability not only is more restrictive than core-stability in some cases like Example 4.19, but
also provides an explicit and intuitive explanation why the considered outcome is fair: voters’
payments serve as a mapping of the elected projects to the voters they are meant to represent.
We believe this is an appealing and prospective idea.

However, the explanation provided by priceability is weak: it only requires that voters have
limited leftover money, but not that their money is spent wisely. Consider the following simple
example:

Example 9.1. Consider a committee election with b voters 1, 2, . . . , b. Each voter i ∈ N
approves a different candidate ai. Additionally, all the voters approve candidates c1, . . . , cb.
Consider now a committee {a1, . . . , ab}, depicted in Figure 27b. Such a committee is priceable,
as witnessed by the price system with b′ = b and each voter i ∈ N spending all her endowment
on a candidate ai. On the other hand, a committee {c1, . . . , cb} depicted in Figure 27a, would
be a much better choice here (every voter would gain utility b instead of 1). ⌟

This is why priceability, on its own, does not imply strong fairness guarantees. In fact, this
is the case even if we exclude the most unreasonable priceable outcomes. For example, consider
the Utilitarian Priceable Rule (UPR) which picks, among priceable outcomes, those that maxi-
mize the utilitarian social welfare (total number of approvals from voters). In Example 9.1, UPR
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Figure 27: An illustration of Example 4.19.

chooses the committee depicted in Figure 27a. However, UPR fails EJR, even under the unit
cost assumption. In fact, as we show in Proposition 9.2, UPR does not even approximate EJR
up to any constant number of projects (in a way similar to PAV in Example 4.13). Intuitively,
this means priceability provides a very weak proportionality guarantee for cohesive groups of
voters. Consequently, UPR also violates all stronger notions than EJR, like FJR or the core.

Proposition 9.2. In the model of committee elections, the Utilitarian Priceable Rule does not
satisfy EJR up to r projects for any r ≥ 0.

Proof. Consider the following committee election. Let x ≥ 2 be a natural number. We in-
troduce n = 4x3 voters, and 4x2 + x candidates; the cost of each candidate equals to one,
and b = 2x2. The voters are divided into two groups.

1. The first group consists of 2x3 voters—we divide these voters into 2x2 equal-size sub-
groups. Each subgroup (of size x) approves a single different candidate. Let A denote the
set of candidates approved by these voters; clearly |A| = 2x2.

2. The second group (containing also 2x3 voters) is constructed as follows. We divide these
voters again into x2 subgroups, each of size 2x. Each such a subgroup approves 2 com-
mon candidates—let B be the set of candidates approved by these voters; |B| = 2x2.
Additionally, from each subgroup we take one voter—let V denote the set of these voters;
clearly |V | = x2. The voters from V approve some common x candidates; let C denote
the set of these candidates.

Let W be a committee elected by UPR here and let p = (end, Cp, {pi}i∈N) be a priceable
price system. Note that the value of end cannot be higher than 1/x. If it were, all the candidates
from A would need to be members of the winning committee, leaving no room for the candi-
dates from B; though the voters have money to pay for these candidates. First, consider the
case when the value of end is lower than 1/x. Then, at most half of the candidates from B could
be members of the winning committee. The maximum possible utility would be then:

x2 · 2x · 1︸ ︷︷ ︸
from B

+x · x2︸ ︷︷ ︸
from C

+(x2 − x) · x︸ ︷︷ ︸
from A

= 2x3 + x3 + x3 − x2 < 4x3.
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Now assume that end = 1/x. If the committee contains at least one candidate from C, then
at most half of the candidates from B can get to the committee. By the same reasoning as above
we get that the total utility obtained in such a case is lower than 4x3.

On the other hand, B could be purchased by a priceable system with equal payments, in-
ducing the total utility of x2 · 2x · 2 = 4x3. Consequently, W = B. Each voters from V
has 2 representatives in this committee. Yet, group V is (x/2)-cohesive. Thus, since x can be
arbitrarily large, this induces that UPR fails EJR up to r projects for any fixed r ≥ 0.

In this chapter, we try to improve priceability by adding a stability condition: informally,
voters should not want to change how their money is spent. We borrow the idea of mak-
ing payments stable from the classic economic concept of Lindahl equilibrium for public
economies [Foley, 1970], which in a fractional (divisible) model ensures fair outcomes [Fain
et al., 2016]. In fact, we show that one of the two notions we propose is closely related to (a
discrete version of) Lindahl equilibrium.

We introduce two concepts: stable priceability (SP) and balanced stable priceability (BSP).
SP strengthens the concept of priceability by Peters and Skowron [2020]. We show that

it is a strong fairness notion. It logically implies both the core and priceability, and for com-
mittee elections it guarantees a higher average satisfaction of members of cohesive groups (so
called proportionality degree; see [Skowron, 2021]) than both. In contrast to the core, it can be
checked in polynomial time whether an outcome satisfies SP. We also present a compact integer
linear program for finding SP outcomes. We adapt the notion of Lindahl equilibrium to the
context of PB, and show that SP is closely related to this notion.

One potential source of unfairness under stable priceability is that two voters may be paying
different amounts of virtual money for the same candidate that they both approve. Our notion
of balanced stable priceability (BSP) addresses this by requiring that any two voters paying
for a candidate must pay the same amount. We uniquely characterize BSP outcomes as those
returned by a rule similar to Method of Equal Shares.

Unfortunately, even in the committee election model, exhaustive SP and BSP committees do
not always exist. However, through a series of experiments, we argue that SP/BSP committees
whose size is very close to b often do.

9.1 Payment Systems
In order to extend the axiom of priceability, we need first to introduce one more term, the pay-
ment system, which intuitively corresponds to the price system without the upfront endowment
restrictions. To distinguish payment systems from price systems, we use the symbol q for them
instead of p.

Definition 9.3 (Payment system). Fix an election E = (C,N, b). A payment system is a
pair q = (Cq, {qi}i∈N), where Cq ⊆ C is the supported outcome and {qi}i∈N is the collec-
tion of voters’ payment functions. For each i ∈ N , qi : Cq → R≥0 specifies the amount of
money that voter i spends on particular projects. We require that a payment system satisfies the
following conditions:
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1. Each voter can pay only for a project that she approves of, that is qi(c) = 0 if c /∈ Ai.

2. The cost of every project from Cq is fully paid:

∀c ∈ Cq.
∑
i∈N

qi(c) = cost(c).

This term will further appear useful for defining our axioms—intuitively, there we will con-
sider situations where voters are able to resign from paying for some projects and use their saved
money to buy another projects. Note that we allow that two voters may pay different amounts
of money for the same candidate—in Section 9.3 we consider price and payment systems with
additional restrictions that prohibit such cases. For the payment functions from both price and
payment systems, let us use the following convention: qi(T ) =

∑
c∈T qi(c), for each i ∈ N

and T ⊆ C.

9.2 Stable Priceability
Let ≻ be a linear order over N× R≥0 defined as follows:

(x1, y1) ≻ (x2, y2) ⇐⇒ x1 > x2 or (x1 = x2 and y1 < y2). (9.1)

We will use (x1, y1) ≻ (x2, y2) to model a voter who "prefers" to pay y1 dollars for an outcome
where she approves x1 candidates than pay y2 dollars for outcome with x2 approved members.
Thus, under this linear order, the voter "prefers" to maximize her utility for the outcome, and
only in case of a tie, prefers to pay less. We note that these are not the true preferences of the
voters, but rather an artificial relation that helps us formulate our definition of stable priceability.

A price system p = (end, Cp, {pi}i∈N) is said to be stable priceable (SP) if the following
condition is satisfied:

(SP) There exists no collection {Ri}i∈N (with Ri ⊆ Cp for i ∈ N ) and no payment system q =
(Cq, {qi}i∈N) that would satisfy the following two conditions:

(a) each voter i ∈ N can additionally spend qi(Cq) dollars using her remaining money,
after resigning from paying for candidates from Ri:

pi(Cp \Ri) + qi(Cq) ≤ end,

Besides, for at least one voter i ∈ N the above inequality is strict.1

(b) for each i ∈ N , i is at least as "happy", according to ≻, with the outcome Cp after
exchanging Ri to Cq as she was before:(

ui

(
(Cp \Ri) ∪ Cq

)
, pi(Cp \Ri) + qi(Cq)

)
⪰

(
ui

(
Cp

)
, pi(Cp)

)
.

Besides, for at least one voter i ∈ N the above inequality is strict.
1The role of this requirement is to allow tie-breaking in simple symmetrical elections, analogously as in the

case of condition (P). In Section 9.2.2 we will consider SP without this requirement.
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We say that an outcome W is stable priceable, if there exists a stable priceable price system p =
(end, Cp, {pi}i∈N) such that Cp = W .

In order to better understand the condition, assume (SP) is not satisfied. Then, each voter i ∈
N can find a set Ri of currently approved candidates such that she would "prefer" to stop paying
for Ri and to pay for Cq instead (that is, no voter would lose, and at least one voter would strictly
benefit according to ≻).

It is clear that stable priceability implies priceability: indeed, after fixing |Cq| = 1 and Ri =
∅ for every i ∈ N , the condition (SP) boils down to (P). However, (SP) provides much better
fairness guarantees.

For example, a price system p defined in Example 9.1 violates (SP) for b > 1. Indeed,
fix Ri = {ai} for each voter i ∈ N and consider a payment system q = {qi}i∈N where Cq =
{c1}, qi(c1) = 1/n for each i ∈ N . Then:

(a)
∑

i∈N qi(c1) = 1 = cost(c1) (the price for Cq is paid),

(b) for each i ∈ N , qi(Cq) = 1/n < b/n = pi(Ri) ((SP-a) is satisfied),

(c) each voter gains utility 1 from both (Cp \ Ri) ∪ Cq and Cp and pays less for the out-
come (Cp \Ri) ∪ Cq ((SP-b) is satisfied).

Consequently, {Ri}i∈N and q witness the (SP) violation (we additionally depict this fact in
Figure 28). By the analogous reasoning, it is straightforward to check that the only stable
priceable outcome here is {c1, . . . , ck}.

a1

c1

c2

· · ·
cb

1

a2

2

. . . ab

b

Figure 28: An illustration that the price system from Example 9.1 is not stable. Now all the
voters can resign from paying for blue candidates and pay equally for the green one instead.
Their utility would be the same, yet all of them would pay less.

In case of priceability, only a single project was sufficient to witness the violation of (P)
and it is clear that the possible extending this condition to sets would not increase its strength.
Indeed, if the voters could additionally buy a subset of candidates, then in particular they could
additionally buy every single member of the subset.

What is more unexpected, the same holds also for stable priceability. As a result, the condi-
tion (SP) boils down to a simpler and more concise form, more similar to the one from condition
(P):
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(SP1) For each c /∈ Cp:∑
i∈N(c)

max

(
max
a∈Cp

(pi(a)) , rp,i

)
≤ cost(c) where rp,i = end− pi(Cp).

Intuitively, condition (SP1) is a simplified form of (SP) for the case where Cq = {c}
and |Ri| ≤ 1 for each i ∈ N . Then, every voter i approving the project from c can either
pay for it using only her remaining money (the case of Ri = ∅) or can resign from paying
for at most one project a ∈ Cp. In the latter case, since the utilities are approval-based (each
project for which i pays provides her the utility of 1), the most profitable choice for i is to resign
from the project for which she pays most. Then, she can use only pi(a) dollars to pay for c—
otherwise, if i spent more money, she would be less happy according to ≻. Finally, since we
require the weak inequality in (SP1), we ensure that after the change at least one voter would
spend less than end dollars and at least one voter would be strictly more satisfied according
to ≻.

From now, we will often use symbol rp,i to denote the remaining money of voter i under
price system p.

Theorem 9.4. Conditions (SP1) and (SP) are equivalent.

Proof. Suppose first that p = (end, Cp, {pi}i∈N) is a price system satisfying (SP) and not satis-
fying (SP1). Then there exists c /∈ Cp such that:∑

i∈N(c)

max

(
max
a∈Cp

(pi(a)) , rp,i

)
> cost(c).

However, then a collection {Ri}i∈N and a payment system q = ({c}, {qi}i∈N) such that:

(a) Ri = ∅ and qi(c) = rp,i for each i ∈ N(c) such that rp,i ≥ maxa∈W (pi(a)),

(b) Ri = {argmaxa∈W (pi(a))} and qi(c) = maxa∈Cp (pi(a)) otherwise,

witness violating condition (SP).
For the other direction the proof proceeds as follows. Let p = (end, Cp, {pi}i∈N) be a price

system satisfying (SP1). Assume towards a contradiction that there exist a payment system q =
(Cq, {qi}i∈N) and a collection of sets {Ri}i∈S with Ri ⊆ Cp for all i ∈ N , witnessing the
violation of (SP).

Since each voter pays only for the candidates from Cp she approves (from the definition of a
price system), without loss of generality, we can assume that Ri ⊆ Ai∩Cp for each voter i ∈ N .

Fix a voter i ∈ N . Note that:

ui((Cp \Ri) ∪ Cq)− ui(Cp) = ui(Cp \Ri) + ui(Cq \ (Cp \Ri))− ui(Cp)

= ui(Cq \ (Cp \Ri))− ui(Ri)

= ui(Cq \ Cp) + ui(Cq ∩Ri)− ui(Ri)

= ui(Cq \ Cp)− ui(Ri \ Cq).
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and:

pi(Cp)− (pi(Cp \Ri) + qi(Cq)) = pi(Ri)− qi(Cq)

= pi(Ri ∩ Cq) + pi(Ri \ Cq)− qi(Cq \ Cp)− qi(Cq ∩ Cp)

≤ pi(Cp ∩ Cq) + pi(Ri \ Cq)− qi(Cq \ Cp)− qi(Cq ∩ Cp)

(∗)
≤ pi(Ri \ Cq)− qi(Cq \ Cp).

The inequality (∗) follows from the fact that
∑

i∈N pi(c
′) =

∑
i∈N qi(c

′) = cost(c′) for all c′ ∈
Cp ∩ Cq.

Hence:

(a) inequality ui((Cp \Ri) ∪ Cq) > ui(Cp) boils down to the inequality:

ui(Cq \ Cp) > ui(Ri \ Cq),

(b) inequality pi(Cp \Ri) + qi(Cq) < pi(Cp) boils down to the inequality:

qi(Cq \ Cp) < pi(Ri \ Cq).

.
If ui(Cq \ Cp) = ui(Ri \ Cq), then |(Cq \ Cp) ∩ Ai| = |Ri \ Cq| and:

qi(Cq \ Cp) ≤ pi(Ri \ Cq) ≤ |Ri \ Cq| ·max
a∈Cp

(pi(a)) = |(Cq \ Cp) ∩ Ai| ·max
a∈Cp

(pi(a)).

On the other hand, if ui(Cq \ Cp) > ui(Ri \ Cq), then |(Cq \ Cp) ∩ Ai| > |Ri \ Cq| and:

qi(Cq \ Cp) ≤ rp,i + pi(Ri)− qi(Cq ∩ Cp)

≤ rp,i + pi(Ri \ Cq) + pi(Cp ∩ Cq)− qi(Cq ∩ Cp)

≤ (|Ri \ Cq|+ 1) ·max

(
max
a∈Cp

(pi(a)), rp,i

)
≤ |(Cq \ Cp) ∩ Ai| ·max

(
max
a∈Cp

(pi(a)), rp,i

)
.

Hence, for each voter i ∈ N we have that

qi(Cq \ Cp) ≤ |(Cq \ Cp) ∩ Ai| ·max

(
max
a∈Cp

(pi(a)), rp,i

)
.

Besides, we know that for at least one voter this inequality is strict.
We have that:

cost(Cq \ Cp) = qi(Cq \ Cp) <
∑
i∈N

(
|(Cq \ Cp) ∩ Ai| ·max

(
max
a∈Cp

(pi(a)), rp,i

))
=

∑
c∈Cq\Cp

∑
i∈N(c)

max

(
max
a∈Cp

(pi(a)), rp,i

)
.
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Finally:

0 <
∑

c∈Cq\Cp

 ∑
i∈N(c)

max

(
max
a∈Cp

(pi(a)), rp,i

)
− cost(c)

 .

Thus, there must exist c ∈ Cq \ Cp such that:∑
i∈N(c)

max

(
max
a∈Cp

(pi(a)), rp,i

)
> cost(c).

Which gives a contradiction and completes the proof.

An important consequence of Theorem 9.4 is that one can formulate a compact integer linear
program for finding SP outcomes. Let us briefly describe it below.

For each project c ∈ C we have a binary variable xc which indicates whether c is a part
of the SP outcome W . Inequalities (9.3) and (9.4) encode the feasibility and exhaustiveness
constraints for the outcome W , respectively. For each c ∈ C and i ∈ N we have a variable pi,c
which denotes the amount of money that voter i pays for c. Besides, we have a variable end
for the voters’ endowment. Then inequality (9.5) ensures that a voter will not spend more than
its initial budget. Finally, (9.6) ensures that the total payment equals cost(c) dollars for every
selected project and 0 dollars for every non-selected project. For each voter i ∈ N we also
have a variable mi, which intuitively equals to max (maxa∈W (pi,a) , rp,i)—this interpretation is
encoded in (9.7) and (9.8). The last inequality (9.9) encodes the constraint of stability (SP1).
Here we use the fact that in a feasible solution it holds that end ≤ b (otherwise, every candidate
is bought).

constraints: xc ∈ {0, 1} for c ∈ C (9.2)∑
c∈C

xc · cost(c) ≤ b (9.3)∑
c∈C

xc · cost(c) > (1− xc′)(b− cost(c′)) for c′ ∈ C (9.4)∑
c∈C

pi,c ≤ end for i ∈ N (9.5)∑
i∈N

pi,c = xc for c ∈ C (9.6)

0 ≤ pi,c ≤ mi for i ∈ N , c ∈ C (9.7)

end−
∑
c∈C

pi,c ≤ mi for i ∈ N (9.8)∑
i∈N(c)

mi ≤ cost(c) + xc · b for c ∈ C (9.9)
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Further, for a given election and an outcome W , the problem of finding a price system
supporting W and satisfying (SP1) can be formulated as a linear program, similar to the above
one (yet with constant values of xc for c ∈ C). Then we can efficiently check whether W is
SP [Khachiyan, 1979].

Corollary 9.5. Given an election and an outcome W , it can be checked in polynomial time
whether W is stable priceable.

This is in contrast to many other group fairness properties, which are CoNP-hard to check (see
the works of Aziz et al. [2018] and Brill et al. [2022]).

9.2.1 Axiomatic Properties of Stable Priceability
Let us now prove several fairness guarantees provided by stable priceability. Theorem 9.6
shows that for exhaustive outcomes, stable priceability implies core-stability, and therefore, in
turn, EJR.

Theorem 9.6. Every exhaustive stable priceable outcome is core-stable.

Proof. Suppose for the sake of contradiction that it does not hold for some election and an
exhaustive outcome W . Let p = (end, Cp, {pi}i∈N) be a stable priceable price system such
that W = Cp. Assume towards a contradiction that there exists a group of voters S and a set of
projects T such that: (i) cost(T ) ≤ b · |S|/n, and (ii) |Ai ∩ T | ≥ |Ai ∩W |+ 1 for each i ∈ S.

Since the condition (SP1) is satisfied, for each project c ∈ T \W we have that:∑
i∈N(c)

max

(
max
c′∈W

(pi(c
′)) , rp,i

)
≤ cost(c) (9.10)

Also, from the feasibility of p, for each c ∈ W (in particular, for each c ∈ T ∩W ) we have that:∑
i∈N(c)

pi(c) = cost(c). (9.11)

Now, let us sum equalities (9.10) and (9.11) over all c ∈ T , using inequality (9.10) whenever c ∈
T \W , and using equality (9.11), for c ∈ T ∩W :∑

c∈T∩W

∑
i∈N(c)

pi(c) +
∑

c∈T\W

∑
i∈N(c)

max

(
max
c′∈W

(pi(c
′)) , rp,i

)
≤ cost(T ).

Let us regroup the terms in the left-hand side of the above inequality:∑
i∈N

(
pi(Ai ∩ T ∩W ) + |Ai ∩ (T \W )| ·max

(
max
c′∈W

(pi(c
′)) , rp,i

))
≤ cost(T ).
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Next, note that since |Ai∩T | ≥ |Ai∩W |+1 for each i ∈ S, we also have that |Ai∩(T \W )| ≥
|Ai ∩ (W \ T )|+ 1. As a result, we get that:

cost(T )
(∗)
≥

∑
i∈S

(
pi(Ai ∩ T ∩W ) + (|Ai ∩ (W \ T )|+ 1) ·max

(
max
c′∈W

(pi(c
′)) , rp,i

))
≥

∑
i∈S

(
pi(Ai ∩ T ∩W ) + pi(Ai ∩ (W \ T )) + max

(
max
c′∈W

(pi(c
′)) , rp,i

))
=

∑
i∈S

(
pi(Ai ∩W ) + max

(
max
c′∈W

(pi(c
′)) , rp,i

))
=

∑
i∈S

(
pi(W ) + max

(
max
c′∈W

(pi(c
′)) , rp,i

))
.

From the definition of price system, we know that end ≥ b/n. Hence:

cost(T ) ≥
∑
i∈S

(
pi(W ) + max

(
max
c′∈W

(pi(c
′)) , rp,i

))
(∗∗)
≥

∑
i∈S

(pi(W ) + rp,i)
(∗∗∗)
≥ |S| · b/n.

If any of the above weak inequalities is strict, then we have a contradiction. Else we have
that inequalities (9.10), (∗), (∗∗) and (∗∗∗) are equalities. From that we conclude the following
facts:

1. If (∗) is an equality, then that is,|Ai ∩ (T \W )| · max (maxc′∈W (pi(c
′)) , rp,i) = 0 for

each i ∈ N \ S, hence Ai ∩ (T \W )| = 0 for each i ∈ N \ S. As a result, N(c) ⊆ S for
each c ∈ T \W .

2. If (∗∗) is an equality, then max (maxc′∈W (pi(c
′)) , rp,i) = rp,i for each i ∈ S.

3. Inequality (9.10) needs to be an equality that is,for all candidates from T \W . Fix any c ∈
T \W . From the above remarks, we can rewrite (9.10) for c as follows:∑

i∈N(c)

rp,i = cost(c)

Further:

cost(c) ≤
∑
i∈N

rp,i =
∑
i∈N

(end− pi(Cp)) = n · end(p)− cost(Cp).

Finally, as (∗∗∗) is an equality (end = b/n):

cost(c) ≤ b− cost(Cp).
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As Cp needs to be exhaustive, the last statement is a contradiction, which completes the proof.

Corollary 9.7. Every exhaustive stable priceable outcome satisfies EJR.

The core on its own is already a formidable axiom, and not known to be achievable in all
elections. Are there any advantages of considering an axiom that further strengthens the core,
and also strengthens priceability? We argue that there are several ones.

As already mentioned, a first advantage that SP has over the core is that whether an outcome
is SP can be checked in polynomial time (Corollary 9.5), whereas the same question is known
to be difficult for the core [Brill et al., 2022]. Additionally, in elections like Example 4.19
presented in the introduction, the core allows apparently unfair solutions, while SP rules them
out and allows only fairer ones.

An advantage that SP has over priceability is that SP implies the core, and in turn, EJR
(Theorem 9.6), whereas priceability does not even imply EJR (Proposition 9.2).

Finally, one advantage that SP has over both the core and priceability is that SP implies a
high proportionality degree [Skowron, 2021]. This notion, defined for the committee election
model, measures how much members of cohesive groups (defined in the same way as in case of
EJR) are satisfied on average.

Definition 9.8 (Proportionality Degree [Skowron, 2021]). A group of voters S is ℓ-cohesive
for ℓ ∈ N if

|S| ≥ ℓ

b
· n and |

⋂
i∈S

Ai| ≥ ℓ.

Let f : N → R≥0. We say that a rule R has the proportionality degree of f , if for every
committee election E, each winning committee W ∈ R(E), and each ℓ-cohesive group of
voters S, the average number of committee members a voter from S approves is at least f(ℓ),
that is, (1/|S|) ·

∑
i∈S ui(W ) ≥ f(ℓ).

Theorem 9.9. In the committee election model, every exhaustive stable priceable outcome pro-
vides a proportionality degree of ℓ− 1.

Proof. Fix an election, and consider a size-b SP committee W . Let S be an ℓ-cohesive group of
voters and let T be a set of ℓ candidates who are approved by all members of S. We will show
that an average number of representatives that the voters from S have in W equals at least ℓ−1.

Without loss of generality, let us assume that there exists a not-elected candidate c /∈ W
that is approved by all members of S (as, otherwise, the average number of representatives for
voters from S would be at least ℓ).

Note that, by the pigeonhole principle, for each voter i ∈ N (i has the right to spend end
dollars and can either save them or spend on at most |Ai ∩W | candidates) we have that:

max

(
max
c′∈W

(pi(c
′)) , rp,i

)
≥ end(p)

|Ai ∩W |+ 1
≥ b

n · (|Ai ∩W |+ 1)
.

114



By condition (SP1) applied to c, we get that:

1 = cost(c) ≥
∑
i∈S

max

(
max
c′∈W

(pi(c
′)) , rp,i

)
≥

∑
i∈S

b

n · (|Ai ∩W |+ 1)
.

By the inequality between the harmonic and arithmetic mean, we get that:∑
i∈S(|Ai ∩W |)
|S|

=

∑
i∈S(|Ai ∩W |+ 1)

|S|
− 1 ≥ |S|∑

i∈S
1

|Ai∩W |+1

− 1

≥ |S| · b
n
− 1 ≥ nℓ

b
· b
n
− 1 = ℓ− 1.

This completes the proof.

In contrast, priceability does not imply a proportionality degree better than 2 (which follows
from the proof of Proposition 9.2). As we have mentioned in Section 4.1, it is known that
EJR only implies a proportionality degree of ℓ−1/2. We can easily check that the construction
showing that this bound is tight, provided by Skowron [2021], works also for the core:

Example 9.10. Consider a committee election; let n = b2 and consider the following prefer-
ences of the voters:

b voters : {a1, . . . , ak, d1}
b voters : {a1, . . . , ak, d1, d2}
. . . . . .

b voters : {a1, . . . , ak, d1, . . . , dk}

We will prove that the committee W = {d1, . . . , dk} is in the core; yet the average satisfaction
of the b-cohesive group of all voters will indeed be equal to

(1 + 2 + . . .+ b) · b
b2

=
b− 1

2
.

Consider any group S ⊆ N of size ℓ · n/b and any committee T such that every voter from S
has more approved candidates in T than in W . Let i ∈ S be the voter from S who is the most
satisfied from W—note that group S needs to contain voters from at least ℓ different groups of
voters (each one approving a different positive number of candidates in W ), hence |Ai∩W | ≥ ℓ.
It means that committee T contains at least ℓ+ 1 candidates and is too large to witness the core
violation. ⌟

Hence, core-stability also implies proportionality degree of only ℓ−1/2.
One could ask whether similar proportionality guarantees (for example, EJR) are provided

also by non-exhaustive SP outcomes. We leave this question for future research. However,
if a large part of the budget is spent, non-exhaustive stable priceable outcomes provide good
approximations of the axioms presented above—for example, from Theorem 9.6 we can obtain
the following corollary (recall the idea of α-core-stability, Definition 4.16):
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Corollary 9.11. Every stable priceable outcome W is (b/cost(W ))-core-stable.

Proof. Directly from Theorem 9.6 and the fact that after reducing the budget from b
to cost(W ), W becomes exhaustive.

In an analogous way we obtain that also other properties of SP outcomes W regarding
EJR or proportionality degree hold for cohesive groups that are b/cost(W ) times larger than in the
original definitions of these axioms. Hence, every stable priceable outcome W such that b/cost(W )

is close to 1, provides good axiomatic guarantees.

9.2.2 Stable Priceability versus Lindahl equilibrium
The concept of stable priceability suggests there might exist a relation between our voting model
and classic market models for economies with public goods. In this section we explain this re-
lation in more detail, focusing on the most influential equilibrium concept from the literature
on public goods—the Lindahl equilibrium, which was formalized by Foley [1970]. The rela-
tion that we explain in this section: (1) gives additional insights into the concept of SP, and
(2) explains the key differences that prohibit one to use the concepts from the public economics
directly for designing voting systems.

The public economics (PE) model for participatory budgeting (PB), adapted from the work
of Foley [1970], is set up as follows. We imagine that there is a producer who will set up
the outcome in exchange for money. The production function π : 2C → R≥0 assigns to each
outcome W ⊆ C the cost to the producer of producing W .2 We assume the cost of producing a
candidate is π(W ) = cost(W ) for all W ⊆ C.

A PE price system is a pair γ = (end, {γi}i∈N), where each γi : C → R≥0 is a PE
payment function. In contrast to price systems defined in Section 4.3 (which we will fur-
ther call PB price systems), PE price systems on their own do not immediately justify pur-
chasing any set of candidates—that is, they are defined for all c ∈ C and we do not require
that

∑
i∈N γi(c) = cost(c) for any c ∈ C. However, we still keep the assumption that voters

pay only for the candidates they approve (for each i ∈ N and c /∈ Ai, γi(c) = 0). To avoid
confusion we use different symbols to denote PE and PB price systems (γ and p, respectively).

Intuitively, in a PE price system, the purchased outcome is not given upfront—it is the
producer who decides which candidates are produced. To produce an outcome W , she needs
to spend cost(W ) dollars and after that she if given

∑
i∈N γi(W ) dollars from the voters. Note

that, as a result, PE payments do not refer to the amount of money which is actually spent by

2In Foley’s model (Foley [1970]), the production function specifies how private goods can be transformed into
public goods. In our case, we assume there is only one private good, money (which represents voting power); the
candidates are the public goods. Thus, as in Foley’s model, the production function describes how private goods
can be transformed into public goods.

A crucial difference to Foley’s model is that we use an indivisible model, where each candidate can be either
bought (elected) or not, and there are no intermediate states. Due to indivisibilities, Foley’s existence proof does
not apply. Further, in our model each candidate is available in a single copy, which can affect decisions of the
producers, and thus the prices.
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the voters, as they are charged only for produced candidates—payments for the other ones do
not affect their endowment end.

An exhaustive outcome W is in Lindahl equilibrium if there exists a PE price sys-
tem γ = (end, {γi}i∈N) such that the following conditions hold:

(L1) Profit maximization: producer chooses the outcome that maximizes her profit (the differ-
ence between the total payment for the outcome and its cost).

For each outcome W ′ ⊆ C we have that:∑
i∈N

γi(W )− π(W ) ≥
∑
i∈N

γi(W
′)− π(W ′).

Note that since π(∅) = 0 the above condition implies that
∑

i∈N γi(W ) ≥ π(W ) (the total
payments payed to W are sufficient to produce W ).

(L2) Utility maximization: voters spend the money they are entitled to so that they maximize
their utility.

For each voter i, there is no outcome W ′ with γi(W
′) ≤ end and:

(ui(W
′), γi(W

′)) ≻ (ui(W ), γi(W )) .

In the divisible PE model (where we can elect candidates fractionally) the conditions (L1)
and (L2) are always satisfiable, and the resulting outcome is guaranteed to be in the core [Foley,
1970]. For us, neither is true. We start by providing an example of a profile where a Lindahl
equilibrium is not Pareto optimal, and thus is not in the core.

Example 9.12. Consider a committee election with b = 3, 3 voters and the following prefer-
ences:

1: {a, e, d1, d2, d3}
2: {e, c, d1, d2, d3}
3: {c, a, d1, d2, d3}

Let ϵ = 1/1000. Consider a PE price system in which the payments are the following:

γi(x) = 1− 4 · ϵ for i ∈ N and x ∈ {a, c, e}
γi(di) = 1− 3 · ϵ for i ∈ N

γi(dj) = ϵ for i ∈ N and i ̸= j

This price system witnesses that W = {a, c, e} is a Lindahl equilibrium. Indeed:

(a) for every x ∈ W we have that
∑

i∈N γi(x) > π(W ) and for every x /∈ W we have
that

∑
i∈N γi(x) < π(W ) (hence, (L1) is satisfied)
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(b) each voter gains utility 2 from W , and to gain a higher utility she would need to pay more
than γi(W ) ((L2) is satisfied).

Yet, W is Pareto-dominated by {d1, d2, d3}. ⌟

The problem underlying Example 9.12 is that the producer gets paid less than the cost
of d1, d2 and d3 if the producer chooses to produce these candidates. In contrast, the producer
receives a payment of almost double the cost of a, b, c for producing these candidates. Thus,
in this equilibrium, the producer is better off at the cost of consumers. In the divisible model
this issue never appears: in every Lindahl equilibrium the total payment to the producer for
producing a unit of candidate c is always equal to the cost of producing that unit. (Otherwise,
the producer would want to produce a higher quantity of c.) Since this equality is implied in
the divisible model, it is natural to add it as an additional property to our definition of Lindahl
equilibrium in the indivisible model.

We say that an outcome W is a cost-efficient Lindahl equilibrium (CELE) if there exists a
PE price system γ = (end, {γi}i∈N) that satisfies (L1), (L2), and:

(L3) Cost-Efficiency: ∑
i∈N

γi(W ) ≤ π(W ).

By (L1), the condition in (L3) could also be written as an equality. Further, by (L1) and (L3)
we can infer a seemingly stronger condition, that for each c ∈ W :∑

i∈N

γi(c) = π(c).

Theorem 9.13, below, shows a close relationship between stable priceability and Lindahl
equilibrium. Let us slightly adapt condition (SP) by removing the tie-breaking requirement
from condition (SP-a): we call the resulting solution concept strict stable priceability (SSP).
Note that from the same argument as in Theorem 9.4 we have that this definition can be written
as follows: for each c /∈ W :

∀ϵ > 0.
∑

i∈N(c)

max

(
max
a∈Cp

(pi(a))− ϵ, rp,i

)
< cost(c) where rp,i = end− pi(Cp).

As one of our main results, we can prove that SSP coincides with cost-efficient Lindahl
equilibrium.

Theorem 9.13. Cost-efficient Lindahl equilibrium results in the same fairness notion as SSP.

Proof. We first prove that the outcomes that are in a cost-efficient Lindahl equilibrium are SSP.
Consider an outcome W ⊆ C that is in the cost-efficient Lindahl equilibrium, and let γ be the
corresponding PE price system. From γ we construct the price system p = (end,W, {pi}i∈N)
witnessing SSP as follows. For each i ∈ N and c ∈ W we set pi(c) = γi(c); for c /∈ W we
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set pi(c) = 0. Note that the fact that every candidate c ∈ W is paid exactly cost(c) dollars
follows from (L1) and (L3).

We now verify that p satisfies SSP: suppose it is not the case. Then, there exists a candi-
date c /∈ W and ϵ > 0 such that:∑

i∈N(c)

max

(
max
a∈W

(pi(a))− ϵ, rp,i

)
≥ cost(c).

Consider any voter i ∈ N(c). Consider two cases:

1. maxa∈W (pi(a)) − ϵ ≤ rp,i. Then let W ′ = W ∪ {c}. Clearly, we have that ui(W
′) >

ui(W ), hence, from (L2), we have that:

γi(W
′) > end = end = pi(W ) + rp,i = γi(W ) + rp,i, (9.12)

hence γi(c) > rp,i = max (maxa∈W (pi(a))− ϵ, rp,i).

2. maxa∈W (pi(a))− ϵ > rp,i. Let a = argmaxa∈W (pi(a)). Then let W ′ = (W \ a) ∪ {c}.
From (L2), we have that either (9.12) holds and then:

γi(c) > γi(a) + rp,i ≥ max

(
max
a∈W

(pi(a))− ϵ, rp,i

)
or it needs to hold γi(W

′) ≥ γi(W ) and hence

γi(c) ≥ γi(a) = pi(a) > max

(
max
a∈W

(pi(a))− ϵ, rp,i

)
.

In any case we obtain that γi(c) > max (maxa∈W (pi(a))− ϵ, rp,i). Summing this inequality
over all i ∈ N(c):∑

i∈N(c)

max

(
max
a∈W

(pi(a))− ϵ, rp,i

)
<

∑
i∈N(c)

γi(c)
(L1)

≤ cost(c),

a contradiction.
Second, we show that an outcome W that is SSP is in a cost-efficient Lindahl equilibrium.

Consider an outcome W ⊆ C that is SSP and let p be the corresponding price system. We know
that there exists ϵ > 0 such that for all c /∈ W we have that:∑

i∈N(c)

max

(
max
c′∈W

(pi(c
′))− ϵ, rp,i

)
< cost(c).

We construct a price system γ that will witness that W is in the cost-efficient Lindahl equilib-
rium. For each i ∈ N and each c ∈ W we set γi(c) = pi(c). For c /∈ W and i ∈ N(c) we
set:

γi(c) = max

(
max
c′∈W

(pi(c
′))− ϵ, rp,i

)
.
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First let us see that
∑

i∈N γi(c) < cost(c) for all c /∈ W ; hence (L1) is satisfied. Second, observe
that for each voter i and each c /∈ W buying c costs at least the same as buying any candidate
from W ; thus, (L2) is satisfied. From the definition of price system we get cost-efficiency and
profit maximization for c ∈ W .

Based on this equivalence, we can immediately deduce several other properties of cost-
efficient Lindahl equilibria.

Corollary 9.14. Cost-efficient Lindahl Equilibria are stable priceable.

Corollary 9.15. Every outcome that is in a cost-efficient Lindahl equilibrium is in the core.

The latter result mirrors Foley’s theorem in the classical model [Foley, 1970].
Summarizing, the idea of SP is very close to the idea of Lindahl equilibrium. The key

conceptual difference is that in the public economics model, the prices of candidates and voters’
payments are fixed elements of the model. In our case, they are adjustable parts of the outcome
justification—the voters do not truly have money, they only have preferences, and spending
money is a virtual concept that we use to ensure that public decisions are fair.

9.3 Balanced Stable Priceability
So far we have considered priceability notions where two voters could face significantly dif-
ferent prices for the same project. This can seem unnatural—why does one voter need to pay
much more for the same thing as another?—and might thereby limit the usefulness of using
these price systems as explanations. Consider the following example:

Example 9.16. Consider a committee election with 12 candidates and 9 voters. The voters have
the following approval sets. All 9 voters approve candidates c1, c2, and c3. Further, voters 1, 2, 3
approve c4, c5, and c6; voters 4, 5, 6 approve c7, c8, and c9; and voters 7, 8, 9 approve c10, c11,
and c12. The committee size is b = 9. The election is depicted below.

1 2 3 4 5 6 7 8 9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

1 2 3 4 5 6 7 8 9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

Here, the committee marked green in the left-hand side of the figure is SP. The correspond-
ing price system can be the following: each from the last three voters (7, 8 and 9) pays 1/3
for each commonly approved candidate (c1, c2 and c3). The voters 1, 2, 3 pay 1/3 for candi-
dates c4, c5, and c6; the voters 4, 5, 6 pay 1/3 for candidates c7, c8, and c9. However, the commit-
tee is arguably not fair. A much better choice would be to pick the committee marked blue in
the right-hand side part of the figure. ⌟
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The reason why the SP solution from Example 9.16 is not fair is that the candidates who are
approved by all the voters (candidates c1, c2, and c3), are paid for by only a small subset of them.
Example 9.16 shows that the properties of stable priceable outcomes very much depend on the
structure of payment functions. Specifically, in Example 9.16 the payment functions were very
unbalanced. Even though all voters approved c1, only 7, 8, and 9 payed for it. In a way, the
mechanism ’stole money’ from 7, 8, and 9, depriving them the possibility of paying for other
candidates.

This example suggests that in an ideally-fair price system, all voters who enjoy the same
satisfaction from the same project should pay the same amount of money for it. We call such
price systems balanced.

9.3.1 Formal Definition
The notion of balanced stable priceability differs from the notion that we considered in Sec-
tion 9.2 in two main aspects. First, we require that the payments of any two voters, i and j, who
decide to pay for a given project c must be the same, that is, pi(c) = pj(c). Second, we allow a
voter not to pay for elected projects—but then, when considering possible deviations, the voter
takes no utility from an approved project, even if the project is elected.

Formally, we say that a price system p is balanced if the following condition is satisfied for
each i, j ∈ N :

pi(c) > 0 =⇒ pi(c) = pj(c).

For each voter i ∈ N and a balanced price system p = (end, Cp, {pi}i∈N), by Cp,i ⊆ Cp

we denote the set of projects that can be used by i (projects c ∈ Cp such that pi(c) > 0).
Analogously we define the set Cq,i for a balanced payment system q = (Cq, {qi}i∈N).

We say that a feasible balanced price system p = (end, Cp, {pi}i∈N) is balanced stable
priceable (BSP) if the following condition is satisfied:

(BSP) There exists no collection {Ri}i∈N (with Ri ⊆ Cp,i for i ∈ N ) and no balanced payment
system q such that:

(a) For each voter i ∈ N :

pi(Cp \Ri) + qi(Cq) ≤ end.

Besides, for at least one voter i ∈ N the above inequality is strict.

(b) For each voter i ∈ N :(
ui((Cp,i \Ri) ∪ Cq,i), pi(Cp \Ri) + qi(Cq)

)
⪰

(
ui(Cp,i), pi(Cp)

)
,

Besides, for at least one voter i ∈ N the above inequality is strict.
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We say that an outcome W is balanced stable priceable if there exists a balanced stable
price system p = (end, Cp, {pi}i∈N) such that W = Cp.

Intuitively, (BSP) is similar to (SP) with the additional requirement that both the original
payments and the ones witnessing the deviation need to be balanced. Besides, every voter i
gains utility only from the projects she pays for.

The green committee in Example 9.16 is not BSP. The price system given in the ex-
ample violates condition (BSP): all the voters would prefer to share the cost of project c1
(qi(c1) = 1/9 for each i ∈ N ). The first three voters would prefer to pay for c1 instead of c4
(Cq,i = {c1}, Ri = {c4}), since then the number of their representatives would not change—
recall that according to our definition of stability, a voter cannot be represented by a project for
whom she does not pay—but they would need to pay for them a smaller amount of money (they
would need to pay 1/9 dollars for c1 versus 1/3 dollars for c4). Similarly, voters 4, 5, and 6 would
prefer to pay for c1 instead of c7 (Cq,i = {c1}, Ri = {c7}). Finally, the last 3 voters would be
happy with the change (Cq,i = {c1}, Ri = {c1}) since the individual price they would need to
pay for c1 would be lower (1/9 instead of 1/3).

1 2 3 4 5 6 7 8 9

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

Figure 29: An illustration that a price system justifying the green committee in Example 9.16
is not balanced stable priceable. Now, when checking whether the price system is stable, we
assume that voters 1 − 3 gain satisfaction only from blue candidates, voters 4 − 6 only from
the yellow ones and voters 7− 9 only from the green ones. Therefore, voters from the first and
second group now have an incentive to participate in paying for green candidates.

9.3.2 Axiomatic Properties of Balanced Stable Priceability
Unlike stable priceability, BSP does not imply priceability (it is possible now that the voters
have enough unused money in total to buy a project, but cannot deviate if payments need to be
equal).

Like in the case of SP, imposing |Cq| ≤ 1 in the definition of BSP does not reduce the
strength of the notion. Indeed, below we present the analogue of Theorem 9.4 for (BSP) and a
suitably modified inequality (SP1):

(BSP1) For all projects c ∈ C and all groups of voters S ⊆ N(c):

|S|min
i∈S

si ≤ cost(c)
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where for each i ∈ N(c):

si =

pi(c) if pi(c) > 0,

max

(
maxa∈W (pi(a)) , rp,i

)
otherwise.

Theorem 9.17. Conditions (BSP1) and (BSP) are equivalent.

Proof. We first prove that condition (BSP) implies (BSP1). Indeed, assume first that there exists
a BSP price system p and a project c ∈ C such that for some S ⊆ N(c) condition (BSP1) does
not hold. As a result, it holds that:

cost(c)

|S|
< min

i∈S
si.

Consequently, for some ϵ > 0:
cost(c)

|S|
< min

i∈S
si − ϵ.

Set Cq = {c}. For each i ∈ S, qi(c) = si − ϵ and Ri is set as follows:

(a) Ri = ∅ if si = rp,i,

(b) Ri = {c}, if si = pi(c) (note that in such case c ∈ W ),

(c) Ri = argmaxa∈W (pi(a)) if si = maxa∈W (pi(a)).

Then, we can clearly see that {Ri} and q satisfy all the conditions of (BSP), hence they witness
the lack of stability.

To prove that (BSP1) implies (BSP), assume that for some balanced price system p, there
exist a balanced price system q and {Ri}i∈S , witnessing the violation of (BSP). Among all
possible witnesses, consider the one minimizing |Cq|. We will prove that in this case condition
(BSP1) is not satisfied.

Set c to the project from Cq purchased by the largest group of voters (denote that group
by S). Assume that c /∈ W . Fix any i ∈ S—note that, as payments are balanced, every voter
from S pays qi(c) dollars for c, hence:

|S| · qi(c) > cost(c) (9.13)

We know that ui(Ri) = |Ri| ≤ |Cq,i|. If we have that |Ri| = |Cq,i|, then

qi(Cq,i) < pi(Ri).

and:

qi(c) =
qi(c) · |Cq,i|
|Cq,i|

≤
∑

a∈Cq,i
qi(a)

|Cq,i|
=

qi(Cq,i)

|Cq,i|
≤ pi(Ri)

|Cq,i|
≤ |Ri| · (maxa∈W (pi(a)))

|Cq,i|

= max
a∈W

(pi(a)) ≤ max

(
rp,i,max

a∈W
(pi(a))

)
= si
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Otherwise, we have that |Ri| = ui(Ri) < ui(Cq,i) = |Cq,i| and qi(Cq,i) ≤ rp,i + pi(Ri). In this
case:

qi(c) =
qi(c) · |Cq,i|
|Cq,i|

=

∑
a∈Cq,i

qi(a)

|Cq,i|
≤

∑
a∈Cq,i

qi(a)

|Cq,i|

=
qi(Cq,i)

|Cq,i|
≤ rp,i + pi(Ri)

|Cq,i|
≤ rp,i + |Ri| ·maxa∈W (pi(a))

|Cq,i|

≤ (|Ri|+ 1) ·max (rp,i,maxa∈W (pi(a)))

|Cq,i|
≤ max

(
rp,i,max

a∈W
(pi(a))

)
= si.

Hence, in both cases we have that:

qi(c) ≤ min
i∈S

si. (9.14)

Combining (9.13) and (9.14) we obtain:

|S| ·min
i∈S

si > cost(c),

which completes the proof of the case when c /∈ W .
Now assume that c ∈ W . Let S ′ = {i ∈ N : c ∈ Cp,i}. We have three cases now:

Case 1: It holds that qi(c) ≤ pi(c) = si for every i ∈ S. Then the condition (BSP1) is clearly
violated for S and c.

Case 2: S ⊆ S ′ and it holds that qi(c) > pi(c) for every i ∈ S. Then we can remove c from
every set Ri and fix qi(c) = 0 for each i ∈ N—and the collection {Ri}i∈N together
with q would still violate condition (BSP), a contradiction (as the witness was chosen to
minimize |Cq|).

Case 3: S ⊈ S ′ and it holds that qi(c) > pi(c) for every i ∈ S. Consider a voter j ∈ S \ S ′

and set X = {i ∈ N : c ∈ Cp,i}. Set payments q′i(c) = 1/|S′|+1 for each i ∈ X ∪ {j}. It is
clear that q′i(c) = 1/|S′|+1 < 1/|S′| = pi(c) = si for i ∈ S ′. For voter j, we can repeat the
reasoning from the case c /∈ W to obtain that qj(c) ≤ sj , hence also q′j(c) ≤ sj . Finally,
set S ′ ∪ {j} and project c witness the violation of (BSP1).

This result allows us to characterize BSP outcomes as the ones that are returned by the
polynomial-time algorithm presented in Algorithm 4. This algorithm is a variant of Method of
Equal Shares, with three modifications. First, we assume that we are given the initial endow-
ment end of each voter as a part of the input. Second, the payments of the voters need to exactly
equal; if a voter cannot afford paying an equal part of a price for a candidate c she support,
she pays nothing (and hence, gains no satisfaction from c even if elected). The third modifi-
cation distinguishes demanding and strongly demanding groups of voters and only a latter is
guaranteed to be satisfied.
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Algorithm 4: Algorithm for BSP price systems
Input: An election E = (N,C, b), initial endowment end.
Output: A BSP price system p

1 for i ∈ N do
2 for c ∈ C do
3 pi(c)← 0;
4 rp,i ← end;

5 while there exists a demanding group do
6 Qa ← the demanding group minimizing cost(a)/|S|;
7 Qb ← the strongly demanding group minimizing cost(b)/|S|;
8 Qc ← either Qa or Qb, depending on some tie-breaking over demanding groups;
9 for i ∈ Qc do

10 pi(c)← cost(c)/|Qc|;
11 rp,i ← rp,i − pi(c);

12 return {pi}i∈N ;

We say that a group of voters Qc is demanding if every member of Qc approves some
project c /∈ W and has at least cost(c)/|Qc| dollars left. We say that Qc is strongly demanding
if it demanding and every voter from Qc has strictly more than cost(c)/|Qc| dollars left. Intu-
itively, every demanding group can afford to additionally buy a new project to the outcome.
Strongly demanding groups can afford to buy a project even exceeding the price. Algorithm 4
can be viewed as an algorithm greedily satisfying these demands, starting from the ones mini-
mizing cost(c)/|Qc|. If a group is not strongly demanding, it can be either considered or skipped.
The algorithm stops when there are no nonempty, non-skipped demanding groups.

Theorem 9.18. Every price system elected by Algorithm 4 is BSP. Every BSP price system is
possible to be elected by Algorithm 4.

Proof. First we show that every price system elected by Algorithm 4 is BSP. It is clear that
this price system is feasible and balanced. Now, we show that it also satisfies (BSP1). Indeed,
for the sake of contradiction suppose that it does not hold and let c ∈ C, and S ⊆ N(c) be
witnessing the violation of stable priceability. Hence, every voter v ∈ S has more than cost(c)/|S|
money left or pays for some project from W (possibly c) more than cost(c)/|S|. If for all the voters
the first option is true, then at the end of execution of the algorithm S is a strongly demanding
group, thus the algorithm would not stop. Otherwise, let c′ be the project added to W at the
earliest step such that each voter pays for c′ more than cost(c)/|S|. As the individual price for c′

is greater than for c, it needs to be the case that c′ was added to W for some demanding group
of size smaller than |S|. However, before that step, group S was a strongly demanding group.
Hence, the demanding group supporting c′ was not the largest one, a contradiction.

Now we show that every BSP price system is possible to be elected by Algorithm 4. For
the sake of contradiction suppose p = (end,W, {pi}i∈N) is a BSP price system that cannot be
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elected by Algorithm 4. Let |W | = ℓ. Enumerate the projects c1, . . . , cℓ in W by number of
voters who pay for them in the descending order and denote these groups by Qc1 , . . . , Qcℓ .
Consider a rule, which is similar to Algorithm 4, but instead of taking the demanding group Qc

minimizing cost(c)/|Qc|, considers only groups Qc1 , . . . , Qcℓ . The only difference between such a
rule and Algorithm 4 may appear if at some ith iteration, there exists some strongly demanding
group Qc which has strictly lower value of cost(c)/|Qc| than Qci . Such a group, if ignored, either
remains strongly demanding at the end of the execution of the algorithm (and then is a witness
for violating stability of W ) or stops being strongly demanding at some step (after some voters
from Qc have their initial budgets decreased). However, individual payments for the projects
added to W in further steps need to be strictly higher than cost(c)/|Qc|. Hence, Qc is still the
witness for violating stability of W .

This characterization allows us to use BSP as an explanation of the output of Method of
Equal Shares. The characterization also makes it easy to establish logical relations to other
properties; for instance, BSP implies EJR; the proof is the same as the proof that Equal Shares
satisfies EJR for approval-based utilities (which follows from Theorem 4.11). Note that here, in
contrast to SP, we do not need to require exhaustiveness.

Proposition 9.19. BSP implies EJR.

Based on the characterization from Theorem 9.18, we can design a polynomial-time heuris-
tic algorithm for finding BSP outcomes of a specified cost b. We use binary search to find the
endowment for which Algorithm 4 (as defined in Section 9.3.2) finds the outcomes of the clos-
est cost to b as possible. Besides, we do not skip demanding groups which are not strongly
demanding, until the outcome is exhaustive.

This algorithm is heuristic, for two reasons: (1) our adopted tie-breaking over demanding
groups is not the only possible one, and (2) the size of outcomes elected by Algorithm 4 is not
monotonous with respect to the initial endowment, as it has been shown in Example 3.5.

However, our experiments show that in the committee election model, this algorithm very
often successfully manages to find BSP committees.

9.4 Satisfiability of Market-Based Axioms
The most pressing question is whether exhaustive SP and BSP outcomes exist for all elections.
The answer is negative for both notions, even for the committee election model.

Theorem 9.20. There exists a committee election for which there exists no exhaustive stable
priceable committee.

Proof. Consider the following committee election with 6 voters and candidates {a, c, d, e}:

1: {a, c} 2: {a, d} 3: {a, e} 4: {c, d} 5: {c, e} 6: {d, e}

Let b = 2. As the election is symmetrical, without the loss of generality we can fix W =
{a, c}.
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Suppose that there exists a price system p = (end, Cp, {pi}i∈N) with Cp = W satisfying
(SP1). As voters pay only for approved candidates, we have that p2(c) = p3(c) = p4(a) =
p5(a) = p6(a) = p6(c) = 0. From that we obtain:

p1(a) + p1(c) + p2(a) + p3(a) + p4(c) + p5(c) = 2.

From (SP1) we have that:

rp,6 + p4(c) + p2(a) ≤ 1, because of candidate d,

rp,6 + p5(c) + p3(a) ≤ 1, because of candidate e.
Hence:

2 · rp,6 + p2(a) + p3(a) + p4(c) + p5(c) ≤ 2 = p1(a) + p1(c) + p2(a) + p3(a) + p4(c) + p5(c)

2 · end = 2 · rp,6 ≤ p1(a) + p1(c) ≤ end

a contradiction.

Theorem 9.21. There exists a committee election for which there exists no exhaustive balanced
stable priceable committee.

Let us first prove the following lemma:

Lemma 9.22. Consider a committee election, two voters i, j and a BSP price system p. If Ai =
Aj , then for each c ∈ C we have that pi(c) = pj(c).

Proof. Suppose for the sake of contradiction that there exists a candidate a for which i pays 1/xa

dollars and j pays nothing. Then either j has at least 1/xa dollars left or there exists a candidate b
for which j pays and i does not. In the first case, j prefers to join the other xa voters paying for a
(then the individual price for a decreases to 1/xa+1, which is strictly less than the amount of the
savings of j). In the second case, compare the individual payment for b (equal to 1/xb) to 1/xa.
Without loss of generality, assume that 1/xa ≤ 1/xb. Then j has an incentive to stop paying
for b and join other qa voters paying for a—then again the individual price for a decreases
to 1/xa+1, which is strictly less than 1/xb. We obtained a contradiction with the assumption that
the committee is BSP, which proves that for each c ∈ C it holds that pi(c) = pj(c).

Proof of Theorem 9.21. Let us consider the following election for n = 49,m = 46, b = 44:

Group 1 (16 voters) : {x1, . . . , x18}
Group 2 (8 voters) : {y1, . . . , y12}
Group 3 (3 voters) : {z1, . . . , z12}
Group 4 (4 voters) : {a, x1, . . . , x18}
Group 5 (6 voters) : {a, b, y1, . . . , y12}
Group 6 (4 voters) : {c, z1, . . . , z12}
Group 7 (4 voters) : {d, z1, . . . , z12}
Group 8 (2 voters) : {b, c, z1, . . . , z12}
Group 9 (2 voters) : {b, d, z1, . . . , z12}
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In total, 20 voters approve candidates {x1, . . . , x18}, 14 voters approve candi-
dates {y1, . . . , y12}, 15 voters approve candidates {z1, . . . , z12}, 10 voters approve a, 10
voters approve b, 6 voters approve c and 6 voters approve d. Further, the sets of voters
who approve x-, y-, and z-candidates are disjoint. Hence, Algorithm 4 will elect candi-
dates x1, . . . , x18, z1, . . . , z12, y1, . . . , y12 first. After that, we have at most 42 candidates elected.
As our goal is to elect a committee of size 44, the value of the voter’s endowment in a BSP price
system end should allow all those 42 candidates to be elected. After that:

1. Voters from groups 1-3 run out of approved candidates.

2. Each voter from group 4 has end− 9/10 dollars left.

3. Each voter from group 5 has end− 6/7 dollars left.

4. Each voter from groups 6-9 has end− 4/5 dollars left.

We need to elect exactly 2 more candidates. Assume for the sake of contradiction that it is
possible and let us consider all possible pairs of candidates from {a, b, c, d} as the ones that can
be included in the final committee.

Case 1: {a, b}. As we have at least 4 voters (group 6) who approve c and have end − 4/5
dollars left, the following inequality holds:

1

4
≥ end− 4

5

end ≤ 21

20
= 1.05 (9.15)

Suppose that there exist a voter paying for both a and b (from group 5). As each voter from
this group has end− 6/7 dollars left, at most 10 voters pay for a (groups 4 and 5) and at most 10
voters pay for b (groups 5, 8, 9) we would have the following inequality:

1

10
+

1

10
≤ end− 6

7

14p ≤ 70− 60p

end ≥ 74

70
≈ 1.057 (9.16)

which contradicts (9.15). Hence, we need to assume that no voter pays for both a and b. By
Lemma 9.22 we have only two cases: either no voters from group 5 pays for b or no voters from
group 5 pays for a.

If no voters from group 5 pays for b, then only at most 4 voters do so. Suppose that at least
one voter from group 8 pays for b (the case of group 9 is analogous) the individual price which
is at least 1

4
dollars. Then, 1

4
≤ end − 4

5
. In this case, all 6 voters approving c would prefer

to pay 1
6

dollars for c instead of paying for b or (in case of voters not paying for b) from their
savings—which is sufficient, as 1

6
< 1

4
≤ end− 4

5
. We obtain a contradiction.
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Now assume that no voters from group 5 pay for a. Then only at most 4 voters from group
4 do so. Then we have a following inequality:

1

4
≤ end− 9

10

end ≥ 23

20
= 1.15 (9.17)

which also contradicts (9.15).
Case 2: {a,c}. In this case, 6 voters from groups 7 and 9 shall not be able to pay for d.

Hence we have the following inequality:

1

6
≥ end− 4

5

end ≤ 29

30
< 1 (9.18)

Suppose now that only voters from group 5 pay for a. Then the following inequality needs to
hold:

1

6
≤ end− 6

7

end ≥ 43

42
> 1 (9.19)

which contradicts (9.18).
Now suppose that at least one voter from group 4 pays for a. As in total there are 10 voters

approving a, the following inequality holds:

1

10
≤ end− 9

10

end ≥ 1 (9.20)

which also contradicts (9.18).
Case 3: {a,d}. The reasoning here is analogous as in Case 2 (inequality (9.18) still holds

because of candidate c and voters from groups 6 and 8).
Case 4: {b,c}. The reasoning in this case is similar to the one in Case 1. First, note that 10

voters approving a shall not be able to pay for this candidate. Hence:

1

10
≥ end− 9

10

end ≤ 1 (9.21)

(an opposite inequality to (9.20)).
Suppose that there exist a voter paying for both b and c (from group 8). As each voter from

this group has 5−4p/5 dollars left, at most 10 voters pay for b (groups 5, 8, 9) and at most 6 voters
pay for c (groups 6, 8) we have:

1

6
+

1

10
≤ end− 4

5
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end ≥ 128

120
> 1 (9.22)

which contradicts (9.21). Hence, we assume that no voter pays for both c and b. Note that by
Lemma 9.22 we have only two cases: either voters from group 8 pay for b or for c. The second
option is not possible—if the voters pay for c, then they pay at least 1/6, while voters paying
for b pay 1/8. Hence, they have an incentive to stop paying for c and start paying for b.

Now assume that voters from group 8 pay for b. Then only at most 4 voters from group 6
pay for c. Then we have a following inequality:

1

4
≤ end− 4

5

end ≥ 21

20
> 1 (9.23)

(the opposite inequality to (9.15)), which also contradicts (9.21).
Case 5: {b, d}. This case is analogous to Case 4 (swapping candidates c and d).
Case 6: {c, d}. In this case the voters from groups 6 and 8 pay for c and the voters from

groups 7 and 9 pay for d.
Consider the group of all 10 voters approving b who may want to start paying for b (and in

case of groups 8 and 9, stop paying for c and d—as 1/10 < 1/6, it is always profitable for them).
To prevent them, the price needs to be high enough so that voters from group 5 do not have
enough money to spend. Hence we have that:

1

10
> end− 6

7

end ≤ 67

70
≈ 0.957 (9.24)

On the other hand, as at most 6 voters pay for c, we have that:

1

6
≤ end− 4

5

end ≥ 29

30
≈ 0.967 (9.25)

which contradicts (9.24).

9.4.1 Experiments on Synthetic Data
Let us now describe the experiments that we conducted for synthetic distributions of voters’
preferences. We have checked only the committee election model—we leave the experiments
with various costs of the projects for the future research. We found that it is almost always
possible to find an SP/BSP outcome spending a large part of the available budget (which in
case of SP, as we noted before, guarantees good proportionality properties). Then we can spend
the remaining part in a different way or complement the outcome with a different algorithm,
obtaining an outcome large part of which is SP/BSP.
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Datasets

We generated committee elections randomly from the following models:

1D-Euclidean model. In this model the voters and candidates are represented as points in the
one-dimensional Euclidean space. The points were selected uniformly at random form
the interval [0, 1]. The approval ballots were created in one of the following two ways:

1. For each candidate we chose uniformly at random the length of the radius of the
approval ball—every candidate was approved only by the voters inside her ball.

2. The radii were chosen for each voter, and every voters approved the candidates
inside her ball.

In our results, we refer to these two models as "1D Euclidean 1" and "1D Euclidean 2".

2D-Euclidean model. Here, we represent the voters and the candidates as points in the Eu-
clidean plane [0, 1] × [0, 1]. The points were generated as follows. We first generated
between 1 and 5 points of concentration of the voters and the candidates. Next, we ran-
domly divided the voters and the candidates so that each of them was assigned to one
point of concentration. Finally, for each voter and candidate we selected their position
from the normal distribution with the center at the corresponding point of concentration
and with the standard deviation set to 0.2.

We generated the approval-ballots from the positions of the voters and the candidates
similarly as in the first case in the 1D-Euclidean model.

Impartial Culture model. Here, each candidate was approved by each voter with probabil-
ity 1/2.

Mallow’s model. Here we first generate a ordinal preference profile according to the mix-
ture of three Mallow’s models [Mallows, 1957]. The parameters ϕ for the three mod-
els were generated uniformly at random from [0, 1]; the reference rankings were also
selected uniformly at random. Next, for each voter we selected uniformly at random a
position ϱ ∈ [0; 0.25·m], and made this voter approve the first ϱ candidates in her ranking.

Pólya-Eggenberger urn model. Here our model is parameterized by the size of the approval
sets α and the replacement value β. At first, we consider an urn containing all the candi-
dates; for each voter we draw α candidates from the urn uniformly at random, and each
time we return to the urn β copies of the selected candidate—increasing the probability
that next time the same candidate would be chosen again. In our tests parameter α was
chosen uniformly at random from interval [1; 0.1 ·m], and parameter β was chosen in two
ways:

1. uniformly at random from interval [0; 0.1 ·m],

2. uniformly at random from interval [0; 0.25 ·m].

In our results, we refer to these two models as "Urn 1" and "Urn 2".
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Results for BSP

Let us first describe the results of the experiments for BSP committees for n = 100 voters
and m = 30 candidates. The value of the b was sequentially increased, covering all the values
from [m]. For each b and each model with specific values of the parameters was run at least 1000
experiments. Thus, in total we checked 1000 · 30 · 7 = 210000 elections.

In Table 9.3 we present the results for existence for every model with fixed parameters and
every value of b. Summarizing, in most cases BSP committees exist— 2D Euclidean model
appeared to be the worst one, especially when b ≥ 20. Therefore, in Table 9.4 we present the
additional results for that model, showing that in most cases, even if BSP committees do not
exist, they exist for slightly decreased committee size b.

Results for SP

In case of SP, we were able to perform tests for n = 100 voters and m = 30 candidates
(analogous as in case of BSP) for all models except for Impartial Culture. In case of this model,
because of complexity issues we decided to reduce the number of voters to 50 and the number
of candidates to 15 (the number of experiments for each b ∈ [m] remained 1000). Furthermore,
the results (when b is small) were the worst for this model, even on such reduced elections
(which is somehow surprising, as they were the best in case of BSP). The detailed results—in
particular, checking how much we need to deviate b to obtain SP—are presented in Table 9.1.

For other models—also for Euclidean 2D, which appeared to be the worst for the existence
of BSP—it was hard to even find any election not satisfying SP, as we can see in Table 9.2.

b Existence Max
non-exhaustiveness

Average
non-exhaustiveness

2 587 1 1.00
3 649 2 1.76
4 842 3 2.58
5 948 4 3.46
6 968 5 4.41
7 999 6 6.00

Table 9.1: The detailed results of the experiments for the existence of SP committees under the
Impartial Culture model. We present here only the values of b for which exhaustive outcomes
do not exist in some of the sampled elections. We present (1) the number of elections (out of
1000) where SP committees exist, (2) the maximal difference between the size of SP committee
and b among the elections where SP committees do not exist, (3) the average difference between
the size of SP committee and b among the elections where SP committees do not exist.
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b 1D Euclidean 1 1D Euclidean 2 2D Euclidean IC Urn 1 Urn 2 Mallows

1 1000 1000 1000 1000 1000 1000 1000
2 1000 1000 996 587 1000 990 996
3 1000 1000 1000 649 1000 1000 997
4 1000 1000 1000 842 1000 1000 1000
5 1000 1000 1000 948 1000 1000 1000
6 1000 1000 1000 968 1000 1000 1000
7 1000 1000 1000 999 1000 1000 1000
8 1000 1000 1000 1000 1000 1000 1000
9 1000 1000 1000 1000 1000 1000 1000
10 1000 1000 1000 1000 1000 1000 1000
11 1000 1000 1000 1000 1000 1000 1000
12 1000 1000 1000 1000 1000 1000 1000
13 1000 1000 1000 1000 1000 1000 1000
14 1000 1000 1000 1000 1000 1000 1000
15 1000 1000 1000 1000 1000 1000 1000
16 1000 1000 1000 - 1000 1000 1000
17 1000 1000 1000 - 1000 1000 1000
18 1000 1000 1000 - 1000 1000 1000
19 1000 1000 1000 - 1000 1000 1000
20 1000 1000 1000 - 1000 1000 1000
21 1000 1000 1000 - 1000 1000 1000
22 1000 1000 1000 - 1000 1000 1000
23 1000 1000 1000 - 1000 1000 1000
24 1000 1000 1000 - 1000 1000 1000
25 1000 1000 1000 - 1000 1000 1000
26 1000 1000 1000 - 1000 1000 1000
27 1000 1000 1000 - 1000 1000 1000
28 1000 1000 1000 - 1000 1000 1000
29 1000 1000 1000 - 1000 1000 1000
30 1000 1000 1000 - 1000 1000 1000

Table 9.2: Existence of SP committees for various values of b under various sampling models.
For the Impartial Culture model, the number of candidates was reduced to 15 for complexity
reasons. The case where for all 1000 sampled elections we have found exhaustive SP commit-
tees was marked with green, while the case where we have found exhaustive SP committees for
less than 95% of sampled elections was marked with red. In particular, we can easily see that
the worst results were obtained for Impartial Culture.
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b 1D Euclidean 1 1D Euclidean 2 2D Euclidean IC Urn 1 Urn 2 Mallows
1 1000 1000 1000 1000 1000 1000 1000
2 1000 1000 1000 1000 1000 1000 1000
3 1000 999 999 1000 1000 1000 1000
4 996 998 999 1000 995 1000 1000
5 998 999 993 1000 999 1000 1000
6 995 999 996 1000 999 1000 999
7 991 998 989 1000 992 999 999
8 996 998 991 1000 991 998 998
9 991 999 993 1000 986 999 998
10 995 997 985 1000 981 998 998
11 997 999 992 1000 976 998 995
12 995 999 994 1000 972 999 999
13 994 999 988 1000 978 997 995
14 993 999 989 1000 981 999 998
15 994 998 983 1000 971 999 997
16 995 1000 980 1000 980 999 996
17 994 1000 970 1000 976 999 994
18 992 998 962 1000 979 998 996
19 994 997 960 1000 994 997 998
20 994 998 930 1000 983 1000 998
21 995 998 905 1000 998 1000 997
22 995 999 887 1000 997 999 996
23 989 999 872 1000 1000 1000 995
24 994 998 855 1000 1000 1000 996
25 997 997 865 1000 1000 1000 997
26 992 998 856 1000 1000 1000 1000
27 994 998 891 1000 1000 1000 999
28 998 1000 891 1000 1000 1000 1000
29 1000 994 934 1000 1000 1000 1000
30 1000 1000 1000 1000 1000 1000 1000

Table 9.3: Existence of BSP committees for various values of b under various sampling models.
The case where for all 1000 sampled elections we have found exhaustive BSP committees was
marked with green, while the case where we have found exhaustive BSP committees for less
than 95% of sampled elections was marked with red. In particular, we can easily see that the
best results were obtained for Impartial Culture and the worst ones for 2D Euclidean.
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b Existence Max
non-exhaustiveness

Average
non-exhaustiveness

3 999 1 1.00
4 999 1 1.00
5 993 1 1.00
6 996 1 1.00
7 989 1 1.00
8 991 1 1.00
9 993 1 1.00
10 985 2 1.20
11 992 1 1.00
12 994 1 1.00
13 988 1 1.00
14 989 1 1.00
15 983 1 1.00
16 980 4 1.30
17 970 2 1.30
18 962 3 1.13
19 960 3 1.30
20 930 3 1.17
21 905 3 1.22
22 887 4 1.28
23 872 3 1.23
24 855 5 1.22
25 865 5 1.30
26 856 4 1.27
27 891 3 1.21
28 891 4 1.17
29 934 3 1.15

Table 9.4: The detailed results of the experiments for the existence of BSP committees under
2D-Euclidean model. We present here only the values of b for which exhaustive outcomes do
not exist in some of the sampled elections. We present (1) the number of elections (out of 1000)
where BSP committees exist, (2) the maximal difference between the size of BSP committee
and b among the elections where BSP committees do not exist, (3) the average difference be-
tween the size of BSP committee and b among the elections where BSP committees do not exist.
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9.4.2 Experiments on the Real-Life Data
Let us now present the results of the experiments using the real-life data from Pabulib. Here
for complexity reasons we present only the results for balanced stable priceability. The devel-
opment of faster ways of computing SP outcomes so that they can be applied to the data from
Pabulib is left for future research.

We have performed experiments for the citywide elections in all the cities that are currently
available on Pabulib. Here we present only the results for the greatest ones (Gdańsk, Kraków,
Warsaw, Wrocław), yet the remaining results are consistent. As we can see, only in two pre-
sented elections (Gdansk 2020, Kraków 2019) we have found exhaustive BSP outcomes. How-
ever, in all of them we have found BSP outcomes spending over 92% of the available budget,
and in multiple cases we have spent nearly 100% of the budget. It shows that even if we can-
not find an exhaustive BSP outcome, it is easy to find the one spending a large fraction of the
available budget.

Election Exhaustive Budget used (PLN) Available budget (PLN) Ratio

Gdańsk 2020 ✓ 17,408,200 18,543,608 94%
Kraków 2018 11,467,289 12,455,000 92%
Kraków 2019 ✓ 29,978,087 30,000,000 100%
Kraków 2020 31,938,940 32,000,000 100%
Kraków 2021 34,928,590 34,999,991 100%
Kraków 2022 37,829,973 37,999,992 100%
Warsaw 2017 57,953,933 58,046,682 100%
Warsaw 2018 61,237,180 61,294,114 100%
Warsaw 2019 64,372,671 64,647,778 100%
Warsaw 2020 82,598,915 83,111,363 99%
Warsaw 2021 82,819,186 83,111,363 100%
Warsaw 2022 93,458,653 93,575,094 100%
Warsaw 2023 100,135,016 101,130,815 99%
Wroclaw 2015 59,897,250 60,000,000 100%
Wroclaw 2016 17,771,000 18,000,000 99%
Wroclaw 2017 17,370,000 18,000,000 96%
Wroclaw 2018 18,176,000 18,250,000 100%
Wroclaw 2019 24,682,000 25,000,000 99%
Wroclaw 2020 24,300,000 25,000,000 97%
Wroclaw 2021 24,285,000 25,000,000 97%

Table 9.5: The existence of BSP outcomes on the citywide data from Pabulib. We present (1)
the information whether the found BSP committee W is exhaustive, (2) the cost of W , (3) the
available budget b, (4) the value of the fraction cost(W )/b, rounded to the nearest whole percent
(in particular, the value "100%" means here over 99.5%).
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9.5 Market-Based Axioms for Cardinal Utilities
Our notions extend naturally to the more general setting of cardinal utilities. The definitions
of stable priceability (SP, condition (SP)), strict stable priceability (SSP, condition (SP) without
the tie-breaking condition in (SP-a)), and Lindahl equilibrium remain unchanged.

Note that the original definition of a price system required that no voter pays for projects
she gains no utility from. This restriction was well-justified in the approval-based setting, but in
the general PB model it would have a significantly limited scope of impact (it would not put any
restrictions on the payments when the utilities ui(c) are very small, yet still positive). Besides,
it is implied by (SP):

Observation 9.23. Consider a price system p, a project c ∈ C and a voter i ∈ N such
that ui(c) = 0. If p is stable priceable, then pi(c) = 0.

Proof. Indeed, otherwise it would be enough to consider a payment system q with an empty Cq

and set Ri = {c} (Rj = ∅ for all j ̸= i). It is clear that such a construction witness the violation
of (SP).

For balanced stable priceability (BSP), we only change the definition of a balanced price
system. Now instead of requiring that the payments for each purchased project c are equal for
all the voters, we require that they are proportional to their utilities from c. Formally, for each
project c, there exists a value ρ(c) such that for each voter i ∈ N :

pi(c) > 0 =⇒ pi(c) = ρ(c) · ui(c).

Except for that change, the definition of BSP remains unchanged.
Unfortunately, the simpler formulation of both SP and BSP ((SP1) and (BSP1), respectively)

does not hold in the cardinal model. It implies that our ILP formulation of SP is no longer valid.
Besides, now BSP cannot be characterized by a Equal-Shares-like algorithm (electing in each
step project c minimizing ρ(c)), as we can see in the following example:

Example 9.24. Consider an election with one voter i and two projects c1, c2. We have
that cost(c1) = 1, ui(c1) = 1, cost(c2) = 3, ui(c2) = 2. Let b = 3. Now Equal Shares
would elect {c1} (with ρ(c1) = 1), while {c2} witness the violation of BSP. ⌟

On the other hand, an SP price system p now does not need to imply the core (unless we
require end > b/n), as it can be seen by the following example:

Example 9.25. Consider a committee election with four voters, b = 2 and the following pref-
erences:

u1(a) = 1 u1(b) = 0 u1(c) = 0

u2(a) = 1 u2(b) = 2 u2(c) = 0

u3(a) = 0 u3(b) = 2 u3(c) = 1

u4(a) = 0 u4(b) = 0 u4(c) = 1
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Now the committee W = {a, c} is SP as witnessed by the following price system with end =
1/2: p1(a) = p2(a) = p3(c) = p4(c) = 1/2. However, the group S = {2, 3} and a committee T =
{b} witness the core violation. ⌟

The main idea of the above example is that the middle voters have only the enough amount
of money to buy {b, c}, but not to overpay for it (as required by the condition (SP)). Actually, it
turns out that this is the only reason why SP committees may fail core-stability; consequently,
it is still implied by SSP.

Proposition 9.26. Strict stable priceability implies core-stability.

Proof. Consider an outcome W that is SSP, and for the sake of contradiction assume W is not in
the core. Then, there exists S ⊆ N and T ⊆ C with cost(T ) ≤ b · |S|/n such that ui(W ) < ui(T )
for all i ∈ S. Let us choose the witness so that |T | is minimized. We set Ri = W for all i ∈ S;
for i /∈ S we set Ri = ∅.

Now the only issue is whether we can construct a payment system q = (W, {qi}i∈N) sup-
porting W . Note that for every project c ∈ T , the number of voters in group S ′ ⊆ S gaining
positive utility from c is at least n/b · cost(c). Indeed, if T = {c} it is clearly the case; otherwise
the set T \ {c} together with group S \ S ′ would be the smaller witness.

Note that this is an analogous result to Lemma 7.8 proved in Section 7.1 for weakly cohesive
groups chosen by Greedy Cohesive Rule; consequently, we obtain the required payment system
via the analogous construction to Lemma 7.9.

Theorem 9.27. Every outcome that is in a cost-efficient Lindahl equilibrium is strictly stable
priceable. The other implication does not hold.

Proof. Consider an outcome W ⊆ C that is in the cost-efficient Lindahl equilibrium, and let γ
be the corresponding price system. From γ we construct the price system p witnessing stable
priceability as follows. The initial endowment in p is the same as in γ. For each i ∈ N
and c ∈ W we set pi(c) = γi(c); for c /∈ W we set pi(c) = 0. Note that from (L1) and (L3) the
price system is feasible.

Let us now prove that p is SSP. Suppose it is not and let us fix a payment system q and a
collection {Ri}i∈N witnessing the SSP violation. Fix a voter i ∈ N and let W ′ = (W \Ri)∪Cq.
Observe that if ui(W

′) > ui(W ), then by (L2) γi(W ′) > maxj∈N γj(W ) and so:

qi(Cq) ≤ rp,i + pi(Ri) = end− pi(W \Ri) = max
j∈N

γj(W )− γi(W \Ri)

≤ max
j∈N

γj(W )− γi(W
′) + γi(Cq) < γi(Cq).

On the other hand, if ui(W
′) = ui(W ) then either γi(W

′) > maxj∈N γj(W ) (and we obtain
the estimation as above), or γi(W ) < γi(W

′). In the latter case we get that:

qi(Cq) < pi(Ri) = γi(Ri) = γi(W )− γi(W \Ri)

< γi(W
′)− γi(W \Ri) ≤ γi(Cq).
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In any case, we get that qi(Cq) ≤ γi(Cq). By (L1) we get that for each c ∈ Cq we
have

∑
i∈N γi(c) ≤ cost(c). Thus, we can continue as:

cost(Cq) ≤
∑
i∈N

qi(Cq) <
∑
i∈N

γi(Cq) ≤ cost(Cq).

Which proves that p is indeed SSP.
Second, we show a committee election and an outcome that is strictly stable priceable, but

which is not in a Lindahl equilibrium. We have four candidates, a1, a2, d1, d2, and two voters.
The budget is b = 2. The voters’ preferences and the costs of the candidates are summarized in
the table below.

candidate cost u1(·) u2(·) p1(·) p2(·)
a1 ϵ 6 0 ϵ 0
a2 2− ϵ 1 3 1− ϵ 1
d1 1 2 2 0 0
d2 1 2 2 0 0

For this election, outcome A = {a1, a2} is stable priceable with the initial endow-
ments end = 1. The corresponding price system p is also given in the above table. To see
that p is SSP, consider all possible values of Cq—namely {d1}, {d2} and {d1, d2}.

If Cq = {d1} or Cq = {d2}, then it needs to hold that S = {1} and R1 ⊆ {a2} (voter 2
does not pay for a1 and will decrease her utility if she resigned from a2; voter 1 will decrease
her utility if she resigned from a1). Then q1(Cq) ≤ p1(a2) ≤ 1− ϵ < cost(Cq), a contradiction.

If Cq = {d1, d2} and S = {1, 2}, then R1 ⊆ {a2} (voter 1 will decrease her utility if
she resigned from a1) and R2 ⊆ {a2} (voter 2 does not pay for a1). Then

∑
i∈S qi(Cq) ≤∑

i∈S pi(a2) ≤ 2 − ϵ < cost(Cq), a contradiction. Naturally, taking smaller set S will even
decrease value

∑
i∈S qi(Cq).

Yet, given the initial endowment end = 1, the outcome {a1, a2} is not in the cost-efficient
Lindahl equilibrium. For the sake of contradiction, assume that {a1, a2} is in the cost-efficient
Lindahl equilibrium. Then, γ1(a1) = ϵ and γ2(a1) = 0. Further, it must also be the case
that γ1(a2) = 1− ϵ and γ2(a2) = 1. Further, since voter 1 prefers d1 to a2 and d2 to a2, it must
hold that γ1(d1) > 1 − ϵ and that γ1(d2) > 1 − ϵ. Also, γ2(d1) + γ2(d2) > 1. This means that
the sum of the prices for d1 and d2 is at least 3 − 2ϵ, thus it exceeds the cost of producing d1
and d2, and so it violates (L1). This gives a contradiction, and completes the proof.

9.6 Conclusion
To conclude, in this chapter we have introduced two market-based solution concepts for the
PB setting with approval-based utilities that allow to reason about, explain, and justify fair-
ness of the outcome of an election to voters. We have shown relations between our notions of
(balanced) stable priceability and known concepts of fairness and stability from the literature,
such as EJR, core, proportionality degree, and Lindahl equilibrium. We have characterized the
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outcomes satisfying market-based axioms using simpler formulas, which allowed us to obtain
more efficient algorithms for finding SP and BSP outcomes. Notably, we have characterized a
close variant of Method of Equal Shares as the only rule that returns BSP outcomes. Although
exhaustive SP/BSP outcomes do not always exist, through experiments we have shown that our
algorithms can effectively find (balanced) stable priceable outcomes that are almost exhaustive.
Both market-based axioms can be extended to be model with arbitrary cardinal utilities, yet
in this model they lose some of their good properties. Therefore, the problem of designing
proportionality notions for this setting based on the idea of a fair market remains open.
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Summary

Within the dissertation, we have studied the problem of participatory budgeting. We have fo-
cused on the algorithms for counting votes that aim to proportionally represent the preferences
of the voters. We have studied both the special case of the committee election model, as well as
the model with arbitrary project costs. We have considered several types of voters’ preferences,
with different levels of complexity, showing how the difficulty of certain problems depends on
the type of voters’ preferences and how certain concepts designed for one model can be applied
to another one. In particular, we have considered the model in which voters’ preferences are
given in a form of cardinal utilities, as well as the model in which we have access only to or-
dinal preferences. Within the model of cardinal utilities, we have also considered the restricted
domains of approval-based and approval-based cost utilities.

Our most important contribution is Method of Equal Shares, a simple and intuitive
polynomial-time computable algorithm. We have presented a versatile argumentation in favor
of this method. In particular, in Chapter 4 we have shown that this rule provides strong fairness
guarantees in a very general model of PB with arbitrary costs and arbitrary cardinal utilities
of the voters. The rule provides a high level of satisfaction for cohesive groups of voters and
balances equally the influence of the voters on the elected outcome. Both properties were for-
malized by us through two axioms: Extended Justified Representation up to one project (EJR-1)
and priceability. Additionally, we have shown that Equal Shares provides a good approximation
of the core, one of the strongest known notions of proportionality considered in the literature.

Moreover, those good theoretical properties of Method of Equal Shares are also preserved
when the rule is adapted to ordinal preferences (see Chapter 6). The variant of the rule for
ordinal preferences also satisfies the strongest known axiom that has been proposed specifically
for this setting, namely Inclusion Proportionality for Solid Coalitions.

Apart from good behavior in theory, in Chapter 5 we have argued that Equal Shares can
be successfully used in real-life PB elections. We have provided a large dataset of elections
from the Polish cities of various size, Pabulib, and conducted experiments on this dataset. The
results appeared to be very consistent, showing undoubtedly that using Equal Shares instead of
current solutions results in electing outcomes that provide a comparable level of total voters’
satisfaction (efficiency) and at the same time spread this satisfaction much more equally among
the voters. This was not a foreseeable result, since in theory proportionality can enforce us to
significantly decrease the efficiency of an outcome.

Based on our experiments, we have prepared a detailed recommendation for the cities which
exact variant of Equal Shares should be used. We have also shown that if a city uses approval
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ballots the definition of the rule can be presented in a more straightforward way. This is an
interesting observation, since our experiments suggest that outcomes elected by Equal Shares
under approval ballots should not differ much from the ones elected under more general score
ballots.

For the time being, our method has been used by two Polish communities (Wieliczka and
Świecie) and one Swiss city (Aarau). While the results for Świecie will be only available in
2024, we can already say that using Equal Shares in Wieliczka and Aarau led to improving the
quality of elected outcomes compared to the alternative scenario in which the traditional method
was used (we have discussed this in Chapter 1).

Method of Equal Shares is already well-established in the research community, which man-
ifests itself in the number of various research groups that study and further extend our concept
(see, for example, [Benade et al., 2023, Lu et al., 2023, Boehmer et al., 2023, Brill and Peters,
2023, Brill et al., 2023, Maly et al., 2023, Aziz et al., 2023]).

The second part of the dissertation has been devoted to the study the notions of proportion-
ality stronger than the ones satisfied by Method of Equal Shares. We have started by proposing
an axiom called Full Justified Representation (FJR) that provides stronger proportionality guar-
antees for cohesive groups than EJR-1 (see Chapter 7). To the best of our knowledge, this is the
strongest currently known axiom of this type that is satisfiable. However, the only algorithm
that is known to satisfy FJR (Greedy Cohesive Rule, GCR) is exponential-time computable.
Besides, it is custom-engineered to satisfy this particular axiom which makes it less flexible and
natural than Equal Shares.

In Chapter 8 we have studied the notion of the core in the approval-based and ordinal com-
mittee election model under specific restricted domains of voters’ preferences. Intuitively, under
such domains voters and candidates can be ordered in a way preserving some specific structure
(for example, corresponding to their placement in one-dimensional Euclidean space). We have
shown that then core-stability is satisfiable in polynomial time, contrary to the case of unre-
stricted cardinal utilities (where core-stability is not satisfiable) or approval-based ones (where
the problem of satisfiability of the core is still open). However, the rule satisfying this notion is
custom-engineered to work for elections with restricted domains and cannot be easily extended
in a reasonable way to the general model. On the other hand, no other well-established propor-
tional rule (including Equal Shares) is core-stable even under restricted domains. Therefore, the
problem of designing such a rule (well-defined and proportional in general case and satisfying
the core for well-structured preferences) remains open.

Finally, in Chapter 9 we have extended the intuitively appealing axiom of priceability so
that it provides much stronger fairness guarantees, in particular, stronger than the core or EJR.
This approach resulted in two mutually incomparable axioms, stable priceability (SP) and bal-
anced stable priceability (BSP). The outcomes satisfying the first axiom are always core-stable,
provide high utility on average to cohesive groups of voters. Moreover, stable priceability is
very closely related to the well-established idea of Lindahl equilibrium. On the other hand, the
guarantees provided by BSP to cohesive groups are also strong (this axiom implies EJR) and the
justification of outcomes provided by this axiom is more intuitively appealing, ruling out some
unbalanced stable priceable outcomes. Both for SP and BSP axioms, exhaustive outcomes satis-
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fying them may not exist, yet our preliminary experiments suggest the SP/BSP outcomes close
to being exhaustive often do.

Concluding the second part of the dissertation, we do not know a voting rule that is as
strong and universal as Method of Equal Shares. Most of the known notions of proportionality
that are violated by this rule are unsatisfiable in general. Even if for some axioms it is not the
case, the only known algorithms satisfying them lack the versatility of Equal Shares—they are
specifically designed to satisfy only one precise proportionality axiom.

In the future, our research may lead to designing proportionality definitions and algorithms
for even more complex settings. Let us complete the dissertation by discussing one of the
possible extensions of our model.

In the dissertation we have assumed that every subset of projects whose total cost fits in the
available budget can be selected. Sometimes it is not the case, for example if multiple projects
are planned to be conducted in the same location. Moreover, the election designer might want
to add some constraints, for example, requiring that at least 30% of the budget should be spent
on building green areas. In general, instead of just one feasibility constraint (the budget), we
can have several ones. Designing and analyzing proportional algorithms for this setting appears
now to be an interesting challenge for the future research.
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Stolicki, Stanisław Szufa, and Nimrod Talmon. Participatory budgeting: Data, tools and
analysis. In Proceedings of the 32nd International Joint Conference on Artificial Intelligence
(IJCAI-2023), pages 2667–2674, 2023.

Michal Feldman, Amos Fiat, and Iddan Golomb. On voting and facility location. In Proceedings
of the 17th ACM Conference on Economics and Computation (EC-2016), page 269–286,
2016.

Duncan K. Foley. Lindahl’s solution and the core of an economy with public goods. Economet-
rica, 38(1):66–72, 1970.

Allan Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587–601, 1973.

Zhihao Jiang, Kamesh Munagala, and Kangning Wang. Approximately stable committee selec-
tion. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC-2020), pages 463–472, 2020.

Leonid G. Khachiyan. A polynomial algorithm in linear programming (english translation). In
Soviet Mathematics Doklady, volume 20, pages 191–194, 1979.

Joseph Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-
esis. Psychometrika, 29(1):1–27, 1964.

Martin Lackner and Piotr Skowron. Approval-based committee voting. In Multi-Winner Voting
with Approval Preferences, pages 1–7. Springer, 2022.

Martin Lackner, Jan Maly, and Simon Rey. Fairness in long-term participatory budgeting.
In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-
2021), pages 299–305, 2021.

Dean Lacy and Emerson M. S. Niou. A problem with referendums. 12(1):5–31, 2000.

147



Jérôme Lang and Lirong Xia. Voting in combinatorial domains. In Handbook of Computational
Social Choice. 2016.

Jean-François Laslier. The strange “majority judgment”. Revue économique, 70(4):569–588,
2019.

Xinhang Lu, Jannik Peters, Haris Aziz, Xiaohui Bei, and Warut Suksompong. Approval-based
voting with mixed goods. In Proceedings of the 37th AAAI Conference on Artificial Intelli-
gence (AAAI-2023), pages 5781–5788, 2023.

Krzysztof Magiera and Piotr Faliszewski. Recognizing top-monotonic preference profiles in
polynomial time. Journal of Artificial Intelligence Research, 66:57–84, 2019.

Colin L. Mallows. Non-null ranking models. I. Biometrika, 44(1-2):114–130, June 1957.

Jan Maly, Simon Rey, Ulle Endriss, and Martin Lackner. Fairness in participatory budgeting via
equality of resources. In Proceedings of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2023), pages 2031–2039, 2023.

Borys Martela, Liliana Janik, and Kamil Mróz. Barometr budżetu obywatelskiego. 2023.
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Appendix A

Pabulib: Data Format

In this section we define the .pb format, which we recommend for storing PB elections.
The data concerning a single PB election is stored in a single UTF-8 text file with the

extension .pb. The file should consists of three sections:

META section containing general information about the election, such like the country, the
budget, and the number of votes.

PROJECTS section specifying the costs of the projects and optionally providing additional
information about the projects, such as their categories.

VOTES section listing all votes cast in the election, optionally with additional information
about the respective voters (for example, their age, sex, etc.). We support four types of
ballots: approval, score, ranking (ordinal) and cumulative.

Below we present a simple example of a PB file.
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META
key; value
description; Municipal PB in Wieliczka
country; Poland
unit; Wieliczka
instance; 2020
num_projects; 5
num_votes; 10
budget; 2500
rule; greedy
vote_type; approval
min_length; 1
max_length; 3
PROJECTS
project_id; cost; category
1; 600; culture, education
2; 800; sport
4; 1400; culture
5; 1000; health, sport
7; 1200; education
VOTES
voter_id; age; sex; vote
1; 34; f; 1,2,4
2; 51; m; 1,2
3; 23; m; 2,4,5
4; 19; f; 5,7
5; 62; f; 1,4,7
6; 54; m; 1,7
7; 49; m; 5
8; 27; f; 4
9; 39; f; 2,4,5
10; 44; m; 4,5

Now let us describe the format in more detail.

Detailed Description
The fields marked with the bold font are obligatory.
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META

• key

∗ description
∗ country
∗ unit: the name of the municipality, region, organization, etc., holding the PB pro-

cess.

∗ subunit: the name of the sub-jurisdiction or category of the particular election.

– Example: in Paris, a single edition of participatory budgeting consists of 21 in-
dependent elections—there is one election concerning citywide projects and 20
local elections, one per each district. For the election with citywide projects, the
field unit is set to Paris, and subunit is undefined; for the district elections,
the field unit is also Paris, and the subunit is the name of the respective
district (for example, IIIe arrondissement).

– Example: before 2019, in Warsaw there were two types of local elections: dis-
trict elections and neighborhood elections. For all of them, the field unit is
set to Warsaw; the field subunit is the name of the district (for district elec-
tions) or the name of the neighborhood (for neighborhood elections). In order
to connect neighborhoods with their districts, an optional field district can
be used.

– Example: suppose that in a given city, there is a separate election for each
of n > 1 categories (for example, environmental projects, transportation
projects, cultural projects, etc.). For each such an election the field unit is
set to the city name; the field subunit is set to the name of the respective
category.

∗ instance: a unique identifier of the participatory budgeting edition (for example,
year, edition number, etc.). Note that the year specified in the field instance
does not necessarily correspond to the year in which the elections were held—some
organizers identify the edition by the fiscal year in which the projects are carried
out.

∗ num_projects
∗ num_votes
∗ budget: the total amount of funds

∗ vote_type: the type of ballots used in the election. The library currently supports
four types of ballots:

– approval: each vote is a vector of Boolean values, v ∈ {0, 1}|P |, where P is
the set of all projects,

– ordinal: each vote is a permutation of a subset Q ⊆ P such that |Q| ∈
[min_length, max_length], corresponding to a strict preference order over Q,
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– cumulative: each vote is a vector v ∈ R|P |
+ such that

∑
p∈P v[p] ≤

max_sum_points ∈ R+,
– scoring: each vote is a vector v ∈ I |P |, where I ⊆ R.

∗ rule: the name of the rule that was used in the election. Currently we support the
following rules:

– greedy: this corresponds to the costwise Utilitarian Greedy rule,
– other rules will be defined in the future versions.

∗ date_begin: the date when the process of collecting ballots started.

∗ date_end: the date when the process of collecting ballots ended.

∗ language: the language of the descriptions of the projects (that is, full names of
the projects)

∗ edition
∗ district
∗ comment
∗ if vote_type = approval:

– min_length [default: 1]
– max_length [default: num_projects]
– min_sum_cost [default: 0]
– max_sum_cost [default:∞]

∗ if vote_type = ordinal:

– min_length [default: 1]
– max_length [default: num_projects]
– scoring_fn [default: Borda]

∗ if vote_type = cumulative:

– min_length [default: 1]
– max_length [default: num_projects]
– min_points [default: 0]
– max_points [default: max_sum_points]
– min_sum_points [default: 0]
– max_sum_points

∗ if vote_type = scoring:

– min_length [default: 1]
– max_length [default: num_projects]
– min_points [default: −∞]
– max_points [default:∞]
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– default_score [default: 0]

∗ non-standard fields

• value: the value of the corresponding field.

Section 2: PROJECTS

• project_id

• cost

• name: the full name of the project.

• category: the list of tags depscribing the project, separated with commas; for example:
education, sport, health, culture, environmental protection, public space, public transit,
roads.

• target: type voters that might be especially interested in the project. For example:
adults, seniors, children, youth, people with disabilities, families with children, animals.

• non-standard fields

Section 3: VOTES

• voter_id

• age

• sex

• voting_method (for example, paper, Internet, mail)

• if vote_type = approval:

∗ vote: identifiers of the approved projects, separated with commas.

• if vote_type = ordinal:

∗ vote: identifiers of the selected projects, from the most preferred to the least pre-
ferred one, separated with commas.

• if vote_type = cumulative:

∗ vote: identifiers of the projects, separated with commas; projects not listed are
assumed to get 0 points. Projects are listed in the decreasing order of the number of
points they got from the voter,
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∗ points: points given to the projects, listed in the same order as the project identi-
fiers in the field vote.

• if vote_type = scoring:

∗ vote: project identifiers, separated with commas; projects not listed are assumed
to get default_score points. Projects are listed in the decreasing order of the
number of points they got from the voter.

∗ points: points given to the projects, listed in the same order as the project identi-
fiers in the field vote.

• non-standard fields

155


	Introduction
	Our contribution
	Impact of Our Results on the Real World
	Other Possible Applications of our Research

	The Model
	Preferences
	Ballots
	Relation Between Preferences and Ballots
	Approval and Score Ballots
	Ranking Ballots

	Voting Rules
	The Committee Election Model

	I Method of Equal Shares for Participatory Budgeting
	The Description of Method
	Technical Details
	Examples
	Special Case: Approval-Based Utilities
	Special Case: Approval-Based Cost Utilities
	General Case

	Exhaustive Variants of Equal Shares

	Axiomatic Properties of Equal Shares
	Extended Justified Representation (EJR)
	Approximation of the Core
	Priceability of Equal Shares

	Evaluation of Equal Shares on the Real-Life Data
	Basic Metrics of Fairness and Efficiency
	The Comparison of Different Completions of Equal Shares
	The Comparison of Equal Shares and Utilitarian Greedy
	Basic Metrics
	Budget Distribution among Categories
	Maps of Participatory Budgeting Elections

	Discussion over the Types of Ballots

	Method of Equal Shares for Ordinal Preferences
	Equal Shares and Proportionality for Solid Coalitions
	The Costwise Ordinal Variant of Equal Shares


	II Beyond Equal Shares: Stronger Notions of Proportionality
	Full Justified Representation and the Greedy Cohesive Rule
	Priceability of the Greedy Cohesive Rule
	Drawbacks of the Greedy Cohesive Rule
	Inefficiency on (Nearly) Laminar Profiles
	Unproportionality for Ordinal Preferences


	The Core under Restricted Domains
	Restricted domains
	Ordinal preferences
	Approval-based preferences

	The Analysis of Known Voting Rules
	The Description of the Main Algorithm
	Weak Ordinal Preferences
	Fractional Committees
	Quantile Rule

	The Analysis of Quantile Rule
	Core-Stability for Fractional Committees
	Discrete Core-Stability for Approval LC Elections
	Discrete Core-Stability for Ordinal r-STC Elections

	Extensions, Discussion and Open Questions
	Core-Stability versus (Full) Local Stability
	Linearly Consistent versus Seemingly Single-Crossing Preferences
	Open Questions


	Market-Based Axioms
	Payment Systems
	Stable Priceability
	Axiomatic Properties of Stable Priceability
	Stable Priceability versus Lindahl equilibrium

	Balanced Stable Priceability
	Formal Definition
	Axiomatic Properties of Balanced Stable Priceability

	Satisfiability of Market-Based Axioms
	Experiments on Synthetic Data
	Experiments on the Real-Life Data

	Market-Based Axioms for Cardinal Utilities
	Conclusion

	Summary
	Bibliography
	Pabulib: Data Format


