University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

o
.

mgr Grzegorz Gora

Combining instance-based learning and

rule-based methods for imbalanced data
PhD dissertation

Supervisor

Professor Andrzej Skowron

(emeritus professor)

December 2021

Author’s declaration:
aware of legal responsibility T hereby declare that I have written this dissertation
myself and all the contents of the dissertation have been obtained by legal means.

December 30, 2021

date Grzegorz Gora

Supervisor’s declaration:
the dissertation is ready to be reviewed

December 30, 2021

date Andrzej Skowron

Abstract

This thesis presents methods and systems for learning concepts from examples
considering two levels of data difficulty represented by balanced and imbalanced data.
However, we focus more on imbalanced data.

The RIONA algorithm combines instance- and rule-based approaches. It uses
rules with conditions expressing groups of values for both numerical and symbolic
attributes. Using the neighbourhood of a test case (instead of the whole training
set) of appropriate size, it is both fast and effective (in classification). Additionally,
searching for the optimal neighbourhood size is also done efficiently. RIONA is
showing the accuracy comparable to the well-known systems.

RIONIDA is an extension of RIONA for imbalanced data. Additionally, RIONIDA
combines instance- and rule-based approaches in another aspect, namely by using
special rules that are more general than in RIONA. RIONIDA realises a few additional
ideas compared to RIONA: optimisation of the explicitly given performance measure,
weights for two classes, the idea of scaled rules, optimisation of parameters related
to two latter ideas. RIONIDA is relatively fast and significantly outperforms
state-of-the-art algorithms analysed in the thesis.

Presented and proved theoretical results for RIONA and RIONIDA help:
(i) to make the produced classifiers explainable, and (ii) to accelerate RIONIDA.

Streszczenie

Rozprawa przedstawia metody i systemy uczenia sie poje¢ z przyktadow dla
danych zbalansowanych i niezbalansowanych ze szczeg6lnym uwzglednieniem tych
drugich.

Algorytm RIONA laczy podejscie oparte na instancjach i regutach. Stosuje
on reguty z warunkami grupujacymi wartosci dla atrybutéw numerycznych, jak i
symbolicznych. Dzieki uzyciu otoczenia obiektu testowego (zamiast calego zbioru
uczacego) z wlasciwie dobranym rozmiarem, jest on zaréwno szybki, jak i skuteczny
(w klasyfikacji). Takze wyszukiwanie optymalnego rozmiaru otoczenia jest szybkie.
Algorytm RIONA wykazuje skutecznosé porownywalna ze znanymi systemami.

Algorytm RIONIDA jest rozszerzeniem algorytmu RIONA dla danych
niezbalansowanych. Laczy on podejscie oparte na instancjach i regulach w nowy
sposéb stosujac specjalne reguty, bardziej ogélne niz w RIONA. RIONIDA realizuje
kilka dodatkowych idei w poréwnaniu do RIONA: optymalizacje jawnie podanej
miary jakosci, wagi dla dwoch klas, skalowane reguly, a takze optymalizacje
parametrow dla dwoch poprzednich idei. Algorytm RIONIDA jest stosunkowo szybki
i daje istotnie lepsze wyniki niz znane algorytmy analizowane w pracy.

Wyniki teoretyczne pomagaja w: (i) tworzeniu klasyfikatorow z wlasnoscia
wyjasnialnosci dla obu algorytméw oraz (ii) przyspieszeniu algorytmu RIONIDA.

Keywords

Classification, Supervised learning, Instance-based learning, k nearest neighbours,
Rule induction, Multi-strategy learning, Imbalanced learning, Explainability

ACM Computing Classification (rev.2012)

Computing methodologies — Machine learning — Learning paradigms +— Supervised
learning +— Supervised learning by classification

Computing methodologies — Machine learning — Machine learning approaches —
Instance-based learning

Computing methodologies — Machine learning — Machine learning approaches —
Rule learning

Information systems ~— Information systems ~— applications +— Data mining —
Nearest-neighbor search

Tytul pracy w jezyku polskim

Laczenie metody bazujacej na instancjach z metoda indukcji regut dla danych
niezbalansowanych

Contents

1 Introduction

1.1
1.2

1.3
1.4
1.5
1.6
1.7

2.1
2.2

2.3

2.4

2.5

2.6

Motivations e
Aim of the thesis and sketch of the results
1.2.1 RIONA — an algorithm for balanced data
1.2.2 RIONIDA - an algorithm for imbalanced data
Comments on some problems related to imbalanced data
Results of the thesis
The organisation of the thesis
Collaboration
Software

Basic notions

Learning concepts from examples
Similarity and metrics in machine learning
2.2.1 Metrics for numerical attributes
2.2.2 Metrics and pseudometrics for symbolic attributes
2.2.3 Pseudometrics use in the thesis
Selected methods in machine learning
2.3.1 Rule-based methods
2.3.2 Lazy rule learning for symbolic attributes.
2.3.3 Instance-based learning
Imbalanced data
2.4.1 Basic definition of imbalanced data and its drawbacks
2.4.2 Different factors of the difficulty of imbalanced data
2.4.3 Types of examples indicating the complexity of the data sets .
2.4.4 Drawbacks of imbalanced data analysis by the standard

learning algorithmso
Existing methods for imbalanced data..
2.5.1 Data-level approaches
2.5.2 Algorithm-level approaches
2.5.3 Cost-sensitive learning Lo
254 Onmeclasslearning 0oL
2.5.5 Ensemble methods
Evaluation of learning algorithms
2.6.1 Performance measures
2.6.2 Estimation of the chosen performance measure

3

11
12
13
13
14
16
20
20
21

23
23
25
27
27
29
31
31
36
39
40
40
41
44

CONTENTS

2.6.3 Selection of data sets for evaluation 57
2.6.4 Statistical tests Lo 58
2.6.5 Selecting the best learning algorithm for real-life data sets . . 60
2.6.6 Conclusions about the evaluation of learning algorithms 60
2.7 Summary of the chapter 60
RIONA 63
3.1 Main ideas behind the RIONA algorithm 63
3.2 Extension and generalisation of lazy rule learning 64
3.2.1 Extension of lazy rule learning for numerical attributes 65
3.2.2 Generalisation of lazy rule learning for symbolic attributes . . 67
3.3 Combining instance-based learning and rule methods — RIONA . .. 71
3.3.1 Some specific situations 74
3.3.2 Time complexity of RIONA for the testing phase 76
3.3.3 Further acceleration of RIONA 76
3.3.4 Relationships of RIONA to other approaches 7
335 RIONA andrules 80
3.4 Estimating the optimal neighbourhood size 81
3.4.1 Efficient learning of the optimal parameter £ 81
3.4.2 Bound of the parameter £ 84
3.4.3 Comments on the structure of RIONA 87
3.5 Experimental properties of RIONA 87
3.5.1 RIONA versus other algorithms and different settings for RIONA 89
3.5.2 RIONA versus ONN 90
3.6 Extensions of RIONA 90
3.6.1 Indexing tree for fast searching for the nearest neighbours . . 90
3.6.2 Different types of voting 91
3.6.3 Different weights for attributes 91
3.6.4 Extensions of SVDM pseudometric for numerical attributes . . 91
3.6.5 K nearest neighbours with local pseudometric induction 92
3.7 Other possible extensions of RIONA 92
3.8 Conclusions for RIONA 92
RIONIDA 95
4.1 Main ideas behind the RIONIDA algorithm 95
4.2 Extension of generalised local decision rule 96
4.3 RIONIDA description 98
4.3.1 Selection of performance measure for optimisation 101
4.3.2 Choice of the neighbourhood size 101
4.3.3 Balancing Sensitivity and Specificity 102
4.3.4 Default candidate for parameter p 107
4.3.5 Choice of scaling factor in the sg-rule 118
4.3.6 Some specific situations L 119
4.4 Estimating the optimal values of parameters for RIONIDA 121
4.4.1 Efficient learning of the optimal values of parameters for
RIONIDA 121

4.4.2 Bounds on the values of parameters k, p, s 122

CONTENTS 7

4.4.3 Comments on the structure of RIONIDA 126
4.5 Time and space complexity of RIONIDA 126
4.5.1 Time complexity of RIONIDA for the testing phase 126
4.5.2 Time and space complexity of RIONIDA for the learning phase 127
4.5.3 Further acceleration of RIONIDA 128
4.6 Important aspects of RIONIDA 130
4.6.1 Interpretation of the behaviour of RIONIDA 130
4.6.2 Optimisation of the explicit performance measure 131
4.7 Conclusions for RIONIDA 131
5 Experiments and results 135
5.1 General experimental setup 135
5.1.1 Performance measure 136
5.1.2 Estimation of the chosen performance measure 136
5.1.3 Selection of data sets for evaluation 136
5.1.4 Statistical testso 142
5.1.5 Selecting the best learning algorithm for real-life data sets . . 142
5.2 Learning algorithms and filters used in comparative experiments . . . 143
5.2.1 Configuration and AF-learner 143
5.2.2 Algorithms used in comparative experiments 144
5.2.3 Configurations of algorithms used in comparative experiments 146
5.2.4 Configuration of filters used in comparative experiments . . . 148
5.2.5 AF-learners used in comparative experiments 151
5.2.6 Selection of the representative scores for learning algorithms . 153
5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 163
5.3.1 Comparison of algorithms for G-mean 163
5.3.2 Comparison of algorithms for F-measure 173
5.3.3 Conclusions for G-mean and F-measure 182
5.4 Additional comments on experiments L. 182
5.4.1 Studying the role of RIONIDA components 183
5.4.2 The balance-scale data set and outliers 183
5.4.3 Analysis of the optimal values of parameters obtained in the
learning phase of RIONIDA 184
5.4.4 Analysis of running time of RIONIDA 187
5.5 Additional experiments and their analysis 192
5.5.1 RIONIDA with filters 193
5.5.2 Additional comparison of RIONIDA with RIONA 193
5.5.3 Additional comparison of RIONIDA with BRACID 199
5.5.4 The RIONIDA quality analysis for different settings specific to
RIONIDA 205
5.5.5 The RIONIDA quality analysis for different RIONIDA settings
adopted from RIONA 209
5.5.6 The RIONIDA quality analysis for different extended versions
of RIONIDA 213
5.6 General summary of the described experiments. 217

8 CONTENTS

6 Final conclusions 221
6.1 SUmMmary e e 221
6.2 Future works 222

Appendices 225

A Counter example for specific form of general rules 227

B An example of the macro- or micro-averaging of results of

cross-validation 229
C Remark on the localisation of the optimal parameter p 231
References 232
Index 250
Abbreviations 253

List of Symbols 255

Chapter 1

Introduction

One of the main research domains of Artificial Intelligence (see e.g. [177]) is Machine
Learning (ML) (see e.g. [99, 149]). The most common task in ML is classification,
which assigns to any given object description a decision from a finite set of decisions.

A specific sub-task of classification is supervised learning [149] (in short, learning).
In this sub-task, a finite set of objects (also called cases, examples or instances),
labelled by the known decisions, is given. This set is called a training set. The aim is
to predict the decision of any new unseen object, called the test object. ML algorithms
construct from training sets classifiers (usually based on induced data models) that
provide decisions for test objects. The thesis distinguishes between classification
algorithm (in short, classifier) and learning algorithm. A classifier classifies any test
example based on its description, whereas a learning algorithm applies to a wide range
of domains producing a classifier based on a given training set. Numerous learning
algorithms have been developed so far (see e.g. [99, 149, 216, 226|), yet new ones are
still being proposed. The most popular learning algorithms include: decision trees
(see e.g. [169]), rule induction (see e.g. |72, 146]), support vector machines (see e.g.
[203, 235]), instance-based learning (see e.g. [7]), simple Bayesian classifiers (see e.g.
[54]), artificial neural networks (see e.g. [162]), ensemble learning (see e.g. [50]), and
random forests (see e.g. [32]). Within the thesis, we focus on the development of
new learning algorithms that draw particularly from two groups of techniques listed
above, namely rule induction and instance-based learning.

Recently, much scientific effort has been put into supervised learning that concerns
learning from so-called imbalanced data. The problem of learning from imbalanced
data is well known in the literature (see e.g. [62, 101, 102, 116, 139, 152, 209]). In
classification tasks for imbalanced data the correct classification of objects into one
specific decision class is much more important than into others. For the classification
task with a binary decision, which we focus on in the thesis, there is just one class
of special importance. Usually, this class includes a much smaller number of objects
than the other one. Therefore it is referred to as the minority class and the other one
as the majority class. As an example of such a problem, one can consider a popular
case study from biomedical data analysis related to Mammography data set (used
in our experiments). It contains images acquired from a series of mammography
examinations performed on a set of distinct patients [37, 224|. The objective here
is to predict for a new patient, based on the training set of images, whether this

10 1. Introduction

patient is cancerous or healthy. The class of cancerous patients is much smaller and
simultaneously much more crucial with respect to correct classification than the class
of non-cancerous ones.

At the beginning, while working with imbalanced data, it is worth asking why
the standard classifiers (i.e. classifiers induced by learning algorithms designed for
balanced data) do not work well with such data? There are at least the following
four reasons for that:

e Standard classifiers aim to maximise the classification accuracy (expressed by
the number of correct predictions made by classifier divided by the total number
of predictions made). However, for imbalanced data, this performance measure
is inadequate.

e The construction of standard classifiers in case of imbalanced data leads to
achieving a rather low accuracy rate for the minority class while achieving high
accuracy rate for the majority class (see e.g. [102]).

e Standard algorithms identifying noisy examples, i.e. training objects with
incorrect decision labels, do not distinguish between the decisions labelling them
into majority or minority classes. If an example truly belonging to the minority
class is identified as noisy, or a truly noisy example from the majority class is
not identified as such, then classification of the objects from the minority class
gets complicated (see e.g. [139]).

e Standard classifiers assume equal misclassification costs for all classes. However,
the misclassification cost can be often much higher for the minority class than
for the majority class (as in the case of the mentioned Mammography data set).

In recent years, the problem of learning from imbalanced data (the imbalanced
learning problem) has become a big challenge (see [229]). Many methods for dealing
with this problem have been proposed (see e.g. |31, 36, 38, 62, 95, 101, 102, 116, 121,
139, 152, 195|). Basically, these methods can be divided into two groups: data-level
solutions and algorithmic-level solutions (see e.g. [195]).

Data-level solutions transform (using methods called filters) the original data set
into a new one and then apply a standard classifier to it. In this approach, one can
distinguish the following approaches of data transformation: over-sampling methods,
which increase the cardinality of the minority class (see e.g. |20, 37, 63, 179, 204]),
under-sampling methods, which decrease the cardinality of the majority class (see
e.g. [196, 214]), and hybrid methods, which combine the previous two approaches
(see e.g. [14]).

Algorithmic-level solutions relate to the development of algorithms that take into
account the problem of imbalanced data. Here, one can distinguish the following
approaches: adapting existing algorithms originally developed for balanced data by
introducing bias toward the minority class (see e.g. [40, 52, 56, 90, 105, 123, 130, 135,
136, 153, 227, 228]), one class learning (see e.g. [111, 142, 143, 174]), cost-sensitive
learning (see e.g. [45, 57, 69, 132]), and ensemble methods (see e.g. [139]).

1.1 Motivations 11

1.1 Motivations

In the thesis, we focus on a specific approach for imbalanced data combining
instance-based learning and rule-based methods. In the past, there have been
some attempts to combine instance- and rule-based approaches, however only for
balanced data (see e.g. [53, 128]). Nonetheless, at least two reasons are advocating
for developing such approaches not only for balanced but also for imbalanced data.

First, both approaches use reasoning schemes easily understandable by a human.
Such schemes include rules in the form of

If some conditions are satisfied, then the decision is X

which are often used by humans. Analogously, the reasoning scheme of the form

Since our new example A
ts the most simailar to another known, examined example B,

then example A should have the same decision as example B

used in instance-based learning, is also easily understandable by humans. Because
of this, such approaches meet the requirements for ML systems to be explainable.
Together with the decision for the given test object the classifying system should
provide an explanation for this decision understandable by the user. In the last years,
one can observe rapidly increasing importance of this issue in real-life applications.
This is related to the topic of so-called Explainable Artificial Intelligence (see e.g.
[3, 55, 94]).

Second, there are some intuitions, following from mathematical considerations,
suggesting the use of instance-based learning, perhaps in combination with rule
induction. The rule-based approaches are examples of a two-stage procedure. At
the first stage, we induce (estimate) the unknown decision function. At the second
stage, we apply this induced function to classify test examples. However, Vapnik
observed that the decision function estimation is a much more general problem than
we usually need to solve in practice. In most of the cases, we only need to estimate
the unknown decision function at ‘a few’ new points defined by test objects (see [203,
p. 12]). He suggests that if one needs to infer decisions for new cases based on small
training sets, one should take into account the following principle:

If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the available
information is sufficient for a direct solution but is insufficient for solving
a more general intermediate problem. [203]

This principle suggests that using instance-based approaches can be relevant. It
also applies to methods combining instance-based approaches with other ones.

Well known among instance-based methods are kNN algorithms. This class of
algorithms was included in the list of the top ten most influential data mining
algorithms [226]. In the simplest case, it returns the decision of the training example

12 1. Introduction

most similar to the test case. In general, these algorithms base the classification on
the number of occurrences of classes of the k most similar examples to the test one
— forming a set of examples sometimes called the neighbourhood of the test case.
The similarity is measured by a certain distance function, called also metric. The
performance of the kNN method strongly depends on the metric (distance) used.
Numerous papers propose different solutions for inducing a metric from data (see e.g.
[106, 127, 186, 230]). Also, the quality of kNN usually strongly depends on the value of
k. In practice, estimation of the optimal k is often done by cross-validation technique
(see e.g. [180]). Generally, there exist a number of approaches to automatically select
the optimal value of k (see e.g. [35, 39, 77-79, 237, 239]).

Rule-based methods represent patterns-laws by if-then decision rules relating
some conditions with some decisions. Among the rule-based methods, several
approaches can be distinguished (see e.g. |72] for an overview of these methods).
Generally, rule-based methods can be characterised by their three important
components related to the following questions:

1. What is the description language of the rules?
2. How is the set of rules generated?

3. How the obtained set of rules is used for the process of classification? (Usually,
it is related to the so-called conflict resolution.)

Considering the first question, the vast majority of approaches use the conjunction
of conditions (descriptors) of the form attribute = value in the predecessor of the
rule, and decision = value in the successor of the rule. However, other approaches
exist as well, e.g. monotonic rules (see e.g. [26]). In relation to the second question,
two main approaches can be distinguished: induction of a minimal set of rules (see
e.g. |42, 68, 71, 86, 147, 188|), and induction of a non-minimal set of rules (see
e.g. |72, 86, 183|). As regards the third question, one can distinguish the following
approaches: algorithms producing an ordered set of rules (see e.g. [41, 42]), and
different strategies for the conflict resolution (see e.g. [189] for review of this issue).

Among algorithmic-level solutions for imbalanced data, many rule-based methods
exist (see e.g. [176], see [152, Chapter 4] for an overview). As mentioned previously,
the thesis focuses on methods for the classification of imbalanced data combining
instance- and rule-based approaches.

1.2 Aim of the thesis and sketch of the results

The main aim of the thesis is to develop learning algorithms based on the combination
of instance- and rule-based methods with the high quality of classification for different
types of data sets. We deal with this aim in two steps by proposing the RIONA
algorithm for balanced data and the RIONIDA algorithm for imbalanced data. We
show on a specific example of the RIONA algorithm how to generalise the algorithm
structure for balanced data to make it effective for imbalanced data, which leads
to the RIONIDA algorithm. A straightforward approach is to apply a filter for
imbalanced data before using the RIONA algorithm. However, in the thesis, we

1.2 Aim of the thesis and sketch of the results 13

propose a different approach, namely the approach based on a modification of the
RIONA algorithm to make it relevant for imbalanced data.

1.2.1 RIONA - an algorithm for balanced data

In the first step we propose the Rule Induction with Optimal Neighbourhood
Algorithm (RIONA) [81]. The algorithm combines instance- and rule-based
approaches and was developed to be competitive with other methods concerning
the performance measure known as the accuracy (see e.g. [109]). The algorithm is
based on a few ideas.

e RIONA computes rules in a lazy manner (see e.g. |6]), that is it induces a very
limited set of decision rules relevant only for the test example. This is a different
strategy than inducing a large number of decision rules in advance to use them
during testing.

e The classification performed by RIONA on a given test object is based on rules
induced only from the neighbourhood of the given test example. Note that a
small number of rules is sufficient when the lazy approach is applied.

e We use a different kind of rules than those commonly used in rule-based
approaches, where conditions are of the form: attribute equal to the specific
value. In RIONA, more general rules are used with conditions of the form:
attribute belongs to a set of values. These sets of values are specified by grouping
both numerical and symbolic values of attributes. In voting for the decision by
rules covering the example being classified, the aggregation of the support sets
of such rules is used.

e RIONA constructs object neighbourhoods of the optimal size.

e The notion of similarity between objects is essential for RIONA for two
purposes: (i) constructing the neighbourhood for a given object, and (ii)
grouping values of attributes.

The performed experiments reported by the author of the thesis (see [81]) and in the
literature (see e.g. [8, 48, 84, 85, 178]) show that RIONA is competitive with many
other well-known systems.

1.2.2 RIONIDA - an algorithm for imbalanced data

It turns out that RIONA has some drawbacks characteristic for the standard
algorithms running on imbalanced data. Here, comes the second step of the thesis’s
aim. Now, the objective is to modify the proposed algorithm combining instance-
and rule-based methods (RIONA) for improving its performance on imbalanced
data. Namely, in the second step we propose the Rule Induction with Optimal
Neighbourhood for Imbalanced Data Algorithm (RIONIDA). All the ideas listed in
previous subsection for RIONA are also realised in the RIONIDA algorithm. This
new algorithm realises a few new ideas in comparison with RIONA.

14 1. Introduction

e RIONIDA tries to maximise not accuracy, but one of the performance measures
much more relevant for imbalanced data, like F-measure or G-mean (see e.g.
[18, 109]).

e Conflict resolution of rules in RIONIDA is more sophisticated than in RIONA.
The aggregation of decisions of rules covering classified objects is defined using
the property that the minority class is ‘more important’ than the majority
class. The phrase ‘more important’ is expressed by the importance degree. The
importance degree of the minority class (and in consequence of the majority
one) is tuned during learning.

e Rules inconsistent to a certain degree are allowed. The level of inconsistency is
also tuned during learning.

RIONIDA significantly outperforms tested in the thesis state-of-the-art methods
developed for imbalanced data. This fact is illustrated in the thesis on several
benchmarks (see Chapter 5).

The approach used in developing RIONIDA is different from the ones presented
in the literature. To our knowledge the only algorithm designed for imbalanced data
analysis that combines the instance- and rule-based approaches and at the same time
belongs to the algorithmic level approach (which modify algorithms for balanced data)
is BRACID (see e.g. [152, 153]). BRACID is a modification of the RISE algorithm
to make it applicable for imbalanced data. There are some substantial differences
between BRACID and RIONIDA. First, BRACID calculates rules in the learning
phase (in advance), while RIONIDA does it in the testing phase (i.e. according to
the lazy approach). Second, BRACID starts from rules equivalent to instances and
induces quasi-optimal rules for the given data set. RIONIDA adopts a different
strategy and takes into account a large space of parametrised rules formulated in
a specific language. Note that different parametrisations correspond to different
approaches, including a pure instance-based approach, a pure rule-based approach,
and the approaches that combine them. For the given data set, RIONIDA selects the
optimal parameter settings of rules, and does it very efficiently. Third, BRACID
optimises rules for F-measure, while RIONIDA can optimise any performance
measure specified by a user (defined on the basis of confusion matriz), and does
it effectively.

1.3 Comments on some problems related to
imbalanced data

In the thesis, we concentrate on some problems concerning the analysis of imbalanced
data. However, in general, such analysis may encompass many other issues. Several
of them are covered in the thesis only marginally or not covered at all and are left
for further studies. Some of them are shortly discussed below.

The solutions presented in the thesis for imbalanced data are directly applicable
only for binary classification problems. In the case of imbalanced data sets with
multiple-classes, one may solve the original classification problem by transforming it

1.3 Comments on some problems related to imbalanced data 15

into a family of binary classification subproblems and appropriately joining the partial
solutions (see e.g. [60, 62]). Nevertheless, the classification of imbalanced data sets
with a multiple-class problem has its own specific difficulties. Generally, we do not
deal with this problem in the thesis.

Closely related to the field of imbalanced data is the problem of outlier detection
(see e.g. [4, 100]). Moreover, for certain applications, these issues overlap substantially
(see e.g. [4]). Tt is not our aim in the thesis to study the outlier detection problem.
Here we would only like to note the relationship between these issues.

In the developed in the thesis algorithms, we also implemented a heuristic for
dealing with missing values in data sets. However, the problem of missing values is
not the one on which this thesis is focused on. Problems related to the analysis of
data with missing values have been studied for many years (see e.g. [88, 182]). This
problem was also studied in the context of imbalanced data (see e.g. [234]).

Learning of similarity measure between objects (or metric) is the crucial issue for
instance-based approaches. In the thesis, we use metrics' that are well known from
the literature. These metrics depend on data sets (are computed using the training
set). The problem of learning metrics (or similarity) from data is a separate issue
widely studied in the literature (see e.g. [19, 107]).

Our approach encompasses the grouping of attribute values. This can be
considered as searching for new features. However, in the thesis, we do not deal
in a deeper sense with the problem of searching for new features as, for example,
deep-learning does (see e.g. [105]). In a sense, we try to explore what can be done by
using either basic or compound, but not very sophisticated, features which are ‘close
to features defined directly on sensory data’.

The algorithms presented in the thesis could be used to construct more compound
classifiers, e.g. ensemble classifiers (see e.g. [139]) with use of RIONIDA (or/and
RIONA) and other state-of-the-art algorithms. Such combinations can potentially
produce classifiers with better performance than each of the partial classifiers. We
treat it as a separate investigation issue.

It should be noted that solving real-life problems with imbalanced data often may
require developing new methods, different than the ones used in the thesis. In general,
one should be able to join such models as presented in the thesis and logical reasoning
using expert-knowledge, e.g. expressed in a fragment of natural language (see e.g.
[200], [232], [165]). One must also take into account the fact that the reasoning often
should concern not only a static world but also one that changes over time (see e.g.
[199, 207]). Moreover, in practice, it is often essential to analyse what will happen if
we take action related to the decision indicated by the classifier. In other words, one
should assess the risk by applying risk management techniques, which become more
and more important in recent years (see e.g. [104], [119]).

In the thesis, we use a prior: fixed performance measure. In practice, it may need
to be learned based on data from an expert, dialogue with an expert, or background
knowledge. Moreover, the perception processes grounded in the real world, related
to classified complex situations should be taken into account. The mentioned above
issues are essential for real-life problems, although not covered in the thesis.

'In fact we use metrics or pseudometrics. For simplicity we do not distinguish between them in
this introductory chapter.

16 1. Introduction

1.4 Results of the thesis

The main results of the thesis consist of construction and analysis of two learning
algorithms: RIONA and RIONIDA. The first algorithm is dedicated to balanced
data, while the second one is dedicated to imbalanced data. The RIONA algorithm
and its primary analysis were done jointly by the author of the thesis and Arkadiusz
Wojna (see [81-83|). The work concerned with the RIONIDA algorithm was done by
the author of the thesis.

In the thesis, we focus more on the imbalanced learning problem. Therefore the
RIONIDA algorithm is the most crucial for the thesis. Nevertheless, the RIONA
algorithm is an essential step in constructing RIONIDA. However, as RIONA is
relevant only for balanced data, we do not present a full analysis of it. In particular,
we do not present in detail the comparison of RIONA with other algorithms relevant
for balanced data that are known from the literature, but we only add references to
the published papers related to the RIONA performance where such comparisons are
included.

The main idea of the RIONA algorithm is to combine the two widely-used
empirical approaches to learning from examples, namely instance-based learning and
rule induction. The RIONA algorithm possesses several properties important for
constructing appropriate classifiers for balanced data. Constructing an algorithm
that provides all these properties is a challenge and constitutes a significant result of
the thesis. Below, we shortly describe these properties.

1. The RIA algorithm is a particular case of RIONA with the whole support set
(i.e. the whole training set is treated as the neighbourhood of the test case).
RIA implements the previously quoted idea of Vapnik: ‘try to solve the problem
directly and never solve a more general problem as an intermediate step’ and has
a very interesting and practical property. Namely, RIA is equivalent (relative
to classification) to the algorithm which, in an intermediate step, generates all
consistent and mazimally general rules. The latter algorithm has exponential
time complexity, while RIA has much lower — quadratic one. Moreover, in
particular, the RIA algorithm (and RIONA) does not require discretisation (or
value grouping). It adequately groups values for both numerical and nominal
attributes while generating rules.

2. In the general case of RIONA, the decision is predicted based on a support set
restricted to a neighbourhood of the test case rather than the whole support
set of all rules covering the test case?.

3. The size of the optimal neighbourhood is automatically induced during the
learning phase. It is worthwhile to mention that the learning of the optimal
neighbourhood is based on the idea of dynamic programming (see e.g. [43]),
which makes the computational time complexity of this step low. Moreover, the
empirical study showed an interesting fact that it is enough to consider a small
neighbourhood to achieve classification accuracy comparable to the algorithm

2Tt should be noted that a specific metric for symbolic attributes, known as SVDM in the
literature (see e.g. [53]), is used for finding objects similar to a given test object.

1.4 Results of the thesis 17

induced from the whole learning set (see e.g. [184] for the algorithm computing
the complete set of consistent and maximally general decision rules). Thus, the
combination of kNN and a rule-based algorithm leads to a significant speed-up
of both learning and testing phase in comparison with the RIA algorithm using
all maximally general rules.

4. The method is competitive with other approaches known from the literature |7,
128, 169| from the perspective of predictive quality. In particular, the presented
classifier has a high accuracy for two kinds of data sets: the more suitable for
kNN classifiers and the more suitable for rule-based classifiers.

5. The theoretical results formulated and proved in the thesis show the
relationships of the RIONA classifiers to both instance- and rule-based
classifiers. In particular, we show the equivalence (relative to the classification)
of the RIONA algorithm with the rule-based algorithm generating all consistent
and maximally general rules from the neighbourhood of the test case.
Consequently, the RIONA classifier can be represented by a rule-based classifier,
with rules easily interpretable by humans. These theoretical results provide
the explainability of the resulting classifiers of RIONA and could be used in
the situation when an explanation or justification of the derived decision is
important.

Moreover, we proposed the Optimal Nearest Neighbour algorithm (ONN), which
is a simple modification of the RIONA algorithm. In ONN, instead of using rules,
the kNN method is used for the constructed neighbourhood. ONN uses the same
metric as the RIONA algorithm and learns the optimal neighbourhood in a similar
way. There are two reasons for mentioning this algorithm here: (i) for some data
sets this algorithm has better performance than RIONA, and (ii) this fact is used
in the construction of the RIONIDA algorithm (see the forthcoming discussion on
RIONIDA).

However, the RIONA algorithm is not suitable for imbalanced data, due to the
reasons listed previously (on page 10). Below, we refer to them explaining why
RIONA does not perform well for such data.

e RIONA tries to maximise accuracy. This measure assigns equal misclassification
costs to the minority class and the majority class. However, this approach is
not suitable for imbalanced data.

e RIONA implicitly assumes balanced class distribution. This means that it does
not properly deal with data such that for many objects from the minority class
their neighbourhood contains overwhelmingly many objects from the majority
class. Then, there are also more objects from the majority class supporting
rules constructed for objects from the minority class. In consequence, many
test examples from the minority class may be misclassified as belonging to the
majority class.

e One may obtain a high accuracy rate with low accuracy for the minority class.
This fact causes that the RIONA classifier is not acceptable for imbalanced
data classification.

18 1. Introduction

The RIONIDA algorithm is based on a modification of the RIONA algorithm. It
aims to develop classifiers for imbalanced data with the highest possible quality. To
make the task simpler, in RIONIDA, the number of decision classes is limited to
two only, i.e. RIONIDA is directly applicable only for binary classification problems.
The RIONIDA algorithm, analogously to RIONA, is based on a combination of
instance-based learning and rule induction. However, while constructing RIONIDA,
some substantial changes have been introduced compared to RIONA. These changes
allowed us to obtain an algorithm, which is a significant result of the thesis. This
algorithm has the following important properties.

1. RIONIDA performs optimisation during the learning phase not relative to
accuracy, but relative to a measure more relevant for imbalanced data (e.g.
F-measure or G-mean).

2. Because for the imbalanced learning problem the correct classification to the
minority class is more important than to the majority class, the minority class
is treated in a special way during the conflict resolution (i.e. method of choosing
the final decision if there is some evidence for both the minority class and the
majority class). Another problem is related to the choice to what extent the
minority class is more important than the majority class.

3. As the ONN algorithm for some data sets gives better results than the RIONA
algorithm, we decided to combine the strengths of both of them. RIONIDA can
use the rule-based approach, the instance-based approach or a combination of
these two. This selection is realised using a parameter representing the degree
to which using rules in the neighbourhoods is considered to be relevant?.

4. All the main (internal) parameters of the RIONIDA algorithm are automatically
induced during the learning phase. Let us recall that these parameters consist of
the neighbourhood size (this feature is adapted from RIONA), the importance
degree of the minority class, and the allowed level of inconsistency. The
last one specifies to what extent the rule-based approach (or inversely the
instance-based approach) is used. Again, it is important to stress that we
present efficient in time methods for learning all these parameters using the
dynamic programming technique. Moreover, we introduced the possibility to
further accelerate RIONIDA and to reduce its space complexity.

5. For G-mean and F-measure, two theorems provide estimates of the optimal
degree of importance of the minority class under the assumption of a ‘totally
random’ distribution. These estimates are faster alternatives than solutions
given by parameter learning, and can be used for setting the default value for
the appropriate parameter in RIONIDA. Moreover, an interesting conclusion
follows from these theorems. Namely, for a certain class of classifiers the optimal

3Let us note that we still use instance-based approach to build neighbourhood as it was mentioned
previously in discussion on RIONA. Thus the RIONIDA algorithm combines instance- and rule-based
approaches in two aspects. First, it uses instance-based approach to limit the neighbourhood that we
take into account (e.g. for rule generations). Second, it uses rule-based approach or instance-based
approach or even approach ‘between’ these two.

1.4 Results of the thesis 19

one might be significantly different (relative to classification) for different
performance measures. Additionally, the assessments of such two optimal
classifiers may be significantly different depending on the performance measure
used for the assessment. The practical implication for real-life classifications is
that without a precise specification of the particular performance measure we
are interested in, the ‘best classifier’ term can be ambiguous or even misleading.

6. RIONIDA performs significantly better than tested in the thesis state-of-the-art
algorithms known in the literature. We performed the comparison of RIONIDA
quality with all main well-established algorithms whose codes were available
to the author of the thesis |7, 37, 42, 53, 68, 90, 153, 169, 190, 214]. Such
a choice guaranteed the reproducibility of experiments. The superiority of
RIONIDA was demonstrated in experiments on benchmarks, using performance
measures relevant for imbalanced data. The comparison tests were thoroughly
designed using the current knowledge on the evaluation of learning algorithms
in the context of imbalanced data. In particular, we took into account the
appropriate performance measures, their proper estimation method, which is a
complex problem by itself, proper data sets selection, and finally the possibility
of different algorithms settings. A statistical evaluation of the obtained results
is also included. Let us mention that RIONIDA performs significantly better
than RIONA boosted by relevant filters (RIONA with a data-level approach).

7. RIONIDA has the desired property of explainability, which is mainly provided
by theoretical features of RIONA that are described in point 5 of RIONA
properties.

8. Most of the above-listed features of RIONA also apply to RIONIDA.
In particular, RIONIDA, analogously to RIONA, does not require prior
discretisation or value grouping. Moreover, for certain settings, RIONIDA is
equivalent to RIONA.

To sum up, the RIONA algorithm is a learning method which is efficient in
time with a good performance for balanced data. The RIONIDA algorithm is
the combination of RIONA and ONN algorithms (and their further extension),
designed for dealing with imbalanced learning problems (although limited to binary
classification). Importantly, RIONIDA performs significantly better than the
state-of-the-art algorithms designed for dealing with imbalanced data and at the
same time has a relatively low computational complexity. In particular, RIONIDA
significantly outperforms RIONA with filters, which is the common, straightforward
adaptation of a standard algorithm for imbalanced data.

Finally, we would like to mention two minor results of the thesis. The first
one is the proposed methodology approach with three levels of comparison of
learning algorithms taking into account many variants of algorithms, including their
non-default parameter settings (see the discussion about experiments in Chapter 5).
The second one is the construction of the example leading to different conclusions
on which algorithm is better depending on the method of aggregation of partial
cross-validation results. More precisely, in the case of macro-averaging, one

20 1. Introduction

algorithm outperforms the other, while for micro-averaging the other way round (see
Appendix B).

Last but not least, the above-mentioned results concerning RIONA and RIONIDA
might be seen as examples of a few abstract and general directions of research
for effective and efficient learning algorithms. We hope that some of our ideas
may be adapted in projects in which the design of learning algorithms is based on
concepts other than those used in the thesis. First, we showed that in the case of
rule-based classifiers computation of the measure for conflict resolution based on all
consistent and maximally general rules can be significantly accelerated by using the
lazy approach — a similar approach might be used for other measures for conflict
resolutions. Second, we showed that combining instance-based learning with another
method such as the rule-based approach can be beneficial both in terms of quality and
efficiency — that path might also work for approaches different from the rule-based
approach, e.g. decision trees. Third, we showed that parametrisation of classifiers
based on the lazy-based approach can be realised much more effectively with the
use of dynamic programming than by direct computation — that approach might be
applied for other algorithm architectures and/or other parametrisations. Fourth, we
showed an example of how a learning algorithm for balanced data can be successfully
modified into a learning algorithm for imbalanced data — an analogous modifications
could be realised for other algorithms dedicated to balanced data.

1.5 The organisation of the thesis

The thesis is divided into six chapters. The introductory chapter, in particular,
explains why it is important to develop high-quality classifiers for imbalanced
data and describes the main results of the thesis. Chapter 2 presents the basic
concepts and introduces notation used in the subsequent chapters. In particular,
the main approaches and examples of specific methods for imbalanced learning
problem are outlined. Chapter 3 describes the RIONA algorithm designed for
balanced data. RIONA can be treated as the basis for the RIONIDA algorithm.
In particular, the theoretical results concerning the RIONA algorithm are included.
Chapter 4 introduces the RIONIDA algorithm, a modification of RIONA, designed
for classification of imbalanced data. Chapter 5 describes the results of experiments
in which the proposed algorithm was compared with some state-of-the-art algorithms
for imbalanced data on benchmarks and real-life data sets. Finally, the concluding
remarks are placed in Chapter 6. The three short appendices (A, B, and C)
complement Chapters 3, 2, and 4, respectively, by adding some details, which left
in the chapters could break the main flow of thought. At the end of the thesis are
included: the index, lists of abbreviations and symbols.

1.6 Collaboration

Most of the results presented in Chapter 3, especially the development of the RIONA
algorithm, were carried out in collaboration with Wojna. The common results are
published in the papers [81-83]. In the mentioned cooperation, the contribution of

1.7 Software 21

both authors was roughly equal. Additionally, both authors independently extended
the common research in different directions.

The results of the work of Wojna are published in his PhD thesis (see [219]) and
other papers (see [185, 217, 218, 220]). Let us only mention those results which the
author of the thesis used in its experimental part. Wojna expanded the developed
RIONA algorithm in two directions. First, to make it possible to work with many
other possible metrics and weighting attribute methods. Second, the research on an
acceleration of the algorithm was carried out.

Independently, the author of the thesis developed a new form of presentation of
foundations leading to RIONA. It enabled him to make the presentation of RIONA in
a more transparent way. Moreover, some facts included in the thesis (Theorem 3.11,
Corollary 3.12) better explain the relationships of RIONA with rule-based classifiers.
On the basis of these theoretical results, the method of explaining the resulting
classifier of RIONA for a human is proposed.

Moreover, the author of the thesis extended the RIONA algorithm to work
with imbalanced data. As a result of this research, the RIONIDA algorithm
was developed. Chapter 4 presents this algorithm, and Chapter 5 presents the
experimental comparison of the developed algorithm with some other methods
developed for imbalanced data. Experiments for RIONIDA use acceleration of the
RIONA algorithm. Additionally, the developed metrics and weighting methods
developed for the RIONA algorithm described in [219] were also tested.

For comparison, we used methods from two sources:

1. available in WEKA (see e.g. [2, 215]) and
2. methods provided by members of the prof. Jerzy Stefanowski team.

Also, some scripts for testing different methods were provided by the team of
Stefanowski.

1.7 Software

The software for the RIONA algorithm is publicly available for use as part of the
open-source Java library available at http://rseslib.mimuw.edu.pl (see [1, 221,
222]). RIONA can be used within WEKA after installing Rseslib package in Weka
Package Manager. Information on how to run RIONA both in WEKA and natively
can be found in Rseslib User Guide available at the library web page (see [222]).

The RIONIDA algorithm is planned to be publicly available analogously to
RIONA as a part of the open-source Java library. Especially RIONIDA is planned to
be used within WEKA as a part of the Rseslib package in Weka Package Manager.
Currently, it is available for the use of reviewers on request®.

4goora@mimuw.edu.pl

http://rseslib.mimuw.edu.pl
mailto:ggora@mimuw.edu.pl

22 1. Introduction

Acknowledgements

First and foremost, I would like to express my immense gratitude to my supervisor,
prof. Andrzej Skowron for his guidance, patience, and invaluable support both on the
academic and personal plane. His example has been inspiring me for all those years.

Secondly, I wish to thank Arkadiusz Wojna for past collaboration as well as for
his insightful suggestions and always being ready to help in this project. I would also
like to express my heartfelt gratitude to prof. Jan Bazan for his precious feedback,
assistance, and our previous collaboration on a very practical problem of planning
of the treatment of infants with respiratory failure. Although this research is not
mentioned in this thesis at all, it has led me to work on the problem of imbalanced
data at a more general level. I am also very grateful to prof. Jerzy Stefanowski and
his team for their support and advice; in particular, to dr Krystyna Napierala for
sharing her BRACID software and to prof. Szymon Wilk for technical consultations.

I would also like to acknowledge: Soma Dutta, Adam Sikora, Bartosz Pidro,
Jarostaw Pioéro, and Piotr Buczkowski for linguistic consultations and corrections
to the draft; Zuzanna Szymanska and Liliana Trzpil for their help in revising
the bibliography; prof. Janez DemsSar and dr. George Forman for consultations
related to experiments, prof. Blazej Miasojedow for statistics consultations, prof.
Stan Matwin for bibliographic suggestions, and prof. Nitesh Chawla for providing
the mammography data set; members of the (former) Group of Mathematical
Logic, including Andrzej Janusz, Wojciech Swieboda, Pawel Gora, Marcin Szczuka,
Sinh Hoa Nguyen, Hung Son Nguyen, Andrzej Jankowski, Dominik Slezak, Piotr
Wasilewski, Marek Grzegorowski, and others for assisting me throughout the project.
Last but not least, I would like to thank my family, friends, and the brothers and
sisters of my order who in different ways have supported me in my work.

t J.M.J.

Chapter 2

Basic notions

This chapter presents the fundamental concepts used, in particular those defined for
the purpose ot the thesis.

The following section presents a more formal description of the specific type
of learning concepts from examples. Section 2.2 introduces an important notion
for instance-based learning, namely metric (and pseudometric). In particular,
pseudometric used in the thesis is defined. Section 2.3 discusses more formally two
essential for the thesis methods in machine learning, i.e. rule-based methods and
instance-based learning. Also, essential for the thesis, the lazy rule learning approach
is introduced. Section 2.4 discusses the difficulties of learning from imbalanced data
and outlines the currently existing methods. In Section 2.6, we enumerate a few
important steps of evaluation of learning algorithms dealing with imbalanced data.

2.1 Learning concepts from examples

In this section, we present a more formal description of supervised learning. In
supervised learning, it is assumed that the training examples are classified (labelled)
by class labels. The goal is to learn a decision function that maps inputs defined by a
vector of values of attributes on objects to outputs representing the values of decision
function (decision attribute) using training examples described by inputs and their
desired outputs.

The domain of learning is a space of objects X. Each object z € X is described
by a finite set of pairs (a,a(z)), where a is a conditional attribute from a given set
A of (conditional) attributes, i.e. a : X — V, for a € A, where the codomain V, of a
is the set of values of a and a(x) is the value of a on the object x € X. We consider
two types of attributes: numerical and symbolic!. We denote the sets of symbolic
and numerical attributes respectively by Asy,, and A,,p,.

The values of numerical attributes are comparable and can be represented as
(real) numbers (V, C R). In practice, these are integer or real values. Without loss
of generality, we assume that V, is equal to an interval (l,,u,), where l,,u, € R
(possibly not all of the values from the interval are used).

'Tn fact, we consider also the third type of attributes, ordinal attributes, which are attributes
with a linear order. However, such attributes are represented as integer numbers and are regarded
as sub-case of numerical attributes.

23

24 2. Basic notions

Symbolic attributes have incomparable values (e.g. related to colour, shape,
language). The codomain of a symbolic (discrete-valued) attribute is a finite set,
ie. V, ={vy,...,v} for some | € N.

Let us present an important notion of concept over X. A concept is any
subset of X. Thus, we can represent it by the characteristic function, i.e. a binary
function ¢ : X — {positive, negative} with codomain containing two values: positive
representing the members of the concept and negative representing the non-members
of the concept.

In general, one can represent many concepts simultaneously by a decision function
d : X — Vy, where V, is a finite set of decisions. We assume that d ¢ A. Let ng
denote the cardinality of decision value set Vg, i.e. ng = |Vy| (ng is the number of
decisions). Thus we can write V; = {d;, ds, ..., d,,}, where 1,2, ... ny are indexes of
the decision classes. Without loss of generality we also assume that the decision value
set is represented by a set of consequent natural numbers, i.e. V; = {0,1,...,n4—1}.
In the thesis, we generally, do not use any relation between decision classes expressed
in terms of their indexes.

Each value d; in the set V; characterises a separate concept (decision class) {z €
X :d(z) = d;}, denoted by Class(d;). In the thesis, we consider many-valued decision
function (ng > 2) for balanced data and binary-valued decision function (ng = 2) for
imbalanced data. In the latter case, we use notation Vy = {d,q;, dmin }, Where dpy,
indicates the positive, minority class of our main interest and d,,,; indicates the
negative, majority class of less importance.

The goal of learning is to approximate the target decision function on the whole
domain X on the basis of the provided finite number of examples. This set of provided
examples is called the training set and is denoted in the thesis by trnSet. Each
training example is described by values of all attributes and value of the decision
function. We can represent the training set by a data table. Rows in the data table
correspond to objects (training examples) to be analysed in terms of their properties
(attributes) and the concept (class) to which they belong. In Table 2.1, an exemplary
table representing a training set and one test element are presented.

Without loss of generality, we assume that training sets are consistent, i.e. there
are no two objects with all conditional attributes equal and with different decision
values. This simplifies the notation and proofs. For simplicity, we also assume
that there are no missing attribute values for any objects. However, the learning
algorithms developed in the thesis also can work with inconsistent training sets which
may contain missing values (see, e.g. Subsection 3.3.1).

Definition 2.1. Any triplet (X, A, d), where X is the space of objects, A is a set of
attributes and d is a decision function, is called decision system.

Training sets are used to build (induce) classification algorithms (in short,
classifiers). A classifier defines a function that, for a given input example, assigns
that example to one of ng classes. A learning algorithm? computes a function that
for a given training set, constructs a classifier (see e.g. [51]).

2Tt should be noted that sometimes in the literature, there is no clear distinction between
classifiers and learning algorithms.

2.2 Similarity and metrics in machine learning 25

Object | Age | Weight | Gender | BloodGroup (BG) | Diagnosis
trng 35 90 M A Sick
trneg 40 65 F AB Sick
trng 45 68 F AB Healthy
trny 40 70 M AB Healthy
trng 45 75 M B Sick
trng 35 70 F B Healthy
trng 45 70 M 0 Healthy

tst 50 72 F A ?

Table 2.1: An exemplary data set with 4 conditional attributes (Age and Weight, numerical;
Gender and BloodGroup, symbolic) and decision attribute Diagnosis. Seven objects are from
training set and the last object is a test object (its decision is unknown).

The goal of supervised learning in a single application domain is to build a classifier
on the basis of a training set, which is equal or close to the target decision function.
One can search for such a classifier using the best learning algorithms for this domain.
The goal of ML, in general, is to construct learning algorithms which perform well
over a wide range of real-life domains and their corresponding training sets (see e.g.
[51]). Learning theory provides precise definitions of the concepts used here such as
‘close to ...7, ‘best ...’ ‘perform well’ etc. (see e.g. [10, 149]).

Let us sum up, what was discussed above and additionally indicate the convention
of notations used in the thesis. Usually, we assume in the text that a decision system
(X, A,d) is given. Sometimes we assume the decision system to be a pseudometric
decision system (see Subsection 2.2.3). Whenever we write object x or example z, we
mean that x € X. Usually, we assume that a training set, trnSet C X (normally,
trnSet C X) is given. Whenever we write training object trn or training example trn,
we mean that trn € trnSet. Whenever we write test object tst or test example tst, we
mean that tst € X (however usually tst € X\trnSet). Throughout the thesis, trn and
tst denote some training example and test example, respectively. Theoretically, for
all objects (however, in practice only for test objects) learning algorithm can acquire
values for all attributes. For training objects, learning algorithm can additionally
acquire values for decision attribute.

2.2 Similarity and metrics in machine learning

In ML, reasoning and learning from cases can be performed using a concept of
similarity. For example, instance-based learning is based on the assumption that
the decision for a new test case can be inferred from the description of the objects
similar to the test case. There are many definitions of similarity measures (see e.g.
[12, 28, 107, 160]). Generally, objects are considered similar if they have a high
degree (fixed a priori) of similarity and non-similar if they have a small degree (fixed
a priori) of similarity. Numerous similarity measures are based on the notions of
metrics and pseudometrics (also called distance functions). The main idea is that
objects close to each other are regarded to have a high degree of similarity, and
conversely, objects which are very distanced from each other are regarded to be

26 2. Basic notions

non-similar (small value of similarity). In the thesis, we mainly use a weaker concept
than metric, i.e. pseudometric (see e.g. [33]).

Definition 2.2. A function o : X x X — R is a pseudometric on the set X (or
distance function or simply distance) if and only if, for all x,y,z € X, the following
conditions hold:

1. o(z,y) > 0 (non-negativity)
2. oz, x) =
3. oz, y) = oly, x) (symmetry)
4. o(x,z) < o(z,y) + oy, z) (triangle inequality)

A pair (X, 0), where o is pseudometric is called a pseudometric space.

The first condition could be omitted because it is implied by the others. The
metric additionally satisfies the following condition o(x,y) = 0 = = = y. However,
we intentionally defined pseudometric as this condition is generally not satisfied for
the distance function used in the thesis.

For a given pseudometric g over X, we define closed ball (in short, ball) of radius
r > 0 centred at x € X, denoted by B(x,r), as the set of all points of X of distance
less or equal to r from z, i.e. B(z,7) = {y € X : o(z,y) < r}. If we use this notation,
it is usually clear from the context which pseudometric is used. Otherwise, we write
explicitly which pseudometric is used in the closed ball definition. Generally, we use
this definition in the case when X is a finite set. Note that if a pseudometric is not
a metric, then closed ball with the radius equal to zero may contain more than one
element.

The following fact about pseudometric space, which is well known and easy to
prove, is important for us®.

Fact 2.1. Let n € N and, for each i =1,2,...,n, (X;, 0;), be a pseudometric space.
Then the following product

HXi:{(xl,...,xn):J:Z-EXi,izl,...,n}

with the function

(v ma) o)) = 3l)

1s a pseudometric space.

In the thesis, we use pseudometric which is a sum of pseudometrics defined for each
attribute. We assume that for each attribute a € A a pseudometric g, : V, x V, —
R is given. If there are m attributes we define pseudometric on the X set using

3Qriginally the fact concerns the metric; however, as we mentioned we focus on pseudometrics.

2.2 Similarity and metrics in machine learning 27

pseudometric on the Cartesian product set [, Vi, defined as in Fact 2.1. Finally,
the distance between two instances x,y € X is defined by:

o(z,y) =Y eala(x),aly)) = Y oa,(ai(@), aily)) (2.1)

a€A

From Fact 2.1, we have that (X, g) is a pseudometric space®.

Now, to define completely a pseudometric, we have only to define pseudometric
0o for each attribute a € A. Usually, this is done separately for numerical (V, C R)
and symbolic attributes (V, = {vy,..., v} for some [€ N).

2.2.1 Metrics for numerical attributes

The widely known metric on R is determined by the absolute-value function on R.
It is the function p : R x R — R defined by o(a,b) = |a — b|, where a,b € R. This
metric is called the Euclidean metric on R.

Considering Equation 2.1 and the fact that the scale of different numerical
attributes can be different, we need to make normalisation for each attribute. This is
due to the fact that having no prior knowledge we attempt to assign to all attributes
the equal importance in measuring the distance (and in consequence similarity). We
use normalisation based on the values occurring in the training data set trnSet.
A commonly used approach for attribute value similarity is to normalise the value
difference by its largest observed value difference:

v — wl

amax — amln

0a(v,) = : (2.2)

max min

where v, w € V,, a™* and ¢™" are the maximal and the minimal value for an attribute
a among training examples trnSet (without loss of generality we assume that o™ #
a™m), There are other possibilities of normalisation, e.g. defined by the standard
deviation (see e.g. [219]). However, we use, in the thesis, only the presented one.

For all numerical attributes the final metric o from Equation 2.1 and with no
normalisation in g, is known in the literature as city-block metric (also known
as tazricab metric, Manhattan melric or L' distance). In the thesis, a normalised
city-block metric is a metric having components o, with normalisation, i.e. defined in
Equation 2.2.

2.2.2 Metrics and pseudometrics for symbolic attributes

For every set X, there exists a metric. That is the discrete metric which is defined on
set X by assuming that the distance from each point of X to itself is 0 and distance
from each point to every other point of X is 1. We use this metric in the thesis
for codomains of symbolic attributes (which are finite sets). For symbolic attribute
a € A, we define the discrete metric by:

40f course we use also here the following fact. If f : X; — X, is a function and dy is a
pseudometric on X, then di(x,y) = da(f(x), f(y)) gives a pseudometric on X;. Let us note that
for metric space analogous fact does not hold. This is one of the reasons why we use pseudometrics
instead of metrics in the thesis.

28 2. Basic notions

0, ifv=w,

0a(v, W) = { 1, if v # w.

For all symbolic attributes with discrete metrics, the final metric o from
Equation 2.1 is known in the literature as Hamming metric. This metric measures
the number of attributes at which the corresponding values are different.

If there is no information about the relations between values of symbolic
attributes, this seems the only reasonable metric for this set. However, for a training
set of examples, additional information about the value of the decision attribute is
given. The decision distribution can be used to compute the distance of two values
from codomain of any symbolic attribute. This fact was first used in [187] to define
the Value Difference pseudoMetric (VDM)® with additional weighting of attributes.
Later in [53], a simplified version without weighting attributes was used and is known
as Simplified Value Difference pseudoMetric (SVDM). Thus for symbolic attributes a
more informative alternative than Hamming metric is SVDM. For symbolic attribute
a € A we define it by:

, where v,w € V, (2.3)

a(v,w) = Y |P(d=d;|a=v) - P(d=d; |a=w), (2.4)

d]'EVd

where v, w € V,. Originally, it was defined as the sum of absolute values of ¢ powers
(for ¢ = 1,2,...) of these differences. In the thesis, we use only version with ¢ = 1, i.e.
defined by Equation 2.4. In practice, the estimation of probability P(d = d; | a = v)
is calculated using available training set trnSet:

{trn € trnSet : d(trn) = d; A a(trn) = v}|
|{trn € trnSet : a(trn) = v}|

PtrnSet<d = dj ‘ a = U) =

SVDM considers two symbolic values similar (i.e. to have small distance) if they
have similar decision distribution, i.e. if they correlate similarly with the decision.
We may say that this pseudometric is induced from the training set of examples. It
strictly depends on the used training set.

It is easy to check that SVDM, in fact, is pseudometric, but not metric. There
may exist two different values v, w € V, from codomain of a for which g,(v,w) = 0,
i.e. on the training set, the distribution of decision can be identical for both groups
of objects trn € trnSet characterised by values a(trn) = v and a(trn) = w. In
consequence, if in Equation 2.1 at least one component is SVDM pseudometric, then
o is pseudometric, but not metric. It is another reason why we use in the thesis
mainly the concept of pseudometric.

As an example for SVDM pseudometric let us take into consideration Table 2.1 and
symbolic attribute BloodGroup (in short, BG)). We consider only training examples
from this table (trnq, ..., trn;) and distribution of decision Diagnosis is computed
over this part of table. Taking this into account we obtain the following distances

5Strictly speaking the Value Difference Metric used in the literature is based on a pseudometric.
Hence, for clarity we use the name Value Difference pseudoMetric. Analogously we use the name
Simplified Value Difference pseudoMetric instead of the original name Simplified Value Difference
Metric.

2.2 Similarity and metrics in machine learning 29

among the chosen values of the attribute BG. For a few cases we present exact
computations:

opc(A,A) =0,
opc(A,AB) = |P(D = H|A) — P(D = H|AB)| + |P(D = S|A) — P(D = S|AB)|
2oy
3 3 3’
0p6(A,B)=|P(D=H|A)-P(D=H|B)|+|P(D=5|A)—-P(D=5]B)
B
2 2 ’

08c(A,0)=|P(D=H|A)-=P(D=H|0)|+[P(D=5|A)-P(D=5]0)
=0—1]+ |1 -0] =2,
where D, H, S denotes (in this particular example) Diagnosis, Healthy, Sick,

respectively; and the prefix ‘BG =’ is omitted in the conditions for brevity. For
the remaining cases, we present only the final results:

2
QBG(B7B) = 07 QBG(BaA) = 17 QBG(BvAB) = 57 QBG(Bvo) = 17
4 2 2
QBG(ABaAB) - 07 QBG(AB7A) - §7 QBG(AB7B) - §7 QBG(AB70) - §7
2
05¢(0,0) =0, 086(0, A) = 2, 086(0,B) =1, 0pc(0,AB) = 3

Figure 2.1 graphically presents all the values of the considered attribute and
distances between them. For example, it can be seen that values A and 0 are the
most distant. It relates to the fact that the corresponding distributions are entirely
different (in fact for value A decision is always Sick and for 0 always Healthy).

Different variants of this pseudometric have been successfully used previously (see
e.g. |24, 44, 187]).

It is possible to choose other VDM-based distance functions (see e.g. 213, 219]).
In the thesis, experiments carried out for the RIONIDA algorithm with some other
variants of pseudometrics are reported too (see Subsection 5.5.5).

2.2.3 Pseudometrics use in the thesis

In the thesis, pseudometrics are used for two reasons. The first one is related to the
grouping of values of attributes (see Section 3.2). For each attribute, a relevant group
of values for the attribute is expressed as a ball using the respective pseudometric.

The second one concerns searching for nearest neighbours of objects (see
Subsection 2.3.3, Section 3.3). Thus, a relevant pseudometric for object space should
be provided. First, pseudometrics for single attributes are introduced. Next, is
provided an aggregation function which defines pseudometric on the space of objects
from given pseudometrics for all attributes.

For these two reasons, we use the following definition.

30 2. Basic notions

Wl o

W v
Wl N

AB

AQ @o

2

Figure 2.1: Graph representing distances between values of attribute BloodGroup induced
from training set given in Table 2.1. Vertices correspond to values of the considered
attribute, i.e. A, B, AB and 0. Arrows correspond to distances between pairs of values.
For clarity, arrows representing distances of value to itself (equal to zero) are omitted.

Definition 2.3. Let (X, A,d) be a decision system (see Definition 2.1) and for any
attribute a € A, o, be a pseudometric on the respective value set V,, i.e. for any
a € A, (V,,04) is a pseudometric space. We call such an enriched decision system
the pseudometric decision system and denote it by (X, A, d,{04}aca)-

Additionally, we usually also assume that for a given pseudometric decision
system, there is an aggregated pseudometric on the object space defined from the
individual pseudometrics for attributes and we denote it as Agr({oq}taca), i-e. for
0= Agr({0ataca), (X, 0) is a pseudometric space.

It should be noted that for numerical attributes, the natural Euclidean metric
and additionally the natural ordering of real numbers are used for grouping numerical
values into intervals (see Subsection 3.2.1). Thus, for the task of grouping attribute
values, pseudometrics for symbolic attributes should be only provided (see, e.g.
Definition 3.2 in Subsection 3.2.2).

By default, we assume that the aggregated pseudometric is simply defined as
the sum of individual pseudometrics (see Equation 2.1). Rarely, we also use in the
thesis its weighted version (see Equation 3.3). The default pseudometric for symbolic
attributes is SVDM. Taking this into account, a default resulting pseudometric
for measuring the distance between objects combines (according to Equation 2.1)
Euclidean metrics on R for numerical attributes (see Equation 2.2) and SVDM
pseudometrics for symbolic attributes (see Equation 2.4). One may say that it
combines the normalised city-block metric for the group of numerical attributes and
the SVDM pseudometrics for symbolic attributes. We call it City And Simplified
Value Difference pseudoMetric (CSVDM). Such an aggregation of pseudometrics was
used previously in the literature (see e.g. [53]). Rarely, we also use in the thesis
discrete metric (see Equation 2.3) for symbolic attributes. In this case, one may
say that the resulting metric for measuring the distance between objects combines
the normalised city-block metric for the group of numerical attributes and Hamming

2.3 Selected methods in machine learning 31

metric (see Subsection 2.2.2) for the group of symbolic attributes. We call it City
And Hamming Metric (CHM).

2.3 Selected methods in machine learning

In this section, we discuss machine learning methods directly related to the thesis, i.e.
rule-based, instance-based, and lazy rule learning. In particular, we formalise them
for specific approaches used and further developed in the thesis (see Chapters 3, 4).
Moreover, we present a crucial formal result connecting these approaches. This result
is also further developed in the thesis (see Subsection 3.2.2).

2.3.1 Rule-based methods

One of the critical ML techniques is the induction of rule sets (see e.g. [26, 72, 87, 146,
164, 184, 189]). Its importance follows from the fact that knowledge representation
in the form of rules is well understandable by a human. We are interested in decision
rules which indicate what decision should be taken in a perceived situation. In the
most general form, decision rules are of the form

if o then ¢,

where ¢ is called the premise of the rule and ¢ its consequence. 1 is a formula
determined by a decision attribute d.

Rule induction algorithms induce decision rules from a training set. We define
what kind of rules we admit and in consequence what kind of rules we search for.
We consider decision rules with premises consisting of a conjunction of elementary
conditions and their consequences indicating the specific decision. Each elementary
condition describes a set of values of the attribute. Informally, it is of the form a € V,
where V' C V,. First, we define how such sets V' of values can be expressed over a
formal language together with semantics (meaning) of expressions from this language
in the power set of attribute codomain.

Definition 2.4. Let D = (X, A, d) be a decision system (or D = (X, A, d,{04}aca) be
a pseudometric decision system). The description of any elementary set for symbolic
attributes a € Agym 15 one of the following forms:

0 (2.5)
{v}, where v € V,, (2.6)
Vs (2.7)

B(c,r), when D is pseudomelric decision system and

2.8
where c € V,, r € R,r > 0. (2:8)

The description of elementary set for decision attribute d is of the form 2.6, where
attribute a 1s substituted by d.

32 2. Basic notions

The description of elementary set for numerical attributes a € A,um 1S of the
following form:

0 (2.9)
b, €], (b, €], [b,e), (b,e), where b, e € R are such that the corresponding interval
between points b and e is included in V,. (2.10)

The semantics of any description of the elementary set for attribute a € AU {d}
is defined as a subset of V, as follows®:

0[] = 0,
I{v}|p = {v} (it is called the singleton set),
[|Vallp = Vi (it is called the value set of a),
[b; e]llp = [b,¢l,
(b, elllp = (b, el,
b,e)|lp = [bse),
b,e)llp = (b, e),
Np={weV,:we B(e,r)} ={w €V, : 0.(c,w) <r} (it is called the ball set).

|
|
il
[I(
|| B(e,r

Now, we define the representation of the elementary conditions (in a language)
and their semantics.

Definition 2.5. Let D = (X, A, d) be a decision system (or D = (X, A, d, {04 }aca)
be a pseudometric decision system).
The elementary condition for attribute a € AU {d} has the form:

a€V,

where a € A and V 1is a description of elementary set for attribute a. Its semantics
s defined as follows:

[a € V]p={reX:a(z) c[[V]p}

The semantics of a € V' may be restricted to subsets of X, e.g. to the training set,
trnSet, i.e. [[a € V]|pNtrnSet denoted as [[a € V]]|inset The elementary condition t
is satisfied by an example x (or, in short, t(x) is satisfied) if x € [[t]]p.

Please note that ||V||p denotes a subset of the attribute value set of a given
attribute, while [[a € V]]p denotes a subset of X. Each elementary condition is of
the form: a € V| where ||V||p C V, and ||V||p is

e a singleton set for decision attribute (see set description 2.6 and its semantics),

6For simplicity we do not distinguish between symbols denoting values and values themselves.

2.3 Selected methods in machine learning 33

e a proper interval for the numerical attribute (see set description 2.10 and its
semantics), and

e a singleton set, value set of an attribute or a ball set for the symbolic attribute
(see set descriptions 2.6, 2.7, 2.8, respectively and their semantics).

The elementary condition is satisfied for a given object if the value of the concerned
attribute on this object belongs to the set given by its description. Conditions of the
form a € {v}, where v € V,, are also written as a = v. Conditions of the form a € V,
which are always true (i.e. the set of objects satisfying the condition is equal to the
set of all objects in the considered universe), also written as a = x, are called trivial.

Finally, we define the semantics and the syntax for expressing premise and
consequence of the decision rules.

Definition 2.6. Let D = (X, A, d) be a decision system (or D = (X, A, d, {04 }aca)
be a pseudometric decision system). A decision rule is an expression of the form

if ty Nto N ... Ay, then d =,

where m is the number of attributes, t; is an elementary condition for an attribute a;
fori=1,2...m, v eV
The semantics of the premise of the rule r, ¢ is defined as follows:

[Pl = [t A2 A At = [[a]lp N [[E2]]p - - [[Em]]

The premise of the rule r, p, is satisfied by example x (or x satisfies) if v €
[[¢llp. In this case, example x is said to match the rule v, and r is said to cover z.

The single rule is a classifier which classifies examples covered by that rule to the
decision class indicated by the rule’s consequence. Ideally, we could search for rules
if ¢ then d = v such that [[¢]]lp C [[d = v]]p. However, the semantics of [[d = v]]nser
is available only. Hence, we induce rules for trnSet and assume that the inclusion
extends on X. Moreover, we search for rules covering as many as possible examples.

Usually, while presenting the decision rule, trivial conditions are omitted”. The
commonly used conditions for symbolic attributes are equations a = v, while for
numerical attributes conditions are specified by interval inclusions, e.g.:

if ag=2ANas € [3,7 ANag =5 then d = 1.

However, for symbolic attributes we use a more general condition such as a € V
(see Definition 2.5), which is introduced to extend the notion of the singleton sets to
the ball sets specified by form 2.8 in Definition 2.4 and its semantics. If the data set of
the considered problem contains some numerical attributes, then the relevant intervals
can be obtained by applying discretisation. Discretisation transforms decision system
into a new one in such a way that numerical values are grouped into relevant intervals
covering the whole attribute domain. Consecutive intervals induced from the original

"In fact, in the description of rules only non-trivial conditions are used. We use trivial conditions
only to make the notation simpler.

34 2. Basic notions

table are mapped into successive numbers representing values of the discretised
attribute in a new decision system (see e.g. [161]).

For any decision rule r, we denote by ¢;(r) the i-th condition ¢; from Definition 2.6
for rule r; we denote by t,(r) for a € A the condition ¢; from Definition 2.6 for rule
r corresponding to attribute a.

In the thesis, we consider three kinds of decision rules relative to the admissible
elementary conditions used in Definition 2.6. Below we specify three possibilities of
admissible elementary conditions used in Definition 2.6. They specify three kinds of
decision rules, and in consequence, three sets of decision rules.

Definition 2.7. Let (X, A,d) be a decision system.

For the data sets with only symbolic attributes the set of simple rules denoted
as SimRules is the set of all rules from Definition 2.6 in which the only admissible
elementary conditions in the premise of the rule are from set descriptions 2.6, 2.7,
i.e. elementary conditions are a =v for v € V,; and a = .

The set of combined rules denoted as CombRules is the set of all rules from
Definition 2.6 for which the only admissible conditions in the premise of the rule are
from set descriptions 2.6, 2.7, 2.10, i.e. elementary condition for symbolic attributes
are as in the definition of StmRules and for numerical attributes are of the form
a € I, where I is a proper interval description.

Definition 2.8. Let (X, A, d,{0a}aca) be a pseudometric decision system.

Suppose that for all symbolic attributes a € Asyy, there is given a specific value
cq € V. The set of general rules denoted as GenRules ({(Qa,ca)}aeAsym) or simply
GenRules (whenever pairs (0q,cq) are clear from the context or irrelevant due to
generality) is the set of all rules from Definition 2.6 for which the only admissible
elementary conditions in the premise of the rule contain set descriptions (i) as in the
definition of CombRules for numerical attributes and (ii) specific form of 2.8, i.e.
B(c,r), where ¢ = cq, 7 = 04(Cq,v), v €V, for symbolic attributes a € Agyn,.

The definition of general rules will become more clear after reading Section 3.2,
where it is used.

Definition 2.9. A rule r with the consequent (d = v) is consistent with a set of
objects X C X (sometimes we write simply consistent whenever set X is clear from
the context) if for each object x € X whenever x matches the rule r the decision of
the rule is identical with the decision of the object, i.e. d(x) = v.

A rule r is inconsistent if it is not consistent.

Usually, in the above definition we use as a set X, the set of training objects.
A rule consistent with the training set classifies correctly all the training examples
covered by that rule.

Now we define the notion of maximality of rule.

Definition 2.10. Let 1 and ry be rules. We say that a condition t;(rs)
is more general than (or is implied by) a condition t;(r1), in symbols
ti(r1) = ti(r2), if [[Villp C ||Vallp holds, where t;(r1) is of the form a; €
Vi and t;(rg) is of the form a; € Vs.

2.3 Selected methods in machine learning 35

We say that a rule ro is more general than (or is implied by) a rule r1, and denote
it by r1 = ro if it has identical consequents, i.e. d(r1) = d(r2) and each condition
ti(re) is more general than condition t;(r) (fori=1,2,...,m).

A consistent rule r with a training set trnSet is maximally general (relative to
this training set and a given set of rules) if there is no rule in this set of rules more
general than v which is different from r and consistent with trnSet.

Definition 2.11. For a given set of admissible rules Rules, a training set trnSet
we define the set of maximally general rules MaxRules(Rules,trnSet) to be equal to
the set of all rules r € Rules consistent with trnSet and mazimally general.

In the thesis, we consider only sets of rules Rules in Definition 2.11 equal to one
of three sets: SimRules, CombRules, GenRules from Definitions 2.7 and 2.8. If the
sets Rules and trnSet are obvious from the context, we write MaxRules instead of
MaxRules(Rules,trnSet). Also, we write M axRules in general case, i.e. MaxRules
denotes any one of the three mentioned cases: MaxRules(SimRules,trnSet),
Maz Rules(CombRules, trnSet) or MaxRules(GenRules, trnSet).

From the knowledge discovery perspective, the important problem is to compute
all rules (matched at least by one training example) that are maximally general and
consistent with a training set.

Let us first consider MaxRules(SimRules,trnSet). In this case, a consistent
rule is maximally general in a training set trnSet if for each non-trivial condition
replacement of that condition with trivial condition makes the rule inconsistent with
the training set trnSet. Hence, maximally general rules are those which have minimal
lengths, where the length of the rule is the number of non-trivial conditions in it. Thus
the problem here is to find the complete set of consistent and minimal decision rules
(see e.g. [184]). Among different aspects, such a set of rules is also essential because
it relates to the minimal description length principle (see e.g. [182]). Algorithms for
computing all minimal rules are very time consuming, especially when the number
of training objects or attributes is significantly large. This is because the size of the
MazxRules set can be exponential concerning the size of the training set (see e.g.
[158]). In practice, approximation algorithms are often applied to obtain the rule set
that is not necessarily complete (see e.g. [16]). There are also other approaches to
induce a set of rules, which cover the input examples using, e.g. the smallest number
of rules (see e.g. |86]). However, in the thesis, we focus on the complete MaxRules
set.

Now, let us consider MaxRules(CombRules,trnSet). In this case, additionally
we have numerical attributes for which maximally general intervals are searched.
Searching for maximally general rules for numerical attributes relates to the problem
of discretisation. A partition of discretisation is consistent if each interval covers only
objects with the same decision. For more details on discretisation, the readers are
referred to [159, 161].

It should be noted that the problem of searching for a consistent partition with
the minimal number of cuts is NP-hard (see e.g. [161]). It shows that the problem
of discretisation from the global point of view is a complex task. We will show in
Subsection 3.2 that it is in a sense possible to overcome this problem if one focuses
on a local fragment of the universe instead of the whole universe. It occurs in case
of the presented lazy rule induction algorithm (see Algorithm 2 or Algorithm 4).

36 2. Basic notions

Now, let us consider MazRules(GenRules, trnSet). In this case, we additionally
search for relevant grouping of values for symbolic attributes. It relates to the problem
of partition of symbolic attributes. Formally the partition over an attribute a is any
function P, : V, — {1,...,m,}. The problem of searching for a consistent family of
partitions with the minimal) _, [P,(V;,)| is NP-hard (see e.g. [160]). We overcome
this because of two reasons. First, we limit the number of possible groupings of values
of any attribute (from 2" to n? where n is the number of values for an attribute).
Second, we use lazy rule induction (see Section 3.2).

Rules induced from training examples are then used to classify objects. For a
given test object, the subset of rules matched by the object is selected. If the object
matches only rules with the same decision, then the decision predicted by those rules
is assigned to the example. If the test object matches the rules corresponding to
different decisions, the conflict has to be resolved (see e.g. [147]). A common approach
is to use a measure for conflict resolution, and decision with the highest value of the
measure is selected. In the thesis, we focus on the commonly used measure that is
presented below.

Definition 2.12. Suppose training set trnSet, test example tst and MaxRules are
given. Then we define

Strength(tst,v) = U supportSet(r)|, (2.11)
reMatchRules(tst,v)

where v denotes the v-th decision (v=1,...,n4), supportSet(r) is a set of training
examples matching the rule r, MatchRules(tst,v) is a subset of MaxRules, whose
premise is satisfied by tst and the consequent is a decision v.

The measure Strength counts the number of training examples covered by the
maximally general rules with the decision v and covering a test example tst.

The classifier based on maximally general rules with the measure Strength as a
strategy for conflict resolution predicts the decision that is the most frequent in the
set of training examples covered by rules matched by a test example, i.e.:

decision oz rules(tst) = arg max Strength(tst, v). (2.12)
veVy

As mentioned previously, the limitation of this approach lies in the fact that
computing MaxRules is very time-consuming.

2.3.2 Lazy rule learning for symbolic attributes

Another approach can be based on a construction of algorithms that do not require
calculating the set of decision rules before classifying new objects. These are lazy
learning (or memory based learning) algorithms. An example of such an algorithm
for the case of SimRules is presented in [15]. It generates only decision rules relevant
for a new test object and then classifies it like algorithms generating rules in advance.
It uses a technique that computes the measures from Equation 2.11 for every test
object without computing all maximally general rules (MaxRules).

2.3 Selected methods in machine learning 37

First, we define simple local decision rule, denoted by s-rule(tst,trn), where tst,
trn are the distinguished objects. This name corresponds to the set of simple rules,
denoted by SimRules (in the following proposition we show their actual relationship).

Definition 2.13. For any test object tst and any training object trn, we define a
simple local decision rule (for short s-rule), denoted by s-rule(tst,trn), the decision
rule with the decision d(trn) and the following conditions t, for each symbolic attribute
a:

— % if a(tst) # a(trn),

Let us recall that ¢ = * denotes the trivial condition a € V. A local decision rule
is defined to ensure that both trn and tst objects satisfy the rule and it is maximally
specific (the number of trivial conditions is minimal; or inversely, the number of
non-trivial conditions is maximal). We have the following crucial relation between
s-rule and maximally general consistent rules from SimRules:

%:{“=awm if a(tst) = a(trn)

Theorem 2.2. [15F The rule s-rule(tst,trn) for a test object tst and a training
object trn is consistent with the training set trnSet if and only if there exists a rule
in the set MaxRules(SimRules,trnSet) covering objects tst and trn.

It means that for MaxRules(SimRules,trnSet) for any test example tst, any
decision v € V; computing the value of measure Strength(tst,v) from Equation 2.11
is equivalent to computing the number of training examples trn € trnSet such that
d(trn) = v and rule s-rule(tst,trn) is consistent with ¢trnSet. This is realised by the
simple lazy rule induction algorithm for symbolic attributes (LAZY) presented below
(see Algorithm 2).

Algorithm 1: isConsistent(r, verifySet)

Input: a rule r : if a then d = v, set of examples verifySet
Output: true if rule r is consistent with ver: fySet, false otherwise
1 begin
2 foreach trn € verifySet do
3 if d(trn) # v and trn satisfies o then
4 ‘ return false
5 end
6 end
7 return true
8

end

The function isConsistent(r,verifySet) checks if a decision rule r is consistent
with a verifySet. For every training object trn, Algorithm 2 constructs the rule
s-rule(tst,trn) based on the examples tst and trn. Then it checks whether the

8The original formulation of this proposition was different. However, this formulation in the
considered case of SimRules is equivalent to the original proposition. Such formulation allows us to
show a more direct relationship between local rules and MaxRules and algorithms based on these
two types of rules.

38 2. Basic notions

Algorithm 2: LAZY (tst, trnSet)

Input: test example tst, training set trnSet
Output: predicted decision for tst

1 begin

2 foreach decision v € V; do
3 | supportSet(v) = 0

4 end

5 foreach trn € trnSet do
6

7

8

9

v =d(trn)

if isConsistent(s-rule(tst,trn),trnSet) then
| supportSet(v) = supportSet(v) U {trn}

end

10 end

11 return arg max |supportSet(v)]
veVy

12 end

rule s-rule(tst,trn) is consistent with the remaining training examples, i.e. if all the
training examples satisfying the left-hand side of s-rule(tst,trn) are labelled by the
same decision as the considered training example trn. If the rule s-rule(tst,trn) is
consistent, then the training example ¢rn is added to the support set of the relevant
decision. Finally, the algorithm selects the decision with the support set of the highest
cardinality. As it was mentioned above from Theorem 2.2 we have:

Corollary 2.3. Let trnSet be a training set. For any test object tst, and the classifier
from Equation 2.12 with MaxRules = MazxRules(SimRules,trnSet), we have
LAZY (tst,trnSet) = decisionyrazruies(tst).

Comparison of the LAZY algorithm to the algorithm based on maximally general
rules allows us to conclude that the LAZY algorithm considers only the decision rules
that can be involved in the classification of a given test object.

The time complexity of the procedure isConsistent checking whether a decision
rule r is consistent with trnSet is O(mn), where n = [trnSet|, m = |A| (i.e. n is
the number of training examples and m is the number of conditional attributes). In
consequence, time complexity of the LAZY algorithm (see Algorithm 2) checking the
consistency of the local simple decision rule based on all possible training examples
is O(mn?). In the case of classifying many test objects, this expression should be
multiplied by the number of test cases. This is far more efficient than generating
the set MaxRules(SimRules, trnSet) in advance, which can be exponentially large
relative to n.

The limitation of this approach is that it works only with symbolic attributes
and does not allow to group symbolic attributes (i.e. for symbolic attributes it allows
only the use of equality descriptor). In Section 3.2, we present the RIA algorithm,
a version of the LAZY algorithm extended to the case of numerical attributes and
generalised for symbolic attributes.

Another limitation of this approach is that for larger data sets this time complexity
is still too high to be used in practice. In Section 3.3, we present a modification of

2.3 Selected methods in machine learning 39

the RIA algorithm, which also applies to the LAZY algorithm as a subcase of RIA.
This modification gives a further reduction of time complexity without decreasing
the classification quality in practical applications.

2.3.3 Instance-based learning

In the previous subsection, an example of lazy learning algorithm is presented. In
general lazy learning (for supervised learning) refers to a class of procedures which
simply store learning examples (thus called also memory based learning), and when
classification is requested, it induces the decision directly from the stored data (see
e.g. |6, 149]). It is in contrast to eager learning, mostly occurring in ML, which refers
to a family of algorithms generalising relevant patterns from specific instances e.g.
rule-based methods induce rules to be later used for classification.

A typical example of lazy learning is instance-based learning. It can be described
by a simple principle stating that similar instances have similar class labels (see
e.g. |5, 7])°. Most instance-based learning classifiers can be characterised by four
components: 1. similarity (or distance) measure, 2. number of neighbours to consider
(from one to all neighbours), 3. function of weight for neighbours (e.g. equal weights
or weights depending on the distance from the test object), 4. conflict resolution (e.g.
majority vote of the &k nearest neighbours) (see e.g. [182]).

The commonly used instance-based algorithm is the £ nearest neighbours
classification algorithm (kNN). It is based on the assumption that for classification
of a given test example it is enough to use (training) examples that are sufficiently
close to this example. Hence, test examples are classified using, e.g. the decision most
common in the set of k nearest neighbours from the training set.

For k = 1, it returns the decision of the training example most similar (assuming
that exactly one such example exists) to the test case (according to the given
pseudometric o). That is:

decisionyyy(tst) = d(trn*), where trn* = argmin o(tst, trn).
trnetrnSet

For general case, the kNN method works as follows. It selects k nearest neighbours
to the example tst according to the given pseudometric o'°.

Definition 2.14. For training set trnSet and test example tst we define
N(tst,trnSet, k, o) as the set of k training examples that are most similar to tst
according to distance function o. In the case when more than one example has
the same distance from the object tst to the k-th nearest example, all of them are
added to N(tst,trnSet, k, o) (then the set N(tst,trnSet,k, o) contains more than k
examples)'.

9More generally, instance-based learning can refer to Case Based Reasoning (see e.g. [175]), i.e.
a family of techniques which solve unseen problems based on the solutions of similar problems
perceived in the past.

10T6 be consistent with other places in the thesis we focus on pseudometrics also here. See also
beginning of Section 2.2 for other possibilities.

11Guch solution is used in the proposed algorithms in the thesis. Thus we also use it for the KNN
algorithm.

40 2. Basic notions

For short, we also write N(tst, k) whenever parameters trnSet and o are clear
from the context (or irrelevant due to generality). We also write N whenever all
parameters are clear from the context (or irrelevant due to generality).

The decision with the majority of examples in this neighbour set is selected as
the final decision.

decisiongyn(tst) = argmax|{trn € N(tst,trnSet, k, o) : d(trn) = v}| (2.13)
veEVy

We can represent Equation 2.13 in the form presented in Algorithm 3.

Algorithm 3: kNN(tst, trnSet, k, o)
Input: a test example tst, training set trnSet, positive integer k,
pseudometric o
Output: predicted decision for tst

1 begin

2 neighbourSet = N (tst,trnSet, k, o)
3 foreach decision v € V; do

4 | supportSet(v) = 0

5 end

6 foreach trn € neighbourSet do

7 v =d(trn)

8 supportSet(v) = supportSet(v) U {trn}
9 end
10 return arg max |supportSet(v)]

veVy

11 end

For determinism, there should also be specified a tie-breaking procedure.

2.4 Imbalanced data

Two important questions should be considered here: What does it mean that data
are imbalanced?; What are the factors of the difficulty of imbalanced data? These
topics refer to foundations of imbalanced learning. This topic has attracted extensive
research. The overview studies which merit our special attention include: [152,
Chapters 2-3|, [102, Chapter 2], [139], [209].

These two questions, which are strongly related, are discussed below.

2.4.1 Basic definition of imbalanced data and its drawbacks

Technically speaking, any data set considered as an input for the classification
problem in which examples of one class significantly outnumber the examples of
the other one can be considered imbalanced (see e.g. [101, 139]). The ratio of the
number of examples from the majority class and the minority class is called imbalance

2.4 Imbalanced data 41

ratio. The imbalance ratio can range from 2:1 (moderate level of class imbalance) to
imbalance ratios above 1000:1 (extreme level of class imbalance; one thousand more
objects from the majority class than from the minority class). For real-life examples
with different imbalance ratios see e.g. [118, 125, 224|.

Experiments show that in some cases the growth of imbalance ratio leads to
declining of the classification quality (see e.g. [102, Chapter 2|, [211]). Thus sometimes
this factor can represent to a degree the difficulty of classification.

However, the difficulty of learning from imbalanced data is concerned not only
of the imbalance ratio between classes but mainly of the data complezity (see e.g.
[110, 139, 152|). We discuss this topic in the next subsection. Let us consider a simple
illustration that data complexity and the imbalance ratio factor do not coincide.
For instance, for very complex data set, one can multiply one chosen example from
the minority class to obtain the data set with equal representation of both decision
classes'?. In this case, we obtain the data set with the imbalance ratio equal to 1:1,
but the difficulty of the data set is similar to the original data set. If we take into
account this fact together with topics discussed in the next subsection one can see
that difficulty of data set cannot be measured only by imbalance ratio and doing this
sometimes can be misleading (see e.g. [102]).

Let us also note that the imbalance ratio is defined on the data we possess. If the
data are representative for the underlying distribution, what is usually assumed, we
have a good estimation of this parameter. Otherwise, the estimated imbalance ratio
can be misleading. In consequence, even balanced data sets could be recognised as
imbalanced and vice versa. (see e.g. [102]).

2.4.2 Different factors of the difficulty of imbalanced data

As it was mentioned above, the imbalance ratio taken separately is insufficient to
measure the difficulty of learning from imbalanced data. Generally speaking, the
difficulty of imbalanced data is embodied in the complex structure of the minority
class concept.

The literature distinguishes several factors which make the learning from
imbalanced data a challenging task (see e.g. [11, 110, 139, 210, 211]). Among them
are:

e selection of relevant performance measure,

e relevant representation,

e data decomposition leading to small disjuncts,
e overlapping between the classes,

e presence of outliers or noisy examples,

e imbalance ratio,

121f we proportionally multiply all examples from the minority class we, in fact, have simple
sampling method which still does not solve the problem of data complexity (see Subsection 2.5.1).
It should be noted that our intention was to make the example as simple as possible.

42 2. Basic notions

e the absolute number of examples.

As it can be noticed, the factor of the imbalance ratio is usually combined with
other factors. All these factors are briefly discussed below. Let us notice that the
first two factors are related to the primary components in any data-mining algorithm
(see e.g. [59]).

Selection of relevant performance measure

The main task in solving the classification problem is to understand the given
data mining problem. This includes understanding what does it mean that a
classifier performs well on a given domain. The performance measure (see also
Subsection 2.6.1) is used to express this precisely. It is important is to find a
performance measure relevant to the considered problem (see e.g. [59]). Although this
issue is important for any classification task, it is especially important for imbalanced
learning problem. If such performance measure is available, it should be embedded
in the classifier induction algorithm (see e.g. [102]). However, for many imbalanced
learning problems, such performance measure is unknown, and an approximation of
the ideal performance measure is used. Examples of general performance measures
are presented in Subsection 2.6.1. However, we want to stress here that if one is
inducing a classifier by using optimisation relative to an ad hoc selected performance
measure, then with a high chance the resulting classifier may differ from the one, the
user is interested in.

Specification of the exact requirement for the classifier is one of the important
tasks to accurately solve the imbalanced learning problem. This is a much harder
task than in case of balanced data where the widely used accuracy measure can be
usually selected as the relevant performance measure to start with.

Relevant representation

Relevant representation (relevant space of objects) can influence imbalanced learning
problem. Selecting relevant attributes is generally important and hard problem in
data mining (see e.g. [27, 93, 134]). This is especially important for imbalanced data
(see e.g. |197]). It was shown for the real-life problems that feature extraction can
be of much higher importance than selecting proper learning method (see e.g. [201]).
This is particularly important for high-dimensional and imbalanced data sets (see
e.g. [150]). Searching for relevant features should not be considered separately, but
in correlation with other features (see e.g. [92]).

Furthermore, using the relevant similarity measure between two entities can be
crucial for some ML methods (e.g. for kNN methods). Finding the relevant similarity
measure is an important and hard problem in data mining (see e.g. [12, 28, 99, 107]).
By using the relevant similarity measure, one can appropriately group entities labelled
by the same decision. This can change the difficulty of the classification task for
chosen methods.

Thus, selecting the relevant attributes and/or the relevant similarity measure for
grouping objects is crucial for solving the classification task. This can significantly
change the nature of the problems listed below.

2.4 Imbalanced data 43

Data decomposition leading to small disjuncts

Suppose we have fixed a language for expressing concepts (e.g. rules, similarity
relations for grouping similar objects in clusters); in that case, one can group examples
with the same decision into some regions (clusters). The sum of these regions defines
the target concept. All the regions used to describe the target concept can be regarded
as subconcepts. For example, if the target concept is related to the presence of cancer
(the minority class), then the subconcepts can correspond to different types of cancer.
Among those subconcepts in the minority class, there can be subconcepts of different
cardinality. The problem is that some or even many of those subconcepts can be
supported with relatively few examples only. In the discussed example, there could
be a rare subconcept of some specific type of cancer.

This situation is known in the literature as within-class imbalance (see e.g.
[209]). The imbalance defined in the previous subsection is also called between-class
imbalance.

The name small disjuncts derives from the classifiers which represent concepts
as a function of conjunctions of conditions for attributes (e.g. rule-based classifiers,
tree classifiers). For example, a single rule in rule induction algorithms is represented
as a conjunction of conditions for attributes (see Subsection 2.3.1). Final classifier,
in the simplest case, can be represented as a disjunction of all conjunctions used
in rules describing the positive class. It is known in general that for the systems
representing concepts by several disjuncts of conjuncts there occur relatively many
conjuncts that have small coverages (see e.g. [103]). Such disjuncts, which cover a
few training examples, are called small disjuncts.

The problem with small disjuncts is that they cause much higher error rate than
large disjuncts. Moreover, this property is preserved in overall, i.e. finally small
disjuncts lead to much higher error rate than the large ones (see e.g. [103]|). For
balanced data, special statistical tests for eliminating small disjuncts can be used (see
e.g. [103]). However, in this way for imbalanced data truly important subconcepts
could be eliminated. Moreover, when only a small number of examples supporting
these subconcepts is available, the statistical tests could be of small significance (see
e.g. [103]). Experimental results show that indeed for different classifiers errors are
concentrated over smaller disjuncts (see e.g. [210]).

This justifies how important it is to properly find and describe these regions in the
target concept. Small disjunct can relate both to the minority class and the majority
class, however usually this problem relates to the minority class.

Overlapping between classes

Generally, the imbalanced learning problem is related to separating the minority
class from the majority class. If there exist patterns expressed in the selected
language which properly discriminate one class from another, the learning task is
relatively easy. In such case, usually very advanced method is not needed to solve
the classification task, and the value of the imbalance ratio does not influence the
final performance of classification. However, if those patterns overlap more and more,
the learning task becomes increasingly difficult (see e.g. [76, 168, 195]).

44 2. Basic notions

Presence of outliers or noisy examples

Noise affects all data mining tasks. However, its impact can be severe for the
imbalanced learning problem. This is due to the fact that noise especially leads
to the inappropriate learning of small subconcepts of the minority class, which, in
fact, are of special importance [209].

On the other hand, examples which look like noise can be, in fact, examples of
outliers, i.e. proper examples which are not similar to the other examples. Deleting
such examples, especially examples from the minority class can lead to incorrect
classification of rare test examples which are very important to be classified correctly
(see e.g. [4, 23]).

Imbalance ratio

To sum up, what was presented in Subsection 2.4.1 and in the above subsections, the
imbalance ratio alone cannot reflect the complexity of the data. However, its high
value can enhance the difficulty of the target concept determined by the difficulties
presented above. In this sense, the imbalance ratio can only measure one of the
factors determining the difficulty of data set.

The absolute number of examples

There is also another topic related to the imbalance ratio. This value shows the
relative difference between classes. However, in practice, the absolute number of
examples can play an important role in the difficulty of data sets. For instance, for
imbalance ratio equal to 100:1, the easier task would be if we have 10000 positive
examples and 1000000 negative examples than if we have 10 and 1000 examples,
respectively. This is due to the fact that some subconcepts of the minority class in
the latter case could be represented only by one or even none example. This problem
is referred in the literature as the absolute rarity whereas the problem of the high
imbalance ratio is referred as the relative rarity (see e.g. [102]).

2.4.3 Types of examples indicating the complexity of the data
sets

How to describe quantitatively the overall complexity of the imbalanced data sets? It
was noticed that some examples in the data set are easy to classify, and some are hard.
The intuition is that the more number of hard examples are in the considered data set,
the more complex is the data set. Some attempts were made to discriminate different
types of examples within the minority class (see e.g. [124, 152, 154, 155, 191]). Each
of these types relates to a different kind of hardness. In [152], the following types of
minority class examples have been identified:

o safe,
e borderline,

e rare,

2.4 Imbalanced data 45

e oullier.

Let us remember that we focus on the types of examples for the minority class.
The safe examples are those which lay in the interior of the homogeneous regions of
the minority class. The borderline examples are those which are located close to the
boundary between two classes. An outlier example is surrounded by examples from
the majority class. Any rare example is nearly like an outlier, with such difference
that in relatively close distance from it there is another example from the minority
class.

The identification of these types usually is performed using the neighbourhood
of the example. If all or nearly all neighbour examples have the same labels as the
minority example, then it is identified as the safe. In case the neighbour examples
are nearly equally distributed, the example is identified as the borderline. In case
all neighbour examples are from the majority class, the example is identified as an
outlier. In case not all but nearly all examples are from the majority class, the
example is identified as the rare.

Formally in [152], kNN neighbourhood is used with k& = 5, and the following
distribution of nearest neighbours from the minority and majority classes are used to
identify the types of examples:

e safe for 5:0 or 4:1,

e borderline for 3:2 or 2:3,
e rare for 1:4,

e outlier for 0:5.

For other possibilities and more detailed discussion see [152]. The number of
examples for all the above types of examples for a data set describe to a degree the
complexity of the data set. A big number of safe examples indicate that data set is
easy for classification. The more borderline, rare and outlier examples are in a data
set, the harder the set is for classification. The big number of outliers indicate the
extreme hardness of data set for classification.

2.4.4 Drawbacks of imbalanced data analysis by the standard
learning algorithms

The difficulty of imbalanced data analysis can be illustrated by difficulties of such
data analysis by standard learning algorithms. Why the quality of standard learning
algorithms is low when they are applied to imbalanced data? There are at least four
reasons for that.

First, the standard learning algorithms are aiming to maximise classification
accuracy expressed by a ratio of the number of correct predictions made by classifier
over the total number of predictions made. For imbalanced data, this performance
measure is unsatisfactory. Let us consider the previously mentioned example of
Mammography data set. This data set contains 10 923 non-cancerous (the majority
class) and 260 cancerous (the minority class) samples. Let us consider the trivial

46 2. Basic notions

classifier selecting the majority class for any patient. Thus, in this example, it would
always predict a patient to be healthy. Of course, such classifier is completely useless,
but at the same time, it achieves accuracy approximately equal to 98%. For many
balanced data sets, such accuracy result would seem excellent. Thus, in this example,
it becomes clear that the considered accuracy can lead us to the false conclusion
about the classifier’s quality. The evaluation of classifier by the accuracy measure
becomes inadequate for imbalanced data. The appropriate performance measures
for imbalanced data are discussed in Section 2.6. Here, it is worthwhile mentioning
that if in the learning phase classifiers are trying to maximise standard performance
measures such as the accuracy, then, in the case of imbalanced data, this may lead
to a classifier of the low classification quality.

The second problem is related to the fact that most of the standard methods
assume or expect on input balanced class distribution. Generally, the classifier is
required to achieve a balanced rate of predictive accuracy for both the minority and
majority classes. However, standard classifiers while achieving high accuracy for the
majority class achieve a rather low accuracy for the minority class (see e.g. [102]).
What is the reason for that? We do not intend to give the general answer, but
rather some intuition only. Let us consider as an example rule-based classifiers. For
imbalanced data, the induced rules usually have different coverage: small for the
minority class and big for the majority class. Thus in the conflict resolution between
rules matched by a new case, the majority class would usually win.

Third, when the standard learning algorithms are identifying noisy examples and
then removing them from the training data, at the same time they may disrupt
knowledge encoded in imbalanced data. On the one hand, small clusters of the
minority class could be regarded as noise. On the other hand, a few real noisy
examples from the majority class not identified as noisy can complicate classification
for the minority class (see e.g. [139]).

The fourth problem is that the standard learning algorithms assume equal
misclassification costs to all classes. In the example of mammography examinations,
standard classifiers would usually treat equally both types of patient’s health
misclassification. However, in medical practice, these two types of misclassification
have very different consequences. If a healthy patient is classified as cancerous, this
will lead to some thorough medical examinations (maybe costly). But if the cancerous
patient is classified as healthy, it can result in irreversible worsening of her /his health
state or even the death. Thus it becomes clear that the misclassification cost in
the considered domain should be higher for the minority class than for the majority
class. It is required that the classifier predicts correctly most of the truly cancerous
patients.

2.5 [Existing methods for imbalanced data

Numerous algorithms have been proposed, especially in the last decade, for solving
the imbalanced learning problem (see e.g. [95]). In this section, we present only a
brief overview of the existing methods. The readers are referred to [95], [139], [152,
Chapters 2-3|, [102], [101], [195] for more details. We only present details of the
algorithms used in the experiments reported in the thesis.

2.5 Existing methods for imbalanced data A7

Solutions proposed for the imbalanced learning problem are often grouped into
data-level and algorithm-level methods (see e.g. [195]). They are characterised in the
following subsections.

2.5.1 Data-level approaches

The main idea behind data-level methods is to transform the original data set into
a new one in order to be able to use standard ML techniques. These standard
algorithms are usually aiming to maximise the accuracy. For balanced data, when
the distribution of both classes is even, it is satisfactory. Methods on data-level try to
balance the distribution of both classes to make it like in the case of balanced data.
The performance of such methods depends on their ability to solve the problem of
data complexity (see Subsection 2.4.2).

The big advantage of these methods is that they are independent of the selected
accompanying learning algorithm. Thus, many well-known learning algorithms
addressed for balanced data can be used together with any data-level method.

Resampling techniques

Very popular data-level strategies for dealing with imbalanced data are resampling
techniques (called also filters). Resampling techniques can be divided into three
groups:

e over-sampling which increase cardinality of the minority class,
e under-sampling which decrease cardinality of the majority class,
e hybrid methods which combine the previous two approaches.

The simplest over-sampling method is based on random duplication of examples
from the minority class (see e.g. [108]|). The more sophisticated and very well-known
method is SMOTE [37]. Due to its simplicity and proven success in various applications,
it is a standard benchmark for learning from imbalanced data. This method creates
new synthetic examples for all minority class examples. Let us describe over-sampling
for one fixed example from the minority class. First, for this example it takes a
previously specified number of its nearest neighbours from the minority class (by
default 5). Second, depending on the value of the desired over-sampling ratio (e.g.
200%), a relevant number of these neighbours are randomly chosen. Third, for all
chosen neighbours, new examples are synthesised between the considered example
and the chosen neighbours. This is done by taking random feature values between
values of the example and one from the neighbourhood. In this way, new synthesised
examples extend the border of the minority class (for more information see [37]).

There are also other sophisticated methods of over-sampling based on SMOTE (see
e.g. [179, 204]). It should be mentioned here the recent interesting modification of
the SMOTE algorithm for manifold and synthetic over-sampling (see e.g. |20, 21]).
Additionally, in [63], one can find a good overview on variations of SMOTE developed
during the 15 years since the algorithm was invented. It is also worthwhile mentioning

48 2. Basic notions

that there exist SMOTE extensions with adaptive k value related to the data complexity
(see e.g. [129, 231]).

Under-sampling methods eliminate some examples from the majority class. The
simplest method eliminates randomly chosen examples. A very effective modification
of this method is presented in [196]. One of the under-sampling methods is Edited
Nearest Neighbour (ENN, see [214]). This method discards those majority examples
which are close to the minority class. First, it takes 3 nearest neighbours of the
considered example from the majority class. If at least two of them are examples
from the minority class, then it is removed. Still new approaches for under-sampling
to handle imbalanced data are being developed (see e.g. [206]).

Hybrid methods are obtained by the combination of the over-sampling and
under-sampling method. As an example of hybrid method, one can consider
SMOTE+ENN — first, over-sampling SMOTE is used, and then under-sampling ENN is used
(see [14]). It was reported in the literature that this sampling method provides very
good results in practice in comparison with many other sampling methods, especially
for a small number of instances from the minority class (see e.g. [14]).

The random under- and over-sampling have their drawbacks. Under-sampling
may delete potentially useful examples. Over-sampling may enhance the effect of
overfitting, especially when it is related to noise in the data.

2.5.2 Algorithm-level approaches

An important direction for solving the imbalanced learning problem is to modify
existing learning algorithms to improve their performance for imbalanced data.
Usually, this is done by changing bias to the minority class.

For example, there were attempts to modify decision trees to improve performance
of the standard C4.5 algorithm for imbalanced learning problem (see e.g. |40, 136]).

In recent years an increasing interest can be observed in areas such as in
deep-learning and extreme learning machine. There were also attempts to adapt
these approaches to imbalanced data (see e.g. [105, 113, 126, 205, 228|, and
[52, 173, 227] for deep-learning and extreme learning machine, respectively). However,
the relationships of these approaches with imbalanced data still need to be studied
more, as it was stated, for example, in the survey [113].

There were attempts to adapt the kNN algorithms to imbalanced learning
problem. When one class is dominating in the considered data set, it can be expected
that in many regions this class dominates in the neighbourhood. Thus in the regions
where two classes overlap standard kNN can be biased towards the majority class.
This leads to the misclassification of the minority class. In [135], k-nearest neighbours
weighting strategy is proposed for imbalanced learning problem. Training examples
are provided with class confidence weights (CCW) according to their probability of
attribute values for a given decision class. While standard kNN method uses the
probabilities of decision classes in the constructed neighbourhood, this method uses
conditional probabilities of decision classes. They show two methods for calculating
CCW weights: mixture models for numerical attributes and Bayesian networks for
symbolic attributes.

There were attempts to change metric adjusted appropriately for the imbalanced

2.5 Existing methods for imbalanced data 49

learning problem. In [123], for each class, its empirical cumulative distribution
function of nearest neighbour distances is approximated. It is used in the classification
process by calculating the probability that the vector consisting of distances of test
example to its k nearest neighbours relates to the considered class. The class with
the greatest probability is chosen. In [130], the boundary of the minority class is
extended. This is done by selecting minority examples and generalising them to
Gaussian balls to represent concepts of the minority class.

In [56], local class distribution is taken into account together with wider region.
For the local class distribution, relevant weights are computed based on the wider
region. Weights are calculated according to the performance of kNN classifier for the
neighbour examples.

There exist some algorithms dedicated to imbalanced data based on modifications
of standard rule-based algorithms. First, after [152] (which bases in this aspect on
|209]) let us list the typical limitations of standard rule-based approaches: top-down
induction technique (favouring general rules); improper evaluation measures used to
guide the search; greedy, sequential covering technique (examples covered by rules
are not used for generation of other rules); biased classification strategies (conflict
resolution is biased towards the majority class). The following approaches partially
overcome these limitations: approaches applying less greedy search techniques (see
e.g. |90, 193[; see also rule-based one-class learning algorithms in Subsection 2.5.4),
approaches based on solutions trying to improve the quality of generalisation of
rules for the minority class (see e.g. [157]), approaches using strategies for conflict
resolution increasing sensitivity to the minority class (see e.g. [89], [25]), approaches
using evaluation measures during rule generation more relevant for imbalanced data
(see e.g. |9, 103, 114]), approaches refining rules for the borderline regions (i.e.
regions containing mainly borderline examples) to better detect the minority class
(see e.g. [124, 137, 192]), and approaches combining genetic algorithms with rules to
better classify imbalanced data (see e.g. [74, 148]). More detailed overview of these
techniques can be found in [152]. As claimed in [152], the general drawback of these
approaches is that they do not overcome all the above-listed limitations related to
imbalanced data.

Now we briefly characterise two rule-based learning algorithms dedicated to
imbalanced data used in the thesis experiments. The first one (MODLEM-C) tries to
overcome the problem of biased classification strategy. The second one (BRACID) is
of special importance for the thesis since it uses an integrated representation of rules
and single instances. In other words, it combines instance- and rule-based approaches
analogously to the algorithms presented in the thesis. Moreover, this algorithm is
claimed to overcome all the main drawbacks of rule-based learning algorithms in case
of imbalanced data contrary to the approaches discussed in the previous paragraph.
Therefore, it is especially valuable to compare the algorithm for imbalanced data
presented in the thesis (RIONIDA) with BRACID.

MODLEM-C is an extension of the MODLEM algorithm (see [188-190]) allowing
strengthening sensitivity to the minority class. For all rules describing the minority
class, the rule’s strength is multiplied by the same real number. This number is
given as a parameter, which is called the strength multiplier. This is equivalent to
adding duplicates of objects from the minority class to the training set. For more

50 2. Basic notions

information, see |89, 90| (and citations given for MODLEM above).

Bottom-up induction of Rules And Cases for Imbalanced Data (BRACID) is a
modification of RISE algorithm (see [53]). Analogously to RISE it uses an integrated
representation of rules and single instances. It uses the strategy of bottom-up
induction of rules from single examples with the specific generalisation by searching
for nearest examples to the rule. Using F-measure, it evaluates a generated rule
relative to this rule’s local recognition of decision classes. It distinguishes a few
types of examples (as described in Subsection 2.4.3) and treats them differently. The
conflict resolution bases on supports of the nearest rules to the test example. For
more information, see [152, 153].

2.5.3 Cost-sensitive learning

Cost-sensitive learning assumes that there is given a cost matrix describing the
costs of misclassifying one class as another. The goal of learning is to construct
a classifier minimising the overall cost on the training data set. Research shows that
the methodology of cost-sensitive learning can be naturally applied to the imbalanced
learning problem (see e.g. [38, 209]). The main idea behind the cost-sensitive learning
for imbalanced data is that the cost of misclassification of the minority class (i.e. cost
of false positives) is higher than of the majority class (i.e. cost of false negatives).
Usually, the cost of the correct classification is equal to zero. For a given specific
domain, the cost matrix can be provided by an expert. If such information is available,
it indeed should be used and this methodology is natural to solve the given data
mining problem (see Subsection 2.4.2). However, such information is rarely available.
Thus the relevant setting for the cost matrix should be performed based on the
available data during the learning stage, which is a difficult task (see e.g. [122, 138]).

There are three main approaches using the cost-sensitive methodology for the
imbalanced learning problem. First, there are the methods which incorporate
cost-sensitive functions to the standard ML algorithms in order to build cost-sensitive
classifiers. Among them are cost-sensitive decision trees, cost-sensitive neural
networks, cost-sensitive Bayesian classifiers, and cost-sensitive support vector
machines. For example, for decision trees, the cost-sensitive function is used to choose
the best condition to split the data and determine whether a subtree should be pruned
(see e.g. [30, 57, 132]).

Second, there are the methods which use relevant weights for learning examples to
redefine the distribution in order to improve classification performance (see e.g. [69]).
For instance, boosting algorithms tend to generate distributions aiming to classify
properly hard examples in the training data set (see e.g. [69)]).

Third, there are methods based on Bayesian decision theory (see e.g. [45]).

It is worth noting that there exist some theoretical relationships between
cost-sensitive learning and resampling techniques (see e.g. [57, 233|, for other
references see [38|). For example, a similar effect can be obtained using cost-sensitive
learning and resampling technique.

2.6 Evaluation of learning algorithms 51

2.5.4 One class learning

In case of the standard binary classification problem, imbalanced or not, classifier aims
to discriminate instances of both classes. One-class learning are methods aiming to
recognise instances only from the minority class. In this case, the training set contains
mainly or only objects from that class. In consequence, the hypothesis construction
of such classifiers naturally focuses on the minority class. For example, there exist
one-class Support Vector Machines (see e.g. [143, 174]), one-class neural networks (see
e.g. [111, 142|). The latter is based on the so-called autoassociator (or autoencoder).
There exist also one-class rule-based learning algorithms (see e.g. [176], [236]). They
learn only rules for the minority class (the majority class is not learnt at all).

It was reported in the literature that one-class learning is particularly useful for
dealing with very imbalanced data sets and high dimensional feature space (see e.g.
[174]).

2.5.5 Ensemble methods

Ensemble-based classifiers use a set of base learning algorithms. Each of them induces
a classifier. Next, the obtained classifiers are combined to obtain a new classifier with
(optimistically) better performance than each of these classifiers (see e.g. [139]). For
example, ensemble of rule-based classifiers was successfully used for imbalanced data
(see e.g. [25]).

2.6 Evaluation of learning algorithms

One of the important aspects of ML is a proper evaluation of the constructed systems,
in particular the learning algorithms. This constitutes quite many topics. Many
aspects concerning this issue are discussed in [109].

In [51], a taxonomy of possible statistical questions related to the evaluation of
classifiers is presented. First, the fundamental question is whether we focus only on
a single application domain or multiple domains. The answer to this question, in this
thesis, is ‘multiple domains’ since we focus on inventing learning algorithms which
could be used on a possible wide range of application domains.

To make the problem simpler, let us, for now, limit our considerations to two
algorithms. Then the fundamental question one should answer is:

Given two learning algorithms A and B and data sets from several
domains, which algorithm will produce more accurate classifiers when
trained on examples from new domains? [51]

Let us recall that we distinguish between a classifier and learning algorithm (see
Section 2.1; see also [51]). In general, in the thesis, we present learning algorithms,
which are compared with the other ones. However, as a step of such a comparison,
one also needs a method to compare classifiers. If we focus on a comparison of
classifiers, there arise other questions related to the taxonomy presented in [51].
Among others, we assume that the amount of supported data is limited (as it happens
in many real-world learning tasks). Thus, one cannot use simple statistical methods

52 2. Basic notions

to compare two classifiers. Instead, one needs to use all the available data set as
input. In consequence, we use a particular form of resampling called cross-validation.
This raises more questions on how to use it properly to estimate the real value of the
classifier’s chosen performance measure with small bias.

It should be noted that the methodology used to evaluate the RIONA algorithm
(see [81, 82|) is different from the one used in this thesis to evaluate the RIONIDA
algorithm. Among others, this is due to the changing trends in the area of ML related
to the issue of comparing learning algorithms.

Comparative studies usually include a new algorithm and several known methods.
However, these studies should use very carefully their methods and their claims (see
[181]). There are several steps important in the process of evaluation of learning
algorithms:

1. choosing one or more performance measures relevant to the considered problem
— the values of this measure for two classifiers (results of a learning algorithm for
a given training data set) create the basis for their comparison (i.e. estimation
which one is better or worse according to this measure),

2. selecting a method for estimation of the value of the chosen performance
measure(s)'® for a single data set (usually the cross-validation is used, but
not always it is possible),

3. choosing a family of data sets on which estimation of the quality of given
learning algorithms in terms of this(these) performance measure(s) should be
done — these data sets are assumed to be representative for the real-life problems
for which the considered classifiers will be applied (the aim is to construct
classifiers with high quality for real-life problems or a specific family of such
problems),

4. deciding which algorithm(s) from a given family is/are the best/comparable on
the given data sets (usually this is done based on some statistical methods),

5. decision making based on the previous step indicating which learning algorithm
from a given family is the best for a range of real-life data sets (or which
algorithms are comparable).

Each of these steps is important and each presents its own difficulties. In the area of
data mining, there are some generally accepted paths through these steps. However,
each of these paths has its specific drawbacks. It should be emphasised that all of
these steps could be seen as forming or influencing the logical /statistical inference
concerning the comparison of two or more learning algorithms, potentially leading to
some errors or bias. Thus even if we make every effort to be as formal as possible, this
inference leads to some uncertainties and contains some gaps, errors, and weaknesses.
One should bear this in mind when coming to the final conclusions. This also concerns
the outcome of the experiments presented in this thesis (see Chapter 5).

13In analogous contexts, instead of ‘value of performance measure’ we often write ‘performance
measure’, for short.

2.6 Evaluation of learning algorithms 53

In the following subsections, all these steps are briefly described (see Subsections
2.6.1-2.6.5 for the steps 1-5, respectively). Also, brief drawbacks of the chosen paths
are described.

2.6.1 Performance measures

The selection of relevant performance measure' is one of the key factors in assessing

the classification performance and searching for the high-quality classifiers (see e.g.
[139]). Finally, the relevant performance measure should be selected for a specific
domain (see Subsection 2.4.2). In the absence of knowledge about it, a measure from
the standard performance measures is usually used.

Confusion matrix

For evaluation of classifiers, a confusion matriz is often used (see e.g. [182]). A
confusion matrix summarises the performance of classifier on a given test data.
Any cell of the confusion matrix is identified by two indices. Every cell contains
information on the number of objects belonging to the class indicated by the first
index and classified to the class indicated by the second index.

Table 2.2 presents an example of a confusion matrix for a three-class classification
task, with the classes d;, ds, and d3. The first row of the matrix indicates that 11
objects belong to the class d; and that 7 are correctly classified as belonging to dj,
one misclassified as belonging to ds, and tree misclassified as belonging to ds.

In the thesis, such general confusion matrices are used for balanced data only.

Predicted
(Classified as)

class d; | class d, | class d3
Actual class d; 7 1 3
(Really is) class d, 0 4 2
y class dj 1 2 3

Table 2.2: An example of a three-class confusion matrix.

For balanced data, the accuracy rate is the most commonly used performance
measure. In terms of confusion matrix, the Accuracy (Accuracy measure) is the sum
of numbers in the diagonal divided by the number of all objects (sum of all numbers
in the matrix)!®.

Performance measures used in the thesis for imbalanced data

As it was mentioned before, for imbalanced data we consider in the thesis only data
sets with two decisions. For this case, the confusion matrix has a specific form

!4In the literature, other names are also used, e.g. performance metric, assessment metric,
evaluation metric, assessment measure.

15We write Accuracy in capital letter (analogously as F-measure and G-mean) when we refer
directly to this definition or Equation 2.14.

H4 2. Basic notions

presented in Table 2.3, and each cell in this matrix has its own name. The positive
class relates to the minority class, and the negative class relates to the majority class.

Predicted (Classified as)

Positive Negative

. Positive | True Positive (TP) | False Negative (FN)
Actual (Really is)

Negative | False Positive (FP) | True Negative (TN)

Table 2.3: Confusion matrix for a two-class problem.

In this case, the most common performance measure, Accuracy (Accuracy
measure), is defined as follows.

TP+TN
TP+ FN+FP+TN

Generally, Accuracy is the probability that for any test example the classification
is correct (see Subsection 4.3.4 for the use of such definition). This measure is not
relevant for imbalanced data sets, since it does not distinguish between the number
of correctly classified examples from different classes.

The acceptable performance measures for imbalanced data are usually composed
out of the following sub-measures (see e.g. [102]):

Accuracy =

(2.14)

Sensitivity — ——1 (2.15)
ensitivity = op—p :
TN
 ficity = ———— 2.1
Speci ficity FPLTN (2.16)
TP
Precision = 7_'P—|——F1P (217)

Sensitivity is the conditional probability that the classification is correct given
the actual positive class. Specificity, the complement measure to Sensitivity, is the
conditional probability that the classification is correct given the actual negative
class. Precision is the conditional probability that the classification is correct given
the classifier predicts positive class.

Other names for these measures used in the literature are given in Table 2.4.

Now, we present important performance measures used in the thesis.

Widely used performance measure for imbalanced data is F-measure (see e.g.
[13, 18, 49, 117, 238]), which is the harmonic mean of Precision and Recall, i.e.
Precision and Sensitivity:

1 Precision - Sensitivity
1 T 1 =2

Sensitivity Precision

F-measure =2 - (2.18)

" Precision + Sensitivity

2.6 Evaluation of learning algorithms 55

Name usually used

.) Other names used in the literature
in the thesis

Sensitivity True Positive Rate, Accuracy for Positive Class, Recall
Specificity True Negative Rate, Accuracy for Negative Class
Precision Positive Predictive Value

Table 2.4: Different names for given measures.

The last equality holds under the assumption that both Sensitivity and Precision
are not equal to zero, which is equivalent to the assumption that True Positive value
(TP) is not equal to zero.

The presented formula is a specific case of more general one Fjg-measure, where by
the parameter [the different importance of Precision and Sensitivity can be set. The
presented definition of F-measure corresponds to the case when S = 1, i.e. to the case
with the equal importance of Precision and Sensitivity. In the thesis, only this case,
presented in Equation 2.18, is used. This performance measure and its properties
are widely discussed in the literature (see e.g. [46, 65, 98, 133, 163]). There are also
other, more sophisticated performance measures based on the Fz-measure (see e.g.
[144]).

Another widely used performance measure for imbalanced data is G-mean (see e.g.
[13, 18, 58, 125, 194, 238]), which is the geometric mean of Sensitivity and Specificity:

G-mean = \/Sensitivity - Speci ficity (2.19)

By substituting Sensitivity and Precision in Equation 2.18 and using Equations
2.15, 2.17 one can express F-measure in terms of True Positives, False Negatives and
False Positives. After a few simple calculations, assuming that TP + FP # 0 and
TP+ FN # 0, we obtain the following equation:

F = 2. TP (2.20)
_meaSUTG_Q-TP+FN+FP .

Condition TP+ F'P # 0 does not hold (e.g. Precision is undefined) when classifier
makes no positive predictions. Condition TP+F N # 0 does not hold (and Sensitivity
is undefined) when there are no positives in the considered set.

For practical use (and to be precise), one should specify either how one treats
the exceptional situations or define the used measures for them. We assume (which
is normally true, in particular, true for our experimental setup; see Chapter 5) that
for all considered situations, the number of both majority and minority examples is
nonzero (i.e. TP+ FN # 0and FP+TN # 0). Then, Sensitivity and Specificity (and
thus G-mean) are well-defined. Under the mentioned assumption, also, Equation 2.20
is well-defined. We use this definition as an extension of F-measure such that it is
well-defined (namely, zero) in all other exceptional situations mentioned earlier!®.

161t is equivalent to use the original definition (see Equation 2.18) of F-measure and return value
zero for all undefined situations.

56 2. Basic notions

Other performance measures for imbalanced data

Receiver Operating Characteristics (ROC) Analysis is used to distinguish
performance between classes (i.e. Sensitivity and Specificity) of binary classifiers for
different decision thresholds (see e.g. [182]). In practice, the ROC curve is used. It is
a graphical plot that visualises the relation between Sensitivity (True Positive Rate)
and 1 — Specificity (the False Positive Rate) for a classifier under varying decision
thresholds. It should be noted that the (-mean measure relates to a point on the ROC
curve which represents the balance between Sensitivity and Specificity in attempt to
maximise both the components (see e.g. [124]).

Analogously, to ROC Analysis, Precision-Recall Analysis is also used (see [66]). It
should be noted that F-measure relates to a point on the Precision-Recall curve which
represents the balance between Precision and Sensitivity in attempt to maximise both
components.

The widely used performance measure is Area Under the ROC Curve (AUC)
which is a summary statistic of ROC Analysis (see e.g. [109]). However, the AUC
measure has also serious drawbacks (see e.g. [97, 172]). In the literature, many other
performance measures relevant for imbalanced data are proposed (see e.g. [31, 91, 97,
102, 109]).

2.6.2 Estimation of the chosen performance measure

We assume here that the performance measure is fixed. We also assume here that the
data set is given, but the number of examples in this set is small relative to all possible
examples. The important issue now is to estimate the value of the chosen performance
measure for a given learning algorithm and the considered domain using the given
data set. We would like to obtain an estimate of the considered performance measure
as unbiased as possible with the property of reproducibility (see e.g. [171]). This is
not an easy task (see e.g. [29, 109, 171]). The most popular estimation technique
in ML is the k-fold cross-validation. It divides a given data set D into k disjoint
subsets D!, ..., D¥ (called folds) of roughly equal sizes. In i-th iteration, the learning
algorithm is trained on D\ D' set and tested on the D set. Thus in each iteration,
we obtain a separate number estimating the performance of the classifier. Usually,
the average of those numbers is used as an overall estimation of the selected measure
for the learning algorithm. A typical choice of k is 10, which is recommended in [120]
and also used in the thesis.

In the standard cross-validation, the distribution of classes is not taken into
account. However, for imbalanced data the minority class may be under-represented
or even absent in some folds used as the test set. It may result in the biased
estimation. Thus, for imbalanced data the stratified cross-validation is used. It
takes care that in each fold D! the distribution of classes is roughly the same as
in the original set. Testing procedure in the thesis (for imbalanced data) is always
done with the stratified cross-validation. It should be noted that the criticism of the
stratified cross-validation as well as a new, more sophisticated estimation methods
for imbalanced data are presented in the literature (see e.g. [140]).

Let us return to the issue of how to compute one overall estimation score
having system outputs for each of the k folds. This issue relates to the micro- or

2.6 Evaluation of learning algorithms b7

macro-average style. In the case of Accuracy, the usual procedure of averaging the
results of Accuracy for each of the k folds is satisfactory. Under the assumption that
all folds are exactly of the same size, the joining confusion matrices of all folds and
computation of Accuracy for such joint matrix gives exactly the same result!”. This is
not true for such measures as F-measure or G-mean. For the sake of simplicity, let us
assume that F-measure was chosen as the performance measure. The macro-average
style means counting F-measure for each fold and finally counting the average of these
numbers. The micro-average style means that all True Positives, False Negatives,
False Positives, and True Negatives are summed over all folds. With these counts, the
F-score is computed. In other words, F-measure in the micro-average style is counted
from the joint confusion matrix (with coefficients equal to the sum of coefficients from
each fold).

It was shown in [67] that simple averaging of separate results, i.e. the
macro-average style can give the biased estimation. However, the micro-average style
gives less bias. Authors also inform about other possible ways to estimate F-measure
using the cross-validation scheme. This is related to the issue of how special cases
are treated, which was discussed in the previous subsection. Analogously, estimation
of G-mean value may be influenced by choosing the method of computation of the
final performance result.

During experiments, we have found that choosing the way of G-mean computation
(i.e. using the micro- or macro-averaging) influences not only the bias but, potentially,
also the results of the global comparison of classifiers. We found the situations when
the order of classifier performance relative to G-mean can be reversed by changing
the method of averaging (see Appendix B). This suggests that one should be very
careful in choosing the way how the cross-validation results are aggregated. Moreover,
including reports from experiments showing how G-mean or F-measure is computed
is important (in some papers, such information is not included).

In the thesis, we use the micro-average style of computation for all performance
measures, i.e. F-measure and G-mean.

It should be noted that also the repeated cross-validation is often used. The
estimated values in the consequent experiments are averaged. However, one should
be conscious of the problems related to repeated cross-validation and that overusing
it may lead to false conclusions (see e.g. [202]). In our experiments, we use 10 times
repeated 10-fold stratified cross-validation.

2.6.3 Selection of data sets for evaluation

This step is strongly related to step 5 (see Subsection 2.6.5).

In general, no learning algorithm is the best for all possible problems. Formally
this fact is well known as the so-called ‘no free lunch theorem’ (see [223]). However,
learning algorithms are to be used not for the set of all possible mathematical concepts
but for real-world domains (see [203, p. 721]).

In practice, when we need to compare a few learning algorithms, one can choose
several data sets related to some real-world domains and comparison over these sets
can be used for comparison in which we are interested. Often the UCI repository

1"With different fold sizes using weights related to the sizes of folds would give equal results.

58 2. Basic notions

is used for this purpose. In this thesis, we also mainly choose data sets from this
repository as representatives for the classification problem we want to solve.

When choosing data sets for comparisons, one should consider the fact that
different data sets may appear there: with numerical attributes, with symbolic
attributes or with mixed attributes. If one decides to use the cross-validation (step 2),
then data sets which are not appropriate for using cross-validation cannot be selected
for analysis.

As our aim is to build learning algorithms of the high quality for imbalanced
learning problem, we want to select imbalanced data sets for analysis. Moreover,
in this case, one should consider data sets with different levels of difficulty (see
Subsections 2.4.2, 2.4.3).

2.6.4 Statistical tests

This is the fourth step (see the beginning of Section 2.6). We assume here that the
representative (i) data sets (for real-world problems), (ii) state-of-the-art algorithms
to compare with are chosen. Also, we assume here that the relevant performance
measure was selected and we have a good estimation of the value of this measure for
any pair consisting of algorithm and data set. Now, the important issue is to decide
which of the algorithms is the best for the chosen data sets.

The observed differences among the performance of algorithms (in terms of chosen
performance measure) may come from real differences between algorithms or due to
randomness, e.g. from the specific use of data set, from the specific splitting used
in the cross-validation (both random variation of test data, and random variation of
training data), internal randomness in the learning algorithm or noise in data set. To
check whether the differences between the performance of algorithms are due to the
real differences, some statistical tests are used.

For our purpose, we need a test tool making it possible to compare multiple
algorithms on multiple data sets. It should be noted that this is a much more complex
experimental design than in case of comparing algorithms on a single data set or
comparing only two algorithms on several data sets.

Mainly this is because many comparisons are done and family-wise-error (the
probability of making at least one type I error in any of the comparisons) should be
controlled. To make our task simpler, we can also use the fact that we are generally
focused on comparing one algorithm (e.g. RIONIDA presented in the thesis) with
other state-of-the-art algorithms.

The most popular statistical methodology in the ML community nowadays can
be summarised as follows. First, we apply a joint test to check whether at least one
of the algorithms performs better than the other ones. The null hypothesis is that
all algorithms perform equally well. Second, if the null hypothesis is rejected, i.e. a
significant difference is detected, then we can proceed with a post-hoc test (to check
between which pairs of algorithms there are actually significant statistical differences).
The null hypothesis in the second step is that two algorithms chosen for comparison
perform equally well (and such hypothesis is checked for many pairs of algorithms).

In experiments used in the thesis, we use the significance level a = 0.05. When
testing a hypothesis, one can be more informative than simply reporting ‘reject’

2.6 Evaluation of learning algorithms 59

or ‘accept’ by using so-called p-value (see e.g. [80, 240]), a well-known concept in
statistics. In statistical hypothesis testing, the p-value is the probability of obtaining
a result at least as extreme as the one that was actually observed, assuming that the
null hypothesis is true. In practice, the null hypothesis is rejected when the p-value of
the corresponding test is less than . However, the smaller the p-value, the stronger
is the evidence to reject the null hypothesis (see e.g. [240]).

We use the Friedman statistical test (see [70]; see also [47]) for the first step. It
is a non-parametric counterpart of the well-known ANOVA test. The Friedman test
ranks the algorithms, i.e. for each data set, the algorithms are sorted according to
the selected performance measure, and numbers from 1 to the number of algorithms
are assigned. In the case of ties, the average ranks are assigned. Then average ranks
over data sets are calculated, and the Friedman statistic is computed (for details
see e.g. [47]). This test takes into account the variations in the ranks of algorithms.
Let K, N be the total number of algorithms and data sets used in the comparison,
respectively. Under the null hypothesis, which states that all compared algorithms
perform equally well, the Friedman statistic follows the Chi-square distribution with
df = K — 1 degrees of freedom, when N and K are not too small (e.g. N > 10 and
K > 5)'8.

One can apply a pair-wise test with the corresponding post-hoc correction for
multiple comparisons (see e.g. [34, 73|) as a test for the second step. This is used
when all learning algorithms are compared against each other. One can use Nemeny:
statistical test'® (see [156]; see also [109]) for this. Although the Nemenyi test is a
very conservative procedure (has a high type II error), we sometimes use it because
its results can be represented in a critical difference diagram interpreted as follows.
The closer to the left (lower average ranks), the better algorithm is. Also, the groups
of algorithms that are not significantly different are connected by a horizontal line
(see the example in Figure 5.6 on page 167).

When all learning algorithms are compared with a control one (in our experiments
it is the learning algorithm presented in the thesis, i.e. RIONIDA), one can use other
post-hoc procedures with higher power than the Nemenyi test. First, these procedures
compute statistics for comparing any learning algorithm with the control one. Any
comparison is associated with the null hypothesis that the control learning algorithm
performs equally well as the compared one. For each comparison p-value is computed.
Next, these procedures report adjusted p-values (APVs) which take into account that
multiple tests are conducted (to control family-wise-error rate). The simplest one is
Bonferroni correction (see e.g. [47]). It adjusts p-values by multiplying them by the
number of comparisons, i.e. K —1. Among more complex tests is the Finner statistical
test (see [64], [75]). Since it is reported in the literature as the test with high power
(see e.g. |75, 198]), we decided to use it in our experimental design.

It should be noted that some researchers criticise such an approach using null
hypothesis significance testing and suggest using the Bayesian approach instead (see
[22, 208]).

18Gince in the thesis we always use N = 20 and K = 10, this assumption is satisfied.
191t is similar to Tukey test for ANOVA.

60 2. Basic notions

2.6.5 Selecting the best learning algorithm for real-life data
sets

Based on the previous steps, we decide which algorithm from a given family is the
best for a range of real-life data sets (or which algorithms are comparable). Let
us for a while assume that all the selections and evaluations done in steps 1-4 (see
Subsections 2.6.1-2.6.4) were perfect. Let us assume that we found that our new
algorithm is statistically significantly better than the other ones (decided in step 4,
see Subsection 2.6.4). Idealistically, one could conclude that this algorithm is the
best (or at least not worse) for a specific subset of real-life classification tasks (in our
case classification tasks with imbalanced data).

However, we would like to briefly recall some problems related to such inference.
First, if one picks up data sets from a population (usually it is the UCI repository) to
carry out an experiment, any inferences one makes can only be applied to the original
population itself. Thus, it is not valid to make general statements about other data
sets (see [181]). Second, if many researchers make a statistical test on the same small
repository of data sets, then the chance of making false conclusions is growing up
(see e.g. [181]). The problem can be even more serious when researchers tune the
parameters of their algorithms (see [181]).

2.6.6 Conclusions about the evaluation of learning algorithms

First, we would like to underline that the above-described inference process is not
easy and sometimes may lead to false conclusions even if only one of the presented
steps is not prepared perfectly. However, suppose some learning algorithm turns out
to be the best (according to the described inference) for some real-world problems;
this can be regarded as an argument suggesting that such an algorithm should be
taken into account when other real-world domains are given.

Second, let us summarise that in the case of imbalanced data a few very important
aspects should be taken into account:

e performance measure should be different from Accuracy, for example,
F-measure or G-mean should be taken,

e the stratified cross-validation should be used,

e during cross-validation the micro-average should be used as a method of
collecting results from subsequent trials,

e proper data sets should be chosen reflecting the difficulty of imbalanced data.

2.7 Summary of the chapter

This chapter recalls some concepts known from the literature, the most important of
which for the thesis are:

e the problem of supervised learning; classifier and learning algorithm, with
emphasis on differences between them;

2.7 Summary of the chapter 61

metric and pseudometric — important concepts for instance-based learning; also
used in the thesis for grouping of values of attributes;

rule-based methods and the set of all rules that are maximally general and
consistent with a training set; the Strength measure for conflict resolution —
its modified version is used in the next chapter;

instance-based learning;

a specific lazy rule learning for symbolic attributes only — generalised in the
next chapters for the rules commonly used in the thesis;

imbalanced data — difficulties in their analysis and different algorithmic
approaches, the most important of which is the algorithm-level approach applied
in the thesis;

confusion matrix and the most important performance measures used in the
thesis, namely Accuracy, G-mean, and F-measure;

cross-validation estimation technique, and the method (used in the thesis) of
collecting its results, namely micro-average;

Friedman statistical test and Finner test (and, sporadically used, Nemenyi test).

In this chapter, some concepts are also defined for the thesis, of which we would
like to emphasise:

elementary condition of rules used for grouping values of an attribute;

the set of general rules out of three kinds of decision rules (according to
admissible elementary conditions) presented in the chapter; this set will be
used to show the relationship between rules commonly used in the thesis and
more general lazy learning approach defined in the next chapter;

pseudometric decision system (based on decision system concept, known from
the literature and also introduced in this chapter);

general aggregated pseudometric and the default aggregated pseudometric used
in the thesis for measuring the distance between objects, namely City And
Simplified Value Difference pseudoMetric (CSVDM).

Among others, we presented, known from the literature, the equivalence of lazy
rule learning for symbolic attributes only with the simple rule-based approach. This
result will be generalised in the next chapter for more general rules commonly used
in the thesis.

62

2. Basic notions

Chapter 3

RIONA

RIONA is the acronym of Rule Induction with Optimal Neighbourhood Algorithm.
This algorithm is designed for balanced data sets. It is constructed to maximise
Accuracy performance measure.

The following section introduces the main ideas behind the RIONA algorithm.
Section 3.2 introduces an extension of lazy rule learning for numerical attributes, and
its generalisation for symbolic attributes. Section 3.3 describes the testing phase of
the RIONA algorithm and its time complexity. Moreover, it shows relationships of
RIONA with instance- and rule-based classifiers. Section 3.4 describes the training
phase of the RIONA algorithm and its time complexity. Section 3.5 presents a
summary of the experimental properties of RIONA. Section 3.6 briefly outlines
some possible extensions of the basic version of RIONA, described in this chapter.
Section 3.7 briefly introduces the idea how RIONA can be extended for imbalanced
data. Finally, Section 3.8 concludes this chapter.

The RIONA algorithm has three parts: initialisation, training and testing. Some
comments on the formal structure of the whole RIONA algorithm can be found in
Subsection 3.4.3.

Most of the work presented in this chapter, especially the RIONA algorithm’s
development, was carried out in collaboration with Wojna (see Section 1.6).
Independently, the author of the thesis: (i) developed a new form of presentation of
foundations leading to RIONA, (ii) formulated and proved facts better explaining the
relationships of RIONA with rule-based classifiers, and (iii) proposed a user-friendly
explanation method of the decisions returned by the classifiers obtained from RIONA.

3.1 Main ideas behind the RIONA algorithm

The algorithm was developed using some general ideas and at the same time some
specific ones (in particular, defined by default parameter settings used in the main
experiments) which are shortly described below.

RIONA is based on the LAZY algorithm (see Algorithm 2) presented in
Subsection 2.3.2. In the thesis, we extend this algorithm for numerical attributes and
for symbolic attributes more general conditions than that of the LAZY algorithm
(see Section 3.2) are taken.

The decision is predicted using the support set restricted to a neighbourhood of

63

64 3. RIONA

the test case (see Section 3.3) rather than the whole support set of all rules (calculated
on the training set) covering the case.

In the realisation of these two ideas concerning generalised rules and
instance-based learning, we use pseudometrics (see comments concerning
pseudometrics in the thesis in Subsection 2.2.3). Pseudometrics are used for two
reasons.

First, pseudometrics are used for grouping attribute values in the construction
of generalised rules. For symbolic attributes, it is assumed that pseudometrics are
provided relative to the given training set. As a default, SVDM pseudometrics
corresponding to symbolic attributes are used (see Subsection 2.2.2). They are
calculated from the training sets during the learning phase.

Second, because classification by RIONA is based on neighbourhoods, we also use
pseudometrics over objects. The neighbourhoods are constructed by searching for
nearest neighbours for the test objects (see Subsection 2.3.3, and Section 3.3). As it
was mentioned in Subsection 2.2.3, we assume by default that the specific aggregated
pseudometric for objects are constructed from pseudometrics for attributes (see
Equation 2.1). Thus, by default, for measuring the distance between objects,
pseudometric CSVDM is used.

An important feature of RIONA is that the optimal neighbourhood can be
estimated efficiently by using dynamic programming. Moreover, the performed
experiments show that the searching space for this neighbourhood estimation can
be extremely bounded without losing the classification quality (see Section 3.4).

Some relationships of the RIONA classifier to both instance-based and rule-based
classifiers are also presented in the thesis (see Subsections 3.2.2, 3.3.4 and 3.3.5).
Moreover, a very interesting observation is made about the RIONA classifier
concerning the possibility of representing the constructed optimal neighbourhood
of the classifier by a rule set, with rules easily understandable by a human (see
Subsection 3.3.5).

The empirical results indicate that the Accuracy of the constructed RIONA
algorithm is comparable to the well-known systems (see Subsection 3.5.1).

3.2 Extension and generalisation of lazy rule
learning

In this section, we present an extension and generalisation of the LAZY algorithm
(see Algorithm 2) presented in Subsection 2.3.2. We extend this algorithm to the case
of numerical attributes and we use more general conditions for symbolic attributes.

We present our final idea, in three steps. The first step is described in
Subsection 2.3.2. In two remaining steps, presented in this section, we use a
generalisation of rules from the previous step (see Subsections 3.2.1, 3.2.2).

Thus, in this section together with the first step from Subsection 2.3.2, we define
three types of local rules: simple local decision rule, combined local decision rule
and generalised local decision rule (for short, s-rule, c-rule, and g-rule, respectively),
denoted by s-rule(tst,trn), c-rule(tst,trn), g-rule (tst,trn, {Qa}aeAsym) (or simply
g-rule (tst,trn)), respectively, where trn is the training object, tst is the test object

3.2 Extension and generalisation of lazy rule learning 65

and g, for a € Ay, are pseudometrics defined by pseudometric decision system. The
introduced names correspond to the sets composed out of simple rules, combined
rules and general rules, denoted by SimRules, CombRules, GenRules, respectively
(see Subsection 2.3.1). In Subsection 2.3.2, an important relation between any s-rule
and the set of maximally general consistent rules MaxRules(SimRules,trnSet) is
presented. In this section, we show analogous important relations between any
c-rule or g-rule with their corresponding sets of maximally general consistent rules
(denoted by MaxRules(CombRules,trnSet) and MaxRules(GenRules,trnSet),
respectively).

3.2.1 Extension of lazy rule learning for numerical attributes

Throughout this section, we assume that a decision system D = (X, A,d) and a
training set trnSet C X are given.

In the second step, we define an extension of the local decision rule to the case of
both symbolic and numerical attributes.

Definition 3.1. For any test object tst and any training object trn, we define the
combined local decision rule (for short c-rule), denoted by c-rule(tst,trn), with the
decision d(trn) and the following conditions T, for each attribute a € A:

r_Jac [ming, mazx,] if a is numerical
R if a is symbolic,

where t, is defined as in Definition 2.13, min, = min(a(tst),a(trn)), maz, =
mazx(a(tst),a(trn)).

For numerical attributes (linearly ordered), conditions are represented in the form
a € [ming, maz,]. The interval’s endpoints are determined by the attribute values of
the examples tst and trn used to form the rule.

In Figure 3.1, an exemplary area of satisfiability of the rule c-rule(tst,trn) for
objects tst, trn is illustrated in the case of a data set with two numerical attributes.
The satisfiability area of the c-rule is represented by a rectangle spanned over the
points with coordinates determined by attribute values of each of the examples tst,
trn.

It should be noted that by defining c-rule in such a way we obtain an analogous
relationship of the set MaxRules(CombRules,trnSet) and c-rule(tst,trn) to the
relation between MaxRules(SimRules, trnSet) and s-rule(tst,trn).

Lemma 3.1. Any rule r € MazRules(CombRules, trnSet) covering the given test
object tst and training object trn is implied by the rule c-rule(tst,trn).

Proof. Since r covers tst and trn and is consistent (with trnSet), we have the
following. For each attribute a € A, t,(r)(trn) is satisfied and ¢,(r)(tst) is satisfied,
i.e. trn € [[t,(r)]]p and tst € [[t.(r)]]p-

For rule r such that the elementary condition ¢, () is of the form a € V' let us define
Va(r) = ||V ||p. We will show that for all @ € A the implication ¢,(c-rule(tst,trn)) =
to(r) holds, i.e. V,(c-rule(tst,trn)) C V,(r).

66 3. RIONA

trn

V3

tst

o

Vi

Figure 3.1: Illustration of the area of satisfiability of the rule c-rule(tst,trn) defined by
two objects tst and trn for a data set with two numerical attributes. The difference between
attribute values of tst and trn on the first and the second attribute is v1 and wve, respectively.

First, let us consider the case when a is symbolic. If ¢,(r) is a trivial condition,
i.e. t,(r) is of the form a € V,, then the implication obviously holds (trivial condition
is implied by any condition, because for any elementary condition a € V for attribute
a, ||[VIlp € ||Val|lp). Let us consider the case when ¢,(r) is of the form a = v for some
v € V,. Then, because t,(r)(trn) and t,(r)(tst) are satisfied, then trn € [[a = v]|p
and tst € [[a = v]|p, i.e. a(trn) € {v} and a(tst) € {v}, thus v = a(trn) = a(tst). Tt
means that ¢,(r) = t,(c-rule(tst,trn)) (see Definition 3.1 and Definition 2.13).

Second, let us consider the case when a is numerical. Thus ¢,(r) is of the form
a € I, where [is the interval corresponding to the numerical attribute a of rule r.
Because t,(r)(trn) is satisfied, i.e. trn € [[t,(r)]]p and t,(r)(tst) is satisfied, i.e. tst €
[[ta(r)]]p and by definition [[a € I]]p = {x € X : a(x) € ||I||p} we have a(trn) € ||I||p
and a(tst) € ||I||p, thus {a(trn),a(tst)} C ||I||p. Thus, all points between a(trn)
and a(tst) are also in ||I||p. In consequence, [min,, max,| C ||I||p, where min, =
min(a(tst),a(trn)), max, = mazx(a(tst),a(trn)). Thus, V,(c-rule(tst,trn)) C V,(r)
(see Definition 3.1). O

Let us note that in the following proofs, we omit some formal details such as used
in the above proof.

Theorem 3.2. The rule c-rule(tst,trn) for the test object tst and the training object
trn is consistent with the training set trnSet if and only if there exists a rule r €
MaxRules(CombRules, trnSet) covering objects tst and trn.

Proof. First, we show that if the rule c-rule(tst,trn) is consistent with the training
set trnSet, it can be extended to a rule belonging to Maz Rules(CombRules, trnSet).
We define such a rule inductively. Rule rg = c-rule(tst,trn) is in CombRules and is
consistent with trnSet by assumption. The induction step is as follows. To define
each next rule r;, for i = 1,2, ..., m, where m is the number of attributes, we assume
that rule r;_; is consistent with trnSet and conditions t;(r;,_1) forall j =1,2,...,i—1
are maximally general, i.e. if we replace any condition ¢; with a more general ¢ (i.e.
t; = t) preserving consistency, then t; = t.

In the i-th induction step we define the condition ¢;(r;) as the maximal
generalisation of the condition t;(r;_1) = t;(ro) = ti(c-rule(tst,trn)) preserving

3.2 Extension and generalisation of lazy rule learning 67

consistency with trnSet. All others conditions and the decision of the rule are defined
as in the previous induction step, i.e. t;(r;) = ¢;(r,_1) for j # 4; d(r;) = d(r;—1). In
other words, in ¢-th induction step we simply maximally generalise condition for
attribute q;.

First, let us consider the case when a; is symbolic. If ¢;(r;_1) is the trivial
condition, then we define r; = r;_;. If ¢;(r;_1) is non-trivial, we replace it with
the trivial condition if such replacement keeps the consistency of the rule; otherwise,
we keep r; = 1;_1.

Now, let us consider the case when a; is numerical. Thus ¢;(r;_1) is of the
form a; € [min, max]. We define by rule;(r,t) the rule r with the replacement of
i-th condition in it by condition ¢. Let us consider the set of training examples
which potentially may violate the consistency of the rule under the maximal possible
extension of the condition t;(r;_1), i.e. the set Inc = {trn € trnSet : d(trn) #
d(ro) A rule;(r;_1,a; = *) covers trn}. Let us define a(Inc) = {a(trn) : trn € Inc}.
From the induction assumption, r;_; is consistent with Inc C trnSet. Thus we have
a(Inc) N [min, max] = (). Let us define newmazr = min{v € a(Inc) : v > max}.
Let us note that this minimum exists because the Inc set and therefore also a(Inc)
are finite sets. If the set {v € a(Inc) : v > max} is empty we define newmaz = u,,
(i.e. maximal possible extension of the right end of the interval). Analogously, let us
define newmin = max{v € a(Inc) : v < min}. If the set {v € a(Inc) : v < min} is
empty we define newmin = [,, (i.e. maximal possible extension of the left end of the
interval). Finally, we define t;(r;) as the condition a € (newmin,newmazx). From
the definition, r; is consistent with trnSet. It is also maximal because maximally
extended ends of the interval (i.e. [,, or u,,) cannot be extended and other ends of
the interval even if extended by one point to a closed interval will cause inconsistency.

We prove now that all other conditions ¢;(r;) for j < ¢ are still maximal.
Let us assume that for some j < ¢ the condition ¢;(r;) could be extended to
t with preserving consistency, i.e. rule;(r;,t) is consistent. We also have that
rule;j(r;,t) is more general rule than rule;(r;_1,t) (i-th condition is more general), i.e.
rule;(ri—1,t) = rulej(r;,t). Therefore rule;(r;_y,t) is consistent with ¢trnSet. From
the induction assumption ¢ = ¢;(r;,_1). Because t;(r;—1) = t;(r;) for (j < i), then
t = t;(r;). It means that ¢;(r;) is maximally general.

By induction, the last rule r,, is consistent with {rnSet and maximally general.

Second, we show that if the rule c-rule(tst,trn) is inconsistent with the
training set trnSet, then there is no rule in MaxRules(CombRules,trnSet)
covering tst and trn. In fact, from Lemma 3.1 we have that each rule
r € MaxRules(CombRules,trnSet) covering objects tst and trn is implied by
c-rule(tst,trn). Thus inconsistency of the rule c-rule(tst,trn) implies inconsistency
of all rules r € MaxRules(CombRules, trnSet) covering tst and trn.

O

3.2.2 Generalisation of lazy rule learning for symbolic
attributes

From now on, we assume that a pseudometric decision system D = (X, A, d, {04 }aca)
is given. As before, we also assume that a training set trnSet C X is given.

68 3. RIONA

In the previous Definitions 2.13 and 3.1, the trivial condition for symbolic
attributes is used (when attribute values of the test and training examples differ).
This condition represents the grouping of all possible values of an attribute and is
satisfied by any object. However, we noticed that a proper subset of all attribute
values can be more relevant for the classification. Grouping of values can be done
using a given pseudometric for the attribute. Hence, as the third and final step, we
propose the following generalisation of Definition 3.1, which additionally leads to a
grouping of values for symbolic attributes:

Definition 3.2. For any test object tst and any training object trn, we
define the generalised local decision rule (for short g-rule), denoted by
g-rule (tst, trn, {Qa}aeAsym) or simply g-rule (tst,trn) (if parameters {04 }aca,,, are
clear from the context or irrelevant due to generality of considerations), with the
decision d(trn) and the following conditions t, for each attribute a:

| a € [ming, maz,] if a is numerical
“ a € B(a(tst),r,) if a is symbolic,

where min, = min(a(tst),a(trn)), mazx, = maz(a(tst),a(trn)), the radius r, =
oa(a(tst),a(trn)), and B(c, R) is a closed pseudometric ball of radius R centred at
point ¢ defined by the pseudometric g,.

Please note that in this definition, we only use pseudometrics for symbolic
attributes (a € Agyy,). However, in this definition (and in the previous one for
the c-rule), for the numerical attributes, the natural order between its values and the
natural Euclidean metric are assumed indirectly!'. It should be noted that to obtain
Proposition 3.6 we assume that pseudometrics for numerical attributes are weighted
Euclidean metrics.

For numerical attributes (linearly ordered), conditions are the same as in c-rule,
e.g. in the form of inclusion in closed interval. Symbolic attributes (non-ordered)
are treated differently. For any such an attribute, a pseudometric defining distances
among the attribute’s values is required to be defined. The condition represents the
specific group of values defined by a ball in the equation for ,.

It is easy to check that if g, in Definition 3.2 is the discrete metric (see
Subsection 2.2.2), then the conditions for symbolic attributes are equivalent to the
condition used in Definition 2.13, i.e. when a(tst) = a(trn), then the condition is
a = a(trn), otherwise the condition is the trivial condition. Thus, Definition 3.2
is a generalisation of Definitions 2.13 and 3.1 for all symbolic attributes and mixed
attributes, respectively.

The conditions are chosen in such a way, that both the training and the test
example satisfy the rule and the conditions are maximally specific. It means that

!One can interpret this interval as the result of grouping values into a ball
B (m‘”“;mi”“ , m‘w“;mi"“) with the Euclidean metric. If one would like to group values according to
general pseudometrics for numerical attributes, it could be done analogously to symbolic attributes,
i.e. a € B(a(tst),ry), where r, = 04(a(tst), a(trn)). Then, for the Euclidean metric we obtain, e.g.
the interval [2 - a(tst) — a(trn), a(trn)] assuming that a(tst) < a(trn). Thus, we would obtain the
interval twice as large as the one used in the given definition. Such grouping interval seems not

natural for real-valued attributes. This is the reason why numerical attributes are treated separately.

3.2 Extension and generalisation of lazy rule learning 69

making the interval smaller for a numerical attribute or making the radius smaller
for a symbolic attribute will cause the example trn not to satisfy the rule.

As an example let us consider again the data set presented in Table 2.1. Now,
we calculate the rules g-rule (tst,trn,) and g-rule (tst,trns). First, we calculate the
closed balls used in the rules using calculated distances between values of attribute
BloodGroup for pseudometric SVDM made in Subsection 2.2.2:

Bl(apg(tst), opa(apg(tst), apa(trny))) = B(A, opa(A, A)) = B(A,0) = {A}

4

B(apg(tst), opa(apa(tst), apa(trng))) = B(A, opa(A, AB)) = B(A, 5) ={A, B, AB}.

Then for the training object trny, the g-rule (tst,trn;) which is equal to
if (Age € [35,50] A Weight € [72,90] A BG € {A}) then Diagnosis = Sick

is consistent because no other object from the training set satisfies the premise of
this rule. But for the training object trns the g-rule (tst,trns) which is equal to

if (Age € [40,50] A Weight € [65,72] A Gender € {F'} N BG € {A, B, AB}) then
Diagnosis = Sick

is inconsistent because the object trns satisfies the premise of the rule and has a
different decision.

Again, it should be noted that for g-rule we obtain an analogous relationship
of the set MaxRules(GenRules,trnSet) and g-rule (tst,trn) to the relation between
MaxRules(SimRules, trnSet) and s-rule(tst,trn). This is expressed in the following
lemma.

Lemma 3.3. Let tst be any test object and trn be any training object. Let GenRules
be defined by parameters o, (from given pseudometric decision system) and ¢, = a(tst)
for a € Ay (see Definition 2.8), i.e. GenRules = GenRules ({(0a, a(tst))}aca.,.)-
Then any rule 1 € MaxRules(GenRules,trnSet) covering objects tst and trn is
implied by the rule g-rule (tst,trn, {ga}aeAsym).

Proof. The proof is an extension of proof of Lemma 3.1. For numerical attributes,
the proof is the same as before.

For symbolic attributes, we substitute the part of the proof of Lemma 3.1 by
the following one. Let us assume that a is symbolic. Then ¢,(r) is of the form a €
Bla(tst), R,), where R, = g,(a(tst),v), for some v € V,. Hence, because t,(r)(trn)
is satisfied, then R, > g, (a(tst),a(trn)). Thus B (a(tst),r,) C B(a(tst), R,), where
ro = 0q(a(tst),a(trn)). Then, t,(g-rule (tst,trn)) = t,(r). O

Theorem 3.4. Under the assumptions of Lemma 3.3, the rule
g-rule (tst,trn,{ga}aeAsym) 15 consistent with the training set trnSet if and
only if there exists a rule from MaxRules(GenRules,trnSet) covering the objects
tst and trn.

70 3. RIONA

Proof. The proof is a modification of the proof of Theorem 3.2.

We substitute the induction step of the proof of Theorem 3.2 for the case when
a; is symbolic by the following one. Let us consider the case when a; is symbolic.
Then t;(r;—1) is of the form a € B(a(tst),r,), where r, = o,(a(tst),v), for some
v € V,. We consider possible extensions of this condition, i.e. conditions of the form
a € B(a(tst), R,), where R, = g,(a(tst),w), for some w € V, such that R, > r, and
the consistency of the rule is preserved (with trnSet). Because V, is finite, then there
is a finite number of possible selections, and we choose the one with the maximal
value of R,. The chosen extension is maximally general.

When a; is numerical, we make the extension of the formula as in Theorem 3.2.

Analogously as in Theorem 3.2, one can conclude that the last rule r,, is consistent
with trnSet and maximally general.

Analogously as in Theorem 3.2, we obtain (using Lemma 3.3) that if the rule
g-rule (tst,trn) is inconsistent with the training set trnSet, then there is no rule in
Maz Rules(GenRules, trnSet) covering tst and trn.

O

Let us note that the set MaxRules(GenRules,trnSet) is defined for the given
values ¢, for a € Ay, (during the testing procedure, for the test example tst, we
assume ¢, = a(tst)). The idea behind the set MaxRules(SimRules,trnSet) was to
compute all maximally general rules in advance to use it later during the classification
process. In order to compute an analogous set MaxRules(GenRules,trnSet) in
advance, this should be done for all possible combinations of all possible values for
all symbolic attributes. It would increase the number of generated rules by the factor
no more than b*, where b is the maximal cardinality of |V,| for a € A, and k is the
number of symbolic attributes.

It is not obvious how to define local decision rules and maximally general rules
independently of such given values to keep the analogous relation between general
rules and local decision rules and to enable grouping of symbolic values using given
pseudometrics for symbolic attributes. For example, one can consider defining local
decision rules as in Definition 3.2 and next, redefining GenRules in such a way
that admissible group of values are balls centred at a value of an attribute and
with all possible distances between values, i.e. admissible conditions would be of
the form a € B(v, g4(v,w)), where v, w € V,. However, it can be shown that such a
procedure will not lead to the desired relation between Max Rules(GenRules, trnSet)
and g-rules (see Appendix A).

Theorem 3.4 shows that instead of computing the support sets for rules from
MaxRules(GenRules, trnSet) covering a new test case, it is sufficient to generate the
g-rules for all training examples and then check their consistency with the training
set. This is realised by the lazy Rule Induction Algorithm (RIA) presented below.

The function isConsistent(r,verifySet) was presented in Subsection 2.3.2 in
Algorithm 1. The RIA algorithm (see Algorithm 4) differs from the LAZY algorithm
(see Algorithm 2) only in line 7 where instead of the rule s-rule(tst,trn), the rule
g-rule (tst, trn, {0.}aca,,,) is used.

From Theorem 3.4, one can conclude that the RIA algorithm computes the
measure Strength for MaxRules = MaxRules(GenRules,trnSet). Thus, the
results of the mentioned algorithm are equivalent to the results of the algorithm

3.3 Combining instance-based learning and rule methods — RIONA 71

Algorithm 4: RIA(tst, trnSet, {04 }aca

Input: test example tst, training set trnSet, family of pseudometrics for
symbolic attributes {04 }aca,, .

Output: predicted decision for tst

1 begin

2 foreach decision v € V; do

3 | supportSet(v) =0

4 end

5 foreach trn € trnSet do

6

7

8

9

sym)

v =d(trn)

if isConsistent (g—rule (tst, trn, {0 taca
| supportSet(v) = supportSet(v) U {trn}

end

) , trnSet) then

sym

10 end

11 return arg max |supportSet(v)|
veVy

12 end

based on calculating MaxRules and using the measure Strength as a strategy for
conflict resolution. Hence, we have the corollary analogous to Corollary 2.3 (see
Subsection 2.3.2).

Corollary 3.5. For any test object tst, and the classifier from FEquation 2.12
with MaxRules = MaxRules(GenRules,trnSet), where GenRules =
GenRules ({(0a, a(tst))}aea,,.), we have

RIA(tst, trnSet, {04 }aca = deciSion praz Rutes(tS).

sym)

The time complexity of the RIA algorithm is the same as that of the LAZY
algorithm (see Algorithm 2), i.e. O(mn?), where n = [trnSet|, m = |A|. Again, this
is far more efficient than generating the set Max Rules(GenRules, trnSet) in advance,
which can be exponentially large relative to the number of training examples.

However, for data sets with quite a large number of examples, this time complexity
is still too high to be used in practice. Hence, one of the motivations behind our work
was also to reduce this complexity. As a result, some modifications to this algorithm
were developed. This issue is discussed in more detail in Section 3.3.

3.3 Combining instance-based learning and rule
methods — RIONA

From now on, we additionally assume that aggregation function Agr is defined by
Equation 2.1 unless it is stated differently.

The RIONA algorithm is based on a combination of instance-based learning and
rule methods. The primary component of the RIONA algorithm was developed using
the observation that the kNN method (see Subsection 2.3.3) is widely used, and
usually for small values of k, it has quite good performance. On the other hand, in the

72 3. RIONA

case of rule-based methods, in general, all training examples are used in the process
of rule generation. Based on the observation related to the kNN method, one may
suppose that only close training examples to the test case are important in the process
of inducing the final decision. In fact, in the RIONA algorithm, the classification of
the given test example is based on training objects from a neighbourhood of this
example.

Thus, instead of considering all training examples in constructing the support
set, like in the RIA algorithm, one can bound it to a certain neighbourhood of a test
example. The intuition behind this is that the training examples which are far from
a given test object are less relevant for classification than the closer ones.

We consider the neighbourhood N defined in Subsection 2.3.3. This
neighbourhood is analogous to the one used in the kNN algorithm (i.e. the same
as in the specific kNN algorithm defined in Subsection 2.3.3; see Algorithm 3).

Now, we are ready to present an approach to inducing of decision that is a kind of
combination of instance-based learning (see Subsection 2.3.3) and lazy rule learning
(see Section 3.2). The main idea is based on the strategy for conflict resolution with
the use of Strength measure (see Equation 2.11) slightly modified in the following
way:

LocalStrength(tst,v, k, o) = U local SupportSet(r)|, (3.1)

reMatchRules(tst,v)

where most notation remains the same as in Equation 2.11; ¢ = Agr({oa}aeca)
is the aggregated pseudometric and k is the number indicating the size of the
neighbourhood, localSupportSet(r) = supportSet(r) N N(tst,trnSet, k, o). The
difference lies in the fact that we consider only those examples covered by the rules
matched by a test object that are in a specified neighbourhood of the test example.
The predicted decision based on the measure LocalStrength is analogous to the
previous one (see Equation 2.12):

decisionLocal yazputes(tst, k, 0) = arg max Local Strength(tst, v, k, o). (3.2)
veVy

In the classification process, we assume that number k& for the neighbourhood
N(tst, k) is fixed. The proper size of the neighbourhood, i.e. the parameter k is
found in the learning phase (see Section 3.4).

Given a set MaxRules, the above measures can be calculated by limiting the
support sets of the rules covering a test example to the specified neighbourhood of a
test example. Thus the algorithm based on maximally general rules with the modified
measure LocalStrength can be used here.

However, the measure LocalStrength can also be calculated using the lazy rule
learning methodology. This is analogous to the fact that the RIA algorithm computes
the measure Strength (see Corollary 3.5). To implement this approach, we modified
Algorithm 4. First, in line 5 of the algorithm, only examples trn € N(tst, k) should
be considered. Furthermore, it is not necessary to consider all the examples from the

3.3 Combining instance-based learning and rule methods — RIONA 73

training set to check the consistency of the g-rule (tst, trn, {ga}aeAsym) (see line 7 of
Algorithm 4). This is due to the following proposition.

Proposition 3.6. Suppose that o, in pseudometric decision system for a € Anum
are defined as in Equation 2.2. If trn’ € trnSet satisfies g-rule (tst, trn, {Qa}aeAsym),
then o(tst,trn’) < o(tst,trn), where 0 = Agr({oa}aca) and the aggregation function
Agr is defined either by Equation 2.1 or Equation 3.3.

Proof. If trn’ satisfies g-rule (tst, trn, {Qa}aeAsym), then from the definition of g-rule
(see Definition 3.2), we have:

e for all symbolic attributes a € A: a(trn’) € B(a(tst),r,), where
ro = 0q(a(tst),a(trn)). Then from definition of the closed ball we have
oa(a(tst),a(trn’)) < gq(a(tst),a(trn)).

e for all numerical attributes a € A: a(trn’) € [ming maz,], where
min, = min(a(tst),a(trn)), maz, = max(a(tst),a(trn)). Then, we
have |a(tst) — a(trn’)| < l|a(tst) — a(trn)|. Thus, using definiton of metric
for numerical attributes (see Equation 2.2) we have g,(a(tst),a(trn’)) =
|a(tst)—a(trn)| < la(tst)—a(trn)| _ ga(a(tst),a(trn)).

aqmax _ gmin amax _ gmin

It means that for all attributes a € A we have p,(a(tst),a(trn’)) <
oa(a(tst),a(trn)). In consequence, we have the inequality between the global
distances? for Agr defined by Equation 2.1: o(tst,trn’) = . o.(a(tst),a(trn’)) <

acA

;A oa(a(tst),a(trn)) = o(tst, trn).

Adding multiplication factor (specified by a weight) for each attribute preserves
the above inequality. In consequence, we have the same result also for aggregation
function defined by Equation 3.3.

O

Hence, the examples that are distanced from the test example tst more than
the training example trn cannot cause inconsistency of g-rule (tst, trn, {ga}aeAsym).
In consequence, we can substitute the set trnSet in line 7 of Algorithm 4 by
N(tst,trnSet, k, 0). We can restrict even more the set of examples which can cause
inconsistency (see Subsection 3.3.3).

The resulting classification algorithm RIONA is presented in Algorithm 5. The
formal proof that this algorithm computes measure LocalStrength is presented later
in Theorem 3.10. This algorithm predicts the most common class among the training
examples that are covered by the rules satisfied by a given test example and are in
the specified neighbourhood. It is to be noted that in the argument of the algorithm,
all pseudometrics are given (used for computation of the final pseudometric), but in
the g-rule only pseudometrics for symbolic attributes are used (see Definition 3.2 and
note after it).

2Tt should be observed that we use in the proof the assumption that pseudometrics used for
grouping symbolic attributes are the same as the pseudometrics which compose the aggregated
pseudometric used for measuring distance between examples. The analogous assumption is
used for numerical attributes: real values are grouped using interval contained in the ball
B(a(tst), 0q(a(tst),a(trn))) determined by the Euclidean metric. The same Euclidean metric
(however normed) is used for components of the final pseudometric.

74 3. RIONA

Algorithm 5: RIONA-classify(tst, trnSet, k, {0a}aca)
Input: test example tst, training set trnSet, positive integer k, family of
pseudometrics for attributes {0, }aca
Output: predicted decision for tst

1 begin

2 0= Agrr({ga}aGfQ

3 neighbourSet = N (tst,trnSet, k, o)

4 foreach decision v € V; do

5 | supportSet(v) =0

6 end

7 foreach trn € neighbourSet do

8 v =d(trn)

9 if isConsistent (g-rule (tst, trn, {Qa}aeASym) ,neighbourSet) then
10 | supportSet(v) = supportSet(v) U {trn}
11 end
12 end
13 return arg max |supportSet(v)]

veVy
14 end

For every decision class, the RIONA algorithm computes the support set restricted
to the neighbourhood N(tst, k) rather than the whole support set of the maximally
general rules covering a test object (as the RIA algorithm) in the following way. For
every training object trn from the neighbourhood N (tst, k) the algorithm constructs
the rule g-rule (tst,trn, {Qa}aeAsym) based on the considered example trn and the
test example tst. Then, it checks whether this g-rule is consistent with the remaining
training examples from the neighbourhood N(tst, k). If the local decision rule is
consistent, then the training example trn used to construct the rule is added to the
support set of the appropriate decision. Finally, the algorithm selects the decision
with the support set of the highest cardinality.

3.3.1 Some specific situations

Tie-breaking procedure of RIONA

During selecting decisions based on Equation 3.2, sometimes more than one decision
class with the same biggest value of measure LocalStrength(tst,v,k, p) is obtained.
In this case, in order to guarantee deterministic behaviour of our algorithm, it should
be specified a tie-breaking procedure for selecting decisions. For clarity of the RIONA
algorithm presentation, we did not place this procedure in Algorithm 5. However,
we implemented it in such a way that the final decision is calculated dynamically for
the consequent sizes of the neighbourhood up to the parameter k. In consequence,
for our implementation, the tie-breaking procedure is applied in the following order:
decision class with the biggest value of measure LocalStrength(tst,v, k, 0), decision
class with the biggest value of measure LocalStrength(tst,v,k —1,p), ..., decision
class with the biggest value of measure LocalStrength(tst,v, 1,), majority decision

3.3 Combining instance-based learning and rule methods — RIONA 75

class, i.e. decision class with the maximal value |Class(v)|, decision class with the
smallest index.

Incomnsistencies in data sets

We assumed that training sets are consistent (see Section 2.1). This simplifies the
notation and proofs. However, RIONA works also with inconsistent training sets.
For instance, if there are two examples with all conditional attributes with the same
values and with different decisions, then any g-rule covering theses examples will be
inconsistent. Inconsistencies in training set may cause that for a given test example,
all support sets for all decisions are empty. We somehow improve this drawback in
the case of the RIONIDA algorithm (see Subsection 4.3.6). The idea presented there
could be also applied for the RIONA algorithm.

Missing values

We also assumed that there are no missing attribute values for any object (see
Section 2.1). This also simplifies the notation and proofs. The problem of missing
values is not the one on which this thesis is focused on. However, in RIONA, a
heuristic for dealing with missing values in data sets is implemented. Hence, it was
also possible to test RIONA on data sets with missing values. Now, we briefly explain
how in RIONA pseudometrics are calculated and consistency of g-rule is checked when
examples with missing values occur.

First, we need to extend the definition of pseudometrics. In Equation 2.1 occur
pseudometrics g, for any attribute a € A. Up to now, these pseudometrics were
not defined for missing values. We also define g, (v, w) for the case when v or w is a
missing value assuming that in such a case g, takes the maximal possible value. Thus,
it is equal to 1 for numerical attribute (which corresponds to the distance between
the minimal and maximal value for the given attribute in the training set); and it is
equal to 2 for any symbolic attribute (which corresponds to the theoretical maximal
distance between a pair of symbolic values®). Hence, the distance between any value
and missing value is not less than the distance between arbitrary two known values. In
consequence, in the neighbourhood will be considered as more preferred, the objects
having as many as possible known values. Such an approach could be interpreted
as a conservative where we assume that it is better to reject the close object (to the
tested object) with missing value(s) than to make a mistake by treating an object as
close which actually is not such.

Second, if missing values occur, we need to define how the consistency of g-rule
(see Definition 3.2) is checked. Let us fix attribute a € A. If any elementary condition
to (see Definition 2.6) contains missing value (¢rn(a) or tst(a) is missing), then all
objects satisfy this condition, i.e. the semantics of ¢, is equal to X. If the elementary
condition does not contain missing value, then objects with missing value for the
considered attribute does not satisfy this condition.

The above-described approach to treating missing values is roughly based on the
interpretation of missing value for a given attribute as any possible value from the
set of values of this attribute.

3The actual maximal distance between symbolic values in a given training set can be smaller.

76 3. RIONA

3.3.2 Time complexity of RIONA for the testing phase

Theorem 3.7. Time complexity for the testing phase of RIONA is O(m(n + |N|?))
for a single test object, where n = |trnSet|, m = |A|, k is the parameter used to define
the size of neighbourhood, |N| = |N(tst, k)| is the actual size of the neighbourhood for
the given test object.

Proof. In any run of the RIONA algorithm for a single test object, two phases can
be distinguished.

In the first phase, training examples from the neighbourhood N are selected,
i.e. k nearest objects to the test example (or more objects in the specific situation
described in Definition 2.14) among n objects, where n = |trnSet|. It can be done
in the linear time with respect to n (see e.g. [43]). Taking into account that for any
object all attributes should be examined, time complexity of this phase is O(mn),
where m = |A|.

In the second phase, the algorithm checks consistency among objects from the
neighbourhood N. Thus, it performs O(m|N|?) operations.

To sum up, the time complexity of the RIONA algorithm for the testing phase is
O(m(n + |N|?)) for a single test object.

O

Theoretically, | N| can be equal to the size of the training set. However, for almost
all tested data sets, |[N| = |N(tst, k)| < ¢ -k for all test examples tst, where ¢ is a
constant very close to 1%, Hence, for simplicity, we assume that |N| is bounded in
this way.

Corollary 3.8. Assume that |[N| = |N(tst, k)| < c-k for any test example tst, where
¢ is a constant very close to 1. Then time complexity for the RIONA testing phase is
O(m(n+k?)) for a single test object, where n = |trnSet|, m = |A|, k is the parameter
used to define the size of neighbourhood.

In the case when k is treated as a constant® parameter of the algorithm
(independent of n), the time complexity of RIONA (the testing phase for single
test object) is O(mn), while the time complexity of RIA is O(mn?) which gives us a
significant acceleration for RIONA in comparison with RIA.

3.3.3 Further acceleration of RIONA

The set of examples to be searched for causing inconsistency can be restricted even
more in comparison to what was discussed after Proposition 3.6 and presented in
Algorithm 5. The details based on Proposition 3.6 are presented below.

First, let us assume that examples from N(tst, k) = N(tst,trnSet, k, o) (where
the parameters have the meaning as discussed before) have different distances

4The exception is, for example, mammography data set consisting of many objects with the same
value for any conditional attribute. However, in this case one could consider special data structures
for grouping objects with identical attribute values for speeding up searching for the neighbourhood
N.

°In the case when k is dependent on n it is sufficient to assume that k < \/n to keep the
conclusion.

3.3 Combining instance-based learning and rule methods — RIONA 77

from the test example tst. Let N(tst,k) = {nny,nns,...nng}, where nn; is the
i-th nearest neighbour of tst (i.e. training examples trn from N(tst, k) are sorted
by values o(tst,trn)). From Proposition 3.6, we have that inconsistency of the
rule g-rule (tst,nn;) can be caused only by the examples nni, nny, ..., nn;_; (i.e.
closer examples to tst than the example nn;). Hence, for the training example
nn; € N(tst, k), only i — 1 training examples have to be checked whether they cause
inconsistency. In this case, checking consistency requires m(0 + 1+ --- + (k — 1))
operations, where m = |A|. This gives the time complexity O(mk?).

Second, let us consider the general case when some examples from N(tst, k) may
have the same distances from the test example ¢st. In particular, then N(tst, k)
may contain more than k examples. For training example nn; € N(t¢st, k) not only
nny, nNe, . ..,nn;_1; examples should be checked whether they cause inconsistency,
but also such examples nn;,1, ..., nn;., for which o(tst,nn;) = o(tst,nn; 1) = ... =
o(tst,nn;y;) holds for some number .

In fact, all these cases were taken into account in our implementation. However,
it does not change the order of overall time complexity. Due to this fact and for
simplicity, we presented in Algorithm 5 a simplified version of the RIONA algorithm.

3.3.4 Relationships of RIONA to other approaches

Algorithm 5 (RIONA) is based on a combination of the kNN method with lazy rule
induction. The only difference in comparison to Algorithm 3 (kNN) is in line 9, where
we check the consistency of rule generated by training and testing example. One can
say that the consistency of training example trn is checked. Thus we can interpret
this as assigning the weight zero to inconsistent examples. This is compatible with the
idea of instance-based learning paradigm (see Subsection 2.3.3) enriched by adding
specification of weights for examples. In this sense, one can regard the RIONA
algorithm as an instance-based algorithm.

We have the following relationships between RIONA, RIA and kNN.
Proposition 3.9. For each test object tst

RION A(tst, trnSet, k,{0a Yaca) =

RIA(tst, trnSet,{0a}aca,,,) for k> |trnSet|
INN(tst,trnSet, o) for k= 1,|N(tst,trnSet, k,0)| = 1,

where 1NN s the nearest neighbour algorithm for k = 1 for pseudometric o =
Agr({0ataea)-

Proof. For k > |trnSet|, the neighbourSet in the RIONA algorithm (see Algorithm 5)
is equal to trnSet. In this case, the RIONA algorithm works exactly as the RIA
algorithm (see Algorithm 4).

For k = 1, |N(tst,trnSet, 1, 0)| = 1, the neighbourSet in the RIONA algorithm
contains one training example®. In this case, consistency checking procedure could

6Please note that the assumption about the cardinality of N is important. When |N| > 1,
even for consistent training set, examples from the neighbourhood N (equally distanced from test
example) will cause inconsistency whenever there are two objects in N with different decisions.

78 3. RIONA

be eliminated. In consequence, the RIONA algorithm works exactly as INN (see
Algorithm 3). O

For the maximal neighbourhood, the RIONA algorithm works exactly as the RTA
algorithm (and from Corollary 3.5 as the algorithm based on the maximally general
rules with Strength as a strategy for conflict resolution). On the other hand, taking
a neighbourhood consisting of the single nearest training example, we obtain the
nearest neighbour algorithm. In this sense, RIONA is placed between the nearest
neighbour classifier and the classifier based on maximally general rules. The choice
of a small neighbourhood causes the algorithm to behave more like kNN classifier.
The choice of a large neighbourhood causes the algorithm to behave more like a
classifier based on inducing maximally general rules. Taking a larger but not the
maximal neighbourhood can be seen as considering more specific rules instead of
maximally general rules consistent with the training examples.

Now, we also show that we can look at the RIONA algorithm from other
perspectives.

Theorem 3.10. For any test object tst, the classification result of the classifier from
Equation 3.2 with MaxRules = MaxRules(GenRules, trnSet), where GenRules =

GenRules ({(0a; a(tst) Yacauyn)s 0 = Agr({oataca), we have
RION A(tst,trnSet, k, {04 }aca) = decisionLocal ypazrutes(tst, k, 0).

Proof. From Corollary 3.5, RIA(tst,trnSet,{0a}aca,,,) = decisionyrazruies(tst).
In fact, as we noticed it is implied from more strong fact following
from Theorem 3.4 that the RIA algorithm computes measure Strength
for MaxRules = MaxRules(GenRules,trnSet), i.e. for each v € Vj
supportSet(v) (in line 11 of Algorithm 4) = Strength(v). The RIONA algorithm
takes into account only training examples from N (tst,trnSet, k,0). Moreover,
from Proposition 3.6, examples consistent with N (tst,trnSet, k, o) are consistent
with the whole training set, trnSet. At the same time, measure
LocalStrength(tst,v, k, o) takes into account only training examples from the
same neighbourhood N(tst,trnSet, k,0). In consequence, for each v € V,
supportSet(v) (in line 13 of Algorithm 5) = LocalStrength(tst,v, k, 0). This implies
the equation of the theorem. O

Theorem 3.11. For any test object tst, the classification result of the classifier from
FEquation 3.2 with MaxRules = MaxRules(GenRules, N (tst,trnSet, k,)), where
GenRules = GenRules ({(0a, a(tst)) }acayym), 0= Agr({oataca), we have

RION A(tst,trnSet, k,{04}aca) = decisionLocal yjagrutes(tst, k, 0).

Proof. From Theorem 3.10 with ¢rnSet veplaced by N(tst,trnSet, k, o)
(it is in a sense treated as a new training set), we have
RION A(tst, N(tst,trnSet, k, 0),k, f) = decisionLocal yjazpuies(tst, k, 0), where
f = {0ataca, MaxRules = MazxRules(GenRules, N(tst,trnSet,k, 0)). Since
RION A(tst, N(tst,trnSet, k,0),k, f) = RIONA(tst,trnSet,k,), this ends the
proof.

]

To sum up, these two theorems give the following interesting corollary.

3.3 Combining instance-based learning and rule methods — RIONA 79

Corollary 3.12. For any test object tst, the results computed by the following
classifiers are the same

1. RION A(tst,trnSet, k,{0a}aca),
2. decisionLocal oz rules(tst, k, 0),
3. d@CiSionLocal]WaxLocalRules (tSta k? Q);

4. decisionrazLocalRules(tSt) for new training set trnSet’ = N(tst,trnSet, k, o),

where o = Agr({0a}aca), MaxRules = MaxRules(GenRules,trnSet),
MaxLocal Rules = MaxRules(GenRules, N (tst,trnSet, k,0)), and GenRules =

GenRules ({(0a, a(tst))Yacau,m)-

Proof. Equivalence of first three classifiers is implied directly by Theorems 3.10
and 3.11. It remains to prove equivalence of third and fourth -classifiers.
Note that trnSet’ = N(tst,trnSet,k,0) = N(tst, N(tst,trnSet,k,0),k,0) =
N(tst,trnSet’, k, 0). Always holds supportSet(r) C trnSet’. So using previous
equation supportSet(r) C N(tst,trnSet’,k,0). Then localSupportSet(r) =
supportSet(r)NN (tst, trnSet’, k, 0) = supportSet(r). We conclude that Equation 3.1
becomes Equation 2.11, and finally that Equation 3.2 becomes Equation 2.12.

]

In other words, we have the following conclusions. First, the RIONA algorithm
computes the LocalStrength measure (second algorithm above; see Equation 3.1).
Second, the LocalStrength measure is simply the Strength measure treating
N(tst, k) as the local training set (fourth algorithm). This fourth algorithm is the
same algorithm as in Equation 2.12 with training set trnSet replaced by local training
sample trnSet’ = N(tst,trnSet, k, p). Therefore the RIONA algorithm can be treated
as an algorithm for computing all maximally general, consistent rules locally and using
(locally) Strength for conflict resolution. In Table 3.1, a general comparison of these
three algorithms is presented (we omit the third algorithm, which is very similar to
the fourth). In Table 3.2, a comparison scheme for these three algorithms is presented
(with explanation what is common and what is different in these algorithms).

RIONA algorithm (2) based on algorithm (4) based on
the measure the measure Strength
LocalStrength counted locally

counting rules
no need to count counts MaxRules globally counts MaxRules locally
rules explicitly once at the beginning for each test case
counting support
counts support using counts support locally counts support locally

lazy local rules

Table 3.1: A general comparison of three algorithms from Corollary 3.12: algorithm (1)
RIONA, algorithm (2) based on the measure LocalStrength and algorithm (4) based on
the measure Strength counted locally.

80 3. RIONA

RIONA algorithm (2) based on | algorithm (4) based on
the measure the measure Strength
Local Strength counted locally

Global input: trnSet, k € N

1. count MaxRules
for trnSet

Input: test case tst

2. nSet = N(tst, k)

3. count (locally) MaxRules(nSet)
RuleBase = MaxRules | RuleBase = MaxRules(nSet)
4. consider rules from RuleBase

with premise satisfied by tst

5. for each decision d

6. consider consider rules from step 4
trn € nSet with decision d
with decision d

7. count the number of | count the number of

trn from step 6 trn € nSet supporting rules from step 6
forming consistent
rules with tst

8. choose the decision with the maximal count (maximally supported)

Table 3.2: A comparison scheme of three algorithms from Corollary 3.12: algorithm (1)
RIONA, algorithm (2) based on the measure LocalStrength and algorithm (4) based on
the measure Strength counted locally.

3.3.5 RIONA and rules

The RIONA algorithm has properties of instance-based classifiers and rule-based
classifiers. There are some aspects of rule-based classifiers which are more preferred
for users than instance-based classifiers even at the expense of decreasing the quality
of classification. One of these important aspects is the possibility to interpret rules by
a human, non-computer science expert. He or she can verify whether the discovered
knowledge in such rules is non-trivial, true in fact and revealing new aspects of the
regarded problem. A rule contains an explanation for taking the particular decision
easily understandable by a human.

We assume here that the parameter & in the RIONA algorithm is fixed (possibly
learned as described in Section 3.4). Now, let us focus on algorithm (4) from the
previous subsection. At first sight, the direct computation of MaxLocal Rules may
seem very expensive and infeasible because for each test case tst it is necessary to
compute the local complete set of consistent and maximally general decision rules.
However, let us note that the size of the local training sample compared to the size
of the whole training sample is significantly reduced from n = [trnSet| to k (if we
assume that the size of N is k; see previous notes related to this issue). Thus the
total cost of computation of (global or local) MaxzRules is reduced from O(2") to
O(m - 2¥), where m is the number of test objects. We present this approach not

3.4 Estimating the optimal neighbourhood size 81

only from a theoretical point of view. Such an algorithm could be used when an
explanation of the decision undertaken by the classifier is required. In this sense, the
RIONA algorithm has features of quick lazy learning algorithm and rule algorithm,
i.e. its parameters can be translated into rules.

Moreover, it seems possible to extend algorithm (4) to build all rules globally
once at the beginning analogously to algorithm (2) from Corollary 3.12 with such
difference that the rules would base on the local neighbourhood. Such rules would
imitate the behaviour of the RIONA algorithm. There are some advantages of such
an approach. Firstly, the explanation for the specific test object in the form of a set
of rules could be given quickly. Secondly, all possible rules generated at the beginning
could be verified whether the discovered knowledge is really useful.

We give here only an informal description of how such rules could be generated.
The idea is similar to algorithm (4) from Corollary 3.12. We could simply treat each
training example as a test example and generate Max Rules locally for each training
case. It could be seen as specific local reducts calculation (i.e. reducts calculated
in the process of generation of maximally general rules for a given object; see e.g.
[15, 17, 164, 225]). Normally, in constructing local reducts, discernibility should
be preserved for objects with different decisions. Here, we would require that only
objects with a different decision and distanced not more than £ should be discerned.

3.4 Estimating the optimal neighbourhood size

Analogously to the case of kNN classifier, one can expect that different values of the
parameter k can be relevant for different data sets. In fact, during the experiments
(see [81]), we found that performance of the algorithm can significantly depend on the
size of the chosen neighbourhood, and different size is appropriate for different data
sets (for the detailed results the readers are referred to [81]). Therefore, in terms of
Accuracy of the algorithm, it is important to find the optimal neighbourhood, i.e. the
parameter k. Analogously as in case of kNN classifier, one can estimate the optimal
value of this parameter. Here, one can consider two important questions: (1) How to
learn the optimal value of the parameter k efficiently? (2) Can we use a bound on
the maximal possible value of k£ in the process of searching for its optimal value? We
present answers to these questions in the following two subsections.

3.4.1 Efficient learning of the optimal parameter £

Below we describe the algorithm for estimation of the optimal value k& for the
neighbourhood N (t¢st, k). This can be done in an analogous way to searching for the
optimal value £ for the kNN method. The leave-one-out method is used on a training
set to estimate the Accuracy of the classifier for different values of k (1 < k < kjaz);
then the value of k& with the highest estimated Accuracy is selected. Applying it
directly would require repeating leave-one-out estimation k,,,, times. However, using
dynamic programming technique, we emulate this process in time comparable to the
single leave-one-out test for k equal to the maximal possible value k = k.. Below
we present the algorithm implementing this idea.

82 3. RIONA

Algorithm 6: getClassificationVector (trn, trnSet, kmaz, {0a}aca)
Input: currently considered example trn € trnSet, training set trnSet,
number k., family of pseudometrics for attributes { g4 }aca
Output: vector A of leave-one-out classification for ¢rn for different values

of parameter k = 1,2,..., kpas

1 begin

2 0= Agr({ga}a€A>

3 N = N(trn,trnSet \ {trn}, kmnaz, 0)

4 vector nni,...,nn;y; = N sorted according to the distance o(trn,-)
5 foreach decision v € V; do

6 | decStrength[v] = 0

7 end

8 current Dec = the most frequent decision in trnSet

9 for k=1 to |N| do

10 if isConsistent(g-rule (trn, nny, {ga}aeAsym) ,N) then
11 v = d(nng)

12 decStrength[v] = decStrength[v] + 1

13 if decStrength[v] > decStrength[currentDec| then
14 ‘ currentDec = v

15 end

16 end

17 Alk] = currentDec

18 end

19 return A
20 end

For a training example trn, the function getClassificationVector(...) (see
Algorithm 6) finds k., examples from trnSet \ {trn} nearest to the example trn
and sorts them according to the distance o(trn,-) (i.e. we consider the pseudometric
o with the first argument fixed). It should be pointed out that as in the testing
phase, it is necessary to consider the neighbourhood N (tst, kpq.), which, in general,
may contain more than k,,., objects. Next, it returns the vector of decisions that
the RIONA classifier would return for successive values of k. Algorithm 7 calls this
routine for every training object, and then it selects the value k for which the global
estimation of Accuracy is maximal.

Time complexity of the learning phase

As it was mentioned previously, the neighbourhood N(tst, ky,.,) may contain in
general more than k,,,, objects. However, we assume (which is true in most of our
experiments; see Subsection 3.3.2) that the size of the neighbourhood N(tst, k)
during the learning phase is close to k., analogously as in the testing phase, i.e.
IN| = |N(trn, kmae)| < ¢+ kpmae for all” trn € trnSet, where c is a constant very close

"It would be even enough to assume that this bound is assured on average among all training
examples.

3.4 Estimating the optimal neighbourhood size 83

Algorithm 7: findOptimalK(trnSet, kmaz, {0a}aca)

Input: training set trnSet, number k,,,., family of pseudometrics for

attributes {04 }aca

Output: optimal £
1 begin
2 foreach trn € trnSet do
3 ‘ Apn = getClassi ficationVector(trn, trnSet, kmaz, {0a }aca)
4 end
5 for k=1 to k,,,, do
6
7
8

| estimatedAccuracy[k] = [{trn € trnSet : d(trn) = Ay, [k]}|
end

return argmax estimated Accuracylk]
1<k<kmas

9 end

to 18.

Theorem 3.13. Assume that |[N| = |N(trn, kmaez)| < ¢+ kmaz for all trn € trnSet,
where ¢ is a constant very close to 1. Then time complexity of the learning phase of
RIONA is O(mn(n + k2,,,)), where n = |[trnSet|, m = |A|, knaz is the parameter
used to define the maximal size of neighbourhood to be analysed.

Proof. In the run of the learning algorithm, one can distinguish, for each training
object (see lines 2-4 of Algorithm 7), three phases (realised by Algorithm 6).

In the first phase, training examples from the neighbourhood N are selected,
i.e. knqe nearest objects to the considered training example (or more objects in the
specific situation described in Definition 2.14) among n objects, where n = |[trnSet]|.
It can be done in the linear time relative to n (see e.g. [43]). Taking into account
that for any object all attributes should be examined, time complexity of this phase
is O(mn), where m = |A|.

In the second phase, the algorithm sorts all selected objects from the
neighbourhood N. Computing distances for objects from N takes O(m|N|) steps
(once for every object from N). Sorting (using computed distances) can be done in
O(|N|log|N|) steps. Thus, this phase takes O(m|N|+ |N|log|N|) steps.

In the third phase, the algorithm checks consistency among the selected objects.
It takes O(m - |N|?) steps.

From the assumption on the bound of the neighbourhood N, the second and third
phases altogether take O(m - k2,,.) steps.

Thus, time complexity of foreach loop within lines 2-4 of Algorithm 7 is O(n(mn+
Mhiae)) = O(mn(n + k7,.,)).

Finally, for the whole training set, the algorithm computes leave-one-out Accuracy
for each 1 < k < ke (see lines 5-7 of Algorithm 7). It takes O(nky,q.) steps.

Summing up, the time complexity of the learning algorithm is O(mn(n+k2,.) +
Nkmaz) = O(mn(n +k2,,.)). O

max

8This condition could be easily satisfied in general if the algorithm were rebuilt to choose
deterministically only k examples in the neighbourhood.

84 3. RIONA

From time complexity point of view, it would be efficient to choose such value of
kmae that the component O(an) would be predominant in the complexity function
above. This issue is discussed in more detail in Subsection 3.4.2.

Optimal Nearest Neighbour algorithm (ONN)

Note that by ignoring the consistency checking in the function
getClassificationVector(...), we obtain the kNN algorithm with the selection of
the optimal k. We call this classification algorithm Optimal Nearest Neighbour
algorithm (ONN), and we used it in experiments for comparison with RIONA and
other algorithms (see [81] for details). ONN classifies a new test object tst with the
most frequent decision in the set N (tst, k), where the number k is selected as in the
algorithm described above.

3.4.2 Bound of the parameter £

Can we bound the maximal possible values of k in the process of searching for its
optimal value? It was shown above that the time complexity of the learning algorithm
is O(mn(n + k2%,,)). Thus, it would be efficient from the point of view of time
complexity if kpae < v/, where n = |trnSet|. In this case, component O(mn?) in
the learning phase would be predominant. It is sufficient to keep this inequality for
large data sets. If we assume that large data sets are those with the size of the training
set at least 40000, then it is enough to consider k,,,, = 200. Next, an important
question is how such setting could affect the quality of the RIONA classifier.

In order to answer this question, we performed the following experiments. Here,
we only briefly describe the most important results of these experiments, more
precisely described in [81]. We use in the description names of data sets coming
from the UCI repository”. For the smaller sets (less than 4000 objects), experiments
were performed for all possible values of k, and for the greater sets, the maximal
value k was set to kjqe = 500 (for the nursery data set we made the exception
setting k.. = 1000). The classification Accuracy was measured for the leave-one-out
method applied to the whole set. Figures 3.2, 3.3, 3.4, 3.5 present the dependency of
classification Accuracy on the value of k for exemplary data sets.

For most of the tested data sets, we observed that while increasing k& beyond a
certain small value, the classification Accuracy was decreasing (see Figures 3.2, 3.3,
3.4). Experiments have shown that for most of the data sets, the results for the total
or a relatively large neighbourhood are significantly worse than the results for the
neighbourhood found by the RIONA algorithm. For the remaining data sets (breast,
census-income, nursery, primary, solar-flare), the Accuracy becomes stable beyond
a certain value k (see Figure 3.5).

For the former group of data sets, we examined the neighbourhood size (value of
k) for which the maximum Accuracy was obtained. In the latter case, we examined
both the value of £ beyond which Accuracy remains stable and the fluctuations in
Accuracy while increasing k. It was found during experiments that in most cases, the

9We do not give technical details for these data sets. Only german data set, used in further
experiments, is described in Subsection 5.1.3 (it is identified as credit-g)

3.4 Estimating the optimal neighbourhood size 85

letter

accura
o0

[

=

=

&

?2 |I:":I% T T T T T T T
0 100 200 300 400 500 600 70O
neighhourhood size (K)

Figure 3.2: Classification Accuracy for letter data set.

GErman
77 00%,
TE,00% -
75 00%.
g?at,tltl%
E 73,00% -
=72 00%,
71 00%. -
70,00% . = —
0 200 400 500 So0 1000
neighhourhood size (K)

Figure 3.3: Classification Accuracy for german data set.

optimal value of k is less than 200. Moreover, for many data sets, the optimal value
of k is less than 60, and for 7 of them, this value is equal to or less than 4. On the
other hand, for the data sets where the optimal k& was higher than 200 (australian,
census-income and nursery), the loss in classification Accuracy related to this setting
was insignificant: it remained within the range of 0.15%. Moreover, the Accuracy
became stable for values of £ much lower than 200. Therefore we could conclude
that the setting k... = 200 preserves good time complexity properties and does not
significantly change the results for tested data sets.

The fact that a small neighbourhood gives the best Accuracy leads to another
conclusion. Limiting the support set of a maximally general decision rule from
MaxRules to a neighbourhood of a test example can be seen as replacing the rule
with a more specific one. In this sense, the presented results suggest that taking the
complete set of consistent and maximally general decision rules usually gives worse
Accuracy than a set of more specific rules. This is related to measures for conflict
resolution taking into account the specificity of a rule as one of the important factors
(see e.g. [87]).

For several data sets (letter, pendigits, satimage, segment, shuttle and yeast) we
noticed that the Accuracy is falling down monotonically. Since for these data sets,

86 3. RIONA

splice [dna)
90,00% .\
aas,nn% \
™ 50,00% \
-
B 75 00% \
m
70,00%, \
65,00% =
£0,00% . . .
o 500 1000 1500 2000
neighhourhood size (K)

Figure 3.4: Classification Accuracy for splice data set.

CENSUS-iNCOme
B4, 00% 1 g — —
3,50% 4,
3,00%
£ iE2,30%
M 52,00%
Z 81 50%
8 81,00%
a0 50%
S0,00%
73 50% T T T T

0 100 200 300 400 a0a
neighhourhood size (K)

Figure 3.5: Classification Accuracy for census-income data set.

the best Accuracy is obtained for the smallest values of k, the KNN method seems
to work best for them. On the other hand, all the mentioned data have numerical
attributes. Hence, we can conclude that for numerical data, decisions are induced
best by the kNN method and a falling down Accuracy characterises well the data sets
that are appropriate for the kNN method.

If data are split into training and testing set one can ask the question whether
the Accuracy on a test set obtained for the value & computed from a training set
may differ significantly from the optimal Accuracy on a test set. In order to study
this aspect, we compared these accuracies on the data sets that were originally split.
The experiments showed that for pendigits Accuracy obtained by RIONA differs by
about 0.5% from the Accuracy with the optimal number k and for other data sets
the difference remains in the range of 0.2%. It means that the used algorithm finds
almost the optimal number k in terms of the Accuracy obtained.

To sum up, there is no need to take the whole training set in the process of
classification. Moreover, taking fewer objects can improve classification performance.

3.5 Experimental properties of RIONA 87

3.4.3 Comments on the structure of RIONA

Here, we present the general structure of RIONA. It consists of the training part and
the classification part. Generally, these parts were presented previously. However, for
clarity, we present these parts directly in the RIONA algorithm (see Algorithm 8).
This brings all the details given previously together.

The main algorithm simply assigns the options. Furthermore, the aggregation of
pseudometrics Agr (appearing in Algorithms 5, 6; see Subsection 2.2.3) by default
is set up according to Equation 2.1. It may differ in the case when one selects the
option with weights for attributes (see Subsection 3.6.3).

In the training part (function RIONA-train), the training set together with
conditional and decision attributes are specified. Next, the pseudometrics for each
attribute based on the training set are set up. Then, depending on given options
other operations are done. Here, by default, the indexing tree for fast searching
of the nearest neighbours is built (see Subsection 3.6.1). Finally, the procedure of
searching for the optimal value of k is called and the result is stored in the local
variable k., to be used later during classification.

Classification part (function RIONA-classify) simply calls the procedure
RIONA-classify(...) (see Algorithm 5) using as parameters the given test example
and other variables which were set up during the learning process.

Let us sum up the most important parts of the RIONA algorithm shown in
Algorithm 8. During initialisation, RIONA defines Agr, i.e. the aggregations of
pseudometrics (as default and usually used, the sum of pseudometrics for attributes).
During training, pseudometrics for attributes are calculated and the optimal value
of the parameter k is searched. These pseudometrics and the optimal value of the
parameter k are used during classification.

It should be stressed that both computation of pseudometrics and searching for
the optimal value k is always done using only the available training set (e.g. during
the cross-validation process). This becomes clear from the description of Algorithm 8.

3.5 Experimental properties of RIONA

Numerous experiments were performed for the RIONA algorithm (see [81], see also
[219]). Analogously to Subsection 3.4.2, we only briefly describe the most important
results of the performed experiments, more precisely described in [81]. We use in the
description names of data sets coming from the UCI repository.

The optimal size of a neighbourhood was estimated during the process of learning
on the basis of the training examples. Before applying the algorithm no preprocessing
was done. In particular, the discretisation of numerical attributes was not applied.

In this section, we describe some of the performed experiments and conclusions
that led us to the final version of the presented algorithm. We also describe
conclusions from experiments that can help us to understand the important features

of RIONA.

88

3. RIONA

Algorithm 8: RIONA (options)

AW N =

© w0 N O o«

10
11
12
13

14
15
16

17

18
19
20
21
22
23
24
25
26
27

28
29

Input: options (including k,,..) of the RIONA algorithm (we do not list all
of them here; see Section 3.6 for more details)

Global variables:

A — conditional attributes (A = A,um U Asym)

d — decision attribute

Agr — the aggregation of pseudometrics (appearing in Algorithms 5, 6; see
Subsection 2.2.3)

Local variables:

trnSet — training set

{0a}aca — family of pseudometrics for attributes

Emaz — the size of the neighbourhood to be used during searching for k,,

... (local variables related to other options)

kopt — optimal value for k&

begin

kmaz = options.kmyaz

by default Agr is defined according to Equation 2.1 (it may differ in case
of choosing option for different weights for attributes — see
Subsection 3.6.3)

. (assignments related to other options)

end

Function RIONA-train(trnSet Description) : void
Input: trnSetDescription — description of training set togeather with

the specifiaction of decision and conditional attributes

using trnSetDescription specify the conditional attributes A, the

decision attribute d and the training set trnSet
foreach a € A,,,,, do

| 0, =normalised city-block metric based on trnSet (see Equation 2.2)
end
foreach a € A, do

‘ 0o = SVDM pseudometric based on trnSet (see Equation 2.4)
end

... (operations related to other options)
kopt = findOptimalK(trnSet, kmaz{0ataca) (see Algorithm 7)
end

Function RIONA-classify(tst) : decision
Output: predicted decision for tst

return RIONA-classify(tst, trnSet, ko, {0a}aca) (see Algorithm 5)
end

3.5 Experimental properties of RIONA 89

3.5.1 RIONA versus other algorithms and different settings
for RIONA

We also compared RIONA with other learning algorithms and checked different
settings for the RIONA algorithm. These experiments led us to the following
conclusions.

Although during preliminary experiments, we have also tried other types of
pseudometrics, no one appeared to be significantly better than the presented one
in terms of Accuracy on a range of data sets. (In [219], a report from extensive
experiments for different pseudometrics is presented.) We have also compared two
measures as a strategy for conflict resolution: LocalStrength and LocalStrength
normalised by the decision class size. We obtained almost identical results for both
of them.

Apart from the neighbourhood N (see Definition 2.14), we considered also the
neighbourhood B. It is defined as the set of objects with the distance from the test
object bounded by a specified value. For this kind of neighbourhood, we applied an
analogous idea to the neighbourhood N for estimating the optimal neighbourhood
size. Instead of considering k., successive values in the for loop (line 9) of
Algorithm 6, relevant intervals for the radius R were considered. We studied both
classes, i.e. N and B of a neighbourhood for the RIONA algorithm in parallel and the
empirical difference between them was discussed in [81]. The experiments presented
in [81] show that the neighbourhood N, in general, has better performance in terms
of Accuracy. That is why in the thesis (this chapter and the next chapter for the
RIONIDA algorithm) we focus only on this kind of neighbourhood.

The Accuracy of RIONA and ONN is comparable or better than that of the
well-known learning algorithms: 3NN, C5.0, DeEPs and DeEPsNN. In particular,
their Accuracy is generally better than the Accuracy of RIA and 3NN. This suggests
the conclusion that RIONA and ONN may replace successfully both the rule-based
algorithm using all maximally general rules and the kNN with a fixed k. The
performed tests on numerous data sets indicate that the presented algorithm works
well for data sets with both numerical and symbolic attributes. In particular, it works
well for numerical attributes without preprocessing.

Some independent researchers used the publicly available version of RIONA (see
Section 1.7) to compare many algorithms (including RIONA) for different real-life
classification problems. As an example, RIONA was reported to obtain very good
or good results in the following publications'®: [48, Chapter 1] (RIONA was first
on 21 tested algorithms), [84] (first on nine algorithms), [178| (second on eight
algorithms), [85] (second on eight algorithms), [8] (fifth on 47 algorithms). Moreover,
the authors of RIONA do not know any publication reporting that RIONA obtained
low classification quality compared to some other algorithms. The mentioned results
can be regarded as an argument (independent of the authors of RIONA) for applying

19However, it should be noted that the publicly available version of RIONA has different default
settings than those used as default ones in this thesis. The different settings used as default in the
publicly available version of RIONA (and used in the cited comparisons) are the following: inverse
square distance as a voting method (see Subsection 3.6.2), distance-based as a weighting method
(see Subsection 3.6.3), switch indicating whether nearest neighbours are filtered by rules is turned
off (see Subsubsection ‘Optimal Nearest Neighbour algorithm (ONN)’ on page 84).

90 3. RIONA

RIONA (or ONN) for real-life classification problems.

3.5.2 RIONA versus ONN

Experiments presented in [81] related to comparison of RIONA and ONN (kNN with
selection of the optimal neighbourhood) showed that the significant differences in
Accuracy occurred mostly for smaller data sets (breast, bupa-liver, chess, primary,
solar-flare and yeast). Differences for all other data sets are less than 1%.

The only difference between RIONA and ONN is the operation of consistency
checking. In other words, RIONA uses rules to filter nearest neighbours while ONN
uses all nearest neighbours. In order to explain the similarity of results, we checked
if using comsistency checking changes substantially the set of examples taken into
account (see [81]). The results presented in [81] showed that only for three data
sets: breast-cancer, primary and solar-flare the operation of consistency checking
eliminates a significant fraction of nearest neighbours. For other data sets the number
of consistent objects from the optimal neighbourhood in the RIONA algorithm is close
to the number of all objects from the optimal neighbourhood of the kNN algorithm.
Therefore the differences in Accuracy are small. These observations suggest that the
operation of consistency checking in the RIONA algorithm is not very significant (see
Section 3.3).

We suspect these observations relate to the fact that usually the set of all
consistent, maximally general rules is of a large size. The experiment carried out
in |81] indicates that the support set induced from the whole set of consistent and
maximally general rules contains a large fraction of all examples. On the other
hand, the analysis of Accuracy in dependence on the number of neighbours k shows
that usually a small number of objects gives the best Accuracy. It suggests that
many of consistent and maximally general rules are induced rather randomly. Hence,
considering either a reasonably computed smaller set of rules or a more restrictive
operation of consistency checking may give better classification Accuracy.

3.6 Extensions of RIONA

Here, we briefly describe in what directions RIONA was extended in [219]. This shows
some possible extensions of the RIONA algorithm, described in the thesis. But, more
importantly, we used some of them to extend RIONIDA also. These variants can
be used by setting relevant options of RIONA (see the initialisation part of RIONA
described in Algorithm 8 from Subsection 3.4.3)

3.6.1 Indexing tree for fast searching for the mnearest
neighbours

Standard kNN methods store all the training examples to use it for classification
of new unseen examples. One of the drawbacks of the standard kNN method is
that for classifying new test example it is required to compute distances from all
the stored training examples. This can cause slow testing speed for large data sets.
To tackle this problem a special data structure can be used for fast searching of the

3.6 Extensions of RIONA 91

nearest neighbours. This was used in the algorithm presented in the thesis and used
in experiments. Analogously, this data structure can speed-up RIONA during the
learning phase. For more details of this solution, the readers are referred to [219].

3.6.2 Different types of voting

In Equation 3.1 all training objects from a localSupportSet(r) of some rule r are
counted with equal weight. Analogously to models proposed for kNN classifiers (see
e.g. [7, 112, 149]) the RIONA classifier was adjusted to weight a vote of training
example according to their distance to the test example. There are two implemented
parameters of using weights for training example trn: wy., = m or Wy, =
g(tTltm)g. We used these developed methods (described in [219]) in our experiments

for the RIONIDA algorithm as an extension of RIONA (see Subsection 5.5.5).

3.6.3 Different weights for attributes

In Equation 2.1 all attributes are treated as equally important. However, there
are factors in real-life data sets which cause that different attributes have unequal
significance. In fact, taking this into account can improve classification results (see
e.g. [112, 151, 212]). Thus, Equation 2.1 can be replaced with its weighted version:

Q(l’, y) = Zwa) Qa<a($)v a(?/))v (33)
acA
where w, € R is a weight for any attribute a € A.

In [219], one can find methods for learning relevant weights as well as explanations
for how the weighting algorithms could be applied for the RIONA algorithm. We used
these developed methods (described in [219]) in our experiments for the RIONIDA
algorithm as an extension of RIONA (see Subsection 5.5.5).

3.6.4 Extensions of SVDM pseudometric for numerical
attributes

For symbolic attributes, we use in RIONA pseudometrics SVDM which are induced
from the training set based on a correlation between attribute values and decision
values. Such a correlation is not used in RIONA (by default) for numerical attributes.
However, there were proposed pseudometrics for numerical attributes analogous to the
SVDM pseudometric which help to overcome this drawback. In [219] two of them,
namely Interpolated Value Difference Metric and Density Based Value Difference
Metric are presented to extend RIONA. The readers are referred, e.g. to [219] for
details and literature for these issues. We used these developed methods (described
in [219]) in our experiments for the RIONIDA algorithm as an extension of RIONA
(see Subsection 5.5.5). However, contrary to the normalised city-block metric (see
Equation 2.2) proposition for these pseudometrics analogous to Proposition 3.6 may
not hold!. In consequence, using these particular pseudometrics can cause that

U7t is worth pointing out that RIONA could be rebuilt as mentioned in footnote 1 (page 68) to
omit this problem.

92 3. RIONA

inconsistent local rules can be recognised as consistent. Generally, if for numerical
attributes other pseudometrics than metrics like Euclidean are used, then we, in fact,
obtain somehow different algorithm. In particular, the resulting algorithm may not
satisfy many of the presented above properties.

3.6.5 K nearest neighbours with local pseudometric induction

In the RIONA algorithm, we use some pseudometrics. These pseudometrics are
induced globally during the learning phase, i.e. for the whole training set. In [219],
a modification of this idea was introduced so that pseudometrics are induced locally,
i.e. on the base of the neighbourhood of the test case. Thus, we have an extension
of RIONA with local pseudometric induction. For details see [219]. This idea cannot
be used directly for the RIONIDA algorithm. Thus, we did not use this extension
in experiments for RIONIDA. However, this idea may be realised provided that its
special adaptation for RIONIDA is developed.

3.7 Other possible extensions of RIONA

The RIONA algorithm, developed for balanced data, tries to optimise the common
performance measure, i.e. Accuracy. However, RIONA could be extended in such
a way that other performance measures than Accuracy could be used during
optimisation. This issue is very important especially for imbalanced data and is
discussed in the next chapter. In fact, RIONIDA implements this suggestion for
performance measures dedicated to imbalanced data.

We presented the RIONA algorithm and its counterpart ONN. The latter
algorithm is based on kNN. Experiments showed that the choice between these
algorithms depends on the used data sets. For example, we found that generally, ONN
performs better for data sets with only numerical attributes. Thus, these learning
algorithms could be joined into one meta-learning algorithm which during the learning
phase would select which one of them to choose and its optimal parameters. In fact,
something like this, and even more was done for the RIONIDA algorithm (see next
chapter).

3.8 Conclusions for RIONA

The research reported in this chapter attempts to bring together some ideas of
instance-based learning and rule induction into a single algorithm.

First, we extended the LAZY algorithm presented in Chapter 2 for numerical
attributes. In particular, the extended algorithm does not require discretisation.
It groups values of numerical attributes into interval during lazy rule generation.
Second, we also generalised the algorithm for grouping symbolic attributes. We
showed the theoretical equivalence of this algorithm (RIA) with the algorithm
generating all consistent and maximally general rules (in a specific set of rules).

Also, we (empirically) showed that for the correct classification of a test case, it
is enough to consider only its small neighbourhood instead of the whole training set.

3.8 Conclusions for RIONA 93

It illustrates the known empirical fact that while using rule-based classifiers, one can
obtain better results by rejecting some rules instead of using all maximally general
rules as the RIA algorithm does.

We found that the appropriate choice of the neighbourhood size is a crucial factor
for obtaining high Accuracy. In this way, we proposed the RIONA algorithm using
rules that are built based on a neighbourhood of the test case.

The fact mentioned above is also the key idea that allowed us to make the RIONA
algorithm efficient without loss in Accuracy (compared to RTA). We also designed a
method for efficient learning of the optimal size of the neighbourhood of RIONA. In
practice, the complexity of learning and classification is only squarely and linearly
dependent on the size of a learning sample, respectively. Although a great effort was
put to speed up the presented algorithm, further acceleration was done, e.g. by more
specialised indexing data structures (see [219]).

As the empirical results indicate, the presented algorithm obtained the Accuracy
comparable to the well-known systems: 3NN, C5.0, DeEPs and DeEPsNN.
The experiments showed that besides applying the newly proposed methods, a
pseudometric choice is significant for the algorithm’s Accuracy. Using pseudometric
CSVDM proved to be very successful.

The facts that RIONA and ONN algorithms have similar Accuracy and the
fraction of objects eliminated by the consistency checking operation is very small
indicate that this operation has rather a small influence on the Accuracy of the
presented algorithm. This suggests that the kNN component remains a dominant
element of the presented algorithm and shows that either the construction of local
decision rules should be more general or the operation of consistency checking should
be more restrictive. Regardless of this fact, we preserved the algorithm’s rule
component (and in the next chapter, we prove its usefulness for imbalanced data).

Theoretical results show the RIONA classifier’s relationships to both instance-
and rule-based classifiers (see Subsections 3.2.2, 3.3.4 and 3.3.5). In particular,
we showed the theoretical equivalence of the RIONA algorithm with the algorithm
generating all consistent and maximally general rules in a training set consisting
of the neighbourhood of the test case. Consequently, the RIONA classifier can
be represented by a rule set, with rules easily understandable by a human (see
Subsection 3.3.5). It could be used in the situation when an explanation or
justification of the derived decision is important.

To sum up, the RIONA algorithm combines instance- and rule-based approaches.
It uses rules allowing grouping both numerical and symbolic attributes. As a result
of using the appropriate size of the neighbourhood of a test case, it is both efficient
and effective (in classification). Additionally, searching for the optimal size is also
done efficiently. Moreover, RIONA classifiers have the property of explainability.

94

3. RIONA

Chapter 4

RIONIDA

This chapter presents a new learning algorithm, called RIONIDA, which is dedicated
to imbalanced data and combines the instance- and rule-based approaches. RIONIDA
is the acronym of Rule Induction with Optimal Neighbourhood for Imbalanced Data
Algorithm.

The RIONIDA algorithm is based on a modification of the RIONA algorithm.
The fundamental idea in developing RIONIDA is to reconstruct RIONA taking into
account the issues related to imbalanced data (see Section 2.4). Thus, RIONIDA is
an algorithm-level approach to imbalanced data (see Subsection 2.5.2).

To simplify the task, the number of decision classes in RIONIDA is limited to
only two (i.e. RIONIDA is directly applicable only for binary classification problems;
see the second paragraph in Section 1.3).

The following section introduces the main ideas behind the RIONIDA algorithm.
Section 4.2 presents the idea of more general rules in comparison to the ones used in
RIONA, which enable to realise one of the ideas of RIONIDA. Section 4.3 describes
the whole RIONIDA algorithm as well as its important components (including both
ideas coming from RIONA and newly proposed ideas primarily related to imbalanced
data). Section 4.4 presents the learning part of RIONIDA, i.e. estimation of the
internal parameters of the algorithm. Section 4.5 discusses computational and space
complexity of the algorithm along with possibilities of reducing it. Section 4.6
summarises two important properties of the RIONIDA algorithm from the perspective
of understanding its process of decision making.

The RIONIDA algorithm, analogously to RIONA, has three parts: initialisation,
training and testing. Some comments on the formal structure of the whole RIONIDA
algorithm can be found in Subsection 4.4.3.

4.1 Main ideas behind the RIONIDA algorithm

The RIONIDA algorithm, analogously to the RIONA algorithm, is based on
a combination of instance-based learning and rule induction. However, in the
construction of RIONIDA, some significant changes have been made in comparison
with RIONA aiming to develop classifiers for imbalanced data with the highest
possible quality. We present here the summary of the changes. They are described
in more detail in the following sections.

95

96 4. RIONIDA

First, RIONIDA performs optimisation during the learning phase relative to a
performance measure more relevant for imbalanced data (e.g. F-measure or G-mean).

Second, the minority class is treated in a special way during the conflict resolution.
Another problem is related to choosing to what extent the minority class is more
important than the majority class.

Third, because sometimes the ONN algorithm is competitive with the RIONA
algorithm, we decided to combine the power of both of them. One can decide whether
to use rules in the neighbourhood or not. Moreover, one can define a possibility
of a ‘smooth’ transition between the rule-based approach and the instance-based
approach. Thus, we can set a degree to which using rules in the neighbourhoods is
important. If this degree drops below zero the pure kNN method is used. If this
degree is equal to 1, the pure rule-based approach is used (still restricted in the
neighbourhood). The degree between 0 and 1 corresponds to a combination of the
instance- and rule-based approaches.

Fourth, all the previously mentioned features of the RIONIDA algorithm, as
well as aspects of the RIONA algorithm (adapted to RIONIDA), are automatically
induced during the learning phase. It is important to note that we present an
efficient in time methods of learning all of these factors by the dynamic programming
technique.

4.2 Extension of generalised local decision rule

In this section, we present the idea of the scaled generalised local decision rule. It is
a further extension of the generalised local decision rule (g-rule) used for the RIONA
algorithm (see Section 3.2, Definition 3.2). The idea is to select between rule-based
method (as the RIONA algorithm does) or kNN method (as the ONN algorithm does),

and, on the other hand, to allow a smooth transition between these approaches.

Definition 4.1. For any test object tst and any training object trn, we define
the scaled generalised local decision rule (for short, the sg-rule), denoted by
sg-rule (tst,trn, {0, }acA,, . S) or simply sg-rule (tst,trn,s) (whenever parameters
{0a}aca,,, are clear from the context or irrelevant due to generality), the decision
rule with the decision d(trn) and the following conditions t, for each attribute a:

a € [a(tst),a(tst) +1-s] when s > 0,a is numerical, a(tst) < a(trn)
a € [a(tst) — - s,a(tst)] when s > 0,a is numerical, a(tst) > a(trn)
a € Ba(tst),r, - s) when s > 0,a is symbolic

a€cl when s < 0,

where | = la(tst) — a(trn)|, ra = oala(tst),a(trn)), and B(c,R) is the closed
pseudometric ball of radius R centred at point c¢ for pseudometric g,, s € [—1,1]
is the scaling parameter of the rule.

The sg-rule is constructed in such a way that it always contains the test example,
and the interval or ball corresponding to each attribute is scaled by the given
parameter s in comparison to the original g-rule. It should be observed that for
s = 1, this definition is equivalent to Definition 3.2. For s = 0 we have the rule

4.2 Extension of generalised local decision rule 97

covering only the test example and the training examples identical with the test
example for all numerical attributes and distanced by 0 for all symbolic attributes.
For s < 0, the premise of this rule is always false (formally speaking, not satisfied by
any example) what relates to elimination of consistency checking and in consequence
to working as the kNN algorithm. The parameter s such that 0 < s < 1 defines the
scaling of the satisfiability area of the rule.

We illustrate the idea of the sg-rules with two examples corresponding to numerical
and symbolic attributes.

Figure 4.1 presents two sg-rules for two different values of the parameter s in the
case of a data set with two numerical attributes. Figure 4.1(a) illustrates the area of
satisfiability of sg-rule for s = 1 (equivalent to the standard g-rule). Figure 4.1(b)
presents the area of satisfiability of sg-rule for some s < 1. The first rule is inconsistent
with the training data set, while the second is consistent.

Analogously, Figure 4.2 presents two sg-rules for two different values of the
parameter s in the case of a data set with one symbolic attribute. The first one
is inconsistent with the training data set, while the second is consistent.

Atrn, Atrn
- A - _._ __________ ‘ ________ 1 '
A A :
I
a A . a-s A E.
A - :
A , a A A , A o
o O i
b b-s
(a) inconsistent sg-rule for s = 1 (b) consistent sg-rule for some s < 1

Figure 4.1: The sg-rule with decision ‘triangle’ constructed for a test object tst (with an
unknown decision) depicted with a circle and a training object trny with decision ‘triangle’.
The example is for the data set with two numerical attributes. The difference between the
values of first and second attribute for a test and train examples over which the local rule
is built on is equal to a and b, respectively. Setting s < 1 scales the lengths of all intervals
with value of s in comparison to the original g-rule. The sg-rules shown in examples are
(a) inconsistent for s = 1 because there exists an object labelled by a square in the area of
sg-rule (b) consistent for some s < 1 due to the fact that in the smaller area of satisfiability
(of dashed rectangle) there is no square satisfying the sg-rule (all objects labelled by squares
are ‘outside’ of the area of satisfiability of the sg-rule)!.

'Tt should be noted that objects in examples are represented by points from R? with coordintes
defined by values of the considered two attributes.

2Tt should be noted that geometry of objects in examples is defined by a given pseudometric for
the considered symbolic attribute.

98 4. RIONIDA

(a) inconsistent sg-rule for s =1 (b) consistent sg-rule for some s < 1

Figure 4.2: The sg-rule with decision ‘triangle’ constructed for a test object (with an
unknown decision) depicted with a circle and a training object trn; with decision ‘triangle’
for different values of the parameter s. The example concerns the data set with one symbolic
attribute. The difference between values of the symbolic attribute for test and train examples
the sg-rule is built on is equal to r. Any change of the parameter s leads to scaling of the
area of satisfiability of the rule. The sg-rules shown in examples are (a) inconsistent for
s = 1 because there exists a square in the area of sg-rule (b) consistent for some s < 1
due to smaller area of satisfiability of the rule (dashed circle) so that no square satisfy the
sg-rule (all squares are ‘outside’ of the area of satisfiability of the sg-rule)?.

4.3 RIONIDA description

The RIONIDA algorithm is an extension of the RIONA algorithm for imbalanced
data. We already have mentioned some possible extensions of the RIONA algorithm
in Section 3.7. Those already mentioned and other significant changes in RIONA
are made when constructing the RIONIDA algorithm focused on imbalanced data.
Compared to the RIONA algorithm, the following changes have been made:

e adding the possibility of choosing of the performance measure to be optimised
— in fact, performance measures dedicated to imbalanced data are taken into
account,

e setting sensitivity constraint (for the minority class) to a higher level;
furthermore, this sensitivity is adjusted to the currently analysed data,

e providing not only a possibility to learn when to use the kNN method and when
rule-based method, but also a combination of both types of algorithms (by
tuning levels of rules inconsistency provided in Section 4.2 a smooth transition
between both types of algorithms is incorporated).

It should be noted that in our approach after choosing the performance measure
(which is relevant to the user needs), the learning phase is performed relative to
this chosen performance measure. In consequence, in our approach the same chosen
performance measure is used both in training and testing. The internal parameters
(size of the neighbourhood — parameter k, sensitivity to the minority class — parameter

4.3 RIONIDA description 99

p, the degree to which the rules are used — parameter s) are learned during the learning
phase.

The RIONIDA algorithm, like any learning algorithm, consists of two parts:
learning and classifying (testing). At the step of learning, an essential element of
the algorithm is to learn the optimal parameters discussed above. By observing that
the space of possible parameters defines a set of many possible classifiers, the task of
learning is transformed to the selection of one specific classifier from the given space
of classifiers.

For each parameter, there is a set of values that we take into account. The sets of
admissible values for the parameters k, p, s, we denote by K, P and S, respectively.
Thus, the set of possible classes of classifiers that we search for are of the cardinality
|K|-|P|-|S]. It should be noted that the space of all possible classifiers is determined
not only by these parameters but also by the training set (analogously to kNN method
when a distinct classifier is defined for each training set).

The learning process of these optimal parameters is discussed in Section 4.4.
Algorithm 9 presents the RIONIDA algorithm for the testing phase. In the following
sections, we discuss and analyse in more detail the purpose of using these parameters
and other components of the RIONIDA algorithm. It should be pointed out that
analogously to RIONA, in the argument of the algorithm all pseudometrics are
given (used for computation of the final pseudometric), but in the sg-rule only
pseudometrics for symbolic attributes are used (see Definition 3.2 and note after
it).

This algorithm is a modification of Algorithm 5 (RIONA). The differences between
the RIONIDA and RIONA algorithms are as follows.

e Instead of selecting the class with the highest support, one of the two classes is
chosen: the minority class if the support of this class is above a certain threshold
(parameter p) or the majority class in the other case.

e Instead of g-rules, sg-rules depending on the parameter s are used; this is related
to checking whether the rule is consistent to some extent.

Technically speaking, these differences correspond respectively to the following
differences in the algorithm:

e instead of line 13 in Algorithm 5, we have lines 12-17 in Algorithm 9,
e instead of g-rule in line 9 in Algorithm 5, we have sg-rule in line 8 in Algorithm 9.

One should observe that at the step of classification, a performance measure
dedicated to imbalanced data does not appear in the RIONIDA algorithm. Here, it
is assumed that these parameters have been optimised for this chosen (by a user)
measure. However, in the analysis below, we will refer to the relevant performance
measures for imbalanced data.

It should be noted that the RIONA algorithm is obtained from RIONIDA after
setting the threshold p at 0.5, the parameter s at 1.0, and the optimisation measure
to Accuracy. The ONN algorithm is obtained after setting the threshold p at 0.5, the
parameter s at -0.1, and the optimisation measure to Accuracy. Thus, RIONIDA is
an extension of RIONA and ONN as well.

100 4. RIONIDA

The analysis presented below aims to show that it is reasonable to introduce the
discussed additional parameters and to search the space of them at the learning step.
We want to show that different settings of these parameters, may bring significant
differences in the values of the performance measures for the imbalanced data. In
order to show the importance of these parameters, we will make some simplifications
of the original Algorithm 9. It should be noted that the following analysis was
prepared after performing the experiments reported in Chapter 5. The analysis
justifies both the introduced modifications of the RIONA algorithm and the quality
of the experimental results (presented in Chapter 5).

The following issues related to the RIONIDA algorithm are analysed below:

e selection of performance measure for optimisation (in Subsection 4.3.1),
e choice of the neighbourhood size (in Subsection 4.3.2),
e choice of the sensitivity of the minority class (in Subsections 4.3.3-4.3.4),

e choice of the sg-rule factor (in Subsection 4.3.5).

Algorithm 9: RIONIDA-classify(tst, trnSet, k, p, s, {04 }aca)

Input: test example tst, training set trnSet, positive integer k, number
p € [0, 1], number s € [—1, 1], family of pseudometrics for attributes

{Qa}aeA
Output: predicted decision d € {din, dmq;} for tst
1 begin
2 0= Agr({ga}aGfQ
3 neighbourSet = N (tst,trnSet, k, o)
4 supportSet(dim) = 0
5 | supportSet(dy.;) =0
6 foreach trn € neighbourSet do
7 v =d(trn)
8 if isConsistent (sg—rule (tst, trn, {0a tacAsym 5) ,neighbourSet) then
9 | supportSet(v) = supportSet(v) U {trn}
10 end
11 end
12 Pcurrent = %
13 if peyrrent > p then
14 return d,,;, else
15 ‘ return d,,q;
16 end
17 end

18 end

4.3 RIONIDA description 101

4.3.1 Selection of performance measure for optimisation

Generally, at some step of the data mining process, one establishes a performance
measure expressing the quality of a classifier. Normally, this measure is used during
the evaluation of the learning algorithm at the testing stage. However, it is natural
to make use of this measure and optimise it at the learning stage. In fact, we make
use of it in the development of the RIONIDA algorithm.

In the RIONA algorithm, the Accuracy was used to evaluate this algorithm, and
this performance measure was estimated at the learning stage. In the RIONIDA
algorithm, performance measures, more relevant for imbalanced data, e.g. F-measure,
G-mean, AUC or others, could be used. Currently, in the algorithm, one can choose
F-measure, G-mean or Accuracy at the learning stage. Primarily, we choose one out
of two: F-measure or G-mean (performance measures relevant for imbalanced data).

It should be noted that an essential feature of the RIONIDA algorithm is a
possibility to fix a performance measure for which we want to optimise the algorithm.
This measure is fixed explicitly, in contrast to many algorithms that implicitly
perform some optimisation and then are tested for a certain set of performance
measures. The RIONIDA algorithm could also be easily modified so that one could
choose any performance measure based on the confusion matrix. For example, it
could be a combination of F-measure and G-mean measures.

4.3.2 Choice of the neighbourhood size

While discussing the RIONA algorithm, we observed that the values of the Accuracy
measure could drastically change after changing the neighbourhood size. Moreover,
we noticed that the optimal size of the neighbourhood could be bounded by a small
number, e.g. 200. For the RIONIDA algorithm, we took 100 as a default bound for
k. In the performed experiments, we show that taking the bound 200 for k£ does
not change the results significantly (see Subsubsection ‘Different maximal k value’ on
page 208).

Here, as it was mentioned in the previous section, we are interested in performance
measures more relevant for imbalanced data, i.e. F-measure or G-mean. One can ask if
we obtain similar differences in quality for these measures depending on the size of the
neighbourhood. It turns out that we do. Taking only this factor in the modification
of the RIONA algorithm to imbalanced data can lead to significant improvement in
the quality of imbalanced data classification.

To construct a simplified version of the RIONIDA algorithm, let us try to set
the default values of the parameters p and s. A natural candidate for the default
value of the parameter p is the percentage of the minority class in the training set,

Le. W (see also Subsection 4.3.4 with some theoretical argument for this
selection). As the default value of parameter s, let us take s = —0.1 for which the

sg-rule works exactly as for the nearest neighbours (see Section 4.2). In this way, we
get an algorithm that we call ONIDA (Optimal Neighbourhood for Imbalanced Data
Algorithm). Algorithm 10 presents the ONIDA algorithm. This algorithm can be
seen as an extension of the ONN algorithm for imbalanced data.

From now on, we will present estimations of the classification quality (relative to
F-measure or G-mean) depending on some parameters of the RIONIDA algorithm (or

102 4. RIONIDA

ONIDA, the particular case of RIONIDA). The classification quality (in the function
of parameters) was computed using the leave-one-out method applied to the whole
data set.

First, we discuss how parameter k affects the optimisation of performance measure
for the RIONIDA algorithm. For clarity of presentation, we first present estimation
for the ONIDA algorithm, simplified version of the RIONIDA algorithm with two
default parameters fixed as it was mentioned above. Let us also assume that we want
to optimise G-mean measure. In the following figures, we present these dependencies.

Figure 4.3 shows the dependency of G-mean measure on the parameter k for
glass data set (for details about this data set and others mentioned below see
Subsection 5.1.3). For this data set, it can be observed that while increasing k beyond
a certain small value (around 10) the G-mean measure is systematically falling down.
It is clear from that graph that using a different setting of value k can produce
classifiers with completely different quality. In the graph, we observe differences in
G-mean of about 40%.

Figure 4.4 shows the same dependency for breast-cancer data set (on two different
scales). From the graph in Figure 4.4(a), one can see that the maximal value for
G-mean is for k£ higher than 20. Additionally, from that k& value, G-mean seems to
be stable with respect to changes of values of the parameter k. Moreover, it can be
seen that the differences for different values of k£ can reach about 15%.

Let us look more deeply for this graph using a more relevant scale. In
Figure 4.4(b), it is possible to see that the region of the maximal value for this
measure can be found for the value of the parameter k around 50. The differences
of G-mean for different &k bigger than 20 can be about 5%. Again, it shows that
searching (during the learning phase) for the appropriate size of the neighbourhood
(k) can improve the performance of the algorithm in terms of the chosen performance
measure.

Similar results were observed in the performed experiments for F-measure, i.e.
choosing the proper size of the neighbourhood (parameter k) can improve the
classification quality for the ONIDA algorithm, the simplified version of the RIONIDA
algorithm.

4.3.3 Balancing Sensitivity and Specificity

In the case of the RIONA algorithm, we assumed that the cardinality of decision
classes is fairly evenly distributed. Conflict resolution was done in favour of the
most-represented class in the neighbourhood of the test object.

In the case of imbalanced data, we assume that the minority class may be
under-represented. To increase the chance of correct classification of objects from
the minority class, objects from this class should be treated differently in comparison
to those from the majority class.

For this purpose, we introduce a parameter p used to define how important
the minority class is. This is, in a sense, an analogous to changes made in the
MODLEM-C algorithm (in comparison to MODLEM), where a fixed weight for
examples from the minority class is assigned.

The parameter p of the RIONIDA algorithm determines the minimum rate value

4.3 RIONIDA description 103

G-mean for glass data set
05
08
o ﬂv\w.‘ n
06
s
m 05
g N nLY
QIJ 0,4 - -\
03
02
01
1] T T T T T T T T T 1
1} 10 20 30 40 50 60 70 &0 o0 100
parameter k (neighbourhood size)

Figure 4.3: G-mean measure for glass data set for the ONIDA algorithm as a function of
parameter k (neighbourhood size).

G-mean for breast-cancer data set G-mean for breast-cancer data set
0.8 0,75
0,7 A
06 A ; F' iﬁ W v w i W 0,7
5 E:j E 0,65
; 0'3 g 06
: ©
0,2 0,55
0,1
0 : : : - . 05 : - : :)
0 20 40 60 B0 100 a 20 40 60 B0 100
parameter k (neighbourhood size) parameter k (neighbourhood size)
(a) normal scale (b) scale from 0.5

Figure 4.4: G-mean measure for breast-cancer data set for the ONIDA algorithm (for two
different scalings: (a) normal and (b) from 0.5) as a function of parameter k (neighbourhood
size).

104 4. RIONIDA

Algorithm 10: ONIDA(tst, trnSet, k, {04}aca)

Input: test example tst, training set trnSet, positive integer k, {04 }aca —
family of pseudometrics for attributes
Output: a decision d € {din, dnaj}
1 begin

2 0= Agr({ga}aeA)
3 neighbourSet = N (tst,trnSet, k, o)
4 p= |Class(dmin)|
[trnSet|
5 supportSet(dyim) = 0
6 | supportSet(dy.;) =10
7 foreach trn € neighbourSet do
8 v =d(trn)
9 supportSet(v) = supportSet(v) U {trn}
10 end
1| Pruron = S
12 if Pcurrent 2 p then
13 return d,,;, else
14 ‘ return d,,,;
15 end
16 end
17 end

of the number of objects (forming consistent sg-rules) from the minority class to the
size of the whole neighbourhood for assigning the minority decision to the test object
tst. For example, the value p = 0.1 indicates that it is enough to find 10% of objects
from the minority class among the nearest objects to tst so that the minority decision
is assigned to it. The value of p = 0.5 corresponds to the majority decision strategy
as it was done in the RIONA algorithm. In this sense, it is another extension of the
RIONA algorithm. Of course, we assume that the minority class is more important
than the majority class with respect to correct classification. Therefore, in the carried
out experiments, in the P set (of admissible values of the parameter p during the
learning process) usually only values less than 0.5 are considered.
We can rewrite the condition in line 13 of Algorithm 9 as follows.

|supportSet(d,in)|

>p&s
|neighbourSet| — P

|supportSet(dyin)| > p - (|supportSet(dyn)| + |supportSet(dma;)|) <
(1 —p) - |supportSet(dmin)| > p - |supportSet(dyq;)| -

The above equivalences imply that the condition in line 13 is equivalent to
assigning weights to minority and majority examples with values 1 — p and p,
respectively. In the case of s = —0.1, it can be treated as the kNN method with
the relevant weights assigned depending on the class to which the object belongs.

4.3 RIONIDA description 105

Let us look at this more deeply. One could ask a question: What is the meaning
of the parameter p for performance measures we try to optimise? Different values of
this parameter give different weights for the minority class and the majority class. In
consequence, this is related to different levels of sensitivity to the minority class i.e.
Sensitivity (and inversely, sensitivity to the majority class, i.e. Specificity). Hence,
one could use graphs in the ROC space. Analogously Precision-Recall space can be
informative for such analysis.

From the perspective of optimisation of G-mean measure relative to p, it is
important to search for a harmonious balance between Sensitivity and Specificity. The
ROC curve presents how the change in Specificity affects Sensitivity. The exemplary
graph for yeast data set is presented in Figure 4.5. One can see from this graph that
the optimal value of G-mean measure is obtained by selecting the point of the ROC
curve closest to the (0,1) point. This point corresponds to the situation where both
Sensitivity and Specificity are balanced and are relatively high.

ROC curve for yeast data set Precision-Recall curve for abalone data set

1 1

\

True Positive Rate (Sensitivity)
el
Positive Predictive Value (Precision)

ey

0 0
0 01 0z 03 04 05 06 07 08 0g 1 0 01 02 03 04 05 06 07 08 09 1

False Positive Rate (1-Specificity)

True Positive Rate (Sensitivity, Recall)

Figure 4.5: ROC graph for yeast data
set for £ = 48. Different points in this
graph correspond to different values of p
(these points are connected by straight
lines). The red and bigger point on the
graph corresponds to the optimal value of
the G-mean measure which is obtained for
p = 0.03.

Figure 4.6: Precision-Recall curve for
abalone data set for k = 41. Different points
in this graph correspond to different values
of p € {0,0.5} (these points are connected
by straight lines). The red and bigger point
on the graph corresponds to the optimal
value of the F-measure which is obtained for
p = 0.15.

From the perspective of the optimisation of F-measure relative to p, it is
important to obtain a harmonious balance between Sensitivity and Precision.
The Precision-Recall curve presents how the change of Sensitivity (Recall) affects
Precision. The exemplary graph for abalone data set is presented in Figure 4.6. One
can see from this graph that the optimal value of F-measure is obtained by selecting
the point of the Precision-Recall curve closest to the (1,1) point. That point relates
to the situation where both Sensitivity (Recall) and Precision are balanced as well as
are relatively high.

106 4. RIONIDA

We described an idea how the changes of values of the parameter p influence the
considered performance measures (G-mean and F-measure). Now, we want to show
how changes of values of the parameter p can affect the optimised measure under
different values of k. In other words, we want to observe how different pairs of the
parameters p and k£ can affect values of the performance measure we are interested
in. In order to limit ourselves to these two parameters, we need to simplify the
RIONIDA algorithm. Thus, we assume that the parameter s is fixed at —0.1, which
corresponds to the kNN method with variable size of the neighbourhood (parameter
k) and variable weights of the minority and majority classes (parameter p). In such a
case, we can present a 2-dimensional surface showing the dependency of G-mean on
the parameters k£ and p. It will show the dependency of the quality of the RIONIDA
on the two parameters k and p. Figure 4.7 shows the dependency of (G-mean measure
on both parameters k and p (for an exemplary data set). Figure 4.8 shows the same
surface rotated by 130 degrees. These two figures can give a kind of insight into how
the G-mean may depend on these two parameters.

G-mean for yeast data set

0,86-0,88
0,84-0,86
0,82-0,84
0,80,82
50,780,
0,76-0,78
0,74-0,76
0,44 u0,72-0,74
043 =0,7-0,72

G-mean
o
~
oo
L

0,22
£ parameter p

parameter k

Figure 4.7: Surface chart representing G-mean measure (scaled from 0.7) for the RIONIDA
algorithm for yeast data set as a function of parameters k and p with fixed s = —0.1.

Let us present the cutoff for the surface at & = 48 for which it reaches the
maximum value (among the parameters k and p). Figure 4.9 presents the dependency
of G-mean for the RIONIDA algorithm for constants k£ = 48 and s = —0.1. It is visible
that the maximum G-mean value is obtained for p = 0.03 and p = 0.04. At the same
time, it can be seen that the ridge of the surface presented in Figures 4.7 and 4.8
runs around these values p = 0.03 and p = 0.04. Let us note that the percentage of
the minority class in yeast data set equals 3.44%, which is close to 0.03 (and 0.04).
It is consistent with the intuition given before. This issue is discussed below (see
Theorem 4.1 and comments following this theorem).

However, the maximum value for the performance measure under consideration
can be reached for different values of the parameter p than the value of p equal to

4.3 RIONIDA description 107

G-mean for yeast data set

0,86-0,88

0,84-0,86

0,82-0,84
= 0,8-0,82
m0,78-0,8
m0,76-0,78
= 0,74-0,76
m0,72-0,74
m0,7-0,72

G-mean

Figure 4.8: Surface chart representing G-mean measure (scaled from 0.7, rotated by 130
degrees) for the RIONIDA algorithm for yeast data set as a function of parameters k and p
with fixed s = —0.1 .

the percentage of the minority class. Let us present such an example.

Figure 4.10 shows the dependency of F-measure on both parameters k and p.
Let us note that Figure 4.10 for F-measure significantly differs from Figure 4.7 for
G-mean measure®. The visible maximal points (and points close to the maximal)
for these two surfaces are in completely different areas. Moreover, the ridge of both
surfaces runs for different values of p.

Let us also present the cutoff for this surface at £ = 12 for which it reaches the
maximum value. Figure 4.11 presents the dependency of F-measure for the RIONIDA
algorithm for constants £k = 12 and s = —0.1. It is visible that the maximum
F-measure value is obtained for p € [0.26,0.33]. These values are relatively far from
the percentage of the minority class equal to 0.03 value.

All these considerations are supporting a hypothesis that it is worth to find the
optimal value of the parameter p according to the given performance measure we
want to optimise. This optimal value of the parameter p can be different for different
performance measures.

4.3.4 Default candidate for parameter p

The default candidate for the parameter p of RIONIDA in the case of G-mean is
the percentage of the size of the minority class from the size of the whole data set.
Theorem 4.1 together with the discussion that follows it can be treated as an intuitive
explanation of why this default choice can be really good.

In safe regions (i.e. regions containing only safe examples) it is easy to classify
examples (see Subsections 2.4.2 and 2.4.3). However, in regions of borderline

3The fact that the first figure is scaled does not play significant role in what we argue here.

108 4. RIONIDA

G-mean for yeast data set for k=48, s=-0.1

0 0,05 0.1 0.15 0.2 0.25 0,3 0,35 0,4 0,45 0.5
parameter p

Figure 4.9: G-mean measure for the RIONIDA algorithm for yeast data set as a function
of parameter p with fixed k¥ = 48 and s = —0.1.

examples where the majority and minority classes are mixed, the classification
becomes harder. We restrict our considerations to the case consisting of borderline
examples only which additionally are 'totally mixed’ (with fixed imbalance ratio). If
we find the optimal parameter for this case, it should also be relevant for safe regions.

For the purpose of this subsection only (and Appendix C with Fact C.1), some
useful conventions and notations are presented below.

The decision function, considered here, can be non-deterministic. It means that
training examples can be inconsistent.

We decompose X into the space of vectors of values of conditional attributes, X,
and the space of values of the decision attribute d, Vg, i.e. X = X x V. Also, we
consider the binary set of decisions Vi = {dynaj, dmin }, Where dpq; = 0 and dppn = 1.
Any ezample (object) is a pair (x,d) € X x V4. Any training set trnSet of the
length n is a sequence of examples, i.e. trnSet = (21,...,2,), where z; € X x Vj for
1=1,...,n.

By 2z ~ D we denote random sampling of z from a set Z according to D, where D is
a probability distribution over Z. Usually, we denote by D a probability distribution
over the set X = X x V. By trnSet ~ D™ we denote random sampling of the training
set trnSet of size n, where each example from trnSet is sampled independently using
the same distribution D.

By ER we denote the expected value of the given random variable R. The
subscript of E in E. pR(z) is used to indicate that sampling of z is according to
the probability distribution D. Analogously, we denote by Pr,.p(Event(z)) the
probability of the event Event, where sampling of z is according to the probability
distribution D.

The Accuracy of a given classifier C' is equal to the probability that this classifier
correctly classifies any test example (see e.g. [149]), i.e. Acc(C) = Prgop(C(x) =
d) = Ea~p(I(C(z) = d)), where C(x) is the decision assigned to x by the classifier
C, d is the correct decision on = and I(-) is the indicator function (equal to 1, if the

4.3 RIONIDA description 109

F-measure for yeast data set

20,45-05

0,4-0,45

%0,35-0,4

03-0,35

20,25-03

m0,2-0,25

m0,15-0,2

- ®0,1-0,15

0,33 m0,05-0,1
£on ®0-0,05

£on parameter p

F-measure

parameter k

Figure 4.10: Surface chart representing F-measure for the RIONIDA algorithm for yeast
data set as a function of parameters k and p with fixed s = —0.1.

condition in the argument is satisfied and 0, otherwise)?. For calculating G-mean we
need Sensitivity (called also Accuracy for Positive Class or Recall) and Specificity
(called also Accuracy for Negative class):

CCmin(C) (x,d)I;D(C(x) d|d=dnn),

ACCmaj (C) = (x’g))ip(0<f17) =d | d= dmaj>‘

For calculating F-measure, we need Sensitivity and Precision. Precision is the
conditional probability that the classification is correct provided that the classifier
predicts the positive (minority) class:

Prec(C) = (x,g))ip(c(x) =d| C(z) = dmin)-

However, we are interested in computing Accuracy of a learning algorithm
Alg(trnSet) constructing a classifier from a given training set trnSet (see
Section 2.1). Formally, Accuracy should be averaged over all possible training
data sets of fixed size n (see e.g. [149]), i.e. we need to calculate AvgAcc(Alg) =
Etnsetnpn Acc(Alg(trnSet)) = Egngetnpr Praag~p(Alg(trnSet)(z) = d) =
EynsetonEapl (Alg(trnSet)(x) = d)°. Analogously, for calculating measures
related to G-mean and F-measure we need the measures presented above averaged

*1(C(xz) = d) = 1-L(C(z),d), where L is the 0-1 loss function (equal to 0, if C correctly classifies
the given example (z,d) and 1, otherwise).

*Formally, Pr, gp(Alg(trnSet)(x) = d) is a random variable, where trnSet is fixed. It
can also be seen as the conditional probability on D™ x D given a training set trnSet, i.e.
Prirpsetndn (2,4~ (Alg(trnSet)(z) = d | trnSet).

110 4. RIONIDA

F-measure for yeast data set for k=12, s=-0.1

o
=3

e
in

F-measure
o (=]
w =

=t \

|

o
e

o

0 0,05 0.1 0.15 0.2 0.25 0,3 0,35 0,4 0,45 0.5
parameter p

Figure 4.11: F-measure for the RIONIDA algorithm for yeast data set as a function of
parameter p with fixed k =12 and s = —0.1.

over all possible training data sets of fixed size n. Hence, we introduce:

AvgAccmin(Alg) = Eypsetpn AcCmin(Alg(trnSet)),
AvgAccmai(Alg) = Epngetupn AcCq; (Alg(trnSet)),
AvgPrec(Alg) = Eypserwpn Prec(Alg(trnSet)).

For each test example tst = (z,d), any sequence of training examples
trnSet = ((x1,dy),...,(xy,d,)), and any pseudometric o, let m (z),...,m,(x) be
the permutation of {1,... n} reordering (z1,...,x,) according to o(z, x;), as follows

(T, Ty (2)) < 0(T, Ty (), fOr each i € {1,...,n —1}.

Without loss of generality for our considerations, one can assume that the
permutation is determined uniquely. It should be noted that o may depend on trnSet
(see, e.g. SV DM pseudometric in Subsection 2.2.2).

As it was mentioned at the beginning of this subsection, we consider the ‘totally
random’ distribution over set X. Intuitively, it means that for this distribution the
decisions of examples for the majority and minority classes are ‘totally mixed’ (with
fixed imbalance ratio) without any dependence on values of conditional attributes.
Formally, this means that the distribution D over X can be expressed as the product of
independent distributions Dy and Dy, over X and Vj, respectively, i.e. D = Dy X Dy,.

In our considerations, Alg is roughly interpreted as the RIONIDA learning
algorithm for the fixed k and s = —0.1. It is parametrised by p € [0,1]. Hence,
AvgAccpin, AvgAccyq; and AvgPrec are functions of p.

Now, we present a theorem which roughly says that the optimal value for the
parameter p in the case of G-mean for the RIONIDA algorithm under the assumption
of the ‘totally random’ distribution is very close to the percentage of the size of the
minority class from the size of the whole data set.

Theorem 4.1. (version for G-mean) Let k,n € N, k < n, ¢ € (0,1) be given
constants. Let p € [0,1] be a parameter. Let D be a distribution over X = X x Vy such

4.3 RIONIDA description 111

that D = Dy X Dy, where Dy in any distribution over X and Dy is the Bernoulli(q)
distribution taking values dp;, = 1 with probability ¢ and d,,.; = 0 with probability 1—
q. Let tst = (z,d) ~ D, trnSet = ((x1,dy),...,(xy,d,)) ~ D". Let D; be a random
variable equal to dr,), i.e. the decision of the i-th nearest neighbour (from trnSet) to
x. Let us consider the random variable Alg with arguments trnSet and x taking the
decision on the basis of values Dy (trnSet, x), Dy(trnSet,), ..., Dy(trnSet, x) defined
as follows

k
Amin if % > D;(trnSet, x) > p,
i=1

dmqj otherwise.

Alg(trnSet)(x) =

Let us consider the function AvgGmean(p) = \/AvgAcciin(p) - AvgAccyq;(p).-
If we consider all the values poy such that the function AvgGmean(p) takes the

mazximal value at poy, then
In2

inf|p, — q| < ——.
;it!ppt ql < ’

Proof. For any fixed trnSet we have

Accuin(Alg(trnSet) = Pr(Alg(trnSet)(z) = d | d = dyin)

z,d

- (xjgl;D(Alg(trnSet)(x) = dpmin | d = din)
= (Iyg’)l;D(Alg(t'r’nSet)(:c) = dmin) (4.1)
= Pg (Alg(trnSet)(z) = dmin) (4.2)

Equation 4.1 follows from the fact that events Alg(trnSet)(z) = dpin and d = dpin
are independent. Equation 4.2 follows from the fact that D = Dy x Dy.
Analogously, we have

Accpaj(Alg(trnSet)) = Pr (Alg(trnSet)(x) = dpa;)-

JCNDX

For any trnSet we have

Accpin(Alg(trnSet)) + Accpqj(Alg(trnSet)) =
Pyop, (Alg(trnSet)(x) = dpin) + Poopy (Alg(trnSet)(x) = dpqj) = 1.

Hence, we also have

AvgAccmin(Alg) + AvgAccq(Alg) =
Eirnsetpn AcCmin(Alg(trnSet)) + Eypsetapn AcCma; (Alg(trnSet)) = 1.

Thus, we have

AvgGmean(p) = \/Angccmaj (p) - (1 — AvgAccima;(p)).

The root square function is monotonic and under the root square we have a quadratic
function of AvgAccy,q;, which achieves the maximal value for AvgAccy,q.; = % This

112 4. RIONIDA

quadratic function is symmetrical (around) and monotonically increasing up to
AvgAccyq; = and from that point monotomcally decreasing. Thus, AvgGmean(p)
achieves the max1mal value for any p,,; such that:

1
Popt € arg min|AvgAcc,qi(p) — =|.
p€(0,1] 2
It should be noted that the above formula not defines the optimal value of p uniquely;
we obtain the set of optimal values of p. We consider all such optimal values pg,.

Later on we prove that the set of all optimal values p,, is ‘close’ to the value q.
We have

AvgAccmai(Alg) = Epngetapn AcCpq; (Alg(trnSet))
= EynSetpn Plg (Alg(trnSet)(z) = dmaj)
z~Dx

= EtTnSetN’D" E:ENDXI(Alg(tTnSGt> (LL’) = dmaj) (43)
= Eynsetnpn E@aynl (Alg(trnSet)(x) = dpq;)

- EtrnSetND”,(x,d)NDI(Alg(tTnset)(:L‘) - dmaj)
= Pr (Alg(trnSet)(x) = dinaj) (4.4)

trnSet~D™ (z,d)~D

k
= 4.
trnSetND" (z,d)~D z:: (5)
= Fi(kq(Pk), (4.6)

where B(k,q) denotes the binomial distribution and Fpgq)(v) its cumulative

v
distribution function at point v, i.e. Fpg,q)(v) = LX% (")g'(1 — q)*=, |v] is the ‘floor’
under v, i.e. the greatest integer less than or equzaloto v.

Equations 4.3 and 4.4 follow from the definition of indicator function. Equation 4.5
follows from the definition of Alg. Any permutation of training examples (formally,
random variables) does not change their distribution and independence, thus for any
1 <1<k, D; ~ Bernoulli(q) (D; are identically distributed) and D; are (mutually)
independent. Thus, the probability in Equation 4.5 is the cumulative distribution
function of binomial distribution B(k,q) at point pk. This implies Equation 4.6.

From the previous considerations we obtain the set of all optimal values p,,; which
satisfy:

Popt € argmin|Fp o) (pk) — —|
p€(0,1]

Let us denote by p,,: the smallest optimal value p,,. Then p,,:k is an integer value
since the cumulative binomial distribution function is a step function with jumps in
integer values and constant between them. First, let us consider a specific case when
the cumulative distribution function achieves the optimal value (i.e. the closest to %)
at both integer values p,,k and popk + 1. Then all the optimal values p,,; form the
interval [Dopt, Popt + %) since the optimal values p,,; are contained in the sum of two
intervals for which Fp q) is closest to %, i.e. [Popts Dopt + %) and [Popt + %,ﬁopt + %)
We will return to this case at the end of the proof. From now on, we consider the
opposite case. Then all the optimal values p,, form the interval [Bop, Popt + 1)-

4.3 RIONIDA description 113

For the need of the considerations that follow, it is worthwhile to recall the
definition of the median. The median of the distribution induced by a random variable
R is any real number m that satisfies the inequalities:

1
Pr(R<m) > 5 and Pr(R >m) >

DO | —

In the three cases considered below it will be convenient to denote by e the value
Doptk = |Doptk | and by D the random variable with distribution B(k, q).

The first case: the optimal (i.e. the closest to %) value Fp.q)(Doptk) is equal to
5. Then P(D <€) = Fppq(e) =3 P(D>¢) > P(D>¢)=1—-P(D <e)=3.
Hence, e is the median of B(k,q).

The second case: the optimal value Fp;q)(Poptk) is less than % Then P(D <
€) = Fppgle) < 3. Then P(D < e+ 1) = Fppqle+1) > 1 (otherwise Fpq (e
would not be the optimal value). We also have Pr(D >e) =1— P(D < e) > 1.
Thus, Pr(D > e+1) = Pr(D > e) > 1. It implies that e+1 is the median of B(k, q).

The third case: the (optimal) value Fpq)(Dopek) is greater than 5. Then P(D <
€) = Fpq(e) > 2. We also have P(D < e) = P(D < e—1) < 5 (otherwise Fpq(€)
would not be the optimal value). Then P(D >¢e) =1— P(D < e) > i. Hence, that
e is the median of B(k,q).

To sum up, we have shown that for all p,,;, we have that e = p,,.k or e + 1 is the
median of B(k,q).

On the other hand in [96] (see also [115]) it is shown that any median M of B(k, q)
cannot be ‘far’ from its mean value p = kq. More precisely, the distance between M
and p can be at most In2; i.e.:

~—

|M — pu] <In2. (4.7)

This implies that for any p,,: we have (respectively for the cases when e is the median
or e + 1 is the median)

le —kql <In2or|e+1—kql <In2.

Thus,
|ﬁoptk - kQI S In2 or |ﬁoptk? -+ 1-— k’q| S In 2.
Hence,
. In 2 . 1 In 2
[Popt = al < == or [Popt + - —al < =~ (4.8)

Let us recall that all the optimal values p,,; form the interval Dy, ﬁoptjt%). Therefore,
either (in the case when e is the median) the beginning of this interval is distanced
In2

from ¢ not more than = or (in the case when e + 1 is the median) the end of it is

distanced from ¢ not more than 1“72 Thus,

k

We still have to prove the theorem for the specific case when all the optimal values
Popt form the interval [Dopt, Popt + %) Then from the above considerations, it is easy
to see that in such case the value g belongs to this interval. Hence, it belongs to the
set of optimal values pgy.

inf|popt - Q| S - -
Popt

]

114 4. RIONIDA

We used in the proof of the above theorem the best possible approximation
between the median and the mean (independent of ¢ and k) of the binomial
distribution (see [96]; see also [115]). However, it should be noted that we do not
want to look for the maximal distance between median and mean, but the distance
between ¢ and the interval of optimal values p,,;. In particular, in many cases this
interval contains the value q.

It seems that for ¢ < % it is possible to find a much better bound on the distance
between ¢ and this interval using Fact C.1 formulated, proved and shortly commented
in Appendix C.

Intuitively, the algorithm Alg in Theorem 4.1 represents the RIONIDA algorithm
with a fixed parameter &k (given in the assumption of the theorem), s = —0.1,
and with a data set represented only by a single region with the high degree of
overlapping between classes, i.e. only borderline examples occur in the data set under
consideration (see Subsections 2.4.2 and 2.4.3). For technical reasons, we only require
that Alg takes d,,q; (instead of d,,;, as the RIONIDA algorithm does) in the situation

k
when ¢ ; D; = p (see the formulation of the theorem). The function AvgGmean(p)

represents the G-mean for RIONIDA (with fixed parameters as described above) for
different values of the parameter p. The theorem roughly says that the maximal
G-mean value for RIONIDA is achieved for p equal roughly to ¢ (the percentage of
the size of the minority class). For example, without going to the technical details,
the theorem says that if there are 5% of examples from the minority class mixed
totally randomly with examples from the majority class, then the optimal value for
the parameter p for RIONIDA is achieved for p = 5%.

Obviously, in practice, data sets contain not only borderline examples but also
safe examples. Thus, it would be valuable for applications to formulate and prove
more general theorem for borderline and safe regions. We leave it for future work.
However, below we give an intuitive explanation that, roughly speaking, the theorem’s
conclusions will remain true in such more general situation.

First, let us assume that there are some other regions with borderline examples
with the same overlapping level of the minority and majority classes (formally,
distributed randomly with the same parameters of Bernoulli distribution). If one
adds such regions, the conclusion of the theorem will also hold since it can be treated
as one region of borderline examples.

Second, let us consider the case when both borderline and safe examples occur in
data. In this case, one can divide the whole space of examples into the safe region
(consisting of the safe regions of the majority class and the safe regions of the minority
class) and the borderline region (consisting of borderline regions in different areas of
data). Let us assume that all examples from the safe region are correctly classified
by the algorithm (independently of the parameter p)%. Let us also assume that the
global percentage of the minority class is the same as the percentage of the minority
class in the borderline region. Under these assumptions, it is easy to check that the
optimal parameter p will be the same as in the theorem’s conclusion (i.e. the optimal
parameter p for the borderline region).

This shows that, in a sense, only regions with borderline examples are important

6In practice, such an assumption is satisfied for a wide range of values of the parameter p.

4.3 RIONIDA description 115

to focus on in order to achieve the high G-mean value.

In the case of dealing with real-life data sets, even if borderline examples are
‘totally mixed’, the given above assumptions may be not satisfied. For instance,
some examples treated as safe examples can be misclassified for the optimal value of
the parameter p, the borderline regions can have different percentage of the minority
class, or the global percentage can be different from the percentage of borderline
regions. However, if the given above assumptions are ‘roughly’ satisfied, then the
optimal parameter p can be only ‘slightly’ different from that given in the theorem.

Concerning the parameter p, RIONIDA, in fact, is searching for the relevant value
of the parameter p in case the distribution is not totally random but is slightly directed
toward one class (is, in a sense, between the borderline region and safe region of one
class). If there exist two regions with borderline examples with different parameters of
Bernoulli distribution, then RIONIDA searches for the optimal value of the parameter
p treating these regions of borderline examples as one. This observation indicates that
for different borderline regions different optimal values of the parameter p should be
searched for. This is one of the topics for future work (see Section 6.2).

Now, we present the theorem which roughly says that the optimal value of the
parameter p in the case of F-measure for the RIONIDA algorithm and ‘totally
random’ distribution is 0.

Theorem 4.2. (version for F-measure) Under the assumptions of Theorem 4.1 let
us consider the function AvgFmeasure(p) = H(AvgAcCyin(p), AvgPrec(p)), where
H(-,-) is the function of harmonic mean of its arquments, i.e. H(a,b) = a—l—ib—l
Then the function AvgFmeasure(p) takes the maximal value at

1
DPopt € 07 E .

Proof. Let us recall that by Fp 4 we denote the cumulative binomial distribution
function.

AvgAccpin(Alg) =1 — AvgAccq;(Alg)

k
(m,d)ND,I‘SmaDW(; =P)

=1—Fpkg (k).

Both the first and second equation come from the proof of Theorem 4.1. The third
equation follows from the fact that the probability in the previous equation is equal
to the cumulative distribution function of the binomial distribution B(k,q) at point
pk (for details see the proof of Theorem 4.1).

116 4. RIONIDA

We also have

AvgPrec(p) = Eynsetnpr E(wap(I(Alg(trnSet)(x) = d) | Alg(trnSet)(x) = dmin)
- EtrnSetND"E(a:,d)ND (I(dmzn - d) ‘ Alg(trnset)(ff) - dmzn)

~Dy

= EtrnSetND"E(z,d)NDI<dmin = d) (49)
= EtrnSetND”E:cwDXEdNDyI<dmin = d) (410)
- EtrnSetND"EacwDX dPr (d = dmm) (411)

)

= EtrnSetND" ExN’DX q (4 12
=4q

Equation 4.9 follows from the fact that events d,,;, = d and Alg(trnSet)(x) = dmn
are independent (for any fixed trnSet). Equation 4.10 follows from the fact that
D = Dy x Dy. Equation 4.11 follows from definition of the indicator function.
Equation 4.12 follows from the fact that Dy, is the Bernoulli(q) distribution.

Thus, we have

AvgFmeasure(p) = H(AvgPrec(p), AvgAccmin(p)) = H(q,1 — Fp(kq) (Pk))

The first argument of H with respect to p is constant and H is monotonically
increasing function of the second argument. Thus, the function AvgFmeasure(p)
takes the maximal value at those values of p for which the function 1 — Fp ¢ (pk)
takes the maximal value. Hence, the function AvgFmeasure(p) takes the maximal
value at

Popt € arg min Fp(y 4)(pk)
pE[U,l]
Every cumulative distribution function is non-decreasing. Thus, the function
AvgFmeasure(p) takes the maximal value at p,p such that Fp g) (poptk) = 0. From
definition of Fp(q) (pk) = 0 we have

Lpozvtkj =0

1
Popt € |:07 E) :

Intuitively, function AvgF'measure(p) represents the F-measure for RIONIDA
(with fixed parameters as described above) for different values of the parameter p.
Intuitively, the theorem says that the maximal value of F-measure for RIONIDA is
achieved for p equal roughly to 0. This relates to the algorithm classifying examples to
the minority class if at least one minority example occurs in the neighbourhood. This
is intuitively clear because for F-measure we need to balance between Precision and
Sensitivity. Precision is constant for totally random examples, i.e. in a sense, it does
not depend on algorithm. Thus, to maximise the F-measure one needs to maximise
Sensitivity. It is done by setting the minimal possible value of the parameter p. This

Thus

]

4.3 RIONIDA description 117

is related to classifying all objects to the minority class (excluding only the situations
such that all neighbours of a given test object are from the majority class).

It can seem strange that the set of optimal values p,,; does not depend on the
value of ¢q. For example, both for ¢ close to 0 and close to 1 the optimal value does
not change. However, it should be observed that F-measure is the harmonic mean of
Sensitivity and Precision. Thus, in a sense, this performance measure ‘favours’ one
class, that is the minority class. This measure does not balance between classifying
to the minority class and the majority class, but rather between classifying to the
minority class and quality of this classification, i.e. Precision. Hence, if Precision is
constant (which is the case when classes are ‘totally mixed’ with the fixed imbalance
ratio), then to maximise F-measure one should choose such p that the classifier
chooses the minority class as often as possible. In fact, p close to 0 relates to this case.
Irrespective of the value of ¢, it is better to classify examples to the minority class
(if it is only possible). This is an intuitive explanation of the above theorem. This
theorem and explanation can also be treated as a kind of criticism of the F-measure
(at least in situations similar to described in the theorem). However, it is worth
pointing out that for practical data sets Precision is not constant. We then have to
balance between Precision and Sensitivity.

Moreover, comparing the optimal values for G-mean and F-measure for the
case when classes are ‘totally mixed’ one can see that the optimal values for
different performance measures can be very different. In fact, in the described
situation we do not optimise the parameter p according to the given data (since
as high randomness occurs one can deduce nothing) but to the selected performance
measure’. In this sense, these theorems illustrate that in some specific situations
learning algorithms may rather ‘learn’ optimisation measure more than useful
relations between conditional attributes and decision. One should be aware of that.

Also, these theorems lead to another interesting observation. To be specific,
consider ‘random’ data set with the percentage of the minority class (i.e. the value
of ¢ from the assumptions of the theorems) equal to 0.3 and &k = 50 (size of the
considered neighbourhood). Then, these theorems show that for a given data set (in
our case, ‘random’ data set), the optimal classifiers from a given class of classifiers may
be significantly different (in respect to classification) depending on the performance
measure relative to which the optimal classifier is selected. Moreover, it can be
easily calculated (using formulas from the proofs of the theorems) in the considered
case that the assessments of these two optimal classifiers are significantly different
depending on the performance measure used for the assessment. For one performance
measure, the first optimal classifier is much better than the second one; and for
another performance measure, vice versa (the second one is much better than the first
one). These observations may help to understand that the ‘best’ classifier selection
may strongly depend on the chosen performance measure. Also, it shows that without
a precise specification of what particular performance measure we optimise, the ‘best
classifier’ term can be ambiguous or even misleading. It has practical implications
for real-life (data mining and) classification tasks.

Analogously as for the previous theorem (for G-mean), it would be more

TOf course, it is well known that in data mining process one defines the optimisation measure at
some step of data mining process (see e.g. [59]).

118 4. RIONIDA

relevant for practical applications to formulate and prove more general theorem with
borderline and safe regions. Again, we leave it for future work. The given previously
intuitive explanation that the theorem for G-mean can be easily generalised for such
a case would not work for F-measure. This is due to the fact that safe examples from
the majority class could be misclassified for p close to 0 (which is the value close to
the optimal values of p from the theorem for F-measure). In consequence, Precision
would be not constant (would depend on p). Then, the optimal values of p in such
case could be greater than 0 and should be recalculated for the generalised theorem
for F-measure.

4.3.5 Choice of scaling factor in the sg-rule

In the RIONA algorithm, we only count those objects from the neighbourhood that
support the consistent g-rule (isConsistent method). On the other hand, in the ONN
algorithm, we take into account all objects from the neighbourhood. Experiments
for the RIONA and ONN algorithms have shown that depending on the data set
selection sometimes RIONA and sometimes ONN achieves the better quality. Thus,
one can try to learn from the training sample which algorithm to apply for a specific
data set. Even more, one can also introduce a smooth transition between these two
situations. This is done by introducing the parameter s (see Section 4.2).

The value of s corresponds to the degree of consistency rule detection. The value
s = 1 corresponds to the situation as in the RIONA algorithm. In this sense,
RIONIDA is an extension of this algorithm. The value s = —0.1 corresponds to
the ONN method, i.e. we do not check the consistency of examples. For consistent
data sets, the value s = 0 also corresponds to the situation when we use the ONN
method. Intermediate values, i.e. 0 < s < 1 correspond to the situations between the
ONN algorithm and the rule-based algorithm.

Figure 4.12 shows the dependency of G-mean measure on both parameters k
and s for haberman data set. We have fixed here parameter p = 0.22 (close to the
percentage of the minority class in the whole data set; for this value of p the maximum
value of G-mean was obtained over the set of values for the parameters k, p, s). It is
visible that for almost all values of the parameter k£ the maximum value of G-mean
is obtained for some value of the parameter s between 0 and 1, near 0.5.

Figure 4.13 shows the dependency of G-mean on the parameter s for fixed £ = 96
and p = 0.22. It is visible that the maximum value of G-mean is obtained for s = 0.5
and the difference between maximal (for s = 0.5) and minimal (for s = 1.0, i.e. for
rule-based classifier) value is approximately 10%. The difference between maximum
G-mean value (for s = 0.5) and G-mean value for s = —0.1 (i.e. for the ONIDA
algorithm, which gives kNN like classifier) is approximately 8%. Hence, it is clear
for these examples that neither rule-based nor kNN-based classifier gives the best
result. The best result is obtained for classifier which behaves somehow “between”
kNN-based classifier and rule-based classifier.

Of course, one might argue that for kNN-based classifier one could find other
optimal values for the parameters p and k. The same argument could be given for
rule-based classifier. We try to answer the question whether taking this argument into
account the parameter s is important, i.e. whether it can lead to an improvement in

4.3 RIONIDA description 119

G-mean for haberman data set

L —_
0,68 — SRR
0,66 - f
% 0,64 P 2 o | YN - 0.58:0,7
g e : : ; 0,66-0,68
& o5t " 0,64-0,66
e m0,62-0,64
prie m0,6-0,62
i
oss PR 0,58-0,6
- UL o A SRR 2
® o g's % "c‘o”"L‘Tr‘grrrm”"""""’\'rrr m0,56-0,58
L I @~ nL UL s o S, VE B0,54:0.00
=88 g 3 @ T ‘_r”"’ﬂ’rrrﬁ-r”, - £ 05
© R R g gy o/ parameters
parameter k v e 8

Figure 4.12: Surface chart representing G-mean measure (scaled from 0.58) for the
RIONIDA algorithm for haberman data set as a function of parameters k£ and s with fixed
p = 0.22.

classification. Figure 4.14 shows the dependency of G-mean value on the parameter
s under the assumption that for a given parameter s we could find the optimal
parameters p and k. We purposely present Figure 4.14 on the same scale as
Figure 4.13. Indeed one can see that the graph in Figure 4.14 is flattened in
comparison to the graph in Figure 4.13. Tt means that the previously given differences
diminish. However, the differences are still quite significant. The maximum G-mean
value in Figure 4.14 is obtained as previously for s = 0.5. The difference between
maximal and minimal values are approximately 3.2%. The difference between the
maximum G-mean value (for s = 0.5) and G-mean value for s = —0.1 (i.e. for
the ONIDA algorithm, which gives kNN like classifier) is approximately 2.1%. The
difference between the maximum G-mean value (for s = 0.5) and G-mean value for
s =1 (i.e. for rule-based classifier) is approximately 1.8%. Still these differences show
a possibility for significant improvements of both rule-based classifier and kNN-based
classifier by using a classifier ‘between’ these two.

Generally, we have such a division: for some data sets the maximum value of
the optimised measure is reached for s = —0.1, i.e. for methods of the kNN type.
For another part of data sets, the maximum value is reached for s = 1.0, which
corresponds to the application of rules. In turn for a part of data sets the maximum
value is reached for s € (0,1), which corresponds to the application both of these:
the rule-based method to some extent and kNN-based method to some extent.

4.3.6 Some specific situations

In this subsection, we present what was done in some specific situations.

120 4. RIONIDA

G-mean for haberman data set for p=0.22, k=96 maximal G-mean (over k, p) for haberman data set
0,7 0,7
k—v——“"
0,68 Pa c 068 \’__/.\
o 066 £ 066 \\r/‘
@ / \ U)
[«]
£ 0,64 = 0,64
& / \ g
0,62 ‘% 062
/ \\‘ «
0,6 \ S 0,6
0,58 T 0,58 T T
0,1 0,1 03 0,5 07 0,9 0,1 0,1 0,3 0,5 0,7 0,9
parameters parameters

Figure 4.13: G-mean for the RIONIDA Figure 4.14: Maximal G-mean (scaled
algorithm (scaled from 0.58) for haberman from 0.58) over all values of k and p for the
data set as a function of parameter s with ~ RIONIDA algorithm for haberman data set
fixed k =96 and p = 0.22. as a function of parameter s.

Inconsistencies

RIONIDA, as well as RIONA, works with inconsistent training sets. However, in
RIONIDA we use more information than in RIONA in situations when inconsistencies
in the training set cause that for a given test example both support sets for decisions
are empty.

We describe here how the RIONIDA algorithm works in situations when
inconsistencies in data sets occur, i.e. there exist objects undistinguishable by values
of conditional attributes but with a different decision. Previously, for clarity, we did
not mention this detail in the description of the RIONIDA algorithm.

Let us consider the situation when for a test object presented for classification
there exist training objects with the same value for any conditional attribute as the
tested example and with different values of the decision attribute. In this case, for all
values of the parameter s > 0, we have supportSet(dmn) = supportSet(d,q;) = 0,
i.e. no examples supporting minority or majority decision are found. Therefore, in
this situation, it seems a sensible solution to use at least those inconsistent training
examples. In this situation, we count the number of inconsistent training examples
from each class, and we use these as support sets. We apply this procedure both
during learning and classification.

We also accelerate the algorithm for this situation. Before time-consuming
examining which training examples form inconsistent rules, we quickly check whether
the situation of inconsistencies (described above) occurs. If the situation of
inconsistency occurs, then for s # —0.1 there is no need to investigate which training
examples are in the support set, because none of them will be.

There may also be a different situation when the algorithm may return a zero
distribution. It may occur if there are training objects close to the test one but with
nonzero distance from it, which mutually cause inconsistencies. Then, all sg-rules
cover objects with a different decision than that assigned to the rule, and therefore
for many levels of s (except levels close to zero) there are no consistent sg-rules.
This situation does happen in the examined in experiments data sets, This situation
does happen for data sets used in experiments, though very rarely. We do not settle
it by any sophisticated way. Naturally, if zero support sets are calculated for both

4.4 Estimating the optimal values of parameters for RIONIDA 121

decisions, then the minority decision (privileged for the classifier) is taken.
The RIONIDA algorithm was also tested for inconsistent data sets. In fact, such
data sets occur in the performed experiments (see Subsection 5.1.3).

Missing values

Missing values in the RIONIDA algorithm are treated precisely as in the RIONA
algorithm (see Subsection 3.3.1). The RIONIDA algorithm was also tested for data
sets with missing values. In fact, such data sets occur in the performed experiments
(see Subsection 5.1.3).

4.4 Estimating the optimal values of parameters for
RIONIDA

The above considerations (see Subsections 4.3.2, 4.3.3, 4.3.5) show that the
performance of RIONIDA can significantly depend on the chosen values of the
parameters k, p, s. The optimal values of these parameters depend on the analysed
data set and the selected optimisation measure. Therefore, it is essential to find the
optimal values of these parameters relative to the optimisation measure specified by
a user. It should be noted that the domains of the parameters k, p, s (maximal
admissible sets for these parameters) are as follows: K. = {1,2,...,|trnSet|},
Praz = [0,1], Spaz = {—0.1} U [0, 1]. We would like to search for the optimal triple
values in the Cartesian product of these sets. From the algorithmic point of view,
one should restrict the search to some finite subsets of these sets.

Analogously as in the case of the RIONA algorithm, to construct an efficient
algorithm one should take into account the following questions:
(1) For given finite sets K, P, S, how to learn the optimal triple values efficiently
from K x P x S7?
(2) Is it possible to select some finite subsets K C K40, P C Praz, S C Spaz of
‘small’” sizes such that the optimal solution obtained for these sets K, P, S is ‘close’
to the optimal solution for K,,4zs Prnazs Smaz !

4.4.1 Efficient learning of the optimal values of parameters for
RIONIDA

In this section, we describe the algorithm for estimation of the optimal values of the
parameters k, p, s for the RIONIDA algorithm. This can be done in an analogous
way to searching for the optimal value of k in the case of the RIONA algorithm
(see Section 3.4). The leave-one-out method is used on the given training set to
estimate the value of the performance measure (chosen by a user) for different values
of (k,p,s) € K x P x S and the triple values of k,p,s for which the estimation
of the measure value is the greatest is selected®. The direct calculations require
repeating leave-one-out estimation |K| - |P| - |S| times. However, using the dynamic

8In the sequel we also denote by k, p, s the values of the parameters k, p, s (treated in algorithms
as variables), respectively, if this not leads to confusion.

122 4. RIONIDA

programming technique, we emulate this process in time comparable to the single
leave-one-out test for k equal to the maximal possible value k = kje0 = | K.

Below we present Algorithm 12 implementing this idea.

For a training example trn the function getClassificationMatriz (see
Algorithm 11) finds k.. examples from trnSet \ {trn} nearest to the example trn
and sorts them according to the distance o(trn,-) from the trn object.

Next, for any example nn, from the selected neighbourhood and any s € S,
the sg-rule is built on trn (treated as a testing object) and nny (treated as a
training object), i.e. the rule sg-rule (trn,nnk, {0a}acasym; s). The algorithm checks
consistency of this sg-rule with the objects from the neighbourhood for different
levels of s € S and stores this information in the entry corresponding to s of the
array assigned to the object nny.

Next, it calculates the matrix of decisions that the RIONIDA classifier would
return for different triple values (k,p,s) € K x P x S and this matrix is returned as
a result.

Algorithm findOptimal Params3D (see Algorithm 12) calls the function
getClassificationMatriz(...) for every training object. Next, it creates a matrix
with the confusion matrix as its entry for each triple (k,p,s) € K x P x S.
The entry of this matrix corresponding to the index defined by the values of the
parameters k,p,s consists of the confusion matrix consisting of information for
leave-one-out classification for these values of the parameters k, p, s over all training
examples (excluding the considered one). Any confusion matrix (in the matrix
of confusion matrices estimatedCon fusionMatriz) is transformed into one value
calculated using the selected optimisation measure optMeasure (and stored in the
matrix estimatedMeasure). Finally, it selects the triple of the optimal values of the
parameters k, p, s for which the global estimation of the chosen optimisation measure
is maximal.

This algorithm is analogous to Algorithm 7. In this algorithm, the triple of the
optimal values of the parameters k, p, s, rather than only one value of the parameter
k is returned. Moreover, the optimal parameters relative to the given optimisation
measure instead of the Accuracy measure are returned.

The algorithm findOptimal Params3D has arguments K, P, S specifying the
sets of admissible values for the parameters k, p, s, respectively. We assume that
K ={1,2,...,knaz}, i-e. the admissible values of the parameter k are consecutive
natural numbers.

Another argument of the algorithm is the optimisation measure opt Measure. In
the current implementation F-measure, G-mean or Accuracy can be substituted here
as the value of this argument. However, from the description of the algorithm, it is
clear that any optimisation measure, which is the function of the confusion matrix,
could also be used.

4.4.2 Bounds on the values of parameters k, p, s

In this subsection, we argue that it is enough to consider sets K, P, S with a small
size. This affects the speed of the learning algorithm.
First, we consider the bounds on values of the parameter k. We make use of the

4.4 Estimating the optimal values of parameters for RIONIDA 123

Algorithm 11: getClassificationMatrix(trn, trnSet, K, P, S, {04 }aca)
Input: currently considered example trn € trnSet, training set trnSet,
K, P, S — sets of admissible values for parameters k, p, s, respectively,
family of pseudometrics for attributes {o, }aca
Output: 3 dimensional matrix (for different triple values
(k,p,s) € K x P x S) of leave-one-out classification for trn

1 begin

2 | kmae = | K| (we assume that K is the set of consequent natural numbers)
s | 0=Agr({oitaea)

4 N = N(trn,trnSet \ {trn}, kmnaz, 0)

5 vector nni,...,nn;y; = N sorted according to the distance o(trn,-)
6 for k=1 to |N| do

7 for s € S do

8 nny.isConsistentOnLevel[s] =

isConsistent(sg-rule (trn, NN, {0a fac Auym s) ,N)

9 end
10 end
11 for s € S do

12 decStrength[d,,,] = 0

13 decStrength|d,.;] = 0

14 for k=1 to |N| do

15 if nng.isConsistentOnLevel[s] then

16 v = d(nng)

17 decStrength[v] = decStrength[v] + 1
18 end

_ decStrength|dmin)

19 b= decStrength|dyin)+decStrength|dma;]

20 for peyrrent € P do

21 currentDec = dpin

22 if peyrrent > p then

23 ‘ currentDec = dpq;

24 end

25 Mk, p, s] = currentDec

26 end

27 end
28 end
29 return M

30 end

124 4. RIONIDA

Algorithm 12: findOptimalParams3D(trnSet, K, P, S, optMeasure, {04 }aca)

Input: training set trnSet,
K, P, S — sets of admissible values for parameters k, p, s, respectively,
optimisation measure opt M easure from
{F-measure, G-mean, Accuracy},
family of pseudometrics for attributes {0, }aca
Output: triple of the optimal values of parameters k, p, s

1 begin

2 foreach trn € trnSet do

3 ‘ My, = getClassi ficationMatriz(trn, trnSet, K, P, S, {04 }aca)
4 end

5 fill estimatedCon fusionMatrixz with values 0

6 foreach (k,p,s) € K x P x S do

7 foreach trn € trnSet do

8 realDec = d(trn)

9 classifier Dec = My, [k, p, s]

10 estimatedCon fusionMatriz|k, p, s|[real Dec, classi fier Dec| + +
11 end

12 count estimatedM easurelk,p, s] from

estimatedCon fusionM atriz|k, p, s] based on optMeasure

13 end
14 | return argmax estimatedMeasure(k,p, s]

(k,p,s)EKXPxS
15 end

4.4 Estimating the optimal values of parameters for RIONIDA 125

experience with the RIONA algorithm (see Subsection 3.4.2). Thus, we extend the
hypothesis for the RIONIDA algorithm (similarly as it was experimentally checked
for RIONA) stating that there is no need to use the whole training set in the process
of classification. We also expect, in the case of RIONIDA, that the bound of the
neighbourhood size can even improve the classification performance or at least not
reduce it significantly. By default, we take k., = |K| = 100, which means that
K = Kgey = {1,2,...,100}. We did not perform extensive experiments as in the
case of the RIONA algorithm to check the pre-assumed hypothesis. However, for
the selected data sets we observed that while increasing k beyond a certain small
value the optimisation measure was stable relative to this change or decreasing, i.e.
analogously as it was in the case of RIONA and the Accuracy measure (used for
RIONA; see Subsection 3.4.2; see also [81]). Moreover, we checked during experiments
that setting ke = |K| = 200 did not improve the performance of RIONIDA (see
Subsubsection ‘Different maximal £ value’ on page 208) what can be treated as an
argument for the hypothesis. Also, the promising results of experiments aiming
to compare RIONIDA with other algorithms (see Chapter 5) can be treated as an
argument for the hypothesis.

Second, we consider a particular set P of admissible values of the parameter p.
It should be noted that in the neighbourhood N consisting of k objects, the possible
values p in line 19 of Algorithm 11 are of the form 0, 1,2 ..., %, where k < [N|. Any
two values from the list for a given k fall into two different intervals of the form
[k(-ln;lr’ ﬁ), where 1 < a < kpae, a € N if we only assume that |[N| = k.. Thus it
seems enough to consider the set P = {0, ﬁ, ﬁ, ..., 1}. Moreover, as we assume
that the data sets are imbalanced, therefore we can assume that the minority class
is of greater importance than the majority class. In consequence, there is no need
to consider values of the parameter p greater than 0.5 (such values indicate for the
greater importance of the majority class). Since the selected default value is |K| =
kmaz = 100, then by default we take P = Py = {0.00,0.01,0.02,...0.5}. We checked
during experiments also other settings with denser uniform partitions of the interval
[0, 1] (see Subsubsection ‘Different sets of admissible values for parameter p’ on page
208). However, this did not improve the performance of RIONIDA significantly. One
can treat this as an argument supporting the claim that the selected kind of partition

is sufficient for selecting the optimal value of the parameter p.

Third, we consider the set S of admissible values of the parameter s. In the
beginning, we considered S = Sy = {—0.1,0.0,0.1,...,1.0}. This is our default
setting. During experiments, we observed that for many data sets there were no
differences or small differences (in terms of the optimisation measure value) between
two consequent settings of the parameter s. It indicated that there was no need
to check the sets S with a larger number of possible values. However, we checked
during experiments also other settings for smaller sets S (see Subsubsection ‘Different
settings of parameter s’ on page 208).

In consequence, by default we use sets K = Ky, P = Pyey, S = Sqey with a size
of 100, 50 and 10 respectively, i.e. with small size.

126 4. RIONIDA

4.4.3 Comments on the structure of RIONIDA

The general structure of RIONIDA is analogous to the one of RIONA (see
Subsection 3.4.3 and Algorithm 8). We present it in Algorithm 14.

The main, initialisation algorithm is analogous to the one in Algorithm 8.
Here, we want only to stress that one of the assigned options is the optimisation
measure opt Measure (one of F-measure, G-mean, and Accuracy) to be used later
during searching for the three optimal internal parameters of RIONIDA. In the
main experiments, we did not use Accuracy. However, it can be used as well (see
Section 6.2).

The training part (function RIONIDA-train) is analogous to the one in
Algorithm 8. The difference is in the result that is not the single variable k,, but
the triple of variables kop:, Popt, Sopt. Moreover, these are searched not according to
Accuracy but according to the given option opt Measure.

Let us sum up the most important parts of the RIONIDA algorithm shown in
Algorithm 14. During initialisation RIONIDA defines Agr, i.e. the aggregations of
pseudometrics (by default the sum of pseudometrics for attributes). During training,
pseudometrics for attributes are calculated, and the optimal values of the parameters
k, p, s (according to opt M easure) are searched. These pseudometrics and the optimal
values of the parameters k, p, s are used during classification.

Again it should be stressed that both the computation of pseudometrics and the
searching for the optimal values k, p, s are always done using only the available
training set (e.g. during the cross-validation process). This becomes clear from the
description of Algorithm 14.

4.5 Time and space complexity of RIONIDA

In this section, we analyse time and space complexity of RIONIDA. Moreover, we
show how the both presented complexity bounds can be improved for the learning
phase.

4.5.1 Time complexity of RIONIDA for the testing phase

The analysis of the RIONIDA algorithm in the testing phase is very similar to
the RIONA algorithm. In any run of the RIONIDA algorithm, two phases can be
distinguished. In the first phase, training examples from the neighbourhood N are
selected. In the second phase, the algorithm checks consistency among them. The
time complexity of RIONIDA is the same as for the RIONA algorithm. Under the
assumption made in Subsection 3.3.2 (on the size of the neighbourhood N), the time
complexity of RIONIDA is O(m(n + k?)) for a single test object, where n = |[trnSet|,
m = |Al.

Also the same conclusion given in Subsection 3.3.2 for RIONA holds for RIONIDA.
Precisely, in the case when k is treated as a constant (or k& < y/n), the time complexity
of the testing phase (for single test object) for RIONIDA is O(mn).

4.5 Time and space complexity of RIONIDA 127

4.5.2 Time and space complexity of RIONIDA for the learning
phase

Time complexity

The analysis of time complexity of the learning phase for RIONIDA is in many
aspects analogous to RIONA (see Subsection 3.4.1). Thus we omit some details
already mentioned in Subsection 3.4.1.

Theorem 4.3. Assume that |N| = |[N(trn, knas)| < ¢ kmae for all trn € trnSet,
where ¢ is a constant very close to 1. Then the time complexity of the learning phase
of RIONIDA is O(mn? + n|S| - knaz - (Mkmae + |P|)), where n = |trnSet|, m = |A|,
kmaz = |K| is the parameter used to define the mazimal size of the neighbourhood to

be analysed, P, S are sets of admissible values of the parameters p, s, respectively
(see Section 4.4).

Proof. For any training object, in the run of the learning algorithm (see lines 2-4 of
Algorithm 12) one can distinguish four phases (realised by Algorithm 11).

In the first phase, training examples from the neighbourhood N are selected,
i.e. kmae nearest objects to the considered training example (or more objects in the
specific situation described in Definition 2.14) among n objects, where n = |trnSet]|.
The time complexity of this phase is O(mn), where m = |A| (see Subsection 3.4.1).

In the second phase, all selected objects from the neighbourhood N are sorted.
Computing distances for objects from N takes O(m|N|) steps (once for every object
from N). Sorting (using computed distances) can be done in O(|N|log|N]) steps.
Thus, this phase takes O(m|N|+ |N|log |N|) steps.

In the third phase, the algorithm checks consistency (and marks it) among selected
objects for different values of the parameter s from the set S (see lines 6-10 of
Algorithm 11). It takes O(|S| - m - |N|?) steps.

From the assumption on the bound of the neighbourhood N, the second and third
phases altogether take O(|S| - mk2,,.) steps.

In the fourth phase, the algorithm fills the classification matrix M on the basis of
the marked consistency (see lines 11-28 of Algorithm 11). It takes |S|-|K]|-|P| steps.

Thus, the method getClassificationMatriz takes O(mn + |S| - mk2,,, + |S] -
|K|-|P])) = O(mn + |S| - kmaz(Mkpas + |P|)) steps. This method is executed for
each training example. Thus, the time complexity of foreach loop within lines 2-4 of
Algorithm 12 is O(mn? + n|S| - kmaz - (Mkmaz + | P)))-

Finally, for the whole training set, the algorithm computes the leave-one-out
confusion matrix for each triple (k,p, s) € K x P xS (see lines 5-13 of Algorithm 12).
This takes O(nkyqq - |P| - |S|) steps.

Summing up, the time complexity of the learning algorithm is O(mn? + n|S] -
kmax : (mkma:r + ’PD) u

If we assume that |P| < mky,q, (which is true in our primary experiments),
then the time complexity of the learning algorithm is O(m(n? + n|S|- k2,,.)), where
n = [trnSet|, m = |A|.

128 4. RIONIDA

Space complexity

Fact 4.4. The space complexity of the learning phase for RIONIDA is O(n-|K|-|P|-
|S]), where n = |[trnSet|, K, P, S are sets of admissible values of the parameters k,
p, s, respectively (see Section 4.4).

Proof. The space complexity of the learning phase for RIONIDA is mainly related
to allocating matrices for all training examples of the size |K|-|P|-|S] (see lines 2-4
of Algorithm 12). Thus, allocated space is of the size O(n - |K| - |P] - |S]), where
n = |trnSet|. For the matrices estimated ConfusionMatriz and estimatedMeasure it
is necessary to allocate space O(|K|-|P|-|S|). Thus, the overall space complexity of
the learning phase for RIONIDA is O(n - | K| - |P] - |S]). O

4.5.3 Further acceleration of RIONIDA

Estimation of the optimal values of parameters is done efficiently by Algorithm 12
due to dynamic programming used in it. However, it is possible to further accelerate
computations performed by this algorithm®. Below, we describe how to accelerate
the for loop in lines 7-9 of Algorithm 11.

The considered for loop is inside for loop for variable k. Thus, in this section, we
assume that the value of variable k, set by for loop in line 6 of Algorithm 11, is fixed.
In this section, we consider the sg-rule built on trn (treated as a testing object) and
nny, (treated as a training object), i.e. sg-rule (trn, nny, {0 faca,m, S)-

First, it is to be noted that if isConsistent(sg-rule (trn, NN, {0a }ac Auym s) ,N)
is true for some s = sg, then it is also true for all s < sy3. Analogously, if
isConsistent(sg-rule (trn,nnk, {Qa}aeAsym,S) ,N) is false for some s = s¢, then it
is also false for all s > sq.

Second, it is not necessary to check the consistency for different levels of
s as it is done in the for loop in lines 7-9 of Algorithm 11. Instead, it is
possible to efficiently find an intermediate value sq with the following property:
isConsistent(sg-rule (trn,nnk,{ga}aeAsym,s) ,N) is false for all s > sp; and is
true for all s < sg. Then such a value sy can be used to quickly fill the entries
nny.isConsistentOnLevel[s] for all s € S. Below we describe how to efficiently
calculate the value of sy with the described property.

For any nn; € N (it is even sufficient to consider smaller number of
objects; see remarks in Subsection 3.3.3) such that d(nn;) # d(nng), we
can calculate the intermediate value s; = si(nn;) with the property that
isConsistent(sg-rule (trn, nng, {0ataca,,m.) . {nn;}) is false for all s > s;; and is
true for all s < s1. One can simply check consistency of elementary conditions for all
attributes. Let us fix an attribute a € A. For a € A,.,, we can easily calculate the
value s for which the value a(nn;) is on the border of the scaled interval of the sg-rule,
% (easily calculated using Definition 4.1). For
a € Ay we can easily calculate the value s for which the value a(nn;) is on the
border of the scaled ball of the sg-rule. The final value of s; is chosen as the maximal
s for all attributes (for s < s; at least one elementary condition of sg-rule is not

e.g. for a(nny) > a(trn), s =

9Tt should be noted that the considered acceleration obtained during analysis of the algorithm is
not yet implemented.

4.5 Time and space complexity of RIONIDA 129

satisfied for object nn;, hence the whole condition of sg-rule is also not satisfied for
it, thus object nn; cannot cause inconsistency of the rule).

We select sy as the minimal value s; (obtained for single object as was
described above) among all objects from N (for s > sy at least one training
object breaks consistency of the rule). For this value of sy and all s > s, we
have that isConsistent(sg-rule (trn,nnk, {Qa}aeAsym,S) ,N) is false. For all s < s
isConsistent(sg-rule (trn, nng, {0a}taca,,m,5) , N) is true.

The accelerated version of Algorithm 11 is presented in Algorithm 13 (the
beginning of the algorithm and its accelerated part is presented only; the dots in
line 22 of Algorithm 13 should be replaced by lines 11-28 from Algorithm 11).

Time complexity of the accelerated learning phase of RIONIDA

Additionally, we add an assumption that |\S| < mk.. (Which is true for parameters
used in our experiments).

Theorem 4.5. Under the assumption of Theorem 4.8 and |S| < mkpa, we have what
follows. The accelerated version of the learning phase of the RIONIDA algorithm
presented in this subsection (instead of Algorithm 11 is used Algorithm 13) has time
complezity O(mn? + nkpaz - (Mkimae + |S| - |P])), where n = |trnSet|, m = |A|,
Emae = | K| is the parameter used to define the mazimal size of the neighbourhood to
be analysed, P, S are sets of admissible values of the parameters p and s, respectively

(see Section 4.4).

Proof. Computation of the value s, with the above-described method requires
examination of all attributes on the examples nny, nns, ..., nng_;. This takes O(km)
operations. It is done for all £ (1 < k < |N|). Thus, the for loop takes
O(mk2,,,) operations. For such computed sy there should also be filled entries
nny.isConsistentOnLevel[s| for all 1 < k < |N|and all s € S. It takes O(kpqz - |1S])-
To sum up, we need to perform O(kpaz(mkmaz + |S])) operations.

Using the assumption that |S| < mk,qz, the time complexity is O(mk?2,). Let us

maxr

note that the time complexity related to lines 6-10 of Algorithm 11 is O(]S| - mk2,,.)-
If we rewrite the analysis of time complexity from Subsection 4.5.2 with
the described acceleration we obtain the time complexity of the method
getClassi ficationMatrix
O(mn + mk?

max

+[S]- K- [P])) = O(mn + ko (MEimaa + [S] - [P])).

Thus, the time complexity of foreach loop within lines 2-4 of Algorithm 12 and
also the time complexity of the learning algorithm is reduced from
O(mn? + nkpaz - (|S|- Mkmaz + 15| | P])) to O(mn? + nkmnaz - (Mkpae +1S|-|P])). O

The significant acceleration could be achieved if the first factor mn? is dominated
by the others. This can happen for n such that k.. is of the size of order /n.
However, it should be noted that in practice this first factor related to searching for
the nearest neighbours has much lower (average) time complexity. In the current
implementation, this is achieved by using special data structures for fast searching
for the nearest neighbours (see Subsection 3.6.1).

130 4. RIONIDA

Now, let us assume that the first factor is dominated by the others. In this case,
the significant acceleration would be achieved if | S|-mky,r > |S||P| < mkmar > | P).
The bigger difference of these factors (mky,., and |P|) we have, the more significant
acceleration is achieved (maximally close to |S| times). If these factors are equal,
then the acceleration would be no more than two times (and depends on |S]).

To sum up, the degree of presented acceleration of the learning phase of RIONIDA
mainly depends on the fact whether the first factor responsible for searching of nearest
neighbours is dominated by the other factors or not. The acceleration of the remaining
factors can be even close to |S| times (depending on the value %)

Reduction of the RIONIDA space complexity

Fact 4.6. The space complexity of the accelerated learning phase for RIONIDA can
be reduced to O(n - |K| - |P|), where n = |trnSet|, K, P, S are sets of admissible
values of the parameters k, p, s, respectively (see Section 4.4).

Proof. One can observe by taking into account the remarks presented at the beginning
of this subsection, that the procedure findOptimalParams3D does not have to fill the
matrix for all possible values from S. It is sufficient to keep in memory the value sq
(calculated as described above in this subsection). In consequence, it is enough to
remember in memory the matrices of the size O(| K| - |P|) for all training examples.
In consequence, the overall space complexity of the learning phase for RIONIDA can
be decreased to O(n - |K| - |P|). O

4.6 Important aspects of RIONIDA

The RIONIDA algorithm has two substantial properties from the perspective of
understanding its process of decision making. First, in many cases, its behaviour can
be interpreted in a way easily understandable by a human. Second, the performance
measure, which RIONIDA optimises, is given explicitly. These two topics are
discussed below.

4.6.1 Interpretation of the behaviour of RIONIDA

The RIONIDA algorithm, analogously to the RIONA algorithm is based on a
combination of instance- and rule-based methods. Moreover, the RIONIDA algorithm
is equipped with some parameters which can be tuned in the learning process.
In particular, by tuning these parameters, one can obtain the algorithm close in
behaviour to one or another of the mentioned classification approaches.

For RIONA there was presented an idea of interpreting its parameters in such a
way that RIONA becomes equivalent to rule-based classifier easily understandable
by a human (see Subsection 3.3.5). For RIONIDA the situation is more compound.
In this case, it can be more difficult or even impossible to interpret in this way all its
parameters. However, we present below an idea of the interpretation of parameters
of RIONIDA in a way easily understandable by a human.

We assume here that values of the parameters k, p and s in the RIONIDA
algorithm are fixed (possibly learned as described in Section 4.4). If an explanation

4.7 Conclusions for RIONIDA 131

of the decision undertaken by the classifier is required, the following idea could be
used.

First, the value of the parameter p can be interpreted as the importance of the
minority class relative to the majority class.

Second, if the value of the parameter s is close to 1, then RIONIDA classification
can be interpreted in terms of rule-based method analogously as in the case of RIONA
(see Subsection 3.3.5). As rules are preferable for human interpretation, one can
also use the above interpretation in the cases when the value of the parameter s
is not close to 1. We should only assume that switching value of the parameter s
from the learned optimal value to 1 does not significantly change the quality of the
algorithm (which can be detected during the learning phase). Then, an idea presented
in Subsection 3.3.5 could also be used for generating rules using the parameter k.

If the value of the parameter s is close or less than 0 (and when switching the
value of the parameter s to value 1 changes the quality in a significant way), then the
behaviour of RIONIDA can be interpreted using the kNN method. Although in this
case, it is difficult to interpret the parameters in the form of rules, the information
that RIONIDA behaves as kNN together with the optimal value k£ can be quite
informative for a human trying to understand the process of decision making.

4.6.2 Optimisation of the explicit performance measure

An important aspect of RIONIDA is that the performance measure it optimises
is given explicitly. It is not a ‘black box’ regarding the optimised measure. In
many algorithms for imbalanced data, the optimised measure is not given explicitly.
Until experiments are performed, we do not always know in what aspects the given
algorithm is satisfactory. For RIONIDA we assume that there is given a performance
measure, which we are going to optimise. In the current implementation of RIONIDA
any measure defined over the confusion matrix can be easily used. This selected
performance measure is optimised during the learning phase. In consequence, it is
expected that the RIONIDA algorithm will perform with the high quality for unseen
test examples concerning the pre-assumed performance measure.

This feature of RIONIDA can be very helpful in working with real-life applications.
For example, let us assume that we have constructed a classifier for some domain and
F-measure as the optimisation measure. However, after investigating results of the
classifier, the user (e.g. the medical doctor) can reformulate the previous measure
by adding some constraints like: Sensitivity should be above the fized threshold. 1t is
easy to redefine a measure with constraints of such types (defined over the confusion
matrix) and then use RIONIDA to relearn the classifier with such new measure.

4.7 Conclusions for RIONIDA

Here, we summarise this chapter describing the newly developed algorithm RIONIDA.
The remaining conclusions for RIONIDA, coming from the comparative experiments
and extensive experimental analysis of this algorithm, are given at the end of the
next chapter (see Section 5.6).

132 4. RIONIDA

The RIONIDA algorithm is dedicated to imbalanced data. It is an extension
of RIONA (and ONN). Thus, (i) it is based on a combination of instance-based
learning and rule induction; (ii) the specific setting of RIONIDA parameters makes
this algorithm equivalent to RIONA (or ONN); (iii) many conclusions for RIONA (see
Section 3.8) are valid for RIONIDA, in particular, it does not require discretisation;
it adequately groups values for both numerical and nominal attributes during rule
generation. However, it uses two additional parameters (s and p) apart from the
neighbourhood size (parameter k, analogous as for RIONA). RIONIDA uses more
general rules than RIONA, namely scaled generalised local decision rules. These
rules are parametrised with the parameter s. The value of s indicates the degree
of rule-based approach (or inversely the degree of instance-based approach). The
third parameter p is responsible for assigning relevant weights for the minority and
majority classes.

RIONIDA uses (a fixed by a user) performance measure, relevant for imbalanced
data, e.g. F-measure, or G-mean. For empirical justification of the components
used in RIONIDA, we used the two mentioned above performance measures. We
(empirically) showed (for these measures) that the neighbourhood size is a crucial
factor for obtaining high value of performance measure (analogously as for RIONA).
Additionally, we found that two other parameters (p, s) are also essential for obtaining
high value of the performance measure by RIONIDA.

Thus, in the training phase, RIONIDA searches for the optimal triple values for all
these three parameters. By the use of dynamic programming, the time complexity
of this phase is relatively low. On the other hand, the space complexity can be
noticeably high. Another critical aspect for fast performance of RIONIDA relates to
limiting the size of sets of admissible values of three mentioned parameters. Also, we
showed the possibility of reducing both the time and space complexity of RIONIDA
training phase.

Also, for some specific settings of RIONIDA and some specific data sets (consisting
of the borderline region only) we calculated the theoretical optimal values of the
parameter p. The individual results for G-mean and F-measure are shown.

Additional important aspects of RIONIDA are that (i) the performance measure it
optimises is given explicitly; (ii) the resulting classifier of RIONIDA can be interpreted
in a way easily understandable by a human.

To sum up, RIONIDA is an extension of RIONA combining the instance- and
rule-based approaches for imbalanced data. Additionally, RIONIDA combines these
approaches in another aspect, namely by using more general than RIONA, special
rules. All components of RIONIDA are essential for obtaining the high quality of its
performance: optimisation of the fixed performance measure as well as three proposed
internal parameters. Its performance is quick (both in the training and testing phase).
Moreover, the theoretical results concerning the parameter responsible for assigning
relevant weights for the minority and majority classes can be used for acceleration of
the training phase.

4.7 Conclusions for RIONIDA

133

Algorithm 13: getClassificationMatrixFast(trn, trnSet, K, P, S, {04 }aca)

Input: currently considered example trn € trnSet, training set trnSet,
K, P, S — sets of admissible values for parameters k, p, s, respectively,

family of pseudometrics for attributes {g, }aca

Output: 3 dimensional matrix (for different parameters

(k,p,s) € K x P x S) of leave-one-out classification for trn

1 begin
2 | kmae = | K| (we assume that K is the set of consequent natural numbers)
3 0= Agr({ga}aEfQ
4 N = N(trn,trnSet \ {trn}, kmnaz, 0)
5 vector nni,...,nn;y = N sorted according to the distance o(trn,-)
6 for k=1 to |N| do
7 /* compute Sy such that
isConsistent(sg-rule (trn,nng,{0s}aca,,m,5) , N) is true for
all s< sy and is false for all s > sg x/
for i =1 to |N| do
if d(nn;) # d(nny) then
10 foreach a € A do
11 so(a) = the value s for which the value a(nn;) is on the
border of the scaled interval (for numerical attributes) or
scaled ball (for symbolic attributes) of the sg-rule,
sg-rule (trn, N1Ne; {0a }ac Auym 3)
12 end
13 51(72?%):1216&}52(@) /* for s < s; object nn; cannot cause
inconsistency of the sg-rule; for s > s; the
sg-rule is inconsistent with object nn; */
14 end
15 end
16 So= min sy(nn;) /* for s> sy at least one training object
1<k<|N|
breaks consistency of the rule */
17 for s € S do
18 if s > so then nny.isConsistentOnLevel[s| = false;
19 else nny.isConsistentOnLevel[s] = true;
20 end
21 end
22 .
23 return M

24 end

134 4. RIONIDA

Algorithm 14: RIONIDA (options)

Input: options (including K, P, S and optMeasure) of the RIONIDA
algorithm (we do not list all of them here; see Section 3.6 for more
details)

Global variables:

A — conditional attributes (A = A,um U Asym)

d — decision attribute

Agr — the aggregation of pseudometrics (appearing in Algorithms 9, 13; see

Subsection 2.2.3)

Local variables:

trnSet — training set

{0a}aca — family of pseudometrics for attributes

K, P, S — sets of admissible values for parameters k, p, s to be used during

searching for Kopt, Popt, Sopt; T€spectively

9 optMeasure — optimisation measure from

AW N =

o N O O

10 {F-measure, G-mean, Accuracy}
11 ... (local variables related to other options)

12 Kopt, Dopt, Sopt — the optimal values for £, p, s, respectively

13 begin

14 (K, P,S) = (options.K, options. P, options.S)

15 opt M easure = options.opt M easure

16 by default Agr is defined according to Equation 2.1 (it may differ in case
of choosing option for different weights for attributes — see

Subsection 3.6.3)

17 ... (assignments related to other options)

18 end

19 Function RIONIDA-train(trnSetDescription) : void

Input: trnSetDescription — description of training set together with the
specifiaction of decision and conditional attributes

20 using trnSetDescription specify the conditional attributes A, the
decision attribute d and the training set trnSet

21 foreach a € A,,,,, do

22 | 0, =normalised city-block metric based on trnSet (see Equation 2.2)

23 end

24 foreach a € A, do

25 ‘ 0o = SVDM pseudometric based on trnSet (see Equation 2.4)

26 end

27 ... (operations related to other options)

28 (Kopts Dopts Sopt) = findOptimalParams3D(trnSet, K, P, S, optMeasure,
{0a}aca) (see Algorithm 12)

29 end

30 Function RIONIDA-classify(tst) : decision
Output: predicted decision for tst

31 return RIONIDA-classify (tst, trnSet, kopt, Dopts Sopts {0a}aca)
32 (see Algorithm 9)

33 end

Chapter 5

Experiments and results

This chapter discusses the results of performed experiments using the RIONIDA
algorithm, which was described in Chapter 4. The aim is to analyse the algorithm
performance and compare it with the performance of its predecessor, i.e. RIONA,
and also with some of the state-of-the-art algorithms designed for imbalanced
data available (together with their codes) for the author of the thesis. The
whole experimental environment, including the code, data sets and short launching
instruction, which allows to easily reproduce the most important experiments, is
available for the use of reviewers on request’.

The chapter is divided into five sections. Section 5.1 describes the general
experimental setup. Section 5.2 presents learning algorithms and filters used in the
comparative experiments as well as different variants of the experimental settings.
The most important part of this chapter, Section 5.3, discusses the performance
of the RIONIDA algorithm relative to some selected algorithms known from the
literature. One could move the next two complementary sections to Appendix of
this thesis. However, we keep them here because they contain a continuation of
considerations of Section 5.3. Section 5.4 presents some additional comments helping
to understand the results from the previous section and advantages of RIONIDA.
Finally, Section 5.5 presents some additional experimental results, which can help
the readers to understand more deeply why RIONIDA outperforms RIONA (with
filter) and BRACID. Moreover, this section presents some additional experiments for
verifying if RIONIDA could be even more improved.

5.1 General experimental setup

This section briefly revisits, taking into account the discussion made in Section 2.6,
and presents more precisely how the experiments, described in this thesis, were
designed. The following Subsections 5.1.1-5.1.5 are related to Subsections 2.6.1-2.6.5,
respectively. The specific group of algorithms which were compared with RIONIDA
is discussed in Section 5.2.

loegora@mimuw.edu.pl

135

mailto:ggora@mimuw.edu.pl

136 5. Experiments and results

5.1.1 Performance measure

To evaluate learning algorithms (and as sub-task also classifiers), we use two
performance measures, namely F-measure and G-mean. We have not used AUC
measure. One reason is the criticism about it (for the references see Subsection 2.6.1).
The second is that BRACID, one of the important learning algorithms that we wanted
to compare with, does not return probabilities for the two decision classes (only the
deterministic decision is returned)?.

5.1.2 Estimation of the chosen performance measure

For estimation of the chosen performance measure (out of two mentioned above), we
use 10 times repeated 10-fold stratified cross-validation. Partial results of each 10-fold
stratified cross-validation are micro-averaged. As the final estimation of the desired
measure, the average of ten repetitions of this procedure is used. In Figure 5.2, we
summarise how the estimation of the chosen performance measure is computed. This
figure uses the notion of AF-learner, which will only be defined in Subsection 5.2.1.
However, at this stage, the readers can think of AF-learner as simply a learning
algorithm.

For all compared learning algorithms, the same splits in the cross-validation
process are used. It can be thought that the estimation is done in parallel for all
learning algorithms. In practice, we simply use the same random seed (used for
random partitions of data sets) for all learning algorithms in the process of estimating
the chosen measure.

5.1.3 Selection of data sets for evaluation

In order to perform comparative experiments, several data sets have been selected.
All but one are from the UCI Machine Learning Repository [131]. Only mammography
data set is not publicly available and was supported by Nitesh Chawla [37] (see also
[224]).

Data description

In this section, data sets used in experiments are presented. Data sets for the binary
classification task are relevant directly for the RIONIDA algorithm. In turn, data
sets containing originally more than two classes were transformed into the binary
classification task by choosing one small class or joining several small classes into one
(minority) class; other classes were joined into another (majority) class. Table 5.1
presents all data sets used in the experiments.

We give here a very brief description of the used data sets according to the
information gained from the UCI repository and also about mammography data set.
We divide it into two parts. In the first part, we shortly describe data sets with

2In fact, in the current implementation, RIONIDA also does not provide the possibility to return
probabilities for the two decision classes. However, this can be easily implemented if it is only
needed.

5.1 General experimental setup 137

binary decisions which can be directly used for the binary classification task. Below,
we list these data sets together with their short description.

1.

Breast Cancer Data Set — This is one of the three data sets provided by the
Oncology Institute that has repeatedly appeared in the ML literature. This
data set includes instances of two (decision) classes: no recurrence events and
recurrence events.

. Breast Cancer Wisconsin (Original) Data Set — The classification task is to

separate benign samples from malignant ones on the basis of nine diagnostically
important cytological characteristics.

Statlog (German Credit Data) Data Set — This data set classifies people
described by a set of attributes as good or bad credit risks. It originally also
comes with a cost matrix: it is worse to classify a customer as good when they
are bad (cost 5) than to classify a customer as bad when they are good (cost 1).

. Haberman’s Survival Data Set — The data set contains cases from a study that

was conducted between 1958 and 1970 at the University of Chicago’s Billings
Hospital on the survival of patients who had undergone surgery for breast
cancer. The classes to predict are: the patient survived five years or longer
and the patient died within five years.

. Hepatitis Data Set — The data was provided by Dr Peter Gregory of Stanford

University’s School of Medicine. The scientific problem involves 155 acute
chronic hepatitis patients. Of these, 33 were observed to die from the disease
while 122 survived. Dr Gregory aimed to understand the effect of the measured
variables like age, sex, and standard chemical measurements on the chance of
patient survival.

. Tonosphere Data Set — This radar data was collected by a system in Goose Bay,

Labrador. This system consists of a phased array of 16 high-frequency antennas
with a total transmitted power on the order of 6.4 kilowatts. The targets were
free electrons in the ionosphere. Good radar returns are those showing evidence
of some type of structure in the ionosphere. Bad returns are those that do
not; their signals pass through the ionosphere. Received signals were processed
using an autocorrelation function whose arguments are the time of a pulse and
the pulse number. There were 17 pulse numbers for the Goose Bay system.
Instances in this data set are described by two attributes per pulse number,
corresponding to the complex values returned by the function resulting from
the complex electromagnetic signal.

Microcalcifications in Mammography — Mammography images are transformed
into 6 numerical attributes. We have two decisions: normal pizels in image
(the majority class) and abnormal pizels in image (the minority class).

. Pima Indians Diabetes Data Set — The diagnostic, binary-valued variable

investigated is whether the patient shows signs of diabetes according to World
Health Organisation criteria (i.e. if the 2-hour post-load plasma glucose was at

138 5. Experiments and results

least 200 mg/dl at any survey examination or if found during routine medical
care).

9. Blood Transfusion Service Center Data Set — The center passes their blood
transfusion service bus to one university in Hsin-Chu City in Taiwan to gather
blood donated about every three months. 748 donors were selected at random
from the donor database. These 748 donor data, each one included R (Recency
— months since the last donation), F (Frequency — total number of donation), M
(Monetary — total blood donated), T (Time — months since the first donation),
and a binary variable representing whether he/she donated blood in March 2007
(or not donated).

The second part contains data sets for the multiple-class classification task. These
data sets cannot be directly used for binary classification tasks. In preprocessing, they
were transformed into data sets with binary decisions®. Usually, it is done by choosing
one small class as the minority class, and other classes are joined and treated as the
majority class. Below, we list these data sets together with their short descriptions.

1. Abalone Data Set — Predicting the age of abalone from physical measurements.
The age of abalone is determined by cutting the shell through the cone, staining
it, and counting the number of rings through a microscope — a boring and
time-consuming task. Other measurements, which are easier to obtain, are
used to predict the age. Further information, such as weather patterns and
location (hence food availability) may be required to solve the problem. Rings
is the decision attribute (+1.5 gives the age in years) and contains integer values
between 1 and 29. In the binary classification task, classes 1-4 and 16-29 were
joined into one class (the minority class).

2. Balance Scale Data Set — This data set was generated to model psychological
experimental results. Each example is classified as having the balance scale tip
to the right, tip to the left, or be balanced. The attributes are the left weight,
the left distance, the right weight, and the right distance. The correct way to
find the class is the greater of (left-distance - left-weight) and (right-distance -
right-weight). If they are equal, it is balanced. In the binary classification task,
a class labelled by balanced was chosen as the minority class.

3. Car Evaluation Data Set — Car Evaluation Database was derived from a simple
hierarchical decision model originally developed for the demonstration of DEX,
an expert system for decision making. The model evaluates cars according
to the given concept structure (e.g. higher-level attribute comfort depends on
low-level attributes: doors, persons, lug boot). This data set contains examples
with the structural information removed, i.e. directly relates car to the six
input attributes: buying, maint, doors, persons, lug boot, safety. The decision
attribute contains values: unace, ace, good, v-good. In the binary classification
task, a class labelled by good was chosen as the minority class.

31t should be borne in mind that the classification of multiple-class imbalanced data is a separate
problem with which we do not deal in the thesis (see Introduction).

5.1 General experimental setup 139

4. Heart Disease Data Set — This database contains 76 attributes, but all
published experiments refer to using a subset of 14 of them. In particular,
the Cleveland data set is the only one that has been used by ML researchers.
The decision attribute refers to the presence of heart disease in the patient. It is
integer-valued from 0 (no presence) to 4. Experiments with the Cleveland data
set usually had focus on to distinguish presence (values 1,2,3,4) from absence
(value 7). In the binary classification task, we try to distinguish heart disease
indicated by number 3 from other states.

5. Ecoli Data Set — The aim is to predict protein localisation sites in gram-negative
bacteria, given the amino acid sequence information alone. There are seven
localisation sites (decisions): cytoplasm (¢p), 4 kinds of the inner (cytoplasmic)
membrane (im, imU, imL, imS), the periplasm (pp), and 2 kinds of the
outer membrane (om, omL). In the binary classification task, the aim is to
distinct localisation site imU (inner membrane, uncleavable signal sequence)
from others.

6. Glass Identification Data Set — The original task is to determine whether the
glass was a type of ‘float’ glass or not. The study of the classification of types
of glass was motivated by the criminological investigation. At the scene of
the crime, the glass left can be used as evidence if it is correctly identified.
Decision class may contain seven values: building windows float processed,
building windows non-float processed, vehicle windows float processed, vehicle
windows non-float processed (none in this data set) and 3 other decisions with
numbers 5, 6, 7 indicating for the rest types. In the binary classification task,
the aim is to discern wvehicle windows float processed type of glass from other

types.

7. Thyroid Disease Data Set — One of Thyroid databases is used, i.e. database
donated by Stefan Aberhard (Thyroid gland data). Five laboratory tests
are used to try to predict whether a patient’s thyroid belongs to the class
euthyroidism, hypothyroidism or hyperthyroidism. The diagnosis (the class
label) was based on a complete medical record, including among others
anamnesis and scan. In the binary classification task, the aim is to discern
hyperthyroidism from other classes.

8. Nursery Data Set — This data set was derived from a hierarchical decision
model originally developed to rank applications for nursery schools. The final
decision depended on three subproblems: the occupation of parents and child’s
nursery, family structure and financial standing, and social and health picture of
the family. The hierarchical model ranks nursery-school applications according
to the given concept structure. The decision belongs to the following ones:
not_ recom, recommend, very recom, priority, spec_ prior. The Nursery Data
Set contains examples with the structural information removed, i.e. directly
relates the decision to the eight input attributes. In the binary classification
task, the aim is to discern very recom from other classes.

9. Post-Operative Patient Data Set — The classification task of this data set

140 5. Experiments and results

is to determine the decision related to patients in a postoperative recovery
area: where they should be sent next. Because hypothermia is a significant
concern after surgery, the attributes correspond roughly to body temperature
measurements. Possible decisions are as follows: patient sent to the Intensive
Care Unit, patient prepared to go home, and patient sent to the general hospital
floor. In the binary classification task, the aim is to discern class patient prepared
to go home from other classes.

10. Statlog (Vehicle Silhouettes) Data Set — The purpose is to classify a given
silhouette as one of four types of vehicle (opel, saab, bus, van), using a set of
features extracted from the silhouette. The vehicle may be viewed from one of
many different angles. In the binary classification task, the aim is to discern
van from other classes.

11. Yeast Data Set — The aim is to classify proteins into their various
cellular localisation sites based on their amino acid sequences. The classes
are the following: CYT (cytosolic or cytoskeletal), NUC (nuclear), MIT
(mitochondrial), ME3 (membrane protein, no N-terminal signal), MFE2
(membrane protein, uncleaved signal), MFE1 (membrane protein, cleaved
signal), EXC (extracellular), VAC (vacuolar), POX (peroxisomal), FRL
(endoplasmic reticulum lumen). In the binary classification task, the aim is
to discern ME2 (membrane protein, uncleaved signal) from other classes.

Among these data sets used in the experiments, a few are inconsistent (e.g.
breast-cancer, haberman, mammography, postoperative, transfusion). Among these
data sets, a few contain missing values (e.g. breast-cancer, breast-w, hepatitis,
cleveland, postoperative).

vl

Table 5.1: Description of data sets used in experiments.

Data set name Identifier No of No of conditional No of Classes for Minority

examples attributes original binary classification task class

(numerical, nominal) | classes (minority class, majority class) (in %)

Abalone abalone 4177 8 (7, 1) 29 (1-4 and 16-29, others) 8.02

Balance Scale balance-scale 625 4 (0, 4) 3 (B=balanced, others) 7.84

Breast Cancer breast-cancer 286 9 (0, 9) 2 (recurrence-events, no-recurrence-events) | 29.72

Breast Cancer Wisconsin breast-w 699 9 (9, 0) 2 (malignant, benign) 34.48
(Original)

Car Evaluation car 1728 6 (0, 6) 4 (good, others) 3.99

Heart Disease (Cleveland) cleveland 303 13 (6, 7) 5 (3, others) 11.55

Statlog (German Credit credit-g 1000 20 (7, 13) 2 (bad, good) 30.00
Data)

Ecoli ecoli 336 7(7,0) 8 (imU, others) 10.42

Glass Identification glass 214 9 (9, 0) 7 (3=vehicle _windows f p, others) 7.94

Haberman’s Survival haberman 306 3(3,0) 2 (1=the patient survived, 2=died) 26.47

Hepatitis hepatitis 155 19 (6, 13) 2 (1=die, 2=live) 20.65

Ionosphere ionosphere 351 34 (34, 0) 2 (bad, good) 35.90

Microcalcifications in mammography | 11183 6 (6, 0) 2 (1=abnormal pixels, 0=normal pixels) 2.33
Mammography

Thyroid Disease new-thyroid 215 5 (5, 0) 3 (2=hyper, others) 16.28

Nursery nursery 12960 8 (0, 8) 5 (very recom, others) 2.53

Pima Indians Diabetes pima 768 8 (8, 0) 2 (1=tested positive for diabetes, 0) 34.90

Post-Operative Patient postoperative 90 8 (0, 8) 3 (S=patient prepared to go home, others) 26.67

Blood Transfusion Service transfusion 748 4 (4, 0) 2 (1=donated blood, 0=not donated) 23.80
Center

Statlog (Vehicle Silhouettes) | vehicle 846 18 (18, 0) 4 (van, others) 23.52

Yeast yeast 1484 8 (8, 0) 10 (ME2, others) 3.44

142 5. Experiments and results

Argumentation for the choice of benchmarks

This choice of data sets seems to create a relevant base for experiments since we
have selected 20 fairly diverse imbalanced data sets considering the aspects described
below.

e The size of data sets is varied (from 90 to 11180 examples in total).

e The percentage of the minority class is varied (from 2.33% to 35.90%, i.e.
imbalance ratio is between around 2 and 42).

e The types of attributes are also varied (either only numerical, either only
symbolic or mixed numerical and symbolic).

e The data set difficulty, in terms of types of examples discussed in
Subsection 2.4.3, is also varied. This fact is discussed in [154] where most
of the data sets which we use in our experiments were inspected. For example,
out of the data sets inspected in [154] and occurring in our experiments the
most difficult data sets are: (sorted in order from the ‘most difficult’ to ‘easier
ones’) balance-scale, yeast, transfusion, postoperative, abalone, glass, cleveland.
These data sets contain a small number (or even none) of safe examples, more
than 25% of outlier examples and a relatively high number of the border or
rare examples. For example, balance-scale data set contains no safe example,
and no borderline example, 8.16% of rare examples and 91.84% of outlier
examples; cleveland data set contains no safe example, 31.43% borderline
examples, 17.14% of rare examples, and 51.43% of outlier examples (for details
and information about other data sets see [154]).

e There are both consistent and inconsistent data sets. There are data sets with
and without missing values.

5.1.4 Statistical tests

We use the Friedman statistical test (see Subsection 2.6.4) for comparing multiple
learning algorithms on multiple data sets. If this test passes, then we use the post-hoc
tests Nemenyi or Finner (for a discussion about both of them see Subsection 2.6.4).
The first one enables us to compare all learning algorithms against each other, and the
second one is used to compare the RIONIDA learning algorithm with other algorithms
used in the comparative experiments. For all tests, we use the significance level
a = 5%.

The statistical analysis was done using the R Project for Statistical Computing,
commonly known as the R Package (see [170]).

5.1.5 Selecting the best learning algorithm for real-life data
sets

Additionally to data sets from the UCI repository we also chose the mammography
data set (not included in the UCI repository). This gives us a greater variety of

5.2 Learning algorithms and filters used in comparative experiments 143

imbalanced data sets and gives us more persuasive arguments for our conclusions.
However, taking into account the remarks in Subsection 2.6.5, one should be aware

that our comparison can give us only some suggestions about the quality of the new
proposed algorithm (RIONIDA).

5.2 Learning algorithms and filters wused in
comparative experiments

Generally, one of the aims of performed experiments was to compare the new
algorithm (RIONIDA) with some other state-of-the-art learning algorithms. Some
of them are specially designed for the classification of imbalanced data, and some
are not. However, one can also use state-of-the-art learning algorithms developed for
balanced data and apply them to the results of sampling methods (filters) dedicated
to imbalanced data. We use two types of well-known filters (and additionally one
trivial Null-filter for cases when no filter is used). Below we describe all learning
algorithms and filters used in the experiments.

Moreover, we describe the variants of these algorithms and filters used in the
experiments. Taking into account the variety of learning algorithms use, there
arise different possibilities of the comparison of algorithms. Thus, we also present
three strategies for selecting representative scores for learning algorithms used in the
experiments. These strategies (used later for comparisons of learning algorithms) are
related to three levels of increasing challenge for RIONIDA in relation to the other
algorithms.

5.2.1 Configuration and AF-learner

One could perform comparative experiments using the default options for learning
algorithms and one selected specific filter, e.g. well-known filter SMOTE. Those
interested in such standard comparison only can skip most of the below considerations
and move on to respective fragments of Subsections 5.3.1 and 5.3.2 related to default
settings (starting on page 164 and 175, respectively). However, it could be not
satisfactory as one could argue that for different use of learning algorithms (different
options settings) or different use of filters the performance of algorithms could
change and as a result could change final conclusions. Thus, we decided to make
a comparative study taking into account many possible combinations of options
for used learning algorithms. Moreover, any learning algorithm with the specific
combination of options can be preceded by data preprocessing with the use of different
filters. In our experiments, we use for each learning algorithm a significant number
of combinations of options combined with a few different filters. However, we try to
design experiments to make a general comparison of the selected learning algorithms
(taking into account their different settings and use of different filters).

For the sake of readability, we use the following nomenclature for the description of
performed experiments. Options are some specific parameters of learning algorithms
to be specified a priori by the user, which may change the behaviour of algorithms.
The fixed specific arrangement of options (with specific values, if needed) for the

144 5. Experiments and results

learning algorithm is called the configuration of the algorithm. The fixed specific
use of filters (used for data preprocessing before running an algorithm) is called the
configuration of filters. The set of configurations of the algorithms and the set of
configurations of filters used in the experiments are presented in Subsections 5.2.3
and 5.2.4.

The learning algorithm with the fixed configuration of the algorithm and the
fixed configuration of filters used before running the algorithm is called AF-learner.
Figure 5.1 illustrates the idea of AF-learner. The input to AF-learner is a training set,
and the output is a classifier. One can think of AF-learner as an extended learning
algorithm with specified its own options and specified additional options determining
which filter to use in the preprocessing phase of the algorithm. Thus, AF-learner
is defined by a pair (algConf, filterConf), where algConf is an algorithm name
together with a configuration of the algorithm, and filterConf is a configuration of
filters. In the following considerations, sometimes we identify such a pair with its
corresponding AF-learner.

It should be noted that any learning algorithm selected for experiments, formally
defines a class of learning algorithms (taking into account the setting of its options and
the possible use of preprocessing filters). The notion of AF-learner was introduced to
reduce the ambiguity of terms and make our considerations more precise. Also, any
learning algorithm selected for comparisons (with a purpose to establish its specific
AF-learners) from now on will often be called the algorithm, for short.

For each algorithm used in the experiments, several AF-learners are available.
The main idea of the following considerations is to compare the RIONIDA algorithm
not only with one a priori chosen AF-learner for each of algorithms used in
the experiments, but with many of them, and what is more, with the ‘optimal
combination’ of AF-learners defined by the specific algorithm. In other words, we
wanted to make the ‘best’ use of the algorithms and filters selected for comparisons
with RIONIDA. One could make comparisons with all chosen AF-learners. However,
it would be inconvenient for presentation (we have chosen 99 AF-learners as it will
be explained later), not to mention other difficulties. Moreover, such an approach
would not enable us to use in comparisons the mentioned ‘optimal combination’ of
these AF-learners.

We have decided to use for the final comparison of each algorithm the scores (the
estimation of the chosen performance measure; see Subsection 5.1.2) of its relevant
AF-learners. In the next subsections, we specify algorithms and their AF-learners
used for comparisons. Also, we specify three strategies for selecting the representative
scores for the algorithms (related to three levels giving other algorithms an increasing
advantage over RIONIDA).

5.2.2 Algorithms used in comparative experiments

In our comparative experiments, we used 3 algorithms developed especially for
imbalanced data and 7 algorithms developed for balanced data. The performance of
the latter can be significantly improved for imbalanced data by using them together
with filters developed for such data sets.

Below, we list three algorithms used in the experiments which were specially

5.2 Learning algorithms and filters used in comparative experiments 145

filtered
training
set

test objects

w learning
training algorithm >| classifier
set (with a fixed

configuration)

AF-learner

classification
of test objects

Figure 5.1: [llustration of the idea of AF-learner.

developed for the analysis of imbalanced data together with their short descriptions.

1. BRACID (Bottom-up induction of Rules And Cases for Imbalanced Data) —
Analogously to RISE (see the description of RISE below) it uses an integrated
representation of rules and single instances. It comprehensively addresses the
issues associated with imbalanced data. It uses the strategy of bottom-up
induction of rules from single examples with the specific generalisation strategy.
A conflict resolution is based on the supports of the nearest rules to the test
example. For more information, see [152, 153].

2. MODLEM-C — an extension of MODLEM algorithm (see below) with the
possibility to strengthen Sensitivity. The rule strength is multiplied for all
rules describing the minority class by the same real number called the strength
multiplier given as a parameter. It is equivalent to adding duplicates from the
minority class from the training set. For more information, see [89, 90| (and
citations given for MODLEM below).

3. RIONIDA (Rule Induction with Optimal Neighbourhood for Imbalanced Data
Algorithm) — algorithm described in the thesis.

Below, we list the remaining algorithms (generally dedicated to balanced data)
used in the experiments with their short descriptions.

1. kNN* (k-nearest neighbours learning algorithm) — Can select the relevant value
of k based on cross-validation. Can also do distance weighting. For more
information, see [7].

4Tt should be mentioned that the kNN algorithm used in the comparative experiments comes
from WEKA library. It may differ in details (e.g. see Definition 2.14 of the neighbourhood) in
comparison to the kNN algorithm shown in Subsection 2.3.3 (see Algorithm 3). However, we do not
want to go into details of these differences.

146 5. Experiments and results

2. MODLEM — Heuristic algorithm generating a minimal set of rules. It is a kind
of extension of algorithm LEM2 [86] to work with numerical attributes with no
need of discretisation in preprocessing. For numerical attributes, it uses similar
elementary conditions as in decision trees (value of attribute less or greater than
a given value). For more information, see [188-190)].

3. J48 (decision tree learning algorithm) — Class for generating a pruned or
unpruned C4.5 decision tree. For more information, see [169] (see also [216]).

4. PART — The method combines the two rule learning paradigms: used by C4.5
and RIPPER. It is called PART because it is based on partial decision trees.
PART uses separate-and-conquer, builds a partial C4.5 decision tree in each
iteration and makes the ‘best’ leaf into a rule. For more information, see [6§]
(see also [216]).

5. RIPPER (Repeated Incremental Pruning to Produce Error Reduction) — This
algorithm implements a propositional rule learner proposed by William W.

Cohen as an optimised version of IREP (see [71]). For more information, see
[42] and also [216].

6. RISE (Rule Induction from a Set of Exemplars) — This algorithm is a unification
of the two widely-used empirical approaches: rule induction and instance-based
learning. In this algorithm, instances are treated as maximally specific rules,
and classification is performed using the best match strategy. Rules are learned
by gradually generalising instances until no improvement in apparent Accuracy
is obtained. For more information, see [53].

7. RIONA (Rule Induction Optimal Neighbourhood Algorithm) — algorithm
described in the thesis.

Table 5.2 provides technical details about these algorithms.

5.2.3 Configurations of algorithms wused in comparative
experiments

Let us recall that for a given algorithm its configuration is defined by the specific
combination of options with their specific values. Generally, for any algorithm, the
set of all possible configurations of the algorithm can be potentially huge. For any
algorithm, we would like to consider these sets that are reasonably reduced and
simultaneously representing relevant variations of the algorithm performance. Thus,
for each algorithm, we selected a specific set of configurations of the algorithm which
were used in the experiments. It was done in two steps.

First, for each algorithm, we selected the set of options for which varied settings
were used. This choice was done a priori. However, we considered options which —
used with non-default settings — could potentially improve the algorithm performance
in the considered classification problem. Table 5.3 presents the selected options of
algorithms with their descriptions. Options not listed in this table are used with their
default values for the following comparative experiments.

5.2 Learning algorithms and filters used in comparative experiments

147

Table 5.2: References concerning algorithms used in comparative experiments. Each entry
in the last column indicates whether the algorithm is developed for imbalanced data (ID).

algorithm author(s) of author(s) of additional information for

short idea used ID

name implementation
BRACID Jerzy Krystyna not publicly available yes
Stefanowski, Napierata
Krystyna
Napierala [153]

MODLEM Jerzy Szymon available in official WEKA no
Stefanowski Wojciechowski package
[188]

MODLEM-C Jerzy Szymon not publicly available yes
Stefanowski, Wilk
Jerzy
Grzymala-Busse
[90]

RIONA Arkadiusz Arkadiusz available in library no
Wojna, Wojna, Rseslib [1] and in official
Grzegorz Gora Grzegorz Gora WEKA package
82]

RIONIDA Grzegorz Gora Grzegorz Gora not yet publicly available yes
(planned to be publicly
available as RIONA)

RISE Pedro Domingos Krystyna reimplementation of the no

[53] Napierala original author’s
implementation
kNN David W. Aha, Stuart Inglis, from WEKA library: no
Dennis Kibler, Len Trigg, Eibe weka.classifiers.lazy.Ibk
Marc K. Albert Frank
7]

J48 Ross Quinlan Eibe Frank from WEKA library: no
[169] weka.classifiers.trees.J48

PART Eibe Frank, Eibe Frank from WEKA library: no
Tan H. Witten weka.classifiers.rules. PART
[68]

RIPPER William W. Xin Xu, from WEKA library: no
Cohen [42] Eibe Frank weka.classifiers.rules.Jrip

148 5. Experiments and results

Second, we selected several combinations of the (selected) options. In particular,
these combinations are defined by a selected set of values to be used for options with
their parameter values. In this way, the configurations of the algorithms were selected.
This choice was also done a priori. However, for any algorithm, we considered a
‘reasonable’ set of its configurations. Let us also note that for any algorithm, its
default combination of options was included in the set of its configurations (if only
such a default combination was specified for the algorithm). Table 5.4 presents for
each algorithm its selected configurations used in the experiments.

In the sequel, we write RIONIDAg instead of RIONIDA -T0, and RIONIDAg
instead of RIONIDA -T 1 (i.e. the performance measure to be optimised in RIONIDA
is set to G-mean or F-measure, respectively) as it was told in Table 5.3. Let
us note that for the RIONIDA algorithm, we use only one configuration while
making comparisons for G-mean and one configuration while making comparisons
for F-measure (depending on the considered performance measure). It means that in
the experiments for the fixed performance measure, we simply use either RIONIDA¢
or RIONIDAf. While describing the experiments, RIONIDA denotes RIONIDA¢ or
RIONIDAF depending on the chosen performance measure (G-mean or F-measure,
respectively).

Also, we have chosen only one configuration for the RIONA algorithm. RIONA
has, of course, more possible configurations which could give a better result. However,
we used only those options which are analogous to the options of the RIONIDA
algorithm. The main aim of using RIONA in the comparative experiments was
to check whether RIONA with the relevant filters only can be competitive with
RIONIDA. A more detailed performance comparison of algorithms RIONIDA and
RIONA is presented in Subsection 5.5.2.

5.2.4 Configuration of filters used in comparative experiments
In our experiments, two filters were used:

e SMOTE (Synthetic Minority Over-sampling Technique) — see description in
Subsection 2.5.1. For more information, see [37];

e ENN (Edited Nearest Neighbour) — tries to discard unreliable majority examples,
by removing any majority examples whose class label differs from the class of
at least two of its three nearest neighbours. For more information, see [214]
(see also [14]).

Table 5.5 provides technical details about these filters.
Any fixed specific combination of the above filters is called the configuration of
filters. In the experiments, we use the following configurations of filters:

1. Null-filter (no filter) — in such case no preprocessing of data is performed
(original training data are used).

2. SMOTE - training data are preprocessed by filter SMOTE so that new training
data set is presented to the algorithm.

3. SMOTE+ENN — first filter SMOTE is used, and then filter ENN is used.

5.2 Learning algorithms and filters used in comparative experiments 149

Table 5.3: Technical details concerning options of algorithms used in experiments.

algorithm used options description

kNN -K [K] Number of nearest neighbours (k) used in
classification (default 1) or specific use in
case the option -X is used.

-X Used for selecting the optimal number of
nearest neighbours between 1 and the k
value (in this case, this value is specified by
option -K) using leave-one-out evaluation on
the training data (used when k > 1).

PART -U Generate unpruned decision list.

-R Use reduced error pruning.

-C [pruning confidence| Set the confidence threshold for pruning
(default 0.25).

J48 -U Use the unpruned tree.

-A The Laplace smoothing for predicted
probabilities.

-C [pruning confidence| Set the confidence threshold for pruning
(default 0.25).

RIPPER -P Whether NOT use pruning (default: use
pruning).

-E Whether NOT check the error rate > 0.5 in
stopping criteria (default: check).

RISE (no options are used)

MODLEM (no options are used)

MODLEM-C -M [strength of min class| Used for setting the constant strength
multiplier for the minority class.

RIONA (no options are used — all options settings are
the same as default options in the RIONIDA
algorithm)

BRACID (no options are used)

RIONIDA -T [optimisation measure] Set performance measure to be optimised

(0=G-mean; 1=F-measure; 2=Accuracy). It
should be stressed that this option is not
used in the experiments to select the optimal
AF-learner. It is fixed and set depending
on the performance measure in which we
are interested in the given experiment. For
clarity and for short we will write RIONIDA ¢
instead of RIONIDA -T0, and RIONIDAFg
instead of RIONIDA -T 1.

(no other options are used — for other options
default settings are used)

150 5. Experiments and results
Table 5.4: Technical details of all selected configurations for each algorithm.
algorithm used configuration description
config. (the meaning of the combination of options)
kNN -K1
-K2 Use in classification constant number of nearest
neighbours equal to 1, 2, 3, 4, 5,6, 7, 8, 9 or 10.
-K10
-K100 -X Select the number of nearest neighbours between 1
and 100 (fixed in the specification) using leave-one-out
evaluation on the training data.
PART -U Unpruned decision list.
-R Use reduced error pruning.
:g 825 Set confidence threshold for pruning to 0.5, 0.25
co.1 (default) or 0.1.
J48 -U Use the unpruned tree.
-A Laplace smoothing for predicted probabilities.
-A-U Both above settings.
~€0.5 Set confidence threshold for pruning to 0.5, 0.25
~€0.25 (default) or 0.1
-C0.1 o
RIPPER Default options.
-P Do not use pruning.
-E Do not check the error rate > 0.5 in stopping criteria.
-E-P Both above settings.
RISE Default options.
MODLEM Default options.
MODLEM-C -M1
-M2 Constant strength multiplier for the minority class
equal to 1, 2, 3,4, 5,6, 7,8, 9 or 10.
-M10
RIONA options set to the default options of the RIONIDA
algorithm
BRACID Default options.
RIONIDA (-TO or -T1) Performance measure to be optimised is fixed (G-mean

or F-measure, i.e. specified by option T) in the current
experiment. For other options, their default values
are used (CSVDM distance measure, none method for
attribute weighting, use of indexing to accelerate nearest
neighbours search, find the optimal number of nearest
neighbours, the maximum number of neighbours while
optimising automatically equal to 100, use rules to filter
nearest neighbours, votes to neighbours does not depend
on distance)

5.2 Learning algorithms and filters used in comparative experiments 151

SMOTE is one of the most popular over-sampling methods for imbalanced data
with quite good performance in comparison to other sampling methods. Thus, it is
frequently used as a counterpart in empirical evaluations (see e.g. [14]).

The motivation for selecting the configuration of filters SMOTE+ENN comes from
[14], where it was shown that this combination of filters provides in practice very
good performance in comparison to other combination of filters for data sets with a
small number of positive examples. Such a combination of filters is often applied in
the literature in case of the data sets with complex distributions of classes (see e.g.
[152]).

Table 5.5: References concerning filters used in comparative experiments.

filter author(s) of author of used used
short idea implementation implementation
name
Null-filter weka.filters. AllFilter
SMOTE Nitesh V. Tomasz implemented in the
Chawla, Kevin ~ Maciejewski [141] Stefanowski
W. Bowyer, group
Lawrence O.
Hall, and
W. Philip
Kegelmeyer |37]
ENN Dennis L. Michat implemented in the
Wilson [214] Marcinkowski [145] Stefanowski
group

5.2.5 AF-learners used in comparative experiments

Let us recall that any AF-learner is defined by a pair consisting of a configuration of
the algorithm (together with the algorithm name) and a configuration of filters. As
it was mentioned, we use the fixed set of selected configurations of the algorithm
(see Subsection 5.2.3) and the fixed set of selected configurations of filters (see
Subsection 5.2.4).

For a fixed algorithm, the set of possible AF-learners corresponds to the Cartesian
product of two sets: the set of selected configurations of the algorithm and the
set of selected configurations of filters. However, for the experiments, we take a
subset of this set depending on whether the algorithm is dedicated to imbalanced
data or not. Certainly, one can assume that filters cannot significantly improve the
quality of algorithms dedicated to imbalanced data. Therefore, for algorithms not
dedicated to imbalanced data, all 3 possible configurations of filters are used, and for
those dedicated to imbalanced data no filter is used (i.e. Null-filter is used as the
configuration of filters).

Table 5.6 summarises the information about AF-learners used in the experiments
for each algorithm. Although the information in this table is redundant, it is presented

152 5. Experiments and results

for clarity. The existence of value no in the second column (i.e. algorithm is not
dedicated to imbalanced data) is equivalent to the existence of value 3 in the fourth
column (i.e. 3 configurations of filters are used), and the existence of value yes in
the second column (i.e. algorithm is dedicated to imbalanced data) is equivalent to
the existence of value 1 in the fourth column (i.e. one configuration of filters is used,
namely Null-filter). The number of AF-learners is equal to the product of the
number of configurations of the algorithm and the number of configurations of filters.

Let us consider an example for all AF-learners used in the experiments for
one exemplary algorithm. First, let us look for the selected configurations of the
PART algorithm in Table 5.4 (see also Table 5.6). The 5 selected configurations of
this algorithm are as follows: PART -U, PART -R, PART -C0.5, PART -C0.25, or
PART -C0.1. Since this algorithm is not dedicated to imbalanced data, we use 3
configurations of filters, namely Null-filter, SMOTE and SMOTE+ENN. We obtain for
this algorithm the following set of AF-learners to be used in the experiments:
(PART -U, Null-filter), (PART -U, SMOTE), (PART -U, SMOTE+ENN),

(PART -R,Null-filter), (PART -R,SMOTE), (PART -R, SMOTE+ENN),
(PART -C0.5,Null-filter), (PART -C 0.5, SMOTE), (PART -C 0.5, SMOTE+ENN),
(PART -C0.25,Null-filter), (PART -C0.25, SMOTE),

(PART -C0.25, SMOTE+ENN),
(PART -C0.1,Null-filter), (PART -C0.1,SMOTE), (PART -C 0.1, SMOTE+ENN).

Let us note that for both the algorithms RIONIDA and BRACID, the set of
AF-learners consists of one element (i.e. these algorithms are used with their default
options and without filter).

Table 5.6: For each algorithm, there are given: (i) information whether the algorithm is
dedicated to imbalanced data, (ii) number of configurations of the algorithm, (iii) number
of configurations of filters, and (iv) number of AF-learners used in experiments.

algorithm is dedicated number of number of number of
to configurations configurations AF-learners
imbalanced of the of filters
data? algorithm
kNN no 11 3 33
PART no 5 3 15
J48 no 6 3 18
RIPPER no 4 3 12
RISE no 1 3 3
MODLEM no 1 3 3
MODLEM-C yes 10 1 10
RIONA no 1 3 3
BRACID yes 1 1 1
RIONIDA yes 1 1 1

5.2 Learning algorithms and filters used in comparative experiments 153

5.2.6 Selection of the representative scores for learning
algorithms

This subsection is crucial for understanding what exactly will be presented as the
performance results of the algorithms used in the comparative experiments (in
Section 5.3). As it was mentioned, any algorithm used in experiments, formally,
defines a class of learning algorithms (defined by settings of options of the algorithm
and preprocessing filters). We call these specific learning algorithms AF-learners. Let
us recall that for each algorithm we selected a reasonable (in size and representability)
subclass of such class, i.e. the set of AF-learners used in the experiments (see
Subsection 5.2.5).

We naturally group these AF-learners relative to the algorithm they are derived
from. Thus we obtain 33 AF-learners for the kNN algorithm, 15 AF-learners for the
PART algorithm etc. (in Table 5.6 the number of AF-learners for each algorithm is
shown). Altogether we obtain 99 AF-learners (99 equals to the sum of numbers in
the last column of Table 5.6).

First, for each pair consisting of AF-learner (out of 99) and data set (out of 20),
we calculate the value of the performance measure (in %). From now on, any such
value will be called the score. In Figure 5.2, we recall and summarise how the score
is computed relative to the performance measure, AF-learner, and data set. Let us
also recall that scores for all AF-learners were computed under the same conditions
(for all AF-learners precisely the same splits in the cross-validation process are used
—in all ten repetitions).

Thus, for all 99 AF-learners, we calculate the vectors of 20 scores (for 20 data
sets). Next, these scores are used to generate representative scores (vector of scores
for 20 data sets) for each particular algorithm. Finally, these representative scores
(vectors of scores) are used for presenting the final comparative scores, and statistical
evaluation of the experimental results.

The following three strategies for generating the vector of representative scores
are used:

1. the def strategy taking the vector of scores of a priori fixed default AF-learner
(in the group corresponding to each particular algorithm),

2. the opt strategy taking the vector of scores of ‘the best’ (for the used data sets)
AF-learner in the group,

3. the max strategy constructing the vector of scores of the best scores in the
group for each data set.

Figure 5.3 illustrates these three strategies. For any algorithm used in the
comparison, each of these three strategies transforms the scores (vectors of scores)
of AF-learners for the algorithm into the vector of representative scores for the
algorithm. In result, each of these three strategies transforms the 99 x 20 matrix
of scores for 99 AF-learners and 20 data sets into the 10 x 20 matrix of representative
scores for 10 algorithms. These matrices are used in the final comparisons (3 matrices
for 3 strategies).

154

5. Experiments and results

Input: performance measure
(F-measaure or G-mean),

Confusion matrix computing scheme

, and | AF-learner|.

testing

data set

Output: score

set l
AFerarnerI—)l classifier |

set confusion

training

data set
random split
iterations for the 10-fold stratified cross-validation

matrix

(€

in each iteration compute
: b -
the confusion matrix ~

joint
confusion
matrix

AF-learner » =
compute the

value of the
chosen
performance

measure from J
A

return
the score as
(vy+..vyg)/10

repeat the above computation 10 times (for 10 different random splits)

Figure 5.2: TIllustration of computing of the score for any pair consisting of data set and
AF-learner (for the chosen performance measure). 1) Data set is randomly split into 10
roughly equal parts so that in each fold, the distribution of classes is roughly the same as
in the original data set. 2) In each iteration of the 10-fold stratified cross-validation, the
confusion matrix is computed. 3) These matrices are added (simple matrix addition). 4)
From the joint confusion matrix, the chosen performance measure is computed (this relates
to the micro-average style of computing the performance measure; see Subsection 2.6.2). 5)
These steps 1-4 are repeated 10 times for 10 different random splits, and the average of the
obtained results is returned as the score. It should be noted that for all AF-learners the
same splits are used. It can be thought as the computations are performed in parallel for
all AF-learners (and in parallel scores for all AF-learners are returned).

5.2 Learning algorithms and filters used in comparative experiments 155

table with scores: for 99 AF-learners in 10 groups (related to algorithms used in experiments)
for 20 data sets

’_,,.,»--""ééares for the group of AF-learners for the PART aIgoritH_r}_l__""""---———--___

PART, BN PART, PART,, [PART,, PART,,

45.38% 70.06% 71.78% 70.75% | 67.49%
0.0% 47.03% 43.14% 56.74% | 51.95%
51.92% 71.43% 69.78% 72.76% | 68.59%

for each algorithm the representative vector of scores for the final comparisons are selected
How?— by strategy 1, 2 or 3

from ‘the best’ (for the set
scores from the fixed of used data sets) AF-learner for each data set the best
defaultAF-learner inthe group score in the group is taken

70.06% ||igelnl 70.75% |Riglul 71.78% | MAGARTRId R
47.03% || 56.74% | |REahEL IRZA| PART,, for DS,

71.43% 72.76% YORA | PART,, for DS,,

#
o

——— table If\ for strategy 1 or If\ for strategy 2 or Ii\ for strategy 3

with 10 representative scores (for each algorithm) for 20 data sets — used for the final comparisons

scores so that

take the vectdf of

ige]11]

transformed into

Figure 5.3: Illustration of the selection of the representative vector of scores for the
final comparison for the three strategies. Partial scores and their transformations for
the exemplary PART algorithm are shown. Analogously the transformations for other
algorithms are performed. The meaning of ‘the best’ in strategy 2 (opt) will be explained
later.

156 5. Experiments and results

The whole process depends on the performance measure (fixed a priori by the
user) used in the generation of the initial matrix. The experiments were performed
separately for F-measure and G-mean (with 3 strategies for each of them; see
Section 5.3). The choice of the measure obviously may influence the process of
selection of the representative vector of scores. For example, the optimal AF-learner
in the opt strategy depends, in particular, on the chosen performance measure. In
Section 5.3, we sometimes add suffixes ‘G’ or ‘F’ to the names of the strategies to
denote that the strategy uses G-mean or F-measure, respectively.

Details concerning each of these three strategies are explained in the following
subsubsections. It is assumed for each strategy that the matrix with scores of all
AF-learners is given. Such a matrix creates, in a sense, the input to all of these three
strategies.

Def strategy

For each algorithm used in the experiments, we specify a prior: the default
AF-learner. In the def strategy, the most simple one, the scores (vector of scores) of
the default AF-learner are used as the representative scores for the algorithm.

For each algorithm used in the experiments, we need only to describe how to
set up one default AF-learner (independently of data sets). Information about the
performance measure chosen by the user can be used only in RIONIDA, i.e. option
for such setting is available only for this algorithm. Since for other used algorithms
no such option is available, therefore for these algorithms, the default AF-learner
is also independent of the chosen performance measure. For each algorithm used
in the experiments, we define the default AF-learner by means of (i) the default
configuration of the algorithm, and (ii) the default configuration of filters for the
algorithm.

Certainly, the default configuration of a given algorithm is the combination of
default options for this algorithm (default use of this algorithm). In practice, in
most cases, using an algorithm with no options is its default use. The default values
of non-binary options used in our experiments are given in Table 5.3 (for binary
options their omission relates to their default use). Specifically, we use the following
default configurations of algorithms: kNN -K1 (equivalent to kNN, i.e. using kNN
without any option), PART -C0.25 (equivalent to PART), J48 -C0.25 (equivalent
to J48), RIPPER, RISE, MODLEM, RIONA, BRACID. The default configuration of
RIONIDA is described in the next paragraph. The only exception is the MODLEM-C
algorithm in which the default setting is not specified within the algorithm. For
this algorithm, we use as default the following setting MODLEM-C -M 10 (strength
multiplier for the minority class equal to 10). In fact, we use here the setting which
was found as the optimal one in the opt strategy.

The default configuration of RIONIDA is RIONIDA -TO (called in the thesis
RIONIDAg) or RIONIDA -T1 (called in the thesis RIONIDAy) for the chosen
performance measure G-mean or F-measure, respectively. It should be noted that
the optimisation for the chosen performance measure is done using only the given
training set. In the process of the (stratified) cross-validation it alters; thus, different
optimal values of internal parameters of RIONIDA are found for different iterations.
It is worthwhile to recall here Subsection 4.4.1 for an explanation of how RIONIDA

5.2 Learning algorithms and filters used in comparative experiments 157

is optimised for a fixed performance measure.

As the default configuration of filters, we use SMOTE+ENN for the algorithms not
dedicated to imbalanced data, and Null-filter for those dedicated to imbalanced
data. In fact, in case of the algorithms not dedicated to imbalanced data, we use the
combination of filters which usually led to the best performance of these algorithms
in the experiments related to the opt strategy. This is consistent with the already
reported results from [14].

As the default AF-learner, we use a combination of the default configuration of
the algorithm and the default configuration of filters. Specifically, it is defined by
one of the pairs: (algorithm with default options, SMOTE+ENN) for the algorithms not
dedicated to imbalanced data, and (algorithm with default options, Null-filter) for
the algorithms dedicated to imbalanced data.

Let us note that we can use in this strategy the previously computed scores for all
AF-learners because for each algorithm its default AF-learner (as described above)
is included in the set of AF-learners used in the experiments (see Subsection 5.2.5).
Of course, this strategy uses only a small part of the given 99 x 20 matrix of scores.

Opt strategy

One could perform comparative experiments using only the default AF-learner.
However, as it was already mentioned, this could be not satisfactory. The ideas
presented in this and the following subsubsection provide an opportunity to make
a comparative study taking into account many possible AF-learners for the used
algorithms.

It is important to note that for the RIONIDA algorithm (and also for BRACID)
selecting the optimal AF-learner was omitted. It was done intentionally to compare
the default setting for the RIONIDA algorithm with the ‘best’ possible settings for
other algorithms.

The main idea for the opt strategy is based on the selection of one, ‘optimal’
AF-learner for each algorithm. Then its scores are used as the representative scores for
the algorithm. Below, we explain what means selecting the ‘optimal” AF-learner. The
intuition is that we want to select the AF-learner which will be the most competitive
in the context of the Friedman statistical test used at the end of the comparative
process. Since Friedman statistical test uses average ranks of the learning algorithm,
it is this factor that is taken into account while selecting the optimal AF-learner.

As it was mentioned, the 99 x 20 matrix of scores (for 99 AF-learners and 20
data sets) is given. We need to assess for each AF-learner, how well it performs on
all data sets on average. Thus we count average rank® (like in Friedman test; see
Subsection 2.6.4) for each of the AF-learners. From each of the group of AF-learners,
we select the optimal one with the lowest (optimal) rank in the group. This
AF-learner is selected as the representative for the final comparison of algorithms. In
result, the representative scores (vector of scores) for the algorithm are simply copied
from the scores (vector of scores) of the selected optimal AF-learner.

5Basically, the scores are transformed into numbers 1,2,...,99 corresponding to the best, the
second best, ..., the worst score. Then, average rank, i.e. the average of these numbers for all data
sets, is calculated.

158 5. Experiments and results

99 AF-learners in 10 groups (related to algorithms used in experiments)

[k, KN, | KN, | PART, || PART,, | PART,, || RIONIDA,

43.31 59.39 59.39 45.38 70.75 67.49 67.94
0 56.97 39.65 0 56.74 51.95 76.98

BETISS 60.88 74.34 755550 51592 72.76 68.59 84.95

T o P T

|
| \/ T |
m m minimal average PART, _

59.39 | rankswithin groups | 70 75 67.94
39.65 56.74 76.98
75.55 72.76 84.95

ATl
|
representative vectors of scores for 10 algorithms

(obtained from representative AF-learners)

Figure 5.4: lllustration of the opt strategy. Scores, shown as numbers in rows
DSy, ...,DSy (different data sets) denote the value of the performance measure (in %)
for different AF-learners and data sets. These scores were transformed into ranks, and the
average ranks (avg-r) over all used data sets were computed (see Subsection 2.6.4 how avg-r
is computed). From each group of AF-learners, the one with the minimal average rank
(avg-r) within the specific group was selected as the (optimal) representative AF-learner.
Scores (vector of scores) of this selected representative AF-learner were used for the final
comparison of algorithms. For the algorithms with only one AF-learner (RIONIDA and
BRACID), their scores were simply re-written for the final comparison of algorithms.

5.2 Learning algorithms and filters used in comparative experiments 159

This strategy is illustrated in Figure 5.4 in case of G-mean performance measure
(thus RIONIDA is set to RIONIDAg). In the analysis of the figure, the readers
are advised first to concentrate on the average ranks of AF-learners (avg-r). In this
illustration, the optimal AF-learners selected during this strategy are indicated as
kNNj33 for the kNN algorithm, and PART 4 for the PART algorithm.

Additionally, we present the results (which are discussed in Subsection 5.3.1 for
the opt strategy) with some more details to allow the readers to better understand
the used strategy. Table 5.8 presents the best three AF-learners in each group with
their average ranks. Only the best AF-learner from each group was selected as the
(optimal) representative AF-learner for the final comparisons. Other AF-learners are
presented in the table only to point out other top candidates. For example, for the
kNN algorithm, the following AF-learner was selected: (kNN -K 100 -X, SMOTE+ENN)
(options for the kNN algorithm which automatically search for the optimal k between
1 and 100; for preprocessing the training set, the SMOTE filter and then ENN is
used). This AF-learner is labelled in Figure 5.4 as kNN33. For the PART algorithm,
the following AF-learner was selected: (PART -U, SMOTE+ENN) (the PART algorithm
with unpruned option; for preprocessing the training set, the SMOTE filter and then
ENN is used). This AF-learner is labelled in Figure 5.4 as PART4. For other
algorithms, their optimal AF-learners can be found in Table 5.8 as bold items.
Let us note that for both the BRACID and RIONIDA algorithms selecting the
optimal AF-learner is unnecessary. In these cases default AF-learners are used,
namely (BRACID , Null-filter) for BRACID, and (RIONIDAR ,Null-filter) or
(RIONIDAG,Null-filter) for the RIONIDA algorithm (depending on whether
F-measure or G-mean was chosen as the performance measure of our interest).

Let us sum up these exemplary details and connect these results with the results
used for the final comparison. Data sets referred to as DS;, DSs, and DSy in
Figure 5.4 in fact, indicate abalone, balance-scale, and yeast data sets, respectively.
Thus, for the kNN algorithm, AF-learner (kNN -K 100 -X, SMOTE+ENN) was selected
(with the following scores for different data sets: 59.39% for abalone, 39.65% for
balance-scale, ..., and 75.55% for yeast). For the PART algorithm, AF-learner
(PART -U, SMOTE+ENN) was selected (with the following scores for different data sets:
70.75% for abalone, 56.74% for balance-scale, . .., and 72.76% for yeast). These scores
(obtained by the described strategy for G-mean measure) one can find in Table 5.9.

Interpretation and remarks on the opt strategy

The opt strategy somehow helps us to use the most competitive versions of algorithms
in the final experiment (see Table 5.9). Since we performed it within all AF-learners
(not only within groups of variations of the considered algorithms), this can help to
find algorithms with their optimal AF-learners. These algorithms are expected to be
the most competitive with RIONIDA.

It should be emphasised that in the presented process of searching for the optimal
AF-learner for algorithm different from RIONIDA (and BRACID), the information
from the test part of data sets is also used (see Subsubsection ‘Remarks on the
three strategies’ on page 162). To be precise, specific AF-learners use only training
sets. However, the selection of the optimal AF-learner is done using the average ranks
obtained with the use of test part of data sets. It gives these algorithms an advantage

160 5. Experiments and results

over RIONIDA (and also BRACID) in the process of the performance comparison.
This is because RIONIDA (and also BRACID) uses only one fixed default AF-learner.
Let us assume that someone is tuning options and filters for the algorithm using the
fixed sets of AF-learners relative to the selected data sets. Then, most likely® one
cannot achieve a better result (in terms of average rank) than achieved with this
optimal AF-learner for the algorithm.

Maz strategy

Here, we present the most competitive strategy (of the three presented) for selecting
the representative scores for the algorithm. The main idea of the max strategy is to
select for any considered algorithm the best score separately for each data set out of
the scores of AF-learners in the group corresponding to the algorithm.

As it was mentioned, the 99 x 20 matrix of scores (for 99 AF-learners and 20 data
sets) is given. For each data set from each group of the algorithm, the maximal score
is selected. This score is used for the final comparison of algorithms for this particular
data set. For the algorithms with one AF-learner (RIONIDA and BRACID), their
scores are simply re-written for the final comparison of algorithms.

In the previous subsubsection, a single (optimal) AF-learner was selected for each
algorithm. Then its scores were used as the representative scores for the algorithm.
This strategy can be seen as selecting the optimal AF-learner separately for each data
set.

The maz strategy is illustrated in Figure 5.5 in case of G-mean performance
measure (thus RIONIDA is set to RIONIDAG). The (exemplary) optimal AF-learner
for the kNN algorithm selected during this strategy are as follows: kNNjg for data set
DS1; kNNj3 for data set DS, and kNNg for data set DSog. The optimal AF-learner
for the PART algorithm are as follows: PART; for data set DS;; PART4 for data
set DS, and PART, 4 for data set DSq.

To allow the readers to better understand the used idea, we expand the presented
results by providing some more details. The AF-learner referred in Figure 5.5 as
kNNj3 indicates the AF-learner (kNN -K 1,SMOTE) (options for the kNN algorithm
with fixed k& = 1; for preprocessing the training set, the SMOTE filter is used).
The AF-learner referred as kNNg indicates the AF-learner (kNN -K 2, SMOTE+ENN)
(options for the kNN algorithm with fixed k = 2; for preprocessing the training
set, the SMOTE filter and then the ENN filter is used). Data sets referred as DSy,
DS,, and DSy indicate abalone, balance-scale, and yeast data sets, respectively.
In particular, for the kNN algorithm, different AF-learners were selected (with the
above-described strategy) for different data sets: (kNN -K 2, SMOTE+ENN) for abalone
(with the score 63.46%), (kNN -K 1, SMOTE) for balance-scale (with the score 65.34%),
and (kNN -K 2, SMOTE+ENN) for yeast (with the score 79.83%). All these scores can
be found in Table 5.10, which will be analysed in the next section. The scores in the

6The presented process is a kind of heuristic. In this way, what we call optimal is, in fact, a
pseudo-optimal AF-learner, i.e. another AF-learner can possibly achieve better average rank than
the selected one in this heuristic as the optimal AF-learner. This relates to the fact that the
average rank of the considered algorithm depends not only on its performance but also on the other
algorithms used in comparisons. Here, we consider all possible AF-learners. Later we use only
AF-learners selected in this step.

5.2 Learning algorithms and filters used in comparative experiments 161

99 AF-learners in 10 groups (related to algorithms used in experiments)
I
L

53.86 63.46 71.78 70.75 67.94
65.34 44.87 43,14 56.74 76.98

71.54 79.83 69.78 72.76 84.95

|
—

ot max [IZm | [T

63.46 2 > 71.78 67.94

—> Ba.54 maximal result far DS, | BT < 0 NG93
is obtained for kNNg

79.83 €« 72.76 = 12495

%] vy | D1
g] = . 2

representative scores for 10 algorithms

Figure 5.5: Illustration of the max strategy. First, experiments were performed jointly for
all algorithms with all selected AF-learners. Scores, shown as numbers in rows DS1, ..., DSgq
(different data sets) denote the value of the performance measure (in %) for different
algorithms and data sets. Then for each data set from each group of AF-learners, the
maximal score was selected. These maximal scores are marked with red rectangles. These
scores were used for the final comparison of algorithms for particular data sets. For
the algorithms with one AF-learner (RIONIDA and BRACID), their scores were simply
re-written for the final comparison of algorithms.

162 5. Experiments and results

table come from the described strategy. Above, we explained how these scores were
obtained. However, when the final results are presented in the next section, e.g. in
Table 5.10, no such detailed information will be given.

Interpretation and remarks on the max strategy

Let us assume that for each algorithm used in the experiments, one constructs a
meta-learning algorithm that learns the optimal AF-learner for a given training
sample (using some validation scheme). For each algorithm, the maz strategy
provides an (upper) approximation of the scores of such meta-learning algorithm.

In fact, with the above interpretation, the presented strategy relates to using
additionally the test parts of data set (for the optimal AF-learner selection). To
be precise, specific AF-learners use only training sets. However, the selection of the
optimal AF-learner is done using the scores obtained with the use of test part of data
sets (see Subsubsection ‘Remarks on the three strategies’ below).

It should be noted that the kNN algorithm used in the experiments has internally
implemented learning of its parameter k and we use such a functionality (option -X).
However, by using the max strategy for the kNN algorithm, we still give an advantage
for this algorithm (we emulate the possibility of using even better meta-learning
scheme) in comparison with RIONIDA.

Remarks on the three strategies

Out of the three presented strategies, the def strategy is the most straightforward.
It is commonly used in the literature for comparative experiments (default use of the
algorithm is applied; possibly preceded with some fixed filter).

Two remaining strategies are more compound and return the scores, which
potentially could be obtained by algorithms in experiments under some strong
assumptions. Let us concentrate on the aforementioned interpretations for the opt
and maz strategies. In these interpretations, the opt strategy (a posteriori) tunes
the options and filters (relative to the used data sets), and the maz strategy ‘learns’
options and filters on the meta-learning level”.

In such a case, the experiments could seem as improperly prepared since we set
the optimal AF-learner for each algorithm using the information included in the test
part of data sets. However, by arranging the experiment in this way we give an
advantage for algorithms with more than one AF-learner over RIONIDA (in fact also
over BRACID, which also has no variability in the set of AF-learners).

The opt strategy can be seen as comparing RIONIDA with other algorithms
under consideration using their optimal (in terms of average ranks) AF-learners (out
of the presented ones). These optimal AF-learners were selected taking into account
the used data sets (for all algorithms excluding RIONIDA). In particular, if all the
learning algorithms were set by chance with other options and filters than the default
ones, then one could expect that the obtained results were lower (for other algorithms
than RIONIDA) than the presented ones. If for this strategy, RIONIDA could be

It should be noted that normally meta-learning scheme would select different optimal options
and filters for different splits in the cross-validation process. However, here the common optimal
options are used for all splits.

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 163

shown to be statistically better than some algorithms, then this should be perceived
as a strong result in favour of the RIONIDA algorithm.

The maz strategy can be seen as comparing RIONIDA with other algorithms
under consideration using the upper bound of scores (for individual data sets)
obtained when meta-learning for the selection of AF-learners was implemented
for algorithms other than RIONIDA. In particular, if all learning algorithms were
supported with the possibility of learning of the optimal AF-learners (using only
the training data), one could expect that the obtained scores were lower (for other
algorithms than RIONIDA) than the presented ones in the comparisons for the maz
strategy. If for this strategy, RIONIDA could be shown to be statistically better
than some algorithms, this should be perceived as a very strong result in favour of
the RIONIDA algorithm.

5.3 Comparison of RIONIDA with the selected
state-of-the-art algorithms

Let us recall that RIONIDA was constructed for data analysis in a possibly wide range
of application domains. In this section, we will try to answer the question whether
the presented algorithm can be evaluated as ‘better’ than the other algorithms used
in the comparison (with subject to all remarks in Section 2.6).

An important step in the process of evaluation of learning algorithms is related
to statistical tests (see Section 2.6). Generally, we use the Finner statistical test
(after the Friedman test), characterised by the relatively high power. However, we
also use the Nemenyi statistical test due to its clear graphical interpretation. It is
used whenever the Finner test shows that RIONIDA is significantly better than all
other algorithms used in the comparison, and simultaneously the Nemenyi test shows
the same. In such a case, we can present the results in a more compact graphical
form. Then by using the Nemenyi test, additionally the comparison of other pairs of
algorithms is given. However, without focusing on such comparisons, we only very
briefly discuss the related issues.

As it was mentioned previously, two general groups of the comparative
experiments were performed corresponding to the chosen performance measure:
G-mean and F-measure. The results for these measures are shown in the following
Subsections 5.3.1 and 5.3.2, respectively.

5.3.1 Comparison of algorithms for G-mean

In this section, we assume that the performance measure we are interested in is
G-mean. Thus, the particular parameter of RIONIDA is set to optimise G-mean. The
algorithm with this setting is called RIONIDA. In this section, the representative
scores for RIONIDA are fixed, i.e. these are simply scores for RIONIDAg. In
the following subsections, we permanently underline this fact that for RIONIDAg
(and BRACID) one default AF-learner was used. Thus, irrespective of the used
strategy, the scores for RIONIDAg (and BRACID) are the same for the three
considered strategies. For other algorithms used in the comparative experiments,

164 5. Experiments and results

their representative scores are selected relative to the G-mean measure and the data
sets used in the experiments (and certainly to the used strategy; see Subsection 5.2.6).
We present the results of comparative experiments for three strategies:

1. the defG strategy (the def strategy for G-mean),
2. the optG strategy (the opt strategy for G-mean), and
3. the mazG strategy (the mazx strategy for G-mean) (see Subsection 5.2.6).

If we say something about an algorithm (e.g. kNN) in the context of experiments,
we relate it to the representative scores obtained with the considered strategy for the
given algorithm.

Def strategy for G-mean (defQG)

In this step, we compare algorithms using their default AF-learners (as
described in Subsection 5.2.6 for the def strategy). Specifically, we compare
the following AF-learners: (kNN -K 1, SMOTE+ENN), (PART -C0.25, SMOTE+ENN),
(J48 -C 0. 25, SMOTE+ENN), (RIPPER , SMOTE+ENN), (RISE , SMOTE+ENN),
(MODLEM , SMOTE+ENN), (MODLEM -M 10, Null-filter), (RIONA ,SMOTE+ENN),
(BRACID ,Null-filter), (RIONIDAG,Null-filter).

In Table 5.7, for each learning algorithm, the representative scores of G-mean (for
defG) for all used data sets are given. The RIONIDA algorithm was set to optimise
the G-mean measure, i.e. RIONIDAg was used; hence, RIONIDAg appears in the
table instead of RIONIDA.

Then the algorithms were ranked for each data set (see Subsection 2.6.4 for
details). For illustration, for five algorithms on the right in Table 5.7, we present (in
parentheses) their ranks. It should be noted that the later used Friedman statistical
test (and post-hoc tests) makes use only of these ranks (not specific values of scores).

One can see from Table 5.7 that in most cases, the RIONIDA algorithm achieves
the best score: for 20 data sets, 15 times it wins with all other algorithms (in these
cases RIONIDA has the rank equal to 1), and once (for new-thyroid) its score is equal
to the other algorithm (namely, RIONA) with the best score (in this case RIONIDA
has rank equal to 1.5). In situations when it loses with an algorithm, the difference
between the best score and the score of RIONIDA is: once about 5%, once about
1%, and twice below 0.5%. For these cases, RIONIDA has the following ranks: 4 (for
abalone), 3 (for ionosphere), and 2 (for breast-w and wvehicle).

Next, the average rank for each algorithm (more precisely for each AF-learner
consisting of an algorithm with default parameters and default filter) was computed.
In the third line from below of Table 5.7, the average ranks (for all algorithms)
are presented. The lower the average rank is, the better learning algorithm is.
The average of all ranks for RIONIDA gives the result 1.375, which is the best
outcome. The difference between the average rank of the RIONIDA algorithm and
the second-lowest average rank (4.6 for BRACID) is relatively high (3.225).

By using these average ranks (and particular ranks), the Friedman statistic was
computed® returning the result 55.814. With 10 algorithms, this statistic follows

8Let us recall that this test takes into account the variations in the ranks of algorithms.

91

Table 5.7: The values of G-mean (in %) for different algorithms and different data sets, for defG. The RIONIDA algorithm was set to optimise the
G-mean measure (i.e. RIONIDAG was used). For each data set, the best-obtained score is shown in bold. Also, for illustration, for five algorithms
on the right (including RIONIDA(), ranks for these algorithms and different data sets are shown (in parentheses). At the bottom are shown: (i)
average rank for each algorithm, (i) important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and
(iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the defG strategy

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAg
abalone 59.39 70.06 70.36 73.05 60.03 65.54 (6) 55.06 (10) 59.91 (8) 65.80 (5) 67.94 (4)
balance-scale 56.97 47.03 22.70 13.58 40.97 12.90 (9) 2.78 (10) 33.26 (6) 58.68 (2) 76.98 (1)
breast-cancer 56.64 53.99 54.23 53.53 58.26 56.04 (7) 58.34 (2) 56.92 (5) 58.17 (4) 64.98 (1)
breast-w 97.36 96.28 95.79 95.99 96.89 96.16 (7) 94.89 (10) 97.81 (1) 96.91 (4) 97.53 (2)
car 83.23 86.68 87.40 80.08 75.89 82.51 (7) 89.23 (2) 80.37 (8) 87.47 (3) 96.74 (1)
cleveland 63.83 63.77 66.48 69.68 59.43 63.34 (7) 35.61 (10) 65.27 (4) 62.89 (8) 76.38 (1)
credit-g 65.66 66.30 66.17 65.59 65.27 65.57 (8) 66.78 (2) 66.35 (3) 62.27 (10) 69.90 (1)
ecoli 86.82 84.82 84.11 86.36 85.59 84.15 (8) 67.65 (10) 86.68 (3) 84.42 (7) 88.82 (1)
glass 62.75 64.30 67.89 57.00 54.69 63.16 (5) 47.64 (9) 66.80 (3) 39.90 (10) 69.26 (1)
haberman 59.76 61.64 62.41 61.90 60.35 62.64 (2) 57.10 (10) 59.85 (7) 59.55 (9) 65.40 (1)
hepatitis 74.94 67.56 66.78 65.82 71.16 71.71 (5) 67.55 (8) 73.46 (4) 77.11 (2) 79.00 (1)
ionosphere 89.91 86.88 85.64 84.27 91.91 85.93 (8) 89.55 (6) 90.37 (4) 91.42 (2) 90.89 (3)
mammography 73.48 72.59 71.73 73.37 73.18 70.68 (9) 68.74 (10) 74.17 (3) 85.41 (2) 89.70 (1)
new-thyroid 98.71 95.13 95.05 95.16 97.73 94.36 (9) 92.92 (10) 98.93 (1.5) 98.69 (4) 98.93 (1.5)
nursery 89.99 97.12 87.04 84.43 83.82 97.05 (4) 99.80 (2) 88.73 (7) 96.58 (5) 99.90 (1)
pima 66.75 67.07 67.47 68.42 67.99 65.41 (10) 69.96 (3) 66.54 (9) 71.28 (2) 72.87 (1)
postoperative 38.32 36.03 37.33 33.91 36.84 34.75 (8) 40.21 (3) 34.02 (9) 42.49 (2) 43.66 (1)
transfusion 62.76 61.89 63.22 64.38 63.11 62.31 (8) 57.57 (10) 63.34 (4) 64.39 (2) 67.64 (1)
vehicle 93.27 93.51 93.03 93.06 92.59 93.67 (5) 95.45 (1) 94.47 (3) 93.82 (4) 95.10 (2)
yeast 74.34 71.43 70.08 73.60 68.78 64.55 (9) 46.95 (10) 75.92 (2) 72.38 (5) 84.95 (1)
average rank 5.2 5.9 6.3 6.45 6.5 7.05 6.9 4.725 4.6 1.375
Friedman test Friedman’s chi-squared = 55.814, df = 9, p-value = 8.52- 107"

APV Finner 0.00008 <10™° <1079 <107 <107% <1077 <1077 0.00053 0.00076 control

166 5. Experiments and results

the Chi-square distribution with df = 9 (degrees of freedom). The obtained value
exceeds the critical value for the Chi-square distribution (equal to 16.92 for o = 0.05,
i.e. the significance level used in the thesis, and df = 9). As we mentioned, the more
informative it is to use the p-value. The obtained p-value is equal to 8.52-107Y, which
is much smaller than o = 0.05. Anyway, we can safely reject the null hypothesis that
all the algorithms perform equally well. This information is necessary to make a more
informative step, i.e. post-hoc test. In the discussed table (and the next ones), we
present the most important outcomes of the Friedman statistical test in the second
line from below.

The best result (average rank) is achieved by RIONIDAg. The post-hoc test is
used to detect whether the differences between this and the other learning algorithms
are statistically significant. As it was mentioned, the Finner statistical test was
used to compare all learning algorithms with the selected control one (in our case
RIONIDA).

The adjusted p-values for each of the algorithm for the Finner statistical test
(with the RIONIDA(algorithm set as the control one) are the following: kNN
8.31487 - 1075; PART 3.431262 - 1075; J48 4.841227 - 10~ "; RIPPER 2.596844 - 10~ 7;
RISE 2.596844-10~7"; MODLEM 2.770859-10~%; MODLEM-C 3.552973-10~8; RIONA
0.0005254441; BRACID 0.0007560509. The essential information for this test is
whether each particular p-value is below (or even well below) 0.05 (5%)°. The smaller
the p-value, the stronger is the evidence that the difference between RIONIDA and
another considered algorithm (corresponding to the p-value) is statistically significant
(see Subsection 2.6.4).

For all learning algorithms used in comparisons with RIONIDAg, the
corresponding p-value is (much) smaller than o = 0.05. Thus, we can (confidently)
reject all the null hypotheses corresponding to the algorithms used in the comparison
(at 0.05 level of significance). In other words, RIONIDAq is significantly better
than any other learning algorithm (with default AF-learners) relative to the G-mean
performance measure.

In the discussed table (and the next ones) we present p-values rounded to 5
decimal places. In case the p-value is smaller than 10°, only its order of magnitude
is indicated. For example, for the PART algorithm, it is shown that p-value is smaller
than 1075,

Additionally, we also used the Nemenyi statistical test (for multiple comparisons)
due to its clear graphical interpretation. Figure 5.6 shows the critical difference plot
for the Nemenyi statistical test in this case. The line in the diagram with integer
numbers is the axis on which we plot the average ranks of learning algorithms (to be
precise default AF-learner for the learning algorithm). The diagram should be read
in such a way that the better the learning algorithm is, the more it is to the left. The
horizontal interval marked as CD is the critical difference in the Nemenyi statistical
test. The performances of two algorithms are significantly different (with the level of
significance at 0.05) according to this test if the corresponding average ranks differ by
at least the critical difference. This fact is also marked in the diagram. We connect
the groups of algorithms that are not significantly different (according to this test)

91f so, it means that differences between the newly presented algorithm and other algorithm are
statistically significant. If not, it means that no statistical difference could be detected with this
post-hoc test (the results could be statistically different or not — we still do not know the correct
answer).

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 167

with a bold horizontal line (the one below the axis).

CcD

1 2 3 4 5 6 7 8
[\ \ \ \ \ \ |
RIONIDA Jag
BRACID RIPPER
RIONA RISE
kNN MODLEM-C
PART ———————— MODLEM

Figure 5.6: Comparison of G-mean for all algorithms used in the comparison (with the
defG strategy) against each other with the Nemenyi statistical test. Groups of algorithms
that are not significantly different (with the level of significance at 0.05) are connected.

This test, although conservative, shows that RIONIDA is significantly better
(with the level of significance at 0.05) than all other algorithms used in the
comparison. The difference of average ranks between RIONIDAg and other
algorithms also seems quite high in comparison to the differences between other
algorithms compared. From this diagram, one can also see that all other algorithms
are not statistically different according to the Nemenyi test. However, it is not the
intention of the author to interpret this fact. One needs to remember that this test is
very conservative and may show no differences in a situation when they actually exist.
What we want to underline is that even such conservative test shows the difference
between RIONIDA and any other algorithm used in the comparison.

The second best algorithm in terms of average ranks is the BRACID algorithm.
The third one is RIONA (with a proper filter) and is slightly worse (in terms of
average ranks) than BRACID. In particular, the Nemenyi statistical test shows that
BRACID and RIONA are not statistically different. In particular, it should also be
noted that RIONIDA is significantly better than the RIONA algorithm. This justifies
that the changes made in RIONA were essential to deal with imbalanced data.

It should be noted that in this subsubsection, the explanations were given with
many details. In the following considerations, we will omit many of them and give
only the conclusions based on the obtained p-values for particular statistical tests.

Opt strategy for G-mean (optG)

Here, we will try to answer the following question: Can the general situation
(with scores and ranks of algorithms) and conclusions described in the previous

168 5. Experiments and results

subsubsection change if some other than default parameters and type of filter are
selected (if possible) for algorithms (except RIONIDA)? To answer this question, for
each algorithm were selected: (i) its optimal parameters, and (ii) the optimal type
of filter regarding all data sets used in the comparison and the fact that G-mean
is the performance measure. Here, ‘optimal’ relates to the opt strategy described
in Subsection 5.2.6 and the G-mean performance measure (such strategy was called
earlier more specifically optG strategy).

In Table 5.8, the optimal (i.e. with the lowest average rank) AF-learners for
the optG strategy are presented. Also, two other top candidates are pointed out
in the table (yet not used in the final comparison). For each learning algorithm,
the (optimal) representative AF-learner is marked in bold. The scores of these
representative AF-learners are used in the final comparison presented below. If we
compare these selected optimal AF-learners with the default AF-learners (used in the
defG strategy presented above) the differences in settings (options or filters) can be
observed for the following algorithms: kNN, PART, J48, MODLEM. For the others,
the used AF-learners are the same in both strategies (defG and optG).

Table 5.8: The three best AF-learners (with the lowest average ranks shown in parentheses)
selected by the optG strategy (for each algorithm). The best AF-learners are shown in bold
and are used in the final comparison (for the optG strategy).

algorithm three best AF-learners in each group

kNN (kNN -K 100 -X, SMOTE+ENN) (28.2),
(kNN -K 2, SMOTE) (28.9), (kNN -K 1, SMOTE+ENN) (30.2)
PART (PART -U, SMOTE+ENN) (33.9),
(PART -C 0.5, SMOTE+ENN) (36.1),
(PART -C0.25, SMOTE+ENN) (36.4)
J48 (J48 -C 0.5, SMOTE+ENN) (38.5),
(J48 -C 0.1, SMOTE+ENN) (38.8), (J48-A, SMOTE+ENN) (39)
RIPPER (RIPPER., SMOTE+ENN) (41.9),
(RIPPER -E, SMOTE+ENN) (43.1), (RIPPER -E -P, SMOTE+ENN) (44)
RISE (RISE , SMOTE+ENN) (38.3),
(RISE, SMOTE) (50.7), (RISE,Null-filter) (66.8)
MODLEM (MODLEM, SMOTE) (41.9),
(MODLEM , SMOTE+ENN) (43.1), (MODLEM ,Null-filter) (75.1)
MODLEM-C (MODLEM -M10,Null-filter) (48.3),
(MODLEM -M9, Null-filter) (49.2),
(MODLEM -M7,Null-filter) (49.4)
RIONA (RIONA , SMOTE+ENN) (29.4),
(RIONA | SMOTE) (36.1), (RIONA ,Null-filter) (70.4)
BRACID (BRACID ,Null-filter) (24.8)
RIONIDA (RIONIDAG ,Null-filter) (4.1)

In Table 5.9, for each learning algorithm, the representative scores (for the optG
strategy) for all used data sets are given. Analogously as in the table related to the
defG strategy, RIONIDAq appears in Table 5.9 instead of RIONIDA (which means

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 169

that RIONIDA was set to optimise the G-mean measure). In the table (and in its
caption), we underline the fact that for RIONIDAg (and BRACID), the only one
fixed, default AF-learner was used (i.e. the algorithm was preceded with no filter
and used with its default parameters). Let us recall that by such choice we give an
advantage for the algorithms with more than one AF-learner over RIONIDA (and
BRACID). The readers should keep this fact in mind when reading the presentation
of results below.

One can see from Table 5.9 that in most cases, the RIONIDA algorithm achieves
the best score: for 20 data sets, 15 times it wins with all other algorithms, and once
its score is equal to the other algorithm with the best score. In situations when it loses
with an algorithm, the difference between the best score and the score of RIONIDA
is: once about 5%, once about 1%, and twice below 0.5%. For these cases, RIONIDA
has the following ranks: 4 (for abalone and ionosphere), 3 (for vehicle), and 2 (for
breast-w). These observations are similar to those reported for the defG strategy.
However, in particular, ranks for RIONIDAg are slightly worse than previously (for
ionosphere and vehicle).

In the third line from below of Table 5.9, the average ranks (for all algorithms) are
presented. The results mentioned above again give the best outcome of the average
rank for RIONIDA (1.475). In comparison to the defG strategy, this result is worse
only by 0.1. The difference between the average rank of the RIONIDA algorithm and
the second-lowest average rank (4.8 for BRACID) is relatively high (3.325).

Let us now concentrate on the outcomes of the Friedman statistical test presented
in the discussed table. One can see that this test gave very small p-value (less than
10~7). This means that there exist statistical differences among compared algorithms.

As a consequence, one could perform the post-hoc Finner test for comparisons
with the control algorithm (and the Nemenyi statistical test for multiple comparisons
— performed additionally; see below). In the last line of the table, adjusted p-values
of the post-hoc Finner test with RIONIDA as the control algorithm are presented.

The values in the table indicate that the RIONIDA algorithm is significantly
better than any other algorithm (with the level of significance at 0.05). This is a quite
astonishing result. Moreover, the highest p-value reaches 0.00051 (for BRACID),
which is much less than 0.05 (less than 1073). The second and the third highest
p-values are for the RIONA and kNN algorithms (with their optimal AF-learners),
respectively and are also less than 1073,

As in the previous subsubsection, we also used the Nemenyi statistical test (for
multiple comparisons) due to its clear graphical interpretation. Figure 5.7 shows the
critical difference plot for the Nemenyi test in this case. One can see that RIONIDAg
is significantly better (with the level of significance at 0.05) from all other algorithms.
The difference in average ranks between RIONIDA and other algorithms also seems
relatively high in comparison to differences between other algorithms compared.
Generally, the plot is similar to the one presented in the previous subsubsection
(see Figure 5.6). Other conclusions from the previous subsubsection hold too.

One of the differences is in the position of the kNN algorithm, which is closer
to the RIONA algorithm (in terms of average rank). However, one should keep in
mind that due to many considered AF-learners for kNN, it has an advantage over
BRACID (and RIONIDA). The selected optimal AF-learner for the kNN algorithm,

170

RIONIDA
BRACID
RIONA
kNN

PART

cDh

5. Experiments and results

MODLEM

RISE

RIPPER

J48

MODLEM-C

Figure 5.7: Comparison of G-mean for all algorithms used in the comparison (with the
optG strategy) against each other with the Nemenyi statistical test. Groups of algorithms
that are not significantly different (with the level of significance at 0.05) are connected.

1.1

Table 5.9: The values of G-mean (in %) for different algorithms and different data sets, for the optG strategy (additionally for RIONIDA ranks
are shown in parentheses). The RIONIDA algorithm was set to optimise the G-mean measure (i.e. RIONIDAg was used). It should be noted that
for both RIONIDA@ and BRACID, one default AF-learner was used. For the other learning algorithms, the optimal AF-learner was selected using
the optG strategy (and then it was used the same for all data sets). For each data set, the best-obtained score is shown in bold. At the bottom
are shown: (i) average rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and
p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the optG strategy
(for RIONIDAG and BRACID, one default AF-learner was used — their scores are the same as in the defG strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAg
abalone 59.39 70.75 70.04 73.05 60.03 61.54 55.06 59.91 65.80 67.94 (4)
balance-scale 39.65 56.74 22.46 13.58 40.97 0.00 2.78 33.26 58.68 76.98 (1)
breast-cancer 56.64 55.50 54.95 53.53 58.26 58.87 58.34 56.92 58.17 64.98 (1)
breast-w 97.37 96.35 95.68 95.99 96.89 95.84 94.89 97.81 96.91 97.53 (2)
car 86.23 85.26 86.86 80.08 75.89 88.06 89.23 80.37 87.47 96.74 (1)
cleveland 64.42 67.19 66.39 69.68 59.43 45.84 35.61 65.27 62.89 76.38 (1)
credit-g 65.66 66.78 66.13 65.59 65.27 65.65 66.78 66.35 62.27 69.90 (1)
ecoli 86.70 85.14 84.16 86.36 85.59 77.35 67.65 86.68 84.42 88.82 (1)
glass 65.71 60.68 66.79 57.00 54.69 63.82 47.64 66.80 39.90 69.26 (1)
haberman 59.75 61.25 62.52 61.90 60.35 57.32 57.10 59.85 59.55 65.40 (1)
hepatitis 76.70 69.53 68.08 65.82 71.16 73.42 67.55 73.46 77.11 79.00 (1)
ionosphere 91.93 87.11 85.32 84.27 91.91 85.54 89.55 90.37 91.42 90.89 (4)
mammography 73.45 72.95 71.76 73.37 73.18 79.96 68.74 7417 85.41 89.70 (1)
new-thyroid 98.85 95.45 95.05 95.16 97.73 95.33 92.92 98.93 98.69 98.93 (1.5)
nursery 89.02 97.43 88.72 84.43 83.82 99.63 99.80 88.73 96.58 99.90 (1)
pima 66.75 66.56 67.64 68.42 67.99 69.45 69.96 66.54 71.28 72.87 (1)
postoperative 38.32 33.08 36.53 33.91 36.84 34.14 40.21 34.02 42.49 43.66 (1)
transfusion 62.76 61.73 63.21 64.38 63.11 59.02 57.57 63.34 64.39 67.64 (1)
vehicle 93.27 94.02 93.05 93.06 92.59 95.24 95.45 94.47 93.82 95.10 (3)
yeast 75.55 72.76 70.06 73.60 68.78 55.77 46.95 75.92 72.38 84.95 (1)
average rank 5.1 5.825 6.6 6.55 6.5 6.25 6.975 4.925 4.8 1.475
Friedman test Friedman’s chi-squared = 50.918, df = 9, p-value = 7.235- 1078

APV Finner 0.00020 <10° <107 <10°° <107 <107° <1077 0.00035 0.00051 control

172 5. Experiments and results

as one could expect, is the one which learns the optimal number of nearest neighbours
between 1 and 100 (analogously as in RIONA and RIONIDA; see Tables 5.4 and 5.8).
It should be noted that for the RIONA algorithm, we only tuned type of filter and the
other parameters were fixed (the same as in RIONIDA). Keeping this in mind, three
algorithms: BRACID, RIONA and kNN, have similar average ranks. The RIONA
algorithm is significantly worse than the RIONIDA algorithm, but its performance is
similar to BRACID and kNN.

From the above considerations, one can conclude that most likely (we used a
reasonable variety of parameters but not all possibilities) selecting other than default
parameters of algorithm and type of preprocessing filter (e.g. by tuning them to the
used data sets) does not significantly change the situation presented for the defG
strategy. In particular, it does not change the drawn conclusions that RIONIDA
significantly outperforms all the algorithms used in comparisons. This is a quite
astonishing result as it considerably strengthens the results presented for the defG
strategy in favour of the RIONIDA algorithm.

Moreover, from the experiments performed for the considered optG strategy, one
can observe what follows. The default parameters and type of filters (in defG)
seem to be selected well (with qualities of algorithms comparable to those achieved
in this strategy). In fact, some of the default settings (for other algorithms than
RIONIDA) were used from this step. For example, MODLEM-C does not have
default parameters, and we used as the default (in the previous step) the best-found
parameters in this step. Also, the type of filter SMOTE+ENN, reported in [14] as the
recommended selection (and confirmed in [152]), is also confirmed by this step. In
fact, in Table 5.8, one can see that the optimal AF-learners generally contain this
filter SMOTE+ENN.

Maz strategy for G-mean (mazG)

Here, we will try to answer the following question: Could the general situation
(with scores and ranks of algorithms) and conclusions, described in the previous
subsubsections, change if parameters and type of filter were learned for algorithms
(except RIONIDA) during the learning phase?

To answer this question, we assume that somehow for each learning algorithm,
its optimal parameters and filters were selected separately for each data set taking
also into account the fact that G-mean is the chosen performance measure. Here,
‘optimal’ relates to the max strategy described in Subsection 5.2.6 and the G-mean
performance measure (such strategy was called earlier more specifically mazG
strategy). Technically speaking, for each data set was chosen the maximal score out
of all scores for different AF-learners (in the group). Let us recall that this strategy
returns, in a sense, the upper bound of scores under the assumption that learning
of parameters and filters was implemented for algorithms other than RIONIDA (and
BRACID).

In Table 5.10, for each learning algorithm, the representative scores (for the mazG
strategy) for all used data sets are given. Analogously as in the previous tables,
RIONIDA appears in the table instead of RIONIDA (which means that RIONIDA
was set to optimise the G-mean measure). In the table, there is no information on
AF-learners corresponding to the individual scores for different data sets. However,
the readers were given a few such examples previously (see the description of the
maz strategy in Subsection 5.2.6). Certainly, all the scores in this table are higher

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 173

or equal to their corresponding scores in the defG and optG strategies (it follows
straightforwardly from the formulation of the maz strategy). For RIONIDA (and
BRACID) the scores are the same as in the defG and optG strategies.

One can see from Table 5.10 that for this strategy still in most cases, the RIONIDA
algorithm achieves the best score: for 20 data sets, 12 times it wins with all other
algorithms. In situations when it loses with an algorithm, the difference between
the best score and the score of RIONIDA is: once about 5%, once about 2%, once
about 1%, three times below 0.5%, and twice below 0.1%. For these cases, RIONIDA
has the following ranks: 4 (for abalone, ionosphere, vehicle), 2.5 (for new-thyroid),
2 (for breast-w, glass, hepatitis, nursery). These results are a little worse than those
reported for the defG' and optG strategies.

However, the results mentioned above again lead to the best outcome of the
average rank for RIONIDA (1.725). The difference between the average rank of
the RIONIDA algorithm and the second-lowest average rank (3.90 for kNN) is still
(compared to the result for the previous strategy) relatively high (2.175). It should
be noted that the worse average rank of BRACID in comparison to the previous
strategy relates to the mentioned fact that for BRACID, one default AF-learner was
used. Analogously, the average rank of RIONIDA is worse than in the previous
strategy.

One can see from Table 5.10 that the Friedman statistical test gave again the
p-value less than 1077, Since it is (much) smaller than 0.05, this means that there
are significant statistical differences among compared algorithms. Therefore, we can
proceed with a post-hoc test.

One can see in the discussed table that all the adjusted p-values are less than
0.05. It means that for each of the compared algorithms, even if it were possible
to construct a meta-learning algorithm which for each data set would select the
optimal AF-learner, it would be statistically worse than RIONIDAg. It is worthy of
underlining that this seems to be an impressive result.

One should observe, however, that for the group of kNN classifiers, the p-value
is close to the threshold of 0.05. This means that the outperforming of kNN by
RIONIDA is not very strongly supported by the Finner statistical test. On the other
hand, one should keep in mind that kNN has a particular advantage over RIONIDA
(and other used algorithms) due to the use of many (33) AF-learners.

5.3.2 Comparison of algorithms for F-measure

This subsection is analogous to Subsection 5.3.1 using F-measure instead of G-mean.
The readers are referred to the previous section for details. Here, we only present a
summary of the experimental setup:

e The performance measure we are interested in is F-measure.
e Thus, RIONIDA is set to optimise F-measure (RIONIDAF is used).

Analogously as in Subsection 5.3.1, we present the results of comparative experiments
for three strategies with F-measure as the performance measure: defF', optF, maxF'.

VLT

Table 5.10: The values of G-mean (in %) for different algorithms and different data sets, for the mazG strategy (additionally for RIONIDA ranks
are shown in parentheses). The RIONIDA algorithm was set to optimise the G-mean measure (i.e. RIONIDAg was used). It should be noted that
for both RIONIDA and BRACID, one default AF-learner was used (i.e. no filter and default parameters of the algorithm were used). For the other
learning algorithms, the vector of representative scores was generated using the mazG strategy. For each data set, the best-obtained score is shown
in bold. At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman statistic,
degrees of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the maxG strategy
(for RIONIDAg and BRACID, one default AF-learner was used — their scores are the same as in the defG strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAg
abalone 63.46 71.78 70.85 73.05 60.03 65.54 55.06 59.91 65.80 67.94 (4)
balance-scale 65.34 56.74 23.37 15.45 40.97 12.90 2.78 33.26 58.68 76.98 (1)
breast-cancer 59.22 55.50 55.35 57.94 58.49 58.87 58.34 60.97 58.17 64.98 (1)
breast-w 97.46 96.35 95.79 96.21 97.02 96.16 94.89 97.81 96.91 97.53 (2)
car 86.23 95.45 90.23 80.81 76.90 89.09 89.24 85.29 87.47 96.74 (1)
cleveland 75.46 67.19 66.49 69.68 59.43 63.34 35.61 65.27 62.89 76.38 (1)
credit-g 65.66 66.78 66.17 65.59 65.27 65.65 66.87 66.35 62.27 69.90 (1)
ecoli 88.35 86.44 84.45 86.44 85.59 84.15 67.65 86.68 84.42 88.82 (1)
glass 68.03 66.66 69.44 57.99 54.69 63.82 47.64 67.69 39.90 69.26 (2)
haberman 59.88 61.75 63.80 62.48 60.35 62.64 57.10 61.00 59.55 65.40 (1)
hepatitis 80.09 69.80 70.02 68.07 71.16 73.42 68.06 73.46 77.11 79.00 (2)
ionosphere 92.41 89.01 87.97 88.28 92.82 88.72 89.60 90.62 91.42 90.89 (4)
mammography 88.28 85.04 83.41 84.51 84.57 79.96 70.60 74.17 85.41 89.70 (1)
new-thyroid 98.94 95.92 95.15 96.03 97.73 95.33 92.98 98.93 98.69 98.93 (2.5)
nursery 91.52 99.96 95.13 85.74 95.59 99.80 99.80 99.56 96.58 99.90 (2)
pima 71.48 69.26 70.34 70.03 68.70 69.45 70.83 67.13 71.28 72.87 (1)
postoperative 39.48 37.20 37.87 34.24 36.84 34.75 40.21 34.02 42.49 43.66 (1)
transfusion 62.90 62.62 64.93 64.38 63.11 62.31 58.84 63.34 64.39 67.64 (1)
vehicle 94.21 94.05 93.14 93.94 92.59 95.24 95.55 95.18 93.82 95.10 (4)
yeast 79.83 72.76 70.46 73.62 68.78 64.55 46.95 75.92 72.38 84.95 (1)
average rank 3.9 5.225 6.05 6.475 6.75 6.575 7.425 5.275 5.6 1.725
Friedman test Friedman’s chi-squared = 53.725, df = 9, p-value = 2.13 - 1078

APV Finner 0.02310 0.00029 0.00001 < 107° <107 <107° <1077 0.00027 0.00008 control

5.3 Comparison of RIONIDA with the selected state-of-the-art algorithms 175

Def strategy for F-measure (defF)

In this step, we again compare algorithms using their default AF-learners (as
described in Subsection 5.2.6 for the def strategy), but this time with F-measure
as the performance measure. Specifically, we compare the same AF-learners pointed
out in the defG strategy in the previous section with one exception, namely
(RIONIDAF ,Null-filter) instead of (RIONIDAg ,Null-filter).

In Table 5.12, for each learning algorithm, the representative scores of F-measure
(for defF') for all used data sets are given.

One can see from this table that for half of the 20 data sets, RIONIDA wins with all
other algorithms. In situations when it loses with an algorithm, the difference between
the best score and the score of RIONIDA is: twice between 8%-10%, once about 4%,
twice about 1%, and six times below 1% (including 4 times below 0.5%). For these
cases, RIONIDA has the following ranks: 7 (for abalone, glass), 5 (for ionosphere),
and 2 (for breast-w, car, haberman, hepatitis, new-thyroid, nursery, yeast).

The mentioned results are not as excellent as for the defG strategy, but still are
very good in comparison to the other algorithms. In particular, RIONIDA again
achieved the best average rank (2.15). It is smaller by 2.05 from the second-lowest
average rank (4.2 for BRACID).

The Friedman statistical test returns again a very small p-value, i.e. (much)
less than 0.05. This means that there exist statistical differences among compared
algorithms; hence, one could perform the post-hoc Finner test for comparisons with
the control algorithm RIONIDA.

All the adjusted p-values of the Finner procedure are less than 0.05. Thus, we
can claim that RIONIDA is significantly better than any other algorithm used in the
comparison. However, the highest p-value (around 0.03 for RIONIDA) is close to the
threshold of 0.05. It shows that RIONIDA outperforms BRACID not as evidently
as in the case for G-mean. Probably this is because BRACID was implemented to
optimise F-measure. The second-highest p-value is for the RIONA algorithm (with
its optimal AF-learner) and is smaller than 1072. All other p-values (related to other
algorithms) are smaller than 1073.

Opt strategy for F-measure (optF')

In Table 5.11, the optimal (i.e. with the lowest average rank) AF-learners for the
optl’ strategy are presented. If we compare these selected optimal AF-learners with
the default AF-learners (used in the defF strategy presented above) the differences in
settings (options or filters) can be observed for the following algorithms: kNN, PART,
J48, RIPPER, MODLEM, MODLEM-C. For the others, the used AF-learners are the
same in both strategies (defF and optF'). Let us also note that some of the selected
AF-learners are the same for both optF and optG strategies (for kNN, PART, RISE,
MODLEM, RIONA, and naturally BRACID).

In Table 5.13, for each learning algorithm, the representative scores (for the optF
strategy) for all used data sets are given. One can see from this table that for half
of 20 data sets, RIONIDA wins with all algorithms (as in the defF strategy). In
situations when it loses with an algorithm, the difference between the best score and
the score of RIONIDA is: once above 17%, once above 8%, once about 5%, once
above 2%, once above 1%, and five times below 1% (including 3 times below 0.5%).
For these cases, RIONIDA has the following ranks: 8 (for glass), 7 (for abalone),

176

Table 5.11:

5. Experiments and results

The three best AF-learners (with the lowest average ranks shown in

parentheses) selected by the optF strategy (for each algorithm). The best AF-learners
are shown in bold and are used in the final comparison (for the optF strategy).

algorithm three best AF-learners in each group
kNN (kNN -K 100 -X, SMOTE+ENN) (35.8),

(kNN -K 9, SMOTE) (37.1), (kNN -K 3, SMOTE+ENN) (38.2)
PART (PART -U, SMOTE+ENN) (40),

(PART -U, SMOTE) (41.275), (PART -C 0.5, SMOTE+ENN) (41.6)
J48 (J48 -C0.1,SMOTE) (39.525),

(J48-A, SMOTE) (41.275), (J48 -C0.25, SMOTE) (41.275)
RIPPER (RIPPER -E -P, SMOTE+ENN) (41.95),

(RIPPER -P, SMOTE+ENN) (41.95), (RIPPER , SMOTE+ENN) (44.15)
RISE (RISE , SMOTE+ENN) (38.475),

(RISE , SMOTE) (42.2), (RISE, Null-filter) (60.325)
MODLEM (MODLEM , SMOTE) (37.8),

(MODLEM , SMOTE+ENN) (41.225),

(MODLEM , Null-filter) (67.65)
MODLEM-C (MODLEM -M6,Null-filter) (52.575),

(MODLEM -M7,Null-filter) (52.675),

(MODLEM -M 10, Null-filter) (52.925)
RIONA (RIONA , SMOTE+ENN) (36.15),

(RIONA | SMOTE) (40.5), (RIONA ,Null-filter) (60.75)
BRACID (BRACID ,Null-filter) (26.8)
RIONIDA (RIONIDAF ,Null-filter) (12.225)

LLT

Table 5.12: The values of F-measure (in %) for different algorithms and different data sets, for defF. The RIONIDA algorithm was set to optimise
F-measure (i.e. RIONIDAFp was used). For each data set, the best-obtained score is shown in bold. Also, for illustration, for five algorithms on the
right (including RIONIDAg), ranks for these algorithms and different data sets are shown (in parentheses). At the bottom are shown: (i) average
rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and (iii)
adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the defF’ strategy

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAg
abalone 25.74 38.05 39.75 42.35 30.02 41.16 (2) 37.66 (5) 26.58 (9) 37.37 (6) 32.35 (7)
balance-scale 19.10 14.86 4.04 3.78 13.82 2.77 (9) 0.49 (10) 9.17 (6) 18.35 (3) 34.30 (1)
breast-cancer 44.78 39.80 40.78 39.41 44.31 42.90 (7) 44.79 (3) 43.05 (6) 45.52 (2) 52.17 (1)
breast-w 95.45 94.23 93.63 94.01 94.85 93.65 (8) 92.65 (10) 96.39 (1) 94.84 (5) 96.02 (2)
car 43.65 61.77 59.60 53.39 52.59 59.34 (6) 85.88 (1) 52.06 (9) 73.19 (3) 81.60 (2)
cleveland 33.33 34.55 36.04 37.75 31.55 35.35 (4) 16.80 (10) 35.01 (5) 33.36 (7) 44.31 (1)
credit-g 54.98 54.27 54.35 53.36 53.48 54.61 (5) 54.62 (3.5) 54.62 (3.5) 53.45 (9) 58.27 (1)
ecoli 59.63 57.66 56.93 60.05 59.52 59.28 (6) 53.05 (10) 58.40 (7) 59.87 (3) 68.36 (1)
glass 29.97 34.72 37.82 27.26 27.91 38.28 (1) 31.70 (5) 32.72 (4) 19.72 (10) 29.69 (7)
haberman 46.28 48.61 48.91 48.35 47.84 50.06 (1) 40.52 (10) 46.42 (7) 45.61 (9) 49.70 (2)
hepatitis 60.64 50.05 48.99 48.98 55.36 52.62 (6) 46.27 (10) 57.31 (4) 59.38 (3) 60.31 (2)
ionosphere 87.85 82.39 80.86 79.17 88.71 80.99 (8) 86.04 (6) 88.68 (2) 87.52 (4) 87.38 (5)
mammography 10.43 10.17 9.97 10.39 10.39 9.77 (9) 9.25 (10) 10.63 (3) 64.57 (2) 67.33 (1)
new-thyroid 94.82 90.77 91.49 90.94 92.44 89.85 (9) 88.12 (10) 95.36 (3) 96.91 (1) 96.40 (2)
nursery 53.08 91.54 74.03 68.46 75.36 95.40 (3) 99.73 (1) 75.74 (6) 95.10 (4) 98.92 (2)
pima 63.03 63.43 63.28 64.26 63.69 63.01 (8) 62.24 (10) 62.39 (9) 65.82 (2) 66.04 (1)
postoperative 24.13 19.73 20.99 17.49 20.10 18.59 (8) 23.55 (4) 17.65 (9) 31.93 (2) 33.61 (1)
transfusion 45.78 45.39 45.92 46.84 46.15 45.33 (9) 39.12 (10) 46.06 (5) 47.08 (2) 50.02 (1)
vehicle 84.44 86.08 85.14 85.96 83.55 84.44 (8.5) 89.74 (2) 86.10 (3) 85.81 (6) 89.79 (1)
yeast 37.77 33.98 35.40 37.37 40.03 37.32 (7) 29.00 (10) 38.14 (4) 41.62 (1) 41.24 (2)
average rank 0.475 6.1 6.3 6.425 5.825 6.225 7.025 0.275 4.2 2.15
Friedman test Friedman’s chi-squared = 38.785, df = 9, p-value = 1.26 - 107

APV Finner 0.00066 0.00007 0.00004 0.00004 0.00019 0.00005 <1075 0.00124 0.03226 control

178 5. Experiments and results

5 (for ionosphere), 3 (for car, nursery), and 2 (for breast-w, hepatitis, new-thyroid,
vehicle, yeast). Thus, these results are a little bit worse than for the defF strategy
presented above. In particular, ranks for 4 data sets are worse, and for 1 — better.

Regardless of this fact, RIONIDA again achieved the best average rank (2.3). It
is smaller by 2.1 from the second-lowest average rank (4.4 for BRACID).

The Friedman statistical test again shows that there exist statistical differences
among compared algorithms (with p-value much less than 0.05). This enables us
to perform the post-hoc Finner test for comparisons with RIONIDA as the control
algorithm.

Again, all the adjusted p-values of the Finner procedure are less than 0.05. Thus,
we can again claim that RIONIDA is significantly better than any other algorithm
used in the comparison (for the optF strategy). Again, the highest p-value (around
0.03 for BRACID) is relatively close to the threshold of 0.05. The second-highest
p-value is for the kNN algorithm (with its optimal AF-learner), and it is smaller than
1073,

To sum up, for the optF strategy, RIONIDA achieves a little bit worse scores (in
relation to other algorithms) and ranks than for the defF strategy. However, the
statistical conclusion remains unchanged: RIONIDA is significantly better than any
other compared algorithm (for the optF strategy).

Maz strategy for F-measure (mazxF)

In Table 5.14, for each learning algorithm, the representative scores (for the mazF
strategy) for all used data sets are given. One can see from this table that for this
strategy, the RIONIDA algorithm wins with other algorithms 6 times. This is not
as good result as for the previous strategies (defF and optF, for which RIONIDA
wins 10 times). However, one can observe that no other algorithm achieves such a
result. The second best algorithms in this respect are kNN and MODLEM, which win
with all other algorithms 3 times. Let us also discuss, as earlier, the situations when
RIONIDA loses with an algorithm. In these cases, the difference between the best
score and the score of RIONIDA is: once above 17%, once above 11%, once above
10%, 3 times between 3%-5%, and 8 times below 1% (including 5 times below or equal
to 0.5%). For these cases, RIONIDA has the following ranks: 9 (for glass), 8 (for
abalone), 5 (for ionosphere and nursery), 4 (for car), 3 (for vehicle and yeast), 2 (for
breast-w, ecoli, haberman, hepatitis, mammography, new-thyroid, and postoperative).
Thus, these results are undoubtedly worse than those for the optF strategy (and
naturally worse than for defF). In particular, ranks for 10 data sets are worse (in one
of these cases, the difference in comparison to optl is 2, and in the other cases, the
difference is 1).

Regardless of this fact, RIONIDA again achieved the best average rank (2.85). It
is smaller by 1.6 from the second-lowest average rank (4.45 for kNN).

The Friedman statistical test again shows the statistical differences among
compared algorithms (with p-value much less than 0.05). This enables us to perform
the post-hoc Finner test for comparisons with RIONIDA as the control algorithm.

However, the results related to all the previous cases (defG, optG, mazG, defF,
and optF') concerning the p-values of the post-hoc Finner test are not repeated here.
In one case, namely for kNN, the p-value is higher than 0.09. Thus, we cannot
claim that RIONIDA is significantly better than kNN (for mazF strategy). On the
other hand, let us also recall the previous discussion in the two last subsubsections

6L1

Table 5.13: The values of F-measure (in %) for different algorithms and different data sets, for the optF strategy (additionally for RIONIDA ranks
are shown in parentheses). The RIONIDA algorithm was set to optimise F-measure (i.e. RIONIDAp was used). It should be noted that for both
RIONIDAr and BRACID, one default AF-learner was used. For the other learning algorithms, the optimal AF-learner was selected using the optF
strategy (and then it was used the same for all data sets). For each data set, the best-obtained score is shown in bold. At the bottom are shown: (i)
average rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman statistic, degrees of freedom, and p-value), and
(iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the optF strategy
(for RIONIDAF and BRACID, one default AF-learner was used — their scores are the same as in the defF strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDApg
abalone 25.74 37.82 38.90 40.79 30.02 39.34 37.51 26.58 37.37 32.35 (7)
balance-scale 11.25 19.72 2.17 0.28 13.82 0.00 0.50 9.17 18.35 34.30 (1)
breast-cancer ~ 44.78 41.30 41.57 43.44 44.31 45.24 43.74 43.05 45.52 52.17 (1)
breast-w 95.45 94.32 93.35 94.18 94.85 93.80 92.53 96.39 94.84 96.02 (2)
car 49.61 60.24 68.10 53.34 52.59 84.07 86.66 52.06 73.19 81.60 (3)
cleveland 33.44 38.57 26.09 38.13 31.55 23.20 15.71 35.01 33.36 44.31 (1)
credit-g 54.98 54.72 53.01 53.67 53.48 53.52 54.64 54.62 53.45 58.27 (1)
ecoli 59.22 58.01 62.76 60.65 59.52 61.64 53.05 58.40 59.87 68.36 (1)
glass 31.98 31.74 42.30 29.70 27.91 47.21 31.65 32.72 19.72 29.69 (8)
haberman 46.40 48.49 48.52 48.81 47.84 40.93 39.58 46.42 45.61 49.70 (1)
hepatitis 61.58 52.45 46.48 49.99 55.36 53.27 46.82 57.31 59.38 60.31 (2)
ionosphere 90.03 82.64 80.66 77.16 88.71 80.57 86.24 88.68 87.52 87.38 (5)
mammography 10.42 10.27 63.21 10.00 10.39 67.30 7.84 10.63 64.57 67.33 (1)
new-thyroid 94.97 91.20 90.82 90.05 92.44 92.30 89.57 95.36 96.91 96.40 (2)
nursery 55.94 92.56 72.88 72.76 75.36 99.42 99.73 75.74 95.10 98.92 (3)
pima 63.03 63.16 62.97 63.97 63.69 63.34 62.36 62.39 65.82 66.04 (1)
postoperative 24.13 16.65 19.96 18.02 20.10 17.43 20.67 17.65 31.93 33.61 (1)
transfusion 45.78 45.36 47.07 45.89 46.15 40.37 39.55 46.06 47.08 50.02 (1)
vehicle 84.44 86.72 86.42 86.85 83.55 89.57 90.07 86.10 85.81 89.79 (2)
yeast 38.72 34.62 37.15 39.87 40.03 34.21 28.59 38.14 41.62 41.24 (2)
average rank 5.5 6.1 6.3 6.1 5.8 5.7 7.05 5.75 4.4 2.3
Friedman test Friedman’s chi-squared = 33.611, df = 9, p-value = 0.0001045

APV Finner 0.00093 0.00022 0.00013 0.00022 0.00046 0.00049 0.00001 0.00047 0.02828 control

180 5. Experiments and results

of Subsection 5.2.6 (page 162). Thus, it is reasonable to expect that a potential
meta-learning algorithm for kNN (selecting for each data set the optimal AF-learner),
would achieve worse results than presented in Table 5.14. For the other compared
algorithms the p-values are less than 0.05 (for PART slightly above 0.01, and for all
other algorithms below 0.01).

To sum up, for the mazF strategy, RIONIDA achieves noticeably worse scores
(in relation to other algorithms) and ranks than for the optF strategy. However, the
statistical conclusion concerning comparisons with other algorithms remains nearly
unchanged: RIONIDA is significantly better than each of compared algorithms,
excluding kNN (for the mazF strategy).

181

Table 5.14: The values of F-measure (in %) for different algorithms and different data sets, for the mazF strategy (additionally for RIONIDA ranks
are shown in parentheses). The RIONIDA algorithm was set to optimise F-measure (i.e. RIONIDAp was used). It should be noted that for both
RIONIDAyr and BRACID, one default AF-learner was used (i.e. no filter and default parameters of the algorithm were used). For the other learning
algorithms, the vector of representative scores was generated using the maxzF strategy. For each data set, the best-obtained score is shown in bold.
At the bottom are shown: (i) average rank for each algorithm, (ii) important outcomes of the Friedman statistical test (Friedman statistic, degrees
of freedom, and p-value), and (iii) adjusted p-values (APV) with the Finner post-hoc test using RIONIDA as the control algorithm.

The vectors of representative scores for different learning algorithms generated with the maxF strategy
(for RIONIDAf and BRACID, one default AF-learner was used — their scores are the same as in the defF' strategy)

Data set kNN PART J48 RIPPER RISE MODLEM MODLEM-C RIONA BRACID RIONIDAg
abalone 26.85 38.88 40.17 43.40 32.58 41.16 37.86 26.58 37.37 32.35 (8)
balance-scale 23.91 19.81 4.22 4.40 13.82 2.77 0.50 9.17 18.35 34.30 (1)
breast-cancer 47.95 42.10 42.00 45.32 44.81 45.24 44.79 47.49 45.52 52.17 (1)
breast-w 95.75 94.32 93.69 94.18 95.39 93.80 92.65 96.39 94.84 96.02 (2)
car 50.49 91.76 76.43 67.12 68.37 88.34 88.34 77.18 73.19 81.60 (4)
cleveland 40.21 38.57 36.10 38.94 31.55 35.35 16.80 35.01 33.36 44.31 (1)
credit-g 54.98 54.72 54.35 53.68 53.48 54.61 54.64 54.62 53.45 58.27 (1)
ecoli 69.20 60.65 62.76 64.70 61.54 61.64 53.13 62.20 59.87 68.36 (2)
glass 32.87 40.55 42.86 33.62 29.86 47.21 31.89 35.68 19.72 29.69 (9)
haberman 46.72 48.61 49.00 48.81 47.84 50.06 40.52 46.42 45.61 49.70 (2)
hepatitis 64.27 53.86 52.80 49.99 55.36 53.27 46.90 57.31 59.38 60.31 (2)
ionosphere 90.65 86.76 85.32 85.81 91.12 87.08 87.08 89.19 87.52 87.38 (5)
mammography 65.52 60.84 63.30 65.02 67.83 67.30 62.26 60.84 64.57 67.33 (2)
new-thyroid 95.33 92.92 91.61 91.87 95.56 92.30 89.57 95.85 96.91 96.40 (2)
nursery 57.43 99.62 87.59 73.34 95.28 99.73 99.73 98.98 95.10 98.92 (5)
pima 63.43 63.48 63.34 64.26 63.69 63.34 62.74 62.39 65.82 66.04 (1)
postoperative 38.19 21.70 21.67 18.02 20.10 18.59 23.55 17.65 31.93 33.61 (2)
transfusion 46.10 48.95 47.67 46.84 46.15 45.33 40.18 46.06 47.08 50.02 (1)
vehicle 88.15 89.77 87.55 88.98 86.55 89.70 90.22 90.16 85.81 89.79 (3)
yeast 41.60 34.77 37.24 39.98 40.29 37.32 29.00 39.57 41.62 41.24 (3)
average rank 4.45 5.175 6.575 6 5.85 5.45 7.325 5.675 5.65 2.85
Friedman test Friedman’s chi-squared = 28.68, df = 9, p-value = 0.0007337

APV Finner 0.09469 0.01705 0.00045 0.00300 0.00388 0.00850 0.00003 0.00570 0.00570 control

182 5. Experiments and results

5.3.3 Conclusions for G-mean and F-measure

To sum up, we performed experiments to compare our new proposed RIONIDA
algorithm with the selected nine state-of-the-art algorithms with possible use of
two state-of-the-art filters. For each algorithm, we used a reasonable number
of AF-learners (variations of algorithms options and preprocessing filters). For
two algorithms, RIONIDA and BRACID, we used only one AF-learner (i.e. these
algorithms were always used with their default options and without filter).

We performed comparative experiments using two performance measures: G-mean
and F-measure. For each of these measures, we compared RIONIDA with other
algorithms using three strategies: def, opt and maz. On the one hand, the def
strategy is more appropriate for the algorithms with no variability in AF-learners,
in particular for BRACID. On the other hand, the strategies opt and maxz give an
advantage to the algorithms with more than one AF-learner.

For G-mean, it was shown that for any of the three strategies, RIONIDA
significantly outperforms any algorithm used in the comparison. For F-measure,
it was shown the same with one exception (for the mazF strategy and the kNN
algorithm; in this case, RIONIDA achieved better average rank than kNN but
we cannot claim that the difference between RIONIDA and kNN is statistically
significant).

It means that regardless of whether we use default settings of algorithms or
adjusted settings or even (potentially) learned settings by the meta-learning scheme,
RIONIDA outperforms significantly any of these algorithms (with one mentioned
exception) for the chosen set of real-life data sets. These obtained experimental
results seem to be exceptionally good. Taking into account the thorough preparation
of experiments (see Subsections 5.1.1-5.1.5 and Subsections 2.6.1-2.6.5), the presented
results indicate that the newly presented RIONIDA algorithm most likely will be
also competitive with these algorithms for other real-life classification tasks with
imbalanced data.

From the performed experiments, it also follows that the RIONIDA algorithm
can adapt to different performance measures (at least the two of them) very well.
Thus, we may suppose that the presented results would extend for other performance
measures based on the confusion matrix. This would make the RIONIDA algorithm
very universal with a possibility e.g. to embed into it any such performance measure
defined by a user for a particular classification task.

5.4 Additional comments on experiments

In this section, we present some additional comments on the performed experiments,
which can help to understand why the RIONIDA algorithm outperforms some
well-known methods dealing with imbalanced data. At the same time, we explain
some advantages of RIONIDA. The included comments are presented to give the
readers better intuition about RIONIDA performance and its quality rather than all
details. This is done to make the presentation more compact. Finally, we analyse
the real running time of RIONIDA, which was measured during the experiments
presented in the previous section. In particular, we present a comparison of it with

5.4 Additional comments on experiments 183

other algorithms used in the experiments.

5.4.1 Studying the role of RIONIDA components

The key component of RIONIDA is the estimation of its performance for each
possible triple of internal parameters (k,p,s) € K x P x S (see Section 4.4; also see
Subsection 4.6.2). The analysis of the significance of all these parameters k, p, s was
done after performing the comparative experiments. However, this analysis (using
the whole available data sets) was presented earlier in Chapter 4 while presenting
the RIONIDA algorithm. The significance of the parameters k, p, s was shown in
Subsections 4.3.2, 4.3.3, 4.3.5, respectively. The estimation of the optimal values of
these parameters is done very precisely in the learning phase since the validation
process is performed by the leave-one-out method on the whole training set. Thus,
in a sense, the full information for the given training set is used in the process of
tuning these internal parameters. It is worth mentioning that the time complexity of
this process is relatively low due to using the dynamic programming technique. All
this means that the RIONIDA algorithm can learn the relevant values of its internal
parameters very efficiently and precisely (and so proves to be highly effective). In
our opinion, this is one of the main advantages of the RIONIDA algorithm.

5.4.2 The balance-scale data set and outliers

Out of the data sets used in the experiments, we would like to turn out the readers’
attention to the balance-scale data set. For most of the objects from the minority
class of this data set, the objects closest to them belong to the majority class. Such
objects are called outliers (see Subsection 2.4.3). In other words, in the considered
data set, most of the objects from the minority class are outliers. This is the reason
why this data set is considered as a very hard imbalanced learning problem in [154].

Also, we performed separate experiments for RIONIDA with the fixed parameter
s = 1.0 (which relates to the pure rule-based approach). In this case, for the minority
class, generally, no (consistent) rules were found. The fact that most of the objects
are outliers explains this fact. It also provides an intuition why algorithms which use
standard rules can construct classifiers with poor quality for such data sets.

However, RIONIDA in most of the cross-validation splits (in a quite stable way
— see next subsubsection) finds the optimal value s = 0.5. This corresponds to the
situation that original rules may be inconsistent, but after changing the coverage
region of the rule by half are becoming consistent. Generally, if we take into account
objects from the minority class, the rules with decreasing value of the parameter s
enable us to increase the Sensitivity of the rule.

It is an example illustrating that the RIONIDA algorithm can deal with data sets
containing many outliers. This fact can be regarded as a powerful advantage of the
RIONIDA algorithm.

184 5. Experiments and results

5.4.3 Analysis of the optimal values of parameters obtained
in the learning phase of RIONIDA

During the experiments presented in the previous section, we saved the internally
learned optimal values of the parameters k, p, and s obtained during the learning
phase in different runs of the performed experiments (10 times repeated 10-fold
stratified cross-validation process) for RIONIDA. Thus, we obtained 100 triples of
the optimal parameter values.

It can be informative to check for particular data sets whether the learned optimal
parameters are ‘stable’ in different runs of RIONIDA. This can be relevant for at least
three reasons.

First, stability (of one or more parameter) for a fixed domain may indicate that
specific values of parameters are appropriate globally for all objects from that domain.
This may mean that for future additional training (currently unknown) objects from
that domain no further learning of (one or more) parameters is needed. Also, small
fluctuations of (one or more) optimal values of parameters may indicate that for
future training objects (currently unknown) from that domain the learning could
be limited to a smaller range of some (one or more) parameters. Such limitation
can influence the learning time and space allocations of the algorithm. This can be
essential for scalability of the RIONIDA algorithm. For example, this can be crucial
for the application of RIONIDA to so-called big data (see e.g. [61]). In the considered
case of stability of parameters, learning of the optimal parameters could be done for
a relatively small part of the data set (see Section 6.2).

Second, the stability of (one or more) parameter can be an argument for the
quality of the obtained classifier. The more stable optimal value of the parameter is,
the more reliable resulting classifier can be regarded as.

Third, in case of stability (of one or more parameters), the values of stable
parameters may be a kind of description of a domain. For example, a domain can
be described as ‘more appropriate for rule-based methods’ or ‘more appropriate for
instance-based methods’.

In Table 5.15, we present the averages and standard deviations of the optimal
values of the parameters k, p, and s obtained in the mentioned experiments for
RIONIDA (for both RIONIDAg and RIONIDAg). In the current analysis, we
focus on RIONIDAg, and therefore RIONIDA will refer to this setting. In current
considerations, the most interesting for us is the standard deviation. In this case, the
small value of this measure means that in most (or all) runs of RIONIDA the learned
optimal values of parameter were similar (or even equal).

Let us describe some conclusions for a few exemplary data sets and information
from this table (and also from direct observations of the learned optimal values of
parameters).

For balance-scale data set, the learned optimal parameters seem ‘the most stable’.
In all runs of RIONIDA, the learned optimal values of the parameters k£ and s were
equal to 9 and 0.5, respectively. The learned optimal value of the parameter p was
around value 0.1. It was equal to 0.08 (15 times), 0.09 (31), 0.1 (8), 0.11 (11), 0.12
(34), or 0.13 (1 time).

For hepatitis, ionosphere, transfusion, and vehicle data sets the learned optimal

5.4 Additional comments on experiments 185

Table 5.15: Table presenting fluctuations of optimal values of parameters k, p, s among
different runs (different splits in the cross-validation schemes) of RIONIDA (RIONIDAq
and RIONIDAF) for each data set used in experiments. Averages and standard deviations
of optimal parameters k, p, and s are rounded to integers, two decimals, and one decimal,
respectively.

RIONIDAg RIONIDAFR
Averages and standard deviations of optimal parameters
Data set k p s ‘ k p S
abalone 76+£23 0.08+0.01 0940.1]53+21 0.15£0.02 1.0£0.1

balance-scale 9+0 0.10£0.02 0.5%0.0 9+1 0.13£0.02 0.5%0.0
breast-cancer 67+22 0.2840.03 02+03]67+£21 0.28+0.03 0.2+0.3

breast-w 1622 0.124£0.09 -0.1+£0.1 | 17£23 0.13£0.09 -0.1£0.1
car 33+£29 0.18+£0.14 04+£04 |59£37 0.24+0.12 0.8+0.4
cleveland 6222 0.12+0.02 04+£06|81+t14 0.16£0.02 0.8=£0.4
credit-g 6219 030+£0.02 06+04]60£19 030£0.02 0.6=£0.4
ecoli 81£28 0.264+£0.03 0.7+£03|27+11 037£0.03 0.7£04
glass 12£8 0.08£0.05 02+04| 4£5 0.07£0.11 0.0£0.2
haberman 81+18 0.19+£0.03 06+£0.2 | 80£16 0.18+£0.03 0.6+0.2
hepatitis 35+14 0.14+£0.03 -0.1+£0.0 | 31£17 0.18+0.06 -0.1+0.1
ionosphere 73 0.02+£003 -01£00| 7£3 0.06+£0.06 -0.1+0.0

mammography 73+31 0.03£0.01 0.8£03| 8+3 026004 0.1+£04
new-thyroid 67+22 0.11+£0.03 -01+£0.1]66£22 0.11+£0.03 -0.1+£0.1

nursery 33+£33 0.23+£0.13 08+£0.5|27£35 0.17+£0.17 0.5+0.6
pima 44421 0.32+£0.03 08+£04|60£20 0.294+0.03 0.8+0.4
postoperative 13+12 0.19£0.09 03=£05 | 1712 0.16+£0.08 0.0+0.3
transfusion 28415 0.24£0.02 -0.1£0.0|31+14 0.28+£0.04 -0.1£0.0
vehicle 6+3 021+£0.13 -01+£00| 4£3 0.28+0.19 -01+0.0
yeast 04+19 0.03+0.01 1.0+£0.1 |37£21 0.21+£0.03 0.6+0.5

parameter s in all considered runs of RIONIDA was constant and equal to —0.1.
As s = —0.1 corresponds to the pure instance-based method in RIONIDA (see
Subsection 4.3.5), one can describe these data sets as ‘more appropriate for
instance-based methods’. For new-thyroid data set the value of the optimal parameter
s can be considered as very stable (98 times it was equal to —0.1, once to 0.5, and
once to 0.9). Also, for breast-w data set, the value of the optimal parameter s can
be considered as very stable (99 times it was equal to —0.1, and once to 1.0). Hence,
these two data sets can also be described as ‘more appropriate for instance-based
methods’.

On the other hand, yeast data set has a very stable value of the optimal parameter
s around value 1.0. It was equal to 1.0 in 98 cases, 0.5 in one case, and 0.7 in one
case. As s = 1.0 corresponds to the pure rule-based method in RIONIDA (see
Subsection 4.3.5), this data set can be described as ‘more appropriate for rule-based
methods’. For abalone data set the value of the optimal parameter s can be considered
as very stable around value 0.9. It was equal to 1 (81 times), 0.9 (5), 0.8 (3), 0.7 (7),

186 5. Experiments and results

0.6 (1), 0.5 (1), 0.4 (1), or 0.3 (1 time). Also, this data set can be described as ‘more
appropriate for rule-based methods’.

As it was mentioned, for balance-scale data set, the value of the optimal parameter
s was constant for all considered runs of RIONIDA and was equal to 0.5. It is an
interesting example for the data set which can be described as ‘data set appropriate
for methods between instance- and rule-based methods’. Another example of such a
case is haberman data set. Its optimal value of the parameter s was around value 0.6.
It was equal to 0.6 (28 times), 0.5 (20), 0.7 (2), 0.4 (5), 0.8 (4), 0.3 (9), 0.9 (28), and
0.2 (4 times). See also Subsection 4.3.5 for considerations on haberman data set (and
Figures 4.12, 4.13, 4.14) taking into account the whole available data and dependence
of G-mean on the parameter s.

Now, let us take into account the fluctuations of the optimal values of the
parameter p. As can be seen in Table 5.15, for most of the considered data sets, this
value has a relatively small standard deviation (for yeast, abalone, mammography,
balance-scale, credit-g, cleveland, transfusion, breast-cancer, hepatitis, haberman,
new-thyroid, ionosphere, pima, and ecoli data sets). In these cases, the learned
optimal value of the parameter p can be considered as stable.

What about the cases when the optimal values of parameters are unstable? These
could be investigated in two directions.

First, one could check how fluctuations of the optimal values of parameter change
the value of considered performance measure. This issue was somehow investigated
globally (for the whole data sets) in Subsections 4.3.2, 4.3.3, 4.3.5. However, further
investigation could be done (see Section 6.2).

Second, such fluctuations may suggest that searching not globally but locally for
the optimal values of parameters (separately for different regions of a considered
domain) could potentially increase the quality of RIONIDA performance (see
Section 6.2).

Let us now concentrate on the average value of the optimal parameter p from
Table 5.15. Tt should be noted that for many considered data sets (11 out of 20)
this value is very close to the percentage of the minority class in the data set (see
Table 5.1). (Moreover, for these 11 data sets except breast-cancer these differences
are less than the standard deviation of the value of the optimal parameter p.) The
distance between these two values is:

e less than 1% for glass, yeast, credit-g, mammography, transfusion, abalone, and
cleveland data sets;

e less than 3% for breast-cancer, balance-scale, pima, and vehicle data sets.

The presented observations are consistent with Theorem 4.1, formulated and proved
in the thesis. This fact could be used in future research for using the default candidate
for the optimal value of the parameter p. This fact could also be used to search for
the optimal value of this parameter around the default value (see Section 6.2). Such
an approach could be especially useful for big data sets.

On the other hand, it should be noted that there exist a few data sets for which the
difference between the average optimal value of the parameter p and the percentage
of the minority class in data set is relatively high: ionosphere (approximately 34%

5.4 Additional comments on experiments 187

of difference), breast-w (22%), nursery (20%), ecoli (15%). This fact proves the
usefulness of learning of the optimal value of the parameter p in general (see also
Subsection 4.3.3).

5.4.4 Analysis of running time of RIONIDA

In Subsection 4.5.2, we calculated the time complexity of the learning phase of
RIONIDA. Here, we check whether the time of learning phase in practice reaches
the (pessimistic) theoretical time complexity. In the performed experiments, the
number of conditional attributes was relatively small (from 4 to 34). Also, the sets
P and S (i.e. sets of admissible values of the parameters p, s) are constant in our
comparative experiment. Thus we omit these three factors in the analysis of the time
of learning phase. In the performed experiments, the number of objects in data sets
was varying from 90 to 12960 examples in total. We make the running time analysis
only for this factor.

Figure 5.8 presents the relationship between the size of the data set and the
learning phase duration of RIONIDA. Each data set is represented on this figure by
point (x,y), where x = number of examples in data set, y = time of learning phase.

time of learning S
300,0 mammography \
) : 9 dataset P
£ 2500 L =
= *
=
wv
2 2000
[=11]
ic
vy
f. —
& 1500 == _‘ﬁ/ ™
& ~~ mammography . nursery
E (data set with) dataset /
1000 /' F,
2 ~.__removed zeros _~)
= o P
) \
*
.§ 50,0
=
u
[=11]
=
g 0,0 /
© a 2000 4000 6000) 10000 12000 14000

size of data set

Figure 5.8: Dependence of the learning phase duration of RIONIDA (in seconds) on the
size of data set (i.e. the number of objects in data set). The figure presents the average time
of learning phase of RIONIDA for a single split in the 10-fold stratified cross-validation. In
any split, the training set contains roughly 90% of the data set.

First, let us exclude from our considerations the mammography data set (we
discuss this case below). In this context, it is visible, that the points roughly
lay on the straight line. At first glance, it is a surprising observation since the
(pessimistic) theoretical time complexity is a quadratic function of the number of
training examples. Below we explain it and add further comments.

188 5. Experiments and results

Let us recall that the time complexity of the learning phase is O(mn? + n|S| -
Emaz - (Mkmaz + | P)), where n = |trnSet|, m = |A|, kmnae is the parameter used to
define the maximal size of the neighbourhood to be analysed (ky.. = |K|), P, S
are sets of admissible values of the parameters p, s, respectively (see Theorem 4.3
in Subsection 4.5.2). In our primary experiments |P| < mkp., holds, and as a
consequence, the time complexity is O(m(n?+n|S|-k2,,,)). For the data sets used in
our experiments n < 13000. Since in our primary experiments |S| = 12, k0, = 100,
then n? < n|S|-k2,,. In other words, for the used data sets and settings, the factor
n|S| - k2. is dominant over the factor n?. This fact explains the observed in the
performed experiments the ‘linearity’ of the time of learning phase relative to n. The
quadratic factor will become dominant for n > 120000.

On the other hand, the quadratic time complexity relates to the searching for
Kmmae nearest objects to the considered training example (or more objects in the
specific situation described in Definition 2.14) among n objects (see Subsection 4.5.2).
We assumed that this operation could be done in the linear time relative to n (see
Subsections 4.5.2, 3.4.1). However, in our implementation, we use indexing trees for
speeding up this operation (see Subsection 3.6.1). It was experimentally shown in
[219, pp.77-78| that by using indexing trees: (1) this operation is faster than linear,
(2) the acceleration (of this operation) significantly grows with growing n. Also, it was
(experimentally) shown that the time of constructing indexing trees is significantly
shorter than the time of (multiple) searching of nearest neighbours in a data set.
All these facts were not analysed theoretically; thus, we can only say that in our
implementation, instead of factor n?, occurs a factor with time complexity between
linear and quadratic. This fact appears promising in the context of a potential need
for scalability of RIONIDA.

Let us return to the case of the mammography data set. It is visible in the
presented figure that for this data set the learning phase is a few times higher
than for the nursery data set with a larger size of data set. This is due to two
reasons. First, the neighbourhood N may contain more objects than k (for the specific
situation described in Definition 2.14). Second, mammography data set contains a
large number of objects described with the same values of attributes (precisely 3329
objects described by zeros for all conditional attributes; most of them belong to the
majority class and 7 of them to the minority class); consequently, the neighbourhood
N contains much more objects than k (around 30% of neighbourhoods contain around
0.3-n objects). It seems that these objects are kind of artefacts and should be removed
from the data set before analysis. However, we use this data set analogously as it
was done in [37] and subsequent papers'®.

Only for the sake of this subsection, we performed an additional experiment
for RIONIDA and mammography data set with all objects described by zeros in
conditional attributes removed (it is also presented and described on the figure). The
performed experiment shows that for such modified data set the time of learning
phase significantly decreases and confirms the roughly linear time of learning phase
relative to the size of the training set (at least for the considered data sets).

We also analysed the testing time of a single object for each data set. The average
time of testing of a single object for different data sets was between 0.03ms and 0.35ms

10Also, prof. Nitesh Chawla, one of the co-authors of [37] suggested me using this data set as is.

5.4 Additional comments on experiments 189

(parts of milliseconds) and 15.16 ms for mammography data set.

First, let us again exclude from our considerations the mammography data set
(we discuss this case below). We observed that the average time of testing of a single
object for the larger data sets used in our experiments (abalone and nursery) is
comparable to the case for the smaller data sets. Thus, we repeated the experiments
without using indexing trees to check whether significant acceleration is achieved by
using this specialised data structure.

Figure 5.9 shows'' the average time of testing of a single object for (1) standard
version of RIONIDA with use of indexing trees, and (2) version of RIONIDA without
using indexing trees. In the case without using indexing trees, one can observe the
roughly linear dependence of the average time of testing of a single object on the
size of data sets. This observation is consistent with the theoretical time complexity
of testing operation for RIONIDA (see Subsection 4.5.1). On the other hand, for
the version with the use of indexing trees, one can observe variability between two
constant values. The plot in this figure suggests dependence close to a constant value.
However, we must admit that we used rather small data sets to draw any far-reaching
conclusions about the (experimental) dependence of the average time of testing of a
single object (for RIONIDA) on the size of data sets. Regardless, this shows that
even for data sets used in our experiments, which are relatively small, the significant
acceleration of the testing phase for RIONIDA by using indexing trees is achieved.
This is a promising fact for attempting to analyse big data sets.

Taking into account the above considerations, let us come back shortly to the
case of the time of learning phase. It should be noted that for the testing phase,
the operation of searching for nearest objects is dominant. As it was mentioned,
this (repeated) operation will become dominant for larger data sets also in the
learning phase. If this operation for larger data sets would also take time close
to constant, it would strongly affect the time complexity of the learning phase. Thus,
the observations for the considered data sets justify the mentioned supposition that,
for the learning phase, the practical time complexity can be close to linear. To be
more precise, this issue needs further investigation in the future (see Section 6.2).

Let us return to the case of the mammography data set. For example, the testing
phase for this data set takes around 210 times more than for the nursery data set with
the larger size of data set. The reason for this fact is analogous to the one discussed
above for the learning phase. Here, we see that the effect of large neighbourhoods
can slow down the testing phase of RIONIDA far more.

As it was mentioned in Subsection 3.3.2, one could consider dedicated data
structures for grouping objects with identical attribute values for speeding up
searching for the neighbourhood N in such situations as described above for the
mammography data set (see Section 6.2).

Finally, we compare the time of computations for different learning algorithms.
As an example, we use AF-learners (combinations of algorithms and filters) presented
in Table 5.8 (the optimal AF-learners for the optG strategy) on page 168. Thus, in

H'This experiment was performed on another computer than the other experiments presented in
the thesis. Thus the absolute values of times can differ with other presented data or experiments
using time factor. However, our desire is to recognise the relative difference between the times for
considered two cases.

190 5. Experiments and results

time of testing with (and without) indexing trees
= 0,09
(%]
£
BN @
=
3 0,07
2
=]
o 0,06
&
'E 0,05
.,E ' 4 with indexing trees
B0 6o (standard use)
=i - . e
E B without indexing trees
E" 0,03 L
“6 Y
@ 002
E n C .
@ 0,01 -‘-‘.
[
= I :
g 0 : : . . : : !
m o 2000 4000 6000 2000 10000 12000 14000

size of data set

Figure 5.9: Dependence of the average time of testing of a single object (in milliseconds)
on the size of data set (number of objects in data set) for: (1) standard version of RIONIDA
with use of indexing trees, and (2) version of RIONIDA without using indexing trees.

particular, MODLEM, BRACID, RIONIDA are used without filtering; MODLEM-C
— with the SMOTE filter; and the remaining learning algorithms — with SMOTE+ENN.

First, we present the time of learning phase (generally the most time-consuming
phase). We computed the average training time for a single split in the 10-fold
stratified cross-validation for each learning algorithm used in the comparative
experiments. We summed these values for all data sets used in the experiments
excluding mammography data set (due to described above repetitions of objects in
it). During computations separately were computed: (1) time of preprocessing of
data sets (using filters) and (2) pure learning time of the learning algorithm.

In Figure 5.10, we present the time of learning phase for each learning algorithm
computed in above mentioned way. In this figure, we distinguish the mentioned
preprocessing time and pure learning time. Learning algorithms which do not use
filtering (MODLEM-C, BRACID, RIONIDA) have no visible time of filtering part of
the learning phase. However, also the MODLEM algorithm has insignificant (in time)
filtering part. This is due to the use of SMOTE filter, much faster than SMOTE+ENN. From
this figure, we can conclude that on average training time of RIONIDA is comparable
to other algorithms. Here, RIONIDA is in the second place, after MODLEM-C (which
performs a few times faster)'?. Moreover, it is worth recalling that the learning phase
of the used in experiments implementation of RIONIDA can be accelerated a few
times (see Subsection 4.5.3).

12In the case without excluding mammography data set, RIONIDA would be on the one before
last place. However, as it was mentioned above it is possible to accelerate RIONIDA for such data
sets.

5.4 Additional comments on experiments 191

time of training for different learning algorihtms

450

400
350
o 300
£ M training by learning
';' 250 algorithm
n m filtering (in training
£ 2001 phase)
féﬂ 150
= _
=
% 100
o
E =
=
0~ T T T T T - T T T
A :
SR A R K R R)
] QS <& N ¥ >
O Q¥ T 9 O
N\ © O

Figure 5.10: Summed (for all data sets used in experiments excluding mammography)
average times of the training phase for single split in 10-fold stratified cross-validation (in
seconds) for each learning algorithm used in experiments. In any split, the training set
contains roughly 90% of the data set. Two times are distinguished: filtering (as the first
part of the training phase), training by learning algorithm (as the second part of the training
phase).

192 5. Experiments and results

time of testing (in logarithmic scale) for different learning algorithms

100000

10000

1000

100
m I I I
i . l : I
A)
&) \(5,

%‘Q \

time of testing [in ms] in logarithmic scale

\\\; +
A o@f" S §

0’0
A

Figure 5.11: Summed (for all data sets used in experiments excluding mammography)
average times of the testing phase for single split in 10-fold stratified cross-validation (in
logarithmic scale, in milliseconds) for each learning algorithm used in experiments. In any
split, the testing set contains roughly the one-tenth part of data set.

In Figure 5.11, we present time of testing phase for each learning algorithm
(computed analogously as for training phase). RIONIDA is on the seventh place by
means of testing time. It is around 50 times slower than PART, J48, and RIPPER
algorithms; around 4 times slower than MODLEM, MODLEM-C, and RIONA. On
the other hand, it is more than 150 times faster than kNN, and a few times faster
than RISE and BRACID.

Taking into account that usually training phase is dominant, the RIONIDA
algorithm on average has a comparable time of computations to the other AF-learners
used in the experiments.

5.5 Additional experiments and their analysis

In this section, we present the results of some additional experiments. First, we
analyse the use of RIONIDA, with filters dedicated to imbalanced data, in order
to check whether RIONIDA realises the power of filters. Second, we present a
more deep comparison of RIONIDA and RIONA (with different filters). Third,
we present a more deep comparison of RIONIDA and BRACID. In the last three
subsections, we present many additional experiments performed which possibly could
lead to the improvement of RIONIDA quality. We used both the settings that are
specific to RIONIDA (Subsection 5.5.4) and adopted from RIONA (Subsection 5.5.5).
Moreover, we used (additionally implemented) modified versions of RIONIDA
(Subsection 5.5.6).

5.5 Additional experiments and their analysis 193

In order to bound the length of the dissertation, we only present here the results
in a compact way, without detailed analysis, e.g. statistical analysis. The aim
is, in particular, to give the readers some intuition, whether some extensions or
modifications in RIONIDA can improve its performance.

5.5.1 RIONIDA with filters

In the presented experiments, we applied learning algorithms dedicated to balanced
data to the results of sampling methods (filters) dedicated to imbalanced data. We
used two types of well-known filters. Let us recall that while designing comparative
experiments, we assumed that such filters can not improve the quality of algorithms
dedicated to imbalanced data (hence, such filters were not used in the mentioned
context).

Here, we report the results of additional experiments checking whether this
assumption actually holds in case of RIONIDA and BRACID. As an example,
we present details of such a comparison for G-mean as the performance measure.
We present detailed results of the combination of RIONIDA with all filters used
in comparative experiments. Additionally to G-mean, we present Sensitivity and
Specificity (i.e. the components of G-mean measure) obtained by RIONIDA without
filters and with two filters used previously in the comparative experiments.

All these results are presented in Table 5.16. They show that for both filters,
for all but one data set, the performance of RIONIDA worsens (corresponding to
negative values in the table); in most cases by more than 1%. The worsening is
mainly because of worsening of Sensitivity (in all cases for SMOTE and most cases for
SMOTE+ENN). These results are understandable since by using filters, the algorithm is
receiving as input the balanced training set, but the testing set is imbalanced.

The conclusion which follows from this experiment is that filters do not improve
the quality of RIONIDA significantly. However, for example, such filters improved
quality of BRACID for some data sets. Instead of presenting detailed experiments
with resulting tables for BRACID, we present some exemplary results in this context.
For SMOTE+ENN filter the obtained improvement (in G-mean) was greater than 1% for
the following data sets: abalone (improvement of 3.71%), cleveland (5.42%), ecoli
(1.38%), glass (26.35%), yeast (2.95%). For SMOTE filter the obtained improvement
was greater than 1% for the following data sets: abalone (5.62%), ecoli (3.07%),
glass (21.40%), mammography (4.55%), yeast (improvement of 1.07%). At the same
time, as it was expected, for most data sets, the worsening was observed (both for
SMOTE+ENN and SMOTE).

In the context of presented results, we can (roughly) conclude that RIONIDA
realises the power of filters dedicated to imbalanced data and does much more for
the relevant classification of imbalanced data.

5.5.2 Additional comparison of RIONIDA with RIONA

The analysis of comparative experiments in Section 5.3 showed that RIONIDA is
significantly better than RIONA relative to G-mean as well as F-measure for all 3
considered strategies. Here, as an example, we present a more detailed comparison of

194 5. Experiments and results

Table 5.16: The values of G-mean (in parenthesis Sensitivity, and Specificity) for
RIONIDAG and the difference of these factors between RIONIDAg with different filters
and RIONIDA¢ (without filter) for each data set used in experiments. These values are
given in % and rounded to one decimal point. The changes above 1% are shown in bold. The
changes below -1% are shown in bold and red. At the bottom, the averages of differences
for all used data sets are also given.

G-mean (Sensitivity, Specificity)

Values for Differences between
RIONIDA RIONIDA with a filter and RIONIDA

Data set (with no filter) SMOTE+ENN SMOTE
abalone 67.9 (67.8, 68.1) -8.0 (-25.3, 16.5) -7.6 (-23.7, 14.3)
balance-scale 77.0 (82.7, 71.8) -42.3 (-68.4, 12.9) -64.7 (-79.4, 16.2)
breast-cancer 65.0 (59.9, 70.5) -8 0(-9.5, -6.0) -4.1(-8.6, 1.8)
breast-w 97.5 (98.6, 96.5) 2(05, -01) -05(-1.3, 0.2)
car 96.7 (97.1, 96.4) -15 7 (287, 0.2) 2.6 (-4.8, -0.4)
cleveland 76.4 (78.6, 74.3) -10.3 (- 23 7 5.6) -19.3 (-39.7, 10.0)
credit-g 60.9 (71.6, 68.3) -3.6 (-1.7, -5.4) -5.3 (-15.5, 6.2)
ecoli 88.8 (8.7, 87.9) -2.2 (-3 7 0.8) -7.1(-16.3, 3.2)
glass 69.3 (68.2, 70.5) -2.0 (-15.3, 15.2) -3.2 (-18.2, 17.0)
haberman 65.4 (68.9, 62.1) -5.3 (1.6,-10.8) -9.8 (-19.6, 0.7)
hepatitis 79.0 (78.1, 79.9) -5.0 (- 13 1 4.5) -4.8 (-13.8, 5.8)
ionosphere 90.9 (89.3,92.5) -0.5(- 3.7 -04(-5.1, 4.7)
mammography 89.7 (85.1, 94.5) -14 8 (- -26.8) 0.2 (-2.2, 2.0)
new-thyroid 98.9 (99.1, 98.7) 0 (06 0.6) -0.5(-0.9, -0.2)
nursery 99.9 (99.9, 99.9) -8 7(-15.9. -0.9) -1.9(-3.0, -0.8)
pima 72.9 (76.0, 69.9) -6.3 (10.8,-18.9) -5.7 (-6.3, -5.3)
postoperative 43.7 (39.2, 49.5) -10.0 (-17.9, 6.4) -10.6 (-20.0, 8.6)
transfusion 67.6 (66.1, 69.2) -4.4(6.6,-14.1) -8.3 (-11.2, -5.1)
vehicle 95.1 (97.4,92.9) 0.6 (1.0, -2.1) 0.1(-2.1, 2.2)
yeast 85.0 (87.3, 82.7) -8.9 (-25.9, 11.5) -7.0 (-22.2, 10.8)

Averages of differences: -7.8 (-11.8, -0.5) -8.2 (-15.7, 4.6)

5.5 Additional experiments and their analysis 195

these algorithms for G-mean performance measure. In this comparison, we present
results of combining RIONA with all filters used in these experiments. Moreover, we
use values of both Sensitivity and Specificity (i.e. the components of G-mean measure)
obtained in comparative experiments by the considered algorithms. Certainly, the
higher the values of Sensitivity and Specificity are, the better quality of the classifier
is. In Table 5.17, all these results are presented.

961

Table 5.17: The values of G-mean (in parenthesis Sensitivity, and Specificity) for RIONIDAg and the difference of these factors between RIONA
with different filters and RIONIDA((for each data set used in experiments). These values are given in % and rounded to one decimal point. The
changes above 1% are shown in bold. The changes below -1% are shown in bold and red. At the bottom, the averages of differences for all used data
sets are also given.

G-mean (Sensitivity, Specificity)
Differences between RIONA with a filter

Values for and RIONIDA (with no filter)
RIONIDA RIONA with RIONA with RIONA with

Data set (with no filter) no filter SMOTE+ENN SMOTE
abalone 67.9 (67.8, 68.1) -31.0 (-54.1, 31.4) -8.0 (-25.4, 16.5) -9.7 (-27.7, 16.3)
balance-scale 77.0 (82.7,71.8) -77.0 (-82.7, 28.2) -43.7 (- 69 6 13.5) -75.6 (-82.4, 17.9)
breast-cancer 65.0 (59.9, 70.5) -11.6 (-28.2, 19 8) —8 1(-8.9, -6.9) -4.0(-6.7, -0.5)
breast-w 97.5 (98.6,96.4) -1.5 (-3.7, 0.7) 3 (0 4 02) -0.1(-04, 02)
car 96.7 (97.1, 96.4) -11.4 (-23.8, 2.9) -16 4(-29.9. 0.2) -12.7 (-24.6, 1.2)
cleveland 76.4 (8.6, 7T4.3) -76.4 (-78.6, 25.5) -11.1 (- 25 4 6.1) -20.6 (-41.7, 10.7)
credit-g 60.9 (71.6, 68.3) -16.2 (-40.5,24.7) -3.5 (-1.2, -5.7) -5.4 (-15.3, 5.7)
ecoli 88.8 (89.7, 87.9) -15.1 (-33.7, 9.3) -2.1(- 0.6) -7.5(-17.4, 3.6)
glass 69.3 (68.2, 70.5) -63.5 (-66.5, 28.2) -2.5 (- 15 9 15.0) -1.6 (-15.9, 17.3)
haberman 65.4 (68.9, 62.1) -29.8 (-55.1,29.7) -5.6 (4.1,-13.0) -4.4 (-3.5, -5.2)
hepatitis 79.0 (78.1, 79.9) -17.6 (-38.4, 15 3) -5.5 (- 14 4 4.8) -6.9 (-17.2, 5.4)
ionosphere 90.9 (89.3, 92.5) -3.6 (-11.7, 5.6) -0.5(- 4.0) -0.3(-4.8, 4.7)
mammography 89.7 (85.1, 94.5) -17.6 (-32.8, 4.9) —15 5(- —26.4) -16.1 (-5.5, -26.5)
new-thyroid ~ 98.9 (99.1, 98.7) -1.5 (-3 1 0.2) 0 (0.6, 0.6) -02(-0.3, -0.2)
nursery 99.9 (99.9, 99.9) 0.3 (- 0.0) -11 2(-20.5, 0.7) -5.1(-9.5, -0.4)
pima 72.9 (76.0, 69.9) -9.0 (- 31 2 21.1) -6.3 (10.8, -18.9) -5.7 (-6.3, -5.3)
postoperative 43.7 (39.2, 49.5) -15.2 (-27.9, 34.1) -9.6 (-17.5, 6.4) -10.7 (-20.4, 8.9)
transfusion 67.6 (66.1, 69.2) -18.2 (-38.3, 18 9) -43(7.1,-144) -9.1(1.5,-18.5)
vehicle 05.1 (97.4,92.9) 0.8 (-4.8, 3.1) -0.6(1.0, -2.1) 0.1 (-2.1, 2.2)
yeast $5.0 (87.3. 82.7) -56.9 (-79.2, 17.1) -9.0 (-26.1, 11.6) -10.1 (-28.2. 12.3)

Averages of differences: -23.7 (-36.7, 16.0) -8.2 (-12.2, -0.6) -10.3 (-16.4, 2.5)

5.5 Additional experiments and their analysis 197

From the presented results, some meaningful conclusions follow.

First, for RIONIDA, the factors Sensitivity and Specificity are quite close. This
shows that RIONIDA is balancing well these two components of G-mean.

Second, for the three used filters (including the trivial one) G-mean for RIONA
is worse than RIONIDA for all or almost all of the used data sets. This explains
why RIONIDA outperforms RIONA in the above-mentioned main comparative
experiment (even for the mazG strategy).

Third, for RIONA with no filter, Sensitivity is worse for all but one data set;
however, Specificity is better for all data sets (for nursery it is, in fact, around
0.05, greater than 0%). Such a performance is typical for the algorithm dedicated
to balanced data when they are used for imbalanced data, i.e. high Specificity with
relatively low Sensitivity.

Fourth, the outperforming of RIONA by RIONIDA is not only related to better
balancing between Sensitivity and Specificity by RIONIDA. For both filters SMOTE
and SMOTE+ENN, for a few data sets, RIONA is worse than RIONIDA on Sensitivity
as well as Specificity (this is discussed in more detail below). Also, for both filters
SMOTE and SMOTE+ENN, for a few data sets, RIONA is worse than RIONIDA in terms
of Sensitivity with Specificity almost unchanged. For RIONA with SMOTE+ENN, the
averages of differences indicate that generally, Sensitivity is much better for RIONIDA
than RIONA, but Specificity is only slightly better for RIONIDA than for RIONA.
For RIONA with SMOTE, Specificity is on average better for RIONA than RIONIDA,
but Sensitivity is on average much worse than for SMOTE+ENN filter.

Let us investigate more deeply the case of RIONA with SMOTE+ENN filter (the
filter selected in the optG strategy for RIONA). In Figure 5.12, for all data sets
used in experiments, the simultaneous difference (for these algorithms) of Sensitivity
and Specificity is presented: ASens = RIONA Sensitivity — RIONIDA Sensitivity,
ASpec = RIONA Specificity — RIONIDA Specificity. The negative (positive) value
of x or y coordinate (for any data set represented by a point with these coordinates)
denotes that RIONIDA achieved a higher (lower) value of Sensitivity or Specificity,
respectively. From this figure (and Table 5.17) one can distinguish the following
groups of cases taking into account whether RIONIDA outperforms (or not) RIONA
(with SMOTE+ENN filter) by means of the considered factors:

A RIONIDA systematically outperforms RIONA: significantly or moderately on
both Sensitivity and Specificity (for mammography, breast-cancer, credit-g data
sets), significantly on Sensitivity and slightly on Specificity (for car, nursery,
ecoli),

B RIONIDA significantly outperforms RIONA on Sensitivity with a significant loss
on Specificity in such a way that the gain on Sensitivity is higher than the loss
on Specificity, i.e. |ASens| > |ASpec| (for balance-scale, cleveland, postoperative,
yeast, abalone, hepatitis),

C RIONIDA significantly outperforms RIONA on Specificity with a significant or
moderate loss on Sensitivity in such a way that the gain on Specificity is
higher than the loss on Sensitivity, i.e. |ASpec| > |ASens| (for pima, haberman,
transfusion, vehicle),

198 5. Experiments and results

D The values ASpec and —ASens are relatively close, i.e. RIONIDA outperforms
RIONA on Sensitivity with the gain being similar to the loss on Specificity (for
glass, ionosphere), or RIONIDA outperforms RIONA on Specificity with the
gain being similar to the loss on Sensitivity (for new-thyroid),

A’ RIONA slightly outperforms RIONIDA on both Sensitivity and Specificity (for
breast-w data set),

where ‘significant’ means here that the absolute value is higher than 2%, ‘moderate’
— between 1%-2%, and ‘slight’ — less than 0.8%.

Group A is represented by points on the left of the y-axis and below the z-axis
(the left bottom part of the figure). Group B is represented by points on the left of
the y-axis and above the x-axis beyond points lying close to the line y = —x. Group
C is represented by points on the right of the y-axis and below the x-axis beyond
points lying close to the line y = —x. Group D is represented by points lying close
to the line y = —x. Group A’ is, in a sense, opposite to group A. It is represented
by a single point lying close to the intersections of the z- and y-axes (slightly above
and to the right).

For group A it is evident that RIONIDA outperforms RIONA on G-mean. For
this group of data sets, RIONIDA outperforms RIONA relative to two criteria (i.e.
simultaneously to Sensitivity and Specificity) of comparison. Also, for groups B and
C it is relatively easy to explain (in terms of Sensitivity and Specificity) the fact that
RIONIDA wins with RIONA. The informal explanation is that the gain on the one
factor recovers the loss on the second factor. In the case of group D, the improvement
for G-mean is obtained by acquiring to balance between Sensitivity and Specificity.
Even for this group, RIONIDA outperforms RIONA on G-mean for two data sets
(glass and ionosphere).

To sum up, for some data sets the improvement of RIONIDA relates to the
improvement in both Sensitivity and Specificity. This especially shows the power
of RIONIDA. For most of the analysed data sets, the improvement relates to proper
balancing between Sensitivity and Specificity. In many cases worsening of one factor
can lead to the much better improvement of the second factor.

All these observations confirm once again that it was far more successful to
construct the RIONIDA algorithm than to use the RIONA algorithm with filters
for imbalanced data.

The case of RIONA with different possible settings

In Section 3.6, we briefly described some extensions of the RIONA algorithm. One
can ask whether for different than the default settings for RIONA the comparison of
RIONIDA with RIONA can change. We checked the following settings (the default
settings for RIONA used in the main comparative experiments are shown in bold):

1. voting method (Equal, Inverse Square Distance),
2. attribute weighting method (Nomne, Distanceased, Accuracy Based),

3. distance measure (City And Simplified Value Difference pseudoMetric,
Interpolated Value Difference pseudoMetric)

5.5 Additional experiments and their analysis 199

T i B B
- * e i
] ~ . =
X \]
T group B * * i
S \ 10,00% i
~— ® =
T * =
T ey . . o
___________ = Z
———————————————————— 3
: : T & 5 !_L : z
-70,00% -50,00% L-SD.DD% -10,00% \ “ 10,00% [
v =
~ (RN =
N *)! N 2
~ L] 1 g ugl.
N 10,00% 1 % I
b et !
. eroupa | \grove £
~ I =
\\ | \\ S \\ o
By I ™\ \\
| ~
\\\ I AR |
b ! "»._.J
. !
~ I
\\\ !
/
\'*-‘.___t/
g m g n _SD'DD%
RIONA Sensitivity - RIONIDA Sensitivity

Figure 5.12: The difference in performance of RIONA (preceded with filter SMOTE+ENN)
and RIONIDA for each data set used in experiments. Axes x and y represent the difference
(for these algorithms) of Sensitivity and Specificity, respectively. Also, three of discussed
(in this subsection) groups of cases are indicated (A, B, and C).

In Subsection 5.5.5, some comments on these settings are given with references where
the more detailed description can be found.

We conducted preliminary experiments with all possible settings mentioned above,
although not all data sets were used (mammography was excluded). Also, 3 possible
filters were used for each combination. Thus, in total, it was 2-3-2-3 = 36 experiments.
We do not present here the detailed results. However, the preliminary general
conclusion was that none of these combinations leads to a significant improvement
of the G-mean performance measure for RIONA. In particular, by taking maximal
values of these 36 scores for each data set (as in the maz strategy), only for 5 data
sets (out of 19), these maximal values are higher for RIONA than for RIONIDA (for
breast-w, glass, new-thyroid, postoperative, vehicle).

This shows that the fact of outperforming of RIONA by RIONIDA is not related
to using not proper settings for RIONA. Thus, the conclusion given in the previous
subsubsection can be strengthened that it was far more successful to construct the
RIONIDA algorithm than to use the RIONA algorithm with specific settings and
with filters for imbalanced data.

5.5.3 Additional comparison of RIONIDA with BRACID

In Section 5.3, it was shown that RIONIDA is significantly better than BRACID
relative to G-mean as well as F-measure for all 3 considered strategies. We present a
more detailed comparison of these algorithms for two performance measures: G-mean
and F-measure.

200 5. Experiments and results

The case of G-mean

Here, we present more detailed comparative results for RIONIDAg and BRACID.
Moreover, we present an analysis of behaviour on the data sets of both Sensitivity
and Specificity (i.e. the components of G-mean measure) obtained in comparative
experiments by the considered algorithms. In Table 5.18, all these results are
presented.

Table 5.18: The values of G-mean (in parenthesis Sensitivity, and Specificity) for
RIONIDAG and the difference of these factors between BRACID and RIONIDAg for each
data set used in experiments. These values are given in %. The changes above 1% are shown
in bold. The changes below -1% are shown in bold and red. At the bottom, the averages of
differences for all used data sets are also given.

G-mean (Sensitivity, Specificity)

Values for Differences between

Data set RIONIDAg BRACID and RIONIDAg
abalone 67.94 (67.82, 68.10) -2.14 (-20.00, 22.46)
balance-scale 76.98 (82.65, 71.75) -18.30 (-11.83, -22.88)
breast-cancer ~ 64.98 (59.88, 70.55) -6.81 (-0.59, -13.38)
breast-w 07.53 (08.63, 96.44) -0.62 (041, -1.62)
car 06.74 (97.10, 96.39) -9.26 (-19.42, 2.17)
cleveland 76.38 (78.57, 74.33) -13.49 (-29.72, 6.87)
credit-g 69.90 (71.57, 68.27) -7.63 (9.03, -20.14)
ecoli $8.82 (80.71, 87.94) -4.40 (-10.57, 2.13)
glass 69.26 (68.24, 70.51) -29.35 (-51.18, 24.88)
haberman 65.40 (68.89, 62.13) -5.85 (1.11, -11.33)
hepatitis 79.00 (78.13, 79.92) -1.90 (-4.06, 0.41)
ionosphere 00.89 (89.29, 92.53) 0.52 (7.70, -6.35)
mammography 89.70 (85.12, 94.54) -4.29 (-11.19, 4.15)
new-thyroid 98.93 (99.14, 98.72) -0.24 (-0.86, 0.39)
nursery 99.90 (99.88, 99.92) -3.32 (-6.52, 0.00)
pima 72.87 (75.97, 69.92) -1.58 (11.27, -11.66)
postoperative 43.66 (39.17, 49.54) -1.17 (14.17, -15.15)
transfusion 67.64 (66.12, 69.21) -3.24 (8.31, -13.49)
vehicle 95.10 (97.39, 92.88) -1.28 (-0.96, -1.59)
yeast 84.95 (87.26, 82.74) -12.58 (-32.75, 13.43)
Averages of differences: -6.35 (-7.38, -2.04)

For G-mean performance measure, RIONIDAg outperforms BRACID for all but
one used data sets (for 2 data sets only slightly). The outperforming of BRACID by
RIONIDA is not only related to better balancing between Sensitivity and Specificity
by RIONIDA. For a few data sets, RIONIDA is better than BRACID in terms
of Sensitivity as well as Specificity (this is discussed in more detail below). Also,
the averages of differences indicate that generally, Sensitivity is much better for

5.5 Additional experiments and their analysis 201

RIONIDA than BRACID, but Specificity is only moderately better for RIONIDA
than for BRACID.

30,0% -
. Sy)
\\0 ~ =
s g . ¥
Y ~ o
i Beet o 1]
* -
~ ‘\-"\- q
Y - fa
. "-_\ —
R ~. =
~ s e o]
Y - —
\\ B '\-._“ o
rou ~ 1 .
\\\ group \‘*\\ 10,0% z
S ® S &
“"__‘_ * g
S——_ . _2 2
. ; ; - e A ;
\: L.‘ E
-70,0% -50,0% -30,0% -10,0% Ty > 10,0% o
, =
!
/ * =
i
S 10,09 [
! l\‘ B .
f-’ L N
/ groupA ¢ "\ group c, ¢
! Vs A |
! // \\ [
j" - . *
- 4
‘e 7 -
i o
L -~
BRACID Sensitivity - RIONIDA Sensitivity =0 (.=

Figure 5.13: The difference in performance of BRACID and RIONIDA(for each data set
used in experiments. Axes z and y represent the difference of Sensitivity and Specificity for
these algorithms, respectively. Also, three of the discussed (in this subsection) groups of
cases are distinguished (A, B, and C).

Let us discuss more deeply the differences between BRACID and RIONIDA
analogously as it was done for RIONA and RIONIDA (in the previous subsection).
In Figure 5.13, for each data set used in experiments, the simultaneous difference
(for these algorithms) of Sensitivity and Specificity is presented: ASens = BRACID
Sensitivity — RIONIDA Sensitivity; ASpec = BRACID Specificity — RIONIDA
Specificity. ~ The negative (positive) value of ASens denotes that RIONIDA
outperforms BRACID (BRACID outperforms RIONIDA) on Sensitivity. The similar
meaning of ASpec is for the relation between BRACID and RIONIDA on Specificity.
From this figure (and Table 5.18) one can distinguish the following groups of cases
(analogously as in the previous section) depending on whether RIONIDA outperforms
(or not) BRACID by means of the considered factors:

A RIONIDA systematically outperforms BRACID: significantly on both Sensitivity
and Specificity (for balance-scale data set), significantly on Specificity and
slightly on Sensitivity (for breast-cancer), moderately on both Sensitivity and
Specificity (for wvehicle), significantly on Sensitivity with no difference on
Specificity (for nursery), or significantly on Sensitivity with a slight loss on
Specificity (for hepatitis),

202 5. Experiments and results

B RIONIDA significantly outperforms BRACID on Sensitivity with a significant loss
on Specificity in such a way that the gain on Sensitivity is higher than the loss
on Specificity, i.e. |ASens| > |ASpec| (for glass, cleveland, yeast, car, ecoli,
mammography),

C RIONIDA significantly outperforms BRACID on Specificity with a significant or
moderate loss on Sensitivity in such a way that the gain on Specificity is higher
than the loss on Sensitivity, i.e. |[ASpec| > |ASens| (for credit-g, haberman,
transfusion),

D The values ASpec and —ASens are relatively close, i.e. RIONIDA outperforms
BRACID on Sensitivity with the gain being similar to the loss on Specificity (for
pima, postoperative, breast-w, ionosphere), or RIONIDA outperforms BRACID
on Specificity with the gain being similar to the loss on Sensitivity (for abalone,
new-thyroid),

where ‘significant’ means here that the absolute value is higher than 2%, ‘moderate’
— between 0.9%-2%, ‘slight’ — less than 0.6%.

Groups A-D are analogous to the considered ones in the previous subsection with
a small difference related to group A. Group A is represented by points on the left of
the y-axis and below (or only slightly above) the xz-axis (the left bottom part of the
figure). This group represents data sets for which (except one — the case slightly above
z-axis) RIONIDA outperforms BRACID in terms of both criteria (i.e. Sensitivity and
Specificity) of comparison simultaneously. In the case of one data set from this group,
such a relation is true only approximately.

Analogously as in the previous section, it is easy or relatively easy to explain in
terms of Sensitivity and Specificity why RIONIDA outperforms BRACID on G-mean
for data sets from groups A, B, and C.

However, even for 5 data sets from group D, RIONIDA outperforms BRACID on
G-mean (moderately for 3 data sets, and slightly — for 2). This is most likely due to
better balancing of Sensitivity versus Specificity by RIONIDA than BRACID.

To sum up, the sources for which RIONIDA wins with BRACID are as follows: for
a group of data sets, RIONIDA outperforms BRACID on both components of G-mean
(Sensitivity and Specificity); for another group, RIONIDA outperforms BRACID on
one of these components gaining much more than losing on the second component;
for other data sets, RIONIDA simply better balances between these components.

From all these observations, it follows that RIONIDA can reach relatively high
values of primary components (Sensitivity, Specificity) for imbalanced data as well
as maximises the given performance measure. It is worthy to note that RIONIDA
and BRACID use the same CSVDM pseudometric, which previously proved to be
successful for former algorithms, in particular for RIONA. Thus, the fact that
RIONIDA outperforms BRACID is not related to the used pseudometric but has
some deeper causes.

The case of F-measure

The BRACID algorithm is aiming to maximise F-measure (such an implementation is
used in our experiments). Thus, exceptionally in this section, we present also details

5.5 Additional experiments and their analysis 203

related to comparative results for F-measure as the performance measure. Therefore,
we present comparative results for RIONIDAr and BRACID. In Table 5.19, these
results for F-measure are presented.

Table 5.19: The values of F-measure (in parenthesis Sensitivity, and Precision) for
RIONIDAF and the difference of these factors between BRACID and RIONIDAFR for each
data set used in experiments. These values are given in %. The changes above 1% are shown
in bold. The changes below -1% are shown in bold and red. At the bottom, the averages of
differences for all used data sets are also given.

F-measure (Sensitivity, Precision)

Values for Differences between

Data set RIONIDAFR BRACID and RIONIDAg
abalone 32.35 (38.09, 28.13) 5.02 (9.73, 2.55)
balance-scale 34.30 (63.47, 23.59) -15.96 (7.35, -13.05)
breast-cancer 52.17 (58.35, 47.21) -6.65 (0.94, -10.22)
breast-w 96.02 (98.59, 93.58) -1.18 (0.46, -2.61)
car 81.60 (82.61, 80.72) -8.41 (-4.93, -11.46)
cleveland 44.31 (70.29, 32.37) -10.95 (-21.43, -7.03)
credit-g 58.27 (72.34, 48.81) -4.83 (8.27, -8.82)
ecoli 68.36 (78.00, 60.94) -8.49 (1.14, -12.77)
glass 29.69 (41.18, 23.30) -9.97 (-24.12, 0.51)
haberman 49.70 (69.63, 38.67) -4.09 (0.37, -4.82)
hepatitis 60.31 (70.00, 53.07) -0.93 (4.06, -3.44)
ionosphere 87.38 (86.03, 88.81) 0.14 (10.96, -9.04)
mammography 67.33 (63.81, 71.28) -2.76 (10.11, -13.95)
new-thyroid ~ 96.40 (99.14, 93.84) 0.51 (-0.86, 1.80)
nursery 98.92 (99.30, 98.56) -3.82 (-5.95, -1.62)
pima 66.04 (80.22, 56.15) -0.23 (7.01, -3.31)
postoperative 33.61 (61.67, 23.16) -1.68 (-8.33, -0.32)
transfusion 50.02 (58.37, 43.85) -2.93 (16.07, -9.41)
vehicle 89.79 (92.56, 87.19) -3.98 (3.87, -9.89)
yeast 41.24 (40.59, 42.10) 0.38 (13.92, -8.39)
Averages of differences: -4.04 (1.43, -6.27)

In Figure 5.14, for all data sets used in experiments, simultaneously the difference
of values of Sensitivity!® and Precision (i.e. the components of F-measure) for these
algorithms are presented: ASens = BRACID Sensitivity — RIONIDA Sensitivity;
APrec = BRACID Precision — RIONIDA Precision. From this figure (and
Table 5.19) one can observe that for all but three data sets, RIONIDA has much
better Precision than BRACID. On the other hand, for most data sets, BRACID
has better Sensitivity. From this figure (and Table 5.19) one can distinguish the
following groups of cases (analogously to the previous section) taking into account
whether RIONIDA outperforms (or not) BRACID by means of the considered factors:

13In such context Sensitivity is usually called Recall (see Subsection 2.6.1).

204 5. Experiments and results

A RIONIDA systematically outperforms BRACID: significantly or moderately on
both Sensitivity and Precision (for cleveland, car, nursery), significantly
on Precision and slightly on Sensitivity (for postoperative), significantly on
Sensitivity with a slight loss on Precision (for glass), or significantly on Precision
with a slight loss on Sensitivity (for haberman, breast-w),

C RIONIDA significantly outperforms BRACID on Precision with a significant or
moderate loss on Sensitivity in such a way that the gain on Precision is higher
than the loss on Sensitivity, i.e. |APrec| > |ASens| (for balance-scale, ecoli,
breast-cancer, vehicle, mammography),

D The values APrec and —ASens are relatively close, i.e. RIONIDA outperforms
BRACID on Sensitivity with the gain being similar to the loss on Precision (for
new-thyroid), or RIONIDA outperforms BRACID on Precision with the gain
being similar to the loss on Sensitivity (for credit-g, hepatitis),

A’ BRACID significantly outperforms RIONIDA on both Sensitivity and Precision
(for abalone),

C’ BRACID significantly outperforms RIONIDA on Sensitivity with a significant
loss on Precision in such a way that the gain on Sensitivity is higher than the
loss on Precision, i.e. |ASens| > |APrec| (for transfusion, pima, ionosphere,
yeast),

where ‘significant’ means here that the absolute value is higher than 2%, ‘moderate’
~ between 0.9%-2%, and ‘slight’ — less than 0.6%.

Again, group A represents data sets for which RIONIDA wins (for 3 data sets
roughly wins) with BRACID using simultaneously two criteria of comparison on
Sensitivity and Precision. Analogously as in the previous sections, it is easy or
relatively easy to explain in terms of Sensitivity and Precision why RIONIDA
outperforms BRACID on F-measure for data sets from groups A, and C.

Groups A’ and C’ are, in a sense, opposite to groups A and C, respectively. The
one data set (abalone) in group A’ is the only one data set for which RIONIDA
performs worse than BRACID significantly. Probably the fact of weak results of
RIONIDA on abalone data set relates to different borderline regions with different
distributions of the minority and majority classes. We have an idea of how to improve
the performance of RIONIDA for such cases (see Section 6.2).

If we consider group C’, which consists of 4 data sets, BRACID: slightly wins with
(RIONIDA) on 2 of these data sets (yeast, ionosphere), slightly loses on 1 data set
(pima), and significantly loses on 1 data set (transfusion). It seems surprising why
RIONIDA wins with BRACID in case of transfusion data set (with such differences of
Sensitivity and Precision for BRACID and RIONIDA). This occurs probably because
in this case BRACID does not balance well Sensitivity and Precision (74.44% and
34.44%), while RIONIDA balances it better (58.37% and 43.85%). It is an example
showing that RIONIDA can adapt quite well to the chosen performance measure.

To sum up, the sources for which RIONIDA wins with BRACID for F-measure are
similar to those mentioned in the previous subsubsection for G-mean. Additionally,
it is worth underlining that even for the group of data sets being natural candidates

5.5 Additional experiments and their analysis 205

10,0%
E
o
=
[
[}
L]
a
s =
ra g =
[group A'®* =
_ . S S
IJz ________________ e | falat! T ﬁ
' a S | :
30,0% \ 10,0% ~———— 10,0% 5
\ ! ~ i
P i)
% I i* > b
\ =
‘|\ * | 5 \"\\“ o
AY
N ! . group C' ™« g
iy S Y h
b / i * e \ @0
s —_— -~ ~ *)
e -10,0% # 1y * Pt R G
——— - el .
e -~ |l groupC ™.
e - |’ N
\ hY
S >
_""'"—n._____,'l
-20,0% -
BRACID Sensitivity - RIONIDA Sensitivity

Figure 5.14: The difference in performance of BRACID and RIONIDAr for each data
set used in experiments. Axes x and y represent the difference (for these algorithms) of
Sensitivity and Precision, respectively. Also, four of the discussed (in this subsection) groups
of cases are distinguished (A, C, A’, and C’).

for RIONIDA to lose (group C’), still it achieves relatively good results. Again this
shows that RIONIDA balances components of the considered performance measure
adequately.

Thus, the conclusion given in the previous subsubsection can be strengthened that
RIONIDA can reach relatively high values of the primary components for imbalanced
data (Sensitivity, Specificity, Precision) as well as maximise the given performance
measure. All this makes RIONIDA competitive with algorithms dedicated to
imbalanced data (such as BRACID).

5.5.4 The RIONIDA quality analysis for different settings
specific to RIONIDA

In this and the subsequent section, we analyse (informally) whether the RIONIDA
quality can be improved by altering the RIONIDA settings. In this section, we present
the results of changing some of the settings of parameters which are specifically
associated with the design of RIONIDA. In the next section, we deal with parameters
of RIONIDA adopted to RIONIDA from RIONA.

As it was mentioned in Subsection 4.4.2; we use the following default settings for
RIONIDA:

o K = Kges, where Kgep = {1,2,...,100} (which means that k., = |K| = 100);
o P= Pdef; where Pdef = {000,001,002, R 05}7

206 5. Experiments and results

o S = Sus, where Sy.r = {—0.1,0.0,0.1,...,1.0}.

Three groups of additional comparative experiments were performed to check
whether the changes in these default settings of RIONIDA can improve its
performance.

We performed these comparative experiments only for the performance measure
G-mean. Thus, we used RIONIDA; and therefore, in the current analysis, RIONIDA
will refer to this setting.

To save space, we use one table for presenting these experiments, i.e. Table 5.20.
We show in this table: scores of RIONIDA (presented earlier) for its default setting;
and for each of the considered settings, the difference between scores for such setting
and the default setting. Thus, positive values denote improvement of RIONIDA
performance (G-mean), and negative values denote its worsening.

L0¢

Table 5.20: The values of G-mean (in %) for RIONIDAg (with default settings) and the change of scores (in %) for different modifications of
default settings of RIONIDA((for different data sets). The following parameters are examined with non-standard settings: kmee (= |K|, the size
of the neighbourhood to be used during searching for the optimal neighbourhood size), P (the set of admissible values of parameter p), S (the set
of admissible values of parameter s). The values of the parameters used in the table can be found in Subsection 5.5.4. The changes above 1% are
shown in bold. The changes below -1% are shown in bold and red. At the bottom, the averages of differences for all used data sets are also given.

Score for Differences between scores for different RIONIDA settings and the default setting for

Data set default k,,.. =200 P=P, S=5, §=85, §=83 §=85, §=85 S=5¢
abalone 67.94 0.61 0.14 -0.04 -0.03 -0.03 -0.05 -0.05 -0.05
balance-scale 76.98 0.00 0.03 -35.41 -3.65 -3.65 -3.65 -3.65 -3.65
breast-cancer 64.98 0.01 0.14 -1.56 1.15 0.13 -0.61 0.61 -0.78
breast-w 97.53 -0.07 0.01 0.02 0.03 0.00 -0.01 0.00 0.00
car 96.74 0.02 -0.08 -1.68 -0.33 0.20 -0.43 -0.90 -0.36
cleveland 76.38 0.24 -0.28 0.04 -0.08 -0.08 0.00 0.00 0.00
credit-g 69.90 0.31 0.08 0.05 0.06 0.06 -0.01 -0.01 -0.01
ecoli 88.82 -0.23 0.07 0.18 0.27 0.27 0.17 0.17 0.17
glass 69.26 0.00 0.00 0.59 0.13 -0.44 0.00 0.53 -0.03
haberman 65.40 0.51 -0.05 -0.38 -4.01 -3.98 -2.17 -1.49 -2.33
hepatitis 79.00 0.00 -0.15 -1.99 0.00 0.00 0.00 0.00 0.00
ionosphere 90.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mammography 89.70 -0.10 0.16 -0.29 -0.27 -0.27 -0.42 -0.42 -0.42
new-thyroid 98.93 0.00 -0.17 -0.31 0.00 0.00 0.00 0.00 0.00
nursery 99.90 0.03 0.00 -0.02 -0.18 -0.16 0.00 -0.01 0.00
pima 72.87 -0.47 -0.17 -0.12 -0.06 -0.06 -0.16 -0.16 -0.16
postoperative 43.66 0.00 -0.08 3.26 0.84 -0.16 -1.02 1.97 -0.63
transfusion 67.64 -0.14 0.02 -4.18 -3.39 0.00 0.00 -3.52 0.00
vehicle 95.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
yeast 84.95 -0.49 -0.14 -0.08 -0.71 -0.73 -0.08 -0.08 -0.08

Averages of differences: 0.01 -0.02 -2.10 -0.51 -0.45 -0.42 -0.35 -0.42

208 5. Experiments and results

Different maximal k value

The RIONIDA algorithm uses k.. = |K| = 100 as default. We tried to examine
whether this value is not too small. We experimented with k.. = |K| = 200.

Results in Table 5.20 (column for k., = 200) show that differences for all data
sets are below 1% (even below 0.5% for all but 2 data sets) with very slight general
improvement (average of differences) in favour of the setting k.. = 200. We can
conclude that setting k., = | K| = 200 did not significantly improve the performance
of the RIONIDA and the default setting for k,,,, is satisfactory.

Let us recall that it was experimentally checked for the RIONA algorithm
that there is no need to use the whole training set in the process of classification
and classifier learning. Moreover, the bound of the neighbourhood size can even
improve the classification performance or at least not reduce it significantly. The
development of RIONIDA was based on the assumption that this (experimentally
checked) hypothesis can be extended for the RIONIDA with different performance
measures than Accuracy (see Subsection 4.4.2). The experiment, presented here, can
be treated as an argument for such a hypothesis. However, more experiments should
be performed as in the case of the RIONA algorithm to check (experimentally) this
pre-assumed hypothesis more thoroughly (see Section 6.2).

Different sets of admissible values for parameter p

The RIONIDA algorithm uses by default P = Py.y. We tried to check experimentally
whether a more detailed scale can improve the performance of RIONIDA.

We experimented with P = Py, where P; = {0.0,0.001, 0.002, ...,0.499,0.500}.

Results in Table 5.20 (column for P = P;) show that differences for all data sets
are below 1% with very slight general worsening (negative average of differences) in
comparison with the default setting. We can conclude that there is no evidence that
setting P = P; can improve the performance of RIONIDA in comparison with the
default setting.

Different settings of parameter s

We tried to examine whether using set S (of admissible values for the parameter
s) with different sets than the default one (Szs) can improve the performance of
RIONIDA. In each experiment, we used one of the following settings: S = S1, S = Sy,
S =055, 5=25,,5=S95 or S=.5¢ where:

o S, ={1.0},

o S, ={0.0},

o S5 ={—0.1},

o Sy={-0.1,1.0},
o S5 ={0.0,1.0},

Se = {—0.1,0.0,1.0}.

5.5 Additional experiments and their analysis 209

Let us recall (see Subsection 4.3.5) that the case with S = S; = {-0.1}
corresponds to the situation when we do not check the consistency of examples in
RIONIDA (it corresponds to the kNN method with the optimal neighbourhood and
the optimal value of the parameter p). The case with S; = {1.0} represents the
RIONIDA algorithm with pure rules. For data sets with no inconsistencies, the case
with Sy = {0.0} is equivalent to the case with S3 = {—0.1}.

Results in Table 5.20 (columns for S =Sy, ..., S = Sg) show that reducing the
default set to one of the used sets generally worsens the performance of RIONIDA.
Only for three of these settings, one can observe improvement of more than 1% for
one data set in each case. However, in these three cases, the performance worsens by
more than 1% for (at least) three other data sets. Also, the averages of differences
indicate the negative outcome for these different settings.

Moreover, this experiment shows us a few other noteworthy things. First, when
pure rules are used (case S = S), the performance for the (mentioned previously)
balance-scale data set worsens very significantly (and also worsens for a few other
data sets). Second, using RIONIDA with no consistency checking (case S = S,
which corresponds to the instance-based method like kNN) generally worsens the
performance of RIONIDA. Third, cases for S = Sy and S = S3 do not give the
same results. This is due to the existing inconsistencies in data sets. The differences
in performance for these two settings show that using such separate settings (e.g.
in the process of learning of the optimal values) can be profitable. Fourth, only
learning whether to use either pure rules or instance-based (kNN like) classifier (cases
S =84 S =155 S =S¢ which represent small alterations of the required type of
optimisation) can be not sufficient to find the classifier with high performance.

Thus, the performed experiments can be treated as another argument beyond
those already given in Subsection 4.3.5 that it is reasonable to introduce the additional
parameter s and to search the space of its admissible values at the learning step
(aiming at tuning levels of rules inconsistency) in RIONIDA. The evident example
for this is the previously discussed balance-scale data set.

5.5.5 The RIONIDA quality analysis for different RIONIDA
settings adopted from RIONA

In Section 3.6, we briefly described some extensions of the RIONA algorithm. Since
RIONIDA was implemented based on RIONA, all the parameters of RIONA were
adopted into RIONIDA. For a few of these parameters, it makes sense to use them
also in RIONIDA together with an attempt to find different settings than the default.
These are the following (the default settings for RIONIDA are shown in bold):

1. voting method (Equal, Inverse Distance, Inverse Square Distance),

2. attribute weighting method (Nome, Perceptron, Distance Based, Accuracy
Based),

3. distance measure (City And Hamming Metric, City And Simplified
Value Difference pseudoMetric, Density Based Value Difference Metric,
Interpolated Value Difference pseudoMetric)

210 5. Experiments and results

In Subsection 3.6.2, one can find how Fqual (generally used in the thesis), Inverse
Distance and Inverse Square Distance voting types are used.

In Subsection 3.6.3, one can find the general idea of using different weights for
attributes. Generally, in the thesis, equal weights are used (None setting). How to
count weights related to settings Perceptron, Distance Based, Accuracy Based is not
described in the thesis, but it can be found in [219].

Let us recall here that City And Simplified Value Difference pseudoMetric is the
metric'* generally used in the thesis (see Subsection 2.2.3). The City And Hamming
Metric is a quite basic metric also described in Subsection 2.2.3. The ideas of Density
Based Value Difference Metric and Interpolated Value Difference Metric are briefly
described in Subsection 3.6.4 (for details see [219]).

We conducted preliminary experiments with all possible settings mentioned above,
although not all data sets were used (mammography, glass, and new-thyroid data sets
were excluded). Thus, in total, it was 3 -4 -4 = 48 experiments. The preliminary
general conclusion was that none of these combinations leads to the improvement of
the G-mean performance measure.

We repeated these experiments for all data sets used in previous comparative
experiments, although with the selected, limited number of settings. We present in
Table 5.21 results of experiments obtained by changing one of these settings and other
setting being fixed with their default values of RIONIDA (in addition to the default
settings, three groups consisting of 2, 3, and 3 experiments).

M For simplicity we do not distinguish between metrics and pseudometrics in this subsubsection
(unless indicated in the name).

11¢

Table 5.21: The values of G-mean (in %) for different data sets for RIONIDAg and the change of scores (in %) for different modifications of default
settings of RIONIDA, settings adopted from RIONA. We use a single letter for denoting a parameter: V (voting method), W (attribute weighting
method), or M (distance measure). The values of the parameters are listed at the beginning of Subsection 5.5.5. As the abbreviations of these values,
the capital letters from the name are used. For example, V=ISD denotes the following setting: voting method set to Inverse Square Distance, and
other default settings of RIONIDA (presented at the beginning of Subsection 5.5.5). The changes above 1% are shown in bold. The changes below
-1% are shown in bold and red. At the bottom, the averages of differences for all used data sets are also given.

Score for Differences between scores for different settings and the default setting for
Data set default V=ID V=ISD W=P W=DB W=AB M=CAH M=DBVD M=IVD
abalone 67.94 0.05 -0.83 0.18 0.36 0.29 0.31 6.14 -0.13
balance-scale 76.98 -6.65 -6.72 -4.32 -5.91 0.00 0.00 -22.03 -3.83
breast-cancer 64.98 -1.38 -2.93 -0.36 -2.47 0.11 -0.79 0.00 0.00
breast-w 97.53 0.08 -0.03 -0.17 -0.53 0.02 -0.16 -0.22 -0.38
car 96.74 -0.91 -2.52 0.16 0.48 -0.56 -0.82 0.00 0.00
cleveland 76.38 1.81 1.18 1.23 -0.42 0.76 1.17 -0.04 -0.53
credit-g 69.90 0.41 0.06 -0.02 0.16 -1.65 -1.59 0.44 0.56
ecoli 88.82 -0.57 -0.79 -0.18 -0.68 0.07 -0.39 -1.30 -2.13
glass 69.26 2.62 4.00 1.04 2.83 -7.96 0.00 -69.26 -7.14
haberman 65.40 -2.94 -3.70 -0.29 -0.39 -0.21 0.24 -3.29 -8.39
hepatitis 79.00 0.27 -0.63 -0.44 -2.51 -0.69 0.19 -2.41 1.56
ionosphere 90.89 -0.21 -0.03 -0.69 0.00 0.06 0.00 -1.69 -2.78
mammography 89.70 0.17 0.24 0.31 -0.36 0.00 0.00 -2.23 -1.22
new-thyroid 98.93 0.09 -0.29 -0.17 -1.38 0.00 0.00 -98.93 -2.91
nursery 99.90 -0.13 -0.10 0.00 0.01 -0.12 -0.04 0.00 0.00
pima 72.87 -0.02 0.24 0.03 1.52 -3.86 -0.04 2.03 0.82
postoperative 43.66 1.80 3.53 1.19 4.00 0.06 -4.40 0.00 0.00
transfusion 67.64 -4.54 -7.14 -0.19 -4.19 -1.23 0.19 -1.13 -6.70
vehicle 95.10 0.38 0.77 0.05 1.59 0.10 0.00 -1.09 -8.19
yeast 84.95 -0.10 -0.74 0.22 -2.19 0.00 0.00 -0.85 -4.52

Averages of differences: -0.49 -0.82 -0.12 -0.50 -0.74 -0.31 -9.79 -2.29

212 5. Experiments and results

Different voting methods

The RIONIDA algorithm uses by default equal voting irrespective of the distance of
the training object from the considered test object.

We also experimented with two other voting methods depending on the distance
of the training object to be used for voting from the considered test object (Inverse
Distance or Inverse Square Distance).

Results in Table 5.21 (column with the prefix ‘V=") show that for both of these
methods, for three data sets one can observe improvement by more than 1%; and
for 4 or 5 data sets one can observe worsening by more than 1%. Also, the negative
averages of differences indicate the negative outcome for these settings. Omne can
(roughly) conclude that for both additional methods of voting the performance of
RIONIDA worsens.

However, it seems incomprehensible that the voting method taking into account
the distance of the training object from the test one does not lead to significant
improvement here. For the RIONA algorithm, it showed an improvement for many
data sets (see [219]). Probably for using these voting methods, one should choose
the scale for the parameter p in a different way (different setting of P). This seems
worthy to check in future experiments (see Section 6.2).

Different attribute weighting methods

The RIONIDA algorithm uses by default equal weights for all attributes (all attributes
are treated as equally important).

We also experimented with three other methods assigning relevant weights for
particular attributes (attribute weighting method as Perceptron, Distance Based, and
Accuracy Based).

Results in Table 5.21 (column with the prefix ‘W=") show that for the Perceptron
method, for 3 data sets, one can observe improvement by slightly more than 1%;
and for 1 data set, one can observe worsening by more than 4%. The average of
differences is equal to -0.12%. Hence, we can (roughly) conclude that this method
does not bring significant improvement. However, it shows signs that it could be
beneficial to investigate this method in future research. Probably one can make this
method more competitive by simultaneously choosing the appropriate scale for the
parameter p (analogously as mentioned in the previous subsubsection). This seems
worthy to check in future experiments (see Section 6.2).

For the Distance Based method, for 4 data sets, one can observe improvement
by more than 1%; and for 6 data sets worsening by more than 1%. The average of
differences is equal to -0.5%. Hence, one can (roughly) conclude that this method
used in RIONIDA worsens its performance.

For the Accuracy Based method, one can observe significant worsening of the
performance of RIONIDA: for 4 data sets the worsening by more than 1%, and the
average of differences is around -0.7%. However, these results seem justifiable since
this method directly tries to maximise Accuracy performance measure, generally not
satisfactory for the imbalanced learning problem.

5.5 Additional experiments and their analysis 213

Different distance measure

The RIONIDA algorithm uses by default City And Simplified Value Difference
pseudoMetric.

We also experimented with three other methods for calculating distance measure
(City And Hamming Metric, Density Based Value Difference Metric, and Interpolated
Value Difference Metric).

Results in Table 5.21 (column with the prefix ‘M=") show that for the two last of
these methods the general performance of RIONIDA significantly worsens: for both
methods for 10 data sets the quality worsens by more than 1% (a few times even far
more), improves by more than 1% only for 1 or 2 data sets, and the average differences
are considerably negative. Such an outcome can seem surprising since these distance
measures are more compound than the default one. However, these results coincide
with the results presented in [219]. It was shown there that these measures lead to
the general worsening of the performance (of Accuracy) for balanced data sets. One
of the reasons for that can be the fact mentioned in Subsection 3.6.4 that by using
these metrics inconsistent local rules can be recognised as consistent in both RIONA
and RIONIDA.

For the City And Hamming Metric method, one can observe improvement by
more than 1% in case of one data set; and worsening by more than 1% in case of two
data sets (also worsening by about 1% in case of two other data sets). The average
of differences is equal to around -0.3%. It is clear that for data sets with no nominal
attributes this method gives similar or identical results to the default one (we have
11 such data sets, i.e. breast-w, ecoli, glass, haberman, ionosphere, mammography,
new-thyroid, pima, transfusion, vehicle, yeast). It is understandable that for the
remaining data sets the general improvement is observed since the default method
makes more informative use of relations between values of symbolic attributes than
the considered one here.

5.5.6 The RIONIDA quality analysis for different extended
versions of RIONIDA

Based on RIONIDA (presented in Chapter 4), some extended ideas of this algorithm
were developed. We temporarily implemented these extended versions of RIONIDA
to check whether it can be beneficial to invest these directions in future. We also
implemented a version of RIONIDA to check whether a greater portion of data can
lead to finding significantly better optimal values of internal parameters.

In this section, results of three groups of experiments related to three implemented
extensions of RIONIDA are presented.

In Table 5.22, the summary of experiments for these three groups of experiments is
presented. We show in this table: scores of RIONIDA for its standard implementation
with default settings (presented earlier), and the difference between scores of the
new implementation with considered settings and the standard implementation with
default settings. Thus, positive values denote improvement of RIONIDA performance
(G-mean), and negative values denote its worsening.

vic

Table 5.22: The values of G-mean (in %) for different data sets for the standard implementation with default settings of RIONIDA with the
optimisation measure set to G-mean (hence, RIONIDA; is used) and the change of scores (in %) for different extensions of RIONIDA. The 3 groups
of scores for 3 extended implementations of RIONIDA are presented: optimisation by the stratified cross-validation (CV opt.), optimisation in
4-dimensional parameter space (4D), and optimisation of parameters with larger training data sets (Optimal). In the case of 4D implementation, 5
different settings were checked in experiments. In the case of Optimal implementation, this is, in fact, a specific usage of RIONIDA (not typical for
learning algorithm). The changes above 1% are shown in bold. The changes below -1% are shown in bold and red. At the bottom, the averages of
differences for all used data sets are also given.

Score for Differences between scores for different implementations and the standard implementation for
Implementation: standard CV opt. 4D 4D 4D 4D 4D Optimal
Setting: Smin = Sdefs Smin = Ss, Smin = Sdefs Smin = S1, Smin = Ss,
W default default Smaj = Sdes Smaj = Sics Smaj = Ss Spaj = S5 Smaj = Si default

abalone 67.94 0.55 -0.03 -0.07 -0.02 -0.05 -0.05 0.78
balance-scale 76.98 -1.01 1.19 -3.65 1.19 -34.27 -8.85 0.38
breast-cancer 64.98 -0.18 -0.13 -0.29 0.02 -1.19 -4.95 0.55
breast-w 97.53 -0.09 0.02 0.01 -0.01 0.03 0.01 0.09
car 96.74 -0.13 -0.48 0.20 0.36 -1.85 0.26 -10.29
cleveland 76.38 1.37 0.11 0.08 -0.05 -0.01 0.19 3.79
credit-g 69.90 -0.12 0.20 0.07 -0.05 -0.18 0.03 0.67
ecoli 88.82 0.89 0.64 -0.26 0.57 0.44 -0.07 1.24
glass 69.26 0.54 0.00 -0.44 0.00 0.56 -0.44 4.89
haberman 65.40 0.18 0.72 -3.58 2.20 -0.25 -3.00 0.70
hepatitis 79.00 0.82 -0.20 -0.20 0.00 -2.20 0.40 0.58
ionosphere 90.89 -0.18 0.00 0.00 0.00 0.00 0.00 0.59
mammography 89.70 -0.49 -0.39 -0.77 -0.35 -0.30 -14.99 0.38
new-thyroid 98.93 -0.44 0.00 0.00 0.00 -0.03 0.00 -0.33
nursery 99.90 -0.14 -0.06 -0.18 -0.01 -0.02 -0.18 -0.19
pima 72.87 -0.16 -0.03 -0.12 0.05 -0.03 -0.25 0.59
postoperative 413.66 -2.11 -0.69 -2.81 0.08 2.35 -3.72 0.68
transfusion 67.64 -0.70 -1.33 -1.33 0.00 -9.94 -5.78 1.01
vehicle 95.10 -0.21 0.00 0.00 0.00 0.00 0.00 0.38
yeast 84.95 -0.38 0.00 -0.64 -0.08 -0.08 -0.64 1.98
Averages of differences: -0.10 -0.02 -0.70 0.20 -2.35 -2.10 0.42

5.5 Additional experiments and their analysis 215

Optimisation by the stratified cross-validation

Leave-one-out method of optimisation has some disadvantages (see e.g. [120] and
the literature cited there). Thus, we tried to examine whether a change of
the optimisation method in RIONIDA may lead to a difference in results. We
have used the cross-validation method (more specifically, the 10-fold stratified
cross-validation'®) instead of leave-one-out in the optimisation during learning.
Results in Table 5.22 (column with ‘CV opt.” implementation) show that for the
implementation using considered cross-validation for optimisation, for 1 data set, one
can observe improvement by more than 1%, and for 2 data sets (one of them is
postoperalive, the smallest data set out of the used ones), one can observe worsening
by more than 1%. The average of differences is equal to -0.1%. Hence, we can
(roughly) conclude that this method does not help to obtain significant improvement.

Optimisation in 4-dimensional parameter space

It has been (experimentally) proved that the idea of the scaled generalised local
decision rule (see Section 4.2) is beneficial for the RIONIDA algorithm. It is an
extension of rules used in the RIONA algorithm.

We investigated the following further extension of this idea. Instead of using one
scaling parameter s € {—0.1} U [0, 1], two scaling parameters of the rule are used,
i.e. Spin € {—0.1} U [0,1] and s,,45 € {—0.1} U [0, 1]. The difference to the standard
sg-rule is that we use either parameter s, or s,,; depending on the decision of the
training example constituting the rule: s,,;, for the minority class and s,,,; for the
majority class. Also, instead of using one set S of admissible values of the parameter
s, we use two separate sets Syin, Sme;j 0f admissible values of the parameters s,
Smaj, Tespectively.

In the learning phase, instead of searching for the optimal values of three
parameters, we search for the optimal values of four parameters, including s,,;, and
Smaj- In this way, we search for the optimal values of parameters in a 4-dimensional
space.

We implemented all these ideas and experimented with a few different settings
for sets Spmin, Smaj- By default, we use Syin = Sief, Smaj = Saer (see e.g.
Subsection 5.5.4). Also, we used in the settings the sets S3 = {—0.1}, S; = {1.0}
used previously in Subsection 5.5.4.

The considered extension of RIONIDA allows us to use different scaling factors
for the minority and majority classes. Therefore, we expected that such extended
implementation could lead to the improvement of RIONIDA performance. Results
in Table 5.22 (fourth column with ‘4D’ implementation, and default settings) show
that for the implementation using 4-dimensional optimisation and default settings,
for 1 data set, one can observe improvement by more than 1%; and for 1 data sets —
worsening by more than 1%. The average of differences is equal to -0.02%. Hence,
contrary to our expectations, we can (roughly) conclude that this method (with
default settings) does not bring significant improvement.

15This should not be confused with the 10-fold stratified cross-validation used for algorithm
evaluation (see Subsection 5.1.2).

216 5. Experiments and results

We also experimented with 4 other settings for this implementation. The case with
Swmin = 53, Smaj = Saey corresponds to the situation when for all training examples
belonging to the minority class we do not check the consistency of formed rules (kNN
like method of voting). For setting, Spin = Sdef, Smaj = S3, Vice versa, i.e. for all
training examples belonging to the majority class we do not check the consistency of
formed rules. For setting Spin = S1, Sma; = 53, for training examples belonging to
the minority class pure rules are used while for those belonging to the majority class
kNN like method of voting is used. For setting S, = S5, Spmaj = S1, Vvice versa,
i.e. for the majority class pure rules are used while for the minority class kNN like
method of voting is used.

For two last of these cases (see results in columns 7 and 8 in Table 5.22), one
can observe significant worsening of the performance of RIONIDA. For both of these
settings, for 5 or 6 data sets, one can observe worsening by more than 1% (sometimes
even much more) and the average of differences below -2%. It shows that using
different approaches (by means of either rule-based or instance-based) for the minority
and majority classes is not beneficial.

For the case with Sy, = S3, Simaj = Sdef, One can observe significant worsening:
for 4 data sets, worsening by more than 1% and the average of differences is equal to
-0.7%. Hence, we can (roughly) conclude that this method does not bring significant
improvement. It seems incomprehensible since such setting, in a sense, allows for
more frequent voting for the minority class. However, on the other hand, it shows
that the balance between voting for the minority and majority classes should be
acquired.

For the case with Sy, = Sacr, Smaj = 53, the ‘opposite’ case to the previously
discussed, one can observe small improvement. For two data sets, one can observe
an improvement by more than 1%. The average of differences is equal to 0.2%. It
is also worth mentioning that for all but 3 data sets absolute change is less than
0.5% (for 15 data sets less than 0.1%; a few times even equal to 0%). It should
be noted that the two data sets for which a significant improvement was observed
are: balance-scale, haberman; these are data sets for which using the full scale of
admissible values (S = Sg.r) was beneficial (see e.g. comparison to the case S = S;
in Table 5.20 with significantly reduced the scale; see also the considerations about
haberman data set in Subsection 4.3.5). The considered setting and the obtained
results show that it could be beneficial for some data sets to take into account the
considered 4-dimensional extension of RIONIDA.

Optimisation of parameters with larger training data sets

Here, we consider the specific usage of RIONIDA, which is not typical for learning
algorithm. This is due to the fact that we also make use of the information from
the test data. This approach is somehow analogous (but not the same) to the
methodology for the maz strategy used for other algorithms than RIONIDA in the
previous section.

Generally, the RIONIDA algorithm uses the given training set in two aspects:
(1) for the optimisation of the values of internal parameters, and (2) as the base of
examples for searching the closest cases to the considered test case. Here, we try to
answer the question: Can we significantly improve the performance of RIONIDA by

5.6 General summary of the described experiments 217

providing more examples to the first-mentioned aspect of RIONIDA?

We try to answer this question by presenting the specific usage of RIONIDA,
which learns the optimal values of parameters on the whole data set. Then it uses
these learned values of parameters (k, p, s) as fixed in all runs of RIONIDA. During
performance estimation of such classifier, it uses as usually the given training data,
but with fixed values (as described above) of internal parameters.

Intuitively, one could expect that by using fixed values of parameters learned on
the whole available data, all the changes in performance would be positive or at least
very small in case of negative changes.

However, results in Table 5.22 (column with Optimal implementation) show that
it is not valid in one case: for car data set, the worsening is greater than 10%. This
case shows that using information about the optimal values of parameters for larger
training data without using the data as the base of cases may be useless.

On the other hand, as expected, for all but 3 data sets the improvement can be
observed (however only for 5 data sets higher than 1%); in other (2) cases (besides of
car data set) the worsening is very slight (by less than 0.5%). If we examine these 5
data sets with improvement greater than 1%, it turns out that these are small data
sets: 4 of them less than 1000 examples, and one less than 1500 examples. Moreover,
the highest improvement (around 5% and 4%) was achieved for fairly small data sets
(glass with 214 examples and cleveland with 303 examples).

Generally, we can (roughly) conclude that it is not necessary to possess a large
number of examples in order to learn the internal parameters properly. It was
recognised that increasing the number of training examples is especially important
for small data sets. This observation is a promising fact for attempting to analyse
big data sets (see Section 6.2, and also Subsection 5.4.3).

5.6 General summary of the described experiments

The most important experiments were presented in Section 5.3. These experiments
were thoroughly designed in many aspects, taking into account that we deal with
imbalanced learning problem (see Sections 5.1 and 5.2). In particular, we employed
important steps in the process of evaluation of algorithms (see Sections 2.6 and 5.1);
we selected for comparison two different performance measures, diverse imbalanced
data sets, and various state-of-the-art algorithms; moreover, we also took into account
that these algorithms can be used with different settings and preceded by different
preprocessing filters. The final general conclusion is that for both used performance
measures, regardless of whether we use default settings of algorithms or adjusted
settings or even (potentially) learned settings by the meta-learning scheme, RIONIDA
significantly outperforms any of the algorithms used in experiments (with the single
exception pointed out in Subsection 5.3.3).

To understand more deeply the mentioned above exceptional results, we analysed
the performance of RIONIDA during the performed experiments from the point of
view of some additional aspects (see Section 5.4). It was shown that any of the internal
parameters of RIONIDA (i.e. k, p, s) can boost its performance (see Subsection 5.4.1
and Chapter 4). The RIONIDA algorithm can learn the relevant values of these
parameters precisely (and so proves to be highly effective). In Subsection 5.4.2; we

218 5. Experiments and results

presented an example, illustrating that RIONIDA can deal with data sets containing
many outliers. Moreover, we showed that using the scaled generalised local decision
rules (and related to them learning the internal parameter s of RIONIDA) is crucial
for such performance. Then, Subsection 5.4.3 showed that in many cases, the
learned internal parameters are stable. This additionally proves their importance
for RIONIDA. Moreover, it was experimentally shown for G-mean that for many
data sets the learned optimal parameter p is close to the percentage of the minority
class, what is consistent with the formulated and proved in the thesis Theorem 4.1.
In Subsection 5.4.4, we also analysed the real-time of running of RIONIDA (training
and testing). We found that it is comparable to other algorithms. Moreover, the
presented observations suggest that the real-time of training and testing for RIONIDA
is significantly less than given by the theoretical bounds (due to using indexing trees).

Section 5.5 presented the results from some additional experiments, which enabled
us to investigate the RIONIDA algorithm in two aspects.

The first aspect was to understand even better the mentioned above exceptional
results of RIONIDA. In Subsection 5.5.1, we (roughly) showed that RIONIDA realises
the power of filters dedicated to imbalanced data and does much more for the
relevant classification of imbalanced data. Then, in Subsection 5.5.2, we more deeply
compared RIONIDA with its predecessor, RIONA (for G-mean as an example). We
made a few observations, the most important of which are: (1) RIONIDA much
better balances components of the considered measure (Sensitivity and Specificity
in case of G-mean) than RIONA, (2) RIONIDA outperforms RIONA regardless of
the used filter for RIONA, (3) for some data sets RIONIDA outperforms RIONA
not only on G-mean but also on its both components, i.e. Sensitivity and Specificity,
(4) using other settings for RIONA does not change the general comparison of these
algorithms. All these observations confirm that the performance of RIONIDA cannot
be obtained by using RIONA with proper filters, settings or even by better balancing
Sensitivity and Specificity. RIONIDA is a more compound algorithm, and its results
cannot be obtained by simple modifications of RIONA use. In Subsection 5.5.3, we
also compared RIONIDA with an exemplary algorithm dedicated to imbalanced data,
namely BRACID (the second best algorithm used in comparisons for the defG and
defF strategies). RIONIDA outperforms BRACID (on both G-mean and F-measure)
due to three general reasons: (1) RIONIDA better balances the primary components
of the performance measure, (2) sometimes it outperforms BRACID on both primary
components (Sensitivity and Specificity; or Sensitivity and Precision), (3) in case
RIONIDA outperforms BRACID only on one of the components, the gain on this
component is higher than the loss on the second one.

The second aspect was related to answering the question of whether RIONIDA
performance can be further improved (for G-mean as an example). In
Subsection 5.5.4, we used settings specific to RIONIDA. In Subsection 5.5.5, we
used settings adopted from RIONA. The general conclusion is that none of these
different settings leads to the improvement of the G-mean performance measure
(in the context of the used data sets). However, considering the second part of
the mentioned experiments, it should be noted that many of the methods designed
with RIONA are oriented on optimisation of the Accuracy measure. They would
have to be redesigned and reimplemented for measures specific to imbalanced data.

5.6 General summary of the described experiments 219

In particular, the attribute weighting method called Perceptron seems worthy to
check in future experiments. Moreover, in Subsection 5.5.6, we used (additionally
implemented) modified versions of RIONIDA. Using stratified cross-validation instead
of the leave-one-out during optimisation does not lead to the improvement of the
RIONIDA performance. However, the idea of two separate parameters for the
scaled generalised local decision rules for the majority and minority classes (and in
consequence, 4-dimensional optimisation) can lead to the improvement of RIONIDA
performance. We have also shown that a relatively small number of examples is
usually sufficient to learn the values of internal parameters of high quality.

To sum up, RIONIDA achieves impressively good results in comparison to the
quality of the other state-of-the-art algorithms analysed in the thesis. All aspects
of RIONIDA, i.e. using neighbours as in RIONA, using weights for two classes, and
using the idea of scaled generalised local decision rule are essential for its performance.
At the same time, RIONIDA running time is comparable to the used algorithms.
It was far more successful to construct the RIONIDA algorithm than to use the
RIONA algorithm with filters for imbalanced data or with different settings. Also,
RIONIDA outperforms algorithms dedicated to imbalanced data not only on the
chosen performance measures but also on the primary components of such measures
(i.e. Sensitivity, Specificity, Precision). It is hard to improve the performance of
RIONIDA with a simple change of settings. However, we proposed an extension of
RIONIDA, which seems to be promising for future investigation.

220 5. Experiments and results

Chapter 6

Final conclusions

The main goal of the thesis was to develop: (i) new methods based on combination of
instance- and rule-based approaches, and (ii) systems based on these methods with
a high quality of classification for different types of data sets. The realisation of this
aim was divided into two steps: for balanced and imbalanced data.

6.1 Summary

In Chapter 2, we presented, known from the literature, the equivalence of specific
lazy rule learning, for symbolic attributes only with the simple rule-based approach.
This result was generalised in the next chapter (related to the RIONA algorithm) for
more general rules commonly used in the thesis.

RIONA brings together some ideas of instance-based learning and rule induction
into a single algorithm. It uses rules that group values for both numerical and
symbolic attributes. RIONA is a lazy learning approach using only the rules on
the basis of a neighbourhood of the test case. We (empirically) found that for
correct classification of a test example generally, it is enough to consider only its
small neighbourhood instead of the whole training set. This allowed us to develop an
efficient algorithm without loss in Accuracy compared to the pure rule-based classifier.
Also, we found that the appropriate selection of the neighbourhood size is a crucial
factor for obtaining high Accuracy. We designed a method for efficient learning of
the optimal size of the neighbourhood.

RIONA obtained the Accuracy comparable to the well-known systems.
Theoretical results explain the relationships of the RIONA algorithm with both
instance- and rule-based classifiers. On the basis of these results, we proposed a
user-friendly explanation method of the decisions returned by the classifiers obtained
from RIONA.

RIONIDA is an extension of RIONA combining the instance- and rule-based
approaches for imbalanced data. Additionally, RIONIDA combines these approaches
in another aspect, namely by using special rules, that are more general than the ones
used in RIONA. This algorithm optimises the explicitly given performance measure.
All main ideas embedded in RIONIDA are essential for obtaining the high quality
of its performance including: optimisation of the fixed performance measure as well
as three proposed internal parameters. This algorithm is relatively fast (both in

221

222 6. F'inal conclusions

the training and testing phase). Moreover, the theoretical results concerning the
parameter responsible for assigning relevant weights for the minority and majority
classes can be used for acceleration of the training phase. The RIONIDA algorithm
(as RIONA) has the desired property of explainability.

RIONIDA achieves impressively good results in comparison to the quality of
the other state-of-the-art algorithms analysed in the thesis. RIONIDA significantly
outperforms these algorithms on the chosen performance measures and systematically
on their primary components (such as Sensitivity, Specificity, Precision) for selected
algorithms. Moreover, running time of RIONIDA is comparable with those of the
used algorithms. Tt was far more successful to construct the RIONTDA algorithm than
to use the RIONA algorithm with filters for imbalanced data or different settings. It
is hard to improve the performance of RIONIDA with a simple change of settings.
However, we proposed an extension of RIONIDA, which seems to be worthy of future
research.

In summarising, the claim about the realisation of the aim of the thesis mentioned
above is justified.

6.2 Future works

There are several possible directions for future research related to: (1) extensions
of RIONIDA, (2) continuation of presented experiments, (3) applying RIONIDA for
more complex tasks. We present these issues in the order roughly from the easiest to
the most challenging ones.

Technical things to do
In the future, the following useful implementations could be done:
e accelerated version of the learning phase of RIONIDA (see Subsection 4.5.3);

e special data structures in RIONIDA for identical objects to avoid slowing down
computations in specific situations (see Subsection 5.4.4);

e optimisation with other performance measures not based on confusion matrix,
in particular, AUC measure;

e inclusion of RIONIDA into WEKA.

Further experimental things to do

Further experiments with more in-depth analysis could be performed.

e Some of the additional experiments were performed only for G-mean
performance measure (see Subsections 5.5.4 and 5.5.5). These experiments
could be repeated using F-measure.

e More extensive experiments could be performed for RIONIDA (and
different performance measures for imbalanced data) to more thoroughly

6.2 Future works 223

(experimentally) check the pre-assumed hypothesis stating that (1) there is
no need to use the whole training set in the process of classification, and
(2) the bound of the neighbourhood size can even improve the classification
performance or at least not reduce it significantly (see Subsection 4.4.2 and
also Subsubsection ‘Different maximal & value’ on page 208).

Further investigation on RIONIDA and its extensions

Although we investigated in a few directions whether RIONIDA can be further
improved, much extensive investigation remains to be done. Also, the theoretical
and practical properties of RIONIDA can be further explored. In particular, the
following directions can be continued.

e We suppose that by using different voting methods jointly with appropriate
set P (for admissible values of the parameter p) one could obtain
improvement in the performance of RIONIDA (see ‘Different voting methods’ in
Subsection 5.5.5). The relevant investigation with accompanying experiments
could be performed to verify this hypothesis. This also applies to weighting
method especially for Perceptron (see ‘Different attribute weighting methods’
in Subsection 5.5.5).

e The preliminary experiments show that using different parameter s for the
majority and minority classes (and in consequence, 4-dimensional optimisation)
can improve the performance of RIONIDA. More comprehensive investigation
of this RIONIDA extension could be done.

e For different borderline regions, different optimal values of the parameter p (and
possibly also for two other parameters) could be searched (see Subsection 4.3.3).

e Further effort can be made in the direction of Explainability of classifiers
generated by RIONIDA.

e Theoretical results indicating the optimal value for the importance of the
minority class can be extended (mathematically calculated) to more general
circumstances occurring in practice. Current and future theoretical results
could be used for faster searching for the actual optimal value of the parameter

D

Using RIONIDA for balanced data

Although RIONIDA was developed for imbalanced data, it can be easily used for
balanced data with Accuracy as the performance measure. We have performed
preliminary experiments in this aspect and noticed that for some data sets the
obtained optimal parameter p was not equal to 0.5. Such setting can potentially
help to construct a classifier with higher Accuracy than with the default value 0.5 for
balanced data (as it is used for RIONA). Also, the parameter s can be used to find
its optimal value for balanced data. This shows the possibility to use RIONIDA for
balanced data with potentially better performance than RIONA. However, this issue
should be further investigated.

224 6. F'inal conclusions

Using RIONIDA for big data

In Section 5.4, we showed that for many data sets, some internal parameters of
RIONIDA are stable. Also, we noticed in the same section that if for any internal
parameter of RIONIDA its optimal values are stable in a part of the data set, then
it can be an argument to use the same optimal values of the parameter for the larger
part of the data set. We believe that these observations can be used to incrementally
learn the optimal values of internal parameters, even on big training sets. Also,
preliminary experiments showed that it is sufficient to use a relatively small amount
of training objects to learn the internal parameters of RIONIDA with high quality
(see Subsubsection ‘Optimisation of parameters with larger training data sets’ on
page 216). These facts suggest that the use of RIONIDA for imbalanced big data
can also be achievable and successful. However, extensive experiments for practical
application of RIONIDA in such case should be done. In particular, investigation
on the time complexity of original RIONIDA (using indexing trees) and its possible
modifications for imbalanced big data sets should be done.

Other extensions of RIONIDA

Analysis of imbalanced data encompasses many issues which are covered in the thesis
only marginally or not covered at all (see Section 1.3). All these issues open a wide
field of investigations related to adjusting the model used currently for RIONIDA to
be used successfully for real-life problems. These issues can be investigated in future
works.

Appendices

225

Appendix A

Counter example for specific form of
general rules

Let us try to redefine GenRules from Definition 2.8 (on page 34) to make
the admissible conditions independent from the test example. Let us redefine
the set GenRules in such a way that for symbolic attributes a € A the only
admissible conditions are: a € B(v, g.(v,w)), where v,w € V,. We call such
redefined set as GeneralRules. Note that in the above mentioned definition v is
independent from the test example in contrast to definition of GenRules given in
the Definition 2.8. We construct from it the set of all maximally general rules
MaxRules(General Rules, trnSet) (see Definition 2.11). Analogously to Theorems
2.2, 3.2, 3.4 one could formulate the following hypothetical theorem:

Theorem A.1. The rule g-rule (tst,trn, {Qa}aeAsym) for the test object tst and any
training object trn € trnSet is consistent with the training set trnSet if and only
if there exists rule r € MaxRules(General Rules, trnSet) covering examples tst and
trn.

However this theorem is not true. To show it, we construct the relevant
counterexample.

Suppose that we have the traning set, trnSet and the test example, tst as
given in Table A.1. It should be noted that the values of the conditional attribute
BloodGroup and the decision attribute Diagnosis are the same in Table 2.1. Thus,
the distances between values of the attribute BloodGroup are the same as calculated
in Subsection 2.2.2 and graphically shown in Figure 2.1.

First, let us construct for the test object tst and the training object trns, the
g-rule (tst,trn;) which is equal to

if Gender = F N BG € B(AB, ppc(AB,0)) then Diagnosis = Healthy.
Taking into account the distances calculated in Subsection 2.2.2 this is equivalent to
if Gender = F N BG € {AB, B,0} then Diagnosis = Healthy.

This rule is inconsistent with trnSet because example trns satisfies it and has different
decision than the considered rule.

227

228 A. Counter example for specific form of general rules

Object | Gender | BloodGroup (BG) | Diagnosis
trng M A Sick
trns M AB Sick
trng F AB Healthy
trng F AB Healthy
trns F B Sick
trng M B Healthy
trnyg F 0 Healthy

tst F AB ?

Table A.1: Artificial data set with 2 conditional attributes (Gender and BloodGroup, in
short, BG; both symbolic) and decision attribute Diagnosis. Seven objects derive from
training set and the last object is a test object (its decision is unknown).

Let us take in the above definition of GeneralRules the admissible condition for
attribute BG with v = 0 and w = AB. This condition is as follows:

BG € B(0, 0p6(0, AB)).

Taking into account the distances calculated in Subsection 2.2.2 this condition is
equivalent to the following one:

BG € {0, AB}.
Then, the rule

if Gender = F A BG € {0, AB} then Diagnosis = Healthy

belongs to the set MaxRules(General Rules,trnSet), because: it belongs to the
set General Rules; it is consistent and maximal (e.g. for attribute BG the more
general condition than BG € {0, AB} is the trivial condition, which would produce
an inconsistent rule). Moreover, this rule covers both examples tst and trn;. Hence,
for such definition of the set General Rules Theorem A.1 does not hold.

Appendix B

An example of the macro- or
micro-averaging of results of
cross-validation

It was experimentally shown in [67| that the simple averaging of partial results of
cross-validation, i.e. the macro-average style can give a biased estimation. We wanted
also to check whether using the macro- or micro-average (see Subsection 2.6.2) can
give a different final result of comparison of a learning algorithm (with another one)
in terms of better or worse. The latter means a sign of the differences of averaged
(macro or micro) partial results (of two algorithms) of a given performance measure.
Below, we show that the answer is positive and we give a clear example for it. To
show it we chose G-mean as the performance measure.

Even using 10 times repeated 10-fold cross-validation (more precisely stratified
cross-validation) we found such data set! and such pair of algorithms (let us call them
A and B) for which such differences occur. It means that if we use the macro-average,
then algorithm A turns out to be better than B, and if we use the micro-average, then
vice versa, i.e. B turns out to be better than A. To show the effect of different choices
of averaging we selected one group of results out of ten cross-validations which shows
this effect the most.

In one of the 10-fold cross-validation, the differences between algorithms A and B
were 2.52% and —1.13%, respectively. From this real example, we have chosen three
partial results (from three splits) and in this way we constructed a possible result for
the 3-fold cross-validation for two learning algorithms. We tried to make the example
as simple as possible.

In Table B.1 we show such an example of potential results of running learning
algorithms A and B for 3-fold cross-validation (in fact stratified cross-validation).
This table for each fold of cross-validation presents: number of a fold (cv), numbers
from confusion matrix i.e. TP, FN, FP, TN (see Subsection 2.6.1), and G-mean
calculated for the given fold. After results for three folds, average numbers of
these three G-mean values are given for both algorithms (for the algorithm A it is
34.82% and for the algorithm B it is 28.93%). This is the effect of the macro-average
computing for G-mean.

'In fact, we found two such data sets.

229

230 B. An example of the macro- or micro-averaging of results of cross-validation

Below the third horizontal line are given sums of coefficients of the joint confusion
matrix (with coefficients equal to the sum of coefficients from each fold). For such
joint matrix, G-mean measures are given for both algorithms (for the algorithm A it
is 36.27% and for the algorithm B it is 42.15%). This is the effect of the micro-average
computing for G-mean.

In the last column, differences between algorithms are given depending on whether
the macro- or micro-average is used. It means that the algorithm A is better than
the algorithm B by around 6% if the macro-average is used. On the other hand, the
algorithm A is worse than the algorithm B by around 6% if the micro-average is used.
It means that depending on the selection of the macro- or micro-averaging completely
different conclusions can be drawn (and these differences are similar and relatively
high). This artificial example (yet constructed on the base of real experiments) shows
that one has to be very careful with the way of averaging of the partial results of
cross-validation.

According to [67] the micro-average style should be used for F-measure since it
gives less bias. We expect that analogously for G-mean the micro-average gives less
bias. Thus, we expect that for G-mean also the micro-average style should be used.

Thus, in the experiments shown in the thesis, the micro-average style of
computation was used for all performance measures, i.e. F-measure and G-mean.

Table B.1: An example of the macro- or micro-averaging of results of cross-validation.
Line 6 of the table presents the results of the macro-averaging and the last line presents
results of the micro-averaging.

results for learning alg. A results for learning alg. B diff-
cv TP FN FP TN G-mean | TP FN FP TN G-mean | errence

2 1 2 4 66.67% 0 3 1 2 0.00%
0 3 6 0 0.00% 1 2 4 2 33.33%
2 0 6 1 37.80% 2 0 5 2 53.45%
macro-average G-mean 34.82% 28.93% | 5.89%

> TP FN FP TN Gwmean|TP FN FP TN G-mean |
4 4 14 5 362T%| 3 5 10 9 4215%

W DN =

-5.87%

Appendix C

Remark on the localisation of the
optimal parameter p

Fact C.1. Under the assumptions of Theorem 4.1 we have

1 k M (s]t})p (M—1) (M =p)
. . < Z. Lqu<M,F(M)+F(M-1)<1
zloiprOpt al= P sup (u—M),
k' q:u>M,F(M)+F(M-1)>1

where F = Fpgy g, M = M(K',q) and pn = p(K', q) = K'q are respectively the median
and the mean of B(K',q).

Proof. We use the proof of the previous theorem.
We consider three cases. First, if F(M) — 3 = 3 — F(M — 1), then the interval of
the optimal values po,: is equal to [Popt, Dopt + %) Then ¢ is within this interval.
Second, if F(M) — 5 < 3 — F(M — 1), then Py is such that M = p,yk and the
interval of the optimal values po,: is equal tO [Popt, Dopt + %) If ¢ > popt, then from
first part of Equation 4.8 we have that ¢ is within this interval (and the distance is

zero). Thus, in this case we have

. N 1 _ 1
inf|popt — gl < sup (Popr —q) = 7+ sup (kpopt — kq) = - sup (M — p),
Popt q<Bopt E kg<kpop k<M
where sup (M — p) is sup (M(K',q) — n(k', q)) and analogously in similar
p<M k' q:u(kq) <M (K',q)

places.

Third, if F(M) — 3 > 3 — F(M — 1), then Py is such that M = P,k + 1 and
the interval of the optimal values po,: is equal to [Dopt, Popt + %) If ¢ < Dopt + %, then
from the second part of Equation 4.8, we have that ¢ is within this interval (and the
distance is zero). Thus, in this case we have

. 3 1 1 .
]ljmilpopt —q| < sup (q — <popt + E)) = sup (kq — (kPopt + 1))

T>Popt+3 kq>kpopt+1
1

= s (= M)
u>M

231

C. Remark on the localisation of the optimal parameter p

232
Hence,
] sup (M —) when F(M) + F(M-1) < 1
: _ < . M<M
]17£l';)f;|popt al < kMY sup (u—M) when F(M) + F(M-1) > 1
u>M

L one can find a much better bound for the

It seems' that assuming that p < 3,
max value from the above fact than In2 (independently of ¢ and k). In particular,

we expect that the first sup from the above fact is equal to 0.

! This was verified for some selected values of n. Taking into account the performed experiments
(see Chapter 5), the more general intuition for n = 1,2, ..., 100 would be more relevant. This, not

very complicated task, was left for the future work.

Bibliography

1]

2]
3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Rseslib 3: Rough set and machine learning open source in Java. http://rseslib.mimuw.
edu.pl.

Weka 3: Machine Learning Software in Java. https://www.cms.waikato.ac.nz/ml/weka/.

Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box: A Survey
on Explainable Artificial Intelligence (XAI). IEEE Access, 6:52138-52160, 2018.
doi:10.1109/ACCESS.2018.2870052.

Charu C. Aggarwal. Outlier Analysis. Springer, New York, NY, 1st edition, 2013.
doi:10.1007/978-1-4614-6396-2.

Charu C. Aggarwal. Instance-Based Learning: A Survey. In Charu C. Aggarwal (ed.), Data
Classification: Algorithms and Applications, pp. 157-186. Chapman & Hall/CRC, New York,
1st edition, 2014. doi:10.1201/b17320.

David W. Aha (ed.). Lazy Learing. Springer, Dordrecht, 1st edition, 1997.
doi:10.1007/978-94-017-2053-3.

David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms.
Machine Learning, 6(1):37-66, 1991. doi:10.1023/A:1022689900470.

Ammar Almasri, Erbug Celebi, and Rami S. Alkhawaldeh. EMT: Ensemble Meta-Based Tree
Model for Predicting Student Performance. Scientific Programming, 2019:Article No. 3610248,
1-13, 2019. doi:10.1155/2019/3610248.

Aijjun An, Nick Cercone, and Xiangji Huang. A Case Study for Learning from Imbalanced
Data Sets. In Advances in Artificial Intelligence (Canadian AI 2001), pp. 1-15. Springer,
Heidelberg, 2001. doi:10.1007/3-540-45153-6 1.

Martin H. G. Anthony and Norman Biggs. Computational Learning Theory: An Introduction.
Cambridge University Press, Cambridge, 1992.

Muhammad Nafees Anwar. Complexity measurement for dealing with class imbalance problems
in classification modelling. PhD thesis, Massey University, 2012.

Sanghamitra Bandyopadhyay and Sriparna Saha. Unsupervised Classification: Similarity
Measures, Classical and Metaheuristic Approaches, and Applications. Springer-Verlag,
Heidelberg, 1st edition, 2013. doi:10.1007/978-3-642-32451-2.

Sukarna Barua, Md. Monirul Islam, Xin Yao, and Kazuyuki Murase. MWMOTE-Majority
Weighted Minority Oversampling Technique for Imbalanced Data Set Learning.
IEEE Transactions on Knowledge and Data Engineering, 26(2):405-425, 2014.
doi:10.1109/TKDE.2012.232.

Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. A Study of the
Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD
Ezplorations Newsletter, 6(1):20-29, 2004. doi:10.1145/1007730.1007735.

233

http://rseslib.mimuw.edu.pl
http://rseslib.mimuw.edu.pl
https://www.cms.waikato.ac.nz/ml/weka/
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1007/978-1-4614-6396-2
https://doi.org/10.1201/b17320
https://doi.org/10.1007/978-94-017-2053-3
https://doi.org/10.1023/A:1022689900470
https://doi.org/10.1155/2019/3610248
https://doi.org/10.1007/3-540-45153-6_1
https://doi.org/10.1007/978-3-642-32451-2
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1145/1007730.1007735

234

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

BIBLIOGRAPHY

Jan G. Bazan. Discovery of Decision Rules by Matching New Objects Against Data Tables.
In Rough Sets and Current Trends in Computing (RSCTC 1998), pp. 521-528. Springer,
Heidelberg, 1998. doi:10.1007/3-540-69115-4 72.

Jan G. Bazan and Marcin Szczuka. RSES and RSESlib — A Collection of Tools for Rough Set
Computations. In Rough Sets and Current Trends in Computing (RSCTC 2001), pp. 106-113.
Springer, Heidelberg, 2001. doi:10.1007/3-540-45554-X 12.

Jan G. Bazan, Hung Son Nguyen, Sinh Hoa Nguyen, Piotr Synak, and Jakub Wroblewski.
Rough Set Algorithms in Classification Problem. In Polkowski et al. [167], pp. 49-88.
doi:10.1007/978-3-7908-1840-6 3.

Mohamed Bekkar, Hassiba Kheliouane Djemaa, and Taklit Akrouf Alitouche. Evaluation
measures for models assessment over imbalanced data sets. Journal of Information
Engineering and Applications, 3(10):27-38, 2013.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Morgan & Claypool
Publishers, San Rafael, CA, 2015. doi:10.2200/S00626ED1V01Y201501ATMO030.

Colin Bellinger. Beyond the Boundaries of SMOTE: A Framework for Synthetically
Oversampling the Manifold. PhD thesis, University of Ottawa, 2016.

Colin Bellinger, Christopher Drummond, and Nathalie Japkowicz. Manifold-based synthetic
oversampling with manifold conformance estimation. Machine Learning, 107(3):605-637, 2018.
d0i:10.1007 /s10994-017-5670-4.

Alessio Benavoli, Giorgio Corani, Janez Demg$ar, and Marco Zaffalon. Time for a change:
a tutorial for comparing multiple classifiers through Bayesian analysis. Journal of Machine
Learning Research, 18(1):2653-2688, 2017.

Cigdem Beyan and Robert Fisher. Classifying imbalanced data sets using similarity
based hierarchical decomposition. Pattern Recognition, 48(5):1653-1672, 2015.
doi:10.1016 /j.patcog.2014.10.032.

Yoram Biberman. A context similarity measure. In Proceedings of the 7th European
Conference on Machine Learning (ECML 1994), pp. 49-63. Springer, Heidelberg, 1994.
doi:10.1007/3-540-57868-4 50.

Jerzy Blaszczynski, Magdalena Deckert, Jerzy Stefanowski, and Szymon Wilk. Integrating
Selective Pre-processing of Imbalanced Data with Ivotes Ensemble. In Rough Sets and
Current Trends in Computing (RSCTC 2010), pp. 148-157. Springer, Heidelberg, 2010.
doi:10.1007/978-3-642-13529-3 17.

Jerzy Blaszczynski, Salvatore Greco, and Roman Stowinski. Inductive discovery of laws using
monotonic rules. Engineering Applications of Artificial Intelligence, 25(2):284-294, 2012.
doi:10.1016 /j.engappai.2011.09.003.

Verénica Bolon-Canedo, Noelia Sanchez-Marono, and Amparo Alonso-Betanzos.
Feature Selection for High-Dimensional Data. Springer, Cham, 1st edition, 2015.
doi:10.1007/978-3-319-21858-8.

Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity Measures for Categorical Data:
A Comparative Evaluation. In Proceedings of the 2008 SIAM International Conference on
Data Mining (SDM), pp. 243-254. SIAM, 2008. doi:10.1137/1.9781611972788.22.

Remco R. Bouckaert and Eibe Frank. Evaluating the Replicability of Significance Tests for
Comparing Learning Algorithms. In Advances in Knowledge Discovery and Data Mining
(PAKDD 2004), pp. 3-12. Springer, Heidelberg, 2004. doi:10.1007/978-3-540-24775-3 3.

https://doi.org/10.1007/3-540-69115-4_72
https://doi.org/10.1007/3-540-45554-X_12
https://doi.org/10.1007/978-3-7908-1840-6_3
https://doi.org/10.2200/S00626ED1V01Y201501AIM030
https://doi.org/10.1007/s10994-017-5670-4
https://doi.org/10.1016/j.patcog.2014.10.032
https://doi.org/10.1007/3-540-57868-4_50
https://doi.org/10.1007/978-3-642-13529-3_17
https://doi.org/10.1016/j.engappai.2011.09.003
https://doi.org/10.1007/978-3-319-21858-8
https://doi.org/10.1137/1.9781611972788.22
https://doi.org/10.1007/978-3-540-24775-3_3

BIBLIOGRAPHY 235

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

138]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Jeffrey P. Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E. Brodley.
Pruning decision trees with misclassification costs. In Proceedings of the 10th European
Conference on Machine Learning (ECML 1998), pp. 131-136. Springer, Heidelberg, 1998.
doi:10.1007 /BFb0026682.

Paula Branco, Luis Torgo, and Rita P. Ribeiro. @A Survey of Predictive Modeling
on Imbalanced Domains. ACM Computing Surveys, 49(2):Article No. 31, 1-50, 2016.
doi:10.1145/2907070.

Leo Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001.
doi:10.1023/A:1010933404324.

Arlen Brown and Carl Pearcy. An Introduction to Analysis. Springer-Verlag, New York, NY,
1st edition, 1995. doi:10.1007/978-1-4612-0787-0.

Borja Calvo and Guzman Santafé. scmamp: Statistical Comparison of Multiple Algorithms
in Multiple Problems. The R Journal, 8(1):248-256, 2016. doi:10.32614/RJ-2016-017.

Alain Célisse and Tristan Mary-Huard. Exact Cross-Validation for kNN and application to
passive and active learning in classification. Journal de la Société Frangaise de Statistique,
152(3):83-97, 2011.

Nitesh V. Chawla. Data Mining for Imbalanced Datasets: An Overview. In Oded Maimon and
Lior Rokach (eds.), Data Mining and Knowledge Discovery Handbook, pp. 853-867. Springer,
Boston, MA, 2005. doi:10.1007/0-387-25465-X _40.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and William P. Kegelmeyer. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:
321-357, 2002. doi:10.1613/jair.953.

Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kolcz. Editorial: Special Issue on
Learning from Imbalanced Data Sets. ACM SIGKDD Ezxplorations Newsletter, 6(1):1-6, 2004.
doi:10.1145/1007730.1007733.

Debo Cheng, Shichao Zhang, Zhenyun Deng, Yonghua Zhu, and Ming Zong. kNN Algorithm
with Data-Driven k Value. In Advanced Data Mining and Applications, pp. 499-512. Springer,
Cham, 2014. doi:10.1007/978-3-319-14717-8 _39.

David A. Cieslak and Nitesh V. Chawla. Learning Decision Trees for Unbalanced Data. In
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2008), pp. 241-256.
Springer, Heidelberg, 2008. doi:10.1007/978-3-540-87479-9 34.

Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine learning, 3:261-283,
1989. doi:10.1007/BF00116835.

William W. Cohen. Fast Effective Rule Induction. In Proceedings of the 12th International
Conference on Machine Learning (ICML 1995), pp. 115-123. Morgan Kaufmann, San
Francisco, CA, 1995. doi:10.1016,/b978-1-55860-377-6.50023-2.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 3rd edition, 2009.

Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10(1):57-78, 1993. doi:10.1007/BF00993481.

Shounak Datta and Swagatam Das. Near-Bayesian Support Vector Machines for imbalanced
data classification with equal or unequal misclassification costs. Neural Networks, 70:39-52,
2015. doi:10.1016/j.neunet.2015.06.005.

https://doi.org/10.1007/BFb0026682
https://doi.org/10.1145/2907070
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-1-4612-0787-0
https://doi.org/10.32614/RJ-2016-017
https://doi.org/10.1007/0-387-25465-X_40
https://doi.org/10.1613/jair.953
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1007/978-3-319-14717-8_39
https://doi.org/10.1007/978-3-540-87479-9_34
https://doi.org/10.1007/BF00116835
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1007/BF00993481
https://doi.org/10.1016/j.neunet.2015.06.005

236

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

BIBLIOGRAPHY

Krzysztof Dembczynski, Willem Waegeman, Weiwei Cheng, and Eyke Hiillermeier. An Exact
Algorithm for F-Measure Maximization. In Proceedings of the 24th International Conference
on Neural Information Processing Systems (NIPS 2011), pp. 1404-1412. Curran Associates
Inc., Red Hook, NY, 2011.

Janez Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of
Machine Learning Research, 7:1-30, 2006.

Nilanjan Dey, Samarjeet Borah, Rosalina Babo, and Amira S. Ashour (eds.). Social Network
Analytics: Computational Research Methods and Techniques. Academic Press, London, 1st
edition, 2019. doi:10.1016/C2017-0-02844-6.

Matias Di Martino, Federico Decia, Juan Molinelli, and Alicia Ferndndez. Improving electric
fraud detection using class imbalance strategies. In Proceedings of the 1st International
Conference on Pattern Recognition Applications and Methods (ICPRAM 2012), volume 1,
pp. 135-141. SciTePress, Setubal, 2012. doi:10.5220,/0003768401350141.

Thomas G. Dietterich. Machine Learning Research: Four Current Directions. AI Magazine,
18:97-136, 1997.

Thomas G. Dietterich. Approximate Statistical Tests for Comparing Supervised
Classification Learning Algorithms. Neural Computation, 10(7):1895-1923, 1998.
doi:10.1162/089976698300017197.

Shuya Ding, Bilal Mirza, Zhiping Lin, Jiuwen Cao, Xiaoping Lai, Tam V. Nguyen,
and Jose Sepulveda. Kernel based online learning for imbalance multiclass classification.
Neurocomputing, 277:139-148, 2018. doi:10.1016/j.neucom.2017.02.102.

Pedro Domingos. Unifying instance-based and rule-based induction. Machine Learning, 24
(2):141-168, 1996. doi:10.1007/BF00058656.

Pedro Domingos and Michael Pazzani. On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. Machine Learning, 29(2):103-130, 1997. doi:10.1023/A:1007413511361.

Filip Karlo Dogilovi¢, Mario Bréi¢, and Nikica Hlupi¢. Explainable artificial intelligence:
A survey. In 2018 jl1st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. 0210-0215. Croatian Society
MIPRO, 2018. do0i:10.23919/MIPR0.2018.8400040.

Harshit Dubey and Vikram Pudi. Class Based Weighted K-Nearest Neighbor over Imbalance
Dataset. In Advances in Knowledge Discovery and Data Mining (PAKDD 2013), pp. 305-316.
Springer, Heidelberg, 2013. doi:10.1007/978-3-642-37456-2 26.

Charles Elkan. The Foundations of Cost-Sensitive Learning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 973-978. Morgan
Kaufmann, San Francisco, CA, 2001.

Seyda Ertekin, Jian Huang, Léon Bottou, and Lee Giles. Learning on the Border: Active
Learning in Imbalanced Data Classification. In Proceedings of the 16th ACM Conference on
Information and Knowledge Management (CIKM 2007), pp. 127-136. ACM, New York, NY,
2007. doi:10.1145/1321440.1321461.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From Data
Mining to Knowledge Discovery in Databases. Al Magazine, 17(3):37-54, 1996.
doi:10.1609/aimag.v17i3.1230.

https://doi.org/10.1016/C2017-0-02844-6
https://doi.org/10.5220/0003768401350141
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1016/j.neucom.2017.02.102
https://doi.org/10.1007/BF00058656
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.23919/MIPRO.2018.8400040
https://doi.org/10.1007/978-3-642-37456-2_26
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1609/aimag.v17i3.1230

BIBLIOGRAPHY 237

[60]

[61]

|62]

[63]

[64]

|65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

Alberto Fernandez, Victoria Lopez, Mikel Galar, Maria José del Jesus, and Francisco
Herrera. Analysing the classification of imbalanced data-sets with multiple classes:
Binarization techniques and ad-hoc approaches. Knowledge-Based Systems, 42:97-110, 2013.
do0i:10.1016/j.knosys.2013.01.018.

Alberto Fernandez, Sara del Rio, Nitesh V. Chawla, and Francisco Herrera. An insight into
imbalanced Big Data classification: outcomes and challenges. Complex & Intelligent Systems,
3(2):105-120, 2017. doi:10.1007/s40747-017-0037-9.

Alberto Ferndndez, Salvador Garcia, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, and
Francisco Herrera. Learning from Imbalanced Data Sets. Springer, Cham, 1st edition, 2018.
d0i:10.1007/978-3-319-98074-4.

Alberto Fernandez, Salvador Garcia, Francisco Herrera, and Nitesh V. Chawla. SMOTE for
Learning from Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary.
Journal of Artificial Intelligence Research, 61(1):863-905, 2018. doi:10.1613/jair.1.11192.

Helmut Finner. On a Monotonicity Problem in Step-Down Multiple Test Procedures. Journal
of the American Statistical Association, 88(423):920-923, 1993. doi:10.2307/2290782.

Peter A. Flach. The Geometry of ROC Space: Understanding Machine Learning Metrics
through ROC Isometrics. In Proceedings of the 20th International Conference on International
Conference on Machine Learning (ICML 2003), pp. 194-201. AAAT Press, 2003.

Peter A. Flach and Meelis Kull. Precision-Recall-Gain Curves: PR Analysis Done Right. In
Proceedings of the 28th International Conference on Neural Information Processing Systems
- Volume 1 (NIPS 2015), pp. 838-846. MIT Press, Cambridge, MA, 2015.

George Forman and Martin Scholz. Apples-to-Apples in Cross-Validation Studies: Pitfalls in
Classifier Performance Measurement. ACM SIGKDD Ezplorations Newsletter, 12(1):49-57,
2010. doi:10.1145/1882471.1882479.

Eibe Frank and Ian H. Witten. Generating Accurate Rule Sets Without Global Optimization.
In Proceedings of the 15th International Conference on Machine Learning (ICML 1998), pp.
144-151. Morgan Kaufmann, San Francisco, CA, 1998.

Yoav Freund and Robert E. Schapire. Experiments with a New Boosting Algorithm. In
Proceedings of the 13th International Conference on Machine Learning (ICML 1996), pp.
148-156. Morgan Kaufmann, San Francisco, CA, 1996.

Milton Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the
Analysis of Variance. Journal of the American Statistical Association, 32(200):675-701, 1937.
doi:10.1080/01621459.1937.10503522.

Johannes Firnkranz and Gerhard Widmer. Incremental Reduced Error Pruning. In
Proceedings of the 11th International Conference on Machine Learning (ICML 1994), pp.
70-77. Morgan Kaufmann, San Francisco, CA, 1994. doi:10.1016/B978-1-55860-335-6.50017-9.

Johannes Fiirnkranz, Dragan Gamberger, and Nada Lavrac. Foundations of Rule Learning.
Cognitive Technologies. Springer, Heidelberg, 2012. doi:10.1007/978-3-540-75197-7.

Salvador Garcia and Francisco Herrera. An Extension on ”Statistical Comparisons of Classifiers
over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research,
9:2677-2694, 2008.

Salvador Garcia, Alberto Fernandez, and Francisco Herrera. Enhancing the effectiveness
and interpretability of decision tree and rule induction classifiers with evolutionary training
set selection over imbalanced problems. Applied Soft Computing, 9(4):1304-1314, 2009.
doi:10.1016/j.as0c.2009.04.004.

https://doi.org/10.1016/j.knosys.2013.01.018
https://doi.org/10.1007/s40747-017-0037-9
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.2307/2290782
https://doi.org/10.1145/1882471.1882479
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1016/B978-1-55860-335-6.50017-9
https://doi.org/10.1007/978-3-540-75197-7
https://doi.org/10.1016/j.asoc.2009.04.004

238

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

BIBLIOGRAPHY

Salvador Garcia, Alberto Fernadndez, Julidn Luengo, and Francisco Herrera. Advanced
nonparametric tests for multiple comparisons in the design of experiments in computational
intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10):
2044-2064, 2010. doi:10.1016/j.ins.2009.12.010.

Vicente Garcia, Jose Sanchez, and Ramon Mollineda. An Empirical Study of the Behavior
of Classifiers on Imbalanced and Overlapped Data Sets. In Progress in Pattern Recognition,
Image Analysis and Applications (CIARP 2007), pp. 397-406. Springer, Heidelberg, 2007.
d0i:10.1007/978-3-540-76725-1 _42.

Nicolas Garcia-Pedrajas, Juan A. Romero del Castillo, and Gonzalo Cerruela-Garcia. A
Proposal for Local k Values for k-Nearest Neighbor Rule. IEEE Transactions on Neural
Networks and Learning Systems, 28(2):470-475, 2017. doi:10.1109/TNNLS.2015.2506821.

Anil K. Ghosh. On optimum choice of k in nearest neighbor classification. Computational
Statistics & Data Analysis, 50(11):3113-3123, 2006. doi:10.1016/j.csda.2005.06.007.

Anil K. Ghosh. On Nearest Neighbor Classification Using Adaptive Choice of k. Journal of
Computational and Graphical Statistics, 16(2):482-502, 2007. do0i:10.1198,/106186007X208380.

Jean D. Gibbons and John W. Pratt. P-Values: Interpretation and Methodology. The
American Statistician, 29(1):20-25, 1975. doi:10.2307/2683674.

Grzegorz Gora and Arkadiusz Wojna. RIONA: A New Classification System Combining Rule
Induction and Instance-Based Learning. Fundamenta Informaticae, 51(4):369-390, 2002.

Grzegorz Gora and Arkadiusz Wojna. RIONA: A Classifier Combining Rule Induction and
K-nn Method with Automated Selection of Optimal Neighbourhood. In Proceedings of the
13th European Conference on Machine Learning (ECML 2002), pp. 111-123. Springer-Verlag,
Heidelberg, 2002. doi:10.1007/3-540-36755-1 10.

Grzegorz Gora and Arkadiusz Wojna. Local Attribute Value Grouping for Lazy Rule
Induction. In Rough Sets and Current Trends in Computing (RSCTC 2002), pp. 405—412.
Springer, Heidelberg, 2002. doi:10.1007/3-540-45813-1 53.

Lacrimioara Grama and Corneliu Rusu. Choosing an accurate number of mel frequency
cepstral coefficients for audio classification purpose. In Proceedings of the 10th International
Symposium on Image and Signal Processing and Analysis (ISPA 2017), pp. 225-230, 2017.
doi:10.1109/ISPA.2017.8073600.

Lacrimioara Grama and Corneliu Rusu. Adding audio capabilities to TIAGo service robot.
In 2018 International Symposium on Electronics and Telecommunications (ISETC), pp. 1-4,
2018. doi:10.1109/ISETC.2018.8583897.

Jerzy W. Grzymala-Busse. LERS-A System for Learning from Examples Based on
Rough Sets. In Roman Stowinski (ed.), Intelligent Decision Support: Handbook of
Applications and Advances of the Rough Sets Theory, pp. 3—18. Springer, Dordrecht, 1992.
doi:10.1007/978-94-015-7975-9 1.

Jerzy W. Grzymala-Busse. Applications of the Rule Induction System LERS. In Polkowski
and Skowron [166], pp. 366-375.

Jerzy W. Grzymala-Busse and Witold J. Grzymala-Busse. Handling Missing Attribute Values.
In Oded Maimon and Lior Rokach (eds.), Data Mining and Knowledge Discovery Handbook,
pp. 37-57. Springer, Boston, MA, 2005. doi:10.1007/0-387-25465-X 3.

https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1007/978-3-540-76725-1_42
https://doi.org/10.1109/TNNLS.2015.2506821
https://doi.org/10.1016/j.csda.2005.06.007
https://doi.org/10.1198/106186007X208380
https://doi.org/10.2307/2683674
https://doi.org/10.1007/3-540-36755-1_10
https://doi.org/10.1007/3-540-45813-1_53
https://doi.org/10.1109/ISPA.2017.8073600
https://doi.org/10.1109/ISETC.2018.8583897
https://doi.org/10.1007/978-94-015-7975-9_1
https://doi.org/10.1007/0-387-25465-X_3

BIBLIOGRAPHY 239

[89]

190]

[91]

192]

[93]

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

Jerzy W. Grzymala-Busse, Linda K. Goodwin, Witold J. Grzymala-Busse, and Xinqun Zheng,.
An Approach to Imbalanced Data Sets Based on Changing Rule Strength. In Sankar K.
Pal, Lech Polkowski, and Andrzej Skowron (eds.), Rough-Neural Computing: Techniques for
Computing with Words, pp. 543-553. Springer, Heidelberg, 2004.

Jerzy W. Grzymala-Busse, Jerzy Stefanowski, and Szymon Wilk. A Comparison of Two
Approaches to Data Mining from Imbalanced Data. Journal of Intelligent Manufacturing, 16
(6):565-573, 2005. doi:10.1007/s10845-005-4362-2.

Qiong Gu, Li Zhu, and Zhihua Cai. Evaluation Measures of the Classification Performance of
Imbalanced Data Sets. In Computational Intelligence and Intelligent Systems (ISICA 2009),
pp. 461-471. Springer, Heidelberg, 2009. doi:10.1007/978-3-642-04962-0 53.

Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature Selection.
Journal of Machine Learning Research, 3:1157-1182, 2003.

Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A. Zadeh (eds.). Feature
Eaxtraction: Foundations and Applications. Springer-Verlag, Heidelberg, 1st edition, 2006.
doi:10.1007/978-3-540-35488-8.

Hani Hagras. Toward Human-Understandable, Explainable AI. Computer, 51(9):28-36, 2018.
doi:10.1109/MC.2018.3620965.

Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and Gong Bing.
Learning from class-imbalanced data: Review of methods and applications. Fxzpert Systems
with Applications, 73:220-239, 2017. doi:10.1016/j.eswa.2016.12.035.

Kais Hamza. The smallest uniform upper bound on the distance between the mean and the
median of the binomial and Poisson distributions. Statistics € Probability Letters, 23(1):21-25,
1995. doi:10.1016/0167-7152(94)00090-U.

David J. Hand. Measuring classifier performance: a coherent alternative to the area under
the ROC curve. Machine Learning, 77(1):103-123, 2009. doi:10.1007/s10994-009-5119-5.

David J. Hand, Peter Christen, and Nishadi Kirielle. Z*: an interpretable transformation of
the F-measure. Machine Learning, 110(3):451-456, 2021. doi:10.1007/s10994-021-05964-1.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, New York, NY, 2nd edition, 2009.
doi:10.1007 /978-0-387-84858-7.

Douglas M. Hawkins. Identification of outliers. Monographs on Applied Probability and
Statistics. Springer, Dordrecht, 1980. doi:10.1007/978-94-015-3994-4.

Haibo He and Edwardo A. Garcia. Learning from Imbalanced Data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263-1284, 2009. doi:10.1109/TKDE.2008.239.

Haibo He and Yunqgian Ma. Imbalanced Learning: Foundations, Algorithms, and Applications.
Wiley-IEEE Press, Piscataway, NJ, 1st edition, 2013.

Robert C. Holte, Liane E. Acker, and Bruce W. Porter. Concept Learning and the Problem
of Small Disjuncts. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI 1989), volume 1, pp. 813-818. Morgan Kaufmann, San Francisco, CA,
1989.

Paul Hopkin. Fundamentals of Risk Management: Understanding, evaluating and
implementing effective risk management. Kogan Page, London, 5th edition, 2018.

https://doi.org/10.1007/s10845-005-4362-2
https://doi.org/10.1007/978-3-642-04962-0_53
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1109/MC.2018.3620965
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/0167-7152(94)00090-U
https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1007/s10994-021-05964-1
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-94-015-3994-4
https://doi.org/10.1109/TKDE.2008.239

240

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

BIBLIOGRAPHY

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning Deep Representation
for Imbalanced Classification. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5375-5384, 2016. doi:10.1109/CVPR.2016.580.

Mansoor Zolghadri Jahromi, Elham Parvinnia, and Robert John. A method of learning
weighted similarity function to improve the performance of nearest neighbor. Information
Sciences, 179(17):2964-2973, 2009. doi:10.1016/].ins.2009.04.012.

Andrzej Janusz. Algorithms for Similarity Relation Learning from High Dimensional Data. In
James F. Peters and Andrzej Skowron (eds.), Transactions on Rough Sets X VII, pp. 174-292.
Springer, Heidelberg, 2014. doi:10.1007/978-3-642-54756-0 7.

Nathalie Japkowicz. The Class Imbalance Problem: Significance and Strategies. In Proceedings
of the 2000 International Conference on Artificial Intelligence (ICAI 2000), pp. 111-117, 2000.

Nathalie Japkowicz and Mohak Shah. FEwvaluating Learning Algorithms: A Classification
Perspective. Cambridge University Press, Cambridge, 2011. doi:10.1017/CB09780511921803.

Nathalie Japkowicz and Shaju Stephen. The Class Imbalance Problem: A Systematic Study.
Intelligent Data Analysis, 6(5):429-449, 2002. doi:10.3233/IDA-2002-6504.

Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A Novelty Detection Approach
to Classification. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 1995), pp. 518-523. Morgan Kaufmann, San Francisco, CA, 1995.

Liangxiao Jiang, Zhihua Cai, Dianhong Wang, and Siwei Jiang. Survey of Improving
K-Nearest-Neighbor for Classification. In 4th International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD 2007), pp. 679-683, 2007. doi:10.1109/FSKD.2007.552.

Justin M. Johnson and Taghi M. Khoshgoftaar. Survey on deep learning with class imbalance.
Journal of Big Data, 6:Article No. 27, 1-54, 2019. doi:10.1186/s40537-019-0192-5.

Mahesh V. Joshi, Ramesh C. Agarwal, and Vipin Kumar. Mining Needle in a Haystack:
Classifying Rare Classes via Two-Phase Rule Induction. ACM SIGMOD Record, 30(2):91-102,
2001. doi:10.1145/376284.375673.

Rob Kaas and Jan M. Buhrman. Mean, Median and Mode in Binomial Distributions. Statistica
Neerlandica, 34(1):13-18, 1980. doi:10.1111/j.1467-9574.1980.tb00681.x.

Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. A Systematic Review
on Imbalanced Data Challenges in Machine Learning: Applications and Solutions. ACM
Computing Surveys, 52(4):1-36, 2019. doi:10.1145/3343440.

Kittisak Kerdprasop and Nittaya Kerdprasop. A data mining approach to automate fault
detection model development in the semiconductor manufacturing process. International
Journal of Mechanics, 5(4):336-344, 2011.

Mohammed Khalilia, Sounak Chakraborty, and Mihail Popescu. Predicting disease risks from
highly imbalanced data using random forest. BMC Medical Informatics and Decision Making,
11(51):1-13, 2011. doi:10.1186/1472-6947-11-51.

Claudia Kliippelberg, Daniel Straub, and Isabell M. Welpe. Risk - A Multidisciplinary
Introduction. Springer, Cham, 2014. doi:10.1007/978-3-319-04486-6.

Ron Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995), volume 2, pp. 1137-1143. Morgan Kaufmann, San Francisco, CA, 1995.

https://doi.org/10.1109/CVPR.2016.580
https://doi.org/10.1016/j.ins.2009.04.012
https://doi.org/10.1007/978-3-642-54756-0_7
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.3233/IDA-2002-6504
https://doi.org/10.1109/FSKD.2007.552
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1145/376284.375673
https://doi.org/10.1111/j.1467-9574.1980.tb00681.x
https://doi.org/10.1145/3343440
https://doi.org/10.1186/1472-6947-11-51
https://doi.org/10.1007/978-3-319-04486-6

BIBLIOGRAPHY 241

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Bartosz Krawczyk. Learning from imbalanced data: open challenges and future directions.
Progress in Artificial Intelligence, 5(4):221-232, 2016. doi:10.1007/s13748-016-0094-0.

Bartosz Krawczyk, Michal Wozniak, and Gerald Schaefer. Cost-sensitive decision tree
ensembles for effective imbalanced classification. Applied Soft Computing, 14:554-562, 2014.
doi:10.1016/j.as0c.2013.08.014.

Evan Kriminger, José C. Principe, and Choudur Lakshminarayan. Nearest Neighbor
Distributions for imbalanced classification. In The 2012 International Joint Conference on
Neural Networks (IJCNN), pp. 1-5, 2012. do0i:10.1109/IJCNN.2012.6252718.

Miroslav Kubat and Stan Matwin. Addressing the Curse of Imbalanced Training Sets:
One-Sided Selection. In Proceedings of the 14th International Conference on Machine Learning
(ICML 1997), pp. 179-186. Morgan Kaufmann, San Francisco, CA, 1997.

Miroslav Kubat, Robert C. Holte, and Stan Matwin. Machine Learning for the
Detection of Oil Spills in Satellite Radar Images. Machine Learning, 30(2):195-215, 1998.
doi:10.1023 /A:1007452223027.

Brenden M. Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B. Tenenbaum. One shot
learning of simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 33, pp. 2568-2573, 2011.

Mathieu Latourrette. Toward an Explanatory Similarity Measure for Nearest-Neighbor
Classification. In Proceedings of the 11th European Conference on Machine Learning (ECML
2000), pp. 238-245. Springer, Heidelberg, 2000. doi:10.1007/3-540-45164-1 25.

Jinyan Li, Guozhu Dong, Kotagiri Ramamohanarao, and Limsoon Wong. DeEPs: A New
Instance-Based Lazy Discovery and Classification System. Machine Learning, 54(2):99-124,
2004. doi:10.1023/B:MACH.0000011804.08528.7d.

Junnan Li, Qingsheng Zhu, Quanwang Wu, and Zhu Fan. A novel oversampling technique
for class-imbalanced learning based on SMOTE and natural neighbors. Information Sciences,
565:438-455, 2021. doi:10.1016/j.ins.2021.03.041.

Yuxuan Li and Xiuzhen Zhang. Improving k Nearest Neighbor with Exemplar Generalization
for Imbalanced Classification. In Advances in Knowledge Discovery and Data Mining (PAKDD
2011), pp. 321-332. Springer, Heidelberg, 2011. doi:10.1007/978-3-642-20847-8 27.

Moshe Lichman. UCI Machine Learning Repository, 2013. URL http://archive.ics.uci.
edu/ml.

Charles X. Ling, Qiang Yang, Jianning Wang, and Shichao Zhang. Decision Trees with
Minimal Costs. In Proceedings of the 21st International Conference on Machine Learning
(ICML 2004), pp. 69-77. ACM, New York, NY, 2004. doi:10.1145/1015330.1015369.

Zachary C. Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. Optimal Thresholding
of Classifiers to Maximize F1 Measure. In Machine Learning and Knowledge
Discovery in Databases (ECML PKDD 2014), pp. 225-239. Springer, Heidelberg, 2014.
doi:10.1007/978-3-662-44851-9 15.

Huan Liu and Hiroshi Motoda. Computational Methods of Feature Selection. Data Mining
and Knowledge Discovery Series. Chapman & Hall/CRC, Boca Raton, FL, 1st edition, 2007.
doi:10.1201/9781584888796.

Wei Liu and Sanjay Chawla. Class Confidence Weighted kNN Algorithms for Imbalanced Data
Sets. In Advances in Knowledge Discovery and Data Mining (PAKDD 2011), pp. 345-356.
Springer, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-20847-8 29.

https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1016/j.asoc.2013.08.014
https://doi.org/10.1109/IJCNN.2012.6252718
https://doi.org/10.1023/A:1007452223027
https://doi.org/10.1007/3-540-45164-1_25
https://doi.org/10.1023/B:MACH.0000011804.08528.7d
https://doi.org/10.1016/j.ins.2021.03.041
https://doi.org/10.1007/978-3-642-20847-8_27
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/1015330.1015369
https://doi.org/10.1007/978-3-662-44851-9_15
https://doi.org/10.1201/9781584888796
https://doi.org/10.1007/978-3-642-20847-8_29

242

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

BIBLIOGRAPHY

Wei Liu, Sanjay Chawla, David A. Cieslak, and Nitesh V. Chawla. A Robust Decision
Tree Algorithm for Imbalanced Data Sets. In Proceedings of the 2010 SIAM International
Conference on Data Mining (SDM), pp. 766-777, 2010. doi:10.1137/1.9781611972801.67.

Yang Liu, Boqin Feng, and Guohua Bai. Compact Rule Learner on Weighted Fuzzy
Approximation Spaces for Class Imbalanced and Hybrid Data. In Rough Sets and
Current Trends in Computing (RSCTC 2008), pp. 262-271. Springer, Heidelberg, 2008.
doi:10.1007/978-3-540-88425-5 27.

Victoria Lopez, Alberto Fernandez, Jose G. Moreno-Torres, and Francisco Herrera. Analysis
of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on
intrinsic data characteristics. Eaxpert Systems with Applications, 39(7):6585-6608, 2012.
doi:10.1016/j.eswa.2011.12.043.

Victoria Lopez, Alberto Fernandez, Salvador Garcia, Vasile Palade, and Francisco Herrera.
An insight into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics. Information Sciences, 250:113-141, 2013.
d0i:10.1016/j.ins.2013.07.007.

Victoria Lopez, Alberto Ferndndez, and Francisco Herrera. On the importance of the
validation technique for classification with imbalanced datasets: Addressing covariate shift
when data is skewed. Information Sciences, 257:1-13, 2014. doi:10.1016/j.ins.2013.09.038.

Tomasz Maciejewski and Jerzy Stefanowski. Local neighbourhood extension of SMOTE for
mining imbalanced data. In 2011 IEEE Symposium on Computational Intelligence and Data
Mining (CIDM), pp. 104-111, 2011. doi:10.1109/CIDM.2011.5949434.

Larry Manevitz and Malik Yousef. One-class document classification via Neural Networks.
Neurocomputing, 70(7):1466-1481, 2007. doi:10.1016/j.neucom.2006.05.013.

Larry M. Manevitz and Malik Yousef. One-Class SVMs for Document Classification. Journal
of Machine Learning Research, 2:139-154, 2002.

Antonio Maratea, Alfredo Petrosino, and Mario Manzo. Adjusted F-measure and
kernel scaling for imbalanced data learning. Information Sciences, 257:331-341, 2014.
do0i:10.1016/j.ins.2013.04.016.

Michal Marcinkowski. Construction of Classifiers for Imbalanced Data in Medical Applications
(in Polish). Master’s thesis, Politechnika Poznanska, Poznar, 2005.

Ryszard S. Michalski. A Theory and Methodology of Inductive Learning. In
Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell (eds.), Machine
Learning: An Artificial Intelligence Approach, pp. 83-134. Springer, Heidelberg, 1983.
d0i:10.1007/978-3-662-12405-5 4.

Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The Multi-Purpose
Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains.
In Proceedings of the 5th AAAI National Conference on Artificial Intelligence, pp. 1041-1045.
AAAT Press, 1986.

Claudia R. Milaré, Gustavo E. A. P. A. Batista, and André C. P. L. F. Carvalho. A hybrid
approach to learn with imbalanced classes using evolutionary algorithms. Logic Journal of the
IGPL, 19(2):293-303, 2011. doi:10.1093/jigpal/jzq027.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, NY, 1997.

Dunja Mladenic and Marko Grobelnik. Feature Selection for Unbalanced Class Distribution
and Naive Bayes. In Proceedings of the 16th International Conference on Machine Learning
(ICML 1999), pp. 258-267. Morgan Kaufmann, San Francisco, CA, 1999.

https://doi.org/10.1137/1.9781611972801.67
https://doi.org/10.1007/978-3-540-88425-5_27
https://doi.org/10.1016/j.eswa.2011.12.043
https://doi.org/10.1016/j.ins.2013.07.007
https://doi.org/10.1016/j.ins.2013.09.038
https://doi.org/10.1109/CIDM.2011.5949434
https://doi.org/10.1016/j.neucom.2006.05.013
https://doi.org/10.1016/j.ins.2013.04.016
https://doi.org/10.1007/978-3-662-12405-5_4
https://doi.org/10.1093/jigpal/jzq027

BIBLIOGRAPHY 243

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Aldi A. Nababan, Opim S. Sitompul, and Tulus. Attribute Weighting Based K-Nearest
Neighbor Using Gain Ratio. Journal of Physics: Conference Series, 1007(1):Article No.
012007, 1-6, 2018. doi:10.1088/1742-6596,/1007/1/012007.

Krystyna Napierata. Improving Rule Classifiers For Imbalanced Data. PhD thesis, Poznan
University of Technology, Poznari, 2012.

Krystyna Napierata and Jerzy Stefanowski. BRACID: a comprehensive approach to learning
rules from imbalanced data. Journal of Intelligent Information Systems, 39(2):335-373, 2012.
doi:10.1007 /s10844-011-0193-0.

Krystyna Napierata and Jerzy Stefanowski. Types of minority class examples and their
influence on learning classifiers from imbalanced data. Journal of Intelligent Information
Systems, 46(3):563-597, 2016. doi:10.1007/s10844-015-0368-1.

Krystyna Napierata, Jerzy Stefanowski, and Szymon Wilk. Learning from Imbalanced Data in
Presence of Noisy and Borderline Examples. In Rough Sets and Current Trends in Computing
(RSCTC 2010), pp. 158-167. Springer, Heidelberg, 2010. doi:10.1007/978-3-642-13529-3 18.

Peter Bjorn Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton
University, Princeton, NJ, 1963.

Canh Hao Nguyen and Tu Bao Ho. An Imbalanced Data Rule Learner. In
Knowledge Discovery in Databases: PKDD 2005, pp. 617-624. Springer, Heidelberg, 2005.
doi:10.1007/11564126 _ 65.

Hung Son Nguyen. Approximate Boolean Reasoning: Foundations and Applications in Data
Mining. In James F. Peters and Andrzej Skowron (eds.), Transactions on Rough Sets V, pp.
334-506. Springer, Heidelberg, 2006. doi:10.1007/11847465 16.

Hung Son Nguyen and Sinh Hoa Nguyen. Discretization Methods in Data Mining. In Polkowski
and Skowron [166], pp. 451-482.

Sinh Hoa Nguyen. Regularity Analysis and its Applications in Data Mining. In Polkowski
et al. [167], pp. 289-378. d0i:10.1007/978-3-7908-1840-6 7.

Son H. Nguyen and Andrzej Skowron. Quantization Of Real Value Attributes — Rough Set
and Boolean Reasoning Approach. In Proceedings of the 2nd Joint Annual Conference on
Information Sciences (JCIS 1995), pp. 34-37, 1995.

Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015. Available
at: http://neuralnetworksanddeeplearning.com.

Shameem A. Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. Optimizing
F-Measures by Cost-Sensitive Classification. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2 (NIPS 2014), pp.
2123-2131. MIT Press, Cambridge, MA, 2014.

Zdzistaw Pawlak and Andrzej Skowron. A Rough Set Approach to Decision Rules
Generation. In Proceedings of the Workshop W12: The Management of Uncertainty at the 13th
International Joint Conference on Artificial Intelligence (IJCAI 1993), pp. 114-119. Morgan
Kaufmann, Chambéry, 1993.

Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3:96-146, 2009.
doi:10.1214/09-SS057.

Lech Polkowski and Andrzej Skowron (eds.). Rough Sets in Knowledge Discovery 1:
Methodology and Applications, volume 18 of Studies in Fuzziness and Soft Computing.
Physica-Verlag, Heidelberg, 1998.

https://doi.org/10.1088/1742-6596/1007/1/012007
https://doi.org/10.1007/s10844-011-0193-0
https://doi.org/10.1007/s10844-015-0368-1
https://doi.org/10.1007/978-3-642-13529-3_18
https://doi.org/10.1007/11564126_65
https://doi.org/10.1007/11847465_16
https://doi.org/10.1007/978-3-7908-1840-6_7
http://neuralnetworksanddeeplearning.com
https://doi.org/10.1214/09-SS057

244

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

BIBLIOGRAPHY

Lech Polkowski, Shusaku Tsumoto, and Tsau Y. Lin (eds.). Rough Set Methods
and Applications: New Developments in Knowledge Discovery in Information Systems,
volume 56 of Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg, 2000.
doi:10.1007/978-3-7908-1840-6.

Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Maria Carolina Monard. Class
Imbalances versus Class Overlapping: An Analysis of a Learning System Behavior. In
Advances in Artificial Intelligence (MICAI 2004), pp. 312-321. Springer, Heidelberg, 2004.
d0i:10.1007/978-3-540-24694-7 32.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA,
1993.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, 2017. URL https://wuw.R-project.org.

Troy Raeder, T. Ryan Hoens, and Nitesh V. Chawla. Consequences of Variability in Classifier
Performance Estimates. In Proceedings of the 2010 IEEE International Conference on Data
Mining (ICDM), pp. 421-430, 2010. doi:10.1109/ICDM.2010.110.

Troy Raeder, George Forman, and Nitesh V. Chawla. Learning from Imbalanced Data:
Evaluation Matters. In Dawn E. Holmes and Lakhmi C. Jain (eds.), Data Mining: Foundations
and Intelligent Paradigms: Volume 1: Clustering, Association and Classification, pp. 315-331.
Springer, Heidelberg, 2012. do0i:10.1007/978-3-642-23166-7 12.

Bhagat Singh Raghuwanshi and Sanyam Shukla. SMOTE based class-specific extreme learning
machine for imbalanced learning. Knowledge-Based Systems, 187:Article No. 104814, 1-17,
2020. doi:10.1016/j.knosys.2019.06.022.

Bhavani Raskutti and Adam Kowalczyk. Extreme Re-Balancing for SVMs: A Case Study.
ACM SIGKDD Ezxplorations Newsletter, 6(1):60-69, 2004. doi:10.1145/1007730.1007739.

Michael M. Richter and Rosina Weber. Case-Based Reasoning. Springer-Verlag, Heidelberg,
1st edition, 2013. doi:10.1007/978-3-642-40167-1.

Patricia Riddle, Richard Segal, and Oren Etzioni. Representation Design and Brute-force
Induction in a Boeing Manufacturing Domain. Applied Artificial Intelligence, 8(1):125-147,
1994. doi:10.1080,/08839519408945435.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, Hoboken, NJ, 4th edition, 2021.

Corneliu Rusu and Lacrimioara Grama. Recent developments in acoustical signal classification
for monitoring. In 2017 5th International Symposium on Electrical and Electronics Engineering
(ISEEE), pp. 1-10, 2017. doi:10.1109/ISEEE.2017.8170705.

José A. Saez, JuliAn Luengo, Jerzy Stefanowski, and Francisco Herrera. SMOTE-IPF:
Addressing the noisy and borderline examples problem in imbalanced -classification
by a re-sampling method with filtering. Information Sciences, 291:184-203, 2015.
do0i:10.1016/j.ins.2014.08.051.

Indu Saini, Dilbag Singh, and Arun Khosla. QRS detection using K-Nearest Neighbor
algorithm (KNN) and evaluation on standard ECG databases. Journal of Advanced Research,
4(4):331-344, 2013. doi:10.1016/j.jare.2012.05.007.

Steven L. Salzberg. On Comparing Classifiers: Pitfalls to Avoid and a
Recommended Approach. Data Mining and Knowledge Discovery, 1(3):317-328, 1997.
doi:10.1023/A:1009752403260.

https://doi.org/10.1007/978-3-7908-1840-6
https://doi.org/10.1007/978-3-540-24694-7_32
https://www.R-project.org
https://doi.org/10.1109/ICDM.2010.110
https://doi.org/10.1007/978-3-642-23166-7_12
https://doi.org/10.1016/j.knosys.2019.06.022
https://doi.org/10.1145/1007730.1007739
https://doi.org/10.1007/978-3-642-40167-1
https://doi.org/10.1080/08839519408945435
https://doi.org/10.1109/ISEEE.2017.8170705
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1016/j.jare.2012.05.007
https://doi.org/10.1023/A:1009752403260

BIBLIOGRAPHY 245

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

Claude Sammut and Geoffrey I Webb (eds.). Encyclopedia of Machine Learning and Data
Mining. Springer, USA, 2nd edition, 2017. doi:10.1007/978-1-4899-7687-1.

Andrzej Skowron. Boolean reasoning for decision rules generation. In Methodologies
for Intelligent Systems (ISMIS 1993), pp. 295-305. Springer, Heidelberg, 1993.
doi:10.1007/3-540-56804-2 28.

Andrzej Skowron and Cecylia Rauszer. The Discernibility Matrices and Functions in
Information Systems. In Roman Stowinski (ed.), Intelligent Decision Support: Handbook
of Applications and Advances of the Rough Sets Theory, pp. 331-362. Springer, Dordrecht,
1992. doi:10.1007/978-94-015-7975-9 21.

Andrzej Skowron and Arkadiusz Wojna. K Nearest Neighbor Classification with
Local Induction of the Simple Value Difference Metric. In Rough Sets and
Current Trends in Computing (RSCTC 2004), pp. 229-234. Springer, Heidelberg, 2004.
doi:10.1007/978-3-540-25929-9 27.

Yang Song, Jian Huang, Ding Zhou, Hongyuan Zha, and C. Lee Giles. IKNN: Informative
K-Nearest Neighbor Pattern Classification. In Knowledge Discovery in Databases (PKDD
2007), pp. 248-264. Springer, Heidelberg, 2007. doi:10.1007,/978-3-540-74976-9 25.

Craig Stanfill and David Waltz. Toward Memory-Based Reasoning. Communications of the
ACM, 29(12):1213-1228, 1986. doi:10.1145/7902.7906.

Jerzy Stefanowski. Rough set based rule induction techniques for classification problems. In
Proceedings of 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT
1998), volume 1, pp. 109-113. Verlag Mainz, Aachen, 1998.

Jerzy Stefanowski. Algorithms of rule induction for knowledge discovery (in Polish).
Habilitation Thesis, 2001.

Jerzy Stefanowski. = On Combined Classifiers, Rule Induction and Rough Sets. In
James F. Peters, Andrzej Skowron, Ivo Diintsch, Jerzy Grzymala-Busse, Ewa Ortowska,
and Lech Polkowski (eds.), Transactions on Rough Sets VI: Commemorating the Life
and Work of Zdzistaw Pawlak, Part I, pp. 329-350. Springer, Heidelberg, 2007.
doi:10.1007/978-3-540-71200-8 18.

Jerzy Stefanowski. Overlapping, Rare Examples and Class Decomposition in Learning
Classifiers from Imbalanced Data. In Sheela Ramanna, Lakhmi C. Jain, and Robert J. Howlett
(eds.), Emerging Paradigms in Machine Learning, pp. 277-306. Springer, Heidelberg, 2013.
doi:10.1007/978-3-642-28699-5 11.

Jerzy Stefanowski and Szymon Wilk. Rough sets for handling imbalanced data: Combining
filtering and rule-based classifiers. Fundamenta Informaticae, 72(1-3):379-391, 2006.

Jerzy Stefanowski and Szymon Wilk. Extending Rule-Based Classifiers to Improve Recognition
of Imbalanced Classes. In Zbigniew W. Ras and Agnieszka Dardzinska (eds.), Advances in Data
Management, pp. 131-154. Springer, Heidelberg, 2009. doi:10.1007/978-3-642-02190-9 7.

Chao-Ton Su and Yu-Hsiang Hsiao. An Evaluation of the Robustness of MTS for Imbalanced
Data. IEEE Transactions on Knowledge and Data Engineering, 19(10):1321-1332, 2007.
do0i:10.1109/TKDE.2007.190623.

Yanmin Sun, Andrew K. C. Wong, and Mohamed S. Kamel. Classification of Imbalanced
Data: A Review. International Journal of Pattern Recognition and Artificial Intelligence, 23
(4):687-719, 2009. doi:10.1142/S0218001409007326.

https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.1007/3-540-56804-2_28
https://doi.org/10.1007/978-94-015-7975-9_21
https://doi.org/10.1007/978-3-540-25929-9_27
https://doi.org/10.1007/978-3-540-74976-9_25
https://doi.org/10.1145/7902.7906
https://doi.org/10.1007/978-3-540-71200-8_18
https://doi.org/10.1007/978-3-642-28699-5_11
https://doi.org/10.1007/978-3-642-02190-9_7
https://doi.org/10.1109/TKDE.2007.190623
https://doi.org/10.1142/S0218001409007326

246

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

BIBLIOGRAPHY

Muhammad Atif Tahir, Josef Kittler, Krystian Mikolajczyk, and Fei Yan. A Multiple
Expert Approach to the Class Imbalance Problem Using Inverse Random under Sampling.
In Multiple Classifier Systems (MCS 2009), pp. 82-91. Springer, Heidelberg, 2009.
doi:10.1007/978-3-642-02326-2_ 9.

Deepika Tiwari. Handling Class Imbalance Problem Using Feature Selection. International
Journal of Advanced Research in Computer Science & Technology, 2(2):516-520, 2014.

Bogdan Trawirniski, Magdalena Smetek, Zbigniew Telec, and Tadeusz Lasota. Nonparametric
statistical analysis for multiple comparison of machine learning regression algorithms.
International Journal of Applied Mathematics and Computer Science, 22(4):867-881, 2012.
d0i:10.2478 /v10006-012-0064-7.

Leslie Valiant. Probably Approzimately Correct: Nature’s Algorithms for Learning and
Prospering in a Complex World. Basic Books, Inc., New York, NY, 2013.

Leslie G. Valiant. Robust logics. Artificial Intelligence, 117(2):231-253, 2000.
doi:10.1016 /S0004-3702(00)00002-3.

Peter van der Putten and Maarten van Someren. A Bias-Variance Analysis of a Real World
Learning Problem: The CoIL Challenge 2000. Machine Learning, 57(1):177-195, 2004.
d0i:10.1023/B:MACH.0000035476.95130.99.

Gitte Vanwinckelen and Hendrik Blockeel. On estimating model accuracy with repeated
cross-validation. In Proceedings of the 21st Belgian-Dutch Conference on Machine Learning
(BeneLearn 2012), pp. 39-44. Ghent, 2012.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, NY, 1st
edition, 1998.

Nele Verbiest, Enislay Ramentol, Chris Cornelis, and Francisco Herrera. Preprocessing noisy
imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Applied
Soft Computing, 22:511-517, 2014. doi:10.1016/j.as0c.2014.05.023.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching Networks for One Shot Learning. In Proceedings of the 30th International Conference
on Neural Information Processing Systems (NIPS 2016), pp. 3637-3645. Curran Associates
Inc., Red Hook, NY, 2016.

Pattaramon Vuttipittayamongkol and Eyad Elyan. Neighbourhood-based undersampling
approach for handling imbalanced and overlapped data. Information Sciences, 509:47-70,
2020. doi:10.1016/j.ins.2019.08.062.

Shuo Wang, Leandro L. Minku, and Xin Yao. A Systematic Study of Online Class Imbalance
Learning With Concept Drift. IEEE Transactions on Neural Networks and Learning Systems,
29(10):4802-4821, 2018. doi:10.1109/TNNLS.2017.2771290.

Ronald L. Wasserstein and Nicole A. Lazar. The ASA Statement on p-Values:
Context, Process, and Purpose. The American Statistician, 70(2):129-133, 2016.
doi:10.1080,/00031305.2016.1154108.

Gary M. Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Ezxplorations
Newsletter, 6(1):7-19, 2004. doi:10.1145/1007730.1007734.

Gary M. Weiss. The Impact of Small Disjuncts on Classifier Learning. In
Robert Stahlbock, Sven F. Crone, and Stefan Lessmann (eds.), Data Mining: Special
Issue in Annals of Information Systems, pp. 193-226. Springer, Boston, MA, 2010.
doi:10.1007/978-1-4419-1280-0 9.

https://doi.org/10.1007/978-3-642-02326-2_9
https://doi.org/10.2478/v10006-012-0064-z
https://doi.org/10.1016/S0004-3702(00)00002-3
https://doi.org/10.1023/B:MACH.0000035476.95130.99
https://doi.org/10.1016/j.asoc.2014.05.023
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1109/TNNLS.2017.2771290
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1007/978-1-4419-1280-0_9

BIBLIOGRAPHY 247

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

Gary M. Weiss and Foster Provost. Learning When Training Data Are Costly: The Effect
of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research, 19(1):
315-354, 2003.

Dietrich Wettschereck, David W. Aha, and Takao Mohri. A Review and Empirical Evaluation
of Feature Weighting Methods for a Class of Lazy Learning Algorithms. Artificial Intelligence
Review, 11(1):273-314, 1997. doi:10.1023/A:1006593614256.

D. Randall Wilson and Tony R. Martinez. Improved Heterogeneous Distance Functions.
Journal of Artificial Intelligence Research, 6(1):1-34, 1997. doi:10.1613/jair.346.

Dennis L. Wilson. Asymptotic Properties of Nearest Neighbor Rules Using Edited
Data. I[EEE Transactions on Systems, Man, and Cybernetics, SMC-2(3):408-421, 1972.
doi:10.1109/TSMC.1972.4309137.

Tan H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. The WEKA Workbench.
Online Appendiz for "Data Mining: Practical Machine Learning Tools and Techniques”.
Morgan Kaufmann, 4th edition, 2016. doi:10.1016/b978-0-12-804291-5.00024-6.

Tan H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, Cambridge, MA, 4th edition,
2017. doi:10.1016/C2015-0-02071-8.

Arkadiusz Wojna. Center-based indexing for nearest neighbors search. In 5rd
IEEE International Conference on Data Mining (ICDM 2003), pp. 681-684, 2003.
doi:10.1109/ICDM.2003.1251007.

Arkadiusz Wojna. Center-Based Indexing in Vector and Metric Spaces. Fundamenta
Informaticae, 56(3):285-310, 2003.

Arkadiusz Wojna. Analogy-Based Reasoning in Classifier Construction. In James F.
Peters and Andrzej Skowron (eds.), Transactions on Rough Sets IV, pp. 277-374. Springer,
Heidelberg, 2005. doi:10.1007/11574798 _11.

Arkadiusz Wojna. Combination of Metric-Based and Rule-Based Classification. In Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2005), pp. 501-511. Springer,
Heidelberg, 2005. doi:10.1007/11548669 52.

Arkadiusz Wojna and Rafal Latkowski. Rseslib 3: Library of Rough Set and Machine
Learning Methods with Extensible Architecture. In James F. Peters and Andrzej Skowron
(eds.), Transactions on Rough Sets XXI, pp. 301-323. Springer, Berlin, Heidelberg, 2019.
doi:10.1007/978-3-662-58768-3 7.

Arkadiusz Wojna, Rafal Latkowski, and Y.ukasz Kowalski. RSESLIB: User Guide, 2019. URL
http://rseslib.mimuw.edu.pl/rseslib.pdf.

David H. Wolpert. The Supervised Learning No-Free-Lunch Theorems. In Rajkumar
Roy, Mario Kléppen, Seppo Ovaska, Takeshi Furuhashi, and Frank Hoffmann (eds.),
Soft Computing and Industry: Recent Applications, pp. 25-42. Springer, London, 2002.
doi:10.1007/978-1-4471-0123-9 3.

Kevin S. Woods, Christopher C. Doss, Kevin W. Bower, Jefferey L. Solka, Carey E. Priebe, and
W. Philip Kegelmeyer. Comparative evaluation of pattern recognition techniques for detection
of microcalcifications in mammography. International Journal of Pattern Recognition and
Artificial Intelligence, 7(6):1417-1436, 1993. doi:10.1142/S0218001493000698.

Jakub Wroblewski. Covering with Reducts — A Fast Algorithm for Rule Generation. In Rough
Sets and Current Trends in Computing (RSCTC 1998), pp. 402-407. Springer, Heidelberg,
1998. doi:10.1007/3-540-69115-4 55.

https://doi.org/10.1023/A:1006593614256
https://doi.org/10.1613/jair.346
https://doi.org/10.1109/TSMC.1972.4309137
https://doi.org/10.1016/b978-0-12-804291-5.00024-6
https://doi.org/10.1016/C2015-0-02071-8
https://doi.org/10.1109/ICDM.2003.1251007
https://doi.org/10.1007/11574798_11
https://doi.org/10.1007/11548669_52
https://doi.org/10.1007/978-3-662-58768-3_7
http://rseslib.mimuw.edu.pl/rseslib.pdf
https://doi.org/10.1007/978-1-4471-0123-9_3
https://doi.org/10.1142/S0218001493000698
https://doi.org/10.1007/3-540-69115-4_55

248

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

BIBLIOGRAPHY

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey McLachlan, Angus Ng, Bing Liu, Philip Yu, Zhi-Hua Zhou, Michael Steinbach, David
Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge and Information
Systems, 14(1):1-37, 2008. doi:10.1007/s10115-007-0114-2.

Wendong Xiao, Jie Zhang, Yanjiao Li, Sen Zhang, and Weidong Yang. Class-specific cost
regulation extreme learning machine for imbalanced classification. Neurocomputing, 261:70-82,
2017. doi:10.1016/j.neucom.2016.09.120.

Yilin Yan, Min Chen, Mei-Ling Shyu, and Shu-Ching Chen. Deep Learning for Imbalanced
Multimedia Data Classification. In IEEE International Symposium on Multimedia (ISM 2015),
pp. 483-488, 2015. doi:10.1109/ISM.2015.126.

Qiang Yang and Xindong Wu. 10 Challenging Problems in Data Mining Research.
International Journal of Information Technology €& Decision Making, 05(04):597-604, 2006.
doi:10.1142/S0219622006002258.

Tao Yang, Longbing Cao, and Chengqi Zhang. A Novel Prototype Reduction
Method for the K-Nearest Neighbor Algorithm with K>1. In Advances in Knowledge
Discovery and Data Mining (PAKDD 2010), pp. 89-100. Springer, Heidelberg, 2010.
doi:10.1007/978-3-642-13672-6 _ 10.

Jaesub Yun, Jihyun Ha, and Jong-Seok Lee. Automatic Determination of Neighborhood
Size in SMOTE. 1In Proceedings of the 10th International Conference on Ubiquitous
Information Management and Communication (IMCOM 2016). ACM, New York, NY, 2016.
doi:10.1145/2857546.2857648.

Lotfi A. Zadeh. From Computing with Numbers to Computing with Words — From
Manipulation of Measurements to Manipulation of Perceptions. IFEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications, 45(1):105-119, 1999.
doi:10.1109/81.739259.

Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by
cost-proportionate example weighting. In 3rd IEEE International Conference on Data Mining
(ICDM 2003), pp. 435—442, 2003. doi:10.1109/ICDM.2003.1250950.

Luis E. Zarate, Bruno M. Nogueira, Tadeu R. A. Santos, and Mark A. J. Song. Techniques
for Missing Value Recovering in Imbalanced Databases: Application in a Marketing Database
with Massive Missing Data. In 2006 IEEE International Conference on Systems, Man and
Cybernetics, volume 3, pp. 2658-2664, 2006. doi:10.1109/ICSMC.2006.385265.

Cha Zhang and Yunqgian Ma. FEnsemble Machine Learning: Methods and Applications.
Springer-Verlag, New York, NY, 1st edition, 2012.

Jianping Zhang, Eric Bloedorn, Lowell Rosen, and Daniel Venese. Learning rules from highly
unbalanced data sets. In 4th IEEE International Conference on Data Mining (ICDM 2004),
pp. 571-574, 2004. doi:10.1109/ICDM.2004.10015.

Shichao Zhang, Xuelong Li, Ming Zong, Xiaofeng Zhu, and Ruili Wang. Efficient kNN
Classification With Different Numbers of Nearest Neighbors. IFEEE Transactions on Neural
Networks and Learning Systems, 29(5):1774-1785, 2018. doi:10.1109/TNNLS.2017.2673241.

Yong Zhang and Dapeng Wang. A Cost-Sensitive Ensemble Method for Class-Imbalanced
Datasets. Abstract and Applied Analysis, 2013:Article No. 196256, 1-6, 2013.
doi:10.1155/2013/196256.

Qingsheng Zhu, Ji Feng, and Jinlong Huang. Natural neighbor: A self-adaptive
neighborhood method without parameter K. Pattern Recognition Letters, 80:30-36, 2016.
doi:10.1016 /j.patrec.2016.05.007.

https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.neucom.2016.09.120
https://doi.org/10.1109/ISM.2015.126
https://doi.org/10.1142/S0219622006002258
https://doi.org/10.1007/978-3-642-13672-6_10
https://doi.org/10.1145/2857546.2857648
https://doi.org/10.1109/81.739259
https://doi.org/10.1109/ICDM.2003.1250950
https://doi.org/10.1109/ICSMC.2006.385265
https://doi.org/10.1109/ICDM.2004.10015
https://doi.org/10.1109/TNNLS.2017.2673241
https://doi.org/10.1155/2013/196256
https://doi.org/10.1016/j.patrec.2016.05.007

BIBLIOGRAPHY 249

[240] Konstantin Zuev. Statistical Inference. [online|, 2018. Available at SSRN: https://ssrn.
com/abstract=3125891 or http://dx.doi.org/10.2139/ssrn.3125891.

https://ssrn.com/abstract=3125891
https://ssrn.com/abstract=3125891
http://dx.doi.org/10.2139/ssrn.3125891

Index

Accuracy, accuracy, 53, 54

AF-learner, 144

Area Under the ROC Curve (AUC),
o6

ball, 26, see closed ball

ball set, 32, see also ball

borderline example, 45

borderline region, 49, see also
borderline example

classification algorithm, 24, see also
learning algorithm
classifier, 24, see classification
algorithm
closed ball, 26
configuration of filters, 144, 148
Null-filter, 148
SMOTE, 148
SMOTE+ENN, 48, 148
configuration of the algorithm, 144
confusion matrix, 53

data complexity, 41-45
decision rule, 31, 33, see also
elementary condition,
semantics
combined rules, 34
consistent, 34
covering an example, 33
example matching the rule, 33
general rules, 34
implied by a rule, 35, see more
general than another rule
inconsistent, 34
local
combined local decision rule, 65
generalised local decision rule,
68
scaled generalised local decision
rule, 96
simple local decision rule, 37
maximally general, 35
more general than another rule, 35
set of maximally general rules, 35

simple rules, 34
trivial condition, 31, 33
decision system, 24
pseudometric decision system, 30
def strategy, 153, 156157, 162-167,
175
description of elementary set, 31-32,
see also semantics
distance, 26, see distance function
distance function, 26, see metric,
pseudometric

elementary condition, 31, 32, see also
semantics
implied by a condition, 34, see
more general than another
condition
more general than another
condition, 34
experiments, see also learning
algorithm, filter, performance
measure, strategy, statistical
test, 135-219
AF-learner, 144
configuration of filters, 144, 148
configuration of the algorithm, 144
options, 143
score, 153

F-measure, 54
filter, 47-48, 143
ENN, 48, 148
SMOTE, 47, 148
Finner statistical test, 59, 142
Friedman statistical test, 59, 142

G-mean, 55

imbalance ratio, 41, see also
imbalanced data
imbalanced data, 40-46
data complexity, 41-45
majority class, 9, 24
minority class, 9, 24
small disjuncts, 41, 43

INDEX

types of examples, 44—45
borderline, 45
outlier, 45
rare, 45
safe, 45
imbalanced learning problem, 10, see
also imbalanced data
instance-based learning, 39-40

lazy learning, 36
instance-based learning, 39-40
learning algorithm, 24
J48, 146
MODLEM, 146
MODLEM-C, 145
PART, 146
BRACID, 50, 145
kNN, 39, 40, 145
LAZY, 37
ONIDA, 101
ONN, 84
RIA, 70
RIONA, 63-93
internal parameter k, 72, 81-87
maximal possible value of
parameter k (kpqz), 81
RIONIDA, see also RIONA,
95-132
default sets Kdef7 Pdef7 Sdef for
K, P, S, 125
internal parameter k, 98,
101-102, 121-126
internal parameter p, 99,
102-118, 121-126
internal parameter s, 96-97, 99,
118-119, 121-126
maximal possible value of
parameter k (ke = |K]), 122
sets K, P, S of admissible
values of parameters k, p, s,
99, 121-125
RIPPER, 146
RISE, 146

majority class, 9, 24, see also
imbalanced data

251

maz strategy, 153, 160-163, 172173,
178-181
metric, 26
City And Hamming Metric
(CHM), 31
city-block, 27
normalised city-block, 27
discrete, 27
Euclidean, 27
Hamming, 28
minority class, 9, 24, see also
imbalanced data

negative class, 24, see majority class

neighbourhood N, 40
Nemenyi statistical test, 59, 142

opt strategy, 153, 157-160, 162-163,
167-172, 175-178

options, 143

outlier example, 45

p-value, 59
performance measure, 42, 53
Accuracy, accuracy, 53, 54
Area Under the ROC Curve
(AUC), 56
confusion matrix, 53
estimation, 56, 136
F-measure, 54
G-mean, 55
sub-measure
Precision, 54
Recall, 55
Sensitivity, 54
Specificity, 54
positive class, 24, see minority class
Precision, 54
Precision-Recall Analysis, 56
pseudometric, 26, see also metric
City And Simplified Value
Difference pseudoMetric
(CSVDM), 30
aggregated pseudometric, 30
Simplified Value Difference
pseudoMetric (SVDM), 28

rank, 59

252

rare example, 45

Recall, 55

Receiver Operating Characteristics
(ROC), 56

ROC curve, 56

safe example, 45
safe region, 107, see also safe example
score, 153
semantics
of description of elementary set, 32
of elementary condition, 32
of the premise of the rule, 33
Sensitivity, 54
similarity, 25, see also metric,
pseudometric
singleton set, 32
small disjuncts, 41, 43
Specificity, 54
statistical test, 5859, 142

INDEX

Finner, 59, 142
Friedman, 59, 142
Nemenyi, 59, 142
p-value, 59
rank, 59
strategy, 153
def, 153, 156-157, 162-167, 175
defF, 156, 173, 175
defG, 156, 164-167
maz, 153, 160-163, 172-173,
178-181
mazF, 156, 173, 178-181
maxG, 156, 164, 172-173
opt, 153, 157-160, 162-163,
167-172, 175-178
optF, 156, 173, 175-178
optG, 156, 164, 167-172

types of examples, 44-45

value set, 32

Abbreviations

A — set of (conditional) attributes, 23

a — attribute (usually conditional
attribute), 23

Agr({ga}taca) — aggregated
pseudometric, 30

Apum — set of numerical attributes, 23

Agym — set of symbolic attributes, 23

AUC- Area Under the ROC Curve, 56

BRACID - Bottom-up induction of
Rules And Cases for
Imbalanced Data, 50, 145

CHM- City And Hamming Metric, 31

CombRules — combined rules, 34

c-rule(tst, trn) — combined local
decision rule, 65

c-rule — combined local decision rule,
65

CSVDM - City And Simplified Value
Difference pseudoMetric, 30

d — decision attribute, 24

decisioniny (tst) — kNN classifier, 40

decisionLocal gz gutes(tst, k, 0) —
classifier based on maximally
general rules with the support
counted locally, 72

decision e rues(tst) — classifier based
on maximally general rules, 36

defF — def strategy using F-measure,
156, 173

defG — def strategy using G-mean
measure, 156, 164

dymqj — majority class, 24

dpmin — minority class, 24

ENN — filter, Edited Nearest
Neighbour, 148

GenRules, GenRules ({(0a, ¢a) Yacauym)
— general rules, 34

g-rule (tst,trn),
g-rule (tst,trn, {0o}aca,,m) —
generalised local decision rule,
68

253

g-rule — generalised local decision rule,
68

J48 — learning algorithm, 146

Koy — default set for K in RIONIDA,
125

kmaez — maximal possible value of
parameter k, 81, 122

kNN — k-nearest neighbours, 39, 40,
145

l, — lower bound of values from V,, for
numerical attribute a, 23

LAZY — simple lazy rule induction
algorithm for symbolic
attributes, 37

LocalStrength(tst,v, k, 0) — local
measure for conflict resolution,

72

mazrF — maz strategy using
F-measure, 156, 173

maxrG — maz strategy using G-mean
measure, 156, 164

MaxRules, MaxRules(Rules, trnSet)
— set of maximally general
rules, 35

ML - Machine Learning, 9

MODLEM - learning algorithm, 146

MODLEM-C — learning algorithm for
imbalanced data, 145

N — neighbourhood of an example, 40

N(tst,trnSet, k, o), N(tst, k) —
neighbourhood of the example
tst, 39

Null-filter — trivial configuration of
filters (no filter), 148

ONIDA - Optimal Neighbourhood for
Imbalanced Data Algorithm,
101

ONN - Optimal Nearest Neighbour
algorithm, 84

oplF' — opt strategy using F-measure,
156, 173

254

optG — opt strategy using G-mean
measure, 156, 164

PART — learning algorithm, 146
Pyer — default set for P in RIONIDA,
125

RIA — lazy Rule Induction Algorithm,
70

RIONA — Rule Induction with
Optimal Neighbourhood
Algorithm, 63

RIONIDA — Rule Induction with
Optimal Neighbourhood for
Imbalanced Data Algorithm,
95

RIONIDAfr — RIONIDA with
optimisation measure set to
F-measure, 149

RIONIDAG — RIONIDA with
optimisation measure set to
G-mean, 149

RIPPER — Repeated Incremental
Pruning to Produce Error
Reduction, 146

RISE — Rule Induction from a Set of
Exemplars, 146

ROC — Receiver Operating
Characteristics, 56

Saes — default set for S in RIONIDA,
125

sg-rule (tst,trn, s),
sg-rule (tst, trn, {0atacAsym 3)

ABBREVIATIONS

— scaled generalised local
decision rule, 96

sg-rule— scaled generalised local
decision rule, 96

SimRules — simple rules, 34

SMOTE — configuration of filters using
simply filter SMOTE, 148

SMOTE — filter, Synthetic Minority
Over-sampling Technique, 148

SMOTE+ENN — configuration of filters
using filters SMOTE and ENN,
148

s-rule(tst, trn) — simple local decision
rule, 37

s-rule — simple local decision rule, 37

Strength(tst,v) — measure for conflict
resolution, 36

SVDM - Simplified Value Difference
pseudoMetric, 28

trn — training object (training
example), 25

trnSet — training set, 24

tst — test object (test example), 25

u, — upper bound of values from V,
for numerical attribute a, 23

V., — the set of values of attribute a, 23

Vy — finite set of decisions, 24

VDM - Value Difference
pseudoMetric, 28

List of Symbols

[[...]]p semantics of elementary condition or premise of rule; denotes a subset of X

[[. - .]ltrnset semantics of elementary condition or premise of rule restricted to training
set trnSet

[b,e] or (b,e] or [b,e) or (b,e) description of elementary set for numerical attributes
representing interval between points b and e

[b,e] or (b,e] or [b,e) or (b,e) interval between points b and e
« significance level (for statistical tests)

U union of family of sets

ER expected value of random variable R

E. pR(z) expected value of random variable R, where sampling of z is according to
the probability distribution D

0 (description of) the empty set

|...]| cardinality (size) of a set

l|...||p semantics of description of elementary set; for attribute a it is a subset of V,
|v] the ‘floor’ under v, i.e. the greatest integer less than or equal to v

D (pseudometric) decision system

N set of Natural Numbers

R set of Real Numbers

Pr,.p(- | -) conditional probability

Pr,.p(Event(z)) probability of the event Event, where sampling of z is according
to the probability distribution D

II Carthesian product of family of sets
> sum of multiple real numbers

ig}i;f(p) infimum of f(p) over p € P
P

255

256 LIST OF SYMBOLS

supf(p) supremum of f(p) over p € P
peP

argmax f(u) the point of the given (finite) domain U at which the value of function
uelU
f is maximised (we assume that one such point exists; in the other case
tie-breaking procedure is or should be specified)

argminf(u) set of all points of the given domain U at which the values of function f
< are minimised (in the case when the set is a singleton set we don’t distinguish
between this set and its element)
0 pseudometric function, p: X x X — R
0a pseudometric function for attribute a, o, : V, x V, = R

X space of objects (examples, cases), domain of learning

{... }aex set contatining elements indexed by elements of another set, e.g. {04 }aca
— set of indexed pseudometrics

{v} (description of) singleton set

A set of (conditional) attributes

a attribute (usually conditional attribute)

a(xz) value of a on object z € X

a = * trivial condition, i.e. condition equivalent to a € V,
A, um set of numerical attributes

Asym set of symbolic attributes

B(n,p) binomial distribution with parameters n and p (number of trials and success
probability for each trial, respectively)

B(z,r) (description of) closed ball of radius r centred at x relative to a given
pseudometric

Class(d) objects with decision d

d decision attribute

d value of decision on example (only in Subsection 4.3.4)
d(x) decision value on object € X

dmq; Mmajority class

dmin Mminority class

Fp(np)(-) cumulative distribution function of binomial distribution B(n,p)

LIST OF SYMBOLS 257

H(-,-) harmonic mean of its arguments

I(-) indicator function

if ti Nto A ... At,, then d = v decision rule

K set of admissible values of the parameter k£ in RIONIDA
k neighbourhood size; parameter k (in particular, in RIONA and RIONIDA)
Kgep default set for K in RIONIDA

Kmae maximal possible value of k (used for learning phase)

l, lower bound of values from V, for numerical attribute a
m number of attributes in the training set

mazx(a,b) maximum value from the two given numbers
min(a,b) minimum value from the two given numbers

N neighbourhood of test example

n number of objects in the training set

O(-) order of time or space complexity

P set of admissible values of the parameter p in RIONIDA

D parameter p in RIONIDA, i.e. relative importance of minority class and
majority class

P(d =d; | a = v) conditional decision probability given a value v of an attribute a
Pyey default set for P in RIONIDA

r1 = 1o rule ro is more general than (or is implied by) a rule r; (see Definition 2.10)
S set of admissible values of the parameter s in RIONIDA

S parameter s in RIONIDA

Saey default set for S in RIONIDA

T[i] i-th entry in table T

to(r) condition ¢; from Definition 2.6 of rule r corresponding to attribute a

t; =t condition ¢ is more general than (or is implied by) a condition ¢; (see
Definition 2.10)

ti(r) i-th condition ¢; from Definition 2.6 of rule r

trn training example

258 LIST OF SYMBOLS

trnSet training set

tst test example

Ug upper bound of values from V, for numerical attribute a
Va, (description of) set of values of attribute a

Vi finite set of decisions

X xY x ... Carthesian product of two (or more) sets

z ~ D random sampling of z according to probability distribution D

	Introduction
	Motivations
	Aim of the thesis and sketch of the results
	RIONA – an algorithm for balanced data
	RIONIDA – an algorithm for imbalanced data

	Comments on some problems related to imbalanced data
	Results of the thesis
	The organisation of the thesis
	Collaboration
	Software

	Basic notions
	Learning concepts from examples
	Similarity and metrics in machine learning
	Metrics for numerical attributes
	Metrics and pseudometrics for symbolic attributes
	Pseudometrics use in the thesis

	Selected methods in machine learning
	Rule-based methods
	Lazy rule learning for symbolic attributes
	Instance-based learning

	Imbalanced data
	Basic definition of imbalanced data and its drawbacks
	Different factors of the difficulty of imbalanced data
	Types of examples indicating the complexity of the data sets
	Drawbacks of imbalanced data analysis by the standard learning algorithms

	Existing methods for imbalanced data
	Data-level approaches
	Algorithm-level approaches
	Cost-sensitive learning
	One class learning
	Ensemble methods

	Evaluation of learning algorithms
	Performance measures
	Estimation of the chosen performance measure
	Selection of data sets for evaluation
	Statistical tests
	Selecting the best learning algorithm for real-life data sets
	Conclusions about the evaluation of learning algorithms

	Summary of the chapter

	RIONA
	Main ideas behind the RIONA algorithm
	Extension and generalisation of lazy rule learning
	Extension of lazy rule learning for numerical attributes
	Generalisation of lazy rule learning for symbolic attributes

	Combining instance-based learning and rule methods – RIONA
	Some specific situations
	Time complexity of RIONA for the testing phase
	Further acceleration of RIONA
	Relationships of RIONA to other approaches
	RIONA and rules

	Estimating the optimal neighbourhood size
	Efficient learning of the optimal parameter k
	Bound of the parameter k
	Comments on the structure of RIONA

	Experimental properties of RIONA
	RIONA versus other algorithms and different settings for RIONA
	RIONA versus ONN

	Extensions of RIONA
	Indexing tree for fast searching for the nearest neighbours
	Different types of voting
	Different weights for attributes
	Extensions of SVDM pseudometric for numerical attributes
	K nearest neighbours with local pseudometric induction

	Other possible extensions of RIONA
	Conclusions for RIONA

	RIONIDA
	Main ideas behind the RIONIDA algorithm
	Extension of generalised local decision rule
	RIONIDA description
	Selection of performance measure for optimisation
	Choice of the neighbourhood size
	Balancing Sensitivity and Specificity
	Default candidate for parameter p
	Choice of scaling factor in the sg-rule
	Some specific situations

	Estimating the optimal values of parameters for RIONIDA
	Efficient learning of the optimal values of parameters for RIONIDA
	Bounds on the values of parameters k, p, s
	Comments on the structure of RIONIDA

	Time and space complexity of RIONIDA
	Time complexity of RIONIDA for the testing phase
	Time and space complexity of RIONIDA for the learning phase
	Further acceleration of RIONIDA

	Important aspects of RIONIDA
	Interpretation of the behaviour of RIONIDA
	Optimisation of the explicit performance measure

	Conclusions for RIONIDA

	Experiments and results
	General experimental setup
	Performance measure
	Estimation of the chosen performance measure
	Selection of data sets for evaluation
	Statistical tests
	Selecting the best learning algorithm for real-life data sets

	Learning algorithms and filters used in comparative experiments
	Configuration and AF-learner
	Algorithms used in comparative experiments
	Configurations of algorithms used in comparative experiments
	Configuration of filters used in comparative experiments
	AF-learners used in comparative experiments
	Selection of the representative scores for learning algorithms

	Comparison of RIONIDA with the selected state-of-the-art algorithms
	Comparison of algorithms for G-mean
	Comparison of algorithms for F-measure
	Conclusions for G-mean and F-measure

	Additional comments on experiments
	Studying the role of RIONIDA components
	The balance-scale data set and outliers
	Analysis of the optimal values of parameters obtained in the learning phase of RIONIDA
	Analysis of running time of RIONIDA

	Additional experiments and their analysis
	RIONIDA with filters
	Additional comparison of RIONIDA with RIONA
	Additional comparison of RIONIDA with BRACID
	The RIONIDA quality analysis for different settings specific to RIONIDA
	The RIONIDA quality analysis for different RIONIDA settings adopted from RIONA
	The RIONIDA quality analysis for different extended versions of RIONIDA

	General summary of the described experiments

	Final conclusions
	Summary
	Future works

	Appendices
	Counter example for specific form of general rules
	An example of the macro- or micro-averaging of results of cross-validation
	Remark on the localisation of the optimal parameter p
	References
	Index
	Abbreviations
	List of Symbols

