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Abstract

In this thesis we study the setting of online bipartite matchings with
augmentations, in which a bipartite graph G = 〈U] V ,E〉 is revealed on-
line in a one-sided vertex-incremental fashion. In other words, the set U
is known from the start, while the vertices of V arrive one by one, each
together with all its incident edges. Our goal is to maintain the maximum
cardinality matching, in particular, the previous decisions are revocable.
Nevertheless, although we are allowed to reassign already matched pairs
to accommodate the newly arrived vertices, as far as it is possible, we
would like to keep the number of such operations low. We approach this
problem using two greedy strategies, both based on the classical augment-
ing paths technique.

First, we investigate the shortest augmenting path algorithm, which
each turn augments the current matching by using shortest augment-
ing paths. It was conjectured that the total length of all such paths is
O
(
n logn

)
, but no better bound than the naïve O

(
n2
)

is known even for
trees. In this setting we prove an O

(
n log2 n

)
upper bound when the un-

derlying graph G is a tree.
For the case of general bipartite graphs we propose another greedy

strategy that tries to minimize the maximum number of times each vertex
of U is used by augmenting paths so far. This approach yields a new
algorithm that produces augmenting paths that reassign any vertex of U
at most O

(
n1/2

)
times, implying an upper bound of O

(
n3/2

)
on the total

length of augmenting paths. We show how to efficiently compute these
paths and describe an algorithm that maintains the maximum cardinality
matching in O

(
m ·n1/2

)
total time and a (1− ε)-approximation algorithm

that works in O
(
m · ε−1

)
time. Moreover, we extend these results to the

decremental case where we give the same total bound. Furthermore, we
obtain a pseudo-polynomial algorithm for weighted graphs. Finally, we
provide examples demonstrating that our analysis is tight.

Keywords: online matchings, bipartite matchings, approximate matchings, short-
est augmenting paths, dynamic graph algorithms.
AMS Classification: 05C70, 05C85, 68Q25, 68W25, 68W27, 68W40.
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Streszczenie

Tematem pracy jest utrzymywanie skojarzeń online w grafach dwu-
dzielnych za pomocą ścieżek powiększających. W rozważanym problemie
algorytm otrzymuje na wejściu graf dwudzielny G = 〈U] V ,E〉, w ten
sposób, że zbiór wierzchołków U jest znany od początku działania algo-
rytmu, podczas gdy wierzchołki z V są odkrywane pojedynczo, każdy ze
wszystkimi incydentnymi do niego krawędziami. Celem jest utrzymywa-
nie najliczniejszego skojarzenia w ujawnionym grafie. Decyzje algorytmu
nie są nieodwołalne, niemniej jednak, na ile to możliwe, dąży się do zmi-
nimalizowania ilości zmian. W pracy tej analizowane są dwie zachłanne
strategie, obydwie oparte o klasyczną technikę ścieżek powiększających.

Pierwsze podejście opiera się na algorytmie, który w każdej turze ak-
tualizuje bieżące skojarzenie używając najkrótszej z dostępnych ścieżek
powiększających. Według hipotezy, suma długości wszystkich takich ście-
żek jest ograniczona przez O

(
n logn

)
. Tymczasem, nawet dla drzew nie

znamy żadnego ograniczenia lepszego niż O
(
n2
)
. Niniejsza praca przed-

stawia dowód, że jeżeli graf G jest drzewem, to całkowita ich długość nie
przekracza O

(
n log2 n

)
.

Dla przypadku ogólnych grafów dwudzielnych rozważana jest strate-
gia, która zlicza ile razy każdy wierzchołek był używany przez dotychcza-
sowe ścieżki powiększające i stara się zachłannie zminimalizować maksi-
mum. Zaproponowane podejście owocuje nowym algorytmem, w którym
każdy wierzchołek z U jest użyty przez ścieżki powiększające co najwy-
żej O

(
n1/2

)
razy, a całkowita suma długości tych ścieżek jest ograniczona

przez O
(
n3/2

)
. Ponadto, w pracy zaprezentowany jest efektywny sposób

ich obliczania, który pozwala na uzyskanie procedury utrzymującej naj-
liczniejsze skojarzenie w całkowitym czasie O

(
m ·n1/2

)
oraz algorytmu

(1 − ε)-aproksymacyjnego działającego w czasie O
(
m · ε−1

)
. Wyniki te

zostają rozszerzone do przypadku dekrementalnego i algorytmu pseudo-
wielomianowego dla grafów ważonych. Na koniec podane są przykłady,
które pokazują, że zastosowana analiza czasowa jest ścisła.

Słowa kluczowe: skojarzenia online, skojarzenia dwudzielne, skojarzenia aprok-
symowane, najkrótsze ścieżki powiększające, dynamiczne algorytmy grafowe.
Klasyfikacja AMS: 05C70, 05C85, 68Q25, 68W25, 68W27, 68W40.
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Introduction

Even before our ancestors became entirely human, they had to allocate
resources—how much energy to spend on foraging, how much on other
survival necessities, how much time on rest and reproduction? Often, the
choice was not even conscious, but encoded in their genes and dictated
by the rhythm of the planet. Nowadays, as we live our lives, resource
allocation is ubiquitous. As kids we learn to balance our responsibilities
and pleasures, as adults we pick roles to fulfill and attempt to find an
equilibrium between work, friends and family.

Yet, our pursuit of efficiency takes us even further. Even meta-level
considerations are not free of resource allocation, as planning itself also
consumes time and energy. Given how our existence is intertwined with
technology, it is not surprising that we use science and engineering to
help us with resource allocation. In this thesis we focus on an algorithmic
approach to one of many such problems. More precisely, its main result
is a procedure for maintaining a maximum cardinality matching.

A matching M in a graph G = 〈V ,E〉 is any subset of edges M ⊆ E
that are pairwise vertex-disjoint, i.e., each vertex has at most one incident
edge in M. For example, consider a group of people interconnected by
a symmetric relation of acquaintance. A matching then is a pairing of
these people such that each person in a pair is acquainted with the other
and nobody is in a more than one pair. We call M a maximum cardinality
matching, or simply a maximum matching, if it is of biggest possible size,
that is, for any other matching M ′ we have |M| > |M ′|.

It is easiest to see the task of calculating maximum matching as a re-
source allocation problem in the bipartite case, that is, when the vertices

1



V of G can be partitioned into two sets such that all the edges connect
vertices from two different parts. Despite this limitation, practical appli-
cations of bipartite matching are numerous, especially, when each edge
is labeled by weight that represents the benefit or cost associated with it.
For example, medical students in the United States have been assigned
to hospitals using a similar setting since the early 50’ of the last century.
Even before, minimum weight matching was used to optimize problems
motivated by transportation or classification of military personnel. Further-
more, both weighted and unweighted versions of the maximum matching
problem found multiple uses as building blocks of more complex algo-
rithms, having applications in mobile sensing systems, recommendation
systems, algorithms including pattern recognition and several areas of
bioinformatics, as well as in theoretical research on scheduling and load
balancing, shortest paths algorithms and hashing.

Over the years, as the research in combinatorial optimization pro-
gressed, the notion of matching became one of the fundamental concepts
in graph theory. Today it has many different versions and flavors, general-
izations and special cases. The subject of this thesis, that is, the problem of
maintaining a maximum cardinality matching in an incremental setting, is
one such specific variant, which can be summarized as follows. Consider
a number of incoming continuous service requests and a known pool of
handlers of different abilities—perhaps teams of people, each group able
to take care of one job that falls into its area of expertise, or maybe just
a farm of servers, each taking care of one request within its capabilities
range. Our goal is to continue to maintain as many requests as possible,
at the same time minimizing the number of reassignments between the
teams and their jobs or between servers and clients connected to them. As
argued in [24], possible applications of this problem include streaming
content delivery, data storage, job scheduling and hashing.

That setting is an example from a wide class of problems, in which
we assume that the input is revealed gradually as the algorithm runs,
rather than the all data being given as a whole from the start. Thanks to
the increase of easily available computational power, the online approach
became not only interesting from theoretical perspective, but also practi-
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cal on a massive scale. For example, these days, when visiting a website
that uses one of the big ad content providers, during the time in which
the browser loads the page, huge server farms perform multiple small
auctions that decide which vendors will be granted ad space in that par-
ticular page impression. Nevertheless, even this vast computing power is
not enough to deal with ever-growing amount of information to process—
the current monthly internet traffic, as well as the size of some larger
databases are measured in exabytes. That forces us to consider algorithms
of sublinear efficiency, but how is it possible for the algorithm to run with-
out reading all the data? In a dynamic approach we leverage the fact that
large data sets often differ very little from turn to turn, i.e., it is possible
to make the procedure run faster by reusing some of the calculation it did
on previous rounds.

The online and dynamic approaches are two perspectives on proce-
dures that process data arriving during the algorithm run. The difference
between the two depends on the context in which we do the analysis. If we
focus on the quality of the solution and decisions made by the algorithm,
then we would say it is an online problem, while in a dynamic problem
we concentrate on the efficiency of handling the updates.

A perfect example of an online problem is the one studied by Karp,
Vazirani and Vazirani in [66], a work that has hundreds of citations and
spurred a whole line of academic research. The input is a bipartite graph
G = 〈U] V ,E〉 where the vertices of V arrive online, each v ∈ V being
revealed at the same time with all its incident edges. When this happens,
the algorithm has to make a decision to leave v unmatched or pair it up
with some adjacent vertex u ∈ U which is still free. Once the choice is
made, it is irrevocable, i.e., the matched vertices cannot change their pairs
and the unmatched vertices of V have to stay unmatched until the end.
The objective is to maximize the size of the resulting matching, and the
authors propose an algorithm that has (1− 1/e) competitive ratio, which
means that the size of the computed solution is at least (1 − 1/e) times
the size of the optimal offline matching. In other words, they analyze
the quality of the output by comparing it to the optimal offline solution
calculated on the whole final graph G.
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On the other hand, in the fully dynamic bipartite matching problem we
consider the efficiency of the algorithm per single update. In that setting
the input graph G is given as a series of both insertions and deletions of
edges intermixed with each other, so it is possible for one edge to be added
and removed multiple times. The challenge is to develop an algorithm that
maintains the maximum cardinality matching and has the fastest possible
update times. The online approach does not apply, because each time we
calculate the best solution available. Conversely, the dynamic approach
does not suit the previous problem, because we are not concerned with
efficiency, only how good the final solution will be.

Nevertheless, the distinction between online and dynamic algorithms
is not sharply defined. For example, the problem studied in this thesis has
characteristics of both—it can be thought of as a middle ground between
the two above settings. In a graph-theoretical language, we can formulate
it as follows. We are given a bipartite graph G = 〈W ]B,E〉 in a one-sided
online fashion, that is, each black vertex b ∈ B arrives together with all
its incident edges, exactly as in the work of Karp, Vazirani and Vazirani.
However, similarly to the dynamic problem, our goal is to maintain a max-
imum cardinality matching. In particular, the decisions of the algorithm
can be changed later—each time a black vertex b ∈ B is revealed, the
algorithm picks its white pair in W, potentially reassigning some other
vertices in the process. The problem can be considered dynamic, because
we try to calculate, in an efficient manner, an optimal matching for each
turn. Even so, in a resemblance to the online setting, we still want to keep
the number of rematchings low. In other words, the fewer reallocations
are necessary, the better the quality of our solution.

Matching problems are far from being the only problems in the online
and dynamic settings. Still, the steadily growing body of research on this
topic and the number of papers accepted by the best algorithmic confer-
ences, like IEEE’s Foundations of Computer Science [76, 41, 10, 49, 75, 84,
55] and ACM’s Symposium on Theory of Computing [66, 81, 65, 71, 80],
is an evidence of its importance for the algorithmic graph theory. In that
light it is not surprising that the already huge volume of work and the
pace of new developments make it impossible to do an extensive survey
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within scope of this thesis. Nonetheless, to make the context more avail-
able, in the remainder of this chapter we try to sketch some recent and the
most significant advances in the area. The introduction ends with an infor-
mal, but detailed description of the obtained results, including the links
to chapters in which they can be found.

Related Work

The exact setting we are working with, namely the problem of online
bipartite matching with augmentations, was introduced by Grove, Kao,
Krishnan and Vitter in [53]. The authors used competitive analysis to
show O

(
log |V |

)
bound when each client connects to at most two servers.

That result was then extended by Chaudhuri, Daskalakis, Kleinberg
and Lin, who proved O

(
|V | log |V |

)
bound for some restricted models,

including forests or random graphs with degree Θ
(
log |V |

)
. They also

showed O
(
|V | log |V |

)
bound with high probability for the shortest aug-

menting path algorithm when the clients arrive in random order.
More recently Gupta, Kumar and Stein [54] considered a similar setting

that allows the capacity constrains to be exceeded by a constant factor.
They designed an algorithm that maintains such a constant-factor load
using only a constant number of reassignments per vertex in the amortized
sense.

Unfortunately, these are the only works that consider a model that
is the same or really close to ours. Still, there are three general lines of
research that are related to the topic of this thesis: online matching al-
gorithms, dynamic matching algorithms and load balancing problems.
Nevertheless, to make the context complete, before we review the previ-
ous results in these areas, we start with the matching algorithms in the
offline setting.

Offline Matching The matching theory has a long history [69, 31], with
published papers dating back to the nineteenth century [83]. Only recently
it was discovered that at that time Carl Gustav Jacobi studied what we
would call today—with a bit of a stretch, because the formulation, lan-
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guage and methods differ greatly—the offline assignment problem [22].
As the resource allocation problems are practical, their applications fol-
lowed [58, 63, 91] .

The classic approach to matching problems is via augmenting paths.
Thanks to a lemma proven by Berge (see Theorem 1.3) [12], we know that
in the case of bipartite graph the maximum cardinality matching problem
can be solved by the trivial algorithm that repeatedly applies arbitrary
augmenting paths—it works in O

(
|V | · |E|

)
time.

The non-bipartite case was later solved by Edmonds [34] in O
(
|V | · |E|2

)
and then improved to O

(
|V | · |E|

)
by a number of authors [31].

Another progress was made by Hopcroft and Karp [59] who proposed
an O

(
|E| · |V |1/2

)
algorithm for the bipartite case, that was later improved

to handle the general case by Mical and Vazirani [78]. It is worth noting
that the running time of the latter algorithm depends on a special disjoint
union structure developed later by Gabov and Tarian [46], and without it
the actual running time is O

(
|E| · |V |1/2 ·α(|E|, |V |)

)
[92].

Then, Alt, Blum, Melhorn and Paul [4], and Feder and Motwani [38]
showed logarithmic improvements, that is, O

(
|E|1/2 · |V |3/2 · λ−1

)
for λ =

log1/2 |V | and O
(
|E| · |V |1/2 · κ−1

)
for κ =

log |V |

log |V |2|E|−1 espectively. While both
results apply only to the bipartite case, the latter presents a graph com-
pression technique that was later applied by Goldberg and Kennedy [51]
to the push-relabel algorithm, and allowed Goldberg and Karzanov [50] to
design an algorithm for the general graphs with the same running time.

In the meantime, there was a breakthrough by Ibarra and Moran [60],
who used randomization and algebraic techniques to calculate the car-
dinality of the maximum matching in the time of matrix multiplication
O
(
|V |ω

)
. Later, Rabin and Vazirani [85] improved that result to handle

general graphs in the same time and calculate the whole matching in
O
(
|V |1+ω

)
. Lastly, Mucha and Sankowski [79] managed to reduce the com-

putation of the matching to O
(
|V |ω

)
time, and thus obtained an algorithm

which remains the fastest in the case of dense graphs.
With such a long history, it might appear that the problems of general

matching and bipartite matching are hard to improve. Nevertheless, at
FOCS 2013, Aleksander Mądry [70] presented a design of Õ

(
|E|10/7

)
-time
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algorithm for the maximum cardinality bipartite matching, which is a sig-
nificant advancement for sparse graphs. Moreover, in another recent work,
Duan and Pettie [31] had proven (1 − ε)-approximation for their maxi-
mum weight matching procedure that works in O

(
|E| · ε−1 log ε−1

)
time.

Finally, it is worth to mention that their paper contains also an excellent
section on related work to which we direct the reader for more details on
the maximum matching problems.

Online Problems The problem of online bipartite matching, where ver-
tices from one side arrive online together with all their edges, was intro-
duced in a paper by Karp, Vazirani and Vazirani [66]. The authors apply
the framework of competitive analysis and show an algorithm that has
(1− 1/e) approximation factor, a result that was later greatly simplified by
Birnbaum and Mathieu [16].

Although the model might seem restricted, actually it has numerous
applications, mainly because it is useful to model two sided markets—at
the same time it captures some non-trivial characteristics, and yet is simple
enough to allow an in-depth analysis. While it is rare that we know both
the supply and the demand, often it is not unreasonable to assume that
one of them can be reasonably assessed. For example, it might be hard for
a hosting company to accurately predict the incoming daily traffic, but it
can easily estimate the load that its servers can withstand.

Thus, in 2005 Metha, Saberi, Vazirani and Vazirani [76] generalized the
online bipartite matching to accommodate online advertising and present
worst-case (1− 1/e)-approximation for this special setting, when budgets of
advertisers are large. Another algorithm with same approximation factor
was given by Buchbinder, Jain and Naor [21], who use the primal-dual
approach to obtain their result.

Later, Goel and Mehta [48] went back to analyse the basic greedy al-
gorithm to show it is also (1− 1/e)-competitive, if the input is presented
as independent samples from some known distribution (the so-called i.i.d.
model), or it arrives in random order. In the case of the random permuta-
tion model they give lower bounds for the approximation factors of any de-
terministic and randomized algorithm, which are respectively 3/4 and 5/6.
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The natural barrier of (1− 1/e) ≈ 0.63was “beaten” by Feldman, Mehta,
Mirrokni and Muthukrishnan [41] in the case of the i.i.d. model, and
by Devenur and Hayes [29] in the random permutation model under
several additional assumptions. Then, with a different set of assumptions,
Feldman, Henzinger, Korula, Mirrokni and Stein [39] obtained (1− ε)-ap-
proximation algorithm motivated by a practical approach of training on
past historical data. After that, a number of papers improved both upper
bounds and lower bounds, finally arriving at 0.696-approximation in the
random arrival model and 0.702-approximation together with 0.823 lower
bound in the case of known distribution [72, 65, 71]. A good overview of
these results was given in a survey by Mehta [74].

A variety of other related models were studied as well. The most
straightforward generalization involved adding weights. For example,
Aggrawal, Goel, Karande and Mehta [2] achieved (1 − 1/e)-competitive
algorithm in the adversarial vertex-weighted case, while weights on edges
were considered by Haeupler, Mirrokni and Zadimoghaddam [56], who
presented an algorithm that achieves 0.667-approximation when the input
distribution is known.

Then, in 2012 the audience of FOCS have seen three interesting results.
Poloczek and Szegedy [84] investigated a middle ground between online
and randomized offline settings in which they show that the approxima-
tion factor of the greedy algorithm is strictly better than 1/2. On the other
hand, Goel and Tripathi analyzed a case where the graph is revealed as
it is accessed, as if the algorithm had its “eyes closed”. They presented
a 0.56 upper bound for their greedy algorithm and 0.7916 lower bound if
the procedure always matches just discovered edges. The setting of the
third work was inspired by practical application, namely the problem of
user conversion in online advertising. Mehta and Panigrahni [75] incor-
porated an additional probability parameter p that indicates how likely
the allocation is successful, and gave a deterministic algorithm with its
competitive ratio converging to 0.567. Just this year, with a small drop
to 0.534-approximation, their result was generalized by Mehta, Waggoner
and Zadimoghaddam [77] to probabilities that may be unequal between
vertices.
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Another setting motivated by practice was the bicriteria online match-
ing in the work of Korula, Mirrokni and Zadimoghaddam [67]. To model
capacity constraints found in online advertising, they endowed the static
vertices with numbers and ensure that they are matched at most that
many times. The authors presented a parametrized approximation algo-
rithm which balances the tradeoff between the cardinality constraints and
maximizing the weight.

A bit closer to our setting is the free disposal model introduced by Feld-
man, Korula, Mirrokni, Muthukrishnan and Pál in [40]—the vertices are
allowed to be matched more than once, but they can get credit only for
a few of its matched edges. They show (1− 1/k)k-approximation algorithm
if all the capacities exceed weakly k. The hard case of unit capacities was re-
cently considered by Charikar, Henzinger and Nguyen [23] who designed
a 0.5664-competitive algorithm if the graph is complete and the weights
of the edges are products of numbers associated with the endpoints of
that edge.

Similar to the free disposal model is the problem proposed by Con-
stantin, Feldman, Muthukrishnan and Pál [26]—reservation with cancel-
lations, where the matched edges may be revoked at a cost. The same
problem was also studied by Babaioff, Hartline and Kleinberg [9], and
Ashwinkumar and Kleinberg [6].

It is also worth mentioning the streaming model in which the elements
arriving online are the edges, and the challenge is to calculate a matching
in restricted memory. For example McGregor [73] described an algorithm
that achieve (1/1+ε) and (1/2+ε) approximation factors for the maximum car-
dinality matching and maximal weight matching in Õ

(
|V |
)

space and con-
stant number of passes. Epstein, Levin, Segev and Weimann [36] in their
work also considered edge-based input, but they allowed for preemptions—
a model similar to the one with free disposal, where a previously matched
edge may be discarded. For that setting the authors give an upper bound
of 0.590 and a randomized algorithm that gives 0.1867-approximation.

There are many other different online models that fit into the general
area of online resource allocation, e.g., the generalized assignment prob-
lem. However, given the current pace of research, reviewing every single
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setting and its modifications is an impossible task. Hence, we move to the
domain of dynamic problems.

Dynamic Problems Similarly to other matching problems, the dynamic
matching problem has received, especially recently, a lot of attention [62,
3, 20, 88, 81, 10, 5, 55, 80, 15, 14, 11]. However, it is important to note,
that the fully-dynamic model is different than the one analyzed in this
thesis. Not only it considers edge updates, but it allows their insertions
and deletions to be mixed.

Ivkovic and Lloyd [62] studied the problem of dynamic vertex cover,
but their solution is based on an algorithm for a maximal matching that
works in O

(
(|V |+ |E|)

√
2/2
)

time. Two years later Alberts and Henzinger [3]
gave an algorithm that achieves O

(
|V |
)

amortized time per update if only
insertions of edges are allowed, and an algorithm with average O

(
|V |
)

time per update in case of the restricted randomness model.
Next, in 2007 Brodal, Georgiadis, Arnsfelt and Katriel [20] constructed

a data structure that works for convex bipartite graphs and has an amor-
tized update time of O

(
log2 |V |

)
. It allows for worst-case constant-time

queries whether a given vertex is matched, or O
(
min
{

#updates · log2 |V |+
log |V |, |V | log |V |

})
to find its matched pair.

The same year Sankowski [88] used algebraic techniques to develop
an algorithm for maximum matching size with O

(
|V |1.495

)
update time

and extends it to maximum bipartite matching weight via the unfolded
graph technique of [64], achieving update time of O

(
W2.495 · |V |1.495

)
.

Then, at STOC’10 Onak and Rubinfeld [81] presented a constant ap-
proximation algorithm that works in polilogarithmic time, a work that
was a year later superseded by Baswana, Gupta and Sen [10, 11], who ob-
tained O

(
log |V |

)
update time and factor two approximation. That result

was then extended by Anand, Baswana, Gupta and Sen [5] to weighted
matchings, that is, they achieved 1/8-approximation in expected amortized
O
(
log |V | · log c

)
time, where c is the bound on the ratio of weights of

edges.
In 2013 there were two results with essentially same running time:

papers by Neiman and Solomon [80] from STOC and Gupta and Peng [55]
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from FOCS. The former provides 3/2-approximation in O
(
|E|1/2

)
, while the

latter achieves (1+ ε)-approximation in O
(
|E|1/2 · ε−2

)
time.

Recently, the O
(
|E|1/2

)
barrier for the deterministic algorithms was bro-

ken by Bhattacharya, Henzinger and Italiano [15]. The authors are able
to obtain (3 + ε)-approximation in O

(
min
{
|V |1/2 · ε−1, |E|1/3 · ε−2

})
amor-

tized time per update, and (4+ ε)-approximation in O
(
|E|1/3 · ε−2

)
worst-

case time per update. The same year Bernstein and Stein [14] improved
the approximation factor to (3/2 + ε), with worst-case update time of
O
(
|E|1/4 · ε−2.5

)
.

In the last few years there was also some progress in relation to lower
bounds on the running time of dynamic algorithms, for example by Pa-
trascu [82] and Abboud and Vassilevska Williams [1]. The second of these
papers, with certain assumptions, shows polynomial lower bounds on the
running time of incremental and decremental maximum matching algo-
rithms. However, due to edge-based updates, this result is incompatible
with our setting. Intuitively, the problem is that a reduction in the re-
quired direction would imply adding vertices to both sides of the bipartite
graph. On the other hand, we heavily rely on the fact, that only one side
of the graph is revealed and each vertex comes together with all its edges.
Therefore, it is hard to apply this results to our model.

Scheduling and Load Balancing Finally, we note that our model is re-
lated to the area of scheduling and load balancing. One can view the
setting as a number of servers waiting for tasks to be assigned—when
a new task arrives, before we schedule it for being run on some machine,
we might need to migrate some jobs to other servers to accommodate
the load. The closest problems are related to online load balancing of
permanent tasks with preemption.

As the domain of load balancing has been studied for a long time, for
the results published before 1996 we refer to the survey of Azar [8].

More recently Aspnes, Azar, Fiat, Plotkin, and Waarts [7] considered
a setting resembling online dynamic matching—online virtual circuits
which are permanent, that is, once the circuit has been created it will
not be rerouted. They proved O

(
log |V |

)
congestion factor and presented
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O
(
log |V |

)
-competitive algorithm for the non-preemptive load balancing

of unrelated machines.
For related machines, where a job of size p requires time p/v on a ma-

chine with speed v, Berman, Charikar and Karpinski [13] obtained an al-
gorithm with the approximation factors of 0.171 and 0.232 for the deter-
ministic and randomized versions respectively. The authors also provide
an upper bound of 0.5443, which is later improved to 1/2 in the case of
both preemptive and non-preemptive online scheduling by Epstein and
Sgall [37].

Load balancing models in which not every task can be assigned to ev-
ery server are called restricted assignment problems. Such a model, among
others, was considered by Westbrook [93]. He gave a rebalancing scheme
with a constant competitive ratio at a restart cost of O

(∑
v∈V rv log |V |

)
,

where ri is the cost of reassignment of i’th job.
Yet another way of modeling the cost of reassignment was investigated

by Sanders, Sivadasan and Skutella [87]. Their bounded migration setting
constraints the total size of moved jobs by a migration factor β times the
size of the arriving job. The authors developed 3/2-approximate algorithm
for β = 4/3 and general (1+ ε)-approximation for a constant β(ε) depen-
dent on ε. The migration factor also considered by Epstein and Levin
in [35]. They presented an algorithm of factor β = 1− 1/|E| maintaining
a solution on identical machines which is optimal with respect to the
makespan minimization and any `p norm for p > 1.

Nevertheless, as similar as these models might seem, the results are
not quite applicable to our setting. This is because in our model we as-
sume hard capacity constraints, whereas in the load balancing models
one usually assumes that the capacities are soft, i.e., the capacities can be
exceeded and one is interested in minimizing the maximum load. Hence,
these results have somewhat different objectives.
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Results

In this thesis we consider the setting of online bipartite matchings with
augmentations, introduced by Grove, Kao, Krishnan and Vitter in [53].
Shortly, we are given a bipartite graph G = 〈W ]B,E〉 with its vertices
partitioned into static white set W and black set B, that is revealed online
in a one-sided vertex-incremental fashion. In other words, the set of white
vertices W is fixed and assumed to be known beforehand, while the ver-
tices of B arrive one per turn, each with all its incident edges. Our aim is
to maintain the maximum cardinality matching, i.e., to be able to output
at any given time an optimal matching in a graph that was revealed up to
this point. Also, as far as it is possible, we would like to keep the number
of reassignments of the vertices low.

We approach this problem using two greedy strategies, both based on
the classical augmenting paths technique. The first one is presented in
Chapter 2, while the other spans Chapters 3 to 5. A formalized setting
description is given in Section 1.2.2 of the preliminaries, Chapter 1. The
final chapter of the whole thesis contains a brief discussion on the obtained
results and potential interesting avenues for further research.

A number of results included in thesis were published before, in par-
ticular Theorem 2.6 appeared in “Shortest Augmenting Paths for On-
line Matchings on Trees” at WAOA’15 [19], while Theorem 3.16 and Al-
gorithm 3 appeared in “Online Bipartite Matching in Offline Time” at
FOCS’14 [18]. It is worth mentioning that prior to these papers the best
bounds known for the general case were O

(
|V |2
)

and O
(
|E| · |V |

)
, respec-

tively, for the total length of augmenting paths and the running time,
which corresponds to the naïve algorithm that repeatedly applies just any
augmenting path.

Shortest Paths Approach The first strategy, described in Chapter 2, uses
the shortest augmenting paths. Chaudhuri, Daskalakis, Kleinberg and
Lin [24] conjecture that such a method achieves O

(
|V | log |V |

)
upper bound

on the total number of assignments and reassignments. To this end, in Sec-
tion 2.1 we present a reduction that may potentially simplify any dynamic
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analysis—the original graph G is transformed into a problem instance in
which only vertices of degree 1 are added. This way, the whole structure
of G is static and available from the very first turn.

Then, in Section 2.2, we consider the special case when G is a tree and
prove the bound of O

(
|V | log2 |V |

)
on the total length of augmenting paths.

That proof is special, because it does not rely on the actual matching it
augments each turn, only on the structure of the whole graph. This was
possible, thanks to how the concept of minimum surplus was defined in Sec-
tion 1.2.2—although ideas based on Hall’s surplus are known and appear
in literature in various forms, the author has never seen the formulation
used in Definition 1.10.

Therefore, in Section 2.3 we propose a setting in which the adversary
can change the calculated matching at every turn, in any way that pre-
serves its cardinality. We conjecture that this intervention does not affect
the asymptotic length of all the augmenting paths produced by the short-
est augmenting paths algorithm.

Ranks and Tiers The second strategy we apply to the online bipartite
matching with augmentations is based on another heuristic. For each ver-
tex we keep count of how many times it was used by augmenting paths,
which we call a rank, and try to minimize the maximum of these values
over all the vertices. Chapter 3 provides definitions and the theoretical
foundations of the approach. Then, we use them in Chapter 4 to design
an efficient algorithm that maintains a maximum cardinality bipartite
matching in the online setting with augmentations. Chapter 5 describes a
number of examples that demonstrate the performance of the technique
and provide corresponding lower bounds on running time of the algo-
rithms and the total length of applied augmenting paths.

The two most important notions of the second strategy are the rank
mentioned above and a related concept of tier, both defined in Section 3.1.
Section 3.2 provides their most important properties, while Section 3.3
contains the main theoretical result of this thesis, namely Theorem 3.16,
which can be formulated as presented below. Finally, in Section 3.5 we
relax the definitions a bit, so that they are easier to use in an algorithmic
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setting. In particular, Theorem 3.36 restates Theorem 3.16 using the new
relaxed rank.

Theorem 3.16. For any dynamic unweighted matching algorithm that uses tiered
augmenting paths it holds that rank|B|(w) 6

(
2|W ]B|

)
1/2 for every w ∈W.

The above theorem allows us to design a number of algorithms for the
online bipartite matching problem with augmentations and its different
flavors, which we all present in Chapter 4. We begin with Algorithm 1, the
search procedure which constitutes the heart of all the other algorithms.
Section 4.2 describes two results, which are the main practical contribution
of this work, namely Algorithm 3 and Algorithm 4.

Both procedures work in O
(
R · |E|

)
total time and generate augmenting

paths of O
(
R · |V |

)
total length, where R is the maximum achieved rank.

The first algorithm maintains an exact maximum cardinality matching, due
to Theorems 3.16 and 3.36 its worst-case total running time is bounded
from above by O

(
|E| · |V |1/2

)
. For the same reason the sum of lengths

of augmenting paths it produces is O
(
|V |3/2

)
. The second algorithm is

parametrized by a positive ε > 0 and maintains an (1− ε)-approximation
of the maximum cardinality matching, that is, a matching M such that
for any other matching M ′ we have

∣∣M∣∣ > (1− ε)
∣∣M ′∣∣. As the procedure

keeps the maximum rank R bounded by O
(
ε−1
)
, it works in O

(
|E| · ε−1

)
total time and generates paths of O

(
|V | · ε−1

)
total length.

It is worth pointing out, that both O
(
|E| · |V |1/2

)
and O

(
|E| · ε−1

)
hap-

pen to be the same as the asymptotic times needed by the well-known
algorithm of Hopcroft and Karp [59] to compute the exact and (1− ε)-
approximate maximum cardinality matchings in offline setting. Thus, in
Section 4.3 we compare the behavior of our algorithm to other offline
matching procedures and formulate a conjecture that Algorithm 8, a ran-
domized version solving the offline maximum bipartite matching problem,
has expected running time of O

(
|E| · |V |α

)
time for some α < 1/2.

We finish Chapter 4 with two reductions: from decremental-only case
and from weighted case. The first considers a setting in which we are given
a bipartite graph G and each turn instead of adding a vertex we remove
one. In Section 4.4 we show that Algorithm 3 and Algorithm 4 can be trans-
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formed to handle the decremental case in the same running times. Then,
in Section 4.5 we use the unfolded graph technique of Kao, Lam, Sung
and Ting [64] to apply all the above algorithms and their modifications to
weighted graphs. In this way we obtain an incremental and decremental
algorithms that maintain the exact weights of the maximum weight bipar-
tite matchings in O

(
W3/2 · |E| · |V |1/2

)
and their (1− ε)-approximations in

O
(
W · |E| · ε−1

)
total time.

Finally, Chapter 5 presents a number of examples that demonstrate
various characteristic behaviors of Algorithm 3 and Algorithm 4 and pro-
vide lower bounds on the pessimistic ranks and tiers. We consider two
methods of causing high ranks, one that targets the searching procedure,
and another that focuses on the augmenting paths.

The former strategy is discussed in Section 5.1, in which we construct
for a given parameter r three problem instances that achieve a cubic sum of
ranks Ω(r3) while being of sizes O(r2), O(r2) and O(r2 log r) respectively.
We start with an exposition of a general idea using a simple example
for a version of our matching algorithm that is based on the breadth-first
search. Then we proceed to modify it to accommodate Algorithm 3, which
is based on the depth-first search. However, the second example works
only in the worst-case. To this end we introduce the third example, that
achieves an expected Ω(r3) sum of ranks even if the edges of any vertex
are examined in a random order.

The shortcoming of these examples is that, the total length of applied
augmenting paths is linear in |V |. Thus, in Section 5.2 we construct a prob-
lem instance of size O(r2) that causes both the total sum of ranks and
the total length of augmenting paths to be Ω(r3). As the construction is
quite complicated, we first characterize its basic building blocks, and then
demonstrate how to use them to achieve ranks linear in r with an example
of size O(r3). We end Chapter 5 with a description of how to compress
the last instance to achieve the same effect within O(r2) size, which proves
that the worst-case analysis of Algorithm 3 is tight.
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Chapter 1

Preliminaries

In this chapter we introduce the basic notions that form the general
framework in which we can formally express the results of this thesis.
Unfortunately, the notation and definitions of graph-theoretical concepts
vary greatly across the literature. To avoid misunderstandings we intend
Preliminaries to be a short reference for the majority of common terms
used throughout this thesis. For these which are missing we direct the
reader to [27].

For that reason we advise readers who are well-versed in graph theory
to skip all the sections of this chapter but for the final part on dynamic
matchings. That section is different in that it contains definitions of terms
unique to this work, as well as some useful related observations. Moreover,
Definition 1.9 specifies the online setting common to all the other chapters,
and Definition 1.10 introduces the convenient concept of minimum surplus.
In other words, we recommend to read Section 1.2.2 in detail, while the
other parts of this chapter only if they are unfamiliar.

1.1 Graphs

A graph G is a collection of vertices V and edges E, formally, it is a pair
of sets G = 〈V ,E〉. In this work we assume that both these sets are finite
with their cardinalities denoted by n def

= |V | and m def
= |E|. If there are two
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or more graphs in the context, we refer to the set of vertices and the set of
edges of some graph G as V(G) and E(G).

Vertices can be elements of any set, although {0, 1, . . . ,n−1} ⊆N is one
of the most frequently used sets for this purpose. Nevertheless, usually we
will just assume the set V as part of the input and refer to the vertices via
labels like vi for the i’th vertex. Edges connect pairs of vertices, however,
it is important to decide whether the order of vertices matters or not. If
it does, then we get a directed graph in which E is a subset of the ordered
pairs of vertices E ⊆ V × V—such edges are often called arcs. Directed
graphs are isomorphic to (finite) binary relations on its set of vertices, in
particular, we allow for at most one edge between any pair of vertices in
each direction. Moreover, for an edge e = 〈u, v〉 that leads from u to v, we
call v the head of e and u the tail of e,

head
(
〈u, v〉

) def
= v,

tail
(
〈u, v〉

) def
= u.

If we were to consider unordered pairs, e.g., {u, v} for u, v ∈ V , we
get an undirected graph. By convention in undirected graphs we disallow
loops, that is, edges that connect v ∈ V to itself, hence

E ⊆
{
{u, v}

∣∣ u, v ∈ V ,u 6= v
}

.

Undirected graphs can be though of as symmetric, irreflexive binary rela-
tions on V .

We say that e and v are incident to each other if v is one of the vertices
that e connects. Two edges that are incident to the same vertex, or two
vertices that are incident to the same edge are called adjacent. Both these
relations indicate if two objects are in some sense next to each other, only
that incidence relates objects of different kinds (vertices and edges), while
adjacency relates two objects of the same kind (two vertices or two edges).
Two adjacent vertices can be called also neighbors and the set of all vertices
adjacent to u is called the neighborhood of u. For directed graphs we have

18



related concepts of in- and out-neighbors, and in- and out-neighborhood.

N(u)
def
=
{
v ∈ V(G)

∣∣ {u, v} ∈ E(G)
}

,

N(u→)
def
=
{
v ∈ V(G)

∣∣ 〈u, v〉 ∈ E(G)
}

,

N(→ u)
def
=
{
v ∈ V(G)

∣∣ 〈v,u〉 ∈ E(G)}.

The above functions extend easily to sets of vertices, for example

N(U)
def
=
⋃
u∈U

N(u).

A similar notion, the degree of a vertex, is the number of edges incident
to it. For directed graphs we also distinguish in-degree and out-degree,
formally

deg(u) def
= {e ∈ E | e is incident to u},

degout(u)
def
= {e ∈ E | u is the tail of e},

degin(u)
def
= {e ∈ E | u is the head of e}.

We call a graph G ′ a subgraph of G if V(G ′) ⊆ V(G) and E(G ′) ⊆ E(G).
One kind of frequently useful subgraphs are vertex-induced subgraphs or
simply induced subgraphs—maximal subgraphs defined on some selected
subset of vertices of the original graph. More precisely, let U ⊆ V(G) be
any set of vertices of G, then the graph induced by U is defined as

G[U]
def
=
〈
U,
{
e ∈ E(G)

∣∣ e has both its endpoints in U
}〉

.

Similarly, an edge-induced subgraph is defined for a subset of edges F ⊆
E(G) by

G[F]
def
=
〈
V(F), F

〉
.

Sometimes a graph (directed or undirected) will be equipped with a func-
tion, that labels each edge with its weight, for example G = 〈V ,E,w〉
where w : E→N. In such case we call G a weighted graph.
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1.1.1 Paths and Reachability

Although the notion of a path defined here represents the same intuitive
object, the exact definition diverges from the one in [27]—here paths con-
sist of both edges and vertices.

A path is an alternating sequence of edges and vertices such that any
two successive objects are incident to each other. Moreover, in the context
of directed graphs we require the direction of all the edges to align with
the direction of the path, in which case we call the path directed. We use
the notation V(P) and E(P) to refer, respectively, to the sets of vertices and
edges of the path P.

A directed path P from u to v is denoted by
[
u

P−→ v
]
. As our paths

contain both edges and vertices, sometimes it is helpful to consider the
same path, but excluding its endpoints. We indicate this by a change from

a square bracket “[” to a round bracket “(”. For example,
[
u

P ′
−→ v

)
means

a path P ′ such that u ∈ V(P ′), but v /∈ V(P ′).
Path is simple if it does not visit any vertex twice, including both its

endpoints. A path that starts and ends at the same vertex is called a cycle,
where a simple cycle means a cycle that does not visit twice any vertex
other than its endpoint. The length of a path or a cycle is the number of
edges in it.

If a vertex v belongs to a path P, then we can split the path using that
vertex, for example,

[
u1

P1−→ v
]
◦
(
v
P2−→ u2

)
=
[
u1

P−→ u2
)
.

Here, by “◦” we denote the concatenation operator, which reverses the
splitting—it joins two paths with a common endpoint, and common di-
rection if the involved paths are directed. Any initial part of the path, i.e.,
continuous fragment containing its beginning, is called its prefix. Similarly,
a suffix of P is a terminal part of path P.

For an undirected graph G we say that u and v are connected if there
exists a path from u to v. It is easy to check that connectedness is an equiv-
alence relation. Its equivalence classes form the connected components of G.
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The analogous relation in the context of directed graphs is called reach-
ability, where v is reachable from u if there exists a directed path from u

to v.

1.1.2 Special Classes of Graphs

Many graph problems that are hard in the general case, become much
easier if they are considered for graphs that satisfy some additional prop-
erties. Two classes that are of special interest to us are trees and bipartite
graphs.

Trees We call an undirected graph a tree if it is acyclic and connected. In
particular, in any tree there is exactly one simple path between any pair
of vertices. Frequently one of the vertices is distinguished and becomes
the root of the tree. In such case we say that the tree is rooted in v. Trees
have their own terminology, the list below contains the most important
concepts (see Figure 1.1). Let v and u be any two vertices of a tree, then

• v is a leaf if it is of degree one;

• u is an ancestor of v if u belongs to the path that connects v and the
root, in particular the root is an ancestor of any other vertex, yet it is
not a proper ancestor of itself;

• u is a parent of v if it is the direct ancestor of v, i.e., the first vertex
on the path to the root;

• u is a descendant of v if v is an ancestor of u;

• u is a child of v if v is a parent of u;

• for any graph G, a subtree of G is any subgraph that is itself a tree;

• if G is a rooted tree, then the subtree rooted in v is a subtree that
consists of v and all its descendants;

• if G is an unrooted tree, then a subtree of v is just any connected
component of G \ {v}.
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parent of v16

rooted in v16

Figure 1.1: A rooted tree illustrating the basic terminology. Heavy edges
and light edges constitute the heavy-light decomposition of a tree.

One characteristic of trees that we will use in Chapter 2 is that they
are amenable to the heavy-light decomposition, a technique introduced
by Sleator and Tarjan in [90].

Consider a tree G rooted at r ∈ V(G), and partition its edges into heavy
and light, depending on whether the size of the subtree is strictly bigger
than half of the size of the subtree rooted at parent. Formally, let v ∈ V(G)
be any vertex other than root r and set pv ∈ V(G) to be its parent, then

edge
{
v,pv
}
∈ E(G) is heavy def⇐⇒

∣∣subtree(v)∣∣ > 1
2

∣∣subtree(pv)∣∣,
while non-heavy edges we call light. In the diagram above the heavy and
light edges were marked respectively with thick and thin lines. Observe,
that because of the size requirements, each time we traverse a light edge
away from the root r, the size of the current subtree halves. In other
words, for any vertex v ∈ V(G) there are at most

⌊
log2 |G|

⌋
light edges

on the simple path from r to v. Moreover, each vertex can have at most
two heavy incident edges, thus heavy edges form vertex-disjoint paths.
However, paths are of much simpler structure than arbitrary trees, hence
allow for more efficient handling despite being possibly numerous.

Thanks to that characteristic of trees Sleator and Tarjan were able to
achieve an amortized logarithmic complexity for their dynamic link/cut
tree structure. This is also the reason why we use the heavy-light decompo-
sition in this thesis. Although the actual method is slightly different—we
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consider an edge heavy if it leads to the biggest subtree, i.e., each non-leaf
vertex has at least one heavy incident edge (see Lemma 2.12 for details)—
the general underlying idea is the same.

Bipartite graphs A graph is called bipartite if its set of vertices can be
partitioned into two disjoint subsets such that no edge is contained in only
one of them. Equivalently, a graph is bipartite if and only if it has no cycles
of odd length. For simplicity, we call these two sets of vertices black and
white, denoted respectively by B and W. Although a bipartite graph may
admit more than one partition, that is, a graph of c connected components
has 2c possible bipartitions, for our analysis, it does not matter—we as-
sume the partition is a part of the input. An example of a bipartite graph
is presented in Figure 1.2.

1.2 Matchings

Given a graph G, a matching is a subset of edges of G that are pairwise not
adjacent, i.e., they share no vertices. A matching is maximal if it is maximal
with respect to inclusion, while maximum matching is one of maximum
cardinality. We say that vertices incident to M are matched or M-saturated,
and we call M perfect if it matches all the vertices of V , that is, it is of size
1
2 |V |. Vertices that are not incident to M are unmatched or M-free. If the
matching M is clear from context, the prefix “M-” will be skipped.

Given a matching M in a graph G we say that a path A in G is M-
alternating if exactly its every second edge belongs toM, that is, for any two
consecutive edges ei, ei+1 on A precisely one of them is inM. Furthermore,
a path is M-augmenting if it is a simple M-alternating path that both starts
and ends at M-free vertices. Such a path has to be of odd length.

Observation 1.1. For two arbitrary matchings M1 and M2 in G, the edge-
induced graph G[M1 ∪M2] consists of

• cycles C such that |E(C)∩M1| = |E(C)∩M2|,
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• simple paths P such that∣∣E(P)∩M1

∣∣ 6 ∣∣E(P)∩M2

∣∣+ 1,
1+

∣∣E(P)∩M1

∣∣ > ∣∣E(P)∩M2

∣∣.
Proof. For any vertex v of G[M1 ∪M2] we have 1 6 deg(v) 6 2. Moreover,
any two adjacent edges belong to different matchings, so for each cycle
we have to have an equal number of edges from M1 and from M2, while
for paths the difference can be at most one.

The above observation holds also when we use the symmetric differ-
ence ⊕ instead of just set union ∪ of matchings.

Observation 1.2. The claim of Observation 1.1 holds also for the edge-
induced graph G[M1 ⊕M2].

Theorem 1.3 (Berge’s lemma [12]). Matching M is maximal if and only if
there is no M-augmenting path in G.

Proof. Let A be an M-augmenting path in G, then M ′ =M⊕A is a match-
ing of bigger cardinality. Conversely, let M ′ be a matching of strictly big-
ger cardinality than M, then G[M ′ ∪M] has to contain a component that
has strictly more edges of M ′ than edges of M, in which case, by Obser-
vation 1.1 it has to be a simple M-alternating path of odd length, thus
an M-augmenting path.

Observation 1.4. Let MOPT be a matching of maximum cardinality in
graph G and M be any matching also in G. If the length of the shortest
path augmenting M is at least k, then

∣∣M∣∣ > ∣∣MOPT
∣∣(1− 2

k

)
.

Proof. Consider the matching-induced graph G
[
MOPT ⊕M

]
, it contains(

|MOPT|− |M|
)

disjoint M-augmenting paths, each of length at least k.
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Moreover, every vertex of such path is a vertex of MOPT. Hence,(∣∣MOPT
∣∣− ∣∣M∣∣)k 6 2

∣∣MOPT
∣∣

and the observation follows.

1.2.1 Matchings in Bipartite Graphs

Matchings in bipartite graphs, thanks to the lack of odd-length cycles,
have quite elegant structure that manifests itself strongly in the following
three results.

Let G = 〈B]W,E〉 be an undirected bipartite graph andM a matching
in G. Observe that each edge has one black and one white vertex. That
allows us to encode if the edge is matched in M using its direction. Define
G1M def

=
〈
B]W,E1M

〉
as the directed graph on the vertices of G in which

we orient matched edges from white vertices to black, and unmatched
edges from black to white, formally

E1M def
=
{
〈w,b〉

∣∣∣ w ∈W, b ∈ B, {w,b} ∈M
}

∪
{
〈b,w〉

∣∣∣ w ∈W, b ∈ B, {w,b} ∈ E \M
}

.

The above idea is illustrated in the first diagram of Figure 1.2: we direct
all the matched edges to the right, and all the unmatched edges to the
left. In the second picture, which presents the same graph, we can notice
an immensely useful feature of G1M, that is, the M-alternating paths in G
are exactly the directed paths of G1M.

Observation 1.5. A path A is an alternating path in G if and only if A1M

is a directed path in G1M.

Proof. Let e1 and e2 be any two consecutive edges of A, e11M and e21M

be their counterparts in A1M, and v be the common vertex between them.
Observe that counterparts of matched edges in G1M lead always to B,
while counterparts of unmatched edges lead always to W.
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Figure 1.2: A matching-directed bipartite graph: matched edges are
directed left-to-right, while unmatched edges are directed right-to-left.
The M-alternating paths in G are exacly the directed paths of G1M.

Necessity (⇒). The above implies that v, which is either black or white, is
the head of exactly one edge of e11M and e21M, and is the tail of exactly
one of these edges. In other words, any vertex of A1M other than its
endpoints is the tail and the head of exactly one edge of A1M. This implies
that A1M is a directed path.

Sufficiency (⇐). Conversely, if v is the head and the tail of exactly one
edge of e11M and e21M then exactly one of them leads to Bwhile the other
leads to W. This in turn implies that exactly one of e1 and e2 belongs to
M and proves A to be an alternating path.

Observation 1.6. If A is an M-alternating path, then there exists a simple
M-alternating path A ′ that has the same endpoints and A ′ ⊆ A.

Proof. We prove that we can remove any cycle from A and it will still
remain an alternating path. As A is of finite length, this way we can
remove all the cycles, and thus construct a simple alternating path.

Let A be an alternating path that visits v ∈ V at least twice, by Ob-

servation 1.5
[
u1

A1M

−−−→ u2
)

is a directed path in G1M which also visits

v at least twice. Set
[
u1

A1
1M

−−−−→ v
)

to be the longest prefix of A1M that

does not contain v and
[
v
A2

1M

−−−−→ u2
)

to be the shortest suffix that does
contain v. Then, the concatenation of A11M and A21M is a directed path
that connects u1 to u2, so A1 ◦A2 ⊆ A is an alternating path in G with the
same endpoints as A.
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Theorem 1.7 (Hall’s theorem [57]). A bipartite graph G contains a matching
M that matches all vertices of X ⊆ V if and only if it satisfies Hall’s condition

∀Y ⊆ X.
∣∣Y∣∣ 6 ∣∣N(Y)

∣∣. (Hall’s condition)

Originally this statement was worded in terms of sets and their repre-
sentants, in particular, there would be an implicit assumption that X ⊆ B
(or X ⊆ W, by symmetry there is no difference). That assumption is also
prevalent in the statement of Hall’s theorem in graph-theoretic language,
and it is covered here by Case 1 and Case 2 of the following proof. However,
we give here a slightly stronger version of Hall’s theorem—one that does
not need the aforementioned assumption—by reducing the problem in
Case 3.

Proof. Necessity of Hall’s condition (⇒). Let M be the matching that
matches all vertices of X and set f : X → V to be a function that assigns
any vertex x ∈ X to its matched pair in M, formally

f(x) = v ⇐⇒ {x, v} ∈M.

Obviously f(x) ∈ N(x). Moreover, the edges in M do not share vertices, so
f is injective and

∀Y ⊆ X.
∣∣Y∣∣ = ∣∣f(Y)∣∣ 6 ∣∣N(Y)

∣∣.
Sufficiency of Hall’s condition (⇐). We proceed by induction on |X|.
Clearly, the theorem is true for |X| = 1, in the following we assume that
|X| > 2 and that the theorem is true for all sets of strictly smaller cardinal-
ity.

Case 1. Suppose that X ⊆ B or X ⊆ W and that we have a positive slack
for all proper non-empty subsets of X, that is

∀Y ( X, Y 6= ∅.
∣∣Y∣∣+ 1 6 ∣∣N(Y)

∣∣.
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Let e be an arbitrary edge incident to X and set G ′ = G[V \V(e)]. Observe
that in G ′ we remove exactly one vertex from both B andW, so NG ′(Y) can
decrease at most by one with respect to NG. In other words, G ′ satisfies
Hall’s condition, so we can find a matching M ′ that covers V(G ′)∩X and
then extend it to M =M ′ ∪ {e}.

Case 2. Suppose that X ⊆ B or X ⊆ W and that there exists a proper
non-empty subset Y of X such that∣∣Y∣∣ = ∣∣N(Y)

∣∣.
Clearly G ′ = G

[
Y ∪N(Y)

]
satisfies Hall’s condition. However, for any

Z ⊆ X \ Y we have∣∣Y∣∣+ ∣∣Z∣∣ = ∣∣Y ∪Z∣∣ 6 ∣∣N(Y ∪Z)
∣∣

=
∣∣N(Y)∪

(
N(Z) \ N(Y)

)∣∣
=
∣∣N(Y)

∣∣+ ∣∣N(Z) \ N(Y)
∣∣,

so G ′′ = G
[(
X \ Y

)
∪
(
N(X) \ N(Y)

)]
satisfies Hall’s condition as well. Ob-

serve that V(G ′) and V(G ′′) are disjoint, hence, we can set M =M ′ ∪M ′′

where M ′ and M ′′ are respectively Y-saturating and (X \ Y)-saturating
matchings obtained from G ′ and G ′′.

Case 3. Finally, suppose that X contains vertices from both B andW, more
formally

X∩B 6= ∅ and X∩W 6= ∅.

Because |X∩B| < |X| and |X∩W| < |X|, we know that there are matchings
MB and MW that match all the vertices of X ∩ B and X ∩W respectively.
The idea is to pick, for each connected component of MB ∪MW , the edges
that saturate as many vertices of X as possible.

Consider a connected component C of MB ∪MW and let

Cα = V
(
E(C)∩α

)
∩X for any α ⊆ E.

Observe that no path of MB ∪MW can have both endpoints outside of X,
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so either CMB
⊆ CMW

or CMB
⊇ CMW

. Therefore we can set

M =
⋃

connected component C of MB∪MW

extract(C),

where

extract(C) =

E(C)∩MB if
∣∣CMB

∣∣ > ∣∣CMW

∣∣,
E(C)∩MW otherwise.

The Hall’s condition is a convenient tool to work with. However, it is
too imprecise—it only tells us whether there is a matching or not, con-
flating all the different graphs into only two classes. In a prelude to Sec-
tion 1.2.2, consider what happens when we add a vertex to a graph, in
particular, how the inequalities in Hall’s condition continue or cease to
hold. There is a notion that could help us in this matter, a well-known
generalization of Hall’s condition, namely Hall’s condition with surplus.
Intuitively it describes how many vertices we could add and still be guar-
anteed to have a saturating matching.

Definition 1.8. We say that set X satisfies Hall’s condition with surplus k
if k ∈ Z is the biggest (possibly negative) integer such that

∀Y ⊆ X, Y 6= ∅.
∣∣Y∣∣+ k 6

∣∣N(Y)
∣∣. �

Nevertheless, the definition is concerned with the worst case—what
would happen if we were to add vertices in the least favorable configura-
tion. On the other hand, we would like to analyze what happens when
we add neighbors to some particular vertex, and thus need an even more
fine-grained approach. To this end, in the next section we introduce the
concept of the minimum surplus of a set of vertices.
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1.2.2 Dynamic Matchings

The main result of this thesis assumes a dynamic setting, that is, one
in which the algorithm maintains a solution as the underlying structure
changes. The challenge is to devise a way to reuse some already computed
information, e.g., the old solution, to obtain the new solution in a smarter
way than recalculating it from scratch every time.

There are many possible ways in which a graph could change over
time, for example, given a graph G we might want to add a new vertex
v /∈ V(G), and two new edges e1, e2 /∈ E(G). More precisely, we would
like to construct graph G ′ = 〈V ′,E ′〉 where V ′ = V(G) ∪ {v} and E ′ =

E(G)∪ {e1, e2}. To keep track of all the changes easily, instead of modifying
a single graph G we consider a sequence of graphs G0,G1, . . . where G0 =
G and subsequent elements represent the successive updates done to G.

The algorithms described in Chapters 2 and 4 maintain a maximum
cardinality matching, which, obviously, may change between turns. There-
fore, instead of modifying the current matching M, we use a sequence of
matchings M0,M1, . . ., analogously to the sequence of graphs described
above.

Intuitively, in this thesis we assume an incremental setting in which
we are given the set W up front, and then each turn a vertex of B arrives,
together with all its incident edges. At all times we maintain a maximum
matching in the graph. Formal definition is as follows.

Definition 1.9. The input to the algorithm is a sequence of bipartite graphs
G0,G1, . . . ,Gn such that

• G0 = 〈W ]B0,E0〉 = 〈W ]∅,∅〉,

• Gt = 〈W ]Bt,Et〉 =
〈
W ]Bt−1 ∪ {bt}, Et−1 ∪ Ebt

〉
where

Ebt 6= ∅, Ebt ⊆
{
{bt,w}

∣∣∣ w ∈W}.

The output of the algorithm is a sequence of matchings M0,M1, . . . ,Mn

such that Mt is a matching in Gt which depends only on graphs encoun-
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tered up to t, that is, mapping(
G0,G1, . . . ,Gt

)
→Mt

is a function for any 1 6 t 6 n and any input sequence G0,G1, . . . ,Gn. �

Note, that Ebt 6= ∅. The reason is that, although white isolated vertices
might have some neighbors in future turns, black isolated vertices are
obviously impossible to be matched. Hence, to avoid special cases, we can
exclude them from analysis without any loss of generality.

Throughout this text we use phrase “at time t” or “at turn t”, which
formally means “in Gt1Mt−1”, that is, in a graph with the new vertex bt
added, but before the new matching Mt has been calculated and applied.

Definition 1.10. Consider a sequence of bipartite graphs G0,G1, . . . and
respective matchings M0,M1, . . .

• For any matched white vertex w ∈ W(Mt) we denote its matched
pair in Mt by btw.

• For any turn t we define the set of seeds St as the set ofMt-free white
vertices of Gt,

St
def
= W(Gt) \W(Mt).

• We define the minimum surplus of X ⊆ V(G) as

min surplusG(X)
def
= min

Y∈Y

∣∣NG(Y)∪ (X∩W(G)
)∣∣− ∣∣Y∣∣

where Y is a collection of sets Y ⊆ B(G) that are supersets of X∩B(G)
and satisfy Hall’s condition, i.e.,

Y =
{
Y ⊆ B(G)

∣∣∣ Y ⊇ X∩B(G), ∀Z ⊆ Y.
∣∣Z∣∣ 6 ∣∣NG(Z)∣∣}.

Intuitively, in a sense, it is the minimum surplus (see Definition 1.8)
of any reasonable superset of X, in particular, the above is a proper
definition only if X∩B(G) satisfies Hall’s condition.
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• We consider vertex v alive if min surplus
(
{v}
)
> 0, otherwise v is dead.

We denote the set of dead vertices of G by D(G) and Dt
def
= D(Gt). �

Lemma 1.11. For any bipartite graph G and vertex v ∈ V(G) the four following
conditions are equivalent:

(1) v is alive;

(2a) if v ∈W, then there exists a maximum matching M such that v is M-free;

(2b) if v ∈ B, then there exists a maximum matching M such that v has an
M-free neighbor;

(3) there exists a maximum matching M and an M-free white vertex s ∈ W
such that there exists a simple alternating path between v and s, i.e., a simple
directed path from v to a seed s in G1M;

(4) for any matchingM there existsM-free white vertex s ∈W such that there
exists a simple alternating path between v and s, that is, a simple directed
path from v to s in G1M.

Proof. Case (1) =⇒ (2a). If v ∈W, then let G ′ = G \ {v} and observe that
for any X ⊆ B if X satisfied Hall’s condition in G, then it satisfies Hall’s
condition in G ′. That is because if v ∈ NG(X), then Hall’s condition was
satisfied with surplus of at least 1. Hence, for any matchinig M in G we
can find a matching M ′ in G ′ of the same cardinality. As G ′ is a subgraph
of G, M ′ happens to be also a matching in G. However, v /∈ V(G ′), so M ′

is a maximum cardinality matching in G that does not match v.

Case (1) =⇒ (2b). Take any set X ⊆ B that satisfies Hall’s condition. Then
for any Y ⊆ X we have that N(v) \ N(Y) 6= ∅ implies∣∣N(Y)∪N(v)

∣∣− ∣∣Y ∪ {v}∣∣ > 0.
32



and N(v) ⊆ N(Y) implies∣∣N(Y)∪N(v)
∣∣− ∣∣Y ∪ {v}∣∣ > ∣∣N(Y)

∣∣− ∣∣Y∣∣− 1
> min surplus

(
N(v)

)
− 1

> min surplus
(
{v}
)
− 1

> 0.

However, this makes X∪ {v} a valid candidate for the minimum surplus of
{v}, so

∣∣N(Y)∪N(v)
∣∣− ∣∣Y ∪ {v}∣∣ > 1 for all Y ⊆ X. Therefore, within graph

G ′ defined as

G ′ =
〈
V ∪ {b},E∪

{
{b,w}

∣∣ w ∈ N(v)
}〉

we can infer from the last inequality that if X satisfies Hall’s condition,
then both X∪ {v} and X∪ {v,b} also satisfy Hall’s condition. In other words,
there exists a maximum matching M in G ′ that matches both v and b, but
then M constrained to G is a matching that does not match a neighbor
of v.

Case (2) =⇒ (3). Trivially, since any path P of length |P| 6 1 is an M-
alternating path. For v ∈ W we set s = v and for v ∈ B we set s = w,
where w is the M-free neighbor of v.

Case (3) =⇒ (4). LetM be a maximum matching and s ∈W be anM-free

vertex such that there exists a simple alternating path
[
v

P←→ s
]
. If v ∈ W,

then set w = v, or otherwise set w to be the matched pair of v if v ∈ B.
In the latter case v has to be matched, because otherwise P would be an
augmenting path and M could not be a maximum matching.

Consider Gb = 〈V(G)∪ {b},E(G)∪ {b,w}〉 for a new black vertex b,

and observe that Gb admits an M-augmenting path A =
[
b

{b,w}∪P←−−−→ s
]
,

construct Mb =M⊕A.

Now take any matching M ′ in G. Observe that M ′ is a non-maximum
matching in Gb, so Mb, a matching that saturates b, is of strictly greater
cardinality than M ′. Thus, there exists M ′-augmenting path A ′ in Gb that
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matches b, which is one the connected components of M ′⊕Mb. However,
that means A ′ \ {b,w} is an alternating path to some white M ′-free vertex
s ′ that starts with a matched edge, and thus can be easily extended to
an alternating path from v to s ′ in G.

Case (4) =⇒ (1). Set X = {v}. Take any set Y ⊆ B that satisfies Hall’s
condition and v ∈ Y. Note that v ∈ Y is equivalent to Y ⊇ (X∩B) = {v}, in
other words, Y is any candidate set for the minimum surplus of X = {v}. By
Hall’s theorem we know there exists a matching M that saturates all the
vertices of Y, and that M ′ = {e ∈M | e is incident to Y} is also a matching,
which happens to be of size |Y|.

Moreover, by (4) there is an M ′-alternating path that connects v to
some M ′-free white vertex s. Furthermore, because Y ⊇ (X∩B), we have
that either v is incident to M ′, but then s ∈ N(Y) and∣∣N(Y)∪ (X∩W)

∣∣ > ∣∣N(Y)
∣∣ > ∣∣Y∣∣+ ∣∣{s}∣∣ = ∣∣Y∣∣+ 1,

or v is white and non-incident to M ′, i.e., s = v and∣∣N(Y)∪ (X∩W)
∣∣ = ∣∣N(Y)] {v}

∣∣ > ∣∣Y∣∣+ 1.
Observation 1.12. If vertex v became dead at some turn, then it will stay
that way until the end of the algorithm.

Up to this point the matchings Mt could change arbitrarily between
the turns. Nevertheless, all the algorithms we consider in the following
chapters use the augmenting paths approach. Henceforth, we assume that
the algorithm maintains the matchings using augmenting paths, which
we denote by At. Formally

At =Mt ⊕Mt−1 for 1 6 t 6 n.

It is true that augmenting paths constrain the algorithm in what it
can do. However, such an assumption has a number of consequences
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that make the analysis simpler. For example, an augmenting path cannot
unmatch a vertex—it can only reassign it to some other pair. This will
become helpful in Chapter 3, because it implies the sets of seeds St, i.e.,
the set of Mt-free white vertices, satisfy St+1 ⊆ St.

Observation 1.13. A vertex matched at turn t stays matched until the end
of the algorithm,

V(Mt) ⊆ V(Mt+1) for 1 6 t < n.

Corollary 1.14. Once a vertex ceased to be a seed, it cannot become one
again,

St+1 ⊆ St for 1 6 t < n.

Another characteristic of augmenting paths is that dead vertices are
insignificant—Lemma 1.11 implies that any vertex other than bt that be-
longs to augmenting path At at turn t had to be alive at turn (t − 1).
Conversely, when some vertex becomes dead, then from that turn no aug-
menting path will ever use it, in which case we can just remove it from
the graph. The only exception is the vertex bt that has just arrived. Even
if it is dead at the end of turn t, it is still possible for the path At to match
it. This is because At is an Mt−1-augmenting path, and Mt−1 may not be
a maximum matching in Gt.

Observation 1.15. If a Mt-free vertex is dead at turn t, then it will stay un-
matched until the end of the algorithm. In particular, there is a maximum
cardinality matching that does not match that vertex.

Corollary 1.16. If bt cannot be match at the turn t, when it arrives, without
loss of generality we can remove it from the graph.
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Chapter 2

On the Shortest Augmenting
Paths Approach

In this chapter we consider a classic approach to the maximum matching
and maximum flow problem, namely the shortest augmenting paths, and
we try to apply it to the dynamic setting described in Definition 1.9. In
other words, we attempt to match each new vertex bt that arrives, using
the shortest augmenting path available at turn t. Formally, we require the
path At =Mt−1 ⊕Mt to be a shortest Mt−1-augmenting path in Gt.

Although the shortest paths approach is one of the basic algorithmic
techniques, it is far from being fully understood, even in the context of
matchings and flows. In the following sections we present three ideas that
shed some additional light on the problem.

One of the challenges related to the dynamic setting is the evolving
nature of the input graph. To make the potential analysis easier, in Sec-
tion 2.1 we introduce a reduction that transforms any bipartite graph into
an instance, in which the original structure is static and available from the
beginning. Not only it can be used to bound the total length of augment-
ing paths, but we believe it preserves all the essential characteristics of the
graph, including the min surplus of any subset of vertices of the original
final graph.

In the second section we investigate the total length of the augmenting
paths found by an algorithm described in the first paragraph. Chaudhuri,
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Daskalakis, Robert and Lin [24] conjecture that the total length of augment-
ing paths found by such an algorithm is O

(
|V | log |V |

)
. Still, to the best of

author’s knowledge, no better bound than the trivial O
(
|V |2
)

is known
even for the special case of trees. For that particular case we improve the
bound to O

(
|V | log2 |V |

)
.

Finally, in the last section we focus on a rather surprising characteristic
of a proof of the bound from Section 2.2—it does not depend on the match-
ing it uses, only on the structure of the tree and which vertices are alive or
dead. Thus, we end this chapter with a conjecture about the behavior of
the shortest augmenting paths algorithm in a setting where an adversary
modifies the calculated matching after each applied augmenting path.

2.1 General Bipartite Graphs

As mentioned in the introduction above, one of the problems in an online
setting is the changing nature of the graph. For example, the assumption
that one part of the graph is bigger than some other part may cease to
be true if enough vertices are added to the latter. Therefore, we introduce
a reduction which may greatly simplify the algorithm analysis if it suffers
from such issues.

The basic idea is simple—instead of adding new vertices and edges to
the graph, we incorporate the whole structure from the very beginning,
and then only “switch on” the parts that should become available. We do
this by supplying each original black vertex bt with a new white vertex
w ′t, both present in the graph from the start. We assume that all the bt’s
begin matched to their new pairs, so that their presence starts to matter
only at turn t, after another black vertex b ′t claims w ′t for itself.

That means that the original structure of the graph, including all the
vertices bt and w ′t for 1 6 t 6 n, is present from the very first turn. The
only changes that are made are the additions of black vertices b ′t, which
are of degree 1. Formally, we define the transformed graphs G ′t as follows.

Definition 2.1. For any input sequence of graphs G0, . . . ,Gn and output
sequence of matchings M0, . . . ,Mn as defined in Definition 1.9, construct
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sequences G ′0, . . . ,G
′
n and M ′

0, . . . ,M
′
n, as follows

G ′t =
〈
W ′ ]B ′t,E ′t

〉
, W ′ =W(Gn)∪ {w ′1,w ′2, . . . ,w ′n},

B ′0 = B(Gn), E ′0 = E(Gn)∪
{
{bi,w ′i}

∣∣ 1 6 i 6 n},

B ′t = B
′
t−1 ∪ {b ′t}, E ′t = E

′
t−1 ∪

{
{w ′t,b

′
t}
}

,

M ′
t =Mt ∪

{
{b ′i,w

′
i}
∣∣ 1 6 i 6 t,bi ∈ V(Mt)

}
∪
{
{bi,w ′i}

∣∣ t < i 6 n or bi /∈ V(Mt)
}

. �

Figure 2.1 presents an example graph G and the transformed instance
G ′ at turn t = 3. The red hue indicates the shortest augmenting paths
for vertices b3 and b ′3 respectively, both of which have been marked with
an additional circle. It is worth noting that vertexw ′i is related to bi, notwi,
in particular, there exists vertex w ′5 despite the fact that the original graph
G has only four white vertices.

b3

b4

b5b2

b1

w2

w1

w4

w3

w4

w2

w1

w3

b1

b2 b5

b3

b ′3w ′3

b ′2 w ′2

b ′1w ′1

w ′5 b ′5

b4

w ′4 b ′4

Figure 2.1: The original problem instance (left) and its reduction (right)
at turn t = 3. Each black vertex bi has two auxiliary vertices: w ′i and b ′i.
The shortest augmenting paths from vertices respectively b3 and b ′3 are
indicated by a light red background. The dashed lines are the edges of
black vertices that have not been added yet.

Observation 2.2. For the sequences of graphs and matchings defined

above, a path
[
bt

A←→ st

]
is an Mt−1-augmenting path in Gt if and only if

A ′ =
[
b ′t

b ′
tw

′
tbt←−−−→ bt

)
◦
[
bt

A←→ st

]
is an M ′

t−1-augmenting path in G ′t.
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Corollary 2.3. For the above defined sequences, M0, . . . ,Mn is an output
of some run of the shortest augmenting path algorithm on G0, . . . ,Gn if
and only if M ′

0, . . . ,M
′
n is an output of some run of the shortest augment-

ing path algorithm on G ′0, . . . ,G
′
n.

Proof. We proceed by induction on t. Clearly, the claim is true when t = 0,
that is, if neither algorithm performed any augmentations. To prove the
inductive step we assume that the theorem is true at the previous turn.

Let A be the collection of all Mt−1-augmenting paths in Gt and A ′ be
the collection of allM ′

t−1-augmenting paths in G ′t. As bothMt−1 andM ′
t−1

are maximum matchings in their respective graphs, then all paths in A

start with bt and all paths in A ′ start with b ′t. Therefore, by Observation 2.2

there is a one-to-one correspondence φ(A) =
[
b ′t

b ′
tw

′
tbt←−−−→ bt

)
◦A between

A and A ′.
If both collections of augmenting paths are empty, then both bt ∈

V(Gt) and b ′t ∈ V(G ′t) will remain unmatched, and the claim is true
at t. Otherwise, observe that

∣∣φ(A)∣∣ =
∣∣A∣∣ + 2, so for any A ∈ A we

have that A is a shortest Mt−1-augmenting path if and only if A ′ =

φ(A) is a shortest M ′
t−1-augmenting path in G ′t. It suffices to verify that

M ′
t =M

′
t−1 ⊕φ

(
Mt ⊕Mt−1

)
, which is indeed the case due to Mt−1 =

M ′
t−1 ∩ E(Gt) and {w ′t,bt} ∈M ′

t−1.

Corollary 2.4. Let φ be the total length of augmenting paths of the short-
est augmenting path algorithm on G0, . . . ,Gn starting from M0. Then,
the total length of all augmenting paths of the shortest augmenting path
algorithm on G ′0, . . . ,G

′
n starting from M ′

0 is equal to φ+ 2n.

In fact, the connection between G0, . . . ,Gn and G ′0, . . . ,G
′
n is a bit

deeper than Corollary 2.4 suggests. The intuition behind the next lemma
is that, with respect to incremental matchings, the structure of the original
sequence of graphs and their counterparts are essentially the same.

Lemma 2.5. For all X ⊆ V(G) such that X∩B(G) satisfies Hall’s condition in
G we have

min surplusG ′(X) = min surplusG(X).
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Proof. Case (6). Take any Z ⊆ B(G), and set Z ′ = Z∪
{
b ′i
∣∣ bi ∈ Z}, then∣∣NG ′(Z ′)

∣∣− ∣∣Z ′∣∣ = ∣∣NG(Z) ∪ {w ′i | bi ∈ Z}
∣∣− ∣∣Z ∪ {b ′i | bi ∈ Z}

∣∣
=
∣∣NG(Z)∣∣+ ∣∣{w ′i | bi ∈ Z}∣∣− ∣∣Z∣∣− ∣∣{b ′i | bi ∈ Z}∣∣ (♣)

=
∣∣NG(Z)∣∣− ∣∣Z∣∣.

Now, consider an arbitrary set Z ′ ⊆ B(G ′), set Z = Z ′ ∩B(G), and observe
that for any index 1 6 i 6 n∣∣NG ′(Z ′)

∣∣− ∣∣Z ′∣∣ > ∣∣NG ′
(
Z ′ ∪ {b ′i}

)∣∣− ∣∣Z ′ ∪ {b ′i}∣∣ if b ′i /∈ Z ′,bi ∈ Z ′,∣∣NG ′(Z ′)
∣∣− ∣∣Z ′∣∣ = ∣∣NG ′

(
Z ′ \ {b ′i}

)∣∣− ∣∣Z ′ \ {b ′i}
∣∣ if b ′i ∈ Z ′,bi /∈ Z ′.

By repetitive application of the above relations we can arrive at Z ′′ such
that b ′i ∈ Z ′′ ⇐⇒ bi ∈ Z ′′, i.e., Z ′′ = Z ∪

{
b ′i
∣∣ bi ∈ Z}. However, using

equality (♣) we have
∣∣NG ′(Z ′)

∣∣− ∣∣Z ′∣∣ > ∣∣NG ′(Z ′′)
∣∣− ∣∣Z ′′∣∣ = ∣∣NG(Z)∣∣− ∣∣Z∣∣.

Therefore, for any set Y ⊆ B(G) that is a candidate for minimum surplus
of X in G there exists set Y ′ = Y ∪

{
b ′i
∣∣ bi ∈ Y} which is a corresponding

candidate for minimum surplus of X in G ′. Observe that similarly to
equality (♣) we have∣∣NG ′(Y ′)∪

(
X∩W(G ′)

)∣∣− ∣∣Y ′∣∣ = ∣∣NG(Y)∪ (X∩W(G)
)∣∣− ∣∣Y∣∣,

hence
min surplusG ′(X) 6 min surplusG(X).

Case (>). Let Y ′ ⊆ B(G ′) be the set that maximizes
∣∣Y ′ \B(G)∣∣ among

sets that realize the minimum surplus of X in G ′. Suppose that for any
1 6 t 6 n we have b ′t ∈ Y ′ and set Y = Y ′ ∩B(G). Note that due to equality
(♣) and the fact that Y ′ satisfies Hall’s condition, any subset Z ⊆ Y has at
least |Z| neighbors in G, that is, Y satisfies Hall’s condition. Therefore, it is
a valid candidate for the minimum surplus of X in G, and∣∣NG ′(Y ′)∪

(
X∩W(G ′)

)∣∣− ∣∣Y ′∣∣ = ∣∣NG(Y)∪ (X∩W(G)
)∣∣− ∣∣Y∣∣,

which implies min surplusG ′(X) > min surplusG(X).
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Otherwise, assume there exists an index i such that b ′i /∈ Y ′. We denote
by M a matching in G incremented by {b ′i,w

′
i}, which saturates X∩B(G).

It exists because X∩ B(G) satisfies Hall’s condition. For the same reason
there is a Y ′-saturating matching in G ′, which we denote by M ′.

Let
[
b ′i

P←→ v
]

be the connected component ofM∪M ′ that contains b ′i—
due to deg(b ′i) = 1 and Observation 1.1, it has to be a path starting in b ′i.
Moreover, v ∈ W(G ′) implies the existence of an M ′-augmenting path
that contradicts the fact that Y ′ realizes the minimum surplus of X in G ′.
Thus, we arrive at v ∈ B(G ′). However, b ′i and w ′i are the only vertices
of M that are outside of G, hence v ∈ B(G). That means v /∈ X, i.e., the
set Y ′′ = Y ′ ∪ {b ′i} \ {v} is a valid candidate for minimum surplus of X in
G ′. Consider that at the same time Y ′′ realizes a value not bigger than Y ′

and
∣∣Y ′′ \B(G)∣∣ > ∣∣Y ′ \B(G)∣∣, what is inconsistent with the definition of

Y ′. Therefore, b ′t ∈ Y ′ for any 1 6 t 6 n.

2.2 Trees

Trees constitute one of the simplest non-trivial cases for matching algo-
rithms. Although, in the offline case there is an obvious greedy strategy
that calculates maximum matching in O

(
|V |
)

time—as long as it is possible
we repeatedly match an arbitrary leaf and remove the pair of vertices from
the graph—in the online setting the logarithmic overhead is impossible to
avoid in the worst case.

Consider a path consisting of 2k black and 2k white vertices, both se-
quences indexed from 0 to n− 1. If we add the black vertices in ascending
order of parity of their indices, that is,

1, 3, 5, 7, . . . , 2, 6, 10, 14, . . . , 4, 12, . . . , 2k−1, 0,

then at each turn the algorithm will stumble upon a symmetric choice,
both halves at the sides of bt being isomorphic. Thus, in the worst case
the total length of augmenting paths equals (k+ 1) · 2k. Figure 2.2 shows
an example for k = 3 at several different turns; the red hue marks possible
augmenting paths, while the numbers indicate the length of the one that
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matched each particular vertex.
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1
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11
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3
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7
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15
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= 17+ 15

Figure 2.2: An example that achieves Ω
(
|V | log |V |

)
worst-case lower

bound on the total length of all augmenting paths for k = 3 at differ-
ent turns. Each black vertex that arrives has exactly two indistinguishable
augmenting paths to choose from—the one picked is indicated by a num-
ber that also denotes its length.

Hence, the aforementioned conjecture due to Chaudhuri, Daskalakis,
Robert and Lin, states that the simple case of a path is asymptotically the
worst possible. In this section we prove an intermediate claim which is
stated precisely in Theorem 2.6. The proof of that result was first published
at WAOA 2015 [19].

Theorem 2.6. If Gn is a tree, then the total length of all the shortest augmenting
paths is O

(
|V | log2 |V |

)
.

Note that we care only about the length of the augmenting paths, not
about the sizes of search trees or overall complexity of the algorithm. In
particular, because of Corollary 1.16, without loss of generality, we can
assume that there is a perfect matching in Gn.

Before we start, we need to define a concept instrumental to the proof—
the dispatching vertex of an augmenting path. It will allow us to split the
augmenting paths into three cases, greatly simplifying the analysis.

Definition 2.7. Let
[
b

A←→ w
]

be an augmenting path going from b ∈ B to
w ∈ W. The dispatching vertex of A is the first vertex alive on that path,
formally,

dis(A) = arg min
v∈V(A)\D

distA(b, v).
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Moreover, we split A by dis(A) into a prefix Apre and suffix Adis, that is

A =
[
b

Apre
←−−→ dis(A)

)
◦
[

dis(A) Adis
←−−→ w

]
.

We refer to Adis as the dispatching path. Note that, because of Lemma 1.11,
the vertex dis(A), if it exists, is always black. In particular, it might be the
very first vertex on A, in which case Apre is empty. On the other hand, if
there is no such vertex, we set Apre = A and Adis to be empty.

For any vertex b ∈ B that was dispatching at some turn, the last turn
in which b was the dispatching vertex is denoted by tlast(b) and the set
of such turns as by T, i.e.,

tlast(b) = min
{
t
∣∣ b = dis(At)

}
, T =

{
t
∣∣ ∃b ∈ B. t = tlast(b)

}
. �

Observation 2.8. The vertices of Apre
t die precisely at turn t, i.e.,

V(A
pre
t ) ⊆ Dt \Dt−1.

Proof. The augmenting path At certifies that each vertex in V(Apre
t ) was

alive at turn t− 1. However, because Apre
t ends just before the first vertex

alive in Gt, those are all dead at turn t.

Lemma 2.9. The sum of lengths of Apre
t is linear in |V |,∑

t∈{1,2,...,n}

∣∣Apre
t

∣∣ ∈ O
(
|V |
)
.

Proof. By Observation 2.8 each vertex of Apre
t dies at turn t. Furthermore,

because of Observation 1.12, any vertex can be in V(Apre
t ) at most once,

hence
∑
t∈{1,2,...,n}

∣∣Apre
t

∣∣ 6 ∣∣V∣∣.
Lemma 2.10. The sum of lengths of non-final dispatching paths, i.e., Adis

t such
that t < tlast

(
dis(At)

)
, is O

(
|V | log |V |

)
,∑

t∈{1,2,...,n}\T

∣∣Adis
t

∣∣ ∈ O
(
|V | log |V |

)
.
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Proof. We first observe that every time some vertex b ∈ B is dispatching
not for the first time, one of its neighbours dies. To be more specific, if
b = dis(At) and At does not start in b (what happens every but the first
time b is dispatching), then {w,b} ∈ E(Apre

t ) for some neighbour w of b.
Based on Observation 2.8, the vertex w dies.

Hence, if b is a dispatching vertex for the k-th out of l times at turn t,
then it has at least l− k+ 2 alive white out-neighbours at t. Suppose that
we discard two neighbors of b corresponding to the two heaviest subtrees,
i.e., the two biggest connected components of Gn \ {b} (see Section 1.1.2).
Then for k = l− 1we have at least one alive neighbor, for k = l− 2we have
at least two alive neighbors, that is, at least one alive neighbor other than
the neighbor used at k = l− 1, and so on. In other words, for any k < l
we can find a distinct, not already assigned, alive neighbor w different
than the two heaviest neighbors of b. However, the size of the subtree
hanging in that neighbour bounds the length of the shortest augmenting
path starting at b. Therefore, we can bound the total length of non-final
paths dispatching at b by the total size of all but the two heaviest subtrees
of b. Summing these over the whole tree gives us a O

(
|V | log |V |

)
upper

bound, as shown by the next lemma.

Lemma 2.11. Let T be an unrooted tree. For any vertex v let Sv = 〈Sv0,Sv1, . . .〉
be the sequence of subtrees of v (i.e., the connected components of T \ {v}) ordered
descending by their size, that is,

∣∣V(Svi )∣∣ > ∣∣V(Svi+1)∣∣. Then for

Ψ(v) =

|Sv|∑
i= 2

∣∣V(Svi )∣∣
we have

∑
v∈V(T)Ψ(v) ∈ O

(
|T | log |T |

)
.

Proof. Let r be a centroid point of T , that is, a vertex such that |V(Sr0)| 6
1
2 |V(T)|. We root T at r, and perform the heavy-light decomposition of
T (see Section 1.1.2). Observe that for all vertices v 6= r we have that Sv0
contains r (it corresponds to the parent of v) and Sv1 corresponds to the
biggest child of v. In other words, at most Sv0 and Sv1 can be connected by
heavy edges, all the other subtrees Sv2,S

v
3, . . . are connected by light edges.
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Now we take an arbitrary vertex w and calculate how many times it
can appear in

∑
v∈V(T)Ψ(v). Suppose v is a vertex that counts w in Ψ(v),

then the first edge on the path from v to w has to be light, moreover,
Sv0 is not counted in Ψ(v), so that path cannot pass through the parent
of v. Because of that v has to be an ancestor of w, however, there are at
most O

(
log |T |

)
light edges on any path from w to the root r for any w. In

other words, there can be at most O
(
log |T |

)
vertices that count w in its

sum of Ψ. Summing that for all vertices of T we get the desired bound of
O
(
|T | log |T |

)
.

Lemma 2.12. The sum of lengths of Adis
t such that t = tlast

(
dis(At)

)
is

bounded from above by O
(
|V | log2 |V |

)
,∑

t∈T

∣∣Adis
t

∣∣ ∈ O
(
|V | log2 |V |

)
.

To prove the above lemma we will need a more fine-grained analysis
than before. The problem with the shortest path approach is that the
structure it gives us and the structure of matchings are much different.
To close this gap we introduce yet another family of augmenting paths
that relies much more on the structure of the tree. Obviously, because
the shortest paths are shorter than any other path, any upper bound on
the total length of the aforementioned new family of augmenting paths is
an upper bound for the shortest paths as well.

Proof. Similarly to Lemma 2.11, we root Gn at a centeroid point and pre-
form the heavy-light decomposition of the tree (see Section 1.1.2). Each
vertex selects an edge to its biggest subtree, which we call heavy, all the
other edges are light. The heavy edges form paths which happen to con-
stitute a partition of V(Gn). Denote by heavy path(v) the heavy path to
which v belongs. Formally heavy path(v) def

= Gn
[
[v]∼
]

is the path induced
by the equivalence class of v with regard to

v1 ∼ v2
def⇐⇒ ∃

[
v1

P←→ v2

]
. min
u∈V(P)

level(u) = max
u∈V(P)

level(u),

46



where level : V(Gn) → N, which is the number of light edges on the
simple path from a vertex to the root.

We define Bt as the Mt−1-augmenting path starting in bt which is the
greatest with respect to the lexicographic ordering on level’s, that is,〈

level(v0), level(v1), level(v2), . . .
〉

where v0, v1, v2, . . . is the sequence of vertices of Bt. Note that all Mt−1-
augmenting paths starting in bt are the same until dis(At), in particular
dis(Bt) = dis(At) and Bpre

t = A
pre
t . To bound the length of Bdis

t we split it
into Bheavy

t and Bstree
t ,

B
heavy
t

def
= Bdis

t ∩ heavy path
(
dis(Bt)

)
,

Bstree
t

def
= Bdis

t \ heavy path
(
dis(Bt)

)
.

Observe that Bdis
t follows heavy path

(
dis(Bt)

)
at most up to the closest

vertex b such that tlast(b) > t, namely∣∣Bheavy
t

∣∣ 6 min
{

dist
(
b, dis(Bt)

) ∣∣∣ b ∈ B(heavy path
(
dis(Bt)

))
,

tlast(b) > t
}

.

This is because any vertex b with tlast(b) > t has at least three alive
neighbors, with at least two of them reachable from b in Gt1Mt−1 , and at
least one not on heavy path

(
dis(Bt)

)
. In turn, if b itself is not reachable

from dis(Bt) in Gt1Mt−1 , then Bheavy
t must have ended earlier.

Consider an arbitrary heavy path H and the set D of dispatching ver-
tices of H. Using D0 = D we split H into at least d0 = |D0| non-empty frag-
ments h0,h1, . . . ,hd0−1. Each such part h has either both its endpoints or
at least one in D0. Thus, we can assign h to one of its ending vertices, pre-
ferring earlier turn tlast, if there are two available. Formally f0 : {hi}i → D0,
where

f0(h) = arg min
b ∈ V(h)∩D0

tlast(b).
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Because of the inequality in the previous paragraph we have∣∣Bheavy
tlast(f0(hi))

∣∣ 6 ∣∣hi∣∣ for any 0 6 i < d0.

This means that the length of H bounds the total length of Bheavy’s related
to the dispatching vertices in the image of f0. However, as at most two
hi’s can be assigned to the same vertex of D0, the image of f0 constitutes
at least a half of D0.

To take care of the rest of D0, we iterate this reasoning. We construct
a sequence of sets D0 ⊇ D1 ⊇ . . ., each step halving the size of Di. More
precisely, we set

Di = Di−1 \
{
fi−1

(
hi−1j

) ∣∣∣ 0 6 j < di−1},

where hi0,h
i
1, . . . ,h

i
di−1

are the parts of H after the split by Di, while fun-
cions fi : {hij}j → Di are defined as

fi(h
i) = arg min

b ∈ V(hi)∩Di

tlast(b).

In other words, at most log |V | copies of H cover all Bheavy paths related
to H. Summing that up over all the heavy paths gives us∑

t∈T

∣∣Bheavy
t

∣∣ ∈ O
(
|V | log |V |

)
,

but it also means that for any v ∈ V(H) at most log |V | of Bstree paths may
start in v. More precisely, log |V | copies of all the non-heavy subtrees of
v ∈ V(H) cover all Bstree paths starting in v, which by Lemma 2.11, implies∑

t∈T

∣∣Bstree
t

∣∣ ∈ O
(
|V | log2 |V |

)
.

From the last two bounds we infer the statement of the Lemma 2.12.
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2.3 Playing Against an Adversary

We devote the last section of Chapter 2 to a quite surprising characteristic
of Theorem 2.6 and its implications. Namely, nowhere in the proofs of
Lemmas 2.9 to 2.12 we rely on the shape of any particular matching at any
given turn, or even on the fact that these matchings are related to each
other. To be more specific, we depend only on the structure of the tree, the
properties of the dead and alive vertices, and, if we require maximality,
the cardinality of the matchings. This leads us to a generalization of the
setting in Definition 1.9 and a respective counterpart of Theorem 2.6.

We define the adversarial dynamic augmenting path setting as a setup
similar to the one in Definition 1.9 with the difference that:

• there is an additional input sequence M ′
0,M

′
1, . . . ,M

′
n of matchings

in G0, . . . ,Gn respectively, satisfying |M ′
i| = |Mi| for any 1 6 i 6 n;

• the algorithm outputs M ′
i−1-augmenting paths and Mi =M

′
i−1⊕Ai.

Intuitively, each turn we are given a single black vertex with all its edges,
however, the matching we use to calculate the shortest augmenting path
is not the one produced by the algorithm in the previous turn, but some
arbitrary matching of the same cardinality provided by the adversary.
In particular, the edges might be oriented, wherever possible, away from
the newly added vertex, thus making the augmenting paths the longest
possible. Nonetheless, because we do not depend on the structure of the
matching, the total length of all such augmenting paths is still small.

Corollary 2.13. If Gn in the above setting is a tree, then the total length of
all the shortest augmenting paths is O

(
|V | log2 |V |

)
.

It seems that this is true also in general bipartite graphs, and thus we
form the following conjecture.

Conjecture 2.14. The total length of all the shortest augmenting paths in the
setting above, that is, with the matching changing arbitrarily each turn, is still
O
(
|V | log |V |

)
worst case for any bipartite graph.
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The ramifications of that conjecture are twofold. First, it suggests a new
perspective and a new research angle in which we are allowed to change
the matching to fit into some schema. That could possibly lengthen the
paths in the process, but it might make the problem a bit more predictable
and less dynamic, hence, in some aspects, easier. Second, it might allow
for better algorithms. A matching procedure based on the above idea
could alter the calculated matching during some turns in a random way,
thus perhaps making its worst case less bad. As the reasons behind this
phenomenon are far from clear, in author’s opinion Conjecture 2.14 is an
interesting open problem.
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Chapter 3

Ranks and Tiers

One significant drawback of the shortest augmenting path approach is
that, finding such paths each turn takes linear time, but we are aiming for
sublinear amortized efficiency. To solve this problem we introduce two
notions, which will allow us to design an algorithm in Chapter 4 that
solves dynamic matching problem Definition 1.9 in total running time
of the offline maximum bipartite matching algorithm of Hopcroft and
Karp [59].

These concepts are the rank and the tier. We start with pure mathe-
matical definitions and then in Section 3.5 we relax them to allow for an
efficient calculation.

Results included in this chapter appeared first at FOCS 2014 [18].

3.1 Definitions

Intuitively the rank measures how the algorithm, meaning searching pro-
cedures and augmenting paths, uses the graph. More precisely, it counts
how many times we have visited a vertex or traversed an edge. In more
operational terms, any object we would like to account for has a counter
that is increased each time that object used.

The main idea is to minimize the maximum usage and thus spread the
work of the algorithm as evenly as possible. Such an approach has several
benefits. For example, one of the drawbacks of the shortest augmenting
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path algorithm considered in the previous chapter is that it can produce
in the graph uneven saturation with respect to the optimal matching Mn—
some areas having an abundance of seeds, while other only very few of
them. Such situation makes searching for seeds very costly, thus, it seems
desirable to keep the graph in a more uniform state.

Naturally, dispersing the seeds more evenly may increase the total
length of augmenting paths, in particular there could be fewer very short
augmenting paths. Moreover, as we are not searching for the shortest aug-
menting paths anymore, we need another mechanism that could prevent
us from repeatedly finding long augmenting paths. Fortunately, this is
not an issue when employing the minimizing maximum usage strategy.
Observe that long augmenting paths increase many more usage counters
than short augmenting paths. Therefore, oversaturated areas will incur
higher costs than other parts of the graph, and that will discourage the
search procedure from entering during later turns. In other words bad
decisions may happen, but they will not be repeated too often.

Finally, spreading the usage over the whole graph makes the complex-
ity analysis in some ways easier. In the previous chapter to amortize the
cost of applying the augmenting paths we had to devise a careful charging
scheme that distributed the work of the algorithm globally, over different,
sometimes only indirectly related parts of the graph. On the other hand,
if the algorithm already does that by design, its costs can be amortized
locally.

Throughout this thesis we use vertex-based rank, that is, a rank that
measures the usage of vertices. One reason is that it simplifies the presen-
tation, especially since we define rank only on white vertices, which are
present since the beginning of the algorithm. The other reason is that it
gives a slightly better bounds on the total length of augmenting paths.

Nonetheless, it is perfectly fine to define ranks on edges, in particular,
the very first sketches of proofs were done in terms of edge-based ranks.
For the sake of completeness, a brief consideration of edge-based ranks
will be done in Section 3.4.

Definition 3.1. Let G0,G1, . . . and M0,M1, . . . be sequences of graphs and
matchings as in Definition 1.9. We define rankt(w) as the number of
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augmenting paths up to turn t that visited w. Formally, rankt :W(Gt)→
N is given by

rankt(w)
def
=

rankt−1(w) + 1 if w ∈W(Mt ⊕Mt−1),

rankt−1(w) otherwise,

=

t∑
i=0

1W(Mt⊕Mt−1)(w).

Although the domain of rankt seem to depend on t, please recall that for
any turn t we have W(Gt) =W(G0). We extend this definition to paths by
taking the maximum of ranks of vertices

rankt(P)
def
= max
w∈W(P)

rankt(w). �

The second concept, tier, serves as a caching mechanism for the ranks.
In the dynamic setting, each turn, when a black vertex bt arrives, we try
to match it with some seed, i.e., an unmatched white vertex (see Defini-
tion 1.10). To ensure good properties of the algorithm we try to do this
using an augmenting path of the smallest possible rank. However, when
searching for such a path, finding some low-rank vertex in the middle of
the graph does not guarantee a low-rank passage—we might be forced to
go through some high-rank vertices later. To solve this problem the tiers
take into account all the minimum ranks that are necessary to reach a seed
st ∈ St.

Definition 3.2. We define tiert : V(Gn) → N ∪ {∞} as the minimal rank
over all paths in Gn1Mt leading to a seed

tiert(v)
def
= min

{
rankt(P)

∣∣∣ s ∈ St,
[
v
P−→ s
]
∈ Gn1Mt

}
,

where we assume a convention in which the minimum of an empty set

is the positive infinity, that is, min∅ = ∞. If a path
[
v
P−→ s

]
attains the

minimum, namely rankt(P) = tiert(v), then we say that P is a witness of
tiert(v). �
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Note that we could have defined tiert in terms of Gt1Mt rather than
Gn

1Mt , however, the current formula simplifies additions of new vertices,
and Mt makes the additional black vertices irrelevant as shown by the
next observation.

Observation 3.3. For any v ∈ V(Gt) we have

tiert(v) = min
{

rankt(P)
∣∣∣ s ∈ St,

[
v
P−→ s
]
∈ Gt1Mt

}
.

Proof. Any path in Gt1Mt is also a valid path in Gn1Mt . Moreover, the
set of white vertices does not change, W(Gn) = W(G0). Consider any
b ∈ B(Gn) \ B(Gt). As b /∈ B(Mt), all the edges incident to b in Gn1Mt

are directed away from b. In other words, b cannot be reached from v and
thus any path in Gn1Mt starting from v belongs to Gt1Mt as well.

Although we define the tiers for both black and white vertices, the key
role is played by the black vertices which are to pick the best white neigh-
bor. In contrast, white vertices have at most one outgoing edge in Gt1Mt

which has to be used by any path connecting it to a seed. However, despite
being redundant, tiers of white vertices are still useful, in particular, they
simplify formulas in Sections 3.2 and 3.3.

Observation 3.4. For any black vertex b we have

tiert(b) = min
{

tiert(w)
∣∣∣ 〈b,w〉 ∈ E

(
Gn

1Mt

)}
.

For any white vertex w that is matched by Mt we have

tiert(w) = max
{

rankt(w), tiert
(
btw
)}

.

It is worth noting how the concept of augmenting paths of the mini-
mum possible rank, relies on the assumption that the final graph Gn is
bipartite. Certainly, the construction of the directed graph Gn1Mt requires
Gn to be bipartite, yet one could imagine formulating the definition of
tier in terms of just alternating paths. The issue here is that augmenting
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paths have to be simple. Unfortunately, to ensure the compositionality
of the tiers, so that their values have only local dependencies—ranks of
their vertices and tiers of the closest neighbors—we need to be able to
rearrange the witnesses by splitting them and then concatenating their
parts. Such operations may produce non-simple paths, which would jeop-
ardize their role as augmenting paths. However, the graph is bipartite and
Observation 1.6 guarantees for any finite tiert(v) the existence of a simple
witness.

Yet, tiers provide even more structure. Their strength is that they pro-
vide exactly the information we need in any given turn to find an augment-
ing path of the minimum rank—it is enough just to follow non-increasing
tiers. To substantiate these claims we introduce a few more notions.

Definition 3.5. We call an edge e ∈ Gt1Mt−1 tiered if there exists a witness
of tiert−1

(
tail(e)

)
< ∞ that uses e. The set of all tiered edges of Gt1Mt−1

is denoted by E?t ,

E?t =
{
e ∈ E

(
Gt

1Mt−1

) ∣∣∣ tiert−1
(
head(e)

)
6 tiert−1

(
tail(e)

)
<∞}.

Moreover, we call tiered any simple path P such that all its edges are tiered,
i.e., E(P) ⊆ E?t . Note that instead of t we use tiers in turn t− 1, which
represent the state of the graph before At is applied. �

Definition 3.6. A directed path P ⊆ Gt1Mt−1 is seeded if it ends at any seed
s ∈ St. A seeded tree T ⊆ Gt1Mt−1 is any tree rooted at some seed s ∈ St

such that its every edge is oriented in the direction of the root s. A seeded
forest F ⊆ Gt1Mt−1 is a collection of |St| vertex-disjoint seeded trees that
spans all the vertices of Gt that are able to reach some seed. �

Observe that not necessarily all the vertices are contained in some
seeded tree—the algorithm may produce orientations in which some ver-
tices cannot reach any seed. By Lemma 1.11 these vertices, that is, the
vertices of infinite tiert−1, are exactly the dead vertices Dt−1 of Gt−1 and
potentially bt if none of its neighbors were alive at t− 1, i.e., N(bt) ⊆ Dt−1.
Thus, we may ignore these vertices, as no alternating path will visit them
on any later turn. In particular, due to Corollary 1.16 it only makes sense
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to consider the turns in which bt can be matched, that is, bt is of finite
tier and belongs to some seeded tree. That allows us to construct a tiered
seeded forest which spans all the vertices of finite tiert−1 and is the under-
lying reason for a number of characteristics of tiers that are the subject of
the next section.

3.2 Basic Properties

Tiers give us a nice structure on Gt1Mt−1 . For example, a finite tier guar-
antees the existence of a path to some seed. In other words, to find such
a path it is enough to follow the tiers down when possible, and we are
bound to reach some seed.

Observation 3.7. For any turn t the following facts hold:

1. A vertex of v ∈ V(Gn) is of finite tiert−1 if and only if v ∈ Gt−1 and it
is alive in Gt−1, or v ∈ B(Gn) \B(Gt−1) and it has a neighbor which
is alive in Gt−1.

2. Any tiered seeded path is a witness for its starting vertex, that is, for

any tiered seeded path
[
v
P−→ s

]
∈ Gn1Mt−1 we have rankt−1(P) =

tiert−1(v).

3. For any v ∈ V(Gn) of finite tiert−1, there exists a simple tiered seeded
path from v in Gn

[
V(Gt−1)∪ {v}

]1Mt−1 , i.e., a simple tiered witness
of tiert−1(v).

4. There exists a tiered seeded forest in Gn
1Mt−1 that spans all the

vertices of finite tiert−1.

Proof. Fact 1. Certainly, due to Lemma 1.11, v ∈ Gt−1 is alive if and only
if there is a path in Gt−11Mt−1 from v to some seed s ∈ St−1, which is also
a valid path in Gt1Mt−1 . If v ∈ B(Gn) \B(Gt−1), then all its neighbors are
reachable in Gn1Mt−1 and existence of such path is equivalent to existence
of a white neighbor alive in Gt−1.
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Fact 2. By the definition of tier, P is a candidate to be a witness, so
rankt−1(P) > tiert−1(v). However, P is tiered, so rankt−1(P) 6 tiert−1(v) as
well.

Fact 3. We start with v0 = v and pick a witness for tiert−1(v0) and follow
it until we encounter the first vertex v1 of strictly smaller tier tiert−1(v1) <
tiert−1(v0). Then we switch to the witness of tiert−1(v1) and follow it until
we find a vertex v2 of strictly smaller tier than v1. As tiers are finite, this
process has to stop, and the only way for it to stop is to reach a seed. The
resulting path is a tiered seeded path, which can be made simple due to
Observation 1.6.

Furthermore, all the vertices of B(Gn) \ B(Gt−1) have no incoming
edges in Gn1Mt−1 , so the only vertex outside Gt−1 can be v and the whole
path fits into Gn

[
V(Gt−1)∪ {v}

]1Mt−1 . Naturally, to find such a path algo-
rithmically we could just use any searching method like the depth-first
search on Gt1Mt−1 constrained to E?t .

Fact 4. Consider a subgraph H ⊆ Gn which is the union of all the paths[
v

P←→ s
]
⊆ Gn such that P1Mt−1 ⊆ Gn1Mt−1 is a shortest (simple) tiered

witness for tiert−1(v). Observe that H1Mt−1 is a directed acyclic graph and
that V(H) are exactly the vertices of finite tiert−1.

We construct F ⊆ H by taking for each vertex v a single edge which is
outgoing in H1Mt−1 or nothing if v ∈ St−1. This makes F1Mt−1 a collection
of |St−1| tiered seeded trees, that is, a tiered seeded forest that spans all
the vertices of finite tiert−1.

We are now ready to prove one of the most important characteristics
of tiers, that is, the monotonicity of tiers in t. To give a broader intuition
we formalize it in two flavors, namely Lemma 3.8 and Lemma 3.9. The
first one relies on the compositionality of tiers and how their values can
depend only on the closest neighborhood—we utilize the structure of a
seeded forest to explicitly maintain a graph-wide calculation order and
derive the result inductively. While the proof of Lemma 3.8 involves almost
the whole graph, the second lemma focuses instead on a subgraph that is
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only directly related to the tier of vertex in question, namely its witness
and the last augmenting path. It is worth reading because it uses very
few additional concepts and thus clearly demonstrates the dependence
between tiered augmenting paths and the monotonicity of tiers.

Lemma 3.8. Suppose that the sequence of matchings M1,M2, . . . was con-
structed by applying each turn an augmenting path which was tiered. Then,
for any vertex v ∈ V(Gn) its tier tiert(v) is a non-decreasing function of t.

Proof. Fix some tiered seeded forest F1 in Gn1Mt which exists by Obser-
vation 3.7.4. If vertex v is of infinite tier, trivially

tiert−1(v) 6∞ = tiert(v),

so without loss of generality we can consider only vertices of finite tier, all
of which belong to V(F1). We proceed by induction on distF1(v, St).

Consider an arbitrary white vertex w ∈W(Gn) of finite tier. If w was
a seed in turn (t − 1), then tiert−1(w) = 0 6 tiert(w). In particular, if
distF1(w, St) = 0, then w is a seed in turn t and by Corollary 1.14 it is also
a seed in turn (t− 1).

On the other hand, if w is not a seed, nor it was in turn (t− 1), then

tiert(w) = max
{

rankt(w), tiert(btw)
}

> max
{

rankt−1(w), tiert−1(btw)
}

> max
{

rankt−1(w), tiert−1(bt−1w )
}

= tiert−1(w).

The first equality comes from the fact that
〈
w,btw

〉
is the only edge out-

going from w in Gn
1Mt . That is also why

〈
w,btw

〉
∈ E(F1) and thus

distF1(w, St) > distF1(b
t
w, St). This allows us to use the inductive assump-

tion on btw, and as rankt(w) is obviously non-decreasing in t the second
line follows. The last line either is trivial if btw = bt−1w , or is implied by the
fact that the augmenting path in turn (t− 1), which had to go in direction
btw → w→ bt−1w , was tiered, so tiert−1(btw) > tiert−1(bt−1w ).
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Next, let b ∈ B(Gn) be an arbitrary black vertex of finite tier, and set w
to be its direct successor on the only tiered path in F1 connecting b with
a seed s ∈ St. Then

tiert(b) = tiert(w) > tiert−1(w) > tiert−1(b),

where the first inequality depends on the inductive assumption, while the
second inequality follows straight from Observation 3.4 if {b,w} /∈Mt−1,
that is, 〈b,w〉 ∈ E

(
Gn

1Mt−1
)
, or, in case of {b,w} ∈ Mt−1, from the fact

that the augmenting path which used 〈w,b〉 ∈ E
(
Gn

1Mt−1
)

had to be
tiered.

Lemma 3.9. Let
[
v
P−→ s
]

be the witness of tiert(v) = rankt(P) = r, then

∀v ′ ∈ V(P). tiert−1(v ′) 6 r.

Proof. Denote by
[
bt−1

A−→ st−1
]

the tiered augmenting path in turn t− 1.

Let
(
vA ′

A ′
−→ st−1

]
⊆ A and

(
vP ′

P ′
−→ s

]
⊆ P be the longest suffixes of A

and P such that respectively rankt−1(A ′) 6 r and

∀v ′ ∈ V(P ′). tiert−1(v ′) 6 r.

First, P ′ cannot be empty since s is a seed in turn t, so tiert−1(s) = 0 6 r.
Moreover, as tiered augmenting paths never go up-tier, for any v ′ ∈ V(A) \
V(A ′) we have tiert−1(v ′) > r, so(

vP ′
P ′
−→ s

]
∩
[
bt−1

A\A ′
−−−→ vA ′

]
= ∅,

that is, all the parts of A that P ′ intersects with are contained in a single
seeded path of rank at most r, namelyA ′. Yet, observe thatA ′⊕P ′ contains
a path from vP ′ to some seed—the graph is bipartite and we can construct
a unit flow with sources at vA ′ and vP ′ , and sinks in seeds s and st−1.
Surely, rankt−1

(
V(A ′)∪ V(P)

)
6 r, therefore, one of the paths in A ′ ⊕ P ′

constitutes a witness for tiert−1(vP ′) 6 r. However, since P ′ was defined
to be the longest suffix, it implies that vP ′ = v and P ′ = P.
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Monotonicity of tiers in t has a number of consequences. Most impor-
tantly, it simplifies almost any argument that uses tiers and allows us to
consider intuitively their values as a measure of complexity—how hard
it is to find an augmenting path starting form some particular vertex, or
following in some direction. Lemmas 3.8 and 3.9 are also crucial to the
three, more concrete claims presented below.

Notably, the last one, Corollary 3.12, which claims that tiers are upper-
bounded by the distance from the set of seeds, is the direct reason behind
the main theorem of this chapter, Theorem 3.16.

Lemma 3.10. For any edge e ∈ Gn1Mt we have

rankt
(
tail(e)

)
6 tiert

(
head(e)

)
+ 1 if e is matched in t,

tiert
(
tail(e)

)
6 tiert

(
head(e)

)
otherwise.

Proof. If e is matched in t then tail(e) = w ∈W(Gn) is a white vertex such
that rankt(w) > 0 and head(e) = btw is a black vertex. Let τ be the last
time the rank of w changed, i.e.,

τ = max
{
i ∈ {0, 1, . . . , t− 1}

∣∣ ranki−1(w) < ranki(w)
}

.

Then, since the augmenting path Aτ was tiered, it holds that tierτ−1(btw) >
rankτ−1(w). However, by Lemma 3.8, the tier does not decrease, so

tiert(btw) + 1 > tierτ−1(btw) + 1 > rankτ−1(w) + 1 = rankt(w).

On the other hand, if e is not matched in t, then tail(e) is black and the
inequality follows directly from Observation 3.4.

Corollary 3.11. Let P be a seeded path, then every white vertex w ∈W(P)

of rank rankt(w) > 1 is followed by some vertex w ′ ∈ W(P) of rank
rankt(w ′) > rankt(w) − 1.

Proof. By Lemma 3.10 tiert(bw) > rankt(w) − 1. By definition of tier, any
path from w to any seed, including P, contains a white vertex w ′ such that
rankt(w ′) > tiert(w).
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Corollary 3.12. The length of the shortest directed path from v ∈ V(Gn)
to a seed in Gn1Mt−1 is at least 2 tiert−1(b).

3.3 Upper Bounds on Ranks and Tiers

In this section we prove the main results of this chapter, which bound
from above the ranks and tiers generated by any algorithm that maintains
its matching using tiered augmenting paths.

The direct reason behind Theorem 3.16 is Corollary 3.12 which estab-
lishes that tiers, and therefore also ranks, are bounded from above by the
distance to the set of seeds. This relationship allows us to formulate the
following corollary.

Corollary 3.13. For any t and a non-empty set P of vertex-disjoint seeded
paths of finite rank in Gn1Mt

min
{

rankt(P)
∣∣ P ∈ P

}
6

∣∣Mt ∩ E(P)
∣∣∣∣P∣∣ .

Proof. If there exists a path of rankt(P) = 0, then the inequality is trivial.
Otherwise, in each path we have a white vertex of rank at least one, and
by Corollaries 3.11 and 3.12 each such path has to have at least rankt(P)
matched edges.

The general idea is that a single vertex of rank r implies the existence
of br/2c disjoint paths, each of rank at least dr/2e. However, because of
Corollary 3.13 we have then that dr/2e 6 |Mn| · br/2c−1, which implies
r ∈ O

(
|V |1/2

)
.

To this end we introduce Lemma 3.14 which captures a certain reversed
behavior of a tiered algorithm crucial for our proof, pictured in Figure 3.1.
The diagram presents the state of the graph after (to the left: graph Gt1Mt)
and before (to the right: graph Gt1Mt−1) the augmentation step. Assume
that graph Gt1Mt contains seeded paths Q1 . . . Ql. On the picture to the
left, the ranks of these paths are shown by the heights of the corresponding
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Q1 Q2 Q3 Ql−1 Ql R1 R2 P R3 Rl−1 Rl

Figure 3.1: The bars corresponding to the paths after (to the left: graph
Gt

1Mt) and before (to the right: graph Gt1Mt−1) the augmentation step.

bars, sorted by rank. Lemma 3.14 states, that before the augmentation step
(the right side of the picture), each path Qi had its counterpart Ri, plus
there was one more path P. The interesting part is that the heights of the
bars (the ranks of the corresponding paths) decrease at most by one, and
the newly added bar (the one corresponding to P) dominates the bars that
decreased.

Hence, the line inclined at the hypothetical angle of 45 degrees (or more
precisely at a single rank unit per bar width) through the right top point of
the bar representing Rl does not drop as we go from t to t− 1 backwards
in time—whenever the bars reduce their height by one, an additional bar
appears to support the line at its initial position.

The idea is that for any white vertex whose rank is r at some point,
there is a turn when a seeded path of rank at least r exists. So, if the
algorithm produces a vertex of rank r, we start with one bar of height r
and reverse the steps of the algorithm. We reach a point when there is
a linear in r number of disjoint paths whose height is also linear in r.

It is worth mentioning that in the following reasoning it is enough to
consider vertices of finite rank. Other vertices affect neither the ranks nor
the finite tiers.

Lemma 3.14. Let Q1,Q2, . . . ,Ql be a sequence of vertex-disjoint seeded paths

in Gt
1Mt . Also, let bt

At−→ s be the tiered augmenting path in turn t, i.e.,
in Gt1M

t−1
. Then, there exist vertex-disjoint seeded paths R1, . . . ,Rl and P in
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Gt−1
1Mt−1 such that

rankt−1(At) 6 rankt−1(P),

rankt(Qi) 6 rankt−1(Ri) for rankt(Qi) > rankt−1(At) + 1,

rankt(Qi) 6 rankt−1(Ri) + 1 otherwise.

Proof. Let wi be the highest-ranked white vertex of Qi that is the closest
to the seed. Without loss of generality we can assume that Qi starts with

wi. Then, for i ∈ {1, 2, . . . , l}, directed path Qi is of the form
[
wi

Qi−→ si
]

where si ∈ St is a seed.
Now, we define a 0/1-flow network F by

V(F) = V(Gt)∪ {σ, τ}

E(F) = E
(
Gt

1Mt−1

)
∪
{
〈σ,bt〉, 〈σ,w1〉, . . . , 〈σ,wl〉

}
∪
{
〈s, τ〉, 〈s1, τ〉, . . . , 〈sl, τ〉

}
where σ and τ are artificially added source and sink respectively (see
Figure 3.2).

sw3

w1w2

bt

s2

s3
s1

σ

τ

Q2

Q3 Q1

At

Figure 3.2: An example of a flow network F, where solid arcs form the
flow from source σ to sink τ with the total value 4.
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Because
[
bt

At−→ s
]

is an augmenting path expanding matching in

graph Gt1Mt−1 , we have that
[
σ→ bt

At−→ s→ τ
]

is a path which defines
a flow f1 in F with the total flow value equal to 1. Moreover, we obtain
that the residual graph Ff1 in restriction to V(Gt) has the same orientation
as Gt1Mt . Because Q1, . . . ,Ql are pairwise vertex-disjoint directed paths

in Gt1Mt , we have that paths Q ′i of the form
[
σ → wi

Q ′
i−→ si → τ

]
are

pairwise edge-disjoint directed paths in residual graph Ff1 . Consecutive
application of the augmenting paths Q ′1, . . . ,Q

′
l expands the flow f1 to

a flow fl+1 with the total value of (l+ 1).
The flow fl+1 determines (l + 1) edge-disjoint paths in F from σ to

τ as fl+1 is a 0/1-flow. Because bt,w1, . . . ,wl are all neighbors of σ and
s1, . . . , sl, sl+1 = s are all neighbors of τ, we obtain (l+ 1) paths of the
form [

σ→ bt → wl+1
P−→ sℵ(l+1) → τ

]
and

[
σ→ wi

Ri−→ sℵ(i) → τ
]

for i ∈ {1, 2, . . . , l}, where ℵ is some permutation of {1, 2, . . . , l+ 1} and
R1, . . . ,Rl,P are edge-disjoint directed paths in Gt

1Mt−1 ⊆ F. Because
w1, . . . ,wl,bt are pairwise different and so are s1, . . . , sl, sl+1, moreover,
each vertex in Gt−1 has out-degree or in-degree equals at most 1, we have
that paths R1, . . . ,Rl,P are also vertex-disjoint.

To see the first inequality of Lemma 3.14, it is enough to mention that
path At was chosen in turn t so it was the smallest rank seeded path from
bt. Because the augmenting path At in turn t uses white vertices with
rank at most rankt−1(At), the two other inequalities are obvious.

The next lemma, together with Corollary 3.13 imply the core of our re-
sult. Imagine that for some white vertex w its rank was raised to rankτ(w)
by some turn τ. The lemma states that for each j ∈ {1, 2, . . . , rankτ(w)}
we can find a turn t 6 τ and a collection Bt of j vertex-disjoint paths in
Gt

1Mt such that the minimum of their ranks was at least rankτ(w) − |B|.
The proof heavily bases on Lemma 3.14, which allows us, in a sense, to
reverse the steps of the algorithm.
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We begin the reversing process in turn t ′, where a path P exists with
rank at least rankτ(w) − 1. Starting from a one element collection {P}, we
iteratively construct larger collections of paths using Lemma 3.14—from
the collection in step t we obtain a collection in step t− 1. There are two
important invariants in this reversing process which imply the lemma:

• minimum rank in the collection decreases at most by one,

• if the minimum rank in the collection decreases, the size of the col-
lection increases by one

• there is a moment t0 when all ranks in the collection are equal to 0.

Let us now move on to formalizing this idea.

Lemma 3.15. For any turn τ ∈ {1, 2, . . . ,n}, white vertex w ∈Wτ and natural
number j ∈ {1, 2, . . . , rankτ(w)} there is turn t < τ and a collection Bt of
j pairwise vertex-disjoint seeded simple paths Bt =

{
K1, . . . ,Kj

}
in Gt1Mt

such that
∀K ∈ Bt. rankt(K) > rankτ(w) − |Bt|.

Proof. Let t ′ 6 τ be the round when the rank of white vertex w was
changed the last time (weakly) before round τ. Now, we define sequence
Bt ′−1, . . . ,B0, where Bk is a collection of vertex-disjoint simple seeded
paths in Gk1Mk for k ∈ {0, 1, . . . , t ′ − 1}. From the definition of t ′ we know
that rankτ(w) = rankt ′(w) and rankt ′−1(At ′) > rankt ′−1(w). If we remove
the vertex bt ′ from At ′ , we obtain a simple path P in Gt ′−11Mt ′−1 with
rank

rankt ′−1(P) = rankt ′−1(At ′)

> rankt ′−1(w)

= rankt ′(w) − 1 = rankτ(w) − 1.

Thus, we define Bt ′−1 = {P}. Now, let us assume that Bk = {Q1, . . . ,Ql}
is defined for some k ∈ {1, 2, . . . , t ′ − 1}. By applying Lemma 3.14 to a se-
quence of paths Q1, . . . ,Ql ⊆ Gk1Mk and augmenting path Ak, we obtain
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simple seeded paths R1, . . . ,Rl,P in Gk−11Mk−1 satisfying the inequalities
of the lemma. Then we define Bk−1 as

Bk−1 =


{
R1, . . . ,Rl,P

}
∃i ∈ {1, 2, . . . , l}. rankk(Qi) > rankk−1(Ri),{

R1, . . . ,Rl
}

∀i ∈ {1, 2, . . . , l}. rankk(Qi) = rankk−1(Ri).

If rankk(Qi) > rankk−1(Ri) for some i ∈ {1, 2, . . . , l} then

rankk
(
Qi
)
6 rankk−1

(
Ak
)
+ 1 6 rankk−1

(
P
)
+ 1,

by inequalities of Lemma 3.14. Applying them one more time yields

min
R∈Bk−1

rankk−1(R) >


min
Q∈Bk

rankk(Q) − 1 if |Bk−1| > |Bk|

min
Q∈Bk

rankk(Q) if |Bk−1| = |Bk|

Repeating these steps multiple times gives us

min
R∈Bk

rankk(R) > min
Q∈Bt ′−1

rankt ′−1(Q) −
(
|Bk|− 1

)
= rankτ(w) − |Bk|,

for any chosen k ∈ {0, 1, . . . , t ′ − 1}. The above formula implies that family
B0 is of size at least rankτ(w) due to rank0(R) = 0 for all R ∈ B0. As the
size of collections (Bk)k differs between turns at most by one, we have
that for any j ∈ {1, 2, . . . , rankτ(w)} there is some k ∈ {0, 1, . . . , t ′ − 1} such
that |Bk| = j which concludes the proof.

We are now ready to prove the main theorem.

Theorem 3.16. For any dynamic unweighted matching algorithm that uses tiered
augmenting paths it holds that rankn(w) 6 2|Mn|

1/2 for every w ∈W.

Proof. By the previous lemma there is a time t ∈ {0, 1, . . . ,n− 1} where
there are sufficiently many paths of sufficiently high ranks, as illustrated
in Figure 3.3. Again, each bar represents a path and the heights of the
bars are the ranks of the corresponding paths. Thus, we can choose t ∈
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n t ′ t 0

⌈
1
2 rankn(w)

⌉
⌊
1
2 rankn(w)

⌋

Figure 3.3: In time t there is a collection of brankn(w)/2c paths of rank
at least drankn(w)/2e. The mixed-color bar is the one that disappears at
that turn, i.e., is considered responsible for causing the other bars to grow,
which was marked with a dotted outline.

{1, 2, . . . , t ′} for which |Bt| =
⌊
1
2 rankn(w)

⌋
, thus

min
R∈Bt

rankt(R) >
⌈
1

2
rankn(w)

⌉
.

However, by applying Corollary 3.13 we get⌈
1

2
rankn(w)

⌉
6 min
R∈Bt

rankt(R) 6

∣∣Mn

∣∣∣∣Bt∣∣ =

∣∣Mn

∣∣⌊
1
2 rankn(w)

⌋
which can be transformed into⌊

1

4
rankn(w)2

⌋
6

⌈
1

2
rankn(w)

⌉
·
⌊
1

2
rankn(w)

⌋
6
∣∣Mn

∣∣,
that is, rankn(w) 6 2|Mn|

1/2.

Corollary 3.17. For any v ∈ V(Gn) we have tiern(v) 6 2|Mn|
1/2.

3.4 Focusing on the Edges

Sometimes it is advantageous to focus on edges, rather than vertices. For
example, consider the augmenting path approach in the setting of unit
flows. Both ranks and tiers could be defined in the same way and many
of the results obtained in this chapter would still be true. Unfortunately,
Corollary 3.13 requires the paths in collection P to be vertex-disjoint, but
that is not possible anymore, in particular, Lemma 3.14 is not valid. Yet,
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we could weaken that assumption and consider what would happen if
these paths were edge-disjoint.

Luckily, ranks and tiers work well in this case. As only slight changes
are necessary to translate the original arguments of Section 3.3 to the new
setting, the claims in this section are given mostly without proofs. We start
with two versions of Corollary 3.13.

Corollary 3.18. For any t and a non-empty set P of edge-disjoint seeded
paths of finite rank in Gn1Mt

min
{

rankt(P)
∣∣ P ∈ P

}
6

∣∣E(P)∣∣∣∣P∣∣ .

Corollary 3.19. For any t and a non-empty set P of edge-disjoint seeded
paths of finite rank in Gn1Mt

min
{

rankt(P)
∣∣ P ∈ P

}
6

∣∣V(P)∣∣∣∣P∣∣1/2 .

Proof. Set r = min
{

rankt(P)
∣∣ P ∈ P

}
and let ci be the number of vertices

of tier i in V(P),
ci =

∣∣∣{v ∈ V(P) ∣∣ tiert(v) = i
}∣∣∣.

However, because there can be at most ci · ci+1 edges between levels i and
i+ 1, we can bound the size of P using the square of the average number
of vertices per level:∣∣P∣∣ 6 min

{
ci · ci+1

∣∣ 0 6 i < r}
6
(

min
{
1
2 · (ci + ci+1)

∣∣ 0 6 i < r})2 6 ( |V(P)|

r

)2
.

Theorem 3.20. For any algorithm that uses tiered augmenting paths which can
be made edge-disjoint it holds for every w ∈W that

rankn(w) ∈ O
(

min
{∣∣E(G)∣∣1/2,

∣∣V(G)∣∣2/3}) .
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Corollary 3.21. For any v ∈ V(G) for the above algorithm we have

tiern(v) ∈ O
(

min
{∣∣E(G)∣∣1/2,

∣∣V(G)∣∣2/3}).

It is possible to take this a step further, that is, define the ranks in terms
of edges. The bounds this approach yields are not as good, but the proofs
are a bit simpler. Observe, that we still define tiers in terms of vertices,
only using the edge-based ranks instead.

Definition 3.22. Set rankEt : E(Gt)→N and tierEt : V(Gn)→N∪ {∞} as

rankEt (e)
def
=

t∑
i=0

1Mt⊕Mt−1
(e)

=

rankEt−1(w) + 1 if e ∈Mt ⊕Mt−1,

rankEt−1(w) otherwise,

rankEt (P)
def
= max
e∈E(P)

rankEt (w),

tierEt (v)
def
= min

{
rankEt (P)

∣∣∣ s ∈ St,
[
v
P−→ s
]
∈ Gn1Mt

}
. �

Lemma 3.23. tierEt (v) is non-decreasing in t for any v ∈ V(G).

Unsurprisingly, edge-based ranks have their own counterpart of The-
orem 3.16. Although the asymptotic bound is of the same order, the fact
that the rank is defined on edges makes a significant difference. In partic-
ular, as we will see in the next chapter, Theorems 3.16 and 3.36 imply that
the total length of all the augmenting paths is O

(
|V |3/2

)
, while the theorem

below would give us only O
(
|E| · |V |1/2

)
.

Theorem 3.24. For any dynamic unweighted matching algorithm that uses tiered
augmenting paths it holds that rankEn(e) 6 2

∣∣V(Gn)∣∣1/2 for every edge e ∈
E(Gn).
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Corollary 3.25. For any v ∈ V(Gn) we have tierEn(v) 6 2
∣∣V(Gn)∣∣1/2.

Finally, similarly for other, non-matching algorithms for which their
intrinsic augmenting paths can be made edge-disjoint, we have a counter-
part of Theorem 3.20.

Theorem 3.26. For any algorithm that uses tiered augmenting paths which can
be made edge-disjoint it holds for every edge e ∈ E(Gn) that

rankEn(e) ∈ O
(

min
{∣∣E(Gn)∣∣1/2,

∣∣V(Gn)∣∣2/3}).

Corollary 3.27. For any v ∈ V(Gn) for the above algorithm we have

tierEn(v) ∈ O
(

min
{∣∣E(Gn)∣∣1/2,

∣∣V(Gn)∣∣2/3}).

3.5 Relaxation of Ranks and Tiers

The ranks and tiers as defined in Definitions 3.1 and 3.2 admit some in-
teresting properties, however, they are not easy to apply in an algorithmic
setting. Although we could use them to find augmenting paths of total
length bounded from above by O

(
|V |3/2

)
, it is far from straightforward

how to do it in an efficient manner.
One crucial drawback is that it is not clear how to keep the tiers up-

dated from turn to turn—not only the dependency graph may have cycles,
but can it change significantly every round. Moreover, even if managing
tiers could be done efficiently, it would immensely complicate the proce-
dure. Another disadvantage is that ranks and tiers focus solely on the cost
of applying augmenting paths, yet each such path has first to be found.
However, it is usually the searching phase that poses the greatest challenge
and determines the final running time of the algorithm.

Fortunately, there is a simple solution—instead of managing strict
ranks and tiers defined by Definitions 3.1 and 3.2, we relax posed re-
quirements. Most importantly, this allows us to use the ranks to account
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for the work done during the searching phase. Furthermore, it gives the
algorithm more freedom, in particular, we will be able to update the tiers
while searching the graph.

To this end, to accommodate the search, we allow additional optional
increases of the rank when the augmenting path could have visited the
vertex, instead of just when it did. Of course, we need the theorems related
to the old ranks and tiers to apply to relaxed ranks and corresponding tiers.
Luckily they do, given the augmenting paths we use are tiered according
to ranks that satisfy the four properties shown below—properties which
we have implicitly used in the proofs presented in previous sections.

Definition 3.28. Let rank? be a sequence of rank functions, that is, rank?
t :

W(Gn)→N for 1 6 t 6 n, together with the corresponding tiers:

tier?t(v)
def
= min

{
rank?

t(P)
∣∣∣ s ∈ St,

[
v
P−→ s
]
∈ Gt1Mt

}
.

We say that rank? is a relaxed rank, and tier? is a relaxed tier if they together
satisfy the following properties:

1. rank?
t(w) is non-decreasing in t,

2. rank?
t(w) increases when an augmenting path uses w,

3. rank?
t(w) 6 max

{
tier?t−1(b

t
w) + 1, tier?t−1(w)

}
,

4. rank?
t(w) 6 max

{
rank?

t−1(At) + 1, tier?t−1(w)
}

. �

The first two properties are necessary if we would like to use ranks
and tiers to bound the complexity of the algorithms from Chapter 4. Al-
though Property 3 could be a bit weaker for Lemma 3.10 (see the proof
of Lemma 3.30), we still need it in this form, along with Property 4,
in the proof of Lemma 3.14 (see the corresponding Lemma 3.34). The
two inequalities ensure respectively that the rank of any path Qi from
Lemma 3.14 can grow with respect to Ri at most by one per turn, and
that only paths which ranks were smaller or equal to the rank of the
augmenting path may grow at all. These two properties are essential to
Lemma 3.14, otherwise the resulting collection of paths might not satisfy
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the inequalities that are later necessary in Lemma 3.15. A more detailed
sketch of the argument is given below, after the statement of Lemma 3.34.

Properties 3 and 4 hold for the original rankt, because we increase
the ranks each time at most by one, and only when the augmenting path
uses the related vertex. More precisely, if the augmenting path does not
use w, then rankt(w) = rankt−1(w) 6 tiert−1(w). On the other hand,
if w ∈ W(At), then because At is tiered rankt−1(w) = tiert−1(btw) and
rankt−1(w) 6 rankt−1(At).

Since the relaxed ranks, in contrast to the strict ranks, can be increased
during the algorithm run in a number of circumstances, in the context
of Chapter 2, one might wonder in what way the new tiered augment-
ing paths are better than the shortest augmenting paths, in what way
the relaxed tier tier?t(w) improves the plain distance from the seeds, i.e.,
distGn

1Mt (w, St). In fact, it is exactly Properties 3 and 4 that differentiate
the two—when orientation of edges changes, the length of the shortest
path from w to St may increase even by a factor of two, while the growth
of ranks, and thus also tiers, is bounded both in terms of neighbors (Prop-
erty 3) and the last augmenting path (Property 4). In result, the relaxed
ranks and tiers are bounded by O

(
|V |1/2

)
, while the distance to St might

be easily linear in |V |.

Despite the relaxed rank and tier being more flexible than the original
concepts from Definitions 3.1 and 3.2, all the following claims still hold.
In all of them we assume that rank? and tier? are relaxed rank and tier
in the sense of Definition 3.28. In most cases the proofs need only slight
changes, therefore, we omit arguments which require just straightforward
modifications. Nevertheless, the reasoning for Lemma 3.30 is more com-
plicated, and included in full. Furthermore, it may not be entirely clear
how to transform the last paragraph of the proof of Lemma 3.14, so for
Lemma 3.34 we include a detailed sketch of that part.

Lemma 3.29. Suppose that the sequence of matchings M1,M2, . . . was con-
structed by applying each turn an augmenting path which was tiered. Then, for
any vertex v ∈ V(Gn) its tier tier?t(v) is a non-decreasing function of t.

72



Lemma 3.30. For any edge e ∈ Gn1Mt we have

rank?
t

(
tail(e)

)
6 tier?t

(
head(e)

)
+ 1 if e is matched in t,

tier?t
(
tail(e)

)
6 tier?t

(
head(e)

)
otherwise.

Proof. The second inequality, as in Lemma 3.10, follows trivially from the
definition of tier?.

To prove the first inequality, we proceed inductively on t. Since e is
matched in t, we set w = tail(e). Surely, the bound is satisfied in t = 0,
because both the rank and the tier are 0. Now, if w /∈ V(At), then e is
matched in t− 1 and btw = bt−1w , thus

rank?
t(w)

(3)
6 max

{
tier?t−1(b

t
w) + 1, tier?t−1(w)

}
def.
6 max

{
tier?t−1(b

t
w) + 1, rank?

t−1(w), tier?t−1(b
t−1
w )
}

ind.
6 max

{
tier?t−1(b

t
w) + 1, tier?t−1(b

t−1
w ) + 1, tier?t−1(b

t−1
w )
}

6 tiert(btw) + 1.

On the other hand, if w ∈ V(At), then because the augmenting path At is
tiered we have tier?t−1(b

t
w) > tier?t−1(w), hence

rank?
t(w)

(3)
6 tier?t−1(b

t
w) + 1 6 tier?t(b

t
w) + 1.

Corollary 3.31. Let P be a seeded path, then every white vertex w ∈W(P)

of rank rank?
t(w) > 1 is followed by some vertex w ′ ∈ W(P) of rank

rank?
t(w

′) > rank?
t(w) − 1.

Corollary 3.32. The length of the shortest path from v ∈ V(Gn) to a seed
in Gn1Mt−1 is at least 2 tier?t−1(b).

Corollary 3.33. For any t and a non-empty set P of vertex-disjoint seeded
paths of finite rank in Gn1Mt

min
{

rank?
t(P)

∣∣ P ∈ P
}
6

∣∣Mt ∩ E(P)
∣∣∣∣P∣∣ .
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Lemma 3.34. Let Q1,Q2, . . . ,Ql be a sequence of vertex-disjoint seeded paths

in Gt
1Mt . Also, let bt

At−→ s be the tiered augmenting path in turn t, i.e.,
in Gt1M

t−1
. Then, there exist vertex-disjoint seeded paths R1, . . . ,Rl and P in

Gt−1
1Mt−1 such that

rank?
t−1(At) 6 rank?

t−1(P),

rank?
t(Qi) 6 rank?

t−1(Ri) for rank?
t(Qi) > rank?

t−1(At) + 1,

rank?
t(Qi) 6 rank?

t−1(Ri) + 1 otherwise.

As it is only the last paragraph of the original proof that changes
significantly, we sketch below only that particular part.

Sketch of the last paragraph. Consider a path Qi from Lemma 3.14 and let
wi be the highest-ranked vertex of Qi, namely rankt(Qi) = rankt(wi).
Now suppose that rankt(wi) > rankt−1(At) + 1, that is, we need the cor-
responding path Ri, which connects wi to some seed at turn (t− 1), to
satisfy rankt(Qi) 6 rankt−1(Ri). However,

rankt(Qi) = rankt(wi)
(4)
6 tiert−1(wi) 6 rankt−1(Ri).

Otherwise, for rankt(wi) 6 rankt−1(At) + 1 we have

rankt(Qi) = rankt(wi)
(3)
6 max

{
tiert−1(btwi

) + 1, tiert−1(wi)
}

(♠)
6 tiert−1(wi) + 1

6 rankt−1(Ri) + 1.

If wi /∈ V(At), then the inequality marked by (♠) follows from btwi
= bt−1wi

.
On the other hand, because the augmenting path At is tiered, wi ∈ V(At)
implies that wi is the vertex of the smallest tier among out-neighbors of
btwi

, so tiert−1(btwi
) = tiert−1(wi).
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It might seem that the above reasoning could be simplified if the first
argument of max in Property 3 was tiert−1(w) + 1 or tiert−1(bt−1w ) + 1, yet,
neither does work. The former fails, because tiert−1(w) > rankt−1(w), that
is, given high enough ranks of augmenting paths, rank(w) could raise
beyond the limit implied by Lemma 3.10. Furthermore, the latter is not
valid in a case where w ∈ V(At) and tiert−1(w) > tiert−1(bt−1w )—the
increase by 1 is not enough to accommodate the growth of rank due to
the augmenting path.

Lemma 3.35. For any turn τ ∈ {1, 2, . . . ,n}, any white vertex w ∈ Wτ and a
natural number j ∈ {1, 2, . . . , rank?

τ(w)}, there is a turn t < τ and a collection Bt

of j pairwise vertex-disjoint seeded simple paths Bt =
{
K1, . . . ,Kj

}
in Gt1Mt

such that
∀K ∈ Bt. rank?

t(K) > rank?
τ(w) − |Bt|.

Theorem 3.36. For any dynamic unweighted matching algorithm that uses tiered
augmenting paths it holds that rank?

n(w) 6 2|Mn|
1/2 for every w ∈W.

Corollary 3.37. For any v ∈ V(Gn) we have tier?n(v) 6 2|Mn|
1/2.

In other words, any sequence of functions that each turn assign natural
numbers to white vertices, not necessarily closely related to augmenting
paths, could be relaxed ranks—as long as they satisfy the properties listed
in Definition 3.28, their values are bounded from above by O

(
|Mn|

1/2
)
.

Thanks to that, in Chapter 4 we will be able to establish that the running
time of the searching procedure Algorithm 1 is O

(
|E(Gn)| · |Mn|

1/2
)
.

Nonetheless, even for relaxed ranks the corresponding tiers may still
require costly updates. In order to address this problem we will use tier
lower bounds rather than their exact values, i.e., some non-decreasing
natural numbers smaller or equal to the actual tier. The intuition behind
this is that we do not really need to calculate how high the exact values of
tiers are—when guiding the algorithm it is enough to know if the tier is
lower, or higher than the current path-searching threshold, that is, whether
we do or do not want the search to explore the vertex in question. This
way it is possible to update the bounds lazily, only when the current value
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of some vertex’s tier lower bound is smaller than or equal to the current
threshold.

Still, for Theorem 3.36 to work, it is crucial for the tiered augmenting
paths to follow the true relaxed tiers of vertices, and not just their lower
bounds. To make sure this is the case, we would like to precede any search
for an augmenting path with a search for a witness of the value of the
current tier lower bound. If there is no such witness, then it is a proof that
the tier lower bound is too low, and so we should increase its value. On
the other hand, if the witness is found, it is a proof that the lower bound
matches the actual tier and it is safe to look for an augmenting path.
However, observe that the augmenting path we are searching for is also
precisely the witness for tiert−1(bt) we would like to have. If such path is
found, all the necessary invariants have to be satisfied, which ensures that
Theorem 3.36 will work.

The details of the searching strategy sketched above are the subject of
Section 4.1—this procedure forms the basis of all the matching algorithms
of Chapter 4. We end this part with an observation which greatly simplifies
the design as well as the analysis of the aforementioned algorithms. More
precisely, as a direct consequence of how tier?t is defined, there is a very
convenient candidate for the tier lower bound.

Observation 3.38. The following two inequalities give a lower bound on
the tier?t :

tier?t(w) > rank?
t(w) for any w ∈W(Gn),

tier?t(b) > min
{

rank?
t(w)

∣∣∣ 〈b,w〉 ∈ E
(
Gn

1Mt
)}

for any b ∈ B(Gn).
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Chapter 4

Bipartite Matching Algorithms

In this chapter we present the algorithms that build upon the technique
of ranks and tiers introduced in Chapter 3. In the relaxed form presented
in Section 3.5, they apply to a variety of approaches—we consider online
and offline settings, both either exact or approximate. At the core of all the
algorithms presented here is the search procedure described informally at
the end of Section 3.5. The details of this fundamental part are given in
the first section of this chapter.

The main result is the algorithm for the online case, described in Sec-
tion 4.2, together with the corresponding approximation algorithm. Af-
ter that, we consider the easier offline case. We compare our approach
with two bipartite matching methods: the well-known Hopcroft-Karp al-
gorithm [59], and the auction-based algorithm of Demange, Gale, and
Sotomayor [28]. We end this chapter exploring some additional settings,
i.e., weighted graphs and vertex-decremental dynamic matching.

To reflect the algorithmic nature of this chapter, we drop the turn
indexes from Gt and Mt, that is, we refer by G and M to the current
graph and matching respectively. Moreover, we handle the ranks and tiers
similarly, using w. rank∗ for any white vertex w ∈ W(G) and writing
w. rank∗ ← w. rank∗+1 to indicate the updates.

Still, to apply the theorems from the previous chapter we occasion-
ally need to ground ourselves in turns or use turn-indexed ranks and
tiers. To this end, we define rank?

t(w) as the w. rank∗ immediately after
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the t’th augmenting path At has been applied, and denote by tier? the
corresponding tiers.

Definition 4.1. For any white vertex w and its counter w. rank∗ main-
tained by an algorithm we define

rank?
t(w)

def
= w. rank∗

where w. rank∗ is taken at the time of computation precisely after the t’th
augmenting path has been applied. We set tier?t to be the tiers defined
similarly to Definition 3.2 only using rank?

t as the underlying ranks. �

At the end of the next section we show in Lemma 4.2 that ranks defined
in this way by our algorithms indeed satisfy the conditions of the relaxed
ranks from Definition 3.28. This allows us to employ the results derived
in Chapter 3 to bound, using the values of rank? and tier? defined above,
the total length of augmenting paths and the running time of algorithms
that produced them.

Results included in this chapter appeared first at FOCS 2014 [18].

4.1 Searching

The Search procedure constitutes the base component of the matching
algorithms, which rely on the ranks and tiers. Although it can be imple-
mented in multiple ways—we could use the framework of practically any
graph-searching method like the depth-first search, breadth-first search,
heuristic searches, or schemas based on randomized priorities, etc.—these
would all be just different flavors of the same algorithm. Hence, for the
sake of simplicity of the exposition we use the DFS-based version.

The purpose of calling Search(w) is twofold:

• if the lower bound matches the actual tier, i.e., w. rank∗ = tier?t−1(w),
it finds a tiered path certifying that this is the case;

• otherwise, if w. rank∗ < tier?t−1(w), it increases the ranks (that is, the
tier lower bounds) that are too low.
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The idea is to follow, as long as it is possible, the edges that appear tiered
according to the lower bounds on the tier?’s, for which we use the rank∗’s,
as pointed out in Observation 3.38. Should it happen that we reach a seed,
then the path we have used constitutes a witness for the rank∗’s to be
equal to the tier?’s, which is what our procedure was searching for. On
the other hand, if the search tree leads to a vertex from where no tiered
path can be found, it means that the lower bounds of all the visited vertices
were strictly below the tier?’s. Thus, we increase the relevant counters, that
is, the rank∗’s. The pseudocode is presented below.

Algorithm 1 The searching procedure

1: procedure Search(w)
2: w. rank∗ ← w. rank∗+1
3: for each b such that 〈b,w〉 ∈ G1M do
4: UpdateInformation(b,w)
5: if bw = ⊥ then
6: return true
7: w ′ ← SmallestNeighborUnmatchedTo(bw)
8: while w ′. rank∗ < w. rank∗ do
9: if Search(w ′) then

10: M←M\ {〈w,bw〉}∪ {〈bw,w ′〉}
11: UpdateInformation(bw ′ ,w)
12: UpdateInformation(bw ′ ,w ′)
13: return true
14: w ′ ← SmallestNeighborUnmatchedTo(bw)

15: return false

It is easy to observe that the listing does not agree perfectly with the
description. For example, in line 2 we increase the ranks whether the
search was successful or not, while in line 10 we are applying the aug-
menting path. Indeed, the pseudocode implements the algorithm using
some tricks to make the code simpler and shorter. In particular, in line 10

we take advantage of the recursion—because all the given algorithms are
matching procedures, we always need to apply the augmenting path after
each successful search. Moreover, as mentioned, in line 2 we increase the
rank of a vertex even before a witness is found or we know that there is
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no such path. This is alright, because in both cases the rank finally gets
increased, we just do it ahead of time. The benefit of such solution is that
we do not have to maintain explicitly which vertices were already visited—
the algorithm is only allowed to explore vertices of smaller ranks, so due
to the rank increase in line 2 and condition in line 8, it cannot revisit a
vertex that already belongs to the path currently being explored.

We now move on to describe the subroutines used in the pseudocode
and their complexity. Observe that since Search is also only a subpro-
cedure of algorithms presented later in this chapter, we actually do not
know how many times it and its components will be called. However,
thanks to line 2, the rank∗’s provide the bound we need—we can express
the running times with respect to R, the maximum rank achieved by the
hypothetical, yet undefined algorithm. In this way our analysis is appli-
cable to any algorithm which relies on Search to find augmenting paths
and manage the rank∗’s.

The call SmallestNeighborUnmatchedTo(bw), which happens be-
fore each run of the loop, i.e., in lines 7 and 14, returns an out-neighbor
of bw with the smallest current rank∗. This subprocedure can be imple-
mented to work in constant time by maintaining for each black vertex
b ∈ B(G) a list of out-neighbors of the smallest rank∗,

b.list =
{
w ∈ NG1M(b→)

∣∣∣ ∀w ′ ∈ NG1M(b→). w. rank∗ 6 w ′. rank∗
}

.

Then, SmallestNeighborUnmatchedTo(bw) simply returns any white
vertex that is an element of (bw).list.

To keep these lists up to date we use another subroutine, namely
UpdateInformation(b,w). Its task is to maintain the presence of w on
b.list. Each time the rank of a white vertex w increases, it needs to be
removed from the lists of all its in-neighbors (see line 4). Clearly this hap-
pens at most R times per edge, and requires O

(
|E| ·R

)
time over the whole

algorithm run. Moreover, at any given time, if a black vertex b finds its list
of the smallest out-neighbors empty, b.list = ∅, it scans all the neighbors
and repopulates the list with white vertices of the smallest rank∗. The
empty list indicates that the rank∗’s of all neighbors of b increased, and so
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its tier lower bound had to increase as well (see Observation 3.38). There-
fore, for any black vertex b its list repopulation happens at most R times,
taking O

(
R · deg(b)

)
time per vertex, or O

(
|E| ·R

)
in total. There are also

additional updates necessary each time an edge changes direction. Their
cost however is covered by the sum of lengths of all the augmenting paths,
which is bounded by O

(
|V | ·R

)
.

All the described maintenance operations are performed in Algorithm 1

by UpdateInformation calls in lines 4, 11 and 12. Combining the in-
volved complexity bounds yields O

(
|E| ·R

)
time for the work done while

updating. This is also the total running time of all the calls to Search

procedure—the loop in line 3 does deg(w) iterations, while any other yet
unaccounted line takes constant time—all the parts likewise sum up to
O
(
|E| ·R

)
.

As stated at the beginning of this section, Search constitutes the base
of all the matching algorithms in this chapter. In fact, its core, that is, the
code between lines 7 and 14 of Algorithm 1, will later become useful by
itself. To this end, we extract it into a separate auxiliary procedure. The
purpose of MatchUntil(b, r) is to try to find an augmenting path from b

until all its neighbors reach the given threshold r. Because we always start
searching at some unmatched black vertex, and apply the augmenting
path if the search was successful, all first calls to Search are performed
by MatchUntil.

Algorithm 2 The MatchUntil auxiliary procedure

1: procedure MatchUntil(b, r)
2: w ′ ← SmallestNeighborUnmatchedTo(b)
3: while w ′. rank∗ < r do
4: if Search(w ′) then
5: M←M∪ {〈b,w ′〉}
6: UpdateInformation(b,w ′)
7: return true
8: w ′ ← SmallestNeighborUnmatchedTo(b)

9: return false

To finalize the exposition of Algorithm 1, we still need to explain why
the rank?

t ’s produced via rank∗’s by an algorithm which uses Search to
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find augmenting paths and manage its ranks, satisfy the four properties
of Definition 3.28. However, since the ranks are maintained by Search, it
is enough to show that consecutive applications of the procedure generate
ranks that are appropriate.

For convenience, we restate the conditions set on relaxed ranks below:

1. rank?
t(w) is non-decreasing in t,

2. rank?
t(w) increases when an augmenting path uses w,

3. rank?
t(w) 6 max

{
tier?t−1(b

t
w) + 1, tier?t−1(w)

}
,

4. rank?
t(w) 6 max

{
rank?

t−1(At) + 1, tier?t−1(w)
}

.

Lemma 4.2. If the ranks are managed solely by Search and its components,
then the rank? from Definition 4.1 and its corresponding tier? are relaxed in the
sense of Definition 3.28, that is, they satisfy the four properties reproduced above.

Proof. As all the changes to the ranks are done in line 2 of Algorithm 1,
Properties 1 and 2 are clearly true. To arrive at the last two points, we
separately consider the rank growth due to an unsuccessful search, and
the rank increase caused by a search that ended with a success.

Let At−1 be the last augmenting path applied before the search starts.
Observe that for each vertex w whose rank increased when the outer-most
call to search failed, it holds that w. rank∗ < tier?t−1(w), and so w. rank∗ 6
tier?t−1(w) after the update. Note also that rank increase resulting from a
failed search does not affect any tier?’s.

In turn, suppose that w. rank∗ was increased during the search that
found At. Although we assume the outer-most search was successful, the
procedure could perform a number of inner recursive subsearches, some
of which may have failed. Similarly, as in the previous paragraph, that
could happen because the actual tier was strictly higher than the rank∗

of the explored vertex. However, there is a second possibility—the tier
lower bounds that blocked our way could have been increased during the
current search. For that reason, the argument in the successful case has to
be a bit more complicated.
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Observe that the rank update together with tier?t−1(b
t−1
w ) < rank?

t−1(w)

implies w ∈ V(At) and tier?t−1(b
t
w) = rank?

t−1(w). That implies w. rank∗ 6
tier?t−1(b

t
w) + 1. On the other hand, if tier?t−1(b

t−1
w ) > rank?

t−1(w), then

w. rank∗ 6 tier?t−1(b
t−1
w ) + 1 = tier?t−1(b

t
w) + 1 if btw = bt−1w ,

w. rank∗ 6 tier?t−1(b
t−1
w ) + 1 6 tier?t−1(b

t
w) + 1 if w ∈ V(At).

Furthermore, because the search was successful, due to the check at line 8

we have that w. rank∗ 6 tier?t−1(bt) + 1 = rank?
t−1(At) + 1.

Finally, if some rank does not change from turn t− 1 to t, then trivially
w. rank∗ = rank?

t−1(w) 6 tier?t−1(w). Together, the bounds on w. rank∗

give the desired bounds on rank?
t(w).

4.2 Online Matching

The apparatus of the ranks and tiers developed in this thesis culminates in
Algorithm 3 shown in the listing below. It solves the problem of maintain-
ing a maximum cardinality matching in an incremental setting defined in
Definition 1.9.

In short, we are given a bipartite graph G = 〈W ]B,E〉 in a one-sided
online fashion, that is, all the vertices of W are known from the start,
while vertices of B are given one by one during the algorithm run—each
turn a new vertex bt ∈ B arrives with all its incident edges. At that time
the call to Match(bt) produces the matching M, which is the maximum
cardinality matching in the part of G presented up to this point.

Due to the analysis in Chapter 3 its total running time is O
(
|E| · |V |1/2

)
.

The procedure MatchUtil allows us to formulate it very concisely, the
two lines constitute the whole listing.

Algorithm 3 The exact algorithm for the problem from Definition 1.9

1: procedure Match(bt)
2: MatchUntil(bt, 2 · |M|

1/2)

Although the algorithm is quite simple, to the best of author’s knowl-
edge at the time of writing there are no other procedures for this particular
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setting with running time better than O
(
|E| · |V |

)
, which is the bound of

the naïeve augmenting-path approach. Algorithm 3 leads to the following
theorem.

Theorem 4.3. There exists an algorithm that maintains an exact maximum
cardinality matching for the problem setting in Definition 1.9 in O

(
|E| · |V |1/2

)
total time.

The same bounds that imply the running time allow us to bound also
the total length of all the augmenting paths applied. Although it is worse
than the logarithmic conjecture of Chaudhuri, Daskalakis, Kleinberg and
Lin in [24], it is the only bound for the general bipartite case better than
the basic O

(
|V |2
)
.

Observation 4.4. The order of the total length of all the augmenting paths
applied by Algorithm 3 is O

(
|V |3/2

)
.

Next we present a corresponding approximation algorithm, which for
any constant ε > 0maintains a (1−ε)-approximate matching and works in
O
(
|E| · ε−1

)
time. This algorithm does not use the bound on the maximum

rank of Theorems 3.16 and 3.36, instead it leverages the fact that ranks
bound the lengths of augmenting paths from below. More precisely, the
invariant is that the tier of a black vertex that does not get matched is at
least ε−1. This implies, due to Observation 1.4, that the algorithm achieves
(1− ε)-approximation of the optimal matching at any given turn.

Algorithm 4 The (1− ε)-approximation algorithm for the same problem

1: procedure MatchApprox(ε, bt)
2: MatchUntil(bt, ε−1)

Similarly to the exact procedure, the approximation algorithm also has
two claims analogous to Theorem 4.3 and Observation 4.6.

Theorem 4.5. There exists an algorithm that maintains a (1− ε)-approximate
maximum cardinality matching for the problem setting in Definition 1.9 in
O
(
|E| · ε−1

)
total time.
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Observation 4.6. The order of the total length of augmenting paths ap-
plied by Algorithm 4 is O

(
|V | · ε−1

)
.

To better explain and provide additional intuition on how Algorithm 3

works, we look into three sample calls of Match on an instance of a graph
pictured in Figure 4.1a, namely Match(bA), Match(bB) and Match(bE).

The numbers in the white vertices are their current rank∗’s, while the
values of tier?t−1’s, that is, the relaxed tiers from when the previous turn
has ended, are indicated by the background shades enclosed by the dotted
line. As the maximum rank∗ is only 1, there are only three possible values
of relaxed tiers, namely 0, 1 and∞, denoted respectively by absence of a
shade, a light shade and a darker shade. For convenience, these numbers
are repeated near each black vertex, for example tier?t−1(bC) =∞ despite
the fact the minimum over the rank∗’s of neighbors is only 1.

The final graph has 14 black and 14 white vertices. In Figure 4.1a
we are in turn 10, that is, 9 black vertices have been already matched.
There are still five seeds left, labeled respectively wA,wB,wC,wD,wE and
five more black vertices bA,bB,bC,bD,bE to add. To make them easily
distinguishable their edges were drawn as curvy, dashed lines.

The vertex we are going to match in turn 10 is bA, marked with a
small additional circle around it. The pink area surrounded by the dot-
dashed line is the graph reachable from bA by the edges that appear
tiered according to rank∗’s. For example, the edge marked by letter e is
tiered neither according to rank∗’s, nor to the tier?9’s. To make the example
interesting, we match bA to wA.

The second diagrams shows the next turn t = 11, in which we are
going to try to match vertex bB. Of the three available tiered augmenting
paths we pick the shorter of two that lead to wB. Despite the path to
wC is shorter, the algorithm does not know it, nor does it even take it
into account—it starts exploration in the direction of the neighbor of the
smallest rank∗, and the one on its left satisfies all the necessary conditions.

There is also a path that leads to the dead area. If the algorithm were
to choose it first, the only effect would be that the rank∗’s along that
path would have been increased. We will explore this possibility when
analyzing the search calls for Match(bE), now we would like only to note
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Figure 4.1a: The tiered augmenting paths starting at bA.

that the edge that leads from wA to b10wA
could have been used by the

search this turn. As the rank∗ of the white vertex in the dead area is too
low, the edge appears tiered according to rank∗’s, even if it is not tiered
with regard to tier?10’s.
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Figure 4.1b: Vertices reachable by the tiered search starting at bB.

To see how Search works in more details, consider the Figure 4.1c.
Every time we enter a new vertex, line 2 in Algorithm 1 increases the
rank∗’s of visited vertices. For example, suppose that in turns 12 and
13 we have added bC and bD which both failed to match. The search
increased the rank∗ of the encountered white vertex from 1 to 2 and to
3. Of course, even after that, the value of rank∗ of that white vertex still
bounds its relaxed tier from below.

Consider now the final turn t = 14 in which we add bE. When we start
the search from bE, because of the difference in rank∗’s, the edge to the
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white vertex from previous paragraph is not available, as indicated by the
short red mark on it. Fortunately, bE has two more neighbors, both of small
rank∗. As we enter wB, due to line 2 in Algorithm 1 we increase its rank∗

and proceed ahead. When the search fails after encountering a vertex of
bigger rank∗ (second red mark), we know that the previous wB. rank∗ was
too small—we consider the traversed path as a way of updating the ranks
of the vertices along it.

∞
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1 13
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∞

tier?t−1(v) > 2

2

Figure 4.1c: A single step of Algorithm 1 starting at bE. Even if the search
finds the correct paths, it fails because wB. rank∗ < tier?t−1(wB).

After we return from the first call to Search at line 4 in Algorithm 2,
we find ourselves back at bE. There is another neighbor of tier∗ = 1, but
the search also fails. Note, that despite our previous visit to wB, we do
not consider it visited—merely updated— because of the update we per-
formed previously, its tier∗ is now 2. The current search reached a dead
region and ends with the same conclusion.

In Figure 4.1e we start searching again in the direction of wB, but as
wB. rank∗ = tier?t−1(wB), this call to Search should find a witness. We
increase all the rank∗’s of the vertices visited along the way. Naturally, we
may hit a dead end, and need to retract some of our steps. Recall that
the search follows the vertices of the smallest tier∗’s, which might make
some edges unavailable, despite them being tiered according to tier?t−1.
Nevertheless, it is not necessary to back out completely, just enough to
find another neighbor of low rank∗.
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Figure 4.1d: Because of outdated rank∗’s, the search might explore a direc-
tion that does not lead to any seed.
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Figure 4.1e: Although wB has already been visited, we do it again, each
time increasing wB. rank∗.

After retracting our steps we pick the other neighbor of rank∗ = 1, and,
unfortunately, hit another dead end. In fact, it would have been a dead
end even if we were at the rank level 2—the rank∗’s of already visited
vertices increased to 3 prevent us from creating a non-simple path.

Nonetheless, it is worth noting how we consider wA as not visited, just
updated, similarly to what happened in Figure 4.1d. Yet, because we did
not backtrack all the way to the start, its predecessors on the search path
are still marked by the red hue. This is because these vertices are present
on the stack of recursive calls of Search, while wA is not. Also, due to its
updated rank∗, the path to wA is now blocked.

In Figure 4.1g we finally manage to find the augmenting path. Despite
the predecessor of wA having a neighbor of the smallest rank∗ which have
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Figure 4.1f: As only the inner recursive calls of Algorithm 1 have failed,
rather than starting from scratch we continue the previous search.

never been previously considered in any search calls of Match(bE), the
vertex wA also had the smallest rank∗, and so could have been picked.
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Figure 4.1g: Finally, the tiered augmenting path has been found.

The last diagram presents the situation after all the updates and re-
versing of edges. Half of the graph is dead, and the other half has tiers
ranging from 0 to 3. Not all the rank∗’s are up to date, even vertices of
the augmenting path may have rank∗ < tier?14. We have failed to match
bC and bD, and so two white vertices wC and wD are still seeds after the
process.

As Figure 4.1g demonstrates, there is some leeway in picking the neigh-
bors of the smallest rank form b.list. Nonetheless, the form of the recursive
calls makes the DFS structure in Algorithm 1, i.e., that particular imple-
mentation of Search procedure, quite apparent. For example, the combi-
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Figure 4.1h: After the augmenting path has been applied, the tiers increase.

nation of the rank increase in line 2 and loop condition in line 8, is the
direct equivalent of marking the vertices visited in the DFS. As mentioned
above, it is impossible for any vertex to be used more than once in a single
path, and so the witness, if one is found, has to be simple. On the other
hand, the behavior of Algorithm 1 is quite constrained. Especially, because
the dynamic setting forces the order of vertices we attempt to match.

For this reason, in order to better compare our strategy to other existing
matching algorithms, in the next section we are going to consider the
case when the whole graph is given up front. In the offline setting we
can choose which black vertex we would like to match—even sticking
to the DFS-based flavor, a matching procedure based on the techniques
from Chapter 3 can be tweaked in many different ways. For example,
it can be made to mimic some aspects of the Hopcroft-Karp algorithm.
This intrinsic flexibility of the ranks and tiers is a big advantage of that
approach.

4.3 Offline Matching

One of the best-known matching algorithms is the Hopcroft-Karp algo-
rithm which applies to unweighted bipartite graphs in an offline set-
ting [59]. Although it relies on the shortest augmenting paths, just as
the algorithms in Chapter 2, its O

(
|E| · |V |1/2

)
complexity stems from ap-

plication of a number of disjoint paths per round. In the k-th round the
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Hopcroft-Karp algorithm finds a maximal set of disjoint augmenting paths
of length (2k− 1). It is shown that if the collection of the disjoint paths
cannot be extended by any other path of that length, the length of the
shortest augmenting path in the graph strictly increases. This is why there
are at most O

(
|V |1/2

)
rounds, each of which takes O

(
|E|
)

time.
A similar thing can be achieved using ranks and tiers. We set r = 0 and

start with a FIFO queue which contains all the unmatched black vertices.
Each such vertex is a neighbor of some unmatched white vertex, so its
tier? is equal to r. Then, one by one, we pop a vertex b ∈ B(G) and try
to match it using Search on all its white neighbors w ∈ N(b) such that
w. rank∗ 6 r. If a witness is found, we match b, otherwise its tier is at least
(r+ 1) and so it is again push back on the queue. After we complete one
pass we are certain that all the vertices in the queue are of tier (r+ 1) or
higher, so we increase r and repeat this process as long as r 6

√
2|V |. The

vertices which are left in the queue at the end are the vertices of infinite
tier. To easily differentiate between passes, we use two queues Q1 and Q2
and swap their contents when Q1 becomes empty. See Algorithm 5 for the
complete code listing.

Algorithm 5 Mimicking the behavior of the Hopcroft-Karp algorithm

1: procedure MatchLikeHK
2: Initialize two FIFO queues Q1 ← B(G) and Q2 ← ∅
3: for r from 1 to

√
2|V | do

4: for each b ∈ Q1 do
5: b← Q1.pop
6: if not MatchUntil(b, r) then
7: Q2.push(b)
8: swap Q1 and Q2

Observe that Lemma 3.29 and Corollary 3.32, which claim respectively
that the tiers are non-decreasing and that they bound from below the
lengths of the shortest augmenting paths, are actually the only results
necessary to derive the running time of Algorithm 5. More precisely, after
r rounds we know that the smallest rank of any unmatched black vertex
is at least r, and thus no augmenting path is shorter than 2r. Therefore,
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there can be at most |V |
2r augmenting paths left, so we can spend O

(
|E|
)

on finding each of them. We get that the running time is bounded by
O
(
r · |E|+ |V |

2r · |E|
)
, which simplifies to O

(
|E| · |V |1/2

)
for r = |V |1/2.

In other words, Algorithm 5 is an alternative offline matching algo-
rithm with the same running time as the Hopcroft-Karp algorithm, but
unlike the latter, it does not rely on disjoint shortest paths. It is also much
simpler than the online version—we need only the basic properties of
ranks and tiers. Moreover, similarly to the Hopcroft-Karp algorithm, we
could stop Algorithm 5 after ε−1 rounds, for any ε > 0. By Observation 1.4
that gives us (1− ε)-approximation in O

(
|E| · ε−1

)
time.

A slower, yet very interesting matching algorithm was given by De-
mange, Gale and Sotomayor [28]. It is based on an auction where each
white vertex w ∈W(G) has some price pw and black vertices bid for them.
Each time vertex b ∈ B(G) finds itself unmatched, it picks a white vertex
w with the lowest price and bids pw + δ for it—this way b takes w for
itself, at the same time increasing its price. The authors show that after
the prices reach bidders’ valuations, this process reaches an equilibrium
M such that |V | · δ+ |M| > |M ′| for any other matching M ′. Because in the
unweighted case all the valuations are equal to 1, setting δ =

(
|V |+ 1

)
−1

yields a maximum matching algorithm that works in O
(
|E| · |V |

)
time.

Observe, that the prices in that algorithm have similar function to
rank?’s in our algorithm. In fact, what the rank-based algorithm does
can be viewed as a very specific order of bids and rebids that form aug-
menting paths. In this light, a natural question arises—is it possible to
apply the theorems of Chapter 3 to the algorithm of Demange, Gale and
Sotomayor? Although it might be possible, the unconstrained nature of
the auction makes it far from straightforward. In particular, our reason-
ing depends strongly on augmenting paths, however, the chains of bids
may not reach any unmatched white vertex for many rounds. Still, in
the offline setting we can improve the running time of their algorithm
via different method. More precisely, adopting a hybrid approach that
first calculates

(
1− |V |−1/2

)
-approximation using δ =

(
|V |+ 1

)
−1/2, and

then proceeds with standard DFS-based augmentations, we can obtain
O
(
|E| · |V |1/2

)
running time.
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Nevertheless, thanks to Theorems 3.16 and 3.36, by limiting ourselves
to augmenting paths, we can achieve the same bounds with much simpler
procedure. In particular, we can just treat the offline problem as a special
case of the online setting and use Algorithm 3 which gives the same
asymptotic running time as the approaches presented above.

Algorithm 6 Simple exact algorithm

1: procedure MatchExact

2: for each b ∈ B(G) do
3: MatchUntil(b, 2 · |M|

1/2)

Naturally, the same applies to Algorithm 4.

Algorithm 7 Simple approximation algorithm

1: procedure MatchApprox(ε)
2: for each b ∈ B(G) do
3: MatchUntil(b, ε−1)

Neither of these procedures rely on the order in which vertices of
B(G) are processed, for example we can process them in random order.
In opposition to the online setting, we were unable to find examples that
would provide tight lower bounds. Especially, for the non-deterministic
offline algorithm that picks a random permutation of black vertices and
proceeds to match them in that particular order (see Algorithm 8). Prac-
tical experiments on many different classes of graphs failed to produce
sufficiently high ranks to believe that Theorem 3.16 is tight in such case.
We conjecture, that the expected maximum rank produced by Algorithm 8

is asymptotically strictly smaller than |V |1/2, i.e., that it is asymptotically
faster than the Hopcroft-Karp algorithm.

Algorithm 8 Exact randomized algorithm

1: procedure MatchExactRnd

2: Set σ to be a random permutation of B(G).
3: for each b ∈ σ do
4: MatchUntil(b, 2 · |M|

1/2)

Conjecture 4.7. The Algorithm 8 runs in O
(
|E| · |V |α

)
time for some α < 1

2 .
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4.4 Decremental Case

In this section we introduce a setting, where the vertices of a bipartite
graph are being removed instead of inserted. We then present two decre-
mental algorithms for this problem: an exact and an approximate one.

Consider an online problem where at the beginning we are given a
bipartite graph Gd =

〈
Wd ]Bd,Ed

〉
, and the vertices of Wd are removed

from Gd in an online manner. The goal is to maintain during this process
the maximum size matching in Gd.

Similarly to Definition 1.9, the input is a sequence of graphs Gdt =〈
Wd
t ]B,Edt

〉
such that

• Gd0 =
〈
Wd
0 ]Bd,Ed0

〉
=
〈
Wd ]Bd,Ed

〉
,

• Gdt =
〈
Wd
t ]Bd,Edt

〉
=
〈
Wt−1 \ {wt}]Bd, Edt−1 \ E

d
wt

〉
where

Edwt
= Ed ∩

{
{wt,b}

∣∣∣ b ∈ B},

• Gdn =
〈
Wd
n ]Bd,En

〉
=
〈
∅]Bd,∅

〉
.

As before, the output is a sequence of matchingsMd
0 ,Md

1 , . . . ,Md
n such that

Md
t is a matching in Gdt , which depends only on graphs Gd0 ,Gd1 , . . . ,Gdt .

Note an important difference with respect to the incremental problem.
Here, we are removing white vertices wt ∈ W, whereas previously we
were adding black vertices bt ∈ B. This change in colors will be useful
when reducing the decremental problem to the incremental one.

We initialize the incremental algorithm with graph Gd, i.e., G0 = Gd,
and set M0 to be the maximum cardinality matching in that graph, which
we calculate in O

(
|E| · |V |1/2

)
time using |Bd| turns of the incremental algo-

rithm. When the vertex wt should be removed from Gd, we add a new
vertex b ′t together with an edge {b ′t,w

′}. Denote by Gt the sequence of
graphs resulting from this incremental process. We observe the following
lemma.
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Lemma 4.8. For maximum matchings Mt in Gt and Md
t in Gdt we have∣∣Mt

∣∣− t = ∣∣Md
t

∣∣.

Proof. Consider matching M ′
t = Md

t ∪
{
{b ′i,wi}

∣∣ 1 6 i 6 t}. Certainly
|M ′

t|− t = |Md
t |. IfM ′

t is not a maximum size matching in Gt then there ex-
ists anM ′

t-augmenting path A. No such augmenting path can pass via any
of the edges in

{
{b ′i,wi}

∣∣ 1 6 i 6 t}, because b ′i is of degree degGt
(b ′i) = 1.

Hence, A would have to be an Md
t -augmenting path in Gdt what contra-

dicts the maximality of Md
t . Therefore, |Mt| = |M ′

t| = |Md
t |+ t.

Observe that it is straightforward to calculate Md
t from Mt, namely it

is enough to remove from Mt edges incident to wi for 1 6 i 6 t. Com-
bining these results with Theorem 4.3, which affirms the existence of the
incremental algorithm working in O

(
|E| · |V |1/2

)
, we obtain the following

corollary.

Corollary 4.9. There exists a decremental algorithm for the maximum
bipartite matching problem that works in O

(
|E| · |V |1/2

)
total time.

We now prove that the same reduction works in the approximate case.
In the incremental case we were using Observation 1.4 that relates the
size of some matching M to the length of the shortest M-augmenting
paths. This fact cannot be used directly with the above reduction, because
the sizes of the two matchings Mt and Md

t differ by t. Nevertheless, it is
possible to prove the guarantee on approximation ratio directly from the
nonexistence of short augmenting paths.

Lemma 4.10. Let Md
t be the maximum cardinality matching in Gdt and let Mt

be any matching in Gt such the shortest Mt-augmenting path has length at least
k for some k > 3. Then

∣∣Mt

∣∣− t > ∣∣Md
t

∣∣ (1− 2

k− 2

)
.
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Proof. To bridge the gap between Mt and Md
t we introduce two new

matchings Nt and Ndt defined as follows:

Nt =Mt ∩ Edt ∪
{
{wi,b ′i}

∣∣ 1 6 i 6 t},

Ndt =Mt ∩ Edt = Nt ∩ Edt .

Because the matching Mt does not admit augmenting paths of length
1, each vertex wi has to be matched for 1 6 i 6 t. Therefore, Nt could
be thought of as constructed from Mt by rematching vertices wi to b ′i
for 1 6 i 6 t, in particular |Nt| = |Mt|. On the other hand, Ndt is Mt

constrained to Gdt , which also happens to be Nt constrained to Gdt . For
this reason |Ndt | = |Mt|− t.

Suppose that A is an Nt-augmenting path of length l. Note that A does
not contain any of the {wi,b ′i} edges, thus it is either an Mt-augmenting
path, or one of its endpoints happens to be in btwi

, a vertex matched in Mt

towi for some 1 6 i 6 t. In such case, the path A ′ = A ◦
[
btwi
←→ wi ←→ b ′i

]
is an Mt-augmenting path of length (l+ 2). This implies that the shortest
Nt-augmenting path has length at least (k− 2).

Furthermore, because Gdt is a subgraph of Gt and the vertices un-
matched by Ndt in Gdt are precisely the Nt-free vertices of Gt, any Ndt -
augmenting path in Gdt is necessarily anNt-augmenting path in Gt. Hence,
there are no shorterNdt -augmenting paths in Gdt than k−2. In other words,
due to Observation 1.4, |Ndt | is a (1− 2

k−2)-approximation of |Md
t |, and so

∣∣Mt

∣∣− t = ∣∣Ndt ∣∣ > ∣∣Md
t

∣∣ (1− 2

k− 2

)
.

Although in the exact case we had to use O
(
|E| · |V |1/2

)
initialization to

calculate M0, in the approximate setting we can use Algorithm 7 which
works in O

(
|E| · ε−1

)
time. Hence, by using the above lemma together with

Theorem 4.5 we obtain an observation corresponding to Corollary 4.9.

Corollary 4.11. For any ε > 0, there exists a decremental algorithm that
maintains (1− ε)-approximate maximum bipartite matching in O

(
|E| · ε−1

)
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total time.

Finally, we note that this reduction can be easily combined together
with claims given in the Section 4.2 to obtain the following two corollaries.

Corollary 4.12. There exists a decremental algorithm for the maximum
bipartite matching problem that finds augmenting paths of total length
bounded by O

(
|V |3/2

)
.

Corollary 4.13. There exists a decremental algorithm that maintains (1−

ε)-approximate matching in a bipartite graph and finds augmenting paths
of total length bounded by O

(
|V | · ε−1

)
.

4.5 Weighted Case

The maximum weight matching problem is a natural generalization of the
task of finding a maximum cardinality matching. Unsurprisingly, the on-
line bipartite matching problem with augmentations has its own weighted
version, which will be the subject of this short section. The main idea is to
reduce the weighted case to the maximum cardinality matching using the
unfolded graph technique of Kao, Lam, Sung and Ting introduced in [64],
which we recall below.

Let Gw = 〈Vw,Ew〉 be a graph where edge weights are given by a func-
tion weight : E→ {1, 2, . . . ,Wmax} for some natural number Wmax that rep-
resents the maximum weight of any edge. The unfolded graph G = 〈V ,E〉
of Gw is defined as follows:

V =
{
vi

∣∣∣ v ∈ Vw, i ∈ {1, 2, . . . ,Wmax}
}

,

E =
{
{ui, vW−i+1}

∣∣∣ {u, v} ∈ Ew, W = weight
(
{u, v}

)
, i ∈ {1, 2, . . . ,W}

}
,

We have the following lemma.

Lemma 4.14 (Lemma 4.1 of [64]). The weight of the maximum weight matching
in Gw is equal to the size of the maximum cardinality matching in G.
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Using the above lemma we can compute the weight of the maximum
matching in Gw online by maintaining the unfolded graph G—each time
a new vertex b of Gw arrives, we just add the corresponding vertices
b1,b2, . . . ,bW for W = maxu∈N(Gw) weight

(
{b,u}

)
. We do not need to add

vertices bi for i >W, because they are isolated, hence, irrelevant. Observe
that a similarly property holds also for the white vertices of G, and as iso-
lated vertices are unreachable, we do not have to represent them explicitly
in any kind of structure. That means the algorithm does not need to know
Wmax from the start. The unfolded graph G has at most Wmax · |Ew| edges
and Wmax · |Vw| vertices, therefore, the following corollaries are immediate.

Corollary 4.15. There exist incremental and decremental algorithms that
maintain the weight of the maximum weight bipartite matching in Gw
which work in O

(
W

3/2
max · |Ew| · |Vw|1/2

)
total time.

Corollary 4.16. There exist incremental and decremental algorithms that
maintain (1 − ε)-approximation of the weight of the maximum weight
bipartite matching in Gw that work in O

(
Wmax · |Ew| · ε−1

)
total time.
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Chapter 5

Lower Bounds
on the Ranks and Tiers

When developing the theory of ranks and tiers, we have bounded them
from above by O

(
|M|

1/2
)
. In this chapter we provide graph instances which

cause the ranks to be of orderΩ
(
|M|

1/2
)
. This implies that all the presented

upper bounds, including these from Theorem 3.16 and Theorem 4.3 are
asymptotically tight.

Although there is only one place in Algorithm 1 where the ranks are
increased, namely line 2, intuitively there are two possible reasons—due to
an update, because of failed search, or due to application of an augmenting
path, when the search has ended successfully. Therefore, we introduce two
kinds of examples, in Section 5.1 and Section 5.2 respectively.

The first and easier kind of instances targets the searching process. The
examples are tailored to specific graph traversal algorithms, and induce
a high complexity due to the most common reason—because the search
phase of almost any augmenting-path algorithm is expensive. It is well-
known that the total length of all augmenting paths in the Hopcroft-Karp
algorithm is O

(
|V | log |V |

)
, yet, it still needs O

(
|E| · |V |1/2

)
time because of

the search. In similar vein, the first kind of examples cause the algorithm
to perform costly graph exploration in areas that produce no augmenting
paths.
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The second kind of examples targets the augmenting paths. With a care-
fully crafted graph instances we show that it is possible for the algorithm
to produce augmenting paths of total length Ω

(
|V |3/2

)
. As the construc-

tion is complex, we start with a basic building block called a comb, then
an intermediate instance of size O(r3), and finally a compressed graph of
size O(r2).

Note that although we prove that bounds in Theorem 3.16 and Theo-
rem 4.3 are tight, it does not contradict Conjecture 4.7—all the examples
below depend on the online setting, that is, the vertices are added in
a specific order.

5.1 Examples Targeting the Searching Procedure

The examples we introduce in this section cause the search algorithm to
explore the graph in a costly manner. For a fixed parameter r we construct
a graph of size O(r2), in which during each of the final r turns the ranks
are increased Ω(r2) times.

One could wonder, why then we could not use that technique to make
each of the |B| rounds costly. This is because in the initial stages the
augmenting paths are, on average, too short. Moreover, each time the al-
gorithm errs and picks the wrong direction, the ranks reflect the structure
of the graph better and better. In other words, for the search procedure to
get lost in the graph, we have to make it, in a sense, into a labyrinth. Yet,
each time the algorithm strays away, it learns the structure of the maze.
The r = |V |1/2 value balances the average length and the number of the
complicated augmenting paths, or, more intuitively, the need to make the
graph relatively complex and the time it takes for the ranks to resemble
its structure.

5.1.1 An Example for the Breadth-First Search

We start with an example for a BFS-based algorithm, because it is easy to
force the algorithm to explore large portions of the graph—it is enough
to make the augmenting paths all of the same length.
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The graph instance consists of r disjoint paths, each of r black and
(r+ 1) white vertices. Observe, that there are r seeds, i.e., unpaired white
vertices. As we consider the worst-case behavior, without lost of general-
ity we can assume that they are all located in one of the endpoints. To
complete the graph we add additional r black vertices, which we use to
connect the paths together. More precisely, the (r2+ i)’th black vertex con-
nects to the matched endpoint of paths i, i+ 1, . . . , r. Figure 5.1 depicts the
construction for r = 6 during turn t = (r2 + 3), the new black vertex is
marked by an additional black circle.

Note, how the search, when it reached the black vertex denoted by
b, first explored the descendants of b, rather than other vertices. This
is because its tier according to rank∗’s was 2, which is strictly less than
the tier of any other vertex. That didn’t happen earlier, because before
reaching b the available branches were equivalent, all of tier 3.
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Figure 5.1: A graph instance that provides an Ω
(
|V |1/2

)
lower bound for

the BFS-based algorithm, realized for r = 6.

After the last r black vertices have been added, the highest rank∗

reaches the value of r + 1 = 7, while the sum of all the ranks can be
estimated using the square pyramidal numbers, that is,

(r+ 1) +
∑
w∈W

w. rank∗ =
2(r+ 1)3 + 3(r+ 1)2 + (r+ 1)

6
∈ Θ(r3).
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5.1.2 An Example for the Depth-First Search

The graph instance, that causes the DFS-based algorithm to get lost, is just
a modification of the example shown in the previous section. To force the
DFS to traverse the graph instead of going straight for the seeds, we make
it follow a path that results in the algorithm blocking itself due to vertices
being marked visited. This ensures the algorithm has to explore all the
other parts of the graph first, and only then it can retract its steps and
reach the seed.

To construct the example for a given parameter r we take r disjoint
paths of (r + 2) white vertices and (r + 1) black vertices each, and join
them together with extra (r · r) edges that form zigzags perpendicular to
these paths as shown in Figure 5.2. We then add a single vertex b that
connects to paths’ endpoints, similar to the (r2 + 1)’th black vertex of the
previous example. However, we additionally make b adjacent to a white
vertex w, which will act as a relay and forward the depth-first searches
to b. Finally, we insert the last r black vertices, all adjacent to the first path,
sequentially, starting from the second matched vertex.
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Figure 5.2: A graph instance providing an Ω
(
|V |1/2

)
worst-case lower

bound for the DFS-based procedure realized for r = 6.

The diagram above shows turn t = r · (r+ 1)+ 1+ 3, in which the third
of the last r vertices is added. The red hue traces the DFS search tree:
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it first goes through the zigzag to w and b and blocks its path to the seeds;
after exploring the whole area on the left, it retraces its steps back to the
zigzag and then follows to the right, finally reaching a seed.

Observation 5.1. For any r > 2 the described instance has Θ(r2) vertices
and Θ(r2) edges. Moreover, the total sum of the ranks achieved by the
Algorithm 3 in the worst case is of cubic order,∑

w∈W
w. rank∗ ∈ Ω(r3).

Corollary 5.2. The bound in Theorem 4.3 is tight.

5.1.3 An Example for the Randomized Depth-First Search

One significant drawback of the example from the previous section is
that it assumes the depth-first search uses graph edges in particular or-
der. However, it is a common practice to permute the edges of an input
graph prior to searching, precisely to avoid some worst-case behaviors of
algorithms. In this section we transform the last example into a graph
instance which gives a slightly worse bounds, but still works if the search
considers the edges in a random order. More specifically, the construction
is of size O(r2 log r) for a given parameter r and it produces ranks of total
sum Ω(r3) with a constant probability.

The key is to trick the algorithm to follow the zigzag rather than the
path to the seed. To this end, instead of a single edge leading to the next
path we use k such edges, as shown in Figure 5.3.

Assuming the algorithm choices at each vertex are independent, we
can use k ∈ Θ(log r) to ensure the algorithm will use all the zigzags with
a constant probability. More precisely, there are r zigzags each of length
r, thus we can set k = 1+ 2

⌈
log2 r

⌉
to ensure that the algorithm fails to

follow all the zigzags with probability at most r · r · 2−k = 1/2.
Finally, the graph has to be constructed online, taking into account

algorithm’s decisions, to ensure the paths are appropriately directed. We
start with the rallying vertex w which is determined by the first matched
edge of b. For technical reasons, there is another pair w ′ and b ′, which
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w w

k

Figure 5.3: Modification to accomodate for randomized edge order: a part
of the original graph for r = 6 (left) and the transformed instance (right).

allows b ′ to connect w to the endpoints of the paths after all these paths
have been constructed. Immediately after b has been added, we insert
the original black vertices of the zigzags, starting with the ones closest to
w. The newly created matched edges determine which white vertices are
going to fulfill the role of the original white vertices of zigzags. Then we
add all the rest, from right to left, so that the only available path of rank
zero is to their left. The aforementioned vertex b ′ is added as the (r+ 1)’th
vertex from the end, which at that turn has no other option, but to match
to w ′. That creates the whole structure of the graph, ready for the last r
vertices, added from right to left, what increases the ranks to (r+ 1) with
probability 1/2.

One way to subvert this type of graph instance is to randomize the
search with regard to vertices, for example, each time a white vertex in-
creases its rank we assign it a new random number from interval [0, 1].
We use these numbers to maintain a priority queue which indicates in
which direction the algorithm should explore next. Despite the additional
overhead of the priority queue, practical experiments show that such an
algorithm performs on adversarially constructed instances slightly faster
than other versions. This leads us to believe that its expected rank is actu-
ally smaller by a polylog factor than in the worst-case.
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5.2 Examples Targeting the Augmenting Paths

This section describes a construction of another graph that lower-bounds
the ranks byΩ

(
|V |1/2

)
in the worst case. The difference is that it also makes

the algorithm to apply augmenting paths of total length bounded from
below by Ω

(
|V |3/2

)
.

As the structure is not easy to characterize, we first introduce a basic
building block called a comb. Then, we follow with a simple example of
cubic order, i.e., for a given parameter r we will construct an instance of
size O(r3) that implies ranks linear in r. In other words, it gives a Ω

(
|V |1/3

)
lower bound on the ranks, along with Ω

(
|V |4/3

)
on the total length of aug-

menting paths. Finally, we describe how to condense it to obtain a square
order example, that is, an instance of size O(r2) achieving ranks in Ω(r),
and argue why such compression is possible.

5.2.1 The Comb

The basic building block is a structure we call an 〈α,β〉-comb. It consists
of a path of length 2α that joins α disjoint components of rank β, that
is, any structures or subgraphs that allow for α pairwise vertex-disjoint
seeded paths, each of rank β.
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Figure 5.4: The left diagram depicts a 〈3, 1〉-comb with an additional com-
ponent of rank 1, the circled black vertex is the one to be added. The right
side shows two combs, 〈3, 1〉 (lower) and 〈3, 2〉 (upper) stacked together,
to present how combs of higher rank can reuse the smaller structures.
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The combs usually start in skim form, that is, their long path is of
rank 1. By applying components of increasing rank on both sides, an 〈α,β〉-
comb can be fattened up to β+ 1. This is possible, because the long path
is the lowest-ranked path to some seed until the final phase, when it is
of the same rank, namely β, and thus still feasible for the algorithm to
use. Such a fattened comb is a great source of (β+ 1)-ranked components
for another structure, that could be stacked just above it, as presented in
Figure 5.4. This construction leads to the following example.

5.2.2 The Instance of Cubic Order

Consider r combs stacked on top of each other. Suppose that the top
one is a 〈2, r〉-comb. Then, the next one has to be of length 2 and sup-
ply an additional component to fatten up the first, i.e., a 〈3, r− 1〉-comb.
The third from the top has to support the three paths from the previ-
ous comb and accommodate further two components, that is, we need
a 〈5, r− 2〉-comb. Following the suit, the general rule for the i-th comb is〈
1
2(i

2 + i+ 4), r− i
〉
.

Figure 5.5 presents the graph for r = 6. The numbers next to the black
vertices indicate the insertion order, while the numbers near the white
vertices denote the corresponding pairs matched by the augmenting path.
To avoid confusion, the white vertices which are not seeds were marked
with a cross instead of the usual non-zero rank∗. The special inverted-color
vertex belonging to the top comb is the one that at the end reaches the
highest rank. Note that after the addition of all the 22 black vertices, there
will be still some seeds left—we do not saturate all of them to make the
structure of the graph simpler and more apparent.

Augmenting paths traverse all the horizontal edges of the combs in
bottom-up manner: one path for the bottommost comb, two for the next,
and so on, up to r augmenting paths for the topmost 〈2, r〉-comb. Such
paths are tiered, because of two reasons. First, the edges between combs
point downward, i.e., it is not possible to reach upper combs. Second, the
tiers of vertices of any comb in the fattening phase are smaller or equal
than the tiers of vertices of combs below. More specifically, for 〈α,β〉-comb,
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Figure 5.5: The graph of cubic order for r = 6. The numbers at black
vertices denote the insertion order, while the numbers at white vertices
indicate the seed that was matched at that turn. The red dotted lines
denote edges that will be added with an appropriate black vertex. The
inverted-color vertex at the top of the graph is the one to achieve the
highest rank after addition of all the 22 black vertices.

the first (β− 1) indicated paths are of strictly lower rank, while the last
path is of equal rank. It means that, even if some particular run might not
follow these exact paths, in the worst case the algorithm could use them.

5.2.3 The Compressed Graph

The issue with the previous instance is that we require multiple compo-
nents for each of the stacked combs to make them fat. However, we may
observe that we are doing the same job many times, that is, any 〈α,β〉-
comb has to be fattened from k to k+ 1 for any k 6 β.

To avoid this inefficiency we are going to improve the previous ex-
ample, so that a single component of rank k is enough to make all the
appropriate combs into k+ 1. To achieve it, we join all the combs in a se-
quential manner so that a single, long augmenting path could go through
them all, as in the sketch below. Nevertheless, to allow for subgraph reuse,
they are at the same time stacked exactly as in the cubic example. This
modification is the base of our compression, and it allows us to construct
an example implying Ω

(
|V |1/2

)
lower bound on the maximum rank using

only the augmenting paths.

107



3-rank comb (k− 1)-rank comb k-rank combother combs2-rank comb

k−1

k−1

k kk k k
k−2

2 3

4

6

2 2 2

2

3

3

1

k−1

k−1

Figure 5.6: Combs in a series configuration. The additional components
are marked by a light red background, the last two were of rank (k− 2)
and (k− 1).

To obtain a structure similar to the one in the previous paragraph, we
apply the components only to appropriate combs by joining them in the
middle of the chain. In the diagrams k is odd, which means that after the
k-th pass (see Figure 5.7), the path in the graph leads from left to right
(similarly for 3-rank comb), while the part of paths near combs of even
rank goes from right to left, as for 2-rank and (k− 1)-rank combs.

3-rank comb (k− 1)-rank comb k-rank combother combs2-rank comb

k−1

k−1

k kk k k
k−2

2 3

4

6

2 2 2 3

3

1

k−1

k−1 k2

Figure 5.7: The structure after the component of rank k has been added.

The whole concrete example might look as shown in Figure 5.8, real-
ized for r = 5. The green dashed edges are those which stack two combs
on top of each other, as in the cubic case. Observe that 4-rank comb does
not need additional backing by components of rank 2, as the 3-rank comb
provides it when it is necessary, i.e., at that time these 3-rank components
are of rank 2. The red dotted edges are responsible for making the combs
fat, and the blue inverted-color vertex is the one achieving the maximum
rank.

The last five augmenting paths go as noted in the list below. Figure 5.9
presents the state just before the last path is applied.
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Figure 5.8: The example of square order for r = 5. State in which the five
final seeds are still unmatched.

1. From left-most vertex marked by number 1, straight right, by the
black solid path, until its white counterpart.

2. Starting near 2 on the red dotted arc, down onto the black solid path,
and then left until junction leading to white 2, where it finishes.

3. From red 3 vertex, one segment up, then right until the end, via red
dotted arc and vertex 2 back onto black solid path, one section right,
and through green dashed arc, finally reaching white vertex labeled
by number 3.

4. Up to white 1 and left, through the blue inverted-color vertex, then
further left, until the first junction down which would lead by two
green dashed arcs and small number of black edges to the white pair
of 4.

5. Down to the inverted-color vertex, then right once and down, three
hops via green dashed arcs, and finally left and down again to the
white 5.
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Figure 5.9: A single seed is left, the highest ranked edge is of rank 5.

The boundaries between combs are blurry, because of frequent edge
orientation changes. However, we can still count the number of white
vertices, and so, the 5-rank comb uses 3, 4-rank comb uses 2 · 3, the next
one 3 · 3 and the last, 2-rank comb uses 4 · 3. Generalizing for arbitrary
r, we have that k-rank comb needs (r − k + 1) · 3 nodes and the sum
3
∑r
k=2 r− k+ 1 = 3

∑r−1
k=1 k = 3

2 · r · (r− 1) makes the quadratic nature of
the considered example self-evident.

Corollary 5.3. The bound in Theorem 3.16 is tight.
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Conclusions

In this thesis we have considered a resource allocation problem, namely
the setting of online bipartite matching with augmentations. It can be
summarized as follows. We are given a bipartite graph G = 〈W ]B,E〉,
which is presented in a one-sided online fashion, that is, the white set W
is known from the start, while the black set B is revealed gradually during
the algorithm run. More precisely, each turn, a single black vertex b ∈ B
arrives, together with all its incident edges. Our main aim is to maintain
the maximum cardinality matching, in particular, the decisions of the
procedure are revocable—a matched vertex can be reassigned at a later
time. Our secondary objective is to keep the number of these rematchings
low.

This problem was introduced in 1995 by Grove, Kao, Krishnan and
Vitter [53], and the results included in this thesis were the first non-trivial
bounds for the general case.

In the meantime, Chaudhuri, Daskalakis, Kleinberg and Lin [24] an-
alyzed a few special cases and stated a conjecture that the shortest aug-
menting path algorithm achieves O

(
|V | log |V |

)
bound on the total length

of augmenting paths.
We took that approach in Chapter 2, where we have proved that the

total length of shortest augmenting paths does not exceed O
(
|V | log2 |V |

)
when the underlying graph is a tree. Nevertheless, since that bound does
not match tightly the Ω

(
|V | log |V |

)
lower bound, the question whether we

can do better imposes itself. Observe that Lemmas 2.9 and 2.10 already sat-
isfy the O

(
|V | log |V |

)
upper bound, while the inequalities of Lemma 2.12

are coarse—not only we sum sizes of whole subtrees instead of just paths
in them, but we assume the worst-case logarithmic usage for every single
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subtree and thus multiply them all by another logarithmic factor. Further-
more, intuitively, a sequence of trees with the longest shortest augmenting
paths should have the largest possible ratio of the total length of all final
dispatching paths to the sum of lengths of all paths. However, this ratio
seems to be the largest when all the black vertices but one are of degree
2, and the graph is just a long path. This intuition appears to work also
for the general bipartite graphs and it agrees perfectly with the aforemen-
tioned conjecture of Chaudhuri, Daskalakis, Kleinberg and Lin from [24],
which remains unproved.

Nevertheless, the proof of Theorem 2.6 happens to have a surprising
characteristic—it does not rely on the matching it calculates, only on the
structure of the underlying graph. That prompted us to consider the fol-
lowing game: each turn, after the algorithm calculates the new matching,
an adversary changes that matching arbitrarily, preserving only its cardi-
nality. The proof of Theorem 2.6 still holds within such game and thus
the total length of all the augmenting paths is bounded from above by
O
(
|V | log2 |V |

)
, given that the final graph is a tree. Moreover, we were un-

able to find an ω
(
|V | log |V |

)
example even for general bipartite graphs.

Analysis of a number of cases led us to the concept of minimum surplus
from Definition 1.10 and the following conjecture.

Conjecture 2.14. The total length of all the shortest augmenting paths in the
online bipartite matching problem with augmentations is bounded from above by
O
(
|V | log |V |

)
, even if the adversary is allowed to change the calculated matching

at every turn, in any way that preserves its cardinality.

In Chapters 3 to 5 we have considered another heuristic for the online
bipartite matching problem with augmentations—for each vertex w ∈W
we kept track of how many augmenting paths have usedw, and we tried to
greedily minimize the maximum of these counters. This technique yielded
an algorithm that produces augmenting paths of total length bounded
from above by O

(
|V |3/2

)
, while its running time is O

(
|E| · |V |1/2

)
. We also

gave (1− ε)-approximation algorithm that works in O
(
|E|ε−1

)
and gen-

erates paths of O
(
|V |ε−1

)
total length. Furthermore, we have extended

these results to the decremental-only and weighted settings by using sim-
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ple reductions. The bounds of the former are exactly the same as in the
incremental-only instance, both for the exact and for the approximate al-
gorithm. In the case of weighted graphs we have used the unfolded graph
technique of Kao, Lam, Sung and Ting [64], and obtained running times of
O
(
W3/2 · |E| · |V |1/2

)
and O

(
W · |E| · ε−1

)
for exact and (1−ε)-approximation

algorithm respectively. Finally, in Chapter 5 we have demonstrated exam-
ples that provide tight lower bounds for Theorems 3.16 and 3.36.

It is worth mentioning that the designed procedure, Algorithm 3, has
a few nice characteristics. For example, due to the rank minimization the
algorithm spreads its work over the whole graph as much as possible. In
particular, such behavior simplifies the analysis, because all the nodes in
the graph have the same bounds. Moreover, it could help in a practical
setting, e.g., parallelization, or allowing an approach similar to the one
assumed by Blelloch, Fineman and Shun in the case of greedy sequential
maximum matchings [17].

Furthermore, ranks and tiers provide the algorithm much more free-
dom than the shortest augmenting paths, while they carry enough struc-
ture to imply strong bounds. This way, not only we can avoid repeating
bad decisions too often, but perhaps even overlay a finer path-seeking
strategies, or at least use heuristics tuned to some specific practical appli-
cations. Note that Algorithm 3 is rather easy to modify and adjust—it has
very few special cases and treats the vertices uniformly, which makes it
an ideal candidate for a building block of more complex algorithms. Fi-
nally, the technique of ranks and tiers introduced in Chapter 3 is a simple
combinatorial one, it appears applicable for a wide range of other settings,
not only matchings.

Still, in this context the most straightforward generalization that comes
to mind is whether the ranks and tiers would work for general, non-
bipartite graphs, even in the offline case. Frequently over the years, each
time a new result was proven for the offline bipartite matching problem,
a corresponding result for the general graphs followed soon after. The
biggest problem here is, as usual, an effective search for the augmenting
paths. As the skew-symmetric graphs appear to be the easiest way to
define ranks and tiers on general graphs, applying the methods used by
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Goldberg and Karzanov in [50] seem to be an interesting line of research.

This points to the biggest limitation of ranks and tiers—the concepts
seem to be tied to the one-sided online setting—if we were to allow in-
sertions of vertices on the both sides of graph, a trivial example of a path
would cause the ranks to be increased to Ω

(
|V |
)
. Is this an intrinsic fea-

ture or maybe it is possible to modify the definitions to accommodate
insertions on both sides?

Another open problem is whether the ranks and tiers technique can
be applied to the weighted setting in a better way. Could we combine it
with the scaling methods that have yielded O

(
|E| · |V |1/2 · log(W · |V |)

)
time

in [47] or O
(
|E| · |V |1/2 · logW

)
time in [32]? Similar considerations apply

also to vertex-weighted graphs and cases where the edge- and vertex-
labels relate to capacities rather than just costs or benefits.

In the context of Section 3.4, it would be interesting to see whether the
ranks and tiers technique would work for the maximum flow problem. It
is certainly not a coincidence that for the maximum cardinality matching
and the maximum unit flow problems we arrive at the same bounds as
the algorithm of Dinitz [30]. Would the generalization of our procedure to
general flows work in O

(
|V |2 · |E|

)
? Even more intriguing are the parallels

between the relaxed ranks in our algorithm and the labels in the preflow-
based push-relabel maximum flow algorithm of Goldberg and Tarjan [52].
For example, the black vertices bi for i > t which have not yet arrived in
turn t could be considered a positive excess in Gn1Mt , while the set of
tiered edges and the admissible network fulfill similar roles despite the
former not being acyclic. Exploring these connections could improve our
understanding of the matchings and flows.

Finally, the open problem which the author finds most intriguing is
the one stated as Conjecture 4.7 at the end of Section 4.3 (see also below).
Although it is not a rare occurrence that the algorithm’s practical running
times appears better than its analytic guarantees [33], and it is more that
just possible that the classes of instances the Algorithm 8 was tested on
simply did not contain the structures that cause the worst-case behavior,
the procedure randomized in this way has certain characteristics that
are not available in other approaches. For example, even if we were to
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consider the vertices of B(G) in the Hopcroft-Karp algorithm during each
phase in a random order, we are still forced to pick those, which admit
an augmenting path of minimum length. On the other hand, because of
the online origin of Algorithm 8, the randomness provided by the input
permutation has a distinctive rigid feel to it—impossible to remove or
circumvent by the adversary, it influences the algorithm decisions in a way
that was not possible before. Therefore, in the author’s opinion settling
Conjecture 4.7 either negatively or positively would be a significant result
in algorithmic graph theory.

Conjecture 4.7. If the vertices arrive in a random order, then the ranks and tiers
technique yields an algorithm that runs in O

(
|E| · |V |α

)
time for some α strictly

smaller than 1/2.
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