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Tytuł w języku polskim

Wydajne metody uczenia maszynowego dla problemów sekwencyjnego podejmowania decyzji

Streszczenie

W niniejszej pracy badane są efektywne i wydajne rozwiązania dla problemów sekwencyjnego
podejmowania decyzji - klasy problemów, w których agent wchodzi w interakcję ze środowi-
skiem, wykonując serię akcji, w celu osiągnięcia określonego celu. Jednym z głównych wyzwań
w tej dziedzinie jest koszt związany ze zbieraniem danych, który jest często przeszkodą w szer-
szym zastosowaniu metod opartych o uczenie maszynowe. Podejmując to wyzwanie, niniejsza
praca bada trzy strategie mające na celu zmniejszenie kosztów uzyskania danych: zwiększa-
nie efektywności wykorzystania danych przez algorytmy, użycie tańszych źródeł danych oraz
posłużenie się wiedzą zakodowaną w wytrenowanych modelach uczenia maszynowego.

W poszukiwaniu zwiększania efektywności wykorzystania danych, zastosowano uczenie
ze wzmocnieniem oparte o model. Zaproponowany algorytm, SimPLe, jest pierwszym sku-
tecznym zastosowaniem tej klasy metod do gier Atari. Ustanowił on najwyższe wyniki pod
względem efektywności wykorzystania danych i wywołał większe zainteresowanie ewaluacją
algorytmów w reżimie małej ilości danych.

Druga prezentowana strategia, korzystanie z tańszych źródeł danych, została wykorzy-
stana w kontekście samochodów autonomicznych. Pokazana została możliwość użycia danych
z symulatora do wytrenowania polityki mogącej prowadzić samochód w świecie rzeczywistym.
Zbadana została też możliwość wykorzystania uczenia przez imitację, które potrzebuje wyłącz-
nie statycznego zbioru danych trajektorii eksperta, bez potrzeby kosztownego i ryzykownego
uruchamiania własnej polityki. Wychodząc od modułu planującego opartego o uczenie maszy-
nowe o nazwie ChauffeurNet, zaproponowano cztery usprawnienia w zakresie jakości danych,
treningu modelu, walidacji i uruchamiania w świecie rzeczywistym.

Na koniec, zaprezentowano możliwość wykorzystania w robotyce wiedzy zawartej w wy-
trenowanych modelach, takich jak duże modele językowe. Zaproponowana metoda o nazwie
LM-Nav wyróżnia się zdolnością do wykonywania w świecie rzeczywistym instrukcji w ję-
zyku naturalnym. Nie potrzebuje w tym celu trenować ani dopasowywać wykorzystywanych
modeli.

Podsumowując, niniejsza rozprawa prezentuje nowatorskie i skuteczne metody rozwiązy-
wania problemów sekwencyjnego podejmowania decyzji. Mam nadzieję, że przyczyni się do
szerszego wykorzystania uczenia maszynowego w tej klasie problemów w świecie rzeczywistym.

Słowa kluczowe

uczenie ze wzmocnienie, uczenie w oparciu o model, transfer symulator-rzeczywistość, uczenie
przez imitację, modele podstawowe, autonomiczne samochody

Klasyfikacja tematyczna ACM

Computing methodologies → Machine learning → Learning paradigms → Reinforcement
learning → Sequential decision making
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Abstract

This dissertation explores efficient and cost-effective solutions for sequential decision-making
problems – a class of problems where an agent continuously interacts with an environment,
making a series of actions, with the aim to accomplish a certain objective. One of the fun-
damental challenges in this area is the significant expense associated with gathering data,
often hindering the broader adoption of methods based on machine learning. In response,
this thesis explores three overarching strategies to mitigate these costs: enhancing the sam-
ple efficiency of algorithms, utilizing more affordable data sources, and leveraging knowledge
already encoded in pre-trained machine learning models.

In the quest for improved sample efficiency, the focus is on model-based reinforcement
learning. The proposed SimPLe algorithm is the first successful application of these methods
to Atari games. It established state-of-the-art results in sample efficiency and sparked interest
in evaluating algorithms in the low-data regime.

The second presented strategy, of utilizing more affordable data sources, is explored in the
context of autonomous driving. The possibility of using simulated data for training a driving
policy suitable for real-world deployment is demonstrated. Furthermore, the potential of
imitation learning is explored, which relies solely on offline data, promoting a less expensive
and safer data acquisition approach. From a starting point of a machine learning-based
planner akin to ChauffeurNet, four distinct enhancements to data collection, model training,
validation, and deployment are proposed.

Finally, the potential of capitalizing on the knowledge embedded in pre-trained models,
such as large language models, is unveiled in the context of robotics. The method, dubbed LM-
Nav (Large Model Navigation), stands out for its ability to follow natural language instructions
in real-world environments, all without the need for supplementary training or fine-tuning.
This demonstrates a unique approach to utilize pre-existing models to manage complex tasks
efficiently.

Collectively, this dissertation presents novel and effective approaches for sequential decision-
making problems, paving the way for the broader adoption of machine learning methods for
this class of problems in the real world.

Keywords

reinforcement learning, model-based reinforcement learning, sim-to-real transfer, imitation
learning, foundation model, autonomous driving

ACM Computing Classification

Computing methodologies → Machine learning → Learning paradigms → Reinforcement
learning → Sequential decision making
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Chapter 1

Introduction

In 1988, the year when I was born, Hans Moravec wrote [43]:

It is comparatively easy to make computers exhibit adult level performance on
intelligence tests or playing checkers, and difficult or impossible to give them the
skills of a one-year-old when it comes to perception and mobility.

Even after the passage of over three decades, the essence of Moravec’s paradox, as it is
commonly referred to, remains true. Over the last few decades, artifical intelligence managed
to ascend what were perceived as pinnacles of human intelligence. Starting with the victory
of Deep Blue over Garry Kasparov in 1997 [12], through the victory of AlphaGo over Lee
Sedol in 2016 [58], to the victory of AlphaStar over professional StarCraft players in 2019
[63], the artificial intelligence has been able to defeat the best human players in various
games. The advent of large language models [16, 10] has shown that the progress is not
limited to competitive games, but can also be achieved in more open-ended domains. The
recently introduced GPT-4 [46] was evaluated on a wide range of exams, including SAT
(college admission), Uniform Bar Examination (law), and USABO Semifinal (biology). In
the aforementioned exams, GPT-4 performed above the 88th percentile of human test takers.
Notably, it surpassed the passing threshold for all UBE jurisdictions with a considerable
margin [33], i.e. it would be qualified to represent a client in a court of law.

Despite these successes, the progress of artificial intelligence when interacting with the
physical world is less remarkable. A vivid example of this is manipulation using multifingered
robotic hand [38]. Despite 30 years of research, robots are still much less adept at using
hands than average human children. A recent, celebrated example of progress was enabling
a robot to solve a Rubik’s cube [2]. However, the robot required 4 minutes to solve it,
and a human master can do it in slightly more than 6 seconds (also using one hand) [52].
Drawing a parallel to the context of examinations, it is highly probable that current robotic
systems would struggle to sufficiently manipulate a pen to complete a written exam within
the designated time frame.

The comparatively slower advancements in the realm of physical interactions can be largely
attributed to the massive data requirements of contemporary machine learning methodologies.
Collecting huge datasets beyond the game-based environments and simulators can incur sub-
stantial costs. The data complexity can escalate further when we shift focus from perception-
based tasks, such as image object recognition, towards the automation of control tasks like
vehicular driving. Many contemporary methods of solving them like on-policy reinforcement
learning require a large number of interactions with the environment for every step of the
optimization process. This can be prohibitively expensive in the real world, where the cost of
each interaction can be high.
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Figure 1.1: Elements of a sequential decision making problem. The agent interacts
with the environment, and through its actions, it can alter the environment’s state. In turn,
the agent receives an updated observation of the environment based on the new state, and
potentially, a reward. Utilizing its policy, the agent then determines the next action to take
based on this recent observation. The images of the robot and globe were generated using
DALLE-2 [51].

These challenges underscore the imperative of my research: to develop and explore efficient
and cost-effective solutions for sequential decision-making problems.

1.1. Sequential decision making

The thesis investigates efficient machine learning methods for sequential decision-making prob-
lems. These types of problems require determining a series of actions to be taken in an
environment in order to achieve a specific goal [20]. Many domains, such as autonomous driv-
ing, robotics, and game playing, can naturally be formulated as sequential decision-making
problems.

However, the problem setup differs from the typical supervised learning setup, where
each data point is assigned a ground truth label, and the datapoints are independent and
identically distributed (i.i.d.). In sequential decision-making, the actions taken by the agent
directly impact the state of the environment, which subsequently influences the agent’s future
observations. By taking different actions, the agent can explore various parts of the state
space, thereby affecting the future distribution of the data it encounters. This contradicts the
i.i.d. assumption, which is commonly made in supervised learning.

Sequential decision-making problems are typically represented by an agent engaging with
its environment over multiple steps, as illustrated in Figure 1.1. The environment has a
mutable state which changes over time. In a game of chess, for instance, this state corresponds
to the positions of the pieces on the board and the progress of the game so far, which may
impact the outcome. Alternatively, in a game of Texas Hold’em poker, the state includes the
cards dealt to each player, those on the table, the remaining deck’s order, each player’s chip
count, and the total money in the pot.

Each step in the decision-making process involves the agent observing the environment.
This could mean direct access to the state, as in fully observable environments like chess, or
access to only a portion of the state in partially observable environments, such as poker where
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the agent does not know the cards held by the opponents or the order of the remaining deck.
Based on these observations, the agent selects an action according to its policy – a function
that can be stochastic and maps observations to actions. The chosen action, when applied to
the environment, can alter its state.

The representation of a sequential decision making problem may also include a reward
received by the agent from the environment. We are then faced with a reinforcement learning
problem and learning goal is to design a policy that optimizes the sum of these rewards, which
may be discounted over time.

Formalism. The sequential decision making problems are typically formalized as Partially-
Observable Markov Decision Processes (POMDPs) [31]. They are characterized by a tuple
⟨S,Ω,A, T,O⟩, where:

• S, Ω, A are the space of all possible states, observations, and actions respectively.

• T : S ×A → Π(S) is a state-transition function, which maps a state and an action to a
probability distribution over the next state.

• O : S → Π(Ω) is an observation function, which maps a state to a probability distribu-
tion over the observations. For fully observable environments, we can omit it, or assume
Ω = S and O = id.

For reinforcement learning the tuple is extended with:

• R : S ×A → R is a reward function, which maps a state and an action to a real-valued
reward.

• γ a discount factor. In reinforcement learning the goal is to optimize a discounted sum of
future rewards:

∑T
i=0 γ

iri. If the future rewards should not be discounted, then γ = 1.

1.2. Machine learning approaches for sequential decision making

The sequential decision making problems can be solved using a variety of machine learning
methods. A detailed review of these methods is beyond the scope of this thesis, but we will
briefly discuss the most important ones.

1.2.1. Imitation learning

When the data used for training does not contain the reward signal, we encounter the challenge
of imitation learning [29]. The objective is to learn a policy that mimics expert behavior. A
prevalent method to address this is through behavioral cloning, which reframes the issue as
a supervised learning task of predicting action based on observation. Another perspective
on imitation learning is given by inverse reinforcement learning [4], an approach that strives
to extract the reward function from the expert demonstrations, which could subsequently
be used to train a policy. Additionally, there are sophisticated imitation learning strategies
like generative adversarial imitation learning (GAIL) [25]. Drawing parallels with generative
adversarial networks (GANs) [21], GAIL tries to train a policy that will be indistinguishable
from the expert’s policy by an adversarial discriminator.

We present a set of methods using imitation learning for autonomous driving in Chapter 4.
In Chapter 5, the low level controller incorporated from ViNG [56] is trained by supervised
learning, and can be interpreted as a variant of behavioral cloning.
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1.2.2. Reinforcement learning.

When the reward signal is available, we can use reinforcement learning methods to train a
policy. Reinforcement learning algorithms can be classified in various ways. One classification
hinges on the type of data used during the training process. Here, we distinguish between
on-policy, off-policy, and off-line or batch [37]. The on-policy methods utilize data solely from
the current policy. In contrast, the off-policy approaches can incorporate additional data,
while the off-line methods exclusively use pre-recorded data, with no possibility of interacting
with the environment.

Another categorization of reinforcement learning algorithms is based on model usage,
segregating them into model-free and model-based. Model-based methods use an explicit
model of the environment, while model-free methods do not. For a deeper discussion of
model-based methods, refer to Chapter 2.

Furthermore, these algorithms can be differentiated by the type of policy used: value-
based, policy-based, and actor-critic. Value-based policies focus on estimating the quality
of each state or state-action pair. Policy-based methods, on the other hand, train a policy
directly, while actor-critic methods combine the two approaches.

Chapter 3 demonstrates usage of Proximal Policy Optimization (PPO) [55] which is an
example of a modern, on-policy, actor-critic method.

1.3. Reducing data acquisition costs

As argued at the beginning of this chapter, the cost of collecting data for sequential decision
making problems, especially those positioned in the real world, is one of the main obstacles
to the widespread adoption of machine learning methods in this field. This thesis aims to
address this issue by presenting results from three high-level strategies that can help reduce
data acquisition costs. These strategies involve making algorithms more sample efficient,
utilizing cheaper data, and leveraging knowledge encoded in pre-trained machine learning
models. In the following sections, we will elaborate on each of these strategies and reference
chapters where they are discussed in detail.

To enhance sample efficiency, we propose employing model-based reinforcement learning.
In Chapter 2, we present the results of applying these methods to the visual domain – Atari
games.

In the line of work on reducing data acquisition costs, we explore methods applicable to
autonomous driving. Chapter 3 demonstrates the use of simulated data to train a driving
policy that can be deployed in the real world. Additionally, Chapter 4 summarizes a set of
approaches that enable the deployment of a policy trained with imitation learning. Collecting
data for imitation learning is less expensive and safer as it only requires an expert driver
to demonstrate the desired behavior, eliminating the risks associated with trial and error
processes in real-world reinforcement learning.

Lastly, we investigate the utilization of knowledge embedded in pre-trained models. Recent
progress in large language models [32], exemplified by the introduction of ChatGPT [45], has
showcased the potential of scaling up models trained with self-supervision over extensive
data and applying them to a variety of downstream tasks. In Chapter 5, we illustrate how
pre-trained models for language, vision, and control can be applied to robotics. The resulting
system, named LM-Nav, is capable of following natural language instructions in the real world
without the need for training or fine-tuning.
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Chapter 2

Model-based approach in visual
domains

Model-based reinforcement learning (MBRL) is a powerful approach to solving sequential
decision-making problems by leveraging an explicit model of the environment. This class of
methods can either incorporate a pre-specified model (e.g., in board games such as chess,
with the rules provided upfront) or learn the model from available data. While MBRL can be
more challenging to train compared to model-free methods, it tends to be superior in terms of
sample efficiency, which is the main motivation for pursuing it (refer to Chapter 7.1 in [42]).

In real-world applications, reinforcement learning shows great promise when integrated
with visual inputs, such as camera-equipped robots or autonomous vehicles. However, the
application of model-based methods in visual domains encounters a substantial challenge due
to the high dimensionality of the observation space. The number of data features of image-
based observation spaces is many orders of magnitude greater than domains where earlier
iterations of MBRL, like PILCO [15], were successful.

A particularly important benchmark for assessing sequential decision-making in visual
domains is the Arcade Learning Environment (ALE) [6]. Since the inception of deep rein-
forcement learning algorithms, starting with the pioneering DQN [41], this environment has
become the standard benchmark for reinforcement learning techniques. However, until re-
cently, there had been "no demonstration of successful planning with a learned model in the
ALE" (ref Section 7.2 in Machado et al. [39]).

This chapter contains an overview of our pioneering work on applying MBRL to Atari
games. It was the first to show that introducing a video prediction model to a deep rein-
forcement learning algorithm outperforms the then state-of-the-art model-free algorithms in
sample efficiency, even by over an order of magnitude in some games. The impact of the paper
can be measured by its citations - over 700 at the moment, according to Google Scholar. The
sections below delve into the specific aspects of the work.

2.1. Model-Based Reinforcement Learning for Atari

We proposed an algorithm called Simulated Policy Learning (SimPLe). The method follows
an iterative process that involves the following steps:

1. Collect data from the environment using the latest policy. Initially the policy is random.

2. Train a world model on the collected data. The world model is an action conditioned
video prediction model, which generates the next likely frame and reward given the
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current frame and action.

3. Train a policy inside the world model. The policy is being trained using a standard
on-policy algorithm: Proximal Policy Optimization (PPO) [55].

By using the world model to train the policy, the overall amount of data from real Atari games
is significantly reduced. We demonstrated that SimPLe can learn to play multiple Atari games
using only 100K interactions with the real game, which is about two hours of gameplay. This
is a significant improvement over the previous model-free methods, which typically required
millions of interactions with the environment.

2.1.1. World-model architecture

The world model architecture is similar to that of an autoencoder, with convolutional layers
squeezing 4 input frames into the bottleneck layer, and then deconvolutional layers recon-
structing the next frame. In order to assure that the action is not ignored, it is attached to
every layer of the decoder. The key novelty comes from adding a discrete latent variable to
the bottleneck layer. The idea is similar to that of a variational autoencoder (VAE) [35] and
the discrete form of the latent variable was selected due to discrete nature of the Atari games.

(a) Freeway (b) Kung-Fu Master

Figure 2.1: Examples of world-model of Atari. In each of the images, the left panel is
the model output, the middle panel is the ground truth, and the right panel is the absolute
difference between the two. In the case of Freeway, the prediction is pixel-perfect, hence the
black panel. In the case of Kung-Fu Master, the world model predicts a different number of
opponents, but other than this the prediction is plausible. Please note that the action of the
player (high kick) is correctly captured.

Even though the world model is designed to predict only a single frame, it can be deployed
autoregressively to generate a sequence of frames of any desired length. Our observations
indicate that our model, in numerous games, is capable of generating extended sequences
that either precisely match the ground truth or produce a distinct yet plausible series of
frames. Examples of this can be seen in Figure 2.1.

2.1.2. Policy training

The policy is trained on a small set of experiences collected during model exploration (step
1), and a large number of rollouts that are generated from the world model using PPO.
However, a significant challenge comes from the fact that even the best world model tends
to produce low-quality data when unrolled autoregressively for an extended number of steps.
This poses a problem when training agents to play Atari games, where a single episode can
involve thousands of steps.
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Our solution to the problem comes in the form of random starts. Instead of unrolling the
entire trajectory in the world model, we select random starting points from the trajectories
collected in step 1 and autoregressively unroll from the world model for a limited number of
steps (50 or 100 in practice).

2.1.3. Evaluation and Atari 100k

For the evaluation of our method, we used a fixed budget of 100K interactions for each of the
games. This was a significant reduction compared to the previous evaluation methods, which
typically used 10M interactions [41, 55].

The evaluation of reinforcement learning in such a low data regime has since become a
new benchmark for algorithms, commonly referred to as Atari 100k. This benchmark has
since been adopted by many significant studies, such as the one by Micheli et al. [40] which
advocates for the use of transformers as world models. An even more noteworthy example
is the paper by Agarwal et al. [1], which received an Outstanding Paper Award at NeurIPS
2021. This work illustrates how performance indicators can become unreliable when too few
training runs are reported. It is encouraging to observe that in this independent evaluation,
SimPLe has proven to be competitive when compared to some of the more recently proposed
methods including CURL [36].

2.2. Summary

This chapter contains a discussion on the subject of model-based reinforcement learning. An
application of this concept is introduced via SimPLe, a model-based approach designed for
Atari games. This method achieved state-of-the-art results in low-data regime. Furthermore,
the work presented in this chapter has spurred interest in evaluating agents trained within
a fixed budget of 100K interactions, a criterion now widely recognized as the Atari 100k
benchmark.
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Chapter 3

Sim-to-real policy transfer for
autonomous driving

This chapter focuses on autonomous driving, the central theme that spans both this chapter
and the following one. We begin by providing an overview of the field, exploring its challenges
and potential solutions. Subsequently, we explore the utilization of simulators as an alternative
for data collection. Lastly, we introduce our novel methodologies for transferring driving
policies from the simulated environment to real-world scenarios, thereby bridging the gap
between virtual and physical domains.

3.1. Autonomous driving

Enabling autonomous driving presents a significant interdisciplinary challenge, encompassing
robotics, computer vision, sequential decision making, and machine learning. Successfully
addressing this challenge in a scalable manner holds immense potential for societal impact,
including enhanced safety, reduced transportation costs, and increased accessibility. Notably,
while recent years have witnessed substantial progress in the field, with a few notable real-
world deployments [59], it is important to recognize that autonomous driving research has a
much longer history than commonly perceived.

As early as the 1980s, pioneering projects such as ALVINN [48] and VaMoRs [18] demon-
strated the ability to drive on highways. However, despite four decades of development and
significant advancements, numerous challenges persist. The existing approaches do not effec-
tively scale to a wide range of locations, as evidenced by the limited active deployments in
just a couple of cities, despite substantial funding in the billions of dollars. This indicates
that autonomous driving remains a far from solved problem [24, 30].

To understand the reason for these limitations we need to take a closer look at a typical
autonomous driving system. It consists of multiple components, including perception (e.g.
object detection, semantic segmentation), prediction (e.g. motion forecasting for other traffic
participants), and planning (e.g. trajectory planning), see Figure 3.1. According to Jain et al.
[30] and Hawke et al. [24], unlike perception and in growing manner prediction, planning still
mostly relies on complex hand-crafted rules. This, in turn, negatively impacts the cost and
speed of the development of self-driving systems. The lack of technical scalability calls for
a paradigm shift towards data-driven solutions utilizing machine learning, to achieve greater
scalability. This and the next chapter aim to explore methods that represent steps in this
direction.
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Figure 3.1: A modern autonomous driving pipeline with the amount of machine
learning used in each component. While perception and predictions heavily use machine
learning, planning still mostly relies on hand-crafted rules. Figure adapted with author’s
permission from: [44].

3.2. Simulator as an alternative to real-world data collection

Simulation has a number of advantages over real-world data collection. First, it is typically
much cheaper to generate data, and the process is not wearing out the equipment (be it robot
manipulator, or autonomous vehicle). Secondly, it is possible to generate a vast amount of
data in a short time, thanks to the speedup and parallelization of the simulation. Finally,
simulators can generate data from situations that are dangerous without any risk to the
equipment or the operator.

However, there are crucial differences between the real world and the simulation, sometimes
referred to as the sim-to-real gap. See Figure 3.2 for an example of such a gap in the context
of camera input in autonomous driving. A policy trained purely in a simulator is very unlikely
to perform well in the real world. In this chapter, we will discuss the results of our methods
to tackle the sim-to-real gap in the context of autonomous driving. We will start by shortly
describing the problem space, which is also shared with the next chapter.

(a) Simulation (b) Reality

Figure 3.2: Sim-to-real gap in autonomous driving.
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3.3. Simulation-based reinforcement learning for real-world au-
tonomous driving

In our study, we present evidence of the successful transfer of a driving policy that was initially
trained in the Carla simulator [19] to a real-world vehicle. This accomplishment required a
comprehensive exploration of various approaches. We trained and evaluated ten distinct
classes of models, meticulously assessing their performance in both simulated and real-world
environments. To ensure the robustness of our findings, we conducted approximately 400 test
runs in the real world.

It is important to note that this research was conducted in collaboration with our industry
partner, Volkswagen, adding real-world practicality and validation to our work.

Domain radnomization. The key enabler of sim-to-real transfer was a technique known
as domain randomization [60]. To develop a policy that can withstand the sim-to-real gap,
it is crucial to expose the policy to a broad spectrum of situations within the simulation.
We incorporated extensive perturbations into the simulator, such as alterations in lighting,
weather, and textures, as well as Gaussian noise and cutouts [17] of the camera image. As
expected, we observed improved transfer between different domains.

Regularization. During our investigation, we made intriguing observations that are often
considered intuitive in other areas of machine learning but were less emphasized in the con-
text of reinforcement learning. For instance, we discovered that the regularization of neural
networks plays a crucial role in facilitating the successful transfer of policies from simulation
to reality.

Offline evaluation metric. Additionally, we recognized the pressing need for a metric that
could offer valuable insights into the performance of the learned policy before its deployment
in the real world. To address this, we proposed a novel metric that proved to be highly
beneficial in providing a preliminary assessment of real-world performance. It was a mean
absolute error between the steering angles of a human driver and the learned policy on a
recorded trajectory.

3.4. Summary

This chapter offers a succinct introduction to the realm of autonomous driving, highlighting
the considerable potential of simulators as substitutes for real-world data collection. It further
elaborates on research conducted in collaboration with Volkswagen, focused on the transfer
of driving policies from simulation to reality. Significant progress has been accomplished
in improving the sim-to-real transition of driving policies, largely due to the application
of domain randomization and regularization. Additionally, the introduction of an offline
evaluation metric presents a potential to increase the velocity of the development of similar
approaches in the future.
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Chapter 4

Imitation learning for autonomous
driving

Imitation learning is a well-established approach for solving sequential decision-making prob-
lems using supervised learning. Its core principle is to learn a policy that mimics the behavior
of an expert, which is demonstrated through a series of actions taken in a given environment.
Applying this approach to autonomous driving is an old idea, in fact, this was the technique
used by ALVINN [48] in 1990. The interest in these type of approaches was rekindled by
the method called ChauffeurNet [5] in 2019. It combined advanced perception with imitation
learning to create a policy capable of driving on a realistic test track.

Imitation learning offers a cost-efficient approach for autonomous driving due to its relative
ease in collecting a large dataset of expert demonstrations. The process simply involves
allowing a human driver to operate a sensor-equipped car, generating a valuable dataset for
training purposes. This is in contrast to on-policy reinforcement learning, which requires a
large number of interactions with the environment to learn a policy.

For these reasons, the research team at Lyft Level 5 (later transferred to Woven Planet,
a subsidiary of Toyota) embarked on an exploration of imitation learning as a promising
solution for real-world autonomous driving. I had the privilege of working with this team
from 2020 to 2022. The team achieved significant advancements in this endeavor, resulting
in the successful transition of the company’s prototype stack from a heuristic-based policy
to an imitation learning-based policy. Some of our notable scientific contributions have been
published and are summarized in this chapter.

4.1. What data do we need for training an AV motion planner?

Training a machine learning planner requires a vast dataset of expert demonstrations. Houston
et al. [27] has demonstrated that the performance is steadily improving until at least 1000
hours of data are used for training. Further advancements likely call for an even larger dataset,
which underscores the importance of efficient data collection.

Autonomous vehicles are usually fitted with a range of sensors, including cameras, li-
dars, radars, and GPS. These tools make them capable of autonomous driving, but they also
contribute to high equipment and operational costs. In this study, we question whether a low-
fidelity dataset collected using less expensive sensor suites (e.g., cameras only) can effectively
be used to train a performant planner.
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Figure 4.1: The methodology of comparing the impact of data quality on an ML
planner performance.. Figure adapted with permission from [14].

Figure 4.2: Data quality comparisson. Y-axis
represents open-loop error, lower is better. Figure
adapted with permission from [14].

To answer the question, we adopted a
methodology as outlined in Figure 4.1. We
started with a large, high-quality dataset col-
lected using a full sensor suite. This data
was then deliberately downgraded in qual-
ity, mimicking the outcome of using less ex-
pensive sensors. We then compared the per-
formance of a planner trained on datasets of
varying size and quality. The performance of
planners trained on datasets of various sizes
and qualities was then compared.

Our findings, summarized in Figure 4.2,
suggest that a larger dataset of lower-quality
data may, in fact, be more beneficial than a
smaller dataset of higher-quality data. The
most effective approach appears to be pre-
training the model on low-quality data and then fine-tuning it with high-quality data.

These results significantly impact the economics of data collection. This has particular
importance for companies with large vehicle fleets, such as Lyft. The feasibility of installing
less expensive sensor suites in numerous vehicles to gather the necessary data for training a
high-quality planner offers an economically viable solution.

4.2. SimNet: Learning reactive self-driving simulations from
real-world observations

While developing a proficient autonomous driving planner is a critical aspect, having methods
to accurately verify its performance is equally essential. We need to carry out tests within a
safe environment where potential mistakes will not have costly and dangerous consequences.
Naturally, simulators provide an ideal setting for such evaluations. However, they are not
without their limitations, particularly concerning the realistic representation of other traffic
participants’ behavior. Typically, behaviors are simulated either through rule-based heuristics
or so called log-replay, which involves replaying recorded behavior [13]. The latter approach is
widely used, but it has a critical issue. When the evaluated agent, also known as ego vehicle,
takes a different path than the recorded one, the behavior of other participants remains
unchanged. This results in simulations that do not accurately reflect reality, which can be
misleading and cause both false positive and false negative errors. An example of a false
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positive might be a scenario where the ego vehicle is driving slower and ends up being rear-
ended. An instance of a false negative will be discussed below. In response to this challenge,
we propose a method that learns the behavior of other traffic participants directly from real-
world data, thus offering a more authentic interaction model.

In the study, we introduce a method that learns the behavior of other traffic participants
directly from real-world dataset collected by a fleet of autonomous vehicles (see Houston et al.
[27] for the dataset details). This approach, which we named SimNet, aims at providing a
more realistic model for traffic interaction than log-replay and scripted heuristics. We evaluate
the effectiveness of this method based on its realism (measured by the distance to actual
trajectories when the ego vehicle follows a recorded path) and reactiveness (how simulated
agents respond to the ego vehicle stopping). We observed promising results in both aspects.
Furthermore, the performance improves as more data is incorporated, indicating the potential
for further scalability. This shows the promise for future enhancements that can be achieved
not through substantial engineering efforts, but simply by adding more data to the system.

As mentioned before, SimNet helped us to discover an interesting example of our machine
learning-based planner that remained hidden with log-replay. When we compared the perfor-
mance of the planner evaluated with these two methods, we observed significant differences.
In particular, when evaluated with SimNet, the planner was failing to start at a green traffic
light, a behavior that was not present with non-reactive agents. Upon investigation, we deter-
mined that the ML planner succumbed to what is known as causal confusion. It had learned
to start moving not when the light turned green, but rather when the car behind it began
to move. Such a strategy works perfectly well with log-replay. However, when the agents
are reactive (as in SimNet, or in the real world), the vehicle behind does not start moving
until the ego vehicle does, resulting in a deadlock. This example highlights the significance of
realistic simulation, and that SimNet is a promising step in this direction.

4.3. Urban driver: Learning to drive from real-world demon-
strations using policy gradients

Training a control policy using imitation learning poses certain challenges. A common issue
arises from covariate shift, a situation where the policy deviates slightly from the expert,
leading it to encounter data distributions not seen during training. On the unseen data, it
is more likely to make mistakes, the errors will accumulate, and drift further away from the
expert. One algorithm proposed to tackle this issue is DAgger [53]. It iteratively trains a
policy, applies it in the target environment, and then invites an expert to correct the policy
behavior. While DAgger provides theoretical performance guarantees, the requirement to
query an expert makes it hard to scale. In the context of real-world autonomous driving, it
could potentially be dangerous.

CheuffeurNet [5] proposes an alternative method to address the covariate shift problem.
It incorporates perturbations into the recorded trajectories during training. Instead of solely
using the original trajectory, it slightly displaces the vehicle to the left or right, subsequently
using the altered trajectory as a label. However, this seemingly scalable approach brings its
own set of issues. The perturbations can be hard to calibrate, and in reality, perturbations
are needed on several more factors, such as speed and the behaviors of other vehicles. This
renders the method quite complex to fine-tune and limits its scalability, contrary to initial
expectations.

Drawing inspiration from these methods, we introduced Urban Driver, a novel algorithm
that attempts to address the covariate shift problem without the need to query an expert or
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Policy sampling Policy gradient update

Expert trajectory

Policy trajectory

Figure 4.3: Training procedure for Urban Driver. The policy is unrolled in a simulator
for a number of steps. The first K is used only for sampling. The rest is used to update the
policy using policy gradient with the loss being the distance to the expert trajectory. Figure
adapted with permission from [54].

artificially perturb the data. It operates similarly to a reinforcement algorithm, by collecting
trajectories through unrolling current policy in a simulator, see Figure 4.3. Instead of a
reward, it uses the distance to the ground truth (recorded) trajectory as a loss function for
each step after the initial K steps. These initial steps are used to make sure that sampling is
done outside of the expert distribution. Taking advantage of the simulator’s differentiability,
it conducts backpropagation through time (BPTT), enabling more nuanced adjustments to
the trajectory over time. In particular, we observed that using BPTT allows for easy tweaking
of the model performance, e.g. trading off between safety and comfort.

A similar technique was previously introduced by Venkatraman et al. [62] in the context
of multi-step predictions. However, our method is distinctive in the usage of BPTT and
application to a control problem.

4.4. SafetyNet: Safe planning for real-world self-driving vehicles
using machine-learned policies

Machine Learning (ML) planners offer numerous advantages, the most critical of which is
their capacity to scale performance based on data rather than engineering effort. This quality
allows them to solve problems that would traditionally be intractable for classical rule-based
heuristics. However, a significant challenge with these ML planners is the difficulty in assuring
their safety. To address this concern, we propose the integration of a rule-based system as
a fallback layer for the ML planner. We have developed a comprehensive system, which we
call SafetyNet, that incorporates this idea. Demonstrating its effectiveness in a real-world
application, SafetyNet has been successfully implemented to control a self-driving vehicle
navigating the streets of San Francisco, see bottom images in Figure 4.4.

The operation of the SafetyNet system initiates with the generation of a candidate tra-
jectory using an ML planner. Subsequently, this proposed trajectory is passed through a
rule-based trajectory evaluator that verifies its safety and legality. If the evaluator deems the
trajectory as appropriate, the system proceeds to execute it. However, if the trajectory fails
to meet the established criteria, the rule-based fallback layer is triggered. This component
then takes over the responsibility of generating a new, compliant trajectory.

The interplay between both components of the SafetyNet system can be best illustrated
with a simple example of a self-driving vehicle following a lead vehicle. Even though the task
seems simple, presents significant complexities in developing a rule-based system that can
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Figure 4.4: Top: SafetyNet combines ML planner with a rule-based layer. Bottom: SafetyNet
deployed on the streets of San Francisco. Figure adapted with permission from [64].

handle all possible scenarios, and also take into account parameters such as riders’ comfort.
The system must manage numerous parameters, such as determining the preferred distance
from the lead vehicle — which must vary based on speed — along with preferred acceleration
and deceleration rates, etc. The ML planner is designed to implicitly learn these preferences
from the data provided, consistently producing suitable trajectories most of the time. How-
ever, due to the nature of probabilistic models, they can occasionally produce a trajectory
that is not safe.

That is why the ML planner’s decisions are then vetted by the rule-based fallback layer
to ensure the suggested trajectory is indeed safe. It validates that the trajectory avoids
collisions with other vehicles, does not exceed speed limits, and prevents the vehicle from
hitting the curb. These checks are comparatively straightforward to implement within a rule-
based system. By utilizing these two approaches in parallel, we can develop a system that is
not only safe but also highly performant, effectively marrying the adaptability of a machine
learning planner with the strict safety regulations of a rule-based system.

4.5. Summary

This chapter explores a series of enhancements aimed at boosting the efficiency of an au-
tonomous driving system with a machine learning-based planner. The findings suggest that
this planner can be effectively trained using a large amount of low-fidelity data, which is a
more economically viable option for data gathering. The creation of a data-driven simulator
has also been discussed, which aids in validating and exposing the nuances of a planner with-
out the high costs linked to real-world deployment. Additionally, a novel training algorithm
called Urban Driver is introduced, which eliminates the necessity for querying experts or in-
troducing artificial data perturbations during planner training. The proposal of SafetyNet, a
system that enhances planner safety by integration a rule-based system, is also discussed. Col-
lectively, these advancements have facilitated successful system deployments on the bustling
streets of San Francisco.

25



Chapter 5

Foundation models for decision
making

Foundation models is a recently coined term referring to models that are trained on extensive
and diverse datasets, making them highly applicable across a wide range of downstream tasks
[7]. This paradigm shift was initiated by influential large language models such as BERT [16]
and GPT-3 [9]. These models are characterized by their substantial number of parameters,
with GPT-3 alone boasting an impressive 175 billion parameters. Furthermore, they are
trained on exceptionally large datasets, exemplified by Chinchilla’s utilization of 1.4 trillion
tokens [26]. Apart from pure language models, the foundation model paradigm has also been
applied to multimodal tasks, such as vision and language [3, 49]. The significant scale and
versatility of these foundation models have opened up many new research directions and even
claims about their potential to achieve general artificial intelligence [11].

The extensive knowledge embedded within foundation models holds great potential for
systems capable of interaction with the real world, such as robotics. In recent years, there
has been a growing interest in pursuing this avenue of research. The first area of application
is to improve the task specific performance, by relying on large, pre-trained models. Notable
examples include Radosavovic et al. [50], where a large pre-trained vision model pre-trained
on self-supervised tasks is successfully applied to robotic manipulation. Moreover, foundation
models can also enable new capabilities, such as providing a natural language interface to a
robot. An impressive demonstration of this approach can be found in Brohan et al. [8], where
a combination of simple reasoning using a large language model and robotic affordances leads
to a robot completing vague instructions expressed in natural language, such as the request
"I spilled my drink, can you help?".

In this chapter, we present a work that leverages the power of large, pre-trained models
to enable robotic navigation.

5.1. LM-Nav: Robotic navigation with large pre-trained models
of language, vision, and action

In this work, we tackle the challenge of navigation based on natural language instructions.
Here is an illustrative example of such an instruction: "Take a right next to a stop sign.
Look for a glass building, after passing by a white car". It is evident that to execute these
instructions accurately, the robot must possess a comprehensive understanding of the world,
encompassing knowledge of objects like stop signs and glass buildings. Previously, the prevail-
ing approach involved creating a dataset consisting of instructions paired with corresponding
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Figure 5.1: System overview of LM-Nav. Figure adapted with permission from [57].

trajectories, which was then utilized to train a navigation model. A recent example of such
work is Vasudevan et al. [61]. However, in our pursuit of more efficient methods, we propose
harnessing the capabilities of pre-trained models to solve this task.

Our approach seeks to deconstruct the task of navigation into distinct sub-tasks, each
addressed by a specific pre-trained model or an optimization algorithm. The system overview
is depicted in Figure 5.1. We operate under the assumption that the robot is equipped with
knowledge about its environment and possesses access to a graph outlining its traversable
paths.

The navigation process begins with an instruction that needs to be accurately interpreted.
For this task, we employ the large language model (LLM), GPT-3 [10], to extract the rele-
vant landmarks from the instructions provided. Subsequently, the second sub-task involves
grounding these extracted landmarks within the graph of the environment. In order to as-
sociate each pair of landmarks and graph vertices, we employ the vision-and-language model
(VLM), CLIP [49]. This model estimates the likelihood of the presence of a particular land-
mark at each vertex. The subsequent step in the process involves the planning of an optimal
trajectory. For this, we developed a custom dynamic programming algorithm that finds a
path that both maximizes the likelihood of visiting all extracted landmarks and minimizes
the distance traversed. Lastly, the execution of the planned trajectory forms the final sub-
task. This is handled by a self-supervised vision navigation model (VNM), ViNG [56], which
brings the plan into actual motion.

The system is called LM-Nav, standing for Language Model Navigation. Its distinctive
attribute is that it does not require any training or even fine-tuning of the incorporated
models. This allows LM-Nav to be regarded as the ultimate sample efficient method, as it
completely negates the necessity for data collection for training purposes.

5.2. Summary

This chapter outlines the progress made in the development and applications of large, pre-
trained models, often referred to as foundation models. The potential of these models to guide
a robot based on natural language instructions is demonstrated through the system called LM-
Nav. Notably, LM-Nav achieves impressive real-world performance without relying on any
data for training or fine-tuning the models. As such, it can be regarded as the pinnacle of
sample-efficient methods for navigation.
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Chapter 6

Conclusions and future directions

This dissertation encapsulates approximately six years of extensive work on efficient methods
for sequential decision-making across diverse applications such as Atari games, autonomous
driving, and robotics. It explores a variety of methods, including model-based reinforcement
learning (RL), sim-to-real transfer, imitation learning, and the utilization of foundation mod-
els. In the course of this research, several pioneering achievements were accomplished. These
include the first-ever successful application of model-based RL to Atari games, and the first-
ever real-world deployment of a full-sized car that was trained in a simulated environment
using RL.

Interestingly, despite the apparent diversity of these approaches, they all hint towards a
common direction. Future research is expected to witness a greater convergence and simul-
taneous application of these methods. Early indications of this trend are already traceable
in recent literature. For instance, recent work by Hu et al. [28], proposes the integration of
model-based and imitation learning for autonomous driving. Simultaneously, with the tremen-
dous advancement in foundation models, their application to robotics and RL is anticipated
to surge. Alex Kendall, CEO of autonomous driving startup Wayve, recently discussed the
potential of deploying large language models for autonomous driving, further solidifying this
prediction [34].

In my opinion, the path to scalable autonomous systems in the real world will necessitate
pretraining large models on vast amounts of relevant, albeit imperfect, data, followed by fine-
tuning these models on the targeted task. It might be even possible to conduct the fine-tuning
just before the task executions, similarly to how large language models are prompted for a
specific task. The growing availability of large scale dataset, such as ego4d [23] or "something
something" [22], will enable this approach. Intriguingly, this recipe is similar to the strategy
discovered in our work on utilizing low-quality data for autonomous driving, as discussed
in Section 4.1. Similarly, the recent study by Ouyang et al. [47] exemplifies, refining GPT-3
with human feedback facilitated the creation of a model, known as InstructGPT. Even though
this model has 100 times fewer parameters, it surpasses the performance of the much larger
GPT-3 model in aligning more closely with user intent. Given the rapid advancements in
machine learning and the increasing ubiquity of data, this blend of large-scale pretraining and
fine-tuning holds immense promise for the development of autonomous systems, paving the
way for more robust, adaptable, and efficient real-world applications.
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ABSTRACT

Model-free reinforcement learning (RL) can be used to learn effective policies
for complex tasks, such as Atari games, even from image observations. However,
this typically requires very large amounts of interaction – substantially more, in
fact, than a human would need to learn the same games. How can people learn so
quickly? Part of the answer may be that people can learn how the game works and
predict which actions will lead to desirable outcomes. In this paper, we explore how
video prediction models can similarly enable agents to solve Atari games with fewer
interactions than model-free methods. We describe Simulated Policy Learning
(SimPLe), a complete model-based deep RL algorithm based on video prediction
models and present a comparison of several model architectures, including a novel
architecture that yields the best results in our setting. Our experiments evaluate
SimPLe on a range of Atari games in low data regime of 100k interactions between
the agent and the environment, which corresponds to two hours of real-time play.
In most games SimPLe outperforms state-of-the-art model-free algorithms, in some
games by over an order of magnitude.

1 INTRODUCTION

Human players can learn to play Atari games in minutes (Tsividis et al., 2017). However, some of
the best model-free reinforcement learning algorithms require tens or hundreds of millions of time
steps – the equivalent of several weeks of training in real time. How is it that humans can learn these
games so much faster? Perhaps part of the puzzle is that humans possess an intuitive understanding
of the physical processes that are represented in the game: we know that planes can fly, balls can roll,
and bullets can destroy aliens. We can therefore predict the outcomes of our actions. In this paper,
we explore how learned video models can enable learning in the Atari Learning Environment (ALE)
benchmark Bellemare et al. (2015); Machado et al. (2018) with a budget restricted to 100K time steps
– roughly to two hours of a play time.

Although prior works have proposed training predictive models for next-frame, future-frame, as well
as combined future-frame and reward predictions in Atari games (Oh et al. (2015); Chiappa et al.
(2017); Leibfried et al. (2016)), no prior work has successfully demonstrated model-based control via
predictive models that achieve competitive results with model-free RL. Indeed, in a recent survey
(Section 7.2 in Machado et al. (2018)) this was formulated as the following challenge: “So far, there
has been no clear demonstration of successful planning with a learned model in the ALE”.

Using models of environments, or informally giving the agent ability to predict its future, has
a fundamental appeal for reinforcement learning. The spectrum of possible applications is vast,
including learning policies from the model (Watter et al., 2015; Finn et al., 2016; Finn & Levine, 2017;
Ebert et al., 2017; Hafner et al., 2019; Piergiovanni et al., 2018; Rybkin et al., 2018; Sutton & Barto,

∗Equal contribution, authors listed in random order. BO performed the work partially during an internship at
Google Brain. Correspondence to: b.osinski@mimuw.edu.pl
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Figure 1: Main loop of SimPLe. 1) the agent starts interacting with the real environment following the latest
policy (initialized to random). 2) the collected observations will be used to train (update) the current world
model. 3) the agent updates the policy by acting inside the world model. The new policy will be evaluated
to measure the performance of the agent as well as collecting more data (back to 1). Note that world model
training is self-supervised for the observed states and supervised for the reward.

2017, Chapter 8), capturing important details of the scene (Ha & Schmidhuber, 2018), encouraging
exploration (Oh et al., 2015), creating intrinsic motivation (Schmidhuber, 2010) or counterfactual
reasoning (Buesing et al., 2019). One of the exciting benefits of model-based learning is the promise
to substantially improve sample efficiency of deep reinforcement learning (see Chapter 8 in Sutton &
Barto (2017)).

Our work advances the state-of-the-art in model-based reinforcement learning by introducing a
system that, to our knowledge, is the first to successfully handle a variety of challenging games in the
ALE benchmark. To that end, we experiment with several stochastic video prediction techniques,
including a novel model based on discrete latent variables. We present an approach, called Simulated
Policy Learning (SimPLe), that utilizes these video prediction techniques and trains a policy to
play the game within the learned model. With several iterations of dataset aggregation, where
the policy is deployed to collect more data in the original game, we learn a policy that, for many
games, successfully plays the game in the real environment (see videos on the project webpage
https://goo.gl/itykP8).

In our empirical evaluation, we find that SimPLe is significantly more sample-efficient than a highly
tuned version of the state-of-the-art Rainbow algorithm (Hessel et al., 2018) on almost all games. In
particular, in low data regime of 100k samples, on more than half of the games, our method achieves
a score which Rainbow requires at least twice as many samples. In the best case of Freeway, our
method is more than 10x more sample-efficient, see Figure 3. Since the publication of the first
preprint of this work, it has been shown in van Hasselt et al. (2019); Kielak (2020) that Rainbow can
be tuned to have better results in low data regime. The results are on a par with SimPLe – both of the
model-free methods are better in 13 games, while SimPLe is better in the other 13 out of the total 26
games tested (note that in Section 4.2 van Hasselt et al. (2019) compares with the results of our first
preprint, later improved).

2 RELATED WORK

Atari games gained prominence as a benchmark for reinforcement learning with the introduction of
the Arcade Learning Environment (ALE) Bellemare et al. (2015). The combination of reinforcement
learning and deep models then enabled RL algorithms to learn to play Atari games directly from
images of the game screen, using variants of the DQN algorithm (Mnih et al., 2013; 2015; Hessel
et al., 2018) and actor-critic algorithms (Mnih et al., 2016; Schulman et al., 2017; Babaeizadeh et al.,
2017b; Wu et al., 2017; Espeholt et al., 2018). The most successful methods in this domain remain
model-free algorithms (Hessel et al., 2018; Espeholt et al., 2018). Although the sample complexity of
these methods has substantially improved recently, it remains far higher than the amount of experience
required for human players to learn each game (Tsividis et al., 2017). In this work, we aim to learn
Atari games with a budget of just 100K agent steps (400K frames), corresponding to about two hours
of play time. Prior methods are generally not evaluated in this regime, and we therefore optimized
Rainbow (Hessel et al., 2018) for optimal performance on 1M steps, see Appendix E for details.
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Oh et al. (2015) and Chiappa et al. (2017) show that learning predictive models of Atari 2600
environments is possible using appropriately chosen deep learning architectures. Impressively, in
some cases the predictions maintain low L2 error over timespans of hundreds of steps. As learned
simulators of Atari environments are core ingredients of our approach, in many aspects our work is
motivated by Oh et al. (2015) and Chiappa et al. (2017), however we focus on using video prediction
in the context of learning how to play the game well and positively verify that learned simulators
can be used to train a policy useful in original environments. An important step in this direction was
made by Leibfried et al. (2016), which extends the work of Oh et al. (2015) by including reward
prediction, but does not use the model to learn policies that play the games. Most of these approaches,
including ours, encode knowledge of the game in implicit way. Unlike this, there are works in which
modeling is more explicit, for example Ersen & Sariel (2014) uses testbed of the Incredible Machines
to learn objects behaviors and their interactions. Similarly Guzdial et al. (2017) learns an engine
predicting interactions of predefined set of sprites in the domain of Super Mario Bros.

Perhaps surprisingly, there is virtually no work on model-based RL in video games from images.
Notable exceptions are the works of Oh et al. (2017), Sodhani et al. (2019), Ha & Schmidhuber
(2018), Holland et al. (2018), Leibfried et al. (2018) and Azizzadenesheli et al. (2018). Oh et al.
(2017) use a model of rewards to augment model-free learning with good results on a number of
Atari games. However, this method does not actually aim to model or predict future frames, and
achieves clear but relatively modest gains in efficiency. Sodhani et al. (2019) proposes learning a
model consistent with RNN policy which helps to train policies that are more powerful than their
model-free baseline. Ha & Schmidhuber (2018) present a way to compose a variational autoencoder
with a recurrent neural network into an architecture that is successfully evaluated in the VizDoom
environment and on a 2D racing game. The training procedure is similar to Algorithm 1, but only
one iteration of the loop is needed as the environments are simple enough to be fully explored with
random exploration. Similarly, Alaniz (2018) utilizes a transition model with Monte Carlo tree search
to solve a block-placing task in Minecraft. Holland et al. (2018) use a variant of Dyna (Sutton, 1991)
to learn a model of the environment and generate experience for policy training in the context of
Atari games. Using six Atari games as a benchmark Holland et al. (2018) measure the impact of
planning shapes on performance of the Dyna-DQN algorithm and include ablations comparing scores
obtained with perfect and imperfect models. Our method achieves around 330% of the Dyna-DQN
score on Asterix, 120% on Q-Bert, 150% on Seaquest and 80% on Ms. Pac-Man. Azizzadenesheli
et al. (2018) propose an algorithm called Generative Adversarial Tree Search (GATS) and for five
Atari games train a GAN-based world model along with a Q-function. Azizzadenesheli et al. (2018)
primarily discuss various failure modes of the GATS algorithm. Our method achieves around 64
times the score of GATS on Pong and 10 times on Breakout. 1

Outside of games, model-based reinforcement learning has been investigated at length for applications
such as robotics (Deisenroth et al., 2013). Though most of such works do not use image observations,
several recent works have incorporated images into real-world (Finn et al., 2016; Finn & Levine,
2017; Babaeizadeh et al., 2017a; Ebert et al., 2017; Piergiovanni et al., 2018; Paxton et al., 2019;
Rybkin et al., 2018; Ebert et al., 2018) and simulated (Watter et al., 2015; Hafner et al., 2019) robotic
control. Our video models of Atari environments described in Section 4 are motivated by models
developed in the context of robotics. Another source of inspiration are discrete autoencoders proposed
by van den Oord et al. (2017) and Kaiser & Bengio (2018).

The structure of the model-based RL algorithm that we employ consists of alternating between
learning a model, and then using this model to optimize a policy with model-free reinforcement
learning. Variants of this basic algorithm have been proposed in a number of prior works, starting
from Dyna Q Sutton (1991) to more recent methods that incorporate deep networks Heess et al.
(2015); Feinberg et al. (2018); Kalweit & Boedecker (2017); Kurutach et al. (2018).

1Comparison with Dyna-DQN and GATS is based on random-normalized scores achieved at 100K interac-
tions. Those are approximate, as the authors Dyna-DQN and GATS have not provided tabular results. Authors
of Dyna-DQN also report scores on two games which we do not consider: Beam Rider and Space Invaders. For
both games the reported scores are close to random scores, as are GATS scores on Asterix.
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Figure 2: Architecture of the proposed stochastic model with discrete latent. The input to the model is four
stacked frames (as well as the action selected by the agent) while the output is the next predicted frame and
expected reward. Input pixels and action are embedded using fully connected layers, and there is per-pixel
softmax (256 colors) in the output. This model has two main components. First, the bottom part of the network
which consists of a skip-connected convolutional encoder and decoder. To condition the output on the actions
of the agent, the output of each layer in the decoder is multiplied with the (learned) embedded action. Second
part of the model is a convolutional inference network which approximates the posterior given the next frame,
similarly to Babaeizadeh et al. (2017a). At training time, the sampled latent values from the approximated
posterior will be discretized into bits. To keep the model differentiable, the backpropagation bypasses the
discretization following Kaiser & Bengio (2018). A third LSTM based network is trained to approximate each
bit given the previous ones. At inference time, the latent bits are predicted auto-regressively using this network.
The deterministic model has the same architecture as this figure but without the inference network.

3 SIMULATED POLICY LEARNING (SIMPLE)

Reinforcement learning is formalized in Markov decision processes (MDP). An MDP is defined as
a tuple (S,A, P, r, γ), where S is a state space, A is a set of actions available to an agent, P is the
unknown transition kernel, r is the reward function and γ ∈ (0, 1) is the discount factor. In this work
we refer to MDPs as environments and assume that environments do not provide direct access to the
state (i.e., the RAM of Atari 2600 emulator). Instead we use visual observations, typically 210× 160
RGB images. A single image does not determine the state. In order to reduce environment’s partial
observability, we stack four consecutive frames and use it as the observation. A reinforcement
learning agent interacts with the MDP by issuing actions according to a policy. Formally, policy π is
a mapping from states to probability distributions over A. The quality of a policy is measured by the
value function Eπ

(∑+∞
t=0 γ

trt+1|s0 = s
)

, which for a starting state s estimates the total discounted
reward gathered by the agent.

Algorithm 1: Pseudocode for SimPLe
Initialize policy π
Initialize model parameters θ of env′
Initialize empty set D
while not done do
. collect observations from real env.
D← D ∪ COLLECT(env, π)
. update model using collected data.
θ ← TRAIN_SUPERVISED(env′,D)
. update policy using world model.
π ← TRAIN_RL(π, env′)

end while

In Atari 2600 games our goal is to find a policy which
maximizes the value function from the beginning of
the game. Crucially, apart from an Atari 2600 emu-
lator environment env we will use a neural network
simulated environment env′ which we call a world
model and describe in detail in Section 4. The en-
vironment env′ shares the action space and reward
space with env and produces visual observations in
the same format, as it will be trained to mimic env.
Our principal aim is to train a policy π using a sim-
ulated environment env′ so that π achieves good per-
formance in the original environment env. In this
training process we aim to use as few interactions
with env as possible. The initial data to train env′
comes from random rollouts of env. As this is unlikely to capture all aspects of env, we use the
iterative method presented in Algorithm 1.
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4 WORLD MODELS

In search for an effective world model we experimented with various architectures, both new and
modified versions of existing ones. This search resulted in a novel stochastic video prediction model
(visualized in Figure 2) which achieved superior results compared to other previously proposed
models. In this section, we describe the details of this architecture and the rationale behind our design
decisions. In Section 6 we compare the performance of these models.

Deterministic Model. Our basic architecture, presented as part of Figure 2, resembles the con-
volutional feedforward network from Oh et al. (2015). The input X consists of four consecutive
game frames and an action a. Stacked convolution layers process the visual input. The actions are
one-hot-encoded and embedded in a vector which is multiplied channel-wise with the output of the
convolutional layers. The network outputs the next frame of the game and the value of the reward.

In our experiments, we varied details of the architecture above. In most cases, we use a stack of four
convolutional layers with 64 filters followed by three dense layers (the first two have 1024 neurons).
The dense layers are concatenated with 64 dimensional vector with a learnable action embedding.
Next, three deconvolutional layers of 64 filters follow. An additional deconvolutional layer outputs an
image of the original 105× 80 size. The number of filters is either 3 or 3× 256. In the first case, the
output is a real-valued approximation of pixel’s RGB value. In the second case, filters are followed by
softmax producing a probability distribution on the color space. The reward is predicted by a softmax
attached to the last fully connected layer. We used dropout equal to 0.2 and layer normalization.

Loss functions. The visual output of our networks is either one float per pixel/channel or the
categorical 256-dimensional softmax. In both cases, we used the clipped loss max(Loss, C) for a
constant C. We found that clipping was crucial for improving the models (measured with the correct
reward predictions per sequence metric and successful training using Algorithm 1). We conjecture
that clipping substantially decreases the magnitude of gradients stemming from fine-tuning of big
areas of background consequently letting the optimization process concentrate on small but important
areas (e.g. the ball in Pong). In our experiments, we set C = 10 for L2 loss on pixel values and to
C = 0.03 for softmax loss. Note that this means that when the level of confidence about the correct
pixel value exceeds 97% (as − ln(0.97) ≈ 0.03) we get no gradients from that pixel any longer.

Scheduled sampling. The model env′ consumes its own predictions from previous steps and due to
compounding errors, the model may drift out of the area of its applicability. Following Bengio et al.
(2015); Venkatraman et al. (2016), we mitigate this problem by randomly replacing in training some
frames of the input X by the prediction from the previous step while linearly increasing the mixing
probability to 100% around the middle of the first iteration of the training loop.

Stochastic Models. A stochastic model can be used to deal with limited horizon of past observed
frames as well as sprites occlusion and flickering which results to higher quality predictions. Inspired
by Babaeizadeh et al. (2017a), we tried a variational autoencoder (Kingma & Welling, 2014) to
model the stochasticity of the environment. In this model, an additional network receives the input
frames as well as the future target frame as input and approximates the distribution of the posterior.
At each timestep, a latent value zt is sampled from this distribution and passed as input to the original
predictive model. At test time, the latent values are sampled from an assumed prior N (0, I). To
match the assumed prior and the approximate, we use the Kullback–Leibler divergence term as an
additional loss term (Babaeizadeh et al., 2017a).

We noticed two major issues with the above model. First, the weight of the KL divergence loss
term is game dependent, which is not practical if one wants to deal with a broad portfolio of Atari
games. Second, this weight is usually a very small number in the range of [10−3, 10−5] which means
that the approximated posterior can diverge significantly from the assumed prior. This can result
in previously unseen latent values at inference time that lead to poor predictions. We address these
issues by utilizing a discrete latent variable similar to Kaiser & Bengio (2018).

As visualized in Figure 2, the proposed stochastic model with discrete latent variables discretizes
the latent values into bits (zeros and ones) while training an auxiliary LSTM-based Hochreiter &
Schmidhuber (1997) recurrent network to predict these bits autoregressively. At inference time, the
latent bits will be generated by this auxiliary network in contrast to sampling from a prior. To make
the predictive model more robust to unseen latent bits, we add uniform noise to approximated latent
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values before discretization and apply dropout (Srivastava et al., 2014) on bits after discretization.
More details about the architecture is in Appendix C.

5 POLICY TRAINING

We will now describe the details of SimPLe, outlined in Algorithm 1. In step 6 we use the proximal
policy optimization (PPO) algorithm (Schulman et al., 2017) with γ = 0.95. The algorithm generates
rollouts in the simulated environment env′ and uses them to improve policy π. The fundamental
difficulty lays in imperfections of the model compounding over time. To mitigate this problem we use
short rollouts of env′. Typically every N = 50 steps we uniformly sample the starting state from the
ground-truth buffer D and restart env′ (for experiments with the value of γ and N see Section 6.4).
Using short rollouts may have a degrading effect as the PPO algorithm does not have a way to infer
effects longer than the rollout length. To ease this problem, in the last step of a rollout we add to
the reward the evaluation of the value function. Training with multiple iterations re-starting from
trajectories gathered in the real environment is new to our knowledge. It was inspired by the classical
Dyna-Q algorithm and, notably, in the Atari domain no comparable results have been achieved.

The main loop in Algorithm 1 is iterated 15 times (cf. Section 6.4). The world model is trained for
45K steps in the first iteration and for 15K steps in each of the following ones. Shorter training in
later iterations does not degrade the performance because the world model after first iteration captures
already part of the game dynamics and only needs to be extended to novel situations.

In each of the iterations, the agent is trained inside the latest world model using PPO. In every PPO
epoch we used 16 parallel agents collecting 25, 50 or 100 steps from the simulated environment env′
(see Section 6.4 for ablations). The number of PPO epochs is z · 1000, where z equals to 1 in all
passes except last one (where z = 3) and two passes number 8 and 12 (where z = 2). This gives
800K·z interactions with the simulated environment in each of the loop passes. In the process of
training the agent performs 15.2M interactions with the simulated environment env′.

6 EXPERIMENTS

We evaluate SimPLe on a suite of Atari games from Atari Learning Environment (ALE) benchmark.
In our experiments, the training loop is repeated for 15 iterations, with 6400 interactions with the
environment collected in each iteration. We apply a standard pre-processing for Atari games: a frame
skip equal to 4, that is every action is repeated 4 times. The frames are down-scaled by a factor of 2.

Because some data is collected before the first iteration of the loop, altogether 6400 · 16 = 102, 400
interactions with the Atari environment are used during training. This is equivalent to 409, 600 frames
from the Atari game (114 minutes at 60 FPS). At every iteration, the latest policy trained under the
learned model is used to collect data in the real environment env. The data is also directly used to
train the policy with PPO. Due to vast difference between number of training data from simulated
environment and real environment (15M vs 100K) the impact of the latter on policy is negligible.

We evaluate our method on 26 games selected on the basis of being solvable with existing state-of-
the-art model-free deep RL algorithms2, which in our comparisons are Rainbow Hessel et al. (2018)
and PPO Schulman et al. (2017). For Rainbow, we used the implementation from the Dopamine
package and spent considerable time tuning it for sample efficiency (see Appendix E).

For visualization of all experiments see https://goo.gl/itykP8 and for a summary see
Figure 3. It can be seen that our method is more sample-efficient than a highly tuned Rainbow
baseline on almost all games, requires less than half of the samples on more than half of the games
and, on Freeway, is more than 10x more sample-efficient. Our method outperforms PPO by an even
larger margin. We also compare our method with fixed score baselines (for different baselines) rather
than counting how many steps are required to match our score, see Figure 4 for the results. For the

2Specifically, for the final evaluation we selected games which achieved non-random results using our method
or the Rainbow algorithm using 100K interactions.
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Figure 3: Comparison with Rainbow and PPO. Each bar illustrates the number of interactions with environment
required by Rainbow (left) or PPO (right) to achieve the same score as our method (SimPLe). The red line
indicates the 100K interactions threshold which is used by the our method.

qualitative analysis of performance on different games see Appendix B. The source code is available
as part of the Tensor2Tensor library and it includes instructions on how to run the experiments3.

6.1 SAMPLE EFFICIENCY

The primary evaluation in our experiments studies the sample efficiency of SimPLe, in comparison
with state-of-the-art model-free deep RL methods in the literature. To that end, we compare with
Rainbow (Hessel et al., 2018; Castro et al., 2018), which represents the state-of-the-art Q-learning
method for Atari games, and PPO (Schulman et al., 2017), a model-free policy gradient algorithm (see
Appendix E for details of tuning of Rainbow and PPO). The results of the comparison are presented
in Figure 3. For each game, we plot the number of time steps needed for either Rainbow or PPO to
reach the same score that our method reaches after 100K interaction steps. The red line indicates
100K steps: any bar larger than this indicates a game where the model-free method required more
steps. SimPLe outperforms the model-free algorithms in terms of learning speed on nearly all of the
games, and in the case of a few games, does so by over an order of magnitude. For some games, it
reaches the same performance that our PPO implementation reaches at 10M steps. This indicates
that model-based reinforcement learning provides an effective approach to learning Atari games, at a
fraction of the sample complexity.

The results in these figures are generated by averaging 5 runs for each game. The model-based agent
is better than a random policy for all the games except Bank Heist. Interestingly, we observed
that the best of the 5 runs was often significantly better. For 6 of the games, it exceeds the average
human score (as reported in Table 3 of Pohlen et al. (2018)). This suggests that further stabilizing
SimPLe should improve its performance, indicating an important direction for future work. In some
cases during training we observed high variance of the results during each step of the loop. There are
a number of possible reasons, such as mutual interactions of the policy training and the supervised
training or domain mismatch between the model and the real environment. We present detailed
numerical results, including best scores and standard deviations, in Appendix D.

3https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/
rl
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Figure 4: Fractions of Rainbow and PPO scores at different numbers of interactions calculated with the formula
(SimPLe_score@100K−random_score)/(baseline_score−random_score); if denominator is smaller
than 0, both nominator and denominator are increased by 1. From left to right, the baselines are: Rainbow at
100K, Rainbow at 200K, PPO at 100K, PPO at 200K. SimPLe outperforms Rainbow and PPO even when those
are given twice as many interactions.
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Figure 5: Behaviour with respect to the number of used samples. We report number of frames required by PPO
to reach the score of our models. Results are averaged over all games.

6.2 NUMBER OF FRAMES

We focused our work on learning games with 100K interaction steps with the environment. In this
section we present additional results for settings with 20K, 50K, 200K, 500K and 1M interactions;
see Figure 5 (a). Our results are poor with 20K interactions. For 50K they are already almost as good
as with 100K interactions. From there the results improve until 500K samples – it is also the point at
which they are on par with model-free PPO. Detailed per game results can be found in Appendix F.

This demonstrates that SimPLe excels in a low data regime, but its advantage disappears with a bigger
amount of data. Such a behavior, with fast growth at the beginning of training, but lower asymptotic
performance is commonly observed when comparing model-based and model-free methods (Wang
et al. (2019)). As observed in Section 6.4 assigning bigger computational budget helps in 100K
setting. We suspect that gains would be even bigger for the settings with more samples.

Finally, we verified if a model obtained with SimPLe using 100K is a useful initialization for model-
free PPO training. Based on the results depicted in Figure 5 (b) we can positively answer this
conjecture. Lower asymptotic performance is probably due to worse exploration. A policy pre-trained
with SimPLe was meant to obtain the best performance on 100K, at which point its entropy is very
low thus hindering further PPO training.
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6.3 ENVIRONMENT STOCHASTICITY

A crucial decision in the design of world models is the inclusion of stochasticity. Although Atari
is known to be a deterministic environment, it is stochastic given only a limited horizon of past
observed frames (in our case 4 frames). The level of stochasticity is game dependent; however, it
can be observed in many Atari games. An example of such behavior can be observed in the game
Kung Fu Master – after eliminating the current set of opponents, the game screen always looks
the same (it contains only player’s character and the background). The game dispatches diverse sets
of new opponents, which cannot be inferred from the visual observation alone (without access to the
game’s internal state) and thus cannot be predicted by a deterministic model. Similar issues have
been reported in Babaeizadeh et al. (2017a), where the output of their baseline deterministic model
was a blurred superposition of possible random object movements. As can be seen in Figure 11 in
the Appendix, the stochastic model learns a reasonable behavior – samples potential opponents and
renders them sharply.

Figure 6: Impact of the environment stochasticity.
The graphs are in the same format as Figure 3:
each bar illustrates the number of interactions with
environment required by Rainbow to achieve the
same score as SimPLe (with stochastic discrete
world model) using 100k steps in an environment
with and without sticky actions.

Given the stochasticity of the proposed model, Sim-
PLe can be used with truly stochastic environments.
To demonstrate this, we ran an experiment where the
full pipeline (both the world model and the policy)
was trained in the presence of sticky actions, as rec-
ommended in (Machado et al., 2018, Section 5). Our
world model learned to account for the stickiness of
actions and in most cases the end results were very
similar to the ones for the deterministic case even
without any tuning, see Figure 6.

6.4 ABLATIONS

To evaluate the design of our method, we indepen-
dently varied a number of the design decisions. Here
we present an overview; see Appendix A for detailed
results.
Model architecture and hyperparameters. We
evaluated a few choices for the world model and
our proposed stochastic discrete model performs best
by a significant margin. The second most important
parameter was the length of world model’s training.
We verified that a longer training would be beneficial,
however we had to restrict it in all other ablation stud-
ies due to a high cost of training on all games. As for
the length of rollouts from simulated env′, we use
N = 50 by default. We experimentally shown that
N = 25 performs roughly on par, while N = 100 is
slightly worse, likely due to compounding model errors. The discount factor was set to γ = 0.99
unless specified otherwise. We see that γ = 0.95 is slightly better than other values, and we hypothe-
size that it is due to better tolerance to model imperfections. But overall, all three values of γ perform
comparably.
Model-based iterations. The iterative process of training the model, training the policy, and collect-
ing data is crucial for non-trivial tasks where random data collection is insufficient. In a game-by-game
analysis, we quantified the number of games where the best results were obtained in later iterations of
training. In some games, good policies could be learned very early. While this might have been due
to the high variability of training, it does suggest the possibility of much faster training (i.e. in fewer
step than 100k) with more directed exploration policies. In Figure 9 in the Appendix we present the
cumulative distribution plot for the (first) point during learning when the maximum score for the run
was achieved in the main training loop of Algorithm 1.
Random starts. Using short rollouts is crucial to mitigate the compounding errors in the model. To
ensure exploration, SimPLe starts rollouts from randomly selected states taken from the real data
buffer D. Figure 9 compares the baseline with an experiment without random starts and rollouts of
length 1000 on Seaquest which shows much worse results without random starts.
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7 CONCLUSIONS AND FUTURE WORK

We presented SimPLe, a model-based reinforcement learning approach that operates directly on raw
pixel observations and learns effective policies to play games in the Atari Learning Environment. Our
experiments demonstrate that SimPLe learns to play many of the games with just 100K interactions
with the environment, corresponding to 2 hours of play time. In many cases, the number of samples
required for prior methods to learn to reach the same reward value is several times larger.

Our predictive model has stochastic latent variables so it can be applied in highly stochastic environ-
ments. Studying such environments is an exciting direction for future work, as is the study of other
ways in which the predictive neural network model could be used. Our approach uses the model as a
learned simulator and directly applies model-free policy learning to acquire the policy. However, we
could use the model for planning. Also, since our model is differentiable, the additional information
contained in its gradients could be incorporated into the reinforcement learning process. Finally,
the representation learned by the predictive model is likely be more meaningful by itself than the
raw pixel observations from the environment. Incorporating this representation into the policy could
further accelerate and improve the reinforcement learning process.

While SimPLe is able to learn more quickly than model-free methods, it does have limitations. First,
the final scores are on the whole lower than the best state-of-the-art model-free methods. This
can be improved with better dynamics models and, while generally common with model-based RL
algorithms, suggests an important direction for future work. Another, less obvious limitation is that
the performance of our method generally varied substantially between different runs on the same game.
The complex interactions between the model, policy, and data collection were likely responsible for
this. In future work, models that capture uncertainty via Bayesian parameter posteriors or ensembles
(Kurutach et al., 2018; Chua et al., 2018) may improve robustness. Finally, the computational and
time requirement of training inside world model are substantial (see Appendix C), which makes
developing lighter models an important research direction.

In this paper our focus was to demonstrate the capability and generality of SimPLe only across a
suite of Atari games, however, we believe similar methods can be applied to other environments and
tasks which is one of our main directions for future work. As a long-term challenge, we believe that
model-based reinforcement learning based on stochastic predictive models represents a promising and
highly efficient alternative to model-free RL. Applications of such approaches to both high-fidelity
simulated environments and real-world data represent an exciting direction for future work that can
enable highly efficient learning of behaviors from raw sensory inputs in domains such as robotics and
autonomous driving.
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Table 1: Summary of SimPLe ablations. For each game, a configuration was assigned a score being the mean
over 5 experiments. The best and median scores were calculated per game. The table reports the number of
games a given configuration achieved the best score or at least the median score, respectively.

model best at least median

deterministic 0 7
det. recurrent 3 13
SD 8 16
SD γ = 0.9 1 14
default 10 21
SD 100 steps 0 14
SD 25 steps 4 19

All our code is available as part of the Tensor2Tensor library and it includes instructions on how
to run our experiments: https://github.com/tensorflow/tensor2tensor/tree/
master/tensor2tensor/rl.

A ABLATIONS

To evaluate the design of our method, we independently varied a number of the design decisions: the
choice of the model, the γ parameter and the length of PPO rollouts. The results for 7 experimental
configurations are summarized in the Table 1.

Models. To assess the model choice, we evaluated the following models: deterministic, determin-
istic recurrent, and stochastic discrete (see Section 4). Based on Table 1 it can be seen that our
proposed stochastic discrete model performs best. Figures 7a and 7b show the role of stochasticity
and recurrence.

Steps. See Figure 7d. As described in Section 5 every N steps we reinitialize the simulated
environment with ground-truth data. By default we use N = 50, in some experiments we set N = 25
or N = 100. It is clear from the table above and Figure 7d that 100 is a bit worse than either 25 or
50, likely due to compounding model errors, but this effect is much smaller than the effect of model
architecture.

Gamma. See Figure 8b. We used the discount factor γ = 0.99 unless specified otherwise. We see
that γ = 0.95 is slightly better than other values, and we hypothesize that it is due to better tolerance
to model imperfections. But overall, all three values of γ seem to perform comparably at the same
number of steps.

Model-based iterations. The iterative process of training the model, training the policy, and
collecting data is crucial for non-trivial tasks where simple random data collection is insufficient. In
the game-by-game analysis, we quantified the number of games where the best results were obtained
in later iterations of training. In some games, good policies could be learned very early. While this
might have been due simply to the high variability of training, it does suggest the possibility that
much faster training – in many fewer than 100k steps – could be obtained in future work with more
directed exploration policies. We leave this question to future work.

In Figure 9 we present the cumulative distribution plot for the (first) point during learning when the
maximum score for the run was achieved in the main training loop of Algorithm 1.

On Figure 7c we show results for experiments in which the number samples was fixed to be 100K but
the number of training loop varied. We conclude that 15 is beneficial for training.

Long model training Our best results were obtained with much 5 times longer training of the
world models, see Figure 8a for comparison with shorter training. Due to our resources constraints
other ablations were made with the short model training setting.
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Random starts. Using short rollouts is crucial to mitigate the compounding errors under the model.
To ensure exploration SimPLe starts rollouts from randomly selected states taken from the real data
buffer D. In Figure 9 we present a comparison with an experiment without random starts and rollouts
of length 1000 on Seaquest. These data strongly indicate that ablating random starts substantially
deteriorate results.

B QUALITATIVE ANALYSIS

This section provides a qualitative analysis and case studies of individual games. We emphasize that
we did not adjust the method nor hyperparameters individually for each game, but we provide specific
qualitative analysis to better understand the predictions from the model.4

Solved games. The primary goal of our paper was to use model-based methods to achieve good
performance within a modest budget of 100k interactions. For two games, Pong and Freeway, our
method, SimPLe, was able to achieve the maximum score.

Exploration. Freeway is a particularly interesting game. Though simple, it presents a sub-
stantial exploration challenge. The chicken, controlled by the agents, is quite slow to ascend
when exploring randomly as it constantly gets bumped down by the cars (see the left video
https://goo.gl/YHbKZ6). This makes it very unlikely to fully cross the road and obtain
a non-zero reward. Nevertheless, SimPLe is able to capture such rare events, internalize them into the
predictive model and then successfully learn a successful policy.

However, this good performance did not happen on every run. We conjecture the following scenario in
failing cases. If at early stages the entropy of the policy decayed too rapidly the collected experience
stayed limited leading to a poor world model, which was not powerful enough to support exploration
(e.g. the chicken disappears when moving to high). In one of our experiments, we observed that the
final policy was that the chicken moved up only to the second lane and stayed waiting to be hit by the
car and so on so forth.

Pixel-perfect games. In some cases (for Pong, Freeway, Breakout) our models were able to
predict the future perfectly, down to every pixel. This property holds for rather short time intervals,
we observed episodes lasting up to 50 time-steps. Extending it to long sequences would be a very
exciting research direction. See videos https://goo.gl/uyfNnW.

Benign errors. Despite the aforementioned positive examples, accurate models are difficult to
acquire for some games, especially at early stages of learning. However, model-based RL should be
tolerant to modest model errors. Interestingly, in some cases our models differed from the original
games in a way that was harmless or only mildly harmful for policy training.

For example, in Bowling and Pong, the ball sometimes splits into two. While nonphysical,
seemingly these errors did not distort much the objective of the game, see Figure 10 and also
https://goo.gl/JPi7rB.

In Kung Fu Master our model’s predictions deviate from the real game by spawning a different
number of opponents, see Figure 11. In Crazy Climber we observed the bird appearing earlier
in the game. These cases are probably to be attributed to the stochasticity in the model. Though not
aligned with the true environment, the predicted behaviors are plausible, and the resulting policy can
still play the original game.

Failures on hard games. On some of the games, our models simply failed to produce useful
predictions. We believe that listing such errors may be helpful in designing better training protocols
and building better models. The most common failure was due to the presence of very small but
highly relevant objects. For example, in Atlantis and Battle Zone bullets are so small that
they tend to disappear. Interestingly, Battle Zone has pseudo-3D graphics, which may have
added to the difficulty. See videos https://goo.gl/uiccKU.

4We strongly encourage the reader to watch accompanying videos https://goo.gl/itykP8
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(a) Effect of stochasticity.
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(b) Effect of recurrent architecture.
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Figure 7: Ablations part 1. The graphs are in the same format as Figure 3: each bar illustrates the number of
interactions with environment required by Rainbow to achieve the same score as a particular variant of SimPLe.
The red line indicates the 100K interactions threshold which is used by SimPLe.
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Figure 8: Ablations part 2. The graphs are in the same format as Figure 3: each bar illustrates the number of
interactions with environment required by Rainbow to achieve the same score as a particular variant of SimPLe.
The red line indicates the 100K interactions threshold which is used by SimPLe.

Figure 9: (left) CDF of the number of iterations to acquire maximum score. The vertical axis represents the
fraction of all games. (right) Comparison of random starts vs no random starts on Seaquest (for better
readability we clip game rewards to {−1, 0, 1}). The vertical axis shows a mean reward and the horizontal axis
the number of iterations of Algorithm 1.
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Figure 10: Frames from the Pong environment.

Figure 11: Frames from the Kung Fu Master environment (left) and its model (right).

Another interesting example comes from Private Eye in which the agent traverses different
scenes, teleporting from one to the other. We found that our model generally struggled to capture
such large global changes.
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C ARCHITECTURE DETAILS

The world model is a crucial ingredient of our algorithm. Therefore the neural-network archi-
tecture of the model plays a crucial role. The high-level overview of the architecture is given in
Section 4 and Figure 2. We stress that the model is general, not Atari specific, and we believe it
could handle other visual prediction tasks. The whole model has around 74M parameters and the
inference/backpropagation time is approx. 0.5s/0.7s respectively, where inference is on batch size 16
and backpropagation on batch size 2, running on NVIDIA Tesla P100. This gives us around 32ms per
frame from our simulator, in comparison one step of the ALE simulator takes approximately 0.4ms.

Below we give more details of the architecture. First, the frame prediction network:

Layer Number of outputs Other details
Input frame dense 96 -
Downscale convolution 1 192 kernel 4x4, stride 2x2
Downscale convolution 2 384 kernel 4x4, stride 2x2
Downscale convolution 3 768 kernel 4x4, stride 2x2
Downscale convolution 4 768 kernel 4x4, stride 2x2
Downscale convolution 5 768 kernel 4x4, stride 2x2
Downscale convolution 6 768 kernel 4x4, stride 2x2
Action embedding 768 -
Latent predictor embedding 128 -
Latent predictor LSTM 128 -
Latent predictor output dense 256 -
Reward predictor hidden 128 -
Reward predictor output dense 3 -
Middle convolution 1 768 kernel 3x3, stride 1x1
Middle convolution 2 768 kernel 3x3, stride 1x1
Upscale transposed convolution 1 768 kernel 4x4, stride 2x2
Upscale transposed convolution 2 768 kernel 4x4, stride 2x2
Upscale transposed convolution 3 768 kernel 4x4, stride 2x2
Upscale transposed convolution 4 384 kernel 4x4, stride 2x2
Upscale transposed convolution 5 192 kernel 4x4, stride 2x2
Upscale transposed convolution 6 96 kernel 4x4, stride 2x2
Output frame dense 768 -

The latent inference network, used just during training:

Layer Number of outputs Other details
Downscale convolution 1 128 kernel 8x8, stride 4x4
Downscale convolution 2 512 kernel 8x8, stride 4x4

All activation functions are ReLU, except for the layers marked as "output", which have softmax
activations, and LSTM internal layers. In the frame prediction network, the downscale layers are
connected to the corresponding upscale layers with residual connections. All convolution and
transposed convolution layers are preceded by dropout 0.15 and followed by layer normalization.
The latent predictor outputs 128 bits sequentially, in chunks of 8.
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D NUMERICAL RESULTS

Below we present numerical results of our experiments. We tested SimPLe on 7 configurations (see
description in Section A). For each configuration we run 5 experiments. For the evaluation of the i-th
experiments we used the policy given by softmax(logits(πi)/T ), where πi is the final learnt policy
in the experiment and T is the temperature parameter. We found empirically that T = 0.5 worked
best in most cases. A tentative explanation is that polices with temperatures smaller than 1 are less
stochastic and thus more stable. However, going down to T = 0 proved to be detrimental in many
cases as, possibly, it makes policies more prone to imperfections of models.

In Table 2 we present the mean and standard deviation of the 5 experiments. We observed that the
median behaves rather similarly, which is reported it in Table 4. In this table we also show maximal
scores over 5 runs. Interestingly, in many cases they turned out to be much higher. This, we hope,
indicates that our methods has a further potential of reaching these higher scores.

Human scores are "Avg. Human" from Table 3 in Pohlen et al. (2018).
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Table 2: Models comparison. Mean scores and standard deviations over five training runs. Right most columns presents score for random agent and human.

Game Ours, deterministic Ours, det. recurrent Ours, SD long Ours, SD Ours, SD γ = 0.90 Ours, SD γ = 0.95 Ours, SD 100 steps Ours, SD 25 steps random human

Alien 378.3 (85.5) 321.7 (50.7) 616.9 (252.2) 405.2 (130.8) 413.0 (89.7) 590.2 (57.8) 435.6 (78.9) 534.8 (166.2) 184.8 7128.0
Amidar 62.4 (15.2) 86.7 (18.8) 74.3 (28.3) 88.0 (23.8) 50.3 (11.7) 78.3 (18.8) 37.7 (15.1) 82.2 (43.0) 11.8 1720.0
Assault 361.4 (166.6) 490.5 (143.6) 527.2 (112.3) 369.3 (107.8) 406.7 (118.7) 549.0 (127.9) 311.7 (88.2) 664.5 (298.2) 233.7 742.0
Asterix 668.0 (294.1) 1853.0 (391.8) 1128.3 (211.8) 1089.5 (335.3) 855.0 (176.4) 921.6 (114.2) 777.0 (200.4) 1340.6 (627.5) 248.8 8503.0
Asteroids 743.7 (92.2) 821.7 (115.6) 793.6 (182.2) 731.0 (165.3) 882.0 (24.7) 886.8 (45.2) 821.9 (93.8) 644.5 (110.6) 649.0 47389.0
Atlantis 14623.4 (2122.5) 12584.4 (5823.6) 20992.5 (11062.0) 14481.6 (2436.9) 18444.1 (4616.0) 14055.6 (6226.1) 14139.7 (2500.9) 11641.2 (3385.0) 16492.0 29028.0
BankHeist 13.8 (2.5) 15.1 (2.2) 34.2 (29.2) 8.2 (4.4) 11.9 (2.5) 12.0 (1.4) 13.1 (3.2) 12.7 (4.7) 15.0 753.0
BattleZone 3306.2 (794.1) 4665.6 (2799.4) 4031.2 (1156.1) 5184.4 (1347.5) 2781.2 (661.7) 4000.0 (788.9) 4068.8 (2912.1) 3746.9 (1426.8) 2895.0 37188.0
BeamRider 463.8 (29.2) 358.9 (87.4) 621.6 (79.8) 422.7 (103.6) 456.2 (160.8) 415.4 (103.4) 456.0 (60.9) 386.6 (264.4) 372.1 16926.0
Bowling 25.3 (10.4) 22.3 (17.0) 30.0 (5.8) 34.4 (16.3) 27.7 (5.2) 23.9 (3.3) 29.3 (7.5) 33.2 (15.5) 24.2 161.0
Boxing -9.3 (10.9) -3.1 (14.1) 7.8 (10.1) 9.1 (8.8) 11.6 (12.6) 5.1 (10.0) -2.1 (5.0) 1.6 (14.7) 0.3 12.0
Breakout 6.1 (2.8) 10.2 (5.1) 16.4 (6.2) 12.7 (3.8) 7.3 (2.4) 8.8 (5.1) 11.4 (3.7) 7.8 (4.1) 0.9 30.0
ChopperCommand 906.9 (210.2) 709.1 (174.1) 979.4 (172.7) 1246.9 (392.0) 725.6 (204.2) 946.6 (49.9) 729.1 (185.1) 1047.2 (221.6) 671.0 7388.0
CrazyClimber 19380.0 (6138.8) 54700.3 (14480.5) 62583.6 (16856.8) 39827.8 (22582.6) 49840.9 (11920.9) 34353.1 (33547.2) 48651.2 (14903.5) 25612.2 (14037.5) 7339.5 35829.0
DemonAttack 191.9 (86.3) 120.3 (38.3) 208.1 (56.8) 169.5 (41.8) 187.5 (68.6) 194.9 (89.6) 170.1 (42.4) 202.2 (134.0) 140.0 1971.0
FishingDerby -94.5 (3.0) -96.9 (1.7) -90.7 (5.3) -91.5 (2.8) -91.0 (4.1) -92.6 (3.2) -90.0 (2.7) -94.5 (2.5) -93.6 -39.0
Freeway 5.9 (13.1) 23.7 (13.5) 16.7 (15.7) 20.3 (18.5) 18.9 (17.2) 27.7 (13.3) 19.1 (16.7) 27.3 (5.8) 0.0 30.0
Frostbite 196.4 (4.4) 219.6 (21.4) 236.9 (31.5) 254.7 (4.9) 234.6 (26.8) 239.2 (19.1) 226.8 (16.9) 252.1 (54.4) 74.0 -
Gopher 510.2 (158.4) 225.2 (105.7) 596.8 (183.5) 771.0 (160.2) 845.6 (230.3) 612.6 (273.9) 698.4 (213.9) 509.7 (273.4) 245.9 2412.0
Gravitar 237.0 (73.1) 213.8 (57.4) 173.4 (54.7) 198.3 (39.9) 219.4 (7.8) 213.0 (37.3) 188.9 (27.6) 116.4 (84.0) 227.2 3351.0
Hero 621.5 (1281.3) 558.3 (1143.3) 2656.6 (483.1) 1295.1 (1600.1) 2853.9 (539.5) 3503.5 (892.9) 3052.7 (169.3) 1484.8 (1671.7) 224.6 30826.0
IceHockey -12.6 (2.1) -14.0 (1.8) -11.6 (2.5) -10.5 (2.2) -12.2 (2.9) -11.9 (1.2) -13.5 (3.0) -13.9 (3.9) -9.7 1.0
Jamesbond 68.8 (37.2) 100.5 (69.8) 100.5 (36.8) 125.3 (112.5) 28.9 (12.7) 50.5 (21.3) 68.9 (42.7) 163.4 (81.8) 29.2 303.0
Kangaroo 481.9 (313.2) 191.9 (301.0) 51.2 (17.8) 323.1 (359.8) 148.1 (121.5) 37.5 (8.0) 301.2 (593.4) 340.0 (470.4) 42.0 3035.0
Krull 834.9 (166.3) 1778.5 (906.9) 2204.8 (776.5) 4539.9 (2470.4) 2396.5 (962.0) 2620.9 (856.2) 3559.0 (1896.7) 3320.6 (2410.1) 1543.3 2666.0
KungFuMaster 10340.9 (8835.7) 4086.6 (3384.5) 14862.5 (4031.6) 17257.2 (5502.6) 12587.8 (6810.0) 16926.6 (6598.3) 17121.2 (7211.6) 15541.2 (5086.1) 616.5 22736.0
MsPacman 560.6 (172.2) 1098.1 (450.9) 1480.0 (288.2) 762.8 (331.5) 1197.1 (544.6) 1273.3 (59.5) 921.0 (306.0) 805.8 (261.1) 235.2 6952.0
NameThisGame 1512.1 (408.3) 2007.9 (367.0) 2420.7 (289.4) 1990.4 (284.7) 2058.1 (103.7) 2114.8 (387.4) 2067.2 (304.8) 1805.3 (453.4) 2136.8 8049.0
Pong -17.4 (5.2) -11.6 (15.9) 12.8 (17.2) 5.2 (9.7) -2.9 (7.3) -2.5 (15.4) -13.9 (7.7) -1.0 (14.9) -20.4 15.0
PrivateEye 16.4 (46.7) 50.8 (43.2) 35.0 (60.2) 58.3 (45.4) 54.4 (49.0) 67.8 (26.4) 88.3 (19.0) 1334.3 (1794.5) 26.6 69571.0
Qbert 480.4 (158.8) 603.7 (150.3) 1288.8 (1677.9) 559.8 (183.8) 899.3 (474.3) 1120.2 (697.1) 534.4 (162.5) 603.4 (138.2) 166.1 13455.0
Riverraid 1285.6 (604.6) 1740.7 (458.1) 1957.8 (758.1) 1587.0 (818.0) 1977.4 (332.7) 2115.1 (106.2) 1318.7 (540.4) 1426.0 (374.0) 1451.0 17118.0
RoadRunner 5724.4 (3093.1) 1228.8 (1025.9) 5640.6 (3936.6) 5169.4 (3939.0) 1586.2 (1574.1) 8414.1 (4542.8) 722.2 (627.2) 4366.2 (3867.8) 0.0 7845.0
Seaquest 419.5 (236.2) 289.6 (110.4) 683.3 (171.2) 370.9 (128.2) 364.6 (138.6) 337.8 (79.0) 247.8 (72.4) 350.0 (136.8) 61.1 42055.0
UpNDown 1329.3 (495.3) 926.7 (335.7) 3350.3 (3540.0) 2152.6 (1192.4) 1291.2 (324.6) 1250.6 (493.0) 1828.4 (688.3) 2136.5 (2095.0) 488.4 11693.0
YarsRevenge 3014.9 (397.4) 3291.4 (1097.3) 5664.3 (1870.5) 2980.2 (778.6) 2934.2 (459.2) 3366.6 (493.0) 2673.7 (216.8) 4666.1 (1889.4) 3121.2 54577.0
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Table 3: Comparison of our method (SimPLe) with model-free benchmarks - PPO and Rainbow, trained with 100 thousands/500 thousands/1 million steps. (1 step equals 4 frames)

Game SimPLe PPO_100k PPO_500k PPO_1m Rainbow_100k Rainbow_500k Rainbow_1m random human

Alien 616.9 (252.2) 291.0 (40.3) 269.0 (203.4) 362.0 (102.0) 290.6 (14.8) 828.6 (54.2) 945.0 (85.0) 184.8 7128.0
Amidar 74.3 (28.3) 56.5 (20.8) 93.2 (36.7) 123.8 (19.7) 20.8 (2.3) 194.0 (34.9) 275.8 (66.7) 11.8 1720.0
Assault 527.2 (112.3) 424.2 (55.8) 552.3 (110.4) 1134.4 (798.8) 300.3 (14.6) 1041.5 (92.1) 1581.8 (207.8) 233.7 742.0
Asterix 1128.3 (211.8) 385.0 (104.4) 1085.0 (354.8) 2185.0 (931.6) 285.7 (9.3) 1702.7 (162.8) 2151.6 (202.6) 248.8 8503.0
Asteroids 793.6 (182.2) 1134.0 (326.9) 1053.0 (433.3) 1251.0 (377.9) 912.3 (62.7) 895.9 (82.0) 1071.5 (91.7) 649.0 47389.0
Atlantis 20992.5 (11062.0) 34316.7 (5703.8) 4836416.7 (6218247.3) - (-) 17881.8 (617.6) 79541.0 (25393.4) 848800.0 (37533.1) 16492.0 29028.0
BankHeist 34.2 (29.2) 16.0 (12.4) 641.0 (352.8) 856.0 (376.7) 34.5 (2.0) 727.3 (198.3) 1053.3 (22.9) 15.0 753.0
BattleZone 4031.2 (1156.1) 5300.0 (3655.1) 14400.0 (6476.1) 19000.0 (4571.7) 3363.5 (523.8) 19507.1 (3193.3) 22391.4 (7708.9) 2895.0 37188.0
BeamRider 621.6 (79.8) 563.6 (189.4) 497.6 (103.5) 684.0 (168.8) 365.6 (29.8) 5890.0 (525.6) 6945.3 (1390.8) 372.1 16926.0
Bowling 30.0 (5.8) 17.7 (11.2) 28.5 (3.4) 35.8 (6.2) 24.7 (0.8) 31.0 (1.9) 30.6 (6.2) 24.2 161.0
Boxing 7.8 (10.1) -3.9 (6.4) 3.5 (3.5) 19.6 (20.9) 0.9 (1.7) 58.2 (16.5) 80.3 (5.6) 0.3 12.0
Breakout 16.4 (6.2) 5.9 (3.3) 66.1 (114.3) 128.0 (153.3) 3.3 (0.1) 26.7 (2.4) 38.7 (3.4) 0.9 30.0
ChopperCommand 979.4 (172.7) 730.0 (199.0) 860.0 (285.3) 970.0 (201.5) 776.6 (59.0) 1765.2 (280.7) 2474.0 (504.5) 671.0 7388.0
CrazyClimber 62583.6 (16856.8) 18400.0 (5275.1) 33420.0 (3628.3) 58000.0 (16994.6) 12558.3 (674.6) 75655.1 (9439.6) 97088.1 (9975.4) 7339.5 35829.0
DemonAttack 208.1 (56.8) 192.5 (83.1) 216.5 (96.2) 241.0 (135.0) 431.6 (79.5) 3642.1 (478.2) 5478.6 (297.9) 140.0 1971.0
FishingDerby -90.7 (5.3) -95.6 (4.3) -87.2 (5.3) -88.8 (4.0) -91.1 (2.1) -66.7 (6.0) -23.2 (22.3) -93.6 -39.0
Freeway 16.7 (15.7) 8.0 (9.8) 14.0 (11.5) 20.8 (11.1) 0.1 (0.1) 12.6 (15.4) 13.0 (15.9) 0.0 30.0
Frostbite 236.9 (31.5) 174.0 (40.7) 214.0 (10.2) 229.0 (20.6) 140.1 (2.7) 1386.1 (321.7) 2972.3 (284.9) 74.0 -
Gopher 596.8 (183.5) 246.0 (103.3) 560.0 (118.8) 696.0 (279.3) 748.3 (105.4) 1640.5 (105.6) 1905.0 (211.1) 245.9 2412.0
Gravitar 173.4 (54.7) 235.0 (197.2) 235.0 (134.7) 325.0 (85.1) 231.4 (50.7) 214.9 (27.6) 260.0 (22.7) 227.2 3351.0
Hero 2656.6 (483.1) 569.0 (1100.9) 1824.0 (1461.2) 3719.0 (1306.0) 2676.3 (93.7) 10664.3 (1060.5) 13295.5 (261.2) 224.6 30826.0
IceHockey -11.6 (2.5) -10.0 (2.1) -6.6 (1.6) -5.3 (1.7) -9.5 (0.8) -9.7 (0.8) -6.5 (0.5) -9.7 1.0
Jamesbond 100.5 (36.8) 65.0 (46.4) 255.0 (101.7) 310.0 (129.0) 61.7 (8.8) 429.7 (27.9) 692.6 (316.2) 29.2 303.0
Kangaroo 51.2 (17.8) 140.0 (102.0) 340.0 (407.9) 840.0 (806.5) 38.7 (9.3) 970.9 (501.9) 4084.6 (1954.1) 42.0 3035.0
Krull 2204.8 (776.5) 3750.4 (3071.9) 3056.1 (1155.5) 5061.8 (1333.4) 2978.8 (148.4) 4139.4 (336.2) 4971.1 (360.3) 1543.3 2666.0
KungFuMaster 14862.5 (4031.6) 4820.0 (983.2) 17370.0 (10707.6) 13780.0 (3971.6) 1019.4 (149.6) 19346.1 (3274.4) 21258.6 (3210.2) 616.5 22736.0
MsPacman 1480.0 (288.2) 496.0 (379.8) 306.0 (70.2) 594.0 (247.9) 364.3 (20.4) 1558.0 (248.9) 1881.4 (112.0) 235.2 6952.0
NameThisGame 2420.7 (289.4) 2225.0 (423.7) 2106.0 (898.8) 2311.0 (547.6) 2368.2 (318.3) 4886.5 (583.1) 4454.2 (338.3) 2136.8 8049.0
Pong 12.8 (17.2) -20.5 (0.6) -8.6 (14.9) 14.7 (5.1) -19.5 (0.2) 19.9 (0.4) 20.6 (0.2) -20.4 15.0
PrivateEye 35.0 (60.2) 10.0 (20.0) 20.0 (40.0) 20.0 (40.0) 42.1 (53.8) -6.2 (89.8) 2336.7 (4732.6) 26.6 69571.0
Qbert 1288.8 (1677.9) 362.5 (117.8) 757.5 (78.9) 2675.0 (1701.1) 235.6 (12.9) 4241.7 (193.1) 8885.2 (1690.9) 166.1 13455.0
Riverraid 1957.8 (758.1) 1398.0 (513.8) 2865.0 (327.1) 2887.0 (807.0) 1904.2 (44.2) 5068.6 (292.6) 7018.9 (334.2) 1451.0 17118.0
RoadRunner 5640.6 (3936.6) 1430.0 (760.0) 5750.0 (5259.9) 8930.0 (4304.0) 524.1 (147.5) 18415.4 (5280.0) 31379.7 (3225.8) 0.0 7845.0
Seaquest 683.3 (171.2) 370.0 (103.3) 692.0 (48.3) 882.0 (122.7) 206.3 (17.1) 1558.7 (221.2) 3279.9 (683.9) 61.1 42055.0
UpNDown 3350.3 (3540.0) 2874.0 (1105.8) 12126.0 (1389.5) 13777.0 (6766.3) 1346.3 (95.1) 6120.7 (356.8) 8010.9 (907.0) 488.4 11693.0
YarsRevenge 5664.3 (1870.5) 5182.0 (1209.3) 8064.8 (2859.8) 9495.0 (2638.3) 3649.0 (168.6) 7005.7 (394.2) 8225.1 (957.9) 3121.2 54577.0
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Table 4: Models comparison. Scores of median (left) and best (right) models out of five training runs. Right most columns presents score for random agent and human.

Game Ours, deterministic Ours, det. recurrent Ours, SD long Ours, SD Ours, SD γ = 0.90 Ours, SD γ = 0.95 SD 100 steps Ours, SD 25 steps random human

Alien 354.4 516.6 299.2 381.1 515.9 1030.5 409.2 586.9 411.9 530.5 567.3 682.7 399.5 522.3 525.5 792.8 184.8 7128.0
Amidar 58.0 84.8 82.7 118.4 80.2 102.7 85.1 114.0 55.1 58.9 84.3 101.4 45.2 47.5 93.1 137.7 11.8 1720.0
Assault 334.4 560.1 566.6 627.2 509.1 671.1 355.7 527.9 369.1 614.4 508.4 722.5 322.9 391.1 701.4 1060.3 233.7 742.0
Asterix 529.7 1087.5 1798.4 2282.0 1065.6 1485.2 1158.6 1393.8 805.5 1159.4 923.4 1034.4 813.3 1000.0 1128.1 2313.3 248.8 8503.0
Asteroids 727.3 854.7 827.7 919.8 899.7 955.6 671.2 962.0 885.5 909.1 886.1 949.5 813.8 962.2 657.5 752.7 649.0 47389.0
Atlantis 15587.5 16545.3 15939.1 17778.1 13695.3 34890.6 13645.3 18396.9 19367.2 23046.9 12981.2 23579.7 15020.3 16790.6 12196.9 15728.1 16492.0 29028.0
BankHeist 14.4 16.2 14.7 18.8 31.9 77.5 8.9 13.9 12.3 14.5 12.3 13.1 12.8 17.2 14.1 17.0 15.0 753.0
BattleZone 3312.5 4140.6 4515.6 9312.5 3484.4 5359.4 5390.6 7093.8 2937.5 3343.8 4421.9 4703.1 3500.0 8906.2 3859.4 5734.4 2895.0 37188.0
BeamRider 453.1 515.5 351.4 470.2 580.2 728.8 433.9 512.6 393.5 682.8 446.6 519.2 447.1 544.6 385.7 741.9 372.1 16926.0
Bowling 27.0 36.2 28.4 43.7 28.0 39.6 24.9 55.0 27.7 34.9 22.6 28.6 28.4 39.9 37.0 54.7 24.2 161.0
Boxing -7.1 0.2 3.5 5.0 9.4 21.0 8.3 21.5 6.4 31.5 2.5 15.0 -0.7 2.2 -0.9 20.8 0.3 12.0
Breakout 5.5 9.8 12.5 13.9 16.0 22.8 11.0 19.5 7.4 10.4 10.2 14.1 10.5 16.7 6.9 13.0 0.9 30.0
ChopperCommand 942.2 1167.2 748.4 957.8 909.4 1279.7 1139.1 1909.4 682.8 1045.3 954.7 1010.9 751.6 989.1 1031.2 1329.7 671.0 7388.0
CrazyClimber 20754.7 23831.2 49854.7 80156.2 55795.3 87593.8 41396.9 67250.0 56875.0 58979.7 19448.4 84070.3 53406.2 64196.9 19345.3 43179.7 7339.5 35829.0
DemonAttack 219.2 263.0 135.8 148.4 191.2 288.9 182.4 223.9 160.3 293.8 204.1 312.8 164.4 222.6 187.5 424.8 140.0 1971.0
FishingDerby -94.3 -90.2 -97.3 -94.2 -91.8 -84.3 -91.6 -88.6 -90.0 -85.7 -92.0 -88.8 -90.6 -85.4 -95.0 -90.7 -93.6 -39.0
Freeway 0.0 29.3 29.3 32.2 21.5 32.0 33.5 34.0 31.1 32.0 33.5 33.8 30.0 32.3 29.9 33.5 0.0 30.0
Frostbite 194.5 203.9 213.4 256.2 248.8 266.9 253.1 262.8 246.7 261.7 250.0 255.9 215.8 247.7 249.4 337.5 74.0 -
Gopher 514.7 740.6 270.3 320.9 525.3 845.6 856.9 934.4 874.1 1167.2 604.1 1001.6 726.9 891.6 526.2 845.0 245.9 2412.0
Gravitar 232.8 310.2 219.5 300.0 156.2 233.6 202.3 252.3 223.4 225.8 228.1 243.8 193.8 218.0 93.0 240.6 227.2 3351.0
Hero 71.5 2913.0 75.0 2601.5 2935.0 3061.6 237.5 3133.8 3135.0 3147.5 3066.2 5092.0 3067.3 3256.9 1487.2 2964.8 224.6 30826.0
IceHockey -12.4 -9.9 -14.8 -11.8 -12.3 -7.2 -10.0 -7.7 -11.8 -8.5 -11.6 -10.7 -12.9 -10.0 -12.2 -11.0 -9.7 1.0
Jamesbond 64.8 128.9 64.8 219.5 110.9 141.4 87.5 323.4 25.0 46.9 58.6 69.5 61.7 139.1 139.8 261.7 29.2 303.0
Kangaroo 500.0 828.1 68.8 728.1 62.5 65.6 215.6 909.4 103.1 334.4 34.4 50.0 43.8 1362.5 56.2 1128.1 42.0 3035.0
Krull 852.2 1014.3 1783.6 2943.6 1933.7 3317.5 4264.3 7163.2 1874.8 3554.5 2254.0 3827.1 3142.8 6315.2 3198.2 6833.4 1543.3 2666.0
KungFuMaster 7575.0 20450.0 4848.4 8065.6 14318.8 21054.7 17448.4 21943.8 12964.1 21956.2 20195.3 23690.6 19718.8 25375.0 18025.0 20365.6 616.5 22736.0
MsPacman 557.3 818.0 1178.8 1685.9 1525.0 1903.4 751.2 1146.1 1410.5 1538.9 1277.3 1354.5 866.2 1401.9 777.2 1227.8 235.2 6952.0
NameThisGame 1468.1 1992.7 1826.7 2614.5 2460.0 2782.8 1919.8 2377.7 2087.3 2155.2 1994.8 2570.3 2153.4 2471.9 1964.2 2314.8 2136.8 8049.0
Pong -19.6 -8.5 -17.3 16.7 20.7 21.0 1.4 21.0 -2.0 6.6 3.8 14.2 -17.9 -2.0 -10.1 21.0 -20.4 15.0
PrivateEye 0.0 98.9 75.0 82.8 0.0 100.0 76.6 100.0 75.0 96.9 60.9 100.0 96.9 99.3 100.0 4038.7 26.6 69571.0
Qbert 476.6 702.7 555.9 869.9 656.2 4259.0 508.6 802.7 802.3 1721.9 974.6 2322.3 475.0 812.5 668.8 747.3 166.1 13455.0
Riverraid 1416.1 1929.4 1784.4 2274.5 2360.0 2659.8 1799.4 2158.4 2053.8 2307.5 2143.6 2221.2 1387.8 1759.8 1345.5 1923.4 1451.0 17118.0
RoadRunner 5901.6 8484.4 781.2 2857.8 5906.2 11176.6 2804.7 10676.6 1620.3 4104.7 7032.8 14978.1 857.8 1342.2 2717.2 8560.9 0.0 7845.0
Seaquest 414.4 768.1 236.9 470.6 711.6 854.1 386.9 497.2 330.9 551.2 332.8 460.9 274.1 317.2 366.9 527.2 61.1 42055.0
UpNDown 1195.9 2071.1 1007.5 1315.2 1616.1 8614.5 2389.5 3798.3 1433.3 1622.0 1248.6 1999.4 1670.3 2728.0 1825.2 5193.1 488.4 11693.0
YarsRevenge 3047.0 3380.5 3416.3 4230.8 6580.2 7547.4 2435.5 3914.1 2955.9 3314.5 3434.8 3896.3 2745.3 2848.1 4276.3 6673.1 3121.2 54577.0
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E BASELINES OPTIMIZATION

To assess the performance of SimPle we compare it with model-free algorithms. To make this com-
parison more reliable we tuned Rainbow in the low data regime. To this end we run an hyperparame-
ter search over the following parameters from https://github.com/google/dopamine/
blob/master/dopamine/agents/rainbow/rainbow_agent.py:

• update_horizon in {1, 3}, best parameter = 3
• min_replay_history in {500, 5000, 20000}, best parameter = 20000
• update_period in {1, 4}, best parameter = 4
• target_update_period {50, 100, 1000, 4000}, best parameter = 8000
• replay_scheme in {uniform, prioritized}, best parameter = prioritized

Each set of hyperparameters was used to train 5 Rainbow agents on the game of Pong until 1
million of interactions with the environment. Their average performance was used to pick the best
hyperparameter set.

For PPO we used the standard set of hyperparameters from https://github.com/openai/
baselines.

F RESULTS AT DIFFERENT NUMBERS OF INTERACTIONS
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(a) Fraction at 100K clipped to 10. (b) Fraction at 200K

(c) Fraction at 500K. (d) Fraction at 1M.

Figure 12: Fractions of the rainbow scores at given number of samples. These were calculate with the formula
(SimPLe_score− random_score)/(rainbow_score− random_score); if denominator is smaller than 0,
both nominator and denominator are increased by 1.
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(a) Fraction at 100K clipped to 10. (b) Fraction at 200K

(c) Fraction at 500K. (d) Fraction at 1M.

Figure 13: Fractions of the ppo scores at given number of samples. These were calculate with the formula
(SimPLe_score− random_score)/(ppo_score− random_score); if denominator is smaller than 0, both
nominator and denominator are increased by 1.
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(a) SimPLe compared to Rainbow at 100K. (b) SimPLe compared to Rainbow at 200K

(c) SimPLe compared to PPO at 100K. (d) SimPLe compared to PPO at 200K.

Figure 14: Comparison of scores from Simple against Rainbow and PPO at different numbers of interactions.
The following formula is used: (SimPLe_score@100K − baseline_score)/human_score. Points are
normalized by average human score in order to be presentable in one graph.
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Simulation-Based Reinforcement Learning
for Real-World Autonomous Driving

Błażej Osiński1,3, Adam Jakubowski1, Paweł Zięcina1, Piotr Miłoś1,5,
Christopher Galias1,4, Silviu Homoceanu2 and Henryk Michalewski3

Abstract— We use reinforcement learning in simulation to
obtain a driving system controlling a full-size real-world vehicle.
The driving policy takes RGB images from a single camera
and their semantic segmentation as input. We use mostly
synthetic data, with labelled real-world data appearing only
in the training of the segmentation network.

Using reinforcement learning in simulation and synthetic
data is motivated by lowering costs and engineering effort.

In real-world experiments we confirm that we achieved
successful sim-to-real policy transfer. Based on the extensive
evaluation, we analyze how design decisions about perception,
control, and training impact the real-world performance.

I. Introduction

This work focuses on verifying whether it is possible to
obtain a driving system using data from a simulator, which can
be deployed on a real car. Using synthetic data, in comparison
to collecting it in the real world, reduces the cost of developing
such a system. Our policies were trained using reinforcement
learning (RL) and confirmed to be useful in driving a real,
full-sized passenger vehicle with state-of-the-art equipment
required for Level 4 autonomy. The real-world tests consisted
of 9 driving scenarios of total length of about 2.5 km.

The driving policy is evaluated by its real-world perfor-
mance on multiple scenarios outlined in Section III–a. To
complete a scenario, the driving agent needs to execute
from 250 to 700 actions at 10 Hz at speeds varying from
15 to 30 km/h. In some of our experiments, the learned
controller outputs the steering command directly. In other,
the controller outputs waypoints which are transformed to
steering commands using a proprietary control system. In
this work, we decided to limit intermediate human-designed
or learned representations of the real world only to semantic
segmentation. The semantic segmentator used in our system
is the only component trained using the real-world data – its
training process mixes real-world and synthetic images. Our
driving policies are trained only in simulation and directly
on visual inputs, understood as RGB images along with their
segmentation masks. The input contains also selected car
metrics and a high-level navigation command inspired by [8].

Using reinforcement learning and RGB inputs was a
deliberate design decision. The goal behind this choice was
to answer the following research questions: Is it possible to

1 deepsense.ai, Warsaw, Poland
2 Volkswagen AG, Wolfsburg, Germany
3 University of Warsaw, Warsaw, Poland
4 Jagiellonian University, Cracow, Poland
5 Institute of Mathematics of the Polish Academy of Sciences, Warsaw,

Poland

train a driving policy in an end-to-end fashion? Is such a
policy obtained in simulation capable of real-world driving?

Using simulation and reinforcement learning is instrumental
in generating rich experience. The former enables avoiding
hard safety constraints of real-world scenarios and lets the
latter to explore beyond the imagination of hand-designed
situations. Furthermore, RL enables end-to-end training with
none or little human intervention. This property is highly
desirable as it greatly reduces the engineering effort. It may
also eliminate errors arising when gluing a heterogeneous
system consisting of separate perception and control modules.

The quality of a simulator is crucial to obtain transferable
polices. We use CARLA [13], which offers reasonable fidelity
of physical and visual layers. This fidelity comes at a high
computation cost, however. In our case, it was alleviated by
implementing a parallelized training architecture inspired by
IMPALA [14]. With our current infrastructure, we gathered
as much as 100 years of simulated driving experience. This
enabled us to conduct several lines of experiments testing
various design choices. These experiments constitute the main
contribution of this work:
1. In simulation: we verify the influence of visual random-
izations on transfer between different scenarios in simulation;
results are summarized in Section IV-A.
2. In the real world: we test 10 models listed in Table I on
9 driving scenarios. In total we report results gathered over
more than 400 test drives. See Section IV-B for a detailed
description.

model description
CONTINUOUS-PLAIN base experiment

CONTINUOUS-LOW-RAND experiment using smaller number of randomizations
DISCRETE-PLAIN model using discrete actions
CONTINUOUS-REG experiment with additional l2 regularization
DISCRETE-REG analog of DISCRETE-PLAIN with additional l2 regularization
SEMSEG-ONLY model with semantic segmentation as only visual input

WAYPOINTS-DISCRETE model driving with waypoints
AUXILIARY-DEPTH model predicting depth as auxiliary task
DYNAMICS-RAND-FFW feed-forward model trained with dynamics randomizations
DYNAMICS-RAND-RNN model with memory trained with dynamics randomizations

TABLE I: Summary of models evaluated in this work.

In Section IV-C we describe two failure cases and in
Section IV-D we assess a proxy metric potentially useful for
offline evaluation of models. We provide recordings from
9 autonomous test drives at https://bit.ly/2k8syvh.
The test drives correspond to the scenarios listed in Figures 1.

II. Related work

a) Synthetic data and real-world robotics: Synthetic
images were used in the ALVINN experiment [30]. [35]
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proposed a training procedure for drones and [18], [29], [28],
[44], [27] proposed experiments with robotic manipulators
where training was performed using only synthetic data.
Progressive nets and data generated using simulator were
used in [33] to learn policies in the domain of real-world
robot manipulation. A driving policy for a one-person vehicle
was trained in [2]. The policy in [2] is reported to show good
performance on a rural road and the training used mostly
synthetic data generated by Unreal Engine 4. Our inclusion
of segmentation as described in Section III–d is inspired by
sim-to-real experiments presented in [19] and [25]. Visual
steering systems inspired by [35] and trained using synthetic
data were presented in [36], [34].

b) Synthetic data and simulated robotics: Emergence of
high-quality general purpose physics engines such as MuJoCo
[45], along with game engines such as Unreal Engine 4 and
Unity, and their specialized extensions such as CARLA [13]
or AirSim [40], allowed for creation of sophisticated photo-
realistic environments which can be used for training and
testing of autonomous vehicles. A deep RL framework for
autonomous driving was proposed in [37] and tested using the
racing car simulator TORCS. Reinforcement learning methods
led to very good performance in simulated robotics – see,
for example, solutions to complicated walking tasks in [16],
[23]. In the context of CARLA, impressive driving policies
were trained using imitation learning [8], [31], affordance
learning [38], reinforcement learning [4], and a combination
of model-based and imitation learning methods proposed
in [31]. However, as stated in [2]: “training and evaluating
methods purely in simulation is often ‘doomed to succeed‘ at
the desired task in a simulated environment” and indeed, in
our suite of experiments described in Section III most of the
simulated tasks can be relatively easily solved, in particular
when a given environment is deterministic and simulated
observations are not perturbed.

c) Reinforcement learning and real-world robotics:
A survey of various applications of RL in robotics can be
found in [9, Section 2.5]. The role of simulators and RL in
robotics is discussed in [41, Section IV]. In [35], [29], [28],
[44], [27], [19], [2], [33] policies are deployed on real-world
robots and training is performed mostly using data generated
by simulators. [21] proposes a system with dynamics trained
using real-world data and perception trained using synthetic
data. Training of an RL policy in the TORCS engine with a
real-world deployment is presented in [42].

III. Environment and learning algorithm

We use CARLA [13], an open-source simulator for
autonomous driving research based on Unreal Engine 4.
CARLA features open assets, including seven built-in maps,
14 predefined weather settings, and multiple vehicles with
different physical parameters. In our experiments we use input
from simulated cameras; their settings, including position,
orientation, and field of view, can be customized. Two
visual quality levels (LOW and EPIC) are supported; the
latter implements visual features including shadows, water
reflections, sun flare effects, and antialiasing.

Below we describe our experimental setup as used in
the basic CONTINUOUS-PLAIN experiment. We varied its
various elements in other experiments. Details are provided
in Section IV-B.

a) Simulated and real-world scenarios: The models
were tested on 9 real-world scenarios presented in Figure 1.
These scenarios contain diverse driving situations, including
turns and the entry and exit of an overpass. For training,
we developed new CARLA-compatible maps resembling the
real-world testing area (approximately 50% of the testing
scenarios were covered). We used these maps along with
maps provided in CARLA for training, with some scenarios
reserved for validation. In all scenarios the agent’s goal is
to follow a route from start to finish. These routes are lists
of checkpoints: they are generated procedurally in CARLA
maps and predefined in maps developed by us.

In training, agents are expected to drive in their own lanes,
but other traffic rules are ignored. Moreover, we assume that
the simulated environment is static, without any moving cars
or pedestrians, hence a number of a safety driver interventions
during test deployments in real traffic is unavoidable.

b) Rewards in simulation and metrics of real-world per-
formance: In simulation, the agent is rewarded for following
a reference trajectory, which provides a dense training signal.
The episode fails if the agent diverges from the trajectory more
than 5 meters or collides with an obstacle. In the real world,
for each scenario, we measure the percentage of distance
driven autonomously (i.e. without human intervention); results
are presented in Figure 3. Since tests were made in an
uncontrolled environment with other vehicles and pedestrians,
the safety driver was instructed to take over in all situations
which were potentially risky. We also measure divergence
from expert trajectories (see Figure 4).

c) Actions: Vehicles are controlled by two values:
throttle and steering. The throttle is controlled by a PID
controller with speed set to a constant, and thus our neural
network policies only control the steering. We explore various
possibilities for action spaces. Unless stated otherwise, in
training the policy is modeled as a Gaussian distribution over
the angle of the steering wheel. In evaluations we use the
mean of the distribution.

d) Semantic segmentation: The semantic segmentation
model is trained in a supervised way separately from
the reinforcement learning loop. We used the U-Net [32]
architecture and synthetic data from CARLA (which can
render both RGB images and their ground-truth semantic
labels), the Mapillary dataset [26], as well as real-world
labeled data from an environment similar to the one used in
test drives. The output of the model is further simplified to
include only the classes most relevant to our problem: road,
road marking, and everything else (i.e. obstacles).

e) Observations: The observation provided to the agent
consists of visual input and two car metrics (speed and
acceleration). In order to disambiguate certain road situations
(e.g. intersections), a high-level navigation command is
also given: lane follow, turn right/left or go
straight. The commands resemble what could be provided
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Fig. 1: All real-world scenarios used in our experiments. Left map: (a) autouni-arc, (b) autouni-straight. Center map:
(c) factory_city-overpass*, (d) factory_city-overpass_exit. Right map: (e) factory_city-tunnel-bt10*,
(f) factory_city-bt10-u_turn, (g) factory_city-u_turn-sud_strasse, (h) factory_city-sud_strasse_u_turn*,
(i) factory_city-u_turn-bt10*. Scenarios marked with * were used for training in simulation.

by a typical GPS-based navigation system.
The visual input is based on an RGB image from a single

front camera which is downscaled to 134× 84 pixels. The
camera position and orientation in simulation was configured
to reflect the real-world setup. The RGB observation is
concatenated with its semantic segmentation as described
in the previous subsection. Including this component was
motivated by [25], which claims that it “contains sufficient
information for following the road and taking turns, but
it is abstract enough to support transfer”. We have further
evaluated this claim in experiment SEMSEG-ONLY.

f) Domain randomizations: Randomizations are consid-
ered to be pivotal to achieve sim-to-real transfer (and robust
polices in general; see e.g. [27]). In our experiments we
used the following list of visual randomizations: 10 weather
settings (we used CARLA weather presets, which affect only
the visual features of the environment), the simulation quality
(we used both LOW and EPIC), camera input randomizations
(we used a set of visual augmentations, such as adding
gaussian noise, varying brightness, and applying blur or cutout
[10]). We recall that our policies are trained on multiple
scenarios and different maps, which is also aimed to increase
robustness. Unless stated otherwise these randomizations are
used in all experiments. In a separate experiment we also
evaluated using randomization of dynamics, see description
in Section IV-B-e.

g) Network architecture: The RL policy is implemented
using a neural network; see its simplified architecture in
Figure 2. As the feature extractor for visual input (RGB and
semantic segmentation) we use the network from [14]. Our
choice was influenced by [6], where this network was shown
to generalize well to different RL environments. Note that
policy transfer between simulation and reality can be seen as
a generalization challenge.

h) Learning algorithm: We used OpenAI Baselines
[11] ppo2 (see website http://bit.ly/34xh7z4 for
training hyperparameters). We typically use 4 simultaneous
PPO trainers, which share gradients via Horovod [39]. Each

Fig. 2: Network architecture.

of them uses 2 Tesla K40 GPUs; one for running 10 Carla
instances and the other for the optimisation of the policy
network. In practice, this setup is able to gather 1.2 · 107
frames a day (equivalent to 13 days of driving).

Thanks to dense rewards the training in simulation was
quite stable across models and hyperparameters. For deploy-
ments we have decided to use 1-4 models per experiment
type, each trained using roughly 108 frames (equivalent to
about 115 days of driving).

i) System identification: Inspired by the importance of
system identification for sim-to-real transfer demonstrated in
[43], we configured the CARLA simulator to mimic some
values measured in the car used for deployment. These
were the maximal steering angle and the time for a steering
command to take effect (i.e. its delay).

IV. Experiments

Our models have been evaluated both in simulation and
in reality, with much more focus on the latter. Below we
provide detailed description of experiments conducted in both
domains.

A. Experiment in simulation

In this experiment, we measure in simulation how ran-
domizations affect performance. To this end, we apply
fewer randomizations then the set used throughout all other
experiments. Precisely, we used only one weather setting,
trained only on the LOW quality settings and did not augment
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Fig. 3: Summary of experiments with baselines across nine real-world scenarios. The columns to the right show the mean and max of autonomy (the
percentage of distance driven autonomously). Models are sorted according to their mean performance. Print in color for better readability.

Fig. 4: Average deviation of models from expert trajectories. Measurements based on GPS. The graphs for all scenarios can be found on the website
http://bit.ly/34xh7z4

the camera inputs. We conclude that the model trained
with the standard set of randomizations generalizes better
to the holdout town and with the holdout weather setting
(see Figure 5).

Fig. 5: Left: Episode scores obtained during training. The variant with less
randomization is easier and faster to train. Right: On a holdout town with
holdout weather better results are achieved by a model trained with more
randomization.

B. Experiments in the real world

Perhaps unsurprisingly, in our real-world experiments we
observed a high level of noise. Moreover, simulation results

are a poor predictor of real-world performance. More pre-
cisely, in the set of policies above some threshold (of “decent
driving”) the correlation of simulation and real-wold scores is
poor. This is perhaps the most evident instantiation of the sim-
to-real gap (see also Section IV-D for a positive example of a
offline metric correlating with real-world performance). These
factors make it hard to put forward definitive conclusions.
However, we were able to observe some trends and formulate
recommendations for future research. Generally, we observe
the positive influence of regularization and augmentation. It
also seems beneficial to have an intermediate representation
layer (semantic segmentation) and branching architectures
(see Section IV-B-d).

Figure 3 summarizes the performance of our models in
terms of the percentage of distance driven autonomously in
all scenarios. See the project website http://bit.ly/
34xh7z4 for a more fine-grained presentation. Below we
present a detailed per-experiment analysis.

a) Base experiments: The model
CONTINUOUS-PLAIN exhibited very good performance
and serves as a strong baseline for comparisons with other

6414

Authorized licensed use limited to: Trial User - Warsaw University (Uniwersytet Warszawski). Downloaded on June 14,2023 at 14:05:52 UTC from IEEE Xplore.  Restrictions apply. 70



CONTINUOUS-PLAIN DISCRETE-PLAIN

Fig. 6: Qualitative comparison of autonomy between a good model and a
lagging one. The graphs show aggregation of few trials (test drives) by these
models on the route factory_city-tunnel-bt10. The color depicts
scale between full autonomy in all trials (blue) and human takeover in all
trials (red). Graphs for other models and other routes are available on the
project webpage http://bit.ly/34xh7z4.

variants discussed below. We aimed at creating a relatively
simple model and training procedure. In other experiments
we show that further simplifications deteriorate performance.
Analogously to the experiment in simulation described
above, we have verified the impact of training with fewer
randomizations on real-world performance. As expected,
the resulting model CONTINUOUS-LOW-RAND performs
significantly worse, being in fact the worst model tested.

b) Discrete action space: This experiment aimed at
measuring the impact of using a discrete distribution for
the action space. The steering angles were discretized into
unevenly distributed atoms. More of them were placed around
0 to improve smoothness of driving without increasing the
action space (viz. [0., ±0.01, ±0.02, ±0.03, ±0.05, ±0.08,
±0.12, ±0.15, ±0.2, ±0.25, ±0.3, ±0.4]; values are in
radians). During training the action was sampled, while
during evaluation a deterministic policy output the expected
action (i.e. the sum of the atom values multiplied by their
probabilities).
The resulting model DISCRETE-PLAIN performed badly
in real-world evaluations, mostly due to severe side-to-side
wobbling. We performed more experiments with discrete
actions, with results being mostly weak (see http://bit.
ly/34xh7z4).

c) Regularization: Improved performance in RL gen-
eralization when using regularization was reported in [6].
We evaluated using regularization in two experiments.
In the first experiment, DISCRETE-REG, we fine-tuned
DISCRETE-PLAIN by further training the model in a
slightly altered setup: including l2 regularization and reducing
the policy entropy coefficient from 0.01 to 0.001. The
resulting model behaved significantly better (for example
the wobbling observed before almost disappeared). In the
second experiment, the performance of the continuous model
trained with regularization – CONTINUOUS-REG – was only
slightly improved over CONTINUOUS-PLAIN.

d) Control via waypoints: Following the approach
presented in [25], in experiment WAYPOINTS-DISCRETE
we trained a model to predict the next waypoint instead of

steering. Given a waypoint, low-level steering of the driving
wheel is executed in order to reach this point. In simulation,
this is realized by a PID controller, while in the case of
the real car, we use a proprietary control system. To ensure
similar performance in simulation and reality, we limit the
action space of the RL agent to waypoints reachable by both
of the controllers (this consists of points within a radius of 5
meters from the car). The action space is discrete – potential
waypoints are located every 5 degrees between −30 and 30,
where 0 is the current orientation of the vehicle.
In contrast to the experiments with direct steering,
the continuous version of this experiment –
WAYPOINTS-CONTINUOUS – was weaker and exhibited
strong wobbling, even in simulation.
In this experiment we used a branched neural network
architecture, again inspired by [25]. Namely, we use separate
heads for each of the four high-level navigation commands
(see Section III–e). Such architectures are considered to
learn semantically different behaviors for the commands
(e.g. go straight vs turn left) more easily and better handle
command frequency imbalance. Our experimental results are
in line with this interpretation – our models performed turns
better than ones with the standard architecture. We expect
that they will offer better general performance, which we
plan to investigate in further research.

e) Dynamics randomizations: In [28], [27] dynamics
randomization is pointed out as an important ingredient for
successful sim-to-real transfer. In order to verify this in our
context we introduced randomization to the following aspects
of the environment: target speed, steering response (including
a random multiplicative factor and bias), latency (the delay
between observation and applying the policy’s response to
it), and noise in car metric observation (speed, acceleration,
and wheel angle). Dynamics randomization parameters were
sampled once at the beginning of each training episode.
For both experiments with dynamics randomization –
DYNAMICS-RAND-RNN and DYNAMICS-RAND-FFW – the
performance during evaluation on the real car was sub-
standard. Somewhat surprisingly, the feed-forward model
DYNAMICS-RAND-FFW performed slightly better than
DYNAMICS-RAND-RNN using a GRU memory cell [5].
This is in contrast to literature, e.g. [28] which highlights
importance of using memory cells: intuitively, an agent
with memory should infer the dynamics parameters at the
beginning of the episode and utilize them for better driving.
We intend to further evaluate the possibility of using dynamics
randomization for sim-to-real autonomous driving in future
work. As a first step we will look for an explanation of the
described mediocre performance. We speculate that this might
be due to poor alignment of our randomizations with real-
world requirements or overfitting when using high-capacity
models with memory.

f) Auxiliary depth prediction: Auxiliary tasks are an
established method of improving RL training (see e.g. [17]).
Following that, in experiment AUXILIARY-DEPTH the
model also predict the depth. The depth prediction is learned
in a supervised way, along with RL training. This auxiliary
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task slightly speeds up the training in simulation. However, in
real-world evaluations it does not improve over the baseline
experiments.

g) Segmentation only: Similarly to [25] we test the
hypothesis that semantic segmentation is a useful common
representation space for sim-to-real transfer. In experiment
SEMSEG-ONLY the model takes in only segmentation as
input and performs only slightly weaker than the baseline.

C. Selected failure cases

Besides major design decisions (as described in previous
sections) there are a number of small tweaks and potential
pitfalls. Below we show two examples, which we find
illustrative and hopefully useful for other researches and
practitioners.

1) Single-line versus double-line road markings: In initial
experiments we have used CARLA’s TOWN1 and TOWN2
maps, which feature only double-line road markings. When
evaluated on real-world footage, policies trained only on the
above were not sensitive to single-line road markings. This
problem was fixed after introducing our custom maps, which
feature single-line road markings.

2) Bug in reward function resulting in driving over the
curb: Our reward function includes a term which incentivizes
the agent to follow scenarios routes defined by checkpoints
connected with straight lines. In one of our scenarios, based
on the real-world testing area, the checkpoints were too sparse,
resulting in one of the connecting lines going over a curb on
a bend of the road. We noticed this only after doing a real-
world test, where the car also exhibited similar behavior. This
illustrates the well-known tendency of RL methods to overfit
to idiosyncrasies of the reward function’s design. Somewhat
ironically, in this case our system overcame the sim-to-real
gap and transferred the unexpected behaviour precisely. This
suggest that methods with stronger generalization are required
– we would hope they would generalize from the other bends
the car could drive on without touching the curb.

D. Offline models evaluation

A fundamental issue in sim-to-real experiments is that
good performance in simulation does not necessarily transfer
to the real-world. This is aggravated by the fact that real-
world testing is costly both in time and other resources.
Inspired by [7] we introduced a proxy metric, which can be
calculated offline and correlates with real-world evaluations.
Namely, for the seven scenarios with prefix factory_city
we obtained a human reference drive. Frame by frame, we
compared the reference steering with the one given by our
models by calculating the mean absolute error. We observe a
clear trend (see Figure 7). While this result is still statistically
rather weak, we consider it to be a promising future research
direction. We present an additional offline evaluation metric
(F1) on the project website http://bit.ly/34xh7z4.

Fig. 7: Dependence of the mean of the driven autonomously metric on the
mean absolute error with reference drives. Models utilizing waypoints are
not included due to a different action space.

V. Conclusions and future work
We presented an overview of a series of experiments

intended to train an end-to-end driving policy using the
CARLA simulator. Our policies were deployed and tested on
a full-size car exhibiting a substantial level of autonomy in a
number of restricted driving scenarios.

The current results let us to speculate about the following
promising directions: using more regularization, control via
waypoints, and using offline proxy metrics. While we obtained
poor results with memory-augmented architectures, we plan
to investigate the topic further.

We also consider other training algorithms which use
a replay buffer such as V-trace [14] and SAC [15]. The
asymmetric actor-critic architecture presented in [29] and
a generator-discriminator pair similar to the one in [3] can
be also beneficial for training of driving polices. Another
interesting and challenging direction is integration of an
intermediate representation layer — for example a 2D-map or
a bird’s-eye view, as proposed in [4], [31], [12], [1]. Focusing
RL training on fragments of scenarios with the highest
uncertainty, see, e.g., [22] might improve driving stability.
Integration of model-based methods similar to [24], [20]
would be a desirable step towards better sample efficiency.
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What data do we need for training an AV motion planner?

Long Chen∗, Lukas Platinsky∗, Stefanie Speichert∗, Błażej Osiński,
Oliver Scheel, Yawei Ye, Hugo Grimmett, Luca del Pero, and Peter Ondruska

Abstract— We investigate what grade of sensor data is re-
quired for training an imitation-learning-based AV planner on
human expert demonstration. Machine-learned planners [1] are
very hungry for training data, which is usually collected using
vehicles equipped with the same sensors used for autonomous
operation [1]. This is costly and non-scalable. If cheaper sensors
could be used for collection instead, data availability would go
up, which is crucial in a field where data volume requirements
are large and availability is small. We present experiments
using up to 1000 hours worth of expert demonstration and
find that training with 10x lower-quality data outperforms 1x
AV-grade data in terms of planner performance (see Fig. 1). The
important implication of this is that cheaper sensors can indeed
be used. This serves to improve data access and democratize
the field of imitation-based motion planning. Alongside this,
we perform a sensitivity analysis of planner performance as a
function of perception range, field-of-view, accuracy, and data
volume, and reason about why lower-quality data still provide
good planning results.

I. INTRODUCTION

While human drivers can skillfully navigate complex and
varied scenarios involving multiple traffic agents safely,
motion planning remains one of the hardest problems in
autonomous driving. This has motivated the recent interest in
planning approaches for Autonomous Vehicles (AVs) based
on imitation-learning [1], [2]. These methods learn to mimic
human behaviour from real-world human driving examples.

These approaches are extremely data-hungry, due to the
complexity of the traffic scenarios and their variety: the so-
called long tail of rare events. Some methods attempt to
reduce the need for large volumes of human examples by
employing data augmentation techniques, or by synthesizing
rare cases in simulation [3]. However, just as the advance-
ments in object detection and classification required large,
real-world data sets (e.g., [4], [5]), we propose that motion
planning also requires a large corpus of real human driving
data. The problem is that these data are not readily available,
and capturing it typically requires a fleet of vehicles equipped
with expensive AV-grade sensors, the same that the AV needs
to operate in autonomous mode (so that the planner can use
the same perception system both at train and test time [1]).
This significant barrier to entry stifles progress in the field.

We ask ourselves: do we really need a fleet with AV-
grade sensors to collect training data for an AV motion
planner? If vehicles equipped with commodity sensors were

∗Equal contribution
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Fig. 1: Large data sets of expert driving demonstrations
for training motion planners need not come from expen-
sive fleets of AVs. We evaluate motion planner error rate
(lower is better), and observe that a planner trained on
expert demonstrations collected using AVs (AV-grade, left)
has inferior performance to one trained on larger volumes
of lower-quality data (middle). Combining the two data
sources further improves performance (right), as this bridges
the domain gap between the sensors used for training and
those used by the AV at test time. This opens the door to
crowd-sourced data collection using more affordable sensor
configurations than those on AVs.

sufficient, data would be more readily available and this
research problem could be democratized.

In this paper, we investigate the data properties we need
to train an AV planner for urban operation, by comparing
the performance of a state-of-the-art machine-learned planner
as we train it on expert demonstration data with varying
levels of quality. Modern planning approaches ([1], [6])
take as input the output of a vehicle’s perception system
(perception output) containing the 3D positions of other
traffic agents. The supervision is provided by the human
driving the vehicle. By taking AV-grade perception output
and progressively limiting its key functional properties, like
range and field-of-view (FoV), we simulate the lower-quality
data that we could get from a variety of commodity sensors.
Our experiments with this data inform what quality we need
(and hence which sensors we need), and help us understand
the trade-offs between data quantity and quality.

Our key contributions are as follows:
• We show that training on 10x more data with lower-
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quality improves on 1x AV-grade data (see Fig.1). This
has an important implication: we can collect expert
demonstration data for training using vehicles equipped
with sensors that are much cheaper than the AV-grade.
This opens the door to scalable, cost-effective ways to
collect large volumes of human driving examples for
teaching AV systems how to drive.

• We present a sensitivity analysis showing which aspects
of data quality are most important for planner perfor-
mance and why quantity is more important than quality.
We derive this from an extensive quantitative evaluation
supported by attention-based analysis.

II. RELATED WORK

In this paper we build on recent advances in modular
machine-learned planning systems.

End-to-end vs modular approaches. Current motion
planning methods can be broadly categorized into end-to-end
and modular (also known as mid-to-mid). End-to-end meth-
ods consume raw sensor data and output steering commands.
A notable example is imitation learning for lane following
[2], and learning end-to-end driving from simulation [7]. We
refer to [8] for a broad review. Modular methods (e.g. [1])
subdivide the problem into sub-tasks (typically, perception,
prediction, planning and control), each feeding on the output
of the previous one. Sub-tasks are naturally more contained
and easier to solve, and having intermediate outputs makes
it easier to interpret the final output. More recently, Zeng et
al. [9] proposed to bridge the two approaches with an end-
to-end architecture producing (and trained on) intermediate
outputs. Here, we use modular approach, where the planning
module can transfer across different sensor configurations as
it takes as input a shared representation, i.e. the output of
the perception system.

ML planners. An overview of classical planning ap-
proaches, including for example expert systems, can be found
in [10]. Recently, there has been interest in machine-learning
(ML) approaches trained on expert demonstration [1], [6],
which have the potential to scale with the data.

Relationship between planning and perception. Other
work has studied the impact of perception quality on plan-
ning, either using involved hand-crafted features (e.g. the
nuScenes Detection Score in [11]), or as a function of the
performance of the planner [12]. While the latter work is
relevant, our goal is not to propose a metric to evaluate
perception performance, but rather to find what sensors
we need to collect training data for planning. Wong et.
al [3] simulate perception output for testing the AV planning
system. Their focus is on synthesising realistic perception
output as if it were captured by AV sensors, and not different
levels of perception quality for simulating capturing data
from cheaper sensors like we do here.

Training with different levels of supervisions. In our
work, we train on a huge amount of lower-quality data and
fine-tune on a small amount of high-quality data. This relates
to self-supervised learning, which has recently revolution-
ized natural language processing [13], [14] and is in the

process of radically changing computer vision [15], [16].
These approaches employ a pre-training phase, in which a
neural network is trained on a large collection of unlabeled
text/images, and then fine-tuned for the target task on a
magnitude smaller collection. Our work is also related to
weakly supervised learning, where training happens on data
with noisy or incomplete supervision, for example training
object detectors on entire images rather than manually anno-
tate 2D bounding boxes [17]). In our case, what changes is
the quality of the sensors used to collect the training data.

There are several transfer learning techniques to tackle
domain shift between training and testing (e.g. [18]). One
option is fine-tuning, which is widely used in literature,
e.g. [19], [20]. Another is domain adaptation, i.e. aiming
to explicitly reduce the domain gap between domains, often
used in computer vision domains, for example for synthe-
sizing examples in new domains or style transfer [21], [22],
[23]. However, little work has been done to study transfer
learning for motion planning.

Data availability. Much previous work relied on propri-
etary data [1]. Available datasets for planning are few and of
moderate size, e.g. [24], [11], pointing to the data availability
problem mentioned in earlier sections. In our experiments,
we use the recent Lyft dataset [25], containing 1000 hours
of expert demonstrations collected by AVs in urban settings.

III. METHODOLOGY

To understand what type of data we can use to train an
AV motion planner, we start by asking two questions: what
type of data do we need (quality) and how much (quantity)?

By data quality we mean the accuracy and robustness of
the perception system that the planner uses as input both
at test and train time [1]. The perception sytem outputs the
3D positions of other traffic agents like cars and pedestrians
(traffic agents), which provides crucial context, as these
positions influence the trajectory followed by the human
driver on which the planner is trained. Quality is driven
by the sensors installed on the vehicle, for example, an
expensive AV-grade LIDAR can estimate depth much more
accurately than a commodity LIDAR, while radars have
longer range than a commodity camera system.

To understand data quality requirements, we propose to
compare the performance at test time of a state-of-the-art
ML-planner as we train it on input data collected with
different sensors. However, this would require building and
deploying a variety of different sensor configurations, and
collecting enough training data with each of them. Instead,
we propose to take a dataset of expert driving examples with
corresponding AV-grade perception output (Fig. 2), and then
simulate what this data would look like if it were collected
by a wide variety of cheaper sensors. We do this by altering
three key dimensions of the perception data:

1) Range: The maximum distance that sensors can see
objects, e.g. 40m, 30m, etc.

2) Field-of-view (FoV): How wide sensors can see, e.g.
90°, 180°)
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Fig. 2: An overview of our methodology (sec. III). Firstly, we collect expert demonstrations using AV-grade sensors, and
extract perception information (which contains agent tracks). Secondly, we simulate what this data would look like if
collected with lower-quality sensors by reducing the maximum range and field-of-view of the perception information. We
then compare the performances of ML planners trained on these training sets with varying quality. This lets us do a
comprehensive evaluation without having to build or deploy a wide variety of sensor configurations. To address domain
shift, we fine-tune the planner on small amounts of data collected with AV-grade sensors, which is what the planner uses at
test time.

3) Geometric accuracy: How accurate the perception of
nearby vehicles is, e.g. the positional and rotational
error of detected agents

We therefore start from a dataset of expert-driven examples
with AV-grade quality perception, then alter the perception
quality along one or more of these three dimensions, and
finally train a planner using these data. We repeat this process
with varying degrees of quality alteration (see Fig. 2). A
nice property of using the same training samples for all
experiments is that it allows us a fair comparison: the
difference in performance is only due to difference in quality,
and not, for example, due to one dataset containing more
diverse examples than the other.

At test time we always use AV-grade input since, while
training data can come from many sources, the goal is
to deploy the planner on an actual AV. This introduces
domain shift, since the input representation has a different
distribution at test time (AV-grade) compared to training
(lower-quality). Addressing this is an important part of our
methodology. Having investigated data quality with this
procedure, we conclude with an analysis on the relationship
between data quantity and quality requirements (Sec. IV).

In what follows, we discuss the ML planner we use in our
experiments (Sec. III-A), how we alter data quality (Sec. III-
B), and how we address domain shift (Sec. III-C).

A. ML Planner

For our experiments we use a state-of-the art ML motion
planner trained via imitation learning, similar to e.g. Chauf-
ferNet [1]. The input representation to the planner is a birds-
eye-view rasterization of the current driving scene centered
around the ego vehicle (the vehicle carrying the sensors).
Agent tracks are rendered as 2D bounding boxes on top of the
semantic map of the area, e.g. lane geometry, crosswalks, etc.
(see Fig. 3). The network predicts the trajectory to follow for
the next T time steps, which we denote by p = (p1, . . . , pT ).
The training loss minimises the L2 distance between p and

the trajectory p̂ followed by the human expert:

l =

T∑
t=1

|p− p̂|2 (1)

We use a ResNet-50 backbone. The network outputs a
trajectory for a 1.2 second (T = 12 steps) prediction horizon.
During training we add synthetic perturbations by alternating
the ground-truth trajectories to the left or right side using
Ackerman steering [26] for realistic kinematics. This was
shown to achieve better generalisation, which is needed for
closed-loop testing [1].

B. Altering data quality

Range and field-of-view: We reduce the maximum range
of the sensors by removing portions of the agent tracks that
are beyond a given distance in the AV-grade data (e.g. 20m,

Backbone 
Network

Perception 
Output

Semantic 
Maps

BEV 
Rasterization

Predicted 
Trajectory

Distance to           
Expert Trajectory

AV Control

test time

train tim
e

BP

Fig. 3: We use a state-of-the-art ML planner (Sec. III-A)
which takes as input a mid-level representation constructed
by rasterizing the agent tracks detected from the perception
system on top of an HD semantic map. The network predicts
a trajectory for the AV to follow, minimising the distance
from the trajectory followed by the expert at training time.
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30m, etc.). We reduce the field-of-view (e.g. 90◦, 180◦) by
removing agent tracks outside of it (compare Fig. 2). The
field-of-view is centered along the forward direction of the
ego vehicle, e.g. 90◦ degrees denoting 45◦ on each side.

Geometric accuracy: We add noise to the position and
rotation of the AV-grade perception tracks using noise models
approximating the accuracy we would expect from cheaper
sensors.

Specifically, we add positional noise to entire agent tracks
by applying random offsets to (x,y) agent coordinates in
an agent-centered coordinate system. We measure the extent
of the positional noise in terms of Intersection over Union
(IoU), which is a standard metric for evaluating the accuracy
of agent tracks (e.g. [27]). We specify an IoU noise level that
we would like to alter the agent accuracy to. We then add
random positional noise such that the noisy position will
have the given IoU overlapping with the true position of
the agent in the AV-grade data. More specifically, we apply
random noise along the longitudinal axis using a uniform
distribution, and add noise along the horizontal axis so that
the specified IoU level is met. We sample this value once per
agent track, and apply it to all agent positions in the track
(this is equivalent to shifting the entire track). This is more
realistic than, say, applying i.i.d noise to consecutive agent
positions within the same track, as tracks from any sensor
are typically processed with some form of smoothing.

For rotational noise, we add a random offset to the angle
between the agent direction relative to ego, which we sample
from r · N (0, 1), where r is the maximum rotational noise
we use in the experiments.

C. Addressing domain shift

Using an input representation with different properties at
training and test time introduces domain shift. While our
representation is the same in both cases (rasterised BEV,
Fig. 2), the input agent tracks follow a different distribution
and have different levels of noise.

Here, we fine-tune the planner on a relatively small amount
of AV-grade data. Intuitively, we first learn how to plan
from a large corpus of training data collected with low-
quality sensors. Fine-tuning allows us to transfer this wealth
of knowledge for use on the AV, which uses different, better
sensors at test time. This is an integral part of our proposal of
leveraging commodity sensors to collect human driving data.
In our experiments we only fine-tune for 2 epochs and use
1/10th of the original base learning rate to avoid overfitting
to the small AV-grade dataset.

IV. RESULTS

In this section we investigate the impact of training data
quality for an ML planner (see Sec. IV-C), and the relation-
ship between quantity and quality (see Sec. IV-E). We train
our ML planner on either AV-grade data or lower-quality
data, and always test on AV-grade data (unless specified
otherwise), as our goal is ultimately to deploy the ML
planner on a modern AV irrespective of the data it is trained
on. We use standard metrics for this domain (Sec. IV-B).

A. Dataset

Our experiments are conducted on the Lyft Level 5 Pre-
diction Dataset1 [25] which contains > 1000h of expert driv-
ing demonstrations with corresponding AV-grade perception
output. It was collected in the Palo Alto area by a fleet of
20 AVs, each having 7 cameras, 3 LiDARs, and 5 radars.
The data is provided in independent chunks of 25s called
evaluation scenes, and perception output is refreshed every
10 Hz. In all our experiments, we use the first 10h, 100h and
1000h data from the L5 training dataset for training, and the
original validation dataset for testing, and let our planner
predict at a rate of 10Hz, i.e. every time a new perception
observation is available (we call these steps).

B. Metrics

1) Collision rate (closed-loop evaluation): In closed-loop
evaluation we allow the ML planner to control the ego
vehicle for an extended period of time. Specifically, at time
t = 0 we use the planner to predict the ego location at
timesteps t1, t2...tn (sec. III-A), and advance the ego to the
location at t1. We then feed the planner a new BEV generated
at this location to obtain a new prediction. We continue doing
this until we reach the end of the evaluation scene, unless the
ego collides with an agent or the planner prediction deviates
from the ground truth expert trajectory too much where the
perception is not reliable anymore. In these last two cases, we
stop evaluating the scene. The metric we report for closed-
loop is the collision rate, i.e. the total number of collisions
divided by the total number of steps in the dataset.

2) ADE (Open-loop error): Unlike in closed loop evalu-
ation, here the planner makes a prediction for each step in a
scene independently, and always starts from the ground-truth
expert position (no unrolling). We measure the difference
between the predicted trajectory and the expert trajectory
over the 1.2s prediction horizon using (1), and average over
all steps - this is called Average Distance Error (ADE). Such
open-loop error is commonly used in the field ([1], [9]).
While it does not provide a holistic view of whether the
planner generalises well to the situation when it actually has
control over the car like in closed-loop [28], it is less noisy
and much more robust to problems like non-reactivity of the
agents and deviations in position impacting perception.

3) Agent influence: Agent influence measures the impact
of a specific agent track around the ego vehicle on the output
of the planner. It is similar to [12] and helps us understand
how this influence varies as a function of the relevant data
quality dimensions (Sec. III-B). For example, the distance
of influential agents from the ego vehicle impacts the range
we need from the sensors, while their relative position to
the ego vehicle impacts FoV. We compute influence for
agent a as follows: at test time, we first use the planner
to predict a trajectory p as usual. We then generate a second
raster by masking agent a and let the planner predict a new
trajectory pa. We define agent influence to be ||p − pa||2,
which intuitively indicates how different the planner would

1https://self-driving.lyft.com/level5/data/
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(a) Collision rate (b) ADE (c) ADE (fine-tuned)

Fig. 4: (a)-(b) Altering range and FoV of the training data (Sec. IV-C) impacts performance at test time, with similar trends
on both collision rate (a) and ADE (b). There is a significant gap for data with 20m range, while for larger ranges the gap
is much smaller. Performance changes smoothly as we alter FoV. (c) If we fine-tune (FT) on a small quantity of AV-grade
data (10 hours), the gap between training entirely on AV-grade is now much smaller, showing that we can better leverage
low quality data if we resolve domain shift (Sec. III-C). Compare this to (b), where we run the same experiment without
fine-tuning.

behave if it could not see a. We further define an agent
as very influential if this L2 distance is >0.1, and slightly
influential if between 0.1 and 0.01. We compute this for all
agents and all steps in the validation dataset.

C. Impact of data quality

To measure the impact of data quality, we alter the
AV-grade perception tracks in the training data along the
three dimensions mentioned in Sec. III. For range and FoV
(Sec. III-B) we use the following buckets:

• Range: 20m, 40m, 60m, full range (AV-grade)
• FoV: 70°, 130°, 270°, 360° (AV-grade)
We train the planner on all possible permutations of range

and FoV (16 in total) and report collision rate and ADE in
Fig. 4. All results are using the same training set of 100

++

Fig. 5: Quantity vs quality. Training on 100 hours of low-
quality data performs better than training on 10 hours of AV-
grade for a wide variety of range/field-of-view combinations.
If we fine-tune on 10 hours AV-grade, training on 100
hours of low-quality data approaches 100 hours of AV-grade
(similarly, training on 1000h of low-quality and fine-tuning
on 100h of AV-grade approaches 1000h of AV-grade).

hours (we always train for 15 epochs), and are evaluated on
the full Lyft validation set. For both metrics, performance
increases significantly when the sensor range goes from 20m
to 40m, and the FoV from 70° to 130°. However, longer
range or wider FoV do not significantly impact performance,
and sensors that can achieve 40m range and 130° FoV can
already provide valuable training data.

Next, we analyse geometric accuracy (Sec. III-B) by using
the following buckets:

• Positional error: 0.1 IOU, 1.0 IOU (zero error)
• Rotational error: 30°, 0°(zero error)

The results in Fig. 6c show that the planner is quite robust to
this type of orientation and positional error (1 cm difference
in ADE at test time). For this reason, we do not explore
geometry accuracy any further in the next experiments.

Our agent influence metric allows us to gain further
insights in these results. When training on AV-grade data,
we note that the most influential agents are within the 40m
range from the ego vehicle (Fig. 6a). This is consistent with
Fig. 4, where training on more than 40m brings negligible
improvement. For FoV (Fig. 6b), agents in front of the ego
are the most influential, but we can see a non negligible mass
of important agents also at the back. This is aligned with our
results in Fig. 4, where can see a noticeable improvement in
performance when training on 360◦ compared to 270◦. A
qualitative example is shown in Fig. 7.

D. Domain Shift

We repeat the experiment in Fig. 4b by fine-tuning each
model on 10h of AV-grade data. Results in Fig. 4c show
how much we can mitigate domain shift by exploiting a
very limited amount of data from the target AV sensor
configuration, and even models trained with only 20m range
now become much more competitive.
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(a) (b)
(c)

Fig. 6: (a)-(b) The proportion of influential agents (sec. IV-B) out of all agents observed in the validation set as a function
of their distance to ego (a) and position in the vehicle’s field-of-view (b). Most influential agents are within the 40m range
and in front of ego (as expected). (c) ADE as we add positional and rotational error to the agent tracks in the training data
(Sec. III-B). While test time performance degrades, the impact is negligible compared to altering range and FoV (Fig. 4).

E. Relationship between data quality and quantity

In this section we analyse the relationship between data
quantity and quality. In Fig. 4 we saw a performance
degradation when we alter quality while training on the same
amount of data (100h). Fig. 5 clearly shows that training
on 1000 hours low-quality data (10x) performs better at
test time than 100 hours AV-grade (1x) for a variety of

(a) (b)

(c) (d)

Fig. 7: In scenario (a), a model trained on data with AV-grade
range is mostly influenced by the only far agent (red) in front
of the ego-vehicle (green), while a model trained on 20m
range is not (b). We measure this using our agent influence
metric (Sec. IV-B), i.e. how much the agent influences the
planning decision. We observe the same phenomenon for
FoV: when training on 360◦ (AV-grade), ego is influenced
by agents behind (c), but is not when training on 270◦ (d).

range/FoV configurations. As we fine-tune on additional
100h AV-grade data (Sec. III-C), we see that performance
approaches training on 1000h AV-grade.

V. CONCLUSION

We have shown that it is possible to train an AV planner
on human expert demonstrations collected with sensors that
are of lower quality than AV sensors. Our results suggest that
data quantity trumps quality, and that it is better to have a lot
of expert demonstrations with lower-quality, than a smaller
amount of demonstrations that are AV-grade. For example,
100 hours with 40m range and 270◦ field-of-view data
outperforms 10 hours of AV-grade quality (Fig. 5). Moreover,
it approaches 100 hours AV-grade (the same amount) after
fine-tuning on a small amount of AV-grade data, showing we
can tackle domain shift. All in all this shows the promise of
a crowd-sourcing approach for democratising the collection
of training data for training AV motion planners.

We can use our results to inform the choice of sensors
for collecting expert demonstration data, choosing the trade-
off between sensor complexity (and cost) and expected
performance in urban environments (Fig. 4c). The fact that
several sensor configurations are competitive shows that we
could combine data collected with a variety of heterogeneous
sensors for training. Furthermore, we can apply the method-
ology presented in this paper to analyse data coming from
different environments (e.g. highways) to understand the
trade-offs between the sensor configurations in this setting.

In future work, we plan to experiment with data collected
using real commodity sensors, rather than using our data-
altering approach. Moreover, we will study how these results
generalise to different areas and conditions.
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SimNet: Learning Reactive Self-driving Simulations
from Real-world Observations

Luca Bergamini∗, Yawei Ye∗, Oliver Scheel, Long Chen,
Chih Hu, Luca Del Pero, Błażej Osiński, Hugo Grimmett and Peter Ondruska+

Abstract— In this work we present a simple end-to-end
trainable machine learning system capable of realistically sim-
ulating driving experiences. This can be used for verification of
self-driving system performance without relying on expensive
and time-consuming road testing. In particular, we frame the
simulation problem as a Markov Process, leveraging deep
neural networks to model both state distribution and transition
function. These are trainable directly from the existing raw
observations without the need of any handcrafting in the
form of plant or kinematic models. All that is needed is a
dataset of historical traffic episodes. Our formulation allows the
system to construct never seen scenes that unfold realistically
reacting to the self-driving car’s behaviour. We train our system
directly from 1,000 hours of driving logs and measure both
realism, reactivity of the simulation as the two key properties
of the simulation. At the same time we apply the method to
evaluate performance of a recently proposed state-of-the-art
ML planning system [1] trained from human driving logs. We
discover this planning system is prone to previously unreported
causal confusion issues that are difficult to test by non-reactive
simulation. To the best of our knowledge, this is the first work
that directly merges highly realistic data-driven simulations
with a closed loop evaluation for self-driving vehicles. We make
the data, code, and pre-trained models publicly available to
further stimulate simulation development.

I. INTRODUCTION

Self-Driving Vehicles (SDVs) have the potential to rad-
ically transform society in the form of safe and efficient
transportation. Modern machine learning methods have en-
abled much of the recent advances in self-driving perception
[2], [3], [4], [5], [6], prediction [7], [8], [9], [10] and
planning [1], [11]. The availability of large datasets unlocked
significantly higher performance compared to older, hand-
engineered systems.

However, the problem of validating SDV performance
remains still largely unsolved. Most industry players validate
empirically by deploying their self driving systems to a fleet
of vehicles accompanied by safety drivers. In the case of
unusual or failure behaviours, the safety driver takes over.
Observed issues serve as feedback to improve the system.
However, this process is both expensive and time-consuming,
requiring the collection of thousands or even millions of
miles, depending on the system’s maturity. It is also hard
to replicate or directly compare the performance of different
system versions, as it is impossible to experience exactly the
same driving situation twice.

∗ Equal contribution.
+ Authors are with Lyft Level 5 self-driving division. Contact: pon-

druska@lyft.com.
Data, code and videos are available at simulation.l5kit.org

SimNet
O�ine dataset of driving scenes

Self-driving system

Reactive simulation

Fig. 1. The proposed trainable simulation system. We frame the simulation
problem as reactive episode synthesis that can be used to validate the
performance of a self-driving driving system.

A common approach to mitigate some of these issues is
log replay, where the movement of other traffic participants is
replayed around the SDV in simulation as it happened when
the log was collected. However, if the SDV’s new actions
differ from those when the log was collected, the traffic
participants don’t react to it, and thus the simulation becomes
unrealistic and ineffective for validation. For example, even
a slight braking during the log replay can result in an
unrealistic collision with the trailing car due to non-reactivity.
These unrealistic outcomes are a result of what is called
simulation drift.

One way to implement simulation reactivity is by scripting
traffic participant behaviour to follow certain rules. However,
this is time consuming and still lacks the realism and fidelity
of road testing, thus undermining the validation effort.

In this paper, we aim to create realistic simulated driving
experiences just like those that an SDV would encounter
in the real world. For example, when the SDV decides to
slow down, the simulated vehicle behind it should react by
either slowing or overtaking, just as it would in a road test.
Additionally, agent behaviour should capture the stochastic
multi-modality that we observe on the road.

To achieve this, we frame simulation as an ML problem,
in which we generate driving episodes that need to be both
realistic and reactive to SDV behaviour. We then present a
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system leveraging high-capacity ML models trained on large
amounts of historical driving data, Figure 1. We show the
system’s performance dramatically improves as the amount
of data grows significantly narrowing the gap between road
testing and offline simulation. At the same time, we show
that it can help to identify issues in state-of-the-art planning
systems. To the best of our knowledge, this is the first
work that connects simulation and planning with large-scale
datasets in a realistic self-driving setting.

Our contributions are four-fold:
1) The formulation of the self-driving simulation problem

as an ML problem which seeks to generate driving
episodes that are both realistic and reactive to SDV
behaviour;

2) A simple machine-learned simulation system that can
sample these episodes based on historical driving data
trainable directly from traffic observations;

3) Qualitative and quantitative evaluation of the proposed
method as a function of training data size, as well as,
its usefulness in evaluating and discovering issues in a
state-of-the-art ML planning systems.

4) The code and the pretrained models of the experiments
to further stimulate development in the community.

II. RELATED WORKS
Our work is situated in the broader context of trajectory

prediction, planning and simulation for autonomous vehicles.
Ability to predict future motion of traffic participants

around the vehicle is important to be able to anticipate future
necessary for planning. Classical methods include dynamic
models [12], [13], [14], kinematic models [15], [16], [17],
Kalman filter-based systems [18], [19], Monte Carlo sam-
pling [20], [21], [22] and trajectory prototypes [23], [24],
[25]. Today, deep learning methods for trajectory predictions
are widely adopted. Notable examples include [7], [26],
and [27]. Authors of [7] leverage bird’s-eye view (BEV)
rasters and a fixed set of future trajectory anchors. During
training, the model learns displacement coefficients from
those anchors along with uncertainties. TPNet [26] is a two
stage network, where during the first stage the final future
waypoint of the trajectory is predicted, starting from BEV
semantic rasters. Then, proposals are generated to link past
observations with this final waypoint and points near to
it. We take inspiration from the above methods leveraging
deep neural network architectures but intend to solve motion
simulation instead of one-shot motion prediction. The key
difference is that in motion simulation the sequence of traffic
agent motion is generated one timestep at a time reflecting
on both the intention of traffic agents themselves but also
motion of other traffic participants and SDV.

Given the prediction of future motion of traffic participants
SDV plans its own actions. Historically, this has been tackled
by various methods optimising an expert cost function [28],
[29], [30]. This cost function captures various desirable prop-
erties i.e. distance to other cars, comfort of the ride, obeying
traffic rules etc. Engineering this cost function is, however,
complex and time-consuming. Recently, novel methods [1],
[11], [31] were proposed that frame the problem of planning

as learning from demonstrations. Authors from [32] use
an inverse reinforcement learning technique to learn from
expert demonstrations. [33] deals with accumulating errors
and presents a method trained entirely from data. A limitation
of this model is that it directly predicts the visual output,
which results in unnecessary errors, such as a car changing
shape in consecutive frames.

In our work we do not try to build a planning system but to
accurately evaluate performance of an existing one. In partic-
ular, we aim to explore performance of a recently proposed
ML planning system [1]. This is a particularly appealing
application given the novelty of ML planning systems in self-
driving and their relatively unexplored performance. We find
out that this particular method, while promising, is prone to
causal confusion of imitation learning [34] that incorrectly
associates motion of other cars with the desired action of
the SDV. This issue is difficult to observe in non-reactive
situation but becomes apparent when using a realistic reactive
simulation.

Another way to perform simulation is to use an ad-
vanced driving simulator with agents controlled by hand-
crafted rules. Notable examples of such driving simulators
are SUMO [35] and CARLA [36]. A disadvantage of this
solution is that hand-coded actors tend to be unrealistic and
rarely present a wide enough variety of behaviours. Our aim
is to achieve high realism by directly learning behaviour
of other traffic participants from observed data. We show
that these methods can be very powerful and their accuracy
improves significantly with the amount of data used for
training. As collecting these data is significantly easier than
engineering a realistic simulation, this approach is much
more scalable.

III. SELF-DRIVING SIMULATION AS A
LEARNING PROBLEM

In this section, we formulate the simulation problem as
a machine learning problem. Specifically, we aim to sample
realistic driving experiences that the SDV would encounter
in the real world, that also react to the SDV behaviour given
by its control policy f . To help model this realism, we
have access to historical driving scenes D that the capture
observed behaviour of other traffic participants on top of a
semantic map M in a variety of diverse driving scenarios.

Each driving episode of length T can be described as
a sequence of observed states s1, s2, ..., sT with each state
capturing the position, rotation, size and speed of all nearby
traffic participants z:

st = {z1t , z2t , ..., zkt }. (1)

This representation corresponds exactly to the output of the
perception system, which turns raw sensor measurements
into the vectorised detections of traffic participants and can
then be fed to the SDV’s control algorithm.

The SDV itself is modelled simply as one of these partic-
ipants zSDV, but unlike other traffic participants its dynamics
are controlled by a known function f implementing the self-
driving algorithm:

zSDV
t+1 = f(zSDV

t , st). (2)

5120

Authorized licensed use limited to: Trial User - Warsaw University (Uniwersytet Warszawski). Downloaded on June 14,2023 at 14:07:05 UTC from IEEE Xplore.  Restrictions apply. 84



Initial scene sampling Forward-simulationSDV location selection

self-driving system
Gstate G sim

Fig. 2. Overview of the proposed simulation sampling process. To generate a new driving episode we first pick and sample an initial state capturing the
positions of all traffic participants. Next, the state is forward-simulated with the traffic participants controlled by a neural network and the behaviour of
SDV controlled by a self-driving control loop.

Generating new driving experiences can then be described
as sampling from the joint distribution of the stochastic
behaviour of other traffic participants and the deterministic
SDV behaviour.

Note that this joint distribution is inherently non-
deterministic. Given an initial state s1 there are many possi-
ble ways that the future can unfold. At each moment in time,
traffic participants must act and react to new information,
such as attempts to merge, nudge, slow down, resulting in a
complex set of driving behaviours. In the following section,
we describe a method leveraging deep learning that can
realistically sample such reactive episodes.

At the same time we aim to compute a certain set of met-
rics that describe the performance of the self-driving system,
such as, the amount of collisions, traffic rules violations etc.
An important property is the accuracy of these metrics or a
ratio of false positive vs. false negative events. In an ideal
simulation the amount of both is close to 0 but any deeper
understanding about the correct attribution is valuable.

IV. GENERATING REALISTIC AND REACTIVE
DRIVING EPISODES

In this section we describe an effective way to draw
realistic and reactive driving episodes as defined in the
previous section.

The sampling of driving episodes can then be formalised
as a Markov Process with resulting probability distribution
factorising as:

p(s1, s2, ..., sT ) = p(s1)

T∏
t=2

p(st|st−1). (3)

Furthermore, we assume the actions are locally indepen-
dent for each participant conditioned on each previous state:

p(st|st−1) =
K∏

k=1

p(zkt |st−1). (4)

This follows the intuition of real-world driving where par-
ticipants act independently, each controlling their own be-
haviour, observing others and reacting to new information
that becomes available after each time-step.

Both the initial state distribution p(s1) and participant
policy p(zkt |st−1) are modelled by a separate neural networks

Gstate and Gsim. In particular, the participant transition policy
is controlled by a neural network producing steering φ and
velocity v

φk, vk ← Gsim(z
k
t−1, st−1) (5)

that are used to update particular position of participant zk.
Sampling from this process consists of executing three

steps as summarised in Figure 2, and outlined in detail in
the next subsections:

1) Initial SDV location l is chosen from all permissible
locations on the map;

2) Initial state s1 is drawn from the distribution of all
feasible states. This state captures the total number and
initial poses of all traffic participants;

3) A driving episode s2, ...sT is generated via step-by-
step forward simulation employing the participant’s
policy p(zkt |st−1) and self-driving control system f .

This formulation offers a high degree of flexibility, allow-
ing one to tailor the properties of the resulting simulation:
• Full simulation: Executing all above steps results

in generating new, never-experienced driving episodes
from all locations.

• Journey simulation: By keeping the initial SDV lo-
cation l fixed, we can synthesise many different initial
conditions and driving episodes starting at that position.

• Scenario simulation: By using an existing historical
state of interest as s1, we can generate many resulting
possible futures.

• Behaviour simulation: We can replace steering angle
φ by hard-coding a specific path for them to follow.
This forces a particular high-level behaviour of a traffic
participant but still leaves a degree of reactiveness in
execution. This is useful for simulating SDV behaviour
in specific situations, e.g. being cut-off by another car.

A. Initial state sampling

To represent the state s around the self-driving vehicle, we
leverage a bird’s-eye view representation rendering positions
of nearby traffic participants on top of a semantic map M.
This representation has proven to be an effective represen-
tation in recent motion prediction and planning works [37],
[1]. One advantage is that it effectively captures both local
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s st-1 t

Fig. 3. Detail of the interactive state unroll. For all agents in the state st−1 we independently run 1-step prediction to advance them. The self-driving
car is controlled by control algorithm f . The new positions then form a new state st and the process repeats.

context and a variable amount of traffic participants in the
form of a single image Is.

To sample an initial state s1 similar to our training distribu-
tion, we leverage conditional generative adversarial networks
(cGANs) [38] conditioned on empty scenes capturing only
the semantic map IM. This network is trained on pairs of
{IM, Is} constituting the training dataset. Specifically, the
generator network is trained to convert IM into Is and the
discriminator to distinguish the synthetic states Is from real
ones. Upon convergence, the generator can create unlimited
amounts of new synthesised states s1 for any map location,
indistinguishable from real ones, to seed the simulation.

To extract the final numerical positions and rotations of the
vehicles z1, z2, ...zK ∈ s, we use a connected components
algorithm. For each connected component we compute the
centroid and a minimum bounding box capturing its size.

B. Forward simulation

This step generates the full sequence s2, s3, ..., sT . This
generation happens one step at a time, executing policy
p(zkt |st−1) for each traffic participant and SDV control
policy f for the self-driving vehicle.

As the traffic participant policy we employ a model
described in [37] consisting of a ResNet-50 backbone that
takes bird’s-eye-view rasterised states st around the traffic
participants zkt as input, and a regression head predicting
steering τkt and velocity vkt . We train the model on past agent
trajectories. In particular, we take all traffic participants from
the training dataset D with observation history longer than
1s and train the model to predict their individual steering
and velocity.

As illustrated in Figure 3, to compute a new state st the
policy is invoked for every observed traffic participant ztk
in the current state independently. Simultaneously, vehicle
controls are triggered to obtain the SDV’s new position:

zSDV
t = f(st−1, z

SDV
t−1 ). (6)

sc
en

e 
1

sc
en

e 
2

sc
en

e 
3

forward simulationvehicle samplinginitial pose

Fig. 4. An example of initial state and intended traffic participant
trajectories. Each row shows a separate exemplar episode. From left to right:
the initial scene sampled from SDV positions with agents being removed,
the sampled traffic participants’ positions, and the trajectory taken by each
vehicle.

This then constitutes a new state st, and the process repeats
until the entire episode is generated or simulation is inter-
rupted, i.e. due to a simulated SDV collision.

V. EXPERIMENTS

Here we provide qualitative and quantitative evaluation
of the proposed simulation system. In particular, we are
interested in the system’s ability to synthesise realistic initial
states, forward-simulate full driving episodes, and to react
to the SDV’s behaviour. To evaluate it, we forward-simulate
for 5 seconds across many scenes. Unrolling for 5 seconds is
enough to capture interesting maneuver while still being able
to collect ground truth annotations from the tracked agents
in the dataset.

We capture the system’s performance using two metrics.
Both metrics are evaluated on 960 scenes, although these
sets of scenes are disjoint.
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10hr 100hr 1000hr

Fig. 5. Qualitative example of the simulation trained on various amount
of data. More training data leads to more realistic simulations, with model
predicted paths shown as blue lines and ground truth paths as purple lines.

Displacement error [m]
Method 0.5s 1s 2s 3s 4s 5s Reactivity
Log replay 0 0 0 0 0 0 0
10 hr 0.58 0.95 1.76 2.57 3.40 4.28 0.95
100 hr 0.51 0.81 1.44 2.04 2.61 3.19 0.97
1000 hr 0.49 0.76 1.32 1.87 2.42 2.99 0.97

TABLE I
REALISM AND REACTIVENESS OF NON-REACTIVE AND REACTIVE

SIMULATION TRAINED ON VARIOUS AMOUNTS OF DATA FOR VARIOUS

SIMULATION HORIZONS. LOG-REPLAY IS PERFECTLY REALISTIC BUT

NOT REACTIVE WHILE SIMNET IS BOTH REALISTIC AND REACTIVE.

Simulation realism: An average L2 distance between
simulated agents and their ground-truth positions at different
time steps into the future (displacement). For this experiment
we initialise the state from a real-world log, and the SDV
follows exactly the same path as it did in that log. A perfect
simulation system should be able to replicate the behaviour
of other agents as it happens in the log.

Simulation reactivity: We measure collision rate in syn-
thetic scenarios where a static car is placed in front of a
moving car, see the first two rows in Figure 6. This should
not cause collisions in reality, and requires trailing cars to
react by stopping. We report the number of scenes without
a collision divided by the total number of scenes tested.

A. Implementation Details

We train and test our approach on the recently released
Lyft Motion Prediction Dataset [39]. The dataset consists
of more than 1,000 hours of dense traffic episodes cap-
tured from 20 self-driving vehicles. We follow the pro-
posed train / validation / test split. We rasterise the high-
definition semantic map included in the dataset to create
bird’s-eye view representations of the state, centered around
each agent of interest to predict its future trajectories. This
representation includes lanes, crosswalks and traffic light
information. At crossings, lanes are not rendered if the
controlling traffic light is red. As for agents, we focus our
attention on vehicles (92.47% of the total annotated agents),
pedestrians (5.91%) and cyclist (1.62%). We use rasters of
size 224x224, a batch size of 64 and the Adam [40] optimizer
in all our experiments. During evaluation, the whole pipeline
takes around 400ms per frame with a modern GPU, which
is acceptable for a non real-time constrained system.

B. Initial state sampling

A qualitative example of sampling the initial state and
intended trajectory for each traffic participant is shown in
Figure 4. We specifically focus on intersections as these
situations give an opportunity to traffic participants to make a
variety of decisions. As one can see, the generated states and
scenes look realistic. Furthermore, learned trajectories effec-
tively capture the variety of possible participant behaviours.

C. Forward simulation

The evaluation of SimNet demonstrates very good per-
formance with respect to both simulation realism and reac-
tiveness. The quantitative results can be found in Table I.
The performance improves with the amount of data used for
training. The qualitative comparison of models’ realism is
presented in Figure 5. Similarly, simulation reactiveness is
presented in Figure 6.

D. Evaluating SDV with SimNet

The purpose of SimNet is to accurately evaluate the
performance of the SDV. In this section we describe an
experiment verifying that the model is indeed fit for the
purpose.

We implemented a motion planner based on the state-of-
the-art ChaufferNet [1]. The model’s input and backbone
are the same as for SimNet (see Section V-A). It predicts
a future trajectory for the ego vehicle and is trained using
behavioural cloning. Naive behavioural cloning suffers from
the distribution shift between training and evaluation data.
Similarly to [1], we alleviate this problem by introducing
synthetic perturbations to the training trajectories.

We compared two ways to evaluate such a planner, based
on log-replay and SimNet. The results are presented in
Table II. The number of errors turned out to differ signifi-
cantly in two categories: rear collisions and passiveness. This
discrepancy raises the question of whether the reported errors
reveal real mistakes of the planner or they are only artifacts
of the incorrect methods of evaluation.

In order to determine this, we conducted a qualitative
analysis of failure cases. In log-replay, the cases of rear
collisions consisted of both false positives (when the ego
was driving slightly slower than the reference trajectory and
the chasing car did not accommodate for this), as well as

Planning metric Log-replay SimNet
Front collisions 2 2
Side collision 4 9
Rear collision 60 2
Displacement error 19 27
Passiveness 32 124
Distance to reference trajectory 2 2

TABLE II
PLANNING METRICS OF [1] WHEN EVALUATED USING NON-REACTIVE

AND REACTIVE SIMULATION. NON-REACTIVE SIMULATION REPORTS

VARIOUS ISSUES, SUCH AS, PASSIVENESS AS FALSE POSITIVE REAR

COLLISIONS. THESE CAN BE PROPERLY IDENTIFIED USING REACTIVE

SIMULATION.
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Fig. 6. The first two rows: a qualitative example of the reactivity evaluation - the agent controlled by SimNet [yellow] stopped behind the static vehicle
[red], while the log-reply crashed into it without showing any reactivity. Last two rows: we found the reactivity of SimNet can expose causal confusion
of ML planner - SDV waits for a slight movement of the chase car to start moving as would happen in log-replay. In reactive simulation this signal does
not come and the SDV keeps waiting at the intersection. Best viewed in high-resolution.

true positives (when the ego was passive and not starting at
an intersection at a green light). Both of these types of rear
collisions disappear when evaluated in SimNet. This is to
be expected, as in SimNet the chasing vehicle reacts to the
static or slower ego. This could partially explain why SimNet
reports higher passiveness errors compared to log-replay.

However, the increase in passiveness (from 32 to 124) is
bigger than the total number of rear collisions (60). A qual-
itative investigation of the scenes uncovered an interesting
failure mode of the ML planner: it would not start at an
intersection if neighbouring agents are static (see example
in Figure 6 below). This is a previously unreported instance
of the causal confusion [41]. Moreover, it would not be
possible to uncover it using log replay, because in such cases
neighbouring agents (both in the front and behind the agent)
will move as they did during log recording.

VI. CONCLUSIONS
We have presented an end-to-end trainable machine learn-

ing system that generates simulations of on-road experiences

for self-driving vehicles. SimNet leverages large volumes
of historical driving logs to synthesize new realistic and
reactive driving episodes that can be used to validate SDV
performance. The evaluation shows that SimNet achieves
very good results in terms of both realism and reactivity.
Moreover, using it for evaluating an ML planner has resulted
in uncovering a previously unreported causal confusion of
ChaufferNet [1]. Notably, we have confirmed that SimNet,
which is also trained using imitation learning, exhibits the
same failure mode. We consider addressing the issue of
causal confusion to be an important further work aimed at
improving both ML planners and simulators.

We believe this is an exciting step towards significantly
decreasing the need for on-road testing in self-driving devel-
opment, and the democratisation of the field. We hope the
release of our system’s source code will further stimulate
development in ML simulation systems.
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Abstract: In this work we are the first to present an offline policy gradient method
for learning imitative policies for complex urban driving from a large corpus of
real-world demonstrations. This is achieved by building a differentiable data-
driven simulator on top of perception outputs and high-fidelity HD maps of the
area. It allows us to synthesize new driving experiences from existing demon-
strations using mid-level representations. Using this simulator we then train a
policy network in closed-loop employing policy gradients. We train our proposed
method on 100 hours of expert demonstrations on urban roads and show that it
learns complex driving policies that generalize well and can perform a variety
of driving maneuvers. We demonstrate this in simulation as well as deploy our
model to self-driving vehicles in the real-world. Our method outperforms previ-
ously demonstrated state-of-the-art for urban driving scenarios – all this without
the need for complex state perturbations or collecting additional on-policy data
during training. We make code and data publicly available.

Keywords: Self-driving, Learning from Demonstrations, Planning, Simulation

Driving policySimulator

state

action

SDV deploymentCollected driving logs Pereception

Closed-loop training

Figure 1: Overview of the proposed closed-loop training method for learning driving policies. We
leverage large amounts of expert demonstrations and mid-to-mid representations to build a differen-
tiable simulator supporting fast policy learning. With this simulator, we can effectively unroll model
policies, and thus train the model closed-loop using a policy gradient method.

1 Introduction

Self-driving has the potential to revolutionize transportation and is a major field of AI applications.
Even though already in 1990 there were prototypes capable of driving on highways [1], technology
is still not widespread, especially in the context of urban driving. In the past decade, the availability
of large datasets and high-capacity neural networks has enabled significant progress in perception
[2, 3] and the vehicles’ ability to understand their surrounding environment. Self-driving decision
making, however, has seen very little benefit from machine learning or large datasets. State-of-
the-art planning systems used in industry [4] still heavily rely on trajectory optimisation techniques
with expert-defined cost functions. These cost functions capture desirable properties of the future
vehicle path. However, engineering these cost functions scales poorly with the complexity of driving
situations and the long tail of rare events.

Due to this, learning a driving policy directly from expert demonstrations is appealing, since perfor-
mance scales to new domains by adding data rather than via additional human engineering effort.
5th Conference on Robot Learning (CoRL 2021), London, UK.
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In this paper we focus specifically on learning rich driving policies for urban driving from large
amounts of real-world collected data. Unlike highway driving [5], urban driving requires perform-
ing a variety of maneuvers and interactions with, e.g., traffic lights, other cars and pedestrians.

Recently, rich mid-level representations powered by large-scale datasets [6, 7], HD-maps and high-
performance perception systems enabled capturing nuances of urban driving. This led to new meth-
ods achieving high performance for motion prediction [8, 9]. Furthermore, [10] demonstrated that
leveraging these representations and behavioral cloning with state perturbations leads to learning
robust driving policies. While promising, difficulty of this approach lies in engineering the pertur-
bation noise mechanism required to avoid covariate shift between training and testing distribution.

Inspired by this approach, we present the first results on offline learning of imitating driving policies
using mid-level representations, a closed-loop simulator and a policy gradient method. This formu-
lation has several benefits: it can successfully learn high-complexity maneuvers without the need for
perturbations, implicitly avoid the problem of covariate shift, and directly optimize imitation as well
as auxiliary costs. The proposed simulator is constructed directly from the collected logs of real-
world demonstrations and HD maps of the area, and can synthesize new realistic driving episodes
from past experiences (see Figure 1 for an overview of our method). Furthermore, for training on
large datasets reducing the computational complexity is paramount. We leverage vectorized repre-
sentations and show how this allows for computing policy gradients quickly using backpropagation
through time. We demonstrate how these choices lead to superior performance of our method over
the existing state-of-the-art in imitation learning for real-world self-driving planning in urban areas.

Our contributions are four-fold:

• The first demonstration of policy gradient learning of imitative driving policies for complex
urban driving from a large corpus of real-world demonstrations. We leverage a closed-
loop simulator and rich, mid-level vectorized representations to learn policies capable of
performing a variety of maneuvers.

• A new differentiable simulator that enables efficient closed-loop simulation of realistic
driving experiences based on past demonstrations, and quickly compute policy gradients
by backpropagation through time, allowing fast learning.

• A comprehensive qualitative and quantitative evaluation of the method and its performance
compared to existing state-of-the-art. We show that our approach, trained purely in simula-
tion can control a real-world self-driving vehicle, outperforms other methods, generalizes
well and can effectively optimize both imitation and auxiliary costs.

• Source code and data are made available to the public1.

2 Related Work

In this section we summarize different approaches for solving self-driving vehicle (SDV) decision-
making in both academia and industry. In particular, we focus on both optimisation-based and
ML-based systems. Furthermore, we discuss the role of representations and datasets as enablers in
recent years, to tackle progressively more complex Autonomous Driving (AD) scenarios.

Trajectory-based optimization is still a dominant approach used in industry for both highway and
urban-driving scenarios. It relies on manually defined costs and reward functions that describe good
driving behavior. Such cost can then be optimized using a set of classical optimization techniques
(A* [11], RRTs [12], POMDP with solver [13], or dynamic programming [14]). Appealing prop-
erties of these approaches are their interpretability and functional guarantees, which are important
for AD safety. These methods, however, are very difficult to scale. They rely on human engineer-
ing rather than on data to specify functionality. This becomes especially apparent when tackling
complex urban driving scenarios, which we address in this work.

Reinforcement learning (RL) [15] removes some complexity of human engineering by providing
a reward (cost) signal and uses ML to learn an optimal policy to maximize it. Directly providing
the reward through real-time disengagements [16], however, is impractical due to a low sample-
efficiency of RL and the involved risks. Therefore, most approaches [17] rely on constructing a

1Code and video available at https://planning.l5kit.org.
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simulator and explicitly encoding and optimising a reward signal [18]. A limiting factor of these
approaches is that the simulator often is hand-engineered [19, 20], limiting its ability to capture
long-tail real-world scenarios. Recent examples of sim-to-real policy transfer (e.g. [21], [22], [23])
were not focused on evaluating scenarios typical to urban driving, in particular interacting with
other agents. In our work, we construct the simulator directly from real-world logs through mid-
level representations. This allows training in a variety of real-world scenarios with other agents
present, while employing efficient policy-gradient learning.

Imitation learning (IL) and Inverse Reinforcement Learning (IRL) [24, 25] are more scalable
ML approaches that leverage expert demonstrations. Instead of learning from negative events, aim
is to directly copy expert behavior or recover the underlying expert costs. Simple behavioral cloning
was applied already back in 1989 [26] on rural roads, more recently by [27] on highways and [28]
in urban driving. Naive behavioral cloning, however, suffers from covariate shift [24]. This issue
has been successfully tackled for highway lane-following scenarios by reframing the problem as
classification task [29] or employing a simple simulator [5], constructed from highway cameras. We
take inspiration from these approaches but focus on the significantly more complex task of urban
driving. Theoretically, our work is motivated by [30], as we employ a similar principle of generating
synthetic corrections to simulate querying an expert. Due to this, identical proven guarantees hold
for our method, namely the ideal linear regret bound, mitigating the problem of covariate shift.
Adversarial Imitation Learning comprises another important field [31, 32, 33], but, to the best of our
knowledge, has seen little application to autonomous driving and no actual SDV deployment yet.

Neural Motion Planners are another approach used for autonomous driving. In [34] raw sensory
input and HD-maps are used to estimate cost volumes of the goodness of possible future SDV
positions. Based on these cost volumes, trajectories can be sampled and the lowest-cost one is
selected to be executed. This was further improved in [35], where the dependency on HD-maps was
dropped. To the best of our knowledge, these promising methods have not yet been demonstrated to
drive a car in the real-world though.

Mid-representations and the availability of large-scale real-world AD datasets [6, 7] have been
major enablers in recent years for tackling complex urban scenarios. Instead of learning policies
directly from sensor data, the input of the model comprises the output of the perception system as
well as an HD map of the area. This representation compactly captures the nuance of urban scenarios
and allows large-scale training on hundreds or thousands of hours of real driving situations. This
led to new state-of-the-art solutions for motion forecasting [8, 9]. Moreover, [10] demonstrated that
using mid-representations, large-scale datasets and simple behavioral cloning with perturbations
[36] can scale and learn robust planning policies. The difficulty of this approach, however, is in
engineering the noise model to overcome the covariate shift problem. In our work we are inspired by
this approach, but attempt to learn robust policies using policy gradient optimisation [37] featuring
unrolling and evaluating the policy during training. This implicitly avoids the problem of covariate
shift and leads to superior results. This approach is, however, more computationally expensive and
requires a simulator. To solve this, we show how a fast and powerful simulator can be constructed
directly from real-world logs enabling scalability of this approach.

Data-driven simulation. A realistic simulator is useful for both training and validation of ML
models. However, many current simulators (e.g. [19, 38]) depend on heuristics for vehicle control
and do not capture the diversity of real world behaviours. Data-driven simulators are designed
to alleviate this problem. [23] created a photo-realistic simulator for training an end-to-end RL
policy. [5] simulated a bird’s-eye view of dense traffic on a highway. Finally, two recent works
[39, 40] developed data-driven simulators and showed their usefulness for training and validating
ML planners. In this work we show that a simpler, differentiable simulator based on replaying logs
is effective for training.

3 Differentiable Traffic Simulator from Real-world Driving Data

In this section we describe a differentiable simulator S that approximates new driving experiences
based on an experience τ̄ collected in the real world. This simulator is used during policy learning
for the closed-loop evaluation of the current policy’s performance and computing the policy gradient.
As shown in Section 5, differentiability is an important building block for achieving good results,
especially when employing auxiliary costs.
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Figure 2: Differentiable simulator from observed real-world logs: based on a ground truth log (top
row), we unroll a new trajectory corresponding to different SDV actions (e.g. given by a planner) in
the simulator approximating the vectorized world representation (bottom row)

We represent the real-world experience τ̄ as a sequence of state observations s̄t around the vehicle
over time:

τ̄ = {s̄1, s̄2, ..., s̄T }. (1)

We use a vectorized representation based on [8], in which each state observation s̄t consists of a
collection of static and dynamic elements e1

t , e
2
t , ..., e

K
t around the vehicle pose p̄t ∈ SE2, with

SE2 denoting the special Euclidean group. Static elements include traffic lanes, stop signs and
pedestrian crossings. These elements are extracted from the underlying HD semantic map of the
area using the localisation system. The dynamic elements include traffic lights status and traffic
participants (other cars, buses, pedestrians and cyclists). These are detected in real-time using the
on-board perception system. Each element ejt includes a pose qjt ∈ SE2 relative to the SDV pose
pt, as well as additional features, such as the element type, time of observation, and other optional
attributes, e.g. the color of associated traffic lights, recent history of moving vehicles, etc. The full
details of this representation are provided in Appendix C.

Goal of the simulation is to iteratively generate a sequence of state observations τ =
{s1, s2, . . . , sT } that corresponds to a different sequence of driver actions a1, a2, ..., aN in the sce-
nario. This is done by first computing the corresponding SDV trajectory p1, p2, ..., pN and then
locally transforming states s̄1, s̄2, . . . , s̄N .

Updated poses of the SDV are determined by a kinematic model pt+1 = f(pt, at), which is assumed
to be differentiable. The state observation st is then obtained by computing the new position qjt for
each state element ejt using a transformation along the differences of the original and updated pose:

qjt = q̄jt (pt − p̄t). (2)

See Figure 2 for an illustrative example. It is worth noting that this approximation is effective if the
distance between the original and generated SDV pose is not too large.

We denote performing these steps in sequence with the step-by-step simulation transition function
st+1 = S(st, at). Moreover, since both Equation (2) and vehicle dynamics f are fully differentiable,
we can compute gradients with respect to both the state (Ss) and action (Sa). This is critical for the
efficient computation of policy gradients using backpropagation through time as described in the
next section.

4 Imitation Learning Using a Differentiable Simulator

In this part, we detail how we use the simulator S described in the previous section to learn a
deterministic policy π to drive a car using closed-loop policy learning.

We frame the imitation learning problem as minimisation of the L1 pose distance L(st, at) =
‖p̄t − pt‖1 between the expert and learner on a sequence of collected real-world demonstrations
τ̄1, τ̄2, ..., τ̄N ∼ πE . Note that with a slight abuse of notation we use the poses p̄t, pt here to refer
to 3D vectors (x, y, θ), instead of roto-translation matrices in SE2 – yielding the common L1 norm
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Policy sampling Policy gradient update

Expert trajectory

Policy trajectory

Figure 3: One iteration of policy gradient update. Given a real-world expert trajectory τ̄ we sample
a policy state st by unrolling the policy π for T steps. We then compute optimal policy update by
backpropagation through time.

and loss. This can be expressed as a discounted cumulative expected loss [41] on the set of collected
expert scenarios:

J(π) = Eτ̄∼πE
Eτ∼π

∑

t

γtL(st, at). (3)

Optimising this objective pushes the trajectory taken by the learned policy as close as possible to the
one of the expert, as well as limiting the trajectory to the region where the approximation given by
the simulator is effective. In Appendix B we further extend this to include auxiliary cost functions
with the aim of optimising additional objectives.

We can use any policy optimisation method [42, 43] to optimize Equation (3). However, given that
the transition S(st, at) is differentiable, we can exploit it for a more effective training that does
not require a separate estimation of a value function. As shown in [31, 37, 44], this results into an
order of magnitude more efficient training. The optimisation process consists of repeatedly sampling
pairs of expert and policy trajectories τ̄i, τi and computing the policy gradient Jθ for these samples
to minimize Equation (3). We describe both steps in detail in the following subsections.

4.1 Sampling from a Policy Distribution π

Algorithm 1: Imitation learning from expert
demonstrations
Input: Expert policy samples

τ̄1, τ̄2, ..., τ̄N ∼ πE
Output: Learned policy π
π = random ;
for τ̄ ∼ πE do

for t = 1 to T do
at = π(st);
st+1 = S(st, at);

end
JT+1
s = 0;
JT+1
θ = 0;

for t = T downto K do
J ts = Ls+Laπs+γJ t+1

θ (Ss+Saπs);
J tθ = Laπθ + γ(J t+1

s Saπθ + J t+1
θ );

end
π = gradient_update(π, JKθ );

end

In this subsection we detail sampling pairs of
expert (τ̄ ) and corresponding policy trajectory
(τ ) drawn from policy π.

Sampling expert trajectories τ̄ consists of sim-
ply sampling from the collected dataset of ex-
pert demonstrations. To generate the policy
sample τ we acquire an expert state s̄1 ∈ τ̄ ,
and then unroll the current policy π for T steps
using the simulator S.

This naive method, however, introduces bias,
as the initial state of the trajectory is always
drawn from the expert πE and not from the
policy distribution π. As shown in Appendix
B, this results in the under-performance of the
method. To remove this bias we discard the first
K timesteps from both trajectories and use only
the remaining T −K timesteps to estimate the
policy gradient Jθ as described next (see Figure
3 for a visualization).
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4.2 Computing Policy Gradient Jθ

Here we describe the computation of the policy gradient Jθ around the rollout trajectory τ =
s1, a1, s2, a2, . . . , sT , aT given by the current policy. This gradient can be computed for determin-
istic policies π using backpropagation through time leveraging the differentiability of the simulator
S. Note that we denote partial differentiation with subscripts, i.e. gx , ∂g(x, . . .)/∂(x). We follow
the formulation in [37] and express the gradient by a pair of recursive formulas:

J ts = Ls + Laπs + γJ t+1
θ (Ss + Saπs), (4)

J tθ = Laπθ + γ(J t+1
s Saπθ + J t+1

θ ). (5)

The resulting algorithm is outlined in Algorithm 1 and illustrated in Figure 3. It can be implemented
simply as one forward pass of length T and one backward pass of length T −K. To compute the
policy gradient we use equations (4) and (5) recursively from t = T to t = K and use it to update
policy parameters θ.

5 Experiments

In this section we evaluate our proposed method and benchmark it against existing state-of-the-art
systems. In particular, we are interested in: its ability to learn robust policies dealing with various
situations observed in the real world; its ability to tailor performance using auxiliary costs; the
sensitivity of key hyper-parameters; and the impact on performance with increasing amounts of
training data. Additional results can be found in the appendix and the accompanied video.

5.1 Dataset

For training and testing our models we use the Lyft Motion Prediction Dataset [6]. This dataset
was recorded by a fleet of Autonomous Vehicles and contains samples of real-world driving on a
complex, urban route in Palo Alto, California. The dataset captures various real-world situations,
such as driving in multi-lane traffic, taking turns, interactions with vehicles at intersections, etc. Data
was preprocessed by a perception system, yielding the precise position of nearby vehicles, cyclists
and pedestrians over time. In addition, a high-definition map provides locations of lane markings,
crosswalks and traffic lights. All models are trained on a 100h subset, and tested on 25h. The
training dataset is identical to the publicly available one, whereas for the sake of execution speed for
testing we use a random, but fixed, subset of the listed test dataset, which is roughly 1

4 in size.

5.2 Baselines

We compare our proposed algorithm against three state-of-the-art baselines:

• Naive Behavioral Cloning (BC): we implement standard behavioral cloning using our vec-
torized backbone architecture. We do not use the SDV’s history as an input to the model to
avoid causal confusion (compare [10]).

• Behavioral Cloning + Perturbations (BC-perturb): we re-implement a vectorized version
of ChauffeurNet [10] using our backbone network. As in the original paper, we add noise
in the form of perturbations during training, but do not employ any auxiliary losses. We
test two versions: without the SDV’s history, and using the SDV’s history equipped with
history dropout.

• Multi-step Prediction (MS Prediction): we apply the meta-learning framework proposed
in [30] to train our vectorized network. We observe that a version of this algorithm can
conveniently be expressed within our framework; we obtain it by explicitly detaching gra-
dients between steps (i.e. ignoring the full differentiability of our simulation environment).
Differently from the original work [30], we do not save past unrolls as new dataset samples
over time.

5.3 Implementation

Inspired by [8, 45], we use a graph neural network for parametrizing our policy. It combines a
PointNet-like architecture for local inputs processing followed by an attention mechanism for global
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Configuration Collisions Imitation
Model SDV history Front Side Rear Off-road L2 Comfort I1K
BC 79 ± 23 395 ± 170 997 ± 74 1618 ± 459 1.57 ± 0.27 93K ± 3K 3,091 ± 601
BC-perturb 16 ± 2 56 ± 6 411 ± 146 82 ± 11 0.74 ± 0.01 203K ± 6K 567 ± 128
BC-perturb 14 ± 4 73 ± 7 678 ± 11 77 ± 6 0.77 ± 0.01 636K ± 22K 843 ± 6
MS Prediction 18 ± 6 55 ± 4 125 ± 14 141 ± 31 0.46 ± 0.02 595K ± 49K 341 ± 39

Ours 15 ± 7 46 ± 5 101 ± 13 97 ± 6 0.42 ± 0.00 637K ± 41K 260 ± 9
Table 1: Normalized metrics for all baselines and our method – reporting mean and standard de-
viation for each as obtained from 3 runs. For all, lower is better. Our method overall yields best
performance and lowest I1K.

reasoning. In contrast to [8], we use points instead of vectors. Given the set of points correspond-
ing to each input element, we employ 3 PointNet layers to calculate a 128-dimensional feature
descriptor. Subsequently, a single layer of scaled dot-product attention performs global feature ag-
gregation, yielding the predicted trajectory. We found K = 20 and T = 32 to work well, i.e. we
use 20 timesteps for the initial sampling and effectively predict 12 trajectory steps. γ is set to 0.8.
In total, our model contains around 3.5 million trainable parameters, and training takes 30h on 32
Tesla V100 GPUs. For more details we refer to Appendix C.

For the vehicle kinematics model f we use an unconstrained model pt+1 = pt + at with at ∈ SE2.
This allows for a fair comparisons with the baselines as both BC-perturb and MS Prediction assume
the possibility of arbitrary pose corrections. Other kinematics models, such as unicycle or bicycle
models, could be used with our method as well.

All baseline methods share the same network backbone as ours, with model specific differences as
described above – and BC and BC-perturb predicting a full T-step trajectory with a single forward,
while MS Prediction and ours are calling the model T times. To ensure a fair comparison, also for
MS Prediction we use our proposed sampling procedure, i.e. use the first K steps for sampling only.
We train all models for 61 epochs with a learning rate of 10−4, and drop it to 10−5 after 54 epochs.
We note that we achieve best results for our proposed method by disabling dropout, and hypothesize
this is related to similar issues observed for RNNs [46].

We refer the reader to Appendix B for ablations on the influence on data and sampling.

5.4 Metrics

We implement the metrics describe below to evaluate the planning performance. These capture
key imitation performance, safety and comfort. In particular, we report the following, which are
normalized – if applicable – per 1000 miles driven by the respective planner:

• L2: L2 distance to the underlying expert position in the driving log in meters.

• Off-road events: we report a failure if the planner deviates more than 2m laterally from
the reference trajectory – this captures events such as running off-road and into opposing
traffic.

• Collisions: collisions of the SDV with any other agent, broken down into front, side and
rear collisions w.r.t. the SDV.

• Comfort: we monitor the absolute value of acceleration, and raise a failure should this
exceed 3 m/s2.

• I1K: we accumulate safety-critical failures (collisions and off-road events) into one key
metric for ease of comparison, namely Interventions per 1000 Miles (I1K).

5.5 Imitation Results

We evaluate our method and all the baselines by unrolling the policy on 3600 sequences of 25
seconds length from the test set and measure the above metrics.

Table 1 reports performance when all methods are trained to optimize the imitation loss alone.
Behavioral cloning yields a high number of trajectory errors and collisions. This is expected, as this
approach is known to suffer from the issue of covariate shift [24]. Including perturbation during
training dramatically improves performance as it forces the method to learn how to recover from
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drifting. We further observe that MS Prediction yields comparable results for many categories,
while yielding less rear collisions. We attribute this to the further reduction of covariate shift when
compared to the previous methods: the training distribution is generated on-policy instead of being
synthesized by adding noise. Finally, our method yields best results overall. It is worth noting
that all models share a high number of comfort failures, due to the fact that they are all trained for
imitation performance alone, which does not optimize for comfort, but only positional accuracy of
the driven vehicle – which we address in the appendix.

5.6 In-car Testing

In addition to above stated simulation results, we further deployed our planner on SDVs in the real.
For this, a Ford Fusion equipped with 7 camera, 3 LiDAR and 11 Radar sensors was employed.
The sensor setup thus equals the one used for data collection, and during road-testing our perception
and data-processing stack is run in real-time to generate the desired scene representation on the
fly. For this, vehicles are equipped with 8 Nvidia 2080 TIs. Experiments were conducted on a
private test track, including other traffic participants and reproducing challenging driving scenarios.
Furthermore, this track was never shown to the network before, and thus offers valuable insights into
generalization performance. Figure 5 shows our model successfully crossing a signaled intersection,
for more results we refer to the appendix and our supplementary video.

6 Conclusion

In this work we have introduced a method for learning an autonomous driving policy in an urban
setting, using closed-loop training, mid-level representations with a data-driven simulator and a large
corpus of real world demonstrations. We show this yields good generalization and performance for
complex, urban driving. In particular, it can control a real-world self-driving vehicle, yielding better
driving performance than other state-of-the-art ML methods.

We believe this approach can be further extended towards production-grade real-world driving re-
quirements of L4 and L5 systems – in particular, for improving performance in novel or rarely seen
scenarios and to increase sample efficiency, allowing further scaling to millions of hours of driving.

Figure 4: Qualitative results of our method controlling the SDV. Every row depicts two scenes,
images are 2s apart. The SDV is drawn in red, other agents in blue and crosswalks in yellow. Traffic
lights colors are projected onto the affected lanes. Best view on a screen.

Figure 5: Front-camera footage of our planner stopping for a red light, and subsequently crossing
the intersection when the signal turns green (images from left to right, recorded several seconds
apart).
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Appendix A: Qualitative results

Figure 1 shows our method handling diverse, complex traffic situations well - it is identical to Figure
4 of the paper, but enlarged. For more qualitative results we refer to the supplementary video.

In-car testing

In this section we report additional results of deploying our trained policy to SDVs. Figure 2 shows
our planner navigating through a multitude of challenging scenarios. For more results we refer to the
supplementary video - where she show additional results in the form of videos, which also contain
more information, namely different camera angles, the resulting scene understanding and planned
trajectory of the SDV.

Appendix B: Additional Quantitative Results

Results for Optimizing Auxiliary Costs

In this section we investigate the ability to not only imitate expert behavior, but also to directly
optimize metrics of interest. This mode blends pure imitation learning with reinforcement learning
and allows tailoring certain aspects of the behavior, i.e. to optimize comfort or safety. To illustrate
this, we consider optimising a mixed cost function that optimizes both L1 imitation loss and auxiliary
losses:

Lτ̄ (st, at) = ‖p̄t − pt‖1 + α|acc(at)|+ β
∑

ei∈V
coll(ei, pt) (1)

Here acc(at) is the magnitude of the acceleration at time t and coll(ei, pt) is a differentiable
collision indicator, with V denoting the set of other vehicles. This loss is based on [1], more details
can be found in Appendix D. α, β allow to weigh the influence of these different losses.

The ability to succeed on this task requires optimally trading-off short- and long-term performance
between pure imitation and other goals. Tables 1 and 2 summarize performance when including
acceleration and collision loss, respectively. When including the acceleration term, we note our
method is the only one to successfully trade-off performance between imitation and comfort cost,
thanks to its capability to directly optimize over the full distribution: while I1K slightly increases
with growing α – which is expected – we can push comfort failures down to arbitrary levels. All
other models fail for at least one of these metrics, and / or are insensitive to α. When including the
collision loss, results are closer together. We hypothesize this is due to α = 0, allowing one-step
corrections and thus requiring less reasoning over the full time horizon.

Ablation Studies

Figure 3 shows the impact of training dataset size on performance. We see the performance of the
method improving with more data. Figure 4 demonstrates the effect of different K on the perfor-
mance of closed-loop training and thus demonstrates the importance of proper sampling.
5th Conference on Robot Learning (CoRL 2021), London, UK.

102



Figure 1: Qualitative results of our method controlling the SDV. Every row depicts one scene, images
are 2s apart. The SDV is drawn in red, other agents in blue and crosswalks in yellow. Traffic lights
colors are projected onto the affected lanes. Best view on a screen.

Discussion on Used Metrics

Metrics and their definition are naturally crucial for evaluating experiments - thus in the remainder
of this section we list additional results using different thresholds and metrics. As reported in the
paper, our default threshold for capturing deviations from the expert trajectory is 2m - which is based
on average lane widths. Still, one can image wider lanes and less regulated traffic scenarios. Due
to this Table 3 shows results of all examined methods using a threshold of 4m. Naturally, off-road
failures increase, while other metrics improve due to our process of resetting after interventions.
Still, one can observe that the reported results are relatively robust against such changes, i.e. the
differences are small and relative trends still hold.

In the paper, for simplicity we measure comfort with one value, namely acceleration - which itself
is based on differentiating speed, i.e. the travelled lateral and longitudinal distance divided by time.

2
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Figure 2: Qualitative results of our method controlling an SDV in the real. Every row depicts one
scene, read left to right.

Configuration Metrics
α β Model I1K Comfort

0.01 0
BC-perturb 10,553 23,526

MS Prediction 1,428 20,980
Ours 2,512 10,168

0.03 0
BC-perturb 11,026 9,815

MS Prediction 2,205 15,546
Ours 2,147 4,670

0.1 0
BC-perturb 11,068 7,679

MS Prediction 2,316 28,780
Ours 2,737 3,307

Configuration Metrics
α β Model Collisions Comfort

0 0
BC-perturb 772 600,778

MS Prediction 1,654 188,189
Ours 2,055 205,131

0 1000
BC-perturb 264 858,546

MS Prediction 612 388,632
Ours 765 258,114

0 10000
BC-perturb 568 943,144

MS Prediction 380 599,985
Ours 669 508,679

Table 1: Left: influence of the acceleration term weight α. Only ours manages to find trade-offs
and yields reasonable I1K and Comfort values. Right: influence of the collision term weight β. For
simplicity both experiments were run with K = 5, note that larger K further improves performance
of ours (compare Table 1 of the paper and Appendix B 2.2).

However, to reflect actual felt driving comfort, (longitudinal) jerk and lateral acceleration are better
suited and more common in the industry. Therefore, Table 4 contains these additional values, and
otherwise is identical to Table 1 of the original paper. These values yield more interesting insights
into obtained driving behaviour, for example indicating that most discomfort is caused by longitudi-
nal acceleration and jerk, while the lateral movement for all methods is much smoother. We further
observe a similar theme as reported in the paper - namely that our method is the only one to be able
to jointly optimize for performance and comfort, and that larger α yield smoother driving. Still, we
note that the number of jerk failures is higher than the number of acceleration failures - which leads
to promising future experiments in the form of explicitly penalizing jerk instead, or in addition to,
acceleration.

To complete this excursion on metrics, we briefly discuss rear collisions. Often, they can be at-
tributed to mistakes of other traffic participants, or non-reactive simulation (consider choosing a

3
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Configuration Metrics
α β Model I1K Jerk Lat. Acc.

0.01 0
BC-perturb 10,553 47,579 921

MS Prediction 1,428 632,608 118
Ours 2,512 621,180 128

0.03 0
BC-perturb 11,026 19,033 931

MS Prediction 2,205 578,189 133
Ours 2,147 354,341 138

0.1 0
BC-perturb 11,068 18,599 2062

MS Prediction 2,316 691,540 133
Ours 2,737 131,589 128

Configuration Metrics
α β Model Collisions Jerk Lat. Acc.

0 0
BC-perturb 772 1,914,230 8,052

MS Prediction 1,654 1,315,563 133
Ours 2,055 1,311,728 607

0 1000
BC-perturb 264 1,922,438 29,234

MS Prediction 612 1,455,627 1879
Ours 765 1,935,049 261

0 10000
BC-perturb 568 1,764,526 155,852

MS Prediction 380 1,580,696 3,131
Ours 669 1,498,776 1,158

Table 2: Repeating Table 1, but listing (longitudinal) jerk and lateral acceleration for comfort.

Figure 3: Influence of training data on our
planner’s performance: more data helps, but
we seem to be reaching a plateau in perfor-
mance.

Figure 4: Importance of proper sampling:
performance increases with growing K.

slightly different velocity profile, resulting in a rear collision over time). Still, rear collisions can
indicate severe misbehavior, such as not starting at green traffic lights, or sudden, unsafe braking
maneuvers. See Figure 5 for an example. Due to this, we do include rear collisions in our aggre-
gation metric I1K - however note that we report all metrics separately, as well, to allow a detailed,
customized performance analysis.

Appendix C: Policy architecture and state representation

In this section we disclose full details of the proposed network architecture, shown in Figure 6: Each
high level object (such as an agent, lane, cross walk) is comprised of a certain number of points of
feature dimension F . All points are individually embedded into a 128-dimensional space. We then
add a sinusoidal embedding to points of each object to introduce an understanding of order to the
model, and feed this to our PointNet implementation. This consists of 3 PointNet layers, in the
end producing a descriptor of size 128 for each object. We follow this up with one layer of scaled
dot-product attention: for this, the feature descriptor corresponding to ego is used as key, while all
feature descriptors are taken as keys / value. We add an additional type embedding to the keys, s.t.
the model can attend the values using also the object types – inspired by [2]. Via a final MLP the
output is projected to the desired shape, i.e. T × 3 for a trajectory of length T , in which each step is
described via xy position and a yaw angle.

Figure 5: Showing one example of a critical rear-collision: in this case, the planner controlling the
SDV (BC-perturb without ego history) decides to abruptly stop after short turn, causing the trailing
car to crash into it.

4

105



Configuration Collisions Imitation
Model SDV history Front Side Rear Off-road L2 Comfort I1K
BC 153± 42 482± 203 1,043± 67 974± 298 8.27± 1.75 102K± 1K 2,653± 483
BC-perturb 22± 4 57± 8 414± 142 27± 5 3.06± 0.06 204K± 6K 512± 127
BC-perturb 14± 6 74± 10 680± 12 27± 6 3.18± 0.02 629K± 23K 796± 12
MS Prediction 22± 3 55± 3 125± 12 60± 13 2.07± 0.14 598K± 49K 265± 17

Ours 17± 7 51± 5 102± 12 40± 6 1.83± 0.04 638K± 41K 210± 9
Table 3: Repeating Table 1 of the paper, but with a threshold of 4m for off-road failures.

Configuration Collisions Imitation Comfort
Model SDV history Front Side Rear Off-road L2 Jerk Lat. Acc. I1K
BC 79 ± 23 395 ± 170 997 ± 74 1618 ± 459 1.57 ± 0.27 958K ± 46K 71 ± 23 3,091 ± 601
BC-perturb 16 ± 2 56 ± 6 411 ± 146 82 ± 11 0.74 1,15± 0.01 1,156K ± 672K 1,115 ± 278 567 ± 128

BC-perturb 14 ± 4 73 ± 7 678 ± 11 77 ± 6 0.77 ± 0.01 1,862K ± 46 K 7,285 ± 593 843 ± 6

MS Prediction 18 ± 6 55 ± 4 125 ± 14 141 ± 31 0.46 ± 0.02 1,600K ± 14K 211 ± 21 341 ± 39

Ours 15 ± 7 46 ± 5 101 ± 13 97 ± 6 0.42 ± 0.00 1,750K ± 196K 507 ± 321 260 ± 9

Table 4: Repeating Table 1 of the paper, but listing more fine-grained comfort metrics, namely
(longitudinal) jerk and lateral acceleration.

A full description of our model input state is included in Table 5. We define the state as the whole set
of static and dynamic elements the model receive as input. Each element is composed of a variable
number of points, which can represent both time (e.g. for agents) and space (e.g. for lanes). The
number of features per point depends on the element type. We pad all features to a fixed size F
to ensure they can share the first fully connected layer. We include all elements up to the listed
maximal number in a circular FOV of radius 35m around the SDV. Note that for performance and
simplicity we only execute this query once, and then unroll within this world state.

Appendix D: Differentiable Collision Loss

We use a similar differentiable collision loss as proposed in [1]: idea is approximating each vehicle
viaN = 3 circles, and checking these for intersections. Assume loss calculation for timesteps T−K
to T , we then define our collision loss as:

∑

ei∈V
coll(ei, pt) =

∑

ei∈V

T∑

t=K

pair(ei, pt) (2)

Here, pair(ei, pt) describes a pair-wise collision term between our SDV and vehicle ei at timestep t.
Assume, ei and SDV (given by pose pt) are represented via circles Ci and CSDV , then pair(ei, pt)

Figure 6: Overview of our policy model. Each element in the state is independently forwarded to a
set of PointNet layers. The resulting features go through a Multi-Head Attention layer which takes
into account their relations to output the final action for the SDV. The bird’s-eye-view image on the
left is only for illustrative purposes; we do not employ any rasterizations in our pipeline.
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State element(s) Elements per state Points per element Point features description
SDV 1 4 SDV X, Y, yaw pose of the cur-

rent time step and in recent past
Agents up to 30 4 other agents X, Y, yaw poses of

the current time step and in re-
cent past

Lanes mid up to 30 20 interpolated X,Y points of the
mid lanes with optional traffic
light signal

Lanes left up to 30 20 interpolated X,Y points of the
left lanes boundaries

Lanes right up to 30 20 interpolated X,Y points of the
right lanes boundaries

Crosswalks up to 20 up to 20 crosswalks polygons boundaries
X,Y points

Table 5: Model input state description. The state is composed of multiple elements (e.g. agents and
lanes) and each of them has multiple points according to its type. Each point is a multi-dimensional
feature vector.

is calculated as the maximum intersection of any two such circles:

pair(ei, pt) = maxci∈Ci,cs∈CSDV
overlap(ci, cs) (3)

with

overlap(ci, cs) =

{
1− d

rci
+rcs

, if d ≤ rci
+ rcs

0, otherwise
(4)

in which d denotes the distance between the respective circles’ centers and r their radius. Thus, this
term is 0 when the circles do not intersect, and otherwise grows linearly to a maximum value of 1.
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SafetyNet: Safe planning for real-world self-driving vehicles
using machine-learned policies

Matt Vitelli∗, Yan Chang∗, Yawei Ye∗, Ana Ferreira, Maciej Wołczyk, Błażej Osiński,
Moritz Niendorf, Hugo Grimmett, Qiangui Huang, Ashesh Jain, Peter Ondruska+

Abstract— In this paper we present the first safe system
for full control of self-driving vehicles trained from human
demonstrations and deployed in challenging, real-world, urban
environments. Current industry-standard solutions use rule-
based systems for planning. Although they perform reasonably
well in common scenarios, the engineering complexity renders
this approach incompatible with human-level performance. On
the other hand, the performance of machine-learned (ML)
planning solutions can be improved by simply adding more
exemplar data. However, ML methods cannot offer safety
guarantees and sometimes behave unpredictably. To combat
this, our approach uses a simple yet effective rule-based fallback
layer that performs sanity checks on an ML planner’s decisions
(e.g. avoiding collision, assuring physical feasibility). This allows
us to leverage ML to handle complex situations while still
assuring the safety, reducing ML planner-only collisions by
95%. We train our ML planner on 300 hours of expert driving
demonstrations using imitation learning and deploy it along
with the fallback layer in downtown San Francisco, where it
takes complete control of a real vehicle and navigates a wide
variety of challenging urban driving scenarios.

I. INTRODUCTION

Self-Driving Vehicles (SDVs) have the promise to rev-
olutionize several industries including people and goods
transportation. However, the development of L4+ SDVs
has proved to be a significant challenge. Today, the main
bottleneck is the vehicle’s ability to safely handle the ‘long
tail’ of driving events [1]. World-class SDVs can handle
common situations, but can behave unsafely in the many,
rarely-occurring scenarios that are encountered on the road.

In the self-driving stack, the planning module is most
responsible for this bottleneck. It determines what the
SDV should do in any given situation. A traditional rule-
based planning approach selects a trajectory that minimizes
a hand-engineered cost function, often through classical
optimization-based approaches. In order to improve its per-
formance, engineers must design new terms in that cost
function or re-tune their respective weights, for each driving
scenario. This process is expensive and scales poorly to new
geographies. Unlike perception, planning has benefited little
from modern machine learning techniques, which leverage
large quantities of data in order to avoid the hand-engineering
of rules. Recently, the work of [2] has demonstrated the first
machine-learned policies for autonomous driving learned

∗ Equal contribution.
+ The research was conducted at Woven Planet, Level 5. Correspondence

to moritz.niendorf@woven-planet.global.
Videos are available at safety.l5kit.org

Fig. 1. Top: SafetyNet is the best-of-both combination of ML planning
that improves with data, and rule-based safety and legality guarantees from
the fallback layer. Bottom: an example of SafetyNet deployed to control a
real-world self-driving vehicle on the streets of San Francisco.

directly from human demonstrations. These approaches, al-
though they scale much better than the hand-engineering
method, do not provide the interpretability and safety guar-
antees required to safely deploy these systems in production.

In this work we propose SafetyNet: the first autonomous
driving system to combine the strengths of an ML plan-
ner with the interpretable safety of a lightweight rule-
based system, road-tested in busy San Francisco. The ML
component is a high-capacity planning policy trained from
expert demonstrations, and its performance scales with the
amount of training data without the need for costly behavior
engineering. To improve system safety, decisions of the ML
planner pass through a lightweight fallback layer: a simple,
rule-based system that tests the decisions against a small set
of checks, and can minimally modify them to improve safety
if required. This allows SafetyNet to transparently enforce
safety and legality constraints.

This combination outperforms ML-only systems and al-
lows us to safely deploy an ML planner in the busy streets
of San Francisco, constituting the first demonstration of its
kind. Our system exhibits a variety of maneuvers such as
lane-following, keeping the distance to other vehicles, and

2022 IEEE International Conference on Robotics and Automation (ICRA)
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navigating intersections.
Our key contributions are:
• A novel combination of machine learning and a

lightweight hand-engineered system to control a self-
driving vehicle that learns from data while offering
safety and legality guarantees.

• The first evaluation of such a system in the challeng-
ing, real-world, urban environment of downtown San
Francisco.

II. RELATED WORKS

Trajectory optimization-based planning. Traditional tra-
jectory optimization-based planning systems are widely used
in both academia and industry [3]–[6]. Here the motion
planning task is formulated as an optimization problem,
usually by hand-engineering a cost function. The optimal
trajectory is then generated by minimizing this cost using
optimization algorithms, such as A* search-based methods
[4], [7], sampling-based methods [8]–[10], dynamic pro-
gramming [6] or combinations thereof that decompose the
problem in a hierarchical fashion [11].

However, it is very difficult to hand-craft an objective
function that provides a human-like trade-off between com-
fort, safety, and route progress over a wide variety of
driving situations [12]. In comparison, encoding certain hard
constraints, e.g. obstacles avoidance, physical feasibility,
requires far less engineering. Building a lightweight hand-
engineered system whose only purpose is to detect and
correct infeasible trajectories is much simpler and more
scalable.

Additionally, these hand-engineered approaches do not
improve with data, and their performance does not gener-
alize well in highly unstructured urban scenarios. Therefore,
tremendous engineering efforts are needed to fine-tune them,
in particular when expanding to a new operational design
domain (ODD) or new geographies.

Machine-learned planning. Recently, ML planning has
gained attention due to successes in deep learning. This
approach has the advantage of avoiding hand-crafted rules
and scales well with data, thus performing better and better
as more data is used for training. Therefore, this approach has
great potential to handle a wide variety of driving situations
[2], [13]–[15]. Next, we introduce the two most commonly
used ML paradigms for motion planning.

(1) Imitation learning (IL). IL is a supervised learning
approach in which a model is trained to mimic expert be-
havior. The first application of IL to autonomous driving was
the seminal ALVINN [16] back in 1989, which mapped the
sensor data to steering and performed rural road following.
More recently, [13], [15] demonstrated end-to-end driving
using multiple-camera input alone, but the real-world driving
results are limited to simple tasks such as lane follow or
urban driving with light traffic. ChauffeurNet [2] proposed
to apply IL on a bird’s eye view of a scene and use synthetic
perturbations to alleviate the covariate shift problem [17],
but it is yet to be tested in real-world urban environments.
Promising contributions to the agent prediction problem
[18]–[20] have the potential to be used for the planning

problem, but their performance in a closed-loop setting is
not evaluated.

(2) RL & IRL. Reinforcement learning (RL) is well-
suited for sequential decision processes such as self-driving
as it handles the interaction between the agent and the envi-
ronment. Several methods [21]–[23] have been proposed to
apply RL to autonomous driving. In particular [21] proposes
combining learned and rule-based components, similarly to
us, but the reported results are only from simulation. On
the other hand, inverse reinforcement learning (IRL) [24],
[25] is another popular ML paradigm applied to autonomous
driving, which infers the underlying reward function based
on expert demonstrations as well as a model of the environ-
ment. However, all these methods are yet to be evaluated in
real-world urban driving.

The ML planning approaches introduced above, although
very promising, do not provide safety guarantees, which
prevent them to be deployed at scale in the real world. We are
inspired by this paradigm but aim to mitigate this limitation
by the SafetyNet proposed in this paper.

Hybrid approaches. The combination of ML and tra-
ditional motion planning techniques falls mostly into two
categories: ML-based heuristics, which are leveraged to im-
prove traditional planning algorithms, e.g. in terms of speed
up [26]–[29]. Modular approaches, where expert planners
are leveraged to generate the trajectory candidates, e.g., by
evaluating trajectories against a ML-based cost volume [14],
[30]. The latter of these works, [30] also provides safety
guarantees based on imposing a very high cost on trajectories
leading to a potential collision. These safety guarantees were
not however verified in the real world.

Another specific area of research that has emerged in this
field is the study of safety frameworks [31], [32]. While this
work is relevant, our goal is not to propose a comprehensive
framework for safety, but rather a simple yet effective method
that allows for the deployment of a powerful neural network
planner that learns and improves with data while ensuring
certain safety and legality constraints.

SafetyNet leverages the strengths of the expert system to
guarantee certain determinism, legality, and safety rules for
specific scenarios while relying on the ML motion planner
for nominal trajectory generation.

III. HYBRID ML PLANNING SYSTEM

In this section we describe SafetyNet, our system for
combining a machine-learned motion planner with an effec-
tive fallback layer to deliver a trajectory planning system
for SDVs. The approach uses the best of both worlds,
an ML planner that learns to drive from expert driving
demonstrations, supported by a rule-based fallback layer to
provide interpretable safety constraints, such as collision
avoidance and adherence to traffic rules. The fallback layer
is simple and scalable because it relies on basic hand-
engineered feasibility checks, and corrects infeasible ML
trajectories with a simple classical trajectory generator of
small scope.

The SafetyNet system is outlined in Fig. 1. It is composed
of an ML neural policy network (“ML Planner”) M that

898

Authorized licensed use limited to: Trial User - Warsaw University (Uniwersytet Warszawski). Downloaded on June 14,2023 at 14:07:33 UTC from IEEE Xplore.  Restrictions apply. 110



𝘹 𝘺 𝜃

Fig. 2. The neural network architecture of the presented ML planning
model is inspired by VectorNet [33]. The vectorized information on each
agent and map element is encoded by a PointNet network. This local
information is combined by a Transformer into global embedding. The
embedding is later translated into actions via kinematic decoder.

takes as input I the environment state around the SDV and
produces an intended trajectory τ̄ to be taken by SDV. This
trajectory is validated to obey the required constraints and in
the case it does not satisfy them the closest trajectory τ i is
taken from a set of safe trajectory candidates.

A. Input and Output

Input representation. The input data is encoded in an
ego-centric frame of reference where the SDV is always at
a fixed location relative to a frame. As shown in Fig. 2, the
input to our model consists of:

1) SDV: current and past poses of the SDV and its size.
2) Agents: current and past poses of perceived agents,

their sizes, and object type (e.g. vehicle, pedestrian,
cyclist) produced by the SDV’s perception system.

3) Static map elements: road network from High Defini-
tion (HD) maps including lanes, crosswalks, stop lines,
localized using the SDV’s localization system.

4) Dynamic map elements: traffic light states, and static
obstacles detected by the perception system (e.g. con-
struction zones).

5) Route: the intended global route for the SVD to follow.
We use a vectorized input representation based on [33] to
featurize each element into vector sets. Each vector includes
pose features - relative to the SDV pose - as well as additional
features (e.g. element type, time of observation, etc). The
number of feature vectors per element varies due to history
availability or number of geometry points. The number of
total elements in the frame varies but cannot exceed network
capacity. We limit the number of elements based on a region-
of-interest around the SVD.

Output representation. We define a trajectory τ as a
sequence of T discrete states separated uniformly in time
by ∆t. Each state st is defined as:

st = {xt, yt, θt, vt, at, kt, jt}. (1)

where xt, yt, θt correspond to the pose of the rear axle
of the SDV w.r.t. a fixed coordinate frame at time t and
vt, at, kt, jt correspond to the velocity, longitudinal acceler-
ation, curvature and jerk respectively.

B. ML planner

The ML planning component of our system takes the
input I capturing the states around the SDV and outputs
the trajectory τ̄ to be executed.

Model architecture. Inspired by [33], our model is built
on a hierarchical graph network-based architecture. It con-
sists of a PointNet-based [34] local subgraph for process-
ing local information from vectorized inputs and a global
graph using a Transformer encoder [35] for reasoning about
interactions over agents and map features. Details of the
architecture are represented in Fig. 2.

To ensure the predicted trajectories are physically feasible,
we introduce a kinematic decoder, which models the vehicle
kinematics using a unicycle model [5]. The decoder includes
a 3-layer multilayer perceptron (MLP) that takes in the
transformer encoder embedding and predicts longitudinal
jerk j1:T and curvature k1:T , for each time step within
the prediction horizon T . Then a kinematic layer takes the
predictions as well as the current ego state to roll out the
next state of the ego:

st+1 = f(st, kt, jt, γ), (2)

where f is the update function of the kinematic model, γ
comprises a set of parameters for vehicle kinematic con-
straint, including the maximum allowed jerk, acceleration,
curvature and steering angle, which are used to clip controls
to ensure physical feasibility. Following the deep kinematic
model introduced in [36], we implement f as follows:

st+1 = st + ṡt∆t, (3)

where the state derivatives are computed as follows:

ẋt = vt cos θt, ẏt = vt sin θt,

θ̇t = ktvt, v̇t = at, ȧt = jt.
(4)

Training framework. We use imitation learning to train
a driving policy that mimics expert driving behavior by
minimizing the L1 loss between the poses generated by the
model and the ground truth poses. Following [2], we include
perturbations to extend the distribution of states seen during
the training and thus reduce the impact of the covariate
shift [16], [17]. Although previous work used a pre-solver to
smooth the target trajectory after applying perturbations, we
can skip that thanks to the fact that we are using a kinematic
decoder. Instead, we can simply penalize large values of jerk
and curvature to reduce jerk and improve driving comfort.
The final loss is then:

L =

T∑
t=1

‖pt − p̂t‖1 + α‖kt‖2 + β‖jt‖2, (5)

where pt is the predicted pose (xt, yt, θt) at time t, p̂t is the
target pose, and α and β are hyperparameters.

C. Fallback Layer

After generating an ML trajectory, our system evaluates
it along several dimensions for dynamic feasibility, legality,
and collision probability, and determines a trajectory label
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{Feasible, Infeasible}. The details of these checks are de-
scribed below.

Dynamic feasibility. We evaluate whether the input tra-
jectory remains within a feasible envelope characterized by
the SDV’s dynamics limits. Concretely, we evaluate each
trajectory state and check whether the parameters, including
longitudinal jerk, longitudinal acceleration, curvature, cur-
vature rate, lateral acceleration, and steering jerk (curvature
rate × velocity) are within reasonable bounds.

The bounds for those parameters were obtained from real-
world vehicle testing. In practice, we typically use more
conservative limits for jerk, longitudinal acceleration, and
lateral acceleration to remain within comfortable limits.

Legality. For a given trajectory, we evaluate whether it
is violating the traffic rules. A trajectory will be labeled as
Infeasible if any of the following violations happens:

• Running the stop sign,
• Violating the right of way,
• Running a red traffic light,
• Leaving the drivable surface.
Collision likelihood. We check each ML trajectory state

for collisions with the predicted poses of other agents. Agents
predictions are generated by an in-house prediction module.
The prediction module takes into input agents and SDV at
each scene frame and can implicitly consider interactions
between them. Collision detection is performed by raster-
izing future agent predictions and checking for overlaps
with planned ego poses. Additionally, we also check for
longitudinal distance, time-to-collision, and time headway
violations along the trajectory. The trajectory is labeled
Infeasible if any of the collision likelihood checks fail.

Fallback trajectory generation. The ML trajectory is
directly executed when labeled Feasible. If the trajectory is
labeled Infeasible, we select a feasible fallback trajectory as
close as possible to the ML trajectory.

For this we use a classical optimization-based trajectory
generation method, based on [37], which generates a number
of lane-aligned trajectory candidates τ i. These candidates
consist of speed keeping, distance keeping, and emergency
stopping maneuvers. Our implementation can be made less
conservative and expanded to other fallback behaviors of
interest. However, such increase in scope for the fallback
trajectory will come at a trade-off of extra engineering effort.

Each of the generated trajectories is checked for feasibility
as described above and the trajectory candidate which is most
similar to the ML trajectory is selected for execution:

τ = argmin
τ i

‖τ̄ − τ i‖2. (6)

For qualitative examples of how the fallback layer affects the
trajectory refer to the Section IV-D.

IV. EXPERIMENTS

In this section we evaluate our system across several
dimensions: (a) the performance of the ML planner in
simulation when trained on an increasing amount of data
(no fallback layer), (b) the effectiveness of the fallback layer
in simulation, and (c) the performance of SafetyNet in the
real world when controlling a real vehicle in San Francisco.

A. Data

We created an in-house dataset to train and evaluate our
system: 300 hours for training, 80 hours for testing - of urban
driving collected in Palo Alto and San Francisco. It contains
a wide range of driving scenarios in a densely populated
urban environment. The dataset consists of 25s scenes, which
capture the perception output, the SDV trajectory, and HD
maps. It takes ∼5 hours to train the model on the full 300
hours using 64 NVIDIA V100 GPUs.

B. Metrics

We validate our planner by running a large-scale real-
world driving dataset on our in-house simulator. During sim-
ulation, we execute the hybrid planner and motion controller
modules, and simulate the SDV motion. The vehicle model
used is calibrated to the real-world SDV. Since the simulated
SDV pose can diverge significantly from the originally
logged pose along the dataset scenes, we allow the other
road agents to be reactive in their longitudinal behavior,
avoiding collisions while preserving their trajectories from
the dataset. The reactive agents interface is built such that the
same prediction library is used in real-world and closed-loop
evaluation (any prediction performance differences between
logged and reactive agents is monitored in-house). Our in-
house simulator is further validated to guarantee that neither
collision rate nor discomfort braking are underestimated.

In order to evaluate the closed-loop performance of the
model, each scene in the test set is replayed in simulation
with the SDV following the hybrid planner output for the
full duration of the scene. The following binary events are
recorded:

1) Collisions: the simulated SDV is <5cm from the road
boundaries, static obstacles, or agents.

2) Close-calls: the simulated SDV has no collision, but
either gets within 25cm of another agent, has a time-
to-collision <1.5s, or has a time headway <1s.

3) Discomfort braking: the simulated SDV’s jerk drops
below −5m/s3.

4) Passiveness: the simulated SDV travels slower than its
behavior in the dataset by < −5m/s and it is spatially
behind the SDV’s logged dataset position.

5) Off road events: the simulated SDV deviates from the
dataset route center line by >10m.

The events recorded for each scene are aggregated and
normalized by the number of miles driven in the simulations.
All metrics are reported as the total number of events per
1000 miles.

To assess the ability of the planning model to fit to the
dataset trajectories, we evaluate its open-loop performance.
To this end, we compute the Average Displacement Error
(ADE) between the positions from the ML trajectory output
at each frame and the logged SDV’s positions. Results are
presented in TABLE I).

Finally, we test how the system performs in the real world
by deploying it in downtown San Francisco. We evaluate
the ML planner performance via how often the fallback
trajectory is used and we provide qualitative examples.
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Average Displacement Error [m]
Training set size @1s @2s @3s @4s

5h 0.24 0.90 1.70 2.52
50h 0.14 0.51 0.98 1.53

150h 0.12 0.40 0.77 1.22
300h 0.11 0.37 0.73 1.18

TABLE I. Open-loop performance improves with the training set size.

Fig. 3. Safety (top) and comfort (bottom) events as a function of dataset
size for the ML planner (with and without fallback layer). The addition of
the fallback layer significantly improves every metric, save passiveness.

C. Effect of dataset size

For this experiment, the fallback layer is disabled, and the
ML planner’s trajectory is always executed. We evaluate the
performance of various ML planners trained with varying
dataset sizes: {5, 50, 150, 300} hours in simulation.

Looking at the dashed lines in Fig. 3 (w/o fallback) we
observe that the closed-loop performance across all safety
and comfort metrics increases with training set size, and that
more data should continue improving performance, albeit
slowly. Models trained on <50h produce unstable driving
policies that have significantly more collisions, off-route
events, or even cases where the SDV remains completely still
(passiveness). On the full dataset size, performance improves
significantly and the learned driving policy is able to reduce
collisions, close-call and discomfort brakes, and reliably
follows the route. In terms of passiveness, performance
plateaus, which we attribute to causal confusion inherent to
open-loop training [38]. Similarly, the ADE for open-loop
predictions improves with more training data (TABLE I).

D. Effect of fallback layer

We evaluate the effectiveness of the fallback layer in
simulation by comparing the SafetyNet performance with,
and without the fallback layer enabled. Here the ML planner
is trained on the full 300h dataset. As shown in TABLE II,
collisions and discomfort braking are very significantly re-
duced with the fallback layer enabled. This demonstrates the
value of the fallback layer and its importance for real world
deployment. Crucially, we see that the solid lines in Fig. 3
(w/ fallback) are close to zero regardless of the maturity of

Fig. 4. The distribution of causes for a fallback trajectory to be used over
the ML Planner trajectory.

(a) Front camera view (b) ML planner only (c) SafetyNet

Fig. 5. Examples of when the fallback layer prevents unsafe behavior
caused by ML planner. [Top] avoiding collision with a bus, [middle] running
a red light, and [bottom] ensuring yielding to right-of-way vehicle. We report
the unsafe trajectory (col. b), and SafetyNet safe trajectory (col. c).

the ML planner. This indicates that we can safely deploy
not only well-performing ML planners, but even immature
ones (trained on <50 h of data), thus facilitating faster
development and evaluation cycle.

Passiveness increases when the fallback layer is enabled,
due to the SDV driving more conservatively. We see it is a
necessary trade-off for reducing collisions and close calls.

In Fig. 4 we show the distribution of events that trigger the
fallback trajectory to be used during simulation. The main
causes for fallback behaviors are the ML trajectory leaving
the drivable surface, contacting dynamic agent predictions,
infeasible distance gap with other agents, infeasible steering
jerk, and contact with static obstacles. By manually triaging
these ML planner failure cases, we see (a) contact lane
boundary issues are a result of the ML planner cutting cor-
ners too closely, and (b) collisions are caused by the network
not paying enough attention to the size of the large vehicles
(Fig. 5, top). Moreover, near traffic light intersections the
ML planner occasionally generates trajectories that do not
properly yield to oncoming traffic (Fig. 5, bottom). It is
caused by the synthetic perturbations applied to the ego poses
during training. Note that in all these examples, the fallback
layer successfully prevented collisions from happening.
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# events per 1k miles
Planner Type Collisions Close Calls Discomfort Braking Passiveness Deviation from Route
ML Planner 91.5 74.5 312.8 213.9 0.0
ML Planner + Fallback Layer 4.6 45.0 24.2 277.0 0.0
Change Rate -95% -40% -92.3% +29.5% 0%

TABLE II. Comparing the performance of an ML-Planner-only approach vs SafetyNet, in closed-loop evaluation. This shows that SafetyNet significantly
reduces collisions, close calls, and discomfort breaking, at the expense of more passiveness. See Fig. 5 for some qualitative examples.

Fig. 6. SafetyNet failure case in simulation. Two simultaneous situations
- SDV driving close to dividing line, and a sudden velocity change of the
oncoming vehicle - combine to reveal a limitation in the implementation.

Fig. 7. Examples of successful ML planner behavior (no fallback
trajectory was triggered) in the real world. Top: merging, middle: yielding
to pedestrians, and bottom: nudging around a parked car.

E. Failure cases and limitations

There is still a small fraction of ML planner failures
not caught by SafetyNet. This is mostly because the cur-
rent fallback layer implementation does not limit the SDV
proximity to lane boundaries, and does not incorporate agent
prediction uncertainty. In Fig. 6 the SafetyNet fails to keep
a comfortable lateral distance to an oncoming vehicle.

The current fallback trajectory matching assumes that the
ML trajectory is ”always almost correct”, which is not always
the case. Better trajectory matching techniques could be
explored, potentially leveraging an uncertainty output in the
ML planner. However, the onus should fall on the ML plan-
ner to improve with data. A simpler fallback implementation
with high issue discoverability is ideal.

F. Real world testing

Finally, we extensively tested SafetyNet with ML planner
(trained on 300 hours), in the real world, in densely populated
downtown San Francisco, under the supervision of human
safety drivers. During the 150+ mile public road testing, the
model successfully performed a wide variety of challenging
maneuvers including lane-following, merging, yielding to
pedestrians or nudging around parked cars (Fig. 7). At the
same time, the fallback layer assured the safety of the
overall system, taking over around 7.9% of the total driving
time. This confirms our hypothesis that although the ML
planner is able to perform complex maneuvers and drive
safely for most of the time (>90%), an additional layer of
safety is required in certain situations. We refer the reader
to the accompanying video for a more thorough analysis.
We observed a total latency of <180ms@P95 on the entire
planner module running Safetynet.

V. CONCLUSIONS

We present SafetyNet, a method for combining ML plan-
ners with a rule-based system fallback layer to provide safe
driving in challenging, real-world urban environments. We
demonstrate very significant improvements in safety and
comfort metrics compared to a purely ML-based system,
both in simulation as well as in challenging San Francisco
streets. This approach makes it possible to safely use learned
planners in the real world, and benefit from their ability to
improve with more data to handle more complex situations
than their purely rule-based counterparts. We believe that
teams starting to explore ML planning methods, or those
with state-of-the-art ML planning solutions [2], [14], [15]
would benefit from incorporating a SafetyNet system. In
effect, SafetyNet may facilitate the development of ML-
based planners and their wider adoption in the AV industry.

We see many exciting opportunities for further develop-
ment. The fallback layer can be refined to be less conser-
vative. Regarding the ML planner, the imitation learning
approach presented is relatively simple. It can be improved
by drawing from recent advancements in model-based Re-
inforcement Learning (RL) [39], offline RL [40], or closed-
loop training with data-driven simulation [41].
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Abstract: Goal-conditioned policies for robotic navigation can be trained on
large, unannotated datasets, providing for good generalization to real-world set-
tings. However, particularly in vision-based settings where specifying goals re-
quires an image, this makes for an unnatural interface. Language provides a more
convenient modality for communication with robots, but contemporary methods
typically require expensive supervision, in the form of trajectories annotated with
language descriptions. We present a system, LM-Nav, for robotic navigation that
enjoys the benefits of training on unannotated large datasets of trajectories, while
still providing a high-level interface to the user. Instead of utilizing a labeled
instruction following dataset, we show that such a system can be constructed en-
tirely out of pre-trained models for navigation (ViNG), image-language associa-
tion (CLIP), and language modeling (GPT-3), without requiring any fine-tuning
or language-annotated robot data. LM-Nav extracts landmarks names from an
instruction, grounds them in the world via the image-language model, and then
reaches them via the (vision-only) navigation model. We instantiate LM-Nav on
a real-world mobile robot and demonstrate long-horizon navigation through com-
plex, outdoor environments from natural language instructions.

1 Introduction

One of the central challenges in robotic learning is to enable robots to perform a wide variety of
tasks on command, following high-level instructions from humans. This requires robots that can
understand human instructions, and are equipped with a large repertoire of diverse behaviors to
execute such instructions in the real world. Prior work on instruction following in navigation has
largely focused on learning from trajectories annotated with textual instructions [1–5]. This enables
understanding of textual instructions, but the cost of data annotation impedes wide adoption. On
the other hand, recent work has shown that learning robust navigation is possible through goal-
conditioned policies trained with self-supervision. These utilize large, unlabeled datasets to train
vision-based controllers via hindsight relabeling [6–11]. They provide scalability, generalization,
and robustness, but usually involve a clunky mechanism for goal specification, using locations or
images. In this work, we aim to combine the strengths of both approaches, enabling a robotic
navigation system to execute natural language instructions by leveraging the capabilities of pre-
trained models without any user-annotated navigational data. Our method uses these models to
construct an “interface” that humans can use to communicate desired tasks to robots. This system
enjoys the impressive generalization capabilities of the pre-trained language and vision-language
models, enabling the robotic system to accept complex high-level instructions.

Our main observation is that we can utilize off-the-shelf pre-trained models trained on large corpora
of visual and language datasets — that are widely available and show great few-shot generaliza-
tion capabilities — to create this interface for embodied instruction following. To achieve this, we
combine the strengths of two such robot-agnostic pre-trained models with a pre-trained navigation
model. We use a visual navigation model (VNM: ViNG [11]) to create a topological “mental map”
of the environment using the robot’s observations from a prior exploration of the environment. Given
free-form textual instructions, we use a pre-trained large language model (LLM: GPT-3 [12]) to de-
code the instructions into a sequence of textual landmarks. We then use a vision-language model

† These authors contributed equally, order decided by a coin flip. Check out the project page for experiment
videos, code, and a user-friendly Colab notebook that runs in your browser: sites.google.com/view/lmnav

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.
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Figure 1: Embodied instruction following with LM-Nav: Our system takes as input a set of raw observations
from the target environment and free-form textual instructions (left), deriving an actionable plan using three pre-
trained models: a large language model (LLM) for extracting landmarks, a vision-and-language model (VLM)
for grounding, and a visual navigation model (VNM) for execution. This enables LM-Nav to follow textual
instructions in complex environments purely from visual observations (right) without any fine-tuning.

(VLM: CLIP [13]) for grounding these textual landmarks in the topological map, by inferring a
joint likelihood over the landmarks and nodes. A novel search algorithm is then used to plan a path
for the robot, which is then executed by VNM. While reducing the task of language following to a
combination of grounding and subgoal selection discards a lot of useful cues such as relations and
verbs, we find that it is still sufficient to follow a variety of natural language instructions.

Our primary contribution is Large Model Navigation, or LM-Nav, an embodied instruction follow-
ing system that combines three large independently pre-trained models — a robotic control model
that utilizes visual observations and physical actions (VNM), a vision-language model that grounds
images in text but has no context of embodiment (VLM), and a large language model that can parse
and translate text but has no sense of visual grounding or embodiment (LLM) — to enable long-
horizon instruction following in complex, real-world environments. We present the first instantiation
of a robotic system that combines the confluence of pre-trained vision-and-language models with a
goal-conditioned controller, to derive actionable plans without any fine-tuning in the target environ-
ment. Notably, all three models are trained on large-scale datasets, with self-supervised objectives,
and used off-the-shelf with no fine-tuning — no human annotations of the robot navigation data are
necessary to train LM-Nav. We show that LM-Nav is able to successfully follow natural language
instructions in pre-explored environments over the course of 100s of meters of complex, suburban
navigation, while disambiguating paths with fine-grained commands.

2 Related Work

Early works in augmenting navigation policies with natural language commands use statistical ma-
chine translation [14] to discover data-driven patterns to map free-form commands to a formal lan-
guage defined by a grammar [15–19]. However, these approaches tend to operate on structured state
spaces. Our work is closely inspired by methods that instead reduce this task to a sequence predic-
tion problem [1, 20, 21]. Notably, our goal is similar to the task of VLN — leveraging fine-grained
instructions to control a mobile robot solely from visual observations [1, 2].

However, most recent approaches to VLN use a large dataset of simulated trajectories — over 1M
demonstrations — annotated with fine-grained language labels in indoor [1, 3–5, 22] and driv-
ing scenarios [23–28], and rely on sim-to-real transfer for deployment in simple indoor environ-
ments [29, 30]. However, this necessitates building a photo-realistic simulator resembling the target
environment, which can be challenging for unstructured environments, especially for the task of
outdoor navigation. Instead, LM-Nav leverages free-form textual instructions to navigate a robot in
complex, outdoor environments without access to any simulation or any trajectory-level annotations.

Recent progress in using large-scale models of natural language and images trained on diverse data
has enabled applications in a wide variety of textual [31–33], visual [13, 34–38], and embodied
domains [39–44]. In the latter category, approaches either fine-tune embeddings from pre-trained
models on robot data with language labels [39, 40, 44], assume that the low-level agent can execute
textual instructions (without addressing control) [41], or assume access to a set of text-conditioned
skills that can follow atomic textual commands [42]. All of these approaches require access to low-
level skills that can follow rudimentary textual commands, necessitating language annotations for
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robotic experience and a strong assumption on the robot’s capabilities. In contrast, we combine
these pre-trained vision and language models with pre-trained visual policies that do not use any
language annotations [11, 45] without fine-tuning these models for the task of VLN.

Data-driven approaches to vision-based mobile robot navigation often use photorealistic simula-
tors [46–49] or supervised data collection [50] to learn goal-reaching policies directly from raw
observations. Self-supervised methods for navigation [6–11, 51] instead can use unlabeled datasets
of trajectories by automatically generating labels using onboard sensors and hindsight relabeling.
While such policies are adept at navigating to goal locations or images, they may be unable to parse
high-level instructions such as free-form text. LM-Nav uses self-supervised policies trained in a
large number of prior environments, augmented with pre-trained vision and language models for
parsing natural language instructions, and deploys them in novel real-world environments without
any fine-tuning. We emphasize that while LM-Nav relies on a pre-built topological graph, similar to
prior work [11, 51, 52], this assumption may be relaxed by incorporating exploration heuristics in
unseen environments [53], and can be an interesting avenue for future work.

3 Preliminaries
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Figure 2: LM-Nav uses CLIP to infer a joint distribution over
textual landmarks and image observations. VNM infers a goal-
conditioned distance function and policy that can control the robot.

LM-Nav consists of three large, pre-
trained models for processing lan-
guage, associating images with lan-
guage, and visual navigation.

Large language models are genera-
tive models of text trained on large
corpora of internet text using self-
supervised learning. LM-Nav uses
the GPT-3 LLM [12] to parse instruc-
tions into a sequence of landmarks.

Vision-and-language models refer to models that can associate images and text, e.g. image cap-
tioning, visual question-answering, etc. [54–56]. We use the CLIP VLM [13], a model that jointly
encodes images and text into a shared embedding space, to jointly encode a set of landmark descrip-
tions t obtained from the LLM and a set of images ik to obtain their VLM embeddings {T, Ik}
(see Fig. 3). Computing the cosine similarity between these embeddings, followed by a softmax
operation results in probabilities P (ik|t), corresponding to the likelihood that image ik corresponds
to the string t. LM-Nav uses this probability to align landmark descriptions with images.

Visual navigation models learn navigational affordances directly from visual observations [11,
51, 57–59], associating images and actions through time. We use the ViNG VNM [11], a goal-
conditioned model that predicts temporal distances between pairs of images and the corresponding
actions to execute (see Fig. 3). The VNM serves two purposes: (i) given a set of observations in
the target environment, the distance predictions from the VNM can be used to construct a topo-
logical graph G(V, E) that represents a “mental map” of the environment; (ii) given a “walk” (i.e.,
a sequence of connected subgoals to the goal), VNM can control the robot along this plan. The
topological graph G is an important abstraction that allows a simple interface for planning over past
experience in the environment and has been successfully used in prior work to perform long-horizon
navigation [52, 53, 60]. To deduce connectivity in G, we use a combination of learned distance
estimates, temporal proximity (during data collection), and spatial proximity (using GPS measure-
ments). For more details on the construction of this graph, see Appendix B.

4 LM-Nav: Instruction Following with Pre-Trained Models

LM-Nav combines the components discussed earlier to follow natural language instructions in the
real world. The LLM parses free-form instructions into a list of landmarks ¯̀ (Sec. 4.2), the VLM
associates these landmarks with nodes in the graph by estimating the probability that each node v̄
corresponds to each ¯̀, P (v̄|¯̀) (Sec. 4.3), and the VNM is used to infer how effectively the robot
can navigate between each pair of nodes in the graph, denoted by a probability P (vi, vj). To find
the optimal “walk” on the graph that both (i) adheres to the provided instructions and (ii) minimizes
traversal cost, we derive a probabilistic objective (Sec. 4.1) and show how it can be optimized using
a graph search algorithm (Sec. 4.4). This walk is executed in the real world by the VNM model.
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Figure 3: System overview: (a) VNM uses a goal-conditioned distance function to infer connectivity between
the set of raw observations and constructs a topological graph. (b) LLM translates natural language instruc-
tions into a sequence of textual landmarks. (c) VLM infers a joint probability distribution over the landmark
descriptions and nodes in the graph, which is used by (d) a graph search algorithm to derive the optimal walk
through the graph. (e) The robot drives following the walk in the real world using the VNM policy.

4.1 Problem Formulation

Given a sequence of landmark descriptions ¯̀= `1, `2, ..., `n extracted from the language command,
our method needs to determine a sequence of waypoints v̄ = v1, v2, ..., vk to command to the robot.
Typically, k � n, since each landmark needs to be visited, but the traversal might require other
waypoints in between the landmarks. Finding v̄ can formulated as a probabilistic inference problem.
A key element in this formulation is access to a distribution p(vi|`j) for each graph vertex vi and
landmark description `j . Recall that the graph vertices correspond to images observed by the robot,
and thus, p(vi|`i) represents a distribution over images given a language description. This can be
obtained from the VLM. Intuitively, the full likelihood that we need to optimize to determine the
robot’s plan will now depend on two terms: likelihoods of the form p(vti |`i) that describe how likely
vti is to correspond to `i for an assignment t1, t2, . . . , tn, and traversability likelihoods p(vi, vi+1)
that describe how likely is the robot to be able to reach vi+1 from vi.

While we can use a variety of traversability likelihood functions, a simple choice is to use a dis-
counted Markovian model, where the discount � models the probability of exiting at each time step,
leading to a termination probability of 1 � � at each step, and a probability of reaching vi+1 given
by �D(vi,vi+1), where D(vi, vi+1) is the estimated number of time steps the robot needs to travel
from vi to vi+1, which is predicted by the VNM. While other traversability likelihoods could also be
used, this choice is a convenient consequence of goal-conditioned reinforcement learning formula-
tions [61, 62], and thus, the log-likelihood corresponds to D(vi, vi+1). We can use these likelihoods
to derive the probability that a given sequence v̄ can be traversed successfully, which we denote with
the auxiliary Bernoulli random variable cv̄ (i.e., cv̄ = 1 implies that v̄ was traversed successfully):

P (cv̄ = 1|v̄) =
Y

1i<T

P (vi, vi+1) =
Y

1i<T

�D(vi,vi+1), (1)

The full likelihood used for planning is then given by:

P (success|v̄, ¯̀) / P (cv̄ = 1|v̄)P (v̄|¯̀) =
Y

1j<k

�D(vj ,vj+1) max
1t1...tnk

Y

1in

P (vti
|`i). (2)

4.2 Parsing Free-Form Textual Instructions

The user specifies the route they want the robot to take using natural language, while the objective
above is defined in terms of a sequence of desired landmarks. To extract this sequence from the
user’s natural language instruction we employ a large language model, which in our prototype is
GPT-3 [12]. We used a prompt with 2 examples of correct landmarks’ extractions, followed by the
description to be translated by the LLM. Examples of instructions and landmarks extracted by the
model can be found in Fig. 4. The prompt was selected to disambiguate nuanced cases, e.g. when
order of landmarks in the text is different than in the expected path (see example in Fig. 4 a). For
details of the “prompt engineering” please see Appendix A.
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4.3 Visually Grounding Landmark Descriptions

Algorithm 1: Graph Search
1: Input: Landmarks (`1, `2, . . . , `n).
2: Input: Graph G(V, E).
3: Input: Starting node S.
4: 8i=0,...,n

v2V
Q[i, v] = �1

5: Q[0, S] = 0
6: Dijkstra algorithm(G, Q[0, ⇤])
7: for i in 1, 2, . . . , n do
8: 8v 2 V Q[i, v] = Q[i � 1, v] + CLIP(v, `i)
9: Dijkstra algorithm(G, Q[i, ⇤])

10: end for
11: destination = arg max(Q[n, ⇤])
12: return backtrack(destination, Q[n, ⇤])

As discussed in Sec. 4.1, a crucial element
of selecting the walk through the graph is
computing P (vi|`j), the probability that land-
mark description vi refers to node `j (see
Eqn. 2). With each node containing an image
taken during initial data collection, the prob-
ability can be computed using CLIP [13] in
the way described in Sec. 3 as the retrieval
task. As presented in Fig. 2, we apply CLIP
to the image at node vi and caption prompt
in the form of “This is a photo of a [`j]”.
To go from CLIP model outputs, which are
logits, to probabilities we use P (vi|`j) =

exp CLIP(vi,`j)P
v2V exp CLIP(v,`j)

. The resulting probability
P (vi|`j), together with the inferred edges’ distances will be used to select the optimal walk.

4.4 Graph Search for the Optimal Walk

As described in Sec. 4.1, LM-Nav aims at finding a walk v̄ = (v1, v2, . . . , vk) that maximizes the
probability of successful execution of v̄ that adheres to the given list of landmarks ¯̀. We can define
a function R(v̄, t̄) for a monotonically increasing sequence of indices t̄ = (t1, t2, . . . , tn):

R(v̄, t̄) :=

nX

i=1

CLIP(vti , `i) � ↵

T�1X

j=1

D(vj , vj+1), where ↵ = � log �. (3)

R has the property that (v̄) maximizes P (success|v̄, ¯̀) defined in Eqn. 2, if and only if there exists
t̄ such that (v̄, t̄) maximizes R. In order to find such (v̄, t̄), we employ dynamic programming. In
particular we define a helper function Q(i, v) for i 2 {0, 1, . . . , n}, v 2 V :

Q(i, v) = max
v̄=(v1,v2,...,vj),vj=v

t̄=(t1,t2,...,ti)

R(v̄, t̄). (4)

Q(i, v) represents the maximal value of R for a walk ending in v that visited the landmarks up to
index i. The base case Q(0, v) visits none of the landmarks, and its value of R is simply equal to
minus the length of shortest path from the starting node S. For i > 0 we have:

Q(i, v) = max

✓
Q(i � 1, v) + CLIP(v, `i), max

w2neighbors(v)
Q(i, w) � ↵ · D(v, w)

◆
. (5)

The base case for DP is to compute Q(0, V ). Then, in each step of DP i = 1, 2, . . . , n we compute
Q(i, v). This computation resembles the Dijkstra algorithm ([63]). In each iteration, we pick the
node v with the largest value of Q(i, v) and update its neighbors based on the Eqn. 5. Algorithm 1
summarizes this search process. The result of this algorithm is a walk v̄ = (v1, v2, . . . , vk) that
maximizes the probability of successfully carrying out the instruction. Such a walk can be executed
by VNM, using its action estimates to sequentially navigate to these nodes.

5 System Evaluation

We now describe our experiments deploying LM-Nav in a variety of outdoor settings to follow high-
level natural language instructions with a small ground robot (Clearpath Jackal UGV platform —
see Fig. 1(right) for image and Appendix C for details). For all experiments, the weights of LLM,
VLM, and VNM are frozen — there is no fine-tuning or annotation in the target environment. We
evaluate the complete system, as well as the individual components of LM-Nav, to understand its
strengths and limitations. Our experiments demonstrate the ability of LM-Nav to follow high-level
instructions, disambiguate paths, and reach goals that are up to 800m away.
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Figure 4: Qualitative examples of LM-Nav in real-world environments executing textual instructions (left).
The landmarks extracted by LLM (highlighted in text) are grounded into visual observations by VLM (center;
overhead image not available to the robot). The resulting walk of the graph is executed by VNM (right).

5.1 Following Instructions with LM-Nav

In each evaluation environment, we first construct the graph by manually driving the robot and col-
lecting image and GPS observations. The graph is constructed automatically using the VNM to pre-
dict relative distances between images in these trajectories. We tested our system on 20 queries in 2
environments, corresponding to a combined length of over 6km. The instructions include prominent
landmarks that can be identified from the robot’s observations, e.g., buildings and stop signs.

Fig. 4 shows qualitative examples of the path taken by the robot. In Fig. 4(a), LM-Nav is able to
successfully localize the simple landmarks from its prior traversal and find a short path to the goal.
While there are multiple stop signs in the environment, the objective in Eqn. 2 causes the robot to
pick the correct one, minimizing overall trajectory length. Fig. 4(b) highlights LM-Nav’s ability to
follow complex instructions with multiple landmarks — despite the possibility of taking a shorter
route directly to the final landmark, the robot follows a path that correctly visits all of the landmarks.

Go straight toward the white 

building. Continue straight 

passing by a white truck until you 

reach a stop sign.

After passing a white building, 

take right next to a white truck. 

Then take left and go towards a 

square with a large tree. Go 

further, until you find a stop sign.

Start Goal Landmarks

Figure 5: LM-Nav can successfully disambiguate
instructions with same start-goal locations that dif-
fer slightly. The landmarks are underscored in text
and their locations are marked with pins.

Missing landmarks. While LM-Nav is effective at
finding a path through landmarks extracted from in-
structions, it relies on the assumption that the land-
marks (i) exist in the environment, and (ii) can be
identified by the VLM. Fig. 4(c) illustrates a case
where the executed path fails to visit one of the
landmarks — a fire hydrant — and takes a path that
goes around the top of the building rather than the
bottom. This failure mode is attributed to the the
inability of the VLM to detect a fire hydrant from
the robot’s observations. On independently evaluat-
ing the efficacy of the VLM at retrieving landmarks
(see Sec. 5.3), we find that despite being the best
off-the-shelf model for our task, CLIP is unable to
retrieve a small number of “hard” landmarks, in-
cluding fire hydrants and cement mixers. In many
practical cases, the robot is still successful in find-
ing a path that visits the remaining landmarks.

Disambiguation with instructions. Since the objective of LM-Nav is to follow instructions, and
not merely to reach the final goal, different instructions may lead to different traversals. Fig. 5 shows
an example where modifying the instruction can disambiguate multiple paths to the goal. Given the
shorter prompt (blue), LM-Nav prefers the more direct path. On specifying a more fine-grained
route (magenta), LM-Nav takes an alternate path that passes a different set of landmarks.

5.2 Quantitative Analysis

To quantify the performance of LM-Nav, we introduce the following metrics. A walk found by the
graph search is successful, if (1) it matches the path intended by the user or (2) if the landmark im-
ages extracted by the search algorithm contain said landmarks (i.e. if the path visits landmarks with
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System Environment Net Success " Efficiency " # Diseng. # Planning "
GPS-Nav (No VNM) EnvSmall-10 0.23 0.93 0.75 0.9

EnvSmall-10 0.8 0.96 0.1 0.9LM-Nav (Ours)
EnvLarge-10 0.8 0.89 0 0.8

Table 1: Quantifying navigational instruction following with LM-Nav over 20 experiments. LM-Nav can
successfully plan a path to the goal, and follow it efficiently, over 100s of meters. Ablating the VNM (GPS-Nav)
severely hurts performance due to frequent disengagements inability to reason about collisions with obstacles.

LLM Candidate Avg. Extraction Success

Noun Chunks 0.88
fairseq-1.3B [64] 0.52
fairseq-13B [64] 0.76
GPT-J-6B [65] 0.80
GPT-NeoX-20B [66] 0.72
GPT-3 [12] 1.0

Table 2: GPT-3 consistently outperforms alternatives
in parsing free-form instructions into landmarks.

VLM Candidate Detection Rate

Faster-RCNN [67] 0.07
ViLD [36] 0.38
CLIP-ViT [13] 0.87

Table 3: CLIP-ViT produces the most reliable
landmark detections from visual observations.

the same description, even if not exactly the same). Planning success is the fraction of successful
walks found by the search algorithm. Efficiency of a walk is defined as the ratio of the lengths of the
described route and the executed one; the value is clipped at a maximum of 1 to account for the cases
when the LM-Nav executes a path shorter than the user intended. For a set of queries, we report the
average efficiency over successful experiments. The planning efficiency is similarly defined as the
ratio of the length of the described and planned routes. Finally, number of disengagements is the
average number of human interventions per experiment due to unsafe maneuvers.

Table 1 summarizes the quantitative performance of the system over 20 instructions. LM-Nav gen-
erates a successful walk for 85% of them, and causes disengagement only once (an average of 1
intervention per 6.4km of traversals). Investigating the planning failure modes suggests that the
most critical component of our system is the ability of VLM to detect certain landmarks, e.g. a fire
hydrant, and in challenging lighting conditions, e.g. underexposed images.

5.3 Dissecting LM-Nav

To understand the influence of each of the components of LM-Nav, we conduct experiments to
evaluate these components in isolation. For more details about these experiments, see Appendix D.

To evaluate the performance of LLM candidates in parsing instructions into an ordered list of land-
marks, we compare GPT-3 (used by LM-Nav) to other state-of-the-art pre-trained language models
— fairseq [64], GPT-J-6B [65], and GPT-NeoX-20B [66] — as well as a simple baseline using
spaCy NLP library [68] that extracts base noun phrases, followed by filtering. In Table 2 we report
the average extraction success for all the methods on the 20 prompts used in Section 5.2. GPT-3 sig-
nificantly outperforms other models, owing to its superior representation capabilities and in-context
learning [69]. The noun chunking performs surprisingly reliably, correctly solving many simple
prompts. For further details on these experiments, see Appendix D.2.

To evaluate the VLM’s ability to ground these textual landmarks in visual observations, we set up
an object detection experiment. Given an unlabeled image from the robot’s on-board camera and a
set of textual landmarks, the task is to retrieve the corresponding label. We run this experiment on
a set of 100 images from the environments discussed earlier, and a set of 30 commonly-occurring
landmarks. These landmarks are a combination of the landmarks retrieved by the LLM in our

EnvSmall-10 EnvLarge-10
Planner Pl. Success " Pl. Efficiency " Pl. Success " Pl. Efficiency "
Max Likelihood 0.6 0.69 0.2 0.17
LM-Nav (Ours) 0.9 0.80 0.8 0.99

Table 4: Ablating the search algorithm (Sec. 4.4) gives a max likelihood planner that ignores reachability
information, resulting in inefficient plans that are up to 6⇥ longer than LM-Nav for the same instruction.
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experiments from Sec. 5.1 and manually curated ones. We report the detection successful if any of
the top 3 predictions adhere to the contents of the image. We compare the retrieval success of our
VLM (CLIP) with some object detection alternatives — Faster-RCNN-FPN [67, 70], a state-of-the-
art object detection model pre-trained on MS-COCO [71, 72], and ViLD [36], an open-vocabulary
object detector based on CLIP and Mask-RCNN [73]. To evaluate against the closed-vocabulary
baseline, we modify the setup by projecting the landmarks onto the set of MS-COCO class labels.
We find that CLIP outperforms baselines by a wide margin, suggesting that its visual model transfers
very well to robot observations (see Table 3). Despite deriving from CLIP, ViLD struggles with
detecting complex landmarks like “manhole cover” and “glass building”. Faster-RCNN is unable to
detect common MS-COCO objects like “traffic light”, “person” and ”stop sign”, likely due to the
on-board images being out-of-distribution for the model.

Start Goal Collision

Figure 6: GPS-Nav (red) fails to exe-
cute a plan due to its inability to rea-
son about traversability through obsta-
cles, while LM-Nav (blue) succeeds.

To understand the importance of the VNM, we run an ab-
lation experiment of LM-Nav without the navigation model.
Using GPS-based distance estimates and a naı̈ve straight line
controller between nodes of the topological graph. Table 1
summarizes these results — without VNM’s ability to reason
about obstacles and traversability, the system frequently runs
into small obstacles such as trees and curbs, resulting in fail-
ure. Fig. 6 illustrates such a case — while such a controller
works well on open roads, it fails to reason about connec-
tivity around buildings or obstacles and results in collisions
with a curb, a tree, and a wall in 3 individual attempts. This
illustrates that using a learned policy and distance function
from the VNM is critical for LM-Nav to successfully navi-
gate in complex environments.

Lastly, to understand the importance of the two components of the graph search objective (Eqn. 3),
we ran a set of ablations where the graph search only depends on P (v̄|¯̀), i.e. Max Likelihood Plan-
ning, which only picks the most likely landmark without reasoning about topological connectivity
or traversability. Table 4 shows that such a planner suffers greatly in the form of efficiency, because
it does not utilize the spatial organization of nodes and their connectivity. For more details on these
experiments, and qualitative examples, see Appendix D.

6 Discussion
We presented Large Model Navigation, a robotic system that can execute textual instructions in the
real-world without requiring any human annotations for navigation trajectories. LM-Nav combines
three pre-trained models: the LLM, which parses instructions into a list of landmarks; the VLM,
which infers joint probabilities between these landmarks and visual observations from the environ-
ment; and the VNM, which estimates navigational affordances (distances between landmarks) and
control actions. Each model is pre-trained on its own dataset, and we show that the complete system
can execute a variety of user-specified instructions in real-world environments — choosing the cor-
rect sequence of landmarks by leveraging language and spatial context — and handle mistakes (such
as missing landmarks). We also analyze the impact of each pre-trained model on the full system.

Limitations and future work. The most prominent limitation of LM-Nav is its reliance on land-
marks: while the user can specify any instruction they want, LM-Nav only focuses on the landmarks
and disregards any verbs, propositions, adverbs, etc. (e.g., “go straight for three blocks” or “drive
past the dog very slowly”), which can be lossy. Grounding such nuances is an important direction
for future work. Additionally, LM-Nav uses a VNM that is specific to outdoor navigation with the
Jackal robot, which limits wider adoption for other robot embodiments and sensor suites. An ex-
citing direction for future work would be to swap in a “general navigation model” [74] that can be
utilized broadly across robots, analogous to how the LLM and VLM handle any text or image. In its
current form, LM-Nav provides a simple and attractive prototype for how pre-trained models can be
combined to solve complex robotic tasks, and illustrates that these models can serve as an “interface”
to robotic controllers that are trained without any language annotations. One of the implications of
this result is that further progress on self-supervised robotic policies (e.g., goal-conditioned policies)
can directly benefit instruction following systems. More broadly, understanding how modern pre-
trained models enable effective decomposition of robotic control may enable broadly generalizable
systems in the future, and we hope that LM-Nav will serve as a step in this direction.
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