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Abstract

This thesis is devoted to the study of the concentration of measure phenomenon
and its connections with functional inequalities. We focus on the relations
between various types of inequalities and in the case of concentration estimates,
we are mostly interested in discrete dependent random variables.

In particular, we prove that Beckner inequalities with constants separated
from zero as p→ 1+ are equivalent to the modified log Sobolev inequality. Fur-
ther, we derive Sobolev type moment estimates which hold under these func-
tional inequalities. We illustrate these results with applications to concentration
of measure estimates for various stochastic models, including random permu-
tations, zero-range processes, strong Rayleigh measures, exponential random
graphs, and geometric functionals on the Poisson path space.

Then, we answer an open problem posed by Mossel–Oleszkiewicz–Sen re-
garding relations between p-log-Sobolev inequalities for p ∈ (0, 1]. We show
that for any interval I ⊂ (0, 1], there exist q, p ∈ I, q < p and a measure µ
for which the q-log-Sobolev inequality holds, while the p-log-Sobolev inequality
is violated. As a tool we develop certain necessary and sufficient conditions
characterizing those inequalities in the case of birth-death processes on N.

We also investigate concentration properties of functions of random vec-
tors with values in the discrete cube, satisfying the stochastic covering prop-
erty (SCP). Our result for SCP measures include subgaussian inequalities of
bounded-difference type and their counterparts for matrix-valued setting. We
also treat in detail the special case of independent Bernoulli random variables
conditioned on their sum for which we obtain strengthened estimates, deriv-
ing in particular modified log-Sobolev inequalities, Talagrand’s convex distance
inequality and, as corollaries, concentration results for convex functions and
polynomials, as well as improved estimates for matrix-valued functions.

Finally, we prove a Bennett-type concentration bound for suprema of em-
pirical processes based on sampling without replacement and a corresponding
bound in the case of an arbitrary Hoeffding statistics.
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Streszczenie

Niniejsza rozprawa poświęcona jest badaniu zjawiska koncentracji miary i jego
związków z nierównościami funkcyjnymi. Skupiamy się na związkach między
różnymi typami nierówności, a w przypadku oszacowań koncentracyjnych in-
teresują nas głównie dyskretne zmienne losowe zależne.

W szczególności udowadniamy, że nierówności Becknera ze stałymi odd-
zielonymi od zera wraz z p → 1+ są równoważne zmodyfikowanej nierówności
log-Sobolewa. Ponadto, wyprowadzamy oszacowania momentów typu Sobolewa,
które zachodzą przy tych nierównościach funkcyjnych. Powyższe wyniki ilus-
trujemy zastosowaniami do oszacowań koncentracji miary dla różnych modeli
stochastycznych, w tym permutacji losowych, procesów zerowego zasięgu, sil-
nych miar Rayleigha, wykładniczych grafów losowych i geometrycznych funkcji
na przestrzeni Poissona.

Następnie, odpowiadamy na otwarty problem postawiony przez Mossela–
Oleszkiewicza–Sena, dotyczący związków pomiędzy różnymi nierównościami p-
log-Sobolewa dla p ∈ (0, 1]. Pokazujemy, że dla dowolnego przedziału I ⊂
(0, 1] istnieje q, p ∈ I, q < p i miara µ, dla której zachodzi nierówność q-log-
Sobolewa, natomiast nie zachodzi nierówność p-log-Sobolewa. Jako narzędzie
wyprowadzamy pewien warunek konieczny i powiązany warunek wystarczający
dla powyższych nierówności w przypadku procesów narodzin i śmierci na N.

Badamy również koncentrację funkcji wektorów losowych o wartościach w
kostce dyskretnej, spełniających własność pokrycia stochastycznego. Uzyskane
wyniki dla tych miar obejmują nierówności subgaussowskie oraz ich odpowied-
niki w sytuacji macierzowej. Szczegółowo traktujemy także specjalny przy-
padek niezależnych zmiennych losowych Bernoulliego uwarunkowanych na ich
sumę, dla których otrzymujemy wzmocnione oszacowania, wyprowadzając w
szczególności zmodyfikowane nierówności log-Sobolewa, nierówność Talagranda
dla odległości wypukłej oraz, w konsekwencji, wyniki koncentracji dla funkcji
wypukłych i wielomianów, a także ulepszone oszacowania dla funkcji o wartoś-
ciach macierzowych.

W ostatniej części pracy udowadniamy oszacowania koncentracyjne typu
Bennetta w przypadku supremów procesów empirycznych opartych na próbkowa-
niu bez zwracania oraz analogiczne oszacowania dla dowolnych statystyk Ho-
effdinga.
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Chapter 1

Introduction

1.1 Preliminaries
A classical observation lying at the foundations of the modern probability theory
says that if we run a random experiment sufficiently many times, then the
resulting average outcome is very close to the expected outcome of a single
experiment. This observation was originally formalized in terms of various laws
of large numbers, which are qualitative in nature. Soon later, some quantitative
expressions regarding exponential deviation bounds for sums of independent
random variables were obtained and, beginning with the work of Milman [157],
these quantitative bounds were extended onto much more general situations
and complicated functions.

The prevalence and strength of such bounds is a fascinating matter, being
referred to as the concentration of measure phenomenon, which in its basic form
has been neatly phrased by Michael Talagrand in his seminal work [192]:

a random variable that depends (in a “smooth” way) on the influence
of many independent variables (but not too much on any of them)
is essentially constant.

The objective of this PhD thesis is to investigate concentration of measure
inequalities and the interplay between various approaches that lead to them. In
particular, we will be interested in the following two contexts:

1. Concentration for dependent random variables.

2. Functional inequalities.

The first goal of this PhD thesis is to study the concentration of measure
phenomenon in the probabilistic and combinatorial setting. We will be analyz-
ing specific, mostly discrete, models of dependent random variables that arise
naturally in applications and deduce their concentration properties. We will
also be interested in formulating some sufficient conditions for specific types of
concentration (e.g., concentration for convex functions or polynomials) to hold
and show they are satisfied in some important situations, improving previously
known bounds.

The second goal of this PhD thesis is to investigate the abstract analytical
setting of functional inequalities. These can be often seen as a bridge between
the theory of convergence to stationarity of Markov processes and concentra-
tion properties of limiting distributions. In particular, we will be analyzing
the dependence between various types of functional inequalities, deriving their
characterization and investigating what concentration properties they yield.

1



CHAPTER 1. INTRODUCTION 2

1.2 Classical results
Since the 70s, the concentration of measure has been an active field of research,
which, in spite of being thoroughly examined [138, 84, 51], still sparks a lot
of attention, see, e.g., [170, 96, 40, 2, 101, 167]. Not only is it one of the
main areas of research of the contemporary probability theory but also finds
numerous applications in other branches of mathematics [60, 171, 49], as well
as in other fields such as statistics, computer science, statistical physics and
quantum mechanics to name only a few (cf. [198, 84, 159, 114]).

In principle, the investigation of concentration properties can be stated as a
problem of finding the best possible α : [0,∞)→ [0, 1] such that the deviation
bound

∀ t P(f(X)− E f(X) > t) ≤ α(t) (1.2.1)

holds for all f belonging to some class F and a given random element X. We
say informally that X has strong concentration properties if α decays rapidly
to 0 as t→∞ and F is possibly large.

In the classical and well studied cases, F is a class of regular functions (e.g.,
1-Lipschitz with respect to some metric) and X is a random vector satisfying
strong probabilistic or geometric conditions (e.g., independence of the coor-
dinates, uniform log-concavity). In such situations it is often easy to deduce
strong concentration properties of X using classical (Hoeffding, McDiarmid,
Bernstein etc.) bounds and criteria (e.g., Bakry-Emery approach). In appli-
cations however, these assumptions are often too restrictive. In particular, we
often wish to find concentration bounds in cases when either X is a vector of
dependent random variables (with no additional geometric assumptions), or the
class F is wider than the class of 1-Lipschitz functions and whence the need
to develop the theory beyond the classical scope. Sometimes, these objectives
altogether may not allow for any applicable concentration bounds and we have
to find some balance between them, e.g., imposing stronger assumptions on F
allows to relax the assumptions put on X.

For example, it was firstly observed by Talagrand [192] that the restriction
to the class of 1-Lipschitz and convex functions allows for weaker assumptions
on the vector X. Namely, it suffices for X to have uniformly bounded and
independent coordinates to imply the concentration bound (1.2.1) with α(t) =
Ce−ct2 for some C, c dependent on the upper bound on the coordinates of X but,
most notably, independent on the dimension n. As noted in [191], such a result
(with constant independent on the dimension) cannot hold for all 1-Lipschitz
functions even for the simple case of the uniform distribution on the hypercube
{−1, 1}n. In the last years, much attention has been directed towards studying
the dimension-free convex concentration, cf. [105, 185, 7, 149].

Obtaining concentration bounds (1.2.1) can be achieved via plethora of
methods. It is beyond the scope of this outline to mention all the approaches,
whence we sketch only some of them below.

Historically, the first proofs were geometric in nature. In [157] Milman
gave a new proof of Dvoretzky’s theorem which relies on Lévy’s isoperimetric
inequality. It is considered a starting point of the investigation of the concen-
tration of measure phenomenon. Soon after, Tsirelson and Sudakov [186] and
Borell [46] solved independently the isoperimetric problem for the Gaussian
measure (which implies the concentration for 1-Lipschitz functions of indepen-
dent Gaussian random variables).

Another metric approach is via the convex-hull approximation technique de-



CHAPTER 1. INTRODUCTION 3

veloped by Talagrand [192, 193, 189]. Some proofs of Talagrand were later sim-
plified by Marton [146, 147] who developed the optimal transportation method.
There’s also a wide family of martingale methods, based on the Azuma-type
inequality. These were developed firstly by Maurey [151] and then extended by
Schechtman [182] and McDiarmid [152]. Together with the method of exchange-
able pairs invented by Chatterjee [59], these techniques allow proving strong
concentration bounds in many non-trivial situations, see e.g. [84, 61, 167].

Bounds (1.2.1) can be also approached more analytically, by means of func-
tional inequalities such as, e.g., Poincaré’s inequality [9], log-Sobolev inequality
[108], Maurey’s infimum convolution inequality [151] and the p-variance inequal-
ities by Latała and Oleszkiewicz [136]. The approach via functional inequalities
also displays many deep connections to the theory of optimal transport (cf.
[165, 103, 7, 105, 102, 101, 104, 190]), making it a separate and dynamic area
of research.

In the following sections, we briefly provide background and outline of the
main results of this PhD thesis.

1.3 Functional inequalities

1.3.1 Background

A fruitful approach to concentration inequalities is the one relying on the semi-
group techniques and functional inequalities. Due to the wide range of their
applications, studying the relations between various forms of functional and
transportation inequalities is an important area of research in the theory of
concentration of measure.

Let L be a generator of some Markov process with invariant measure π,
and E(f, g) = −π(fLg) be its Dirichlet form (here π(f) denotes

∫
f dπ). The

functional inequalities we are interested in are of the two forms: the p-log-
Sobolev inequalities considered in [158] generalizing the log-Sobolev inequality
due to Gross [108],

Υp Entπ(f
p) ≤ p2

p−1
E(fp−1, f) for p ∈ R\{0, 1},

Υ1 Entπ(f) ≤ E(log f, f) for p = 1,

Υ0Var(log f) ≤ E(1/f, f) for p = 0,

(1.3.1)

where Υ > 0 and Entπ(f) = π(f log f)−π(f) log π(f) is the entropy functional,
and the family of Beckner inequalities introduced in [29, 42],

αp[π(f
p)− (π(f))p] ≤ p

2
E(fp−1, f) for p ∈ (1, 2]. (1.3.2)

In this nomenclature, the standard log-Sobolev inequality corresponds to the
2-log-Sobolev inequality (1.3.1) and the usual Poincaré inequality corresponds
to the Beckner inequality (1.3.2) with p = 2. Such inequalities in various
forms describe appropriate qualities of the Markov process and concentration
properties of the invariant distribution π and have been studied thoroughly in
the recent years [42, 136, 109, 99, 158, 114].

In presence of the abundance of different functional inequalities, a natural
question that arises is that of their hierarchy. For example, a classical observa-
tion [42, 109] is that if the Beckner inequality (1.3.2) is satisfied with αp ≥ ε for
each p ∈ (1, 2] and some ε > 0, then dividing it by p − 1 and taking the limit
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p→ 1+ yields the 1-log-Sobolev inequality (1.3.1) with Υ1 ≥ 2ε. On the other
hand, the reverse implication was established by Latała and Oleszkiewicz [136]
for diffusions (or, more generally, whenever the associated carré-du-champ op-
erator satisfies the chain rule). It is also natural to ask what happens in the
case of general processes (i.e., in the absence of the chain rule). In such case the
usual log-Sobolev inequality is much more restrictive than its modified version
– on infinite spaces it is strictly stronger, while on finite spaces it often holds
with much worse constants, which affects the concentration estimates.

Similarly, in [158] Mossel et al. have proven that if 0 ≤ q ≤ p ≤ 2 and the p-
log-Sobolev is satisfied with Υp > 0, then the q-log-Sobolev is also satisfied with
Υq ≥ Υp > 0, generalizing the previous results [22]. It is also known (cf. [158])
that this implication can be partially reversed. In particular, if 1+ε ≤ q ≤ p ≤ 2
and the q-log-Sobolev is satisfied with Υq > 0 then the p-log-Sobolev is also
satisfied with Υp ≥ c(ε)Υq. This result cannot be extended to the whole interval
[1, 2], since there are known examples of measures that satisfy the 1-log-Sobolev
and do not satisfy the p-log-Sobolev for any p > 1 (e.g., the Poisson distribution
mentioned previously [38]). The importance of such results lies in the fact that
they allow deducing reverse hypercontractive estimates, which is a main theme
of [158]. In light of the above, Mossel et al. have posed the following open
problem.

For which intervals I, there exist constant c(I) such that for all
r, s ∈ I, the r-log-Sobolev inequality with constant Υr implies the
s-log-Sobolev inequality with constant Υs ≥ c(I)Υr? A particular
choice of interest are intervals I ⊂ [0, 1].

1.3.2 Our contribution – Beckner inequalities

In Chapter 2, based on a joint work [6], we show that if the 1-log-Sobolev (1.3.1)
inequality is satisfied with Υ1 > 0, then each Beckner inequality (1.3.2) is
satisfied with αp ≥ Υ1/6. The importance of such a result stems from the
following observations:

• there are many examples of measures that satisfy 1-log-Sobolev inequal-
ity (1.3.1) which, together with our result, allows for deducing also Beck-
ner inequalities in these models (e.g., for zero-range processes, measures
satisfying the SCP, exponential graphs etc. [115, 114, 100, 42]);

• Beckner inequalities (1.3.2) provide a convenient setting for deriving mo-
ment estimates in the spirit of [9] and [49], which we have exploited in
the aforementioned work by deriving novel bounds. Such moment esti-
mates were originally often deduced from the usual log-Sobolev inequali-
ties, which in many cases of discrete distributions are satisfied with much
worse constants (cf. random transposition model [42]) or do not hold at all
(cf., e.g., birth and death process with invariant Poisson distribution [38]).

Building on that result, we obtain novel moment estimates in the following
cases.

1. In the continuous case, for Cauchy-type measures.

2. In the case of jump processes, for stationary measures of Glauber dynam-
ics, including the Ising model, exponential random graphs or hardcore
model.
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3. For the symmetric group as well as for empirical processes of sampling
without replacement.

4. On the hypercube, for measures satisfying the stochastic covering prop-
erty, strongly log-concave measures, and zero-range processes.

5. For the Poisson path space.

1.3.3 Our contribution – p-log-Sobolev inequalities

In Chapter 3, we answer the open problem of Mossel–Oleszkiewicz–Sen stated
above, regarding the relations between p-log-Sobolev inequalities. In particu-
lar, we show that for any interval I ⊂ (0, 1], there exist q, p ∈ I, q < p, and a
measure µ for which q-log Sobolev inequality holds, while p-log Sobolev inequal-
ity is violated. As a tool certain necessary and (distinct) sufficient conditions
characterizing those inequalities in the case of birth-death processes on N are
developed.

1.4 Dependent binary random variables

1.4.1 Background

Investigating families of dependent binary random variables is an important
problem from the point of view of computer science and combinatorics. A
wide and important class of such measures are the Rayleigh measures, i.e.,
measures satisfying the Rayleigh property, which is a way of measuring the
negative association of the coordinates. The examples of Rayleigh measures
are, e.g., vector of independent Bernoulli random variables conditioned on their
sum, determinantal measures, point processes or measures obtained by running
exclusion dynamics on the cube [170]. In the context of studying the measures
satisfying the Rayleigh property, Pemantle and Peres [170] have introduced a
more general notion of the stochastic covering property (abbrev. SCP).

Namely, for x, y ∈ Ω = {0, 1}n, we say that x covers y (x▷ y) if

x = y or ∃i≤n x = y + ei,

i.e., if x ̸= y then it can be obtained from y by increasing a single coordinate (ei
denotes the i-th unit vector of the standard basis in Rn). For random measures
µ, ν on Ω, we say that µ covers ν (µ▷ ν) if there is a coupling of µ, ν supported
on the set {(x, y) ∈ Ω2 : x▷ y}. Let X be a random vector taking values in Ω.
For a set I ⊆ [n] we write XI = (xi)i∈I . We say that X satisfies the SCP if

x ▷ y ⇒ ∀S ⊂ Ω L(XSc |XS = yS) ▷ L(XSc |XS = xS),

where L(X) denotes the distribution of the random variable X.
A measure on the hypercube is called k-homogenous if it is supported on

the set {x :
∑
xi = k }. The main result of [170] says that any k-homogenous

measure satisfying the SCP satisfies also the Gaussian concentration bound,
i.e.,

P(f > E f + t) ≤ exp(−ct2/k) (1.4.1)

for some universal constant c and all f being 1-Lipschitz with respect to the
Hamming distance dH(x, y) =

∑
i 1xi ̸=yi . This result was later extended by
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Hermon and Salez [114] who (using semigroup techniques), apart from retrieving
the original result by Pemantle and Peres, were able to remove the k-homogenity
assumption with k replaced by n/2 in (1.4.1).

Note that (1.4.1) fails to be optimal for some choices of f even in the case
of product measures. Namely, let εi be independent Rademacher random vari-
ables and f(x1, . . . , xn) =

∑
i aixi for some non-zero numbers ai. It is easily

verified that product measures satisfy the SCP and thus the result from [114]
implies P(f > E f + t) ≤ exp(−2ct2/n∥a∥2∞). On the other hand, the applica-
tion of classical Hoeffding’s inequality yields P(f > E f + t) ≤ exp(−c̃t2/∥a∥22)
which improves upon the previous bound whenever ∥a∥2 is much smaller than√
n∥a∥∞.

1.4.2 Our contribution

In Chapter 4, based on a joint work [5], we develop two types of results.
The first series of results concerns general measures satisfying the SCP

for which we refine the Azuma type martingale argument used by Peman-
tle and Peres [170] and generalize (1.4.1) to Lipschitz functions with respect
to more general weighted Hamming distances dα(x, y) =

∑
αi1xi ̸=yi obtain-

ing a bounded-difference type inequality. Next, we use the approach devel-
oped for the scalar case together with matrix bounded-difference inequality due
to Tropp [197] to get an analogous concentration for matrix-valued functions,
strengthening the results of Aoun et al. [16]. Under a stronger assumption
of the SRP we are also able to extend the Bernstein-type inequality of Kyng
and Song [131] from linear combinations with coefficients in nonnegative defi-
nite matrices to general functions satisfying a matrix bounded-difference type
assumptions.

The second line of research concerns the functional approach to improved
concentration inequalities. We develop an abstract condition based on a relation
between the constant in the modified log-Sobolev inequality and some quanti-
ties related to the generator of the associated Markov process and show that
this condition implies not only the bounded-difference type inequality but also
Talagrand’s convex distance inequality, matrix-Bernstein inequality and higher
order concentration for tetrahedral polynomials. While we are not able to prove
our condition holds for an arbitrary SCP measure, we show that this is the case
for the distribution of Bernoulli random variables conditioned on their sum
being equal to some constant, obtaining in particular all the aforementioned
concentration results. In particular, we extend the results of Bobkov–Tetali [42]
on uniform measures on the slices of the hypercube, which is partially motivated
by applications to statistics and geometry.

1.5 Sampling without replacement and Hoeffd-
ing statistics

1.5.1 Background

Consider a set of vectors X ⊂ Rn. Let I1, . . . , In be a uniform sample without
replacement and J1, . . . , Jn be a sample with replacement from the set [n]. For
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m ≤ n, define

Z = sup
x∈X

m∑
k=1

xIk , Z ′ = sup
x∈X

m∑
k=1

xJk

so that Z ′ can be considered a supremum of the empirical process in independent
random variables Jk. Tails of Z ′, in much greater generality, have been exten-
sively studied beginning with the works of Talagrand [193] and Ledoux [137],
see also, e.g., [30, 51].

When studying Z, it is often convenient to represent it as a supremum of
Hoeffding statistics over a family of matrices, i.e., functions of the form

n∑
k=1

akσ(k),

where (aij)
n
i,j=1 ∈ Rn×n is some real matrix. Concentration properties of Ho-

effding statists were studied in, e.g., [62, 30, 11].

1.5.2 Our contribution

In Chapter 5, based on the work [173], we prove a Bennett-type concentration
bound for Z, improving (in some situations) upon a corresponding bound [195],
where the authors consider the deviations of Z above EZ ′, which in some cases
can be order of magnitudes greater that EZ. A corresponding Bennett-type
inequality in the case of arbitrary Hoeffding statistics is also derived in [173],
providing the first result that captures both the subgaussian and Poisson behav-
iors of Hoeffding statistics. This in particular improves (up to the numerical
constants in the exponent) upon bounds by Chatterjee [62], Bercu–Deylon–
Rio [30] and Albert [11].

1.6 Dissertation structure
This PhD Thesis is organized as follows.

1. Chapter 2 is devoted to the modified log-Sobolev inequalities, Beckner
inequalities and moment estimates outlined in Section 1.3.2. The results
are based on a joint work [6].

2. Chapter 3 is devoted to relations between p-log-Sobolev inequalities and
a solution to Mossel–Oleszkiewicz–Sen problem outlined in Section 1.3.3.
The results are yet unpublished.

3. Chapter 4 is devoted to concentration inequalities for some negatively
dependent binary random variables outlined in Section 1.4.2. The results
are based on a joint work [5].

4. Chapter 5 is devoted to concentration bounds for sampling without re-
placement and Hoeffding statistics outlined in Section 1.5.2. The results
are based on [173].



Chapter 2

Beckner inequalities and moment
estimates

2.1 Introduction

2.1.1 Motivation and informal presentation

In the work [29] Beckner proposed a family of inequalities interpolating between
the Poincaré and log-Sobolev inequalities and showed that they held true in the
case of standard Gaussian measures. Their form was subsequently generalized
by Latała and Oleszkiewicz [136] who used them to obtain intermediate concen-
tration estimates between subexponential and subgaussian. See [51] for further
developments.

While initially studied mostly in the analytic setting, for diffusions on Rn or
on Riemannian manifolds, all the aforementioned inequalities have their coun-
terparts for general Markov semigroups, including those of Markov processes on
discrete spaces. They are however not unique, since due to the lack of the chain
rule, two forms of a single inequality, which are equivalent in the continuous
framework, may differ significantly in the general case.

In particular one distinguishes between the log-Sobolev inequality and a
weaker modified log-Sobolev inequality. Also, Beckner’s inequalities have two
formulations, one of them stronger than the other one. Before stating our results
in detail, let us briefly recall some of those inequalities. We will introduce the
remaining ones in Section 2.1.4. For now, we will be working in the setting of
Dirichlet forms and keep the presentation slightly informal. The general setting
of this chapter will be described more precisely in Section 2.1.2. Below (X ,B, µ)
is a probability space and Dom(E) ⊆ L2(X , µ) is a linear subspace on which a
Dirichlet form E is defined.

Recall that one says that µ and E satisfy the Poincaré inequality if there
exists a constant λ > 0 such that

λVarµ(f) ≤ E(f, f) (2.1.1)

for any f ∈ Dom(E), where Varµ(f) = µ(f 2)−µ(f)2 is the variance of f treated
as a random variable on the probability space (X ,B, µ) (recall that we use the
common notation µ(f) =

∫
X f dµ).

One says that the modified log-Sobolev inequality is satisfied if there exists
a constant ρ0 > 0 such that

ρ0 Entµ(f) ≤ E(f, log f) (2.1.2)

8



CHAPTER 2. BECKNER INEQUALITIES 9

for any nonnegative f ∈ Dom(E) such that log f ∈ Dom(E) (which corresponds
to the 1-log-Sobolev inequality (1.3.1) from Chapter 1).

Finally, recall that the Beckner inequality with parameter p ∈ (1, 2] holds if
there exists a constant αp > 0 such that

αp(µ(f
p)− µ(f)p) ≤ p

2
E(f, fp−1) (2.1.3)

for any nonnegative f ∈ Dom(E) such that fp−1 ∈ Dom(E).
While for each individual p the Beckner inequality (2.1.3) is equivalent to

the Poincaré inequality, from the point of view of the concentration of measure
theory the full strength of (2.1.3) is captured in the behavior of the constants
αp as p→ 1+.

In particular, it is a well known observation made by many authors that
the Beckner inequality (2.1.3) with αp separated from zero on the interval (1, 2]
implies the modified log-Sobolev inequality (2.1.2). Indeed, it is enough to
divide both sides of (2.1.3) by p − 1 and take lim inf as p → 1+ (see, e.g.,
[42, 109, 125]). However, somewhat surprisingly, the reverse implication is not
present in the literature and in fact there are quite a few works where Beckner’s
inequalities are proved or discussed separately from the modified log-Sobolev
inequality for the same models (see, e.g., [50, 47] and [42, 109, 125, 72, 201]).
This is in contrast with the continuous case in which the equivalence has been
obtained in [136] (for the Reader’s convenience we describe all the connections
between various inequalities in Section 2.1.4 below).

The main result of this chapter (the proof of which is presented in Sec-
tion 2.2) can be summarized as follows.

Theorem 2.1.1. The modified log-Sobolev inequality (2.1.2) holds with some
constant ρ0 > 0 if and only if the Beckner inequality (2.1.3) holds for every p ∈
(1, 2] with some αp bounded away from zero. Moreover, the optimal constants
with which they hold satisfy ρopt

0 (µ) = 2 limp→1+ α
opt
p (µ).

Apart from being important in its own right from the point of view of the
abstract theory of functional inequalities for Markov semigroups, the above re-
sult is motivated by applications to the theory of concentration of measure. The
classical Herbst’s argument allows for deducing deviation estimates for Lipschitz
(in an appropriate sense) functions from log-Sobolev inequalities. As proven by
Aida and Stroock [9] (see also [36] for the discrete case), the usual log-Sobolev
inequality due to Gross [108] (see Definition 2.1.3 below) implies certain mo-
ment estimates, which can be a starting point for obtaining concentration for
more general functions, in particular polynomials or more generally functions
with bounded derivatives of higher order. Such concentration results were ob-
tained in [8, 39, 3] in the continuous setting and subsequently in [99, 4] in the
discrete one (in particular for the Ising model). They have found numerous
applications in signal processing, statistics and computer science, where they
proved to be an important tool for deriving theoretical guarantees in particular
for compressed sensing type algorithms or for learning Ising models (see, e.g.,
[199, 75, 160, 155]). They are also useful in random graph theory, allowing
to obtain concentration inequalities for the subgraph count beyond the large
deviation regime or for models with dependencies [8, 100].

In the discrete case however, the usual log-Sobolev inequality is much more
restrictive than its modified version (2.1.2) – on infinite spaces it is strictly
stronger, while on finite spaces it often holds with much worse constants, which
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affects the concentration estimates. At the same time Beckner inequalities for
product distributions (treated as a special case of modified ϕ-Sobolev inequal-
ities) were used by Boucheron, Bousquet, Lugosi, and Massart [47] in order to
obtain moment estimates for functions of independent random variables which
generalize the classical Efron–Stein inequality for the variance. It turns out that
their argument can be adapted to the setting of general semigroups and beyond,
providing moment estimates of the same nature as those by Aida–Stroock but
under a weaker assumption of modified log-Sobolev inequality (2.1.2). This
allows to treat a variety of models and obtain Sobolev type inequalities with
various types of gradients. We remark that even though in certain situations it
is possible to recover Beckner type inequalities by an appropriate modification
of known arguments leading to modified log-Sobolev inequalities, there are cases
in which such a modification of proofs does not seem straightforward at least at
present. Examples include recent techniques based on approximate tensoriza-
tion of entropy or entropic independence [149, 99, 178, 74, 71, 12, 34], discussed
briefly in Sections 2.4.3 and 2.4.5.

Since the precise formulation of the general moment inequalities requires an
introduction of some additional notation, we postpone it to Section 2.3 (see
Propositions 2.3.1 and 2.3.3). Here let us just mention some of their appli-
cations, which we present in Sections 2.4 and 2.5. In the continuous case we
derive Lr-Poincaré inequalities with optimal growth of constants as r →∞ for
measures satisfying the Beckner–Latała–Oleszkiewicz inequality. We also ob-
tain new inequalities for Cauchy-type measures (Section 2.4.1). In the case of
jump processes, we obtain moment bounds with discrete gradients. In particu-
lar, we obtain estimates for stationary measures of Glauber dynamics, including
the Ising model, exponential random graphs or hardcore model (Section 2.4.3).
They can be used to derive higher order concentration inequalities, which when
specialized to polynomials improve the results from [4, 100] (Section 2.5). For
the symmetric group we generalize moment estimates obtained by Chatter-
jee for Hoeffding statistics [62] to general functions (Section 2.4.4). We apply
them to empirical processes of sampling without replacement, improving recent
results due to Tolstikhin, Zhivotovskiy, and Blanchard [195]. Building on re-
cent work of Hermon and Salez [115, 114] and Cryan et al. [74] we also obtain
Beckner inequalities and moment estimates for measures satisfying the stochas-
tic covering property, strongly log-concave measures, and zero-range processes
(Section 2.4.5). In Section 2.4.6 we obtain moment estimates for the Poisson
path space. We remark that even though concentration of measure and func-
tional inequalities for the Poisson space have been an object of intensive studies
(to mention [15, 202, 57, 18, 19, 20, 175, 106]), to the best of our knowledge
we are the first to prove moment estimates for the Poisson space providing sub-
gaussian growth of moments1. Various inequalities with subexponential growth
of moments were considered by Houdré and Privault in [119, 120].

2.1.2 General setting

Let (X ,B, µ) be a probability space and consider a symmetric non-negative
definite bilinear form E : Dom(E) × Dom(E) → R, where Dom(E) is a linear
subspace of the space of B-measurable functions L0(X , µ).

We will consider the following abstract assumption on E .
1It is worth mentioning that soon after our results were announced, moment estimates

analogous to ours were obtained by Gusakova–Sambale–Thäle [111].
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Assumption 1. If φ : R → R is a contraction and f ∈ Dom(E), then also
φ◦f ∈ Dom(E). Moreover, for any f1, f2, g1, g2 ∈ Dom(E) if we have a pointwise
inequality

(f1(x)− f1(y))(f2(x)− f2(y)) ≤ (g1(x)− g1(y))(g2(x)− g2(y)) (2.1.4)

for all x, y ∈ X , then

E(f1, f2) ≤ E(g1, g2). (2.1.5)

Remark 2.1.2. Let us provide some basic consequences of Assumption 1, which
we are going to use. First, if f ∈ Dom(E) and φ : R→ R is a contraction, then

E(φ(f), φ(f)) ≤ E(f, f). (2.1.6)

Another consequence is the equality

E(f, c) = 0

for any constant c ∈ R. Finally, if φ : R → R is non-decreasing and f, φ ◦ f ∈
Dom(E), then

E(f, φ ◦ f) ≥ 0.

Assumption 1 is satisfied in particular if E is a Dirichlet form of a reversible
Markov semigroup (for completeness of the exposition we recall basic properties
of Dirichlet forms in the Appendix A.3). This is one of the main motivations
for our investigations, however we prefer not to restrict to this specific setting,
since in applications to concentration of measure and moment inequalities one
may encounter quadratic forms which do not correspond to Markov semigroups.
For instance, it may happen that the functional inequalities of interest are
in fact valid for a larger class of functions than the domain of the Dirichlet
form associated with some µ-reversible Markov process or that the quadratic
form appearing on the right-hand side does not correspond to a Dirichlet form,
while it still satisfies Assumption 1 and the available functional inequalities
are meaningful from the concentration of measure point of view. In addition,
Assumption 1 will allow us to avoid unnecessary discussion of domains and help
us state our main results in a more concise way.

In our examples with E one will often associate a subspace A ⊆ L0(X , µ)
and a symmetric bilinear function Γ: A×A → L0(X , µ) such that Γ(f, f) ≥ 0
and for f, g ∈ A ∩Dom(E),

E(f, g) =
∫
X
Γ(f, g)dµ. (2.1.7)

In what follows we will write Γ(f) for Γ(f, f).
In the Markovian setting Γ will be the carré du champ operator defined as

Γ(f, g) =
1

2

(
L(fg)− gLf − fLg

)
, (2.1.8)

where L is a generator of a reversible Markov semigroup on L2(X , µ) with
domain Dom(L). In this case Γ is first defined on a suitable algebra of functions
A0 ⊆ Dom(L) and then extended to a larger algebra A. We refer to the
monograph [21] for a very detailed description of the relations between the
domain of the infinitesimal generator, the domain of the Dirichlet form, and
the algebra A.
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2.1.3 Examples

We will now provide several concrete examples covered by the setting described
above. We remark that even though our setting is not the same as in [109] the
exposition below parallels to some extent the one from this article.

As a first example let us take a diffusion (Xt)t≥0 on X = Rn, with the
infinitesimal generator L given by

Lf(x) =
n∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂f(x)

∂xi
,

a = σσT , where σ is a smooth, locally bounded function from Rn to the space of
n× d matrices and b : Rn → Rn is a smooth function. In this case A = C∞(Rd)
is the set of all smooth functions and

Γ(f, g) =
n∑

i,j=1

aij
∂f

∂xi

∂g

∂xj
.

In order to make this class of processes fit into our setting, we need to assume
that (Xt)t≥0 has an invariant probability measure µ, in which case one defines

E(f, g) =
∫
X

n∑
i,j=1

aij
∂f

∂xi

∂g

∂xj
µ(dx)

for f, g ∈ A0 – the space of smooth compactly supported functions, and then
extends this to an appropriate domain, which is the completion of A0 with
respect to the norm ∥f∥ =

√
µ(f 2) + E(f, f). The assumption concerning the

existence of µ is satisfied, e.g., if a is the identity matrix and b = −∇V for some
function V : R → R such that e−V is integrable. One can then show that the
normalized measure µ(dx) = 1

Z
e−V (x)dx is an invariant measure of the process.

One can also consider more general diffusions on Riemannian manifolds. At this
point we should stress that this class of examples satisfies the chain rule and as
a consequence many functional inequalities become equivalent, even though in
the general situation they are not. For this reason, this class will not be in our
focus in the subsequent part of this chapter, even though we will state some
Sobolev type estimates which to our best knowledge are new also in this setting
(see Section 2.4.1).

Another particular case of the operator Γ, which will become for us an
important source of examples, is given by

Γ(f, g)(x) =
1

2

∫
X
(f(y)− f(x))(g(y)− g(x))Qx(dy), (2.1.9)

where x 7→ Qx is a map from X to the set of positive measures on X such that
for all A ∈ B, x 7→ Qx(A) is measurable and Qx, µ satisfy the following detailed
balance condition:

Qx(dy)µ(dx) = Qy(dx)µ(dy).
2 (2.1.10)

2We treat both hand sides of this condition as measures on the product X × X . In
particular, we assume that for B ∈ B ⊗ B, the mapping x 7→ Qx(Bx) (where Bx is the
appropriate slice of B) is measurable. Such situation occurs in particular when Qx(X ) <∞
or when Qx can be approximated by some kernels Qn

x such that Qn
x(X ) <∞.
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The bilinear form Γ is well-defined on A×A, where

A =
{
f ∈ L0(X , µ) :

∫
X
(f(y)− f(x))2Qx(dy) <∞ µ-a.s.

}
.

In this case

E(f, g) = 1

2

∫
X

∫
X
(f(y)− f(x))(g(y)− g(x))Qx(dy)µ(dx) (2.1.11)

with Dom(E) = {f ∈ L0(X , µ) :
∫
X

∫
X (f(y) − f(x))

2Qx(dy)µ(dx) < ∞}. It is
straightforward to check that in this case Assumption 1 is satisfied. Moreover,
by the detailed balance condition (2.1.10) we can further write

E(f, g) =
∫
X

∫
X
(f(x)− f(y))+(g(x)− g(y))Qx(dy)µ(dx) (2.1.12)

and

E(f, f) =
∫
X

∫
X
(f(x)− f(y))2+Qx(dy)µ(dx) =

∫
X
Γ+(f)dµ, (2.1.13)

where

Γ+(f)(x) =

∫
X
(f(x)− f(y))2+Qx(dy). (2.1.14)

We remark that in many applications to concentration of measure, passing from
Γ to Γ+ is essential, since the latter can be often effectively bounded, especially
under certain convexity or monotonicity assumptions on the function f .

The case when X is countable and Qx(X ) < ∞ for all x ∈ X , corresponds
to the Markov jump process with generator

Lf(x) =

∫
X
(f(y)− f(x))Qx(dy).

We will however see that examples of this nature appear also in spaces which
are not necessarily discrete, e.g., on the Poisson space and for general product
spaces endowed with Glauber type dynamics.

2.1.4 Functional inequalities

Let us now introduce more precisely the functional inequalities we will investi-
gate. In addition to restating the definitions of Poincaré, modified log-Sobolev,
and the Beckner inequalities in the abstract setting described in Section 2.1.2,
we will introduce the usual log-Sobolev inequality and Beckner inequality in its
original version from [29].

Definition 2.1.3. Let E be a symmetric, nonnegative definite bilinear form on
Dom(E)×Dom(E), where Dom(E) is a linear subspace of L0(X , µ). We will say
that:

(i) the Poincaré inequality is satisfied if there exists a constant λ > 0 such
that

λVarµ(f) ≤ E(f, f) (P)

for any f ∈ Dom(E);
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(ii) the modified log-Sobolev inequality is satisfied if there exists a constant
ρ0 > 0 such that

ρ0 Entµ(f) ≤ E(f, log f) (mLSI)

for any nonnegative f ∈ Dom(E) such that log f ∈ Dom(E);
(iii) Beckner’s inequality (Bec-p) with parameter p ∈ (1, 2] holds if there

exists a constant αp > 0 such that

αp(µ(f
p)− µ(f)p) ≤ p

2
E(f, fp−1) (Bec-p)

for any nonnegative f ∈ Dom(E) such that fp−1 ∈ Dom(E);
(iv) the log-Sobolev inequality is satisfied if there exists a constant ρ1 > 0

such that
ρ1 Entµ(g

2) ≤ E(g, g) (LSI)

for any g ∈ Dom(E);
(v) dual Beckner’s inequality (Bec’-q) with parameter q ∈ [1, 2) holds if

there exists a constant βq > 0 such that

βq(µ(g
2)− µ(gq)2/q) ≤ (2− q)E(g, g) (Bec’-q)

for any nonnegative g ∈ Dom(E).

Remark 2.1.4. Since we only assume that Dom(E) ⊆ L0(X , µ), the inequalities
introduced above assert in particular that the left-hand sides are well-defined.
In general estimates of the form A ≤ B in this chapter should be understood
as: if B <∞, then A is well-defined and the inequality holds.
Remark 2.1.5. We note that Beckner [29] originally considered the inequal-
ity (Bec’-q) and that both (Bec-p) and (Bec’-q) are referred to in the litera-
ture as Beckner’s inequalities. In this chapter we will be primarily interested
in (Bec-p), however occasionally we will also refer to (Bec’-q). To avoid possible
confusion we call the latter inequality “the dual Beckner inequality”. We refer
the Reader to [57] (see the remark after inequality (2.15) therein) for explana-
tion on how in the smooth setting one can formally regard (Bec’-q) as a dual
version of the Sobolev inequality.

If E is a Dirichlet form corresponding to a diffusion, then by a substitution
f = g2 and by the chain rule one can easily see that the modified log-Sobolev
inequality (mLSI) and the log-Sobolev inequality (LSI) are equivalent. Simi-
larly, Beckner’s inequality (Bec-p) for given p is equivalent to dual Beckner’s
inequality (Bec’-q) for q = 2/p (one substitutes fp = g2).

In general however there is no such equivalence. It remains true that the
Poincaré inequality is implied by each of the other inequalities. Other known
relations between them are presented in Figure 2.1. Below we briefly comment
on each of the implications. Since usually they are proved in the literature in a
particular context, not necessarily agreeing with our setting, in Appendix A.2
we also provide their proofs (being simple adjustments of the arguments known
from the literature). In the next section we will prove the remaining implication,
between (mLSI) and (Bec-p), in particular proving Theorem 2.1.1.

The implication (LSI) =⇒ (mLSI) with ρ0 ≥ 4ρ1 was obtained by Bobkov
and Tetali in [42]. The reverse implication is not true in general: if µ = Poiss(λ),
and one considers

E(f, g) =
∑
n≥0

(f(n+ 1)− f(n))2µ({n})
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Beckner (Bec-p)
with inf αp > 0

dual Beckner (Bec’-q)
with inf βq > 0

modified log-Sobolev (mLSI) log-Sobolev (LSI)

with ρ0≥2 lim supp→1 αp

\
with αp≥βq , p=2/q

with ρ1≥ 1
2
lim supq→2 βq

\
with ρ0≥4ρ1

with βq≥qρ1

Figure 2.1: Arrows denote known implications.

corresponding to the birth and death Markov process with generator Lf(n) =
f(n+1)− f(n)+λ−1n(f(n− 1)− f(n)), then the log-Sobolev inequality (LSI)
does not hold (see [38]), while the modified log-Sobolev inequality (mLSI) is
satisfied (see [77]).

As observed in the original article [29] by Beckner, if (Bec’-q) holds for every
q ∈ [1, 2) with βq bounded away from zero, then the log-Sobolev inequality (LSI)
holds as well with ρ1 ≥ 1

2
lim supq→2− βq. The reverse implication can be found

in [136].
The implication (Bec’-q) =⇒ (Bec-p) with αp ≥ βq (where p = 2/q) seems

to be a part of folklore (we have not been able to find an explicit statement in
the literature). It can be easily proved using arguments used of our knowledge
for the first time in [81] (see Appendix A.2 for details). The reverse implication
also holds, but in this case one gets βq ≥ q(2 − q)αp, so the dependence on
constants degenerates when q → 2. Such a degeneration indeed takes place, as
the Poisson measure satisfies (Bec-p) with αp separated from zero (which can
be easily proved by known results on the two point space [42] together with
tensorization and Poisson limit theorem, similarly as it was done in [77] for
the modified log-Sobolev inequality), whereas it cannot satisfy (Bec’-q) with βq
separated from zero, since this would imply (LSI), which as already mentioned
fails for the Poisson measure.

The observation that if (Bec-p) holds for every p ∈ (1, 2] with αp bounded
away from zero, then the modified log-Sobolev inequality (mLSI) holds with
ρ0 ≥ 2 lim supp→1+ αp can be found, e.g., in [42] or [109] (to see this divide both
sides of (Bec-p) by p− 1 and take p→ 1+).

One can thus see that to complete the above diagram one should verify
whether (mLSI) =⇒ (Bec-p) with infp∈(1,2] αp > 0. We will establish this
implication in the following section.

2.2 From modified log-Sobolev to Beckner’s in-
equalities

2.2.1 Main result

Throughout this section we assume that we are in the setting described in
Section 2.1.2, in particular that Assumption 1 holds. The next theorem contains
the precise statement of the result announced above, in Theorem 2.1.1.

Theorem 2.2.1. Let µ be a probability measure which satisfies the modified log-
Sobolev inequality (mLSI) with constant ρ0 > 0. For p ∈ (1, 2] and θ ∈ (0, 1)
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denote

k(p, θ) :=
(
1−

2
(
(1 + θ)p − 1

)
p(p− 1)(1− θ)2

)
· θp−1

ep−1(1 + θ)p−1
,

Kp := max
{
(1− 1/p);

p

2
· sup
θ∈(0,1)

k(p, θ)
}
.

Then, for any p ∈ (1, 2], µ satisfies the Beckner inequality (Bec-p) with constant
αp ≥ Kpρ0.

Moreover, limp→1+ Kp = limp→2− Kp = 1/2 and infp∈(1,2]Kp ≥ 0.17. In
particular αp ≥ ρ0/6.

Note that this result is sharp in the most interesting regime, p→ 1+, since if
the Beckner inequality (Bec-p) holds with some constants αp, then the modified
log-Sobolev inequality (mLSI) holds with ρ0 ≥ 2 lim supp→1+ αp. Combining this
observation and the above theorem yields immediately the following corollary,
which in particular implies Theorem 2.1.1 from Section 2.1.

Corollary 2.2.2. The modified log-Sobolev inequality (mLSI) holds with some
constant ρ0 > 0 if and only if the Beckner inequality (Bec-p) holds for every p ∈
(1, 2] with some αp bounded away from zero. Moreover, the optimal constants
with which they hold satisfy ρopt

0 (µ) = 2 limp→1+ α
opt
p (µ).

2.2.2 Auxiliary lemmas

In this section we gather technical lemmas to be used in the proof of Theo-
rem 2.2.1.

Since we work in the abstract setting described in Section 2.1.2, we need
the following lemma which asserts that it suffices to check the validity of the
inequality (Bec-p) for bounded functions only. Its proof, as well as proofs of
some other auxiliary lemmas, is deferred to Appendix A.1.

Lemma 2.2.3. If for some p ∈ (1, 2] the Beckner inequality (Bec-p) is satisfied
(with some constant αp > 0) for all bounded nonnegative functions f such that
f, fp−1 ∈ Dom(E), then it is satisfied with the same constant for all nonnegative
functions f such that f, fp−1 ∈ Dom(E). In particular, for all such functions
µ(fp) <∞.

We will also need the following two well-known lemmas.

Lemma 2.2.4 ([51, Lemma 14.4]). For any nonnegative f ∈ Lp(X , µ) and
p ∈ (1, 2]

µ(fp)− µ(f)p ≤ Covµ(f, f
p−1).

Lemma 2.2.5 ([81, Lemma 2.6]). For p ∈ (1, 2], a, b, > 0,

(a− b)(ap−1 − bp−1) ≤ (ap/2 − bp/2)2 ≤ p2

4(p− 1)
(a− b)(ap−1 − bp−1).

Another point-wise inequality to be used in the proof of Theorem 2.2.1 is
given in the next lemma.

Lemma 2.2.6. If a, b ≥ e, then for all p ≥ 1,

(ap − bp)(log a− log b) ≤ (a− b)(ap−1 log a− bp−1 log b) .
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Proof. The inequality is equivalent to ab(ap−1 − bp−1)( log a
a
− log b

b
) ≤ 0, which

follows since the function log x
x

is decreasing for x ≥ e.

The last lemma we need is a simple fact concerning differentiability of the
bilinear form. To verify that it holds just under Assumption 1 we provide its
complete proof in Appendix A.1.

Lemma 2.2.7. Let s ≥ 1. Assume that f ∈ Dom(E) is bounded and satisfies
0 < inf f . Then v(s) = E(f, f s−1) is well-defined, differentiable for s ∈ (1,∞),
right-differentiable at s = 1 and its derivative is given by the (also well-defined)
formula v′(s) = E(f, f s−1 log f) for s ∈ [1,∞).

2.2.3 Proof of Theorem 2.2.1

Let us start with a simple proposition, which allows to deduce Beckner’s inequal-
ity (Bec-p) from the modified log-Sobolev inequality (mLSI) with constant αp

degenerating as p→ 1+.

Proposition 2.2.8. If µ satisfies the Poincaré (P) inequality, then for all
p ∈ (1, 2] it satisfies Beckner’s inequality (Bec-p) with constants satisfying the
relation

αp ≥ 2
p− 1

p
λ.

In particular, if the modified log-Sobolev inequality (mLSI) holds, then αp ≥
p−1
p
ρ0.

Proof of Proposition 2.2.8. Fix p ∈ (1, 2] and take any nonnegative f such that
f, fp−1 ∈ Dom(E). By Lemma 2.2.3 we may and do assume that f is bounded so
that all the expressions below are well-defined. By Assumption 1, the Lipschitz
property of the mapping xp−1 7→ xp/2 on the set [0, sup f ] implies that fp/2 ∈
Dom(E). We have Covµ(f, g) =

1
2

∫
X

∫
X (f(x) − f(y))(g(x) − g(y))µ(dx)µ(dy).

Using Lemma 2.2.4, Lemma 2.2.5 and the Poincaré inequality (P) we see that

λ(µ(fp)− µ(f)p) ≤ λCovµ(f, f
p−1) ≤ λCovµ(f

p/2, fp/2) ≤ E(fp/2, fp/2).

By Assumption 1 and another application of Lemma 2.2.5 we conclude that

λ(µ(fp)− µ(f)p) ≤ p2

4(p− 1)
E(f, fp−1),

which ends the proof. The second part follows from the fact that the modified
log-Sobolev inequality (mLSI) implies the Poincaré inequality (P), see Propo-
sition A.2.5 in the Appendix A.2.

To handle the case of p→ 1+, we will need the following proposition.

Proposition 2.2.9. Suppose that the modified log-Sobolev inequality (mLSI)
holds with some constant ρ0 > 0. Then for any p ∈ (1, 2] and any bounded
f ∈ Dom(E) such that inf f > 0,

ρ0(µ(f
p)− µ(f)p) ≤

(
e
µ(f)

inf f

)p−1

E(f, fp−1).
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Proof. Fix any p ∈ (1, 2] and any bounded f ∈ Dom(E) satisfying inf f > 0.
By homogeneity, we may and do assume that inf f = e.

For s ∈ [1, p], let u(s) := µ(f s)−µ(f)s and v(s) := E(f, f s−1). For s ∈ (1, p),
Lemma 2.2.7 implies that v(s) and v′(s) = E(f, f s−1 log f) are well-defined.
Recall the variational formula for the entropy

Entµ(g) = sup
h∈U

µ(gh),

where U is the family of all measurable functions h : X → R, such that µ(eh) = 1
(see, e.g., [51, Theorem 4.13]).

Using this formula with g = f s and h = log f
µ(f)

, we obtain

u′(s) = µ(f s log f
µ(f)

) + log(µ(f))u(s) ≤ Ent(f s) + log(µ(f))u(s).

Hence, by the modified log-Sobolev inequality (mLSI) and Lemma 2.2.6 com-
bined with Assumption 1,

ρ0
(
u′(s)− log(µ(f))u(s)

)
≤ ρ0 Ent(f

s) ≤ sE(f s, log f)

≤ sE(f, f s−1 log f) = sv′(s).

Consequently, since sµ(f)1−s ≤ se1−s ≤ 1, we arrive at

ρ0
(
u(s)µ(f)1−s

)′
= ρ0µ(f)

1−s
(
u′(s)− log(µ(f))u(s)

)
≤ sµ(f)1−sv′(s) ≤ v′(s).

Integrating both sides over the interval [1, p] yields the result (recall that inf f =
e).

Having Propositions 2.2.8 and 2.2.9 we can turn to the proof of the main
result.

Proof of Theorem 2.2.1. Fix any p ∈ (1, 2] and take any bounded nonnegative
function f such that f, fp−1 ∈ Dom(E). For θ ∈ (0, 1) denote g = max(f, θµ(f))
and Pθ = P(f < θµ(f)). Then µ(fp) ≤ µ(gp) and, since µ(g) ≤ (1 + θPθ)µ(f)
and x 7→ (1 + θx)p is convex for x ∈ [0, 1],

µ(fp)− µ(f)p ≤ µ(gp)− µ(g)p + µ(f)p
(
(1 + θPθ)

p − 1
)

≤ µ(gp)− µ(g)p + µ(f)pPθ

(
(1 + θ)p − 1

)
.

(2.2.1)

Clearly µ(g)/ inf g ≤ (1 + θ)/θ, therefore Proposition 2.2.9 implies that

ρ0(µ(g
p)− µ(g)p) ≤

(
e1+θ

θ

)p−1 E(g, gp−1) ≤
(
e1+θ

θ

)p−1 E(f, fp−1), (2.2.2)

where we also used the fact that x 7→ max(x, a) is a contraction and Assump-
tion 1. Combining (2.2.1) and (2.2.2) yields a defective Beckner inequality:

ρ0(µ(f
p)− µ(f)p) ≤ ρ0µ(f)

pPθ

(
(1 + θ)p − 1

)
+
(
e1+θ

θ

)p−1 E(f, fp−1). (2.2.3)

It remains to deal with the first summand on the right-hand side
By Taylor’s expansion around µ(f) with the integral form of the remainder

(and since p ≤ 2)

µ(fp)− µ(f)p = p(p− 1)µ
(∫ f

µ(f)

up−2(f − u) du
)

≥ p(p− 1)µ
(
1{f<µ(f)}

∫ µ(f)

f

up−2(u− f) du
)

≥ p(p− 1)

2
µ(f)p−2µ

(
(µ(f)− f)2+

)
,
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while by Chebyshev’s inequality

Pθ = P
(
(1− θ)µ(f) < (µ(f)− f)+

)
≤
µ
(
(µ(f)− f)2+

)
(1− θ)2(µ(f))2

,

whence
Pθµ(f)

p ≤ 2(µ(fp)− µ(f)p)
p(p− 1)(1− θ)2

.

Plugging the above estimate into (2.2.3) and optimizing over θ ∈ (0, 1) yields
Beckner’s inequality (Bec-p) with

αp ≥ ρ0 ·
p

2
· sup
θ∈(0,1)

k(p, θ),

where we recall that

k(p, θ) =
(
1−

2
(
(1 + θ)p − 1

)
p(p− 1)(1− θ)2

)
· θp−1

ep−1(1 + θ)p−1
.

The extension to not necessarily bounded functions follows by Lemma 2.2.3.
Of course, for some values of p ∈ (1, 2] the bound αp ≥ (1− 1/p)ρ0 provided

by Proposition 2.2.8 may be better. We shall now compare both expressions to
get some more explicit estimates on the multiplicative factor

Kp = max{1− 1/p; p/2 · sup
θ∈(0,1)

k(p, θ)}.

It is easy to see that limp→2− Kp = 1/2. Since limp→1+ k(p, (p−1)2) = 1 and
obviously k(p, θ) ≤ 1, we conclude that limp→1+ Kp = 1/2.

Moreover, one can check that

Kp ≥ max{1− 1/p; p/2 · k(p, 0.25 · (1− p)2)} ≥ 0.17. (2.2.4)

This ends the proof of the theorem.

Remark 2.2.10. Note that the numerical bound (2.2.4) cannot be substantially
improved if we want it to hold for all p ∈ (1, 2]. Indeed, we have

K6/5 ≤ 0.18.

Identification of the best constants Kopt
p such that αp ≥ Kopt

p ρ0 seems to be an
interesting open question.

2.3 Moment estimates
In this section we revisit the arguments by Boucheron et al. [51, Theorem 15.5]
and present them in the context of general Beckner inequalities. We derive mo-
ment inequalities, which are valid in particular under the assumption of modified
log-Sobolev inequality. These moment estimates will lie at the core of the ap-
plications presented in subsequent sections. In this section we still work with a
probability space (X ,B, µ). Accordingly, all the moments of functions/random
variables are calculated with respect to the measure µ, i.e., for g : X → R, we
set ∥g∥r = (µ(|g|r))1/r.
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Proposition 2.3.1. Assume that Γ+ is defined, as in (2.1.14), via some kernel
Qx satisfying the detailed-balance condition (2.1.10). Let E be given by (2.1.11)
and assume that for some a > 0, s ≥ 0 and all p ∈ (1, 2] the Beckner inequal-
ity (Bec-p) is satisfied with constant αp ≥ a(p−1)s. Then for every measurable
f : X → R and r ≥ 2,

∥(f − µ(f))+∥2r ≤ (1− 2−(s+1))
rs+1

a
κ(s)∥Γ+(f)∥r/2, (2.3.1)

∥(µ(f)− f)+∥2r ≤ (1− 2−(s+1))
rs+1

a
κ(s)∥Γ+(−f)∥r/2, (2.3.2)

where κ(s) = (1− e−(s+1)/2)−1.

The case of s = 0 corresponds via Theorem 2.2.1 to the modified log-Sobolev
inequality (mLSI), while the case s = 1 via Proposition 2.2.8 to the Poincaré
inequality. In fact, if the inequality (Bec-p) holds for some p ∈ (1, 2], then
also the Poincaré inequality holds (see Proposition A.2.6), whence one can find
a > 0, such that (Bec-p) holds for all p ∈ (1, 2] with αp ≥ a(p− 1). Thus, the
interesting range of the parameter s in the above proposition is [0, 1].

In most applications that we have in mind, Γ will be indeed defined by some
kernel. However, similar estimates may be derived also in a more abstract set-
ting, encompassing in particular general reversible Markov semigroups. In Sec-
tion 2.4.1 we will use such a statement to present certain weighted Lp Poincaré
inequalities. In line with our general approach of writing the inequalities in an
abstract form, under structural assumptions, we will formulate the next result
in terms of the following additional assumption.

Assumption 2.

• For any bounded f ∈ A, any c ∈ R, and any γ > 1, t ≥ 1,

E(|f + c|γ, |f + c|) ≤ 2γ
∥∥|f + c|γ−1

∥∥
t

t−1

∥∥Γ(f)∥∥
t
. (2.3.3)

• For any f ∈ A there exists a sequence fn of bounded elements of A, such
that fn → f and Γ(fn) ≤ Γ(f) µ-a.s.

Remark 2.3.2. The first part of the above assumption is satisfied in particular
if A is any algebra contained in the domain of the infinitesimal operator L of a
Markov semigroup reversible with respect to µ. The second part may depend
on the choice of A, however in most cases in the theory of Dirichlet forms one
chooses A which is stable under composition with smooth bounded Lipschitz
functions, which allows for appropriate truncations, implying the second part
(see, e.g., Definition 3.3.1 of the extended algebra A in the monograph [21]). We
provide derivation of both parts of Assumption 2 in this standard Markovian
setting in Proposition A.3.2 in the Appendix A.3.

Let us also note that Γ satisfying (2.1.7) is not unique even if E is a Dirichlet
form corresponding to a Markov process, e.g., one may consider Γ which is not
the carré du champ operator corresponding to a Markov process for which µ
is the invariant measure, but for instance to a Markov process reversible with
respect to some other measure of reference, while (2.1.7) still holds. Examples
of this kind can be found, e.g., in [28], where the authors consider log-Sobolev
inequalities for the Ising model as well as quenched log-Sobolev inequalities for
the Sherrington–Kirkpatrick model and the Dirichlet form is written in terms
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of Γ being the carré du champ operator for the Glauber dynamics induced by
the product measure on the cube (see [85] for a comparison of the Dirichlet
form used in [28] with the one induced by the usual Glauber dynamics). In
such situations in order to use Assumption 2 one needs to pass to the carré du
champ operator related to µ (see also the discussion in [21, p. 121]).

Proposition 2.3.3. Let E : Dom(E)× Dom(E)→ R be a nonnegative definite
symmetric bilinear form and let Γ: A×A → L0(X , µ), where A ⊆ Dom(E) is
a linear subspace, be a bilinear form related to E by (2.1.7). If Assumptions 1
and 2 are satisfied and for all p ∈ (1, 2] the Beckner inequality (Bec-p) holds
with αp ≥ a(p− 1)s for some a > 0, s ≥ 0, then for all f ∈ A and r ≥ 2,

∥f − µ(f)∥2r ≤
rs+1κ(s)

a
∥Γ(f)∥r/2, (2.3.4)

where κ(s) is as in Proposition 2.3.1.

Remark 2.3.4. We remark that the inequalities of Propositions 2.3.1 and 2.3.3
should be again understood in the following sense: if the right-hand side is fi-
nite, then the left-hand side is well-defined and the inequality holds. Let us also
mention that the inequalities of Proposition 2.3.3 can be extended beyond the
space A, if one replaces the right-hand side via a family of norms extending
the moments of

√
Γ(f) and defined by appropriate duality. We will not pursue

this direction and refer to the article [9] by Aida–Stroock where similar mo-
ment estimates were proved under the stronger assumption of the log-Sobolev
inequality (LSI). The inequalities derived by Aida–Stroock from (LSI), in our
setting read as

||f − µ(f)∥2r ≤ ρ−1
1 (r − 3/2)∥Γ(f)∥r/2. (2.3.5)

We note that the derivation of moment estimates from the log-Sobolev in-
equality by Aida and Stroock is based on computing the derivative of ∥f∥2t with
respect to t ∈ [2, r], and identification of a part corresponding to Ent |f |t, which
can be estimated via (LSI). Such an estimation allows for convenient cancella-
tions and yields a uniform bound on the derivative on the interval [2, r]. This
approach has been subsequently used, e.g., in [41, 8, 3] in the context of weighted
log-Sobolev inequalities or various modified log-Sobolev inequalities on Rn (of
different nature than (mLSI)). It does not seem however that this approach can
work with (mLSI). Theorem 2.2.1 allows passing from (mLSI) to (Bec-p) and
use the argument introduced by Boucheron, Bousquet, Lugosi, and Massart for
product measures. In particular, we derive the following improvement (up to
numerical constant) over (2.3.5),

||f − µ(f)∥2r ≤ ρ−1
0 · 6rκ(0)∥Γ(f)∥r/2,

where κ(0) = (1− e−1/2)−1.
It is also known (see, e.g., Proposition 2.5 in [156] for the proof in the case

Γ(f) = |∇f |2), that the Poincaré inequality implies moment estimates of the
form

∥f − µ(f)∥2r ≤
C

λ
r2∥Γ(f)∥r/2 (2.3.6)

for r ≥ 2. This corresponds to the case s = 1 in Proposition 2.3.3.
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Remark 2.3.5. It is easy to check that Assumption 2 is verified in the setting of
Proposition 2.3.1. In fact the moment inequality of Proposition 2.3.3 provides
better constants than one would obtain by combining the two estimates of
Proposition 2.3.1 and pointwise estimates Γ+(f),Γ+(−f) ≤ 2Γ(f).

Remark 2.3.6. An inspection of the proofs of Propositions 2.3.1 and 2.3.3 shows
that if one assumes that the inequality (Bec-p) holds just for p ∈ [p0, 2] for some
p0 > 1, then the moment estimates will still hold, but for 2 ≤ r ≤ r0 = p0

p0−1
.

We will use this observation in Section 2.4.1.

Proof of Proposition 2.3.1. Let us start with the inequality (2.3.1) and consider
the case of bounded functions f ∈ A.

We will show by induction a slightly stronger statement, namely that for all
positive integers k and r ∈ (k, k + 1]

∥(f − µ(f))+∥2r ≤ cr∥Γ+(f)∥max(r/2,1),

where

cr =
1

a
max

(κr(s)rs+1

κ2(s)
; 1
)
, κr(s) =

(
1−

(
r − 1

r

)(s+1)r/2 )−1

↗ κ(s)

(2.3.7)

as r →∞.
In what follows the parameter r will change while s will remain fixed, so to

simplify the notation we will suppress the dependence of κr(s) on s and write
simply κr.

For k = 1 and any r ∈ (1, 2],

∥(f − µ(f))+∥2r ≤ ∥f − µ(f)∥2r ≤ ∥f − µ(f)∥22 ≤
1

a
E(f, f) ≤ cr∥Γ+(f)∥1,

(2.3.8)

where in the second step we used Jensen’s inequality, in the third one the
Poincaré inequality (which holds if (Bec-p) holds, see Proposition A.2.6 in the
Appendix), while the last one follows from (2.1.13) and cr ≥ c1 = 1/a. This
yields the induction basis.

Assume that the induction hypothesis holds for all integers smaller than
some k > 1. Consider any r ∈ (k, k + 1] and a bounded function f : X → R.
Choose p such that r = p

p−1
and denote γ = 1

p−1
, g = (f − µ(f))+. Applying

the Beckner inequality (Bec-p) to the function gγ and using the form (2.1.12) of
E (which is a consequence of the detailed balance condition (2.1.10)), together
with the convexity of x 7→ xγ, we get

αp(µ(g
γp)− µ(gγ)p) ≤ p

2

∫
(gγ(x)− gγ(y))+(g(x)− g(y))+Qx(dy)µ(dx)

≤ γp

2

∫
gγ−1(x)Γ+(g)µ(dx). (2.3.9)

Since (g(x) − g(y))+ ≤ (f(x) − f(y))+, we have Γ+(g) ≤ Γ+(f), and so by
Hölder’s inequality with exponents γp

γp−2
and γp

2
(recall that γ + 1 = γp = r),

we obtain

αp(µ(g
γp)− µ(gγ)p) ≤ γp

2
(µ(gγp))

γp−2
γp ∥Γ+(f)∥γp/2. (2.3.10)
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Denoting lr = ∥g∥r and observing that αp ≥ a/rs, the above inequality divided
by αp and restated in terms of r gives

lrr ≤ lrr−1 + lr−2
r

rs+1

2a
∥Γ+(f)∥r/2.

The induction hypothesis allows us to estimate lr−1:

lrr ≤
(
cr−1∥Γ+(f)∥max((r−1)/2,1)

)r/2
+ lr−2

r

rs+1

2a
∥Γ+(f)∥r/2. (2.3.11)

Note that we can assume that ∥Γ+(f)∥r/2 > 0, since otherwise (as r > 2) we
obtain ∥Γ+(f)∥1 = 0 and by the induction assumption (f − µ(f))+ = 0. Recall
that cr = max

(
κrr

s+1/κ2; 1
)
/a and thus, by the monotonicity in u of κu and

∥Γ+(f)∥max(u/2,1), and since r > 2,

cr−1∥Γ+(f)∥max((r−1)/2,1)

cr∥Γ+(f)∥r/2
≤ cr−1

cr

≤ max
(κr−1(r − 1)s+1

κrrs+1
,

κ2
κrrs+1

)
≤

(
r − 1

r

)s+1

.

Consequently, dividing (2.3.11) by (cr∥Γ+(f)∥r/2)r/2, leads to(
l2r

cr∥Γ+(f)∥r/2

)r/2

≤
(
r − 1

r

)(s+1)r/2

+
κ2
2κr

(
l2r

cr∥Γ+(f)∥r/2

)(r−2)/2

. (2.3.12)

The function

h(x) =

(
r − 1

r

)(1+s)r/2

+
1

κr
x1−2/r − x

is strictly concave on [0,∞), positive at x = 0 and h(1) = 0 (by the definition
of κr). As a consequence, h(x) ≥ 0 implies x ≤ 1, whence (note that κ2/2 ≤ 1)

l2r ≤ cr∥Γ+(f)∥r/2
which proves the induction step and demonstrates (2.3.1) for bounded functions
f .

Let us now remove the boundedness assumption. If f : X → R is an arbi-
trary function with ∥Γ+(f)∥r < ∞, then E(f, f) = ∥Γ+(f)∥1 < ∞ and as a
consequence, by the Poincaré inequality, we obtain µ(|f |) <∞ and

Varµ(f) ≤
1

a
E(f, f).

In particular, defining fM = max(min(f,M),−M) we obtain fM → f pointwise
and µ(fM)→ µ(f) as M →∞. Applying (2.3.1) to fM we obtain

∥(fM − µ(fM))+∥2r ≤ (1− 2−(s+1))
rs+1

a
κ(s)∥Γ+(fM)∥r/2. (2.3.13)

However,

Γ+(fM)(x) =

∫
X
(fM(x)− fM(y))2+Qx(dy)

≤
∫
X
(f(x)− f(y))2+Qx(dy) = Γ+(f)(x).

Therefore, Fatou’s lemma implies that (2.3.1) for f follows from (2.3.13) by
letting M →∞.

The inequality (2.3.2) follows by (2.3.1) applied to −f .



CHAPTER 2. BECKNER INEQUALITIES 24

Proof of Proposition 2.3.3. The general scheme of the proof is analogous as in
the case of Proposition 2.3.1, one just needs to appropriately replace the point-
wise estimates with the kernel Qx by the abstract assumptions. Therefore in-
stead of writing the complete proof we will just explain how to modify the
arguments leading to (2.3.1).

We again prove by induction that for all positive integers k, r ∈ (k, k + 1],
and bounded f ∈ A,

∥f − µ(f)∥2r ≤ cr∥Γ(f)∥max(r/2,1)

with cr = κr(s)r
s+1/a ≥ 1/a. The quantity κr(s) is defined as in (2.3.7), note

however the difference between the definition of cr in this proof and therein.
For k = 1, this follows analogously as in (2.3.8), by ignoring the first in-

equality and using E(f, f) = ∥Γ(f)∥1 in the last estimate (note that finiteness
of ∥Γ(f)∥1 implies that µ(f) is well-defined).

As for the induction step, we consider g = f − µ(f) and γ = 1
p−1

where
r = p

p−1
. By Assumption 1, g, |g| ∈ Dom(E).

Assume that ∥g∥∞ =M and observe that for a, b ∈ [−M,M ],∣∣|a|γ − |b|γ∣∣ ≤ γMγ−1|a− b|.

Therefore, again by Assumption 1, |g|γ ∈ Dom(E).
Applying thus (Bec-p) with parameter p to |g|γ we obtain

αp

(
µ(|g|γp)− µ(|g|γ)p

)
≤ p

2
E(|g|γ, |g|). (2.3.14)

Now, by the first part of Assumption 2 applied with t = γp/2 = r/2 together
with the equality t

t−1
= γp/(γp− 2) = γp/(γ − 1), we get

αp

(
µ(|g|γp)− µ(|g|γ)p

)
≤ γp(µ(|g|γp))

γp−2
γp ∥Γ(f)∥γp/2.

The last inequality is a direct analog of (2.3.10), the difference being just the
lack of the factor 1/2 on the right-hand side.

The rest of the induction step is the same as in the proof of Proposition 2.3.1,
leading to

∥f − µ(f)∥r ≤ cr∥Γ(f)∥r/2
for bounded f ∈ A, the only difference being the lack of the factor κ2/2 in the
counterpart of (2.3.12), which in the proof of Proposition 2.3.1 was estimated
from above by one.

The extension to general f ∈ A follows easily by approximation from the
second part of Assumption 2.

2.4 Applications
We will now present applications of our results to various stochastic models
in which modified log-Sobolev inequalities or Beckner inequalities are proven.
Our main goal is to obtain new moment inequalities and derive from them
concentration estimates.



CHAPTER 2. BECKNER INEQUALITIES 25

2.4.1 The continuous setting

As already mentioned in Section 2.1, in the diffusive case, when the chain
rule is satisfied, there is equivalence between the modified log-Sobolev inequal-
ity (mLSI) and the usual log-Sobolev inequality (LSI) as well as between the
two forms (Bec-p) and (Bec’-q) of Beckner’s inequality. Therefore, as explained
in Section 2.1.4 the equivalence between the log-Sobolev inequalities and Beck-
ner inequalities has been known in this case. Nevertheless, the equivalence
of (Bec-p) and (Bec’-q) as well as some known examples of measures satisfy-
ing (Bec’-q) allow us to obtain moment estimates in Lr with optimal rate of
dependence on r as r →∞ in several situations of interest.

We will start with a result proved by Wang [200, Corollary 1.3] in the setting
of Riemannian manifolds.

Proposition 2.4.1. Let E be a d-dimensional non-compact connected complete
Riemannian manifold with Ricci curvature bounded from below. Let ρ(x) be the
Riemannian distance between x and a fixed point o. Consider µ(dx) := ZeV dx,
where V is a continuous function on E such that V + θργ is bounded for some
γ ∈ (1, 2] and θ > 0, dx stands for the Riemannian volume measure, and Z is
the normalization. Let E(f, f) := µ(|∇f |2) with Dom(E) = H1,2(µ). Then there
exists β > 0 such that (Bec’-q) holds for all q ∈ [1, 2) with βq ≥ β(2− q)2/γ−1.

As a consequence, by Proposition 2.3.3 applied to A being the class of
smooth compactly supported functions, followed by standard approximation
techniques, we obtain

Corollary 2.4.2. In the setting of Proposition 2.4.1, there exists a constant
C, depending only on β, such that for any smooth function f : M → R and all
r ≥ 2,

∥f − µ(f)∥r ≤ Cr1/γ∥∇f∥r, (2.4.1)

where the norms are taken in Lr(E, µ).

We remark that the example of measures µγ (γ ∈ [1, 2]) on R with density
cγ exp(−|x|γ) (as investigated by Latała and Oleszkiewicz in [136], who proved
that in this case β > 0 can be taken to be a universal constant) shows that
the exponent 1/γ in the above corollary is optimal for d = 1. More generally,
by tensorization it follows that (Bec’-q) with universal β > 0 is satisfied by
the measures on Rd with densities cdγ exp(−

∑d
i=1 |xi|γ). In particular, we ob-

tain (2.4.1) with constant C independent of γ and d, yielding the optimality of
the exponent 1/γ in the case of general d.

We also note that in the case of Rd, moment estimates of the form (2.4.1)
for γ ∈ (1, 2) can be derived from a combination of recent result [27] and [8]
(the case γ = 2 corresponds to results by Aida–Stroock, the case γ = 1 can be
found in [156]). The former article establishes an implication between Beckner
inequalities (Bec’-q) and certain log-Sobolev inequalities with modified energy
form (introduced by Gentil et al. in [94]), which are shown in [8] to imply (2.4.1).
However, in both of the said implications, additional dependence on γ is intro-
duced, and the constants explode for γ → 1. To the best of our knowledge, the
above corollary is new even in the case of measures µγ, γ ∈ (1, 2).

Another example we would like to discuss concerns weighted inequalities for
heavy tailed measures. We will focus on the Cauchy measure, defined on Rn as

νn,b(dx) =
1

Z(1 + |x|2)b
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for b > n/2 (where Z is a normalizing constant).
Being heavy-tailed, the measure νn,b cannot satisfy the usual functional

inequalities of Definition 2.1.3 with E(f, g) = µ(⟨∇f,∇g⟩). Nevertheless, as
shown in [183, 35, 44, 161], for b ≥ n + 1, νn,b satisfies the following weighted
Poincaré inequality for smooth functions:

Varνn,b
(f) ≤ 1

2(b− 1)

∫
Rn

|∇f(x)|2(1 + |x|2)νn,b(dx).

Moreover, the weight 1 + |x|2 is of optimal growth at infinity and the constant
1

2(b−1)
is optimal. We remark that the weighted Poincaré inequality (without

optimal constant) was known in a larger range of parameters (see, e.g., [41])
and a recent result [123] provides the optimal constants for the whole range of
parameters. In what follows we however restrict to b ≥ n + 1, as we are going
to use recent Beckner inequalities obtained under this assumption.

In [56] the above inequality has been complemented by a weighted log-
Sobolev inequality

Entνn,b
(f 2) ≤ Cn,b

∫
Rn

|∇f(x)|2(1 + |x|2) log(e+ |x|2)νn,b(dx),

where Cn,b is a constant, depending only on n, b. Again, the growth of the
weight is optimal at infinity (the result was earlier proved with a weight of
faster growth in [41]).

By known approaches to moment estimates, related to (2.3.6) and (2.3.5)
the above results provide for r ≥ 2 bounds of the form

∥f − νn,b(f)∥Lr(νn,b) ≤
C√
b− 1

r∥
√
ω1∇f∥Lr(νn,b), (2.4.2)

where ω1(x) = 1 + |x|2, and C is a universal constant, and

∥f − νn,b(f)∥Lr(νn,b) ≤
√
Cn,b(r − 3/2)∥

√
ω2∇f∥Lr(νn,b), (2.4.3)

where ω2(x) = (1 + |x|2) log(e + |x|2). See [41, 56] where similar moment in-
equalities were considered for Lipschitz functions. It is easy to see that (2.4.2)
and (2.4.3) are not comparable. The latter has better dependence on r, the
former may perform better if the function is supported far from the origin.

Recently, Bakry, Gentil, and Scheffer [23] proved that for q ∈ [1, 2− 2
b−n+1

],
the measure νn,b satisfies a weighted Beckner inequality

2(b− 1)
(
νn,b(f

2)− νn,b(f q)2/q
)
≤ (2− q)

∫
Rn

|∇f(x)|2(1 + |x|2)νn,b(dx).

(2.4.4)

Interpreting E(f, g) =
∫
Rn⟨∇f,∇g⟩ω1dνn,b as a Dirichlet form related to the dif-

fusion with generator Lf = ω1∆f+⟨∇ω1−ω1∇V,∇f⟩, where V = − log(
νn,b(dx)

dx
),

and using the relation between the inequalities (Bec’-q) and (Bec-p) discussed
in Section 2.1.4 we see that for all p ∈ [1 + 1

b−n
, 2],

2(b− 1)(νn,b(f
p)− νn,b(f)p) ≤ E(f, fp−1).

Note that this inequality cannot be satisfied for all p ∈ (1, 2] with a uniform
constant, since this would contradict the optimal growth of weight w2 for the
log-Sobolev inequality. Using thus Remark 2.3.6 with Γ(f, g) = ⟨∇f,∇g⟩ω1, we
obtain the following
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Corollary 2.4.3. If b ≥ n + 1 then for any smooth function f : Rn → R, and
r ∈ [2, b− n+ 1],

∥f − νn,b(f)∥Lr(νn,b) ≤
C√

(b− 1)

√
r∥
√
ω1∇f∥Lr(νn,b), (2.4.5)

where C is a universal constant.

The above corollary complements the inequalities (2.4.2) and (2.4.3), im-
proving on some of their aspects in the situation when b is substantially larger
than n and r is large, as it provides better dependence on r than (2.4.2) and
at the same is based on the weight ω1 which is smaller than ω2 used in (2.4.3).
However, in the case of fixed b the range of r for which the estimate holds is re-
stricted. We remark that weighted Beckner inequalities for more general heavy
tailed convex measures have been recently obtained in [162]. They have been
also generalized to the manifold setting in [95]. In all these cases one can derive
similar weighted moment inequalities, we chose the case of the Cauchy measure
to simplify the exposition.

2.4.2 Product spaces

The Herbst argument, which is now the main tool for deriving concentration
estimates from log-Sobolev type inequalities, appeared for the first time in the
1970s in an unpublished letter from I. Herbst to L. Gross. In the mid 1990s
in the seminal paper [137] Ledoux demonstrated the strength of this argument
in the context of concentration inequalities in product spaces, recovering many
inequalities by Talagrand, obtained by a more difficult inductive approach based
on appropriate notions of isoperimetry [193, 192]. Since then the method was
further developed by many authors, most notably by Boucheron, Bousquet,
Lugosi, and Massart. Massart [150] and Boucheron, Lugosi, and Massart [49, 50]
developed many modified log-Sobolev inequalities for product spaces, which
were applied to a variety of problems, ranging from information theory through
combinatorics to statistics and probability in Banach spaces. In a subsequent
paper with Bousquet [47] they also established moment estimates, which are
a direct inspiration for our Proposition 2.3.1. For this purpose they developed
Beckner inequalities of the form (Bec-p) in product spaces, by deriving first
tensorization properties for ϕ-entropies (present also in the work [136] by Latała
and Oleszkiewicz) and then establishing one dimensional cases of (Bec-p) (thus
proceeding in a manner parallel to the derivation of the modified log-Sobolev
inequality in product spaces, based on tensorization properties of the usual
entropy functional).

Our contribution in the context of product measures is an observation that
thanks to the equivalence of (Bec-p) and (mLSI) with a mild change in con-
stants, the Beckner’s inequalities obtained in [47] can be derived directly from
the most basic modified log-Sobolev inequality for product distributions. We
would like to stress again that the subsequent derivation of moment inequal-
ities that we present in Proposition 2.3.1 relies very heavily on the approach
from [47].

For Reader’s information and for comparison with the more general case
of Glauber dynamics, discussed in the next section, we will now state some
moment inequalities presented in [47] (we remark that this paper provides also
other moment inequalities obtained under additional assumptions on the ran-
dom variables in question).
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Theorem 2.4.4 ([47, Theorem 2]). Let (X1, . . . , Xn) be independent random
variables with values in a measurable space E and let Z = f(X1, . . . , Xn) for
some measurable function f . Let moreover X ′

1, . . . , X
′
n be independent copies of

X1, . . . , Xn and set Zi = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Then for r ≥ 2,

∥(Z − EZ)+∥r ≤
√
κr∥

√
V+∥r, (2.4.6)

where

V+ = E
( n∑

i=1

(Z − Zi)
2
+

∣∣∣X1, . . . , Xn

)
and κ =

√
e√

e−1
.

We remark that for r = 2 this result recovers (up to constants) the Efron–
Stein inequality for the variance.

Let us now relate the above theorem to our Theorem 2.2.1 and Proposi-
tion 2.3.1 and explain how they imply a version of the estimate (2.4.6). Denote
by µ the distribution of the sequence (X1, . . . , Xn) and observe that the quantity
V+ coincides with our Γ+(f) (recall (2.1.14)) for Γ given by

Γ(f, g) =
1

2

∫
En

(f(y)− f(x))(g(y)− g(x))Qx(dy),

for the kernel

Qx(A) =

∫
En

n∑
i=1

1A(x1, . . . , xi−1, yi, xi+1, . . . , xn)µ(dy),

reversible with respect to µ (as already mentioned this can be seen as a special
case of Glauber dynamics).

The modified log-Sobolev inequality (mLSI) holds in this case simply due to
Jensen’s inequality and tensorization (the idea present already in the paper [137]
by Ledoux). Indeed, for any random variable X, denoting by X ′ its independent
copy, we have

Ent(f(X)) ≤ E f(X) log f(X)− E f(X)E log f(X)

= E f(X)(log f(X)− log f(X ′))

=
1

2
E(f(X)− f(X ′))(log f(X)− log f(X ′)),

which, when combined with the well known tensorization property of entropy
(see, e.g., [51, Theorem 4.10]) gives

Entµ(f) ≤
∫ n∑

i=1

Entµi
(f)dµ,

for µ = µ1⊗ · · · ⊗ µn gives (mLSI) with ρ0 = 1 (here Entµi
denotes the entropy

computed on a product space just with respect to the i-th coordinate and the
measure µi, with the other coordinates fixed). By Theorem 2.2.1 this gives
Beckner’s inequality (Bec-p) with αp ≥ 1

6
. Now, Proposition 2.3.1 applied

with a = 1/6 and s = 0 gives (2.4.6) with κ = 3
√
e√

e−1
, which is worse than

Theorem 2.4.4 just by a factor
√
3.
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2.4.3 Glauber dynamics

Let us now consider X = EI , where I is a finite set and E is a Polish space
endowed with the Borel σ-field. Let µ be a probability measure on X . For
x ∈ X and J ⊆ I, let xJ = (xi)i∈J . Let also X = (Xi)i∈I be an X -valued
random variable distributed according to µ. Finally, for i ∈ I let X ′

i be an
E-valued random variable such that its (regular) conditional distribution given
X satisfies

µi(·|x) := P(X ′
i ∈ · |X = x) = P(Xi ∈ · |X{i}c = x{i}c).

In other words, given X1, . . . , Xi−1, Xi+1, . . . , Xn, the random variables X ′
i and

Xi are conditionally i.i.d.
Denote X i = (Yj)j∈I where Yj = Xj for j ̸= i and Yi = X ′

i (i.e., X i is
obtained from X by replacing Xi with X ′

i). The Glauber dynamics (known also
as the Gibbs sampler or heat bath) is given by a generator of the form

Lf(x) =
∑
i∈I

∫
E

(f(x1, . . . , xi−1, y, xi+1, . . . , xn)− f(x))µi(dy|x)

and corresponds to a càdlàg Markov process (X(t))t≥0 in which at rate |I| a
coordinate i ∈ I is chosen uniformly and Xi(t−) is replaced with a value drawn
from the distribution µi(·|X(t−)), while the remaining coordinates are kept
intact.

Let us note that if µ is a product measure, then µi(·|x) equals to the i-th
marginal of µ (in particular is independent of x) and the situation reduces to
the case described in the previous section with I = [n] := {1, . . . , n}. In the
general case the generator and the carré du champ operator are given by the
kernel

Qx(A) =

∫
X

∑
i∈I

1A(x1, . . . , xi−1, yi, xi+1, . . . , xn)µi(dy|x). (2.4.7)

Plugging this kernel into formulas (2.1.9) and (2.1.14), and using the defini-
tion of the variables X i, we obtain

Γ(f) =
1

2

∑
i∈I

E((f(X)− f(X i))2|X),

Γ+(f) =
∑
i∈I

E((f(X)− f(X i))2+|X).

Therefore, a combination of Theorem 2.2.1, Proposition 2.3.1 and Proposi-
tion 2.3.3 gives in this setting the following corollary.

Corollary 2.4.5. In the setting described above, if the Glauber dynamics sat-
isfies the modified log-Sobolev inequality (mLSI) with constant ρ0, then for
p ∈ (1, 2] it satisfies (Bec-p) with αp ≥ ρ0/6. Moreover, for every function
f : X → R and r ≥ 2,

∥(f(X)− E f(X))+∥r ≤ K
√
r
∥∥∥(∑

i∈I

E((f(X)− f(X i))2+|X)
)1/2∥∥∥

r

≤ K
√
r
∥∥∥(∑

i∈I

(f(X)− f(X i))2+

)1/2∥∥∥
r
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and

∥f(X)− E f(X)∥r ≤ K
√
r
∥∥∥(∑

i∈I

E((f(X)− f(X i))2|X)
)1/2∥∥∥

r

≤ K
√
r
∥∥∥(∑

i∈I

(f(X)− f(X i))2
)1/2∥∥∥

r
,

where K =
√

3
√
e

ρ0(
√
e−1)

.

Inequalities of this type have been recently derived for measures on finite
product spaces [99] using the Aida–Stroock approach, based on the usual log-
Sobolev inequality (LSI). This results in the constant K being a multiple of
ρ
−1/2
1 . However, in many cases (even if µ is a product measure on a finite set) the

constant ρ1 is much smaller than ρ0. Moreover, as shown in [100] in the general
case ρ1 > 0 for the Glauber dynamics only if µ is finitely supported, which
is in contrast to ρ0 which, as stated in the previous section, is positive, e.g.,
for all product measures. Using a Holley–Stroock type perturbation argument
(cf. [118, 14]) one can also easily produce examples of non-product measures
with infinite support and ρ0 > 0.

Several examples satisfying the modified log-Sobolev inequality (mLSI) and
the log-Sobolev inequality (LSI) have been recently presented by Sambale and
Sinulis in [178]. They are based on a general theorem concerning approximate
tensorization of entropy under a Dobrushin type condition due to Marton [149]
(see also [99]). Recently [71, 34] have considered a more general notion of block
factorization, allowing, e.g., to obtain modified log-Sobolev inequalities for the
Glauber dynamics on q-colorings of graphs with constant maximum degree.

Let us now state the general result of [178].
Assume that E is finite and define the Dobrushin matrix A = (Aij)i,j∈I as

Aij = sup
x,y∈X : x{j}c=y{j}c

∥L(Xi|X{i}c = x{i}c)− L(Xi|X{i}c = y{i}c)∥TV

for i ̸= j and Aii = 0 (where ∥ · ∥TV denotes the total variation norm). Let
α = 1−∥A∥ℓ2→ℓ2 , where ∥A∥ℓ2→ℓ2 is the operator norm of the matrix A. Define
also for J ⊊ I and i /∈ J

βi,J = inf
xJ∈EJ ,yJc∈EJc

(xJ ,yJc )∈supp(µ)

P(Xi = (yJc)i|XJ = xJ)

(for J = ∅ we understand the above simply as infy∈supp(µ) P(Xi = yi)).
Finally, set

β = inf
J⊊I

inf
i/∈J

βi,J .

Theorem 2.4.6 ([178, Theorem 4.1]). If α, β > 0, then

ρ0 ≥ α2β, ρ1 ≥
log(2)α2β

2 log(β−1)
.

Recall that here ρ0 is the constant on the left-hand side in the modified log-
Sobolev (mLSI) and note that due to a different normalization of the Dirichlet
form and a different convention concerning constants in [178] our parameter ρ0
corresponds to 2|I|/ρ0 therein. Using Theorem 2.2.1 we immediately obtain



CHAPTER 2. BECKNER INEQUALITIES 31

Corollary 2.4.7. If α, β > 0, then for p ∈ (1, 2] the inequality (Bec-p) holds
with αp ≥ α2β

6
.

Sambale and Sinulis apply Theorem 2.4.6 to several stochastic models, in-
cluding exponential random graphs, random graph colorings, hardcore model.
In an earlier paper [100] with Götze they also treat the Ising model. They are
primarily interested in situations when for a family of models on sets In with
|In| → ∞ the constants ρ0, ρ1 are uniformly separated from zero. From this
point of view the sufficient conditions that can be obtained from Theorem 2.4.6
are the same for both constants. If one is however interested in a more quantita-
tive analysis, and looks at the dependence of the constants on the parameters of
the model, then typically ρ0 is of smaller order than ρ1 (as β becomes small). In
particular, a combination of Corollary 2.4.5 with estimates on ρ0 given in The-
orem 2.4.6 indeed gives better dependence of constants in moment inequalities
than those derived from the Aida–Stroock approach based on ρ1.

Below we discuss this in more detail for selected classical stochastic models.

Exponential random graphs

Let In = {(i, j) ∈ [n]2 : i < j} and identify elements of Gn = {0, 1}In with simple
graphs on n-vertices in a natural way. For γ = (γ1, . . . , γs) ∈ Rs and simple
connected graphs Gi = (Vi, Ei), i = 1, . . . , s, let µγ be a probability measure on
Gn given by the weight of the form

exp(−Hγ(x)), x ∈ Gn,

with

Hγ(x) = n2

s∑
i=1

γi
NGi

(x)

n|Vi|
,

where for simple graphs H = (VH , EH) and G = (VG, EG), NH(G) is the num-
ber of homomorphisms from H to G, i.e., injective maps i : VH → VG, which
preserve edges. We assume (by convention) that G1 is the complete graph on
two vertices and that |Ei| > 1 for i > 1. Then, for s = 1, the measure µγ

corresponds to the distribution of the Erdős–Rényi random graph G(n, p) with
p = eγ1(1 + eγ1)−1. The general model for arbitrary s and graphs Gi is known
as the exponential random graph model and it has been an object of intensive
studies in recent years, both from the theoretical point of view and in connection
to applications, e.g., to modeling of social networks. We refer to [63] and [65]
for a detailed presentation. Sambale and Sinulis provide a sufficient condition
for the constants ρ0 and ρ1 to be separated from zero independently of the size
n of the model. An inspection of their proof reveals that if

δ :=
1

2

s∑
i=2

|γi||Ei|(|Ei| − 1) < 1,

then one can apply Theorem 2.4.6 with some α ≥ 1 − δ and β ≥ ce−2|γ1| for a
universal constant c > 0. Thus, in this case the bounds on ρ0 and ρ1 differ by
a factor of order |γ1| when |γ1| → ∞. It is an interesting question to verify if
the constant ρ0 indeed depends on γ1, which corresponds to the Erdős–Rényi
product-type behavior of the graph.
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Ising model on finite sets

Let I = {1, . . . , n} and consider the measure on X = {+1,−1}n given by

µ({ε}) = 1

Z
exp

(1
2

n∑
i,j=1

Jijεiεj −
n∑

i=1

hiεi

)
,

where J = (Jij)
n
i,j=1 is a symmetric matrix with vanishing diagonal and h ∈

Rn. From the statistical physics point of view the matrix J correspond to
interaction between spins, while h describes the external field. Concentration
inequalities for the Ising model have been considered by many authors starting
from the 1990s [148, 66], as it is arguably the most basic discrete model with
dependencies. The interest in them has been recently revived in relation to
algorithmic applications [79, 78, 96]. Estimates on ρ1 given by Theorem 2.4.6
have been a starting point for inequalities obtained in [99, 4], with the Aida–
Stroock approach playing a crucial role. Since each function of the discrete cube
can be regarded as a polynomial, by considering its Fourier–Walsh expansion,
it is natural to investigate concentration of measure in terms of characteristics
related to the polynomial representation. In this case the dependence of the
estimates from the said papers on the constant ρ1 increases with the degree
of the polynomial. Therefore, an application of Corollary 2.4.5 again allows
to improve the behavior of inequalities in the asymptotic case. As for the
parameters α, β of Theorem 2.4.6, an inspection of the calculations from [99]
(cf. Lemma 3.1 therein) reveals that in this case they can be taken as

α ≥ 1−max
i≤n

∑
j≤n

|Jij|, β ≥ ce−∥h∥∞ . (2.4.8)

Since the constants in the modified log-Sobolev inequalities do not depend on
h in the product case J = 0, the same question as in the case of exponential
random graphs seems natural also in this setting.

We note that in both cases it is not clear to us whether the above estimates
on ρ0 and ρ1 can be improved in a general situation and what the true gap
between the two constants is. Let us also point out that the gap in the estimates
of Theorem 2.4.6 appears in the regime β → 0 and is only logarithmic in 1/β,
while the dependence of the bounds for ρ0 and ρ1 on β is polynomial.

Let us remark that an approach to functional inequalities for the Ising model
differing from the one based on the Dobrushin condition has been recently
developed in a series of works by Bauerschmidt and Bodineau [28], Eldan et
al. [85] and Anari et al. [12]. The conditions for functional inequalities are
expressed in terms of the operator norm of the interaction matrix, without
passing to absolute values of the coefficients, which allows treating cases which
do not satisfy the Dobrushin condition, leading, e.g., to breakthroughs in the
analysis of mixing times for the Sherrington–Kirkpatrick models of spin glasses
(in particular [12] provides a modified log-Sobolev inequality). The conditions
proposed in these articles are in general not comparable with the Dobrushin
condition. Since our goal is just to illustrate potential application of our results
we will not discuss these results in detail and only mention that they also can
be combined with our estimates.

Hardcore model

We will conclude this section with another example of a classical stochastic
model. In this case the model does demonstrate a gap between ρ0 and ρ1 and
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not just their known lower bounds. More specifically we will show a family
of hardcore models on a growing sequence of graphs, for which ρ0 remains
separated from zero, while ρ1 → 0.

Let G = (V,E) be a finite simple graph with maximum degree ∆ and let
η > 0 be a parameter. A binary function ε = (εi)i∈V ∈ X := {0, 1}V will be
called admissible if εiεj = 0 whenever {i, j} ∈ E. Thus, admissible functions
describe allocations of particles on V in which one can have at most one particle
per vertex and no two adjacent vertices can be occupied simultaneously. Let µ
be a probability measure on X given by

µ({ε}) = 1

Z

∏
i∈V

ηεi1{ε is admissible},

where Z is the normalization constant. Recently Conforti [72] obtained modified
log-Sobolev inequalities and Beckner inequalities for this model. In particular,
improving earlier estimates from [86], under the assumption η∆ < 1 he proved
that

ρ0 := ρ0(G, η) ≥
1− η(∆− 1) + 2min(η, 1− η∆)

1 + η
(2.4.9)

(we remark that the Glauber dynamics considered by us is slowed down by a
factor 1 + η with respect to the one used in [72]). He obtained also general Φ-
Sobolev inequalities, in particular (Bec-p). Estimates for ρ0 and ρ1 independent
of |V | have been also obtained in [178] by means of Theorem 2.4.6, under the
assumption η(∆− 1) < 1, however due to the dependence on the parameter β,
they are of worse order.

Below we will provide a sequence of graphs Gn = (Vn, En) with |Vn| = n+1,
maximum degree ∆n = n, and such that ρ0 = ρ0(Gn, 1/(2∆n)) is bounded away
from zero, while ρ1 = ρ1(Gn, 1/(2∆n)) = O( 1

logn
). Let Gn be a star with center

0 and n rays, i.e., Vn = {0} ∪ [n], En = {{0, i} : i ∈ [n]}.
Note that the set of admissible ε’s is composed of 2n+1 elements: ε∗ placing

a single particle at zero and 2n configurations with ε0 = 0. Among them let us
distinguish ε◦ such that ε◦(0) = 0, ε◦(i) = 1 for i ∈ [n].

In particular, it follows from the above discussion that Z = η + (1 + η)n,
µ({ε∗}) = η

Z
, µ({ε◦}) = ηn

Z
.

Let us test the inequality (LSI) with f = 1{ε◦}. Denoting p = µ({ε◦}), we
obtain

Ent f = p log(p−1).

On the other hand

E(
√
f,

√
f) = E(f, f) = E

n∑
i=0

(f(X)− f(X i))2+,

where X,X i are defined at the beginning of this section.
Now, f is nonnegative and equal 0 on {ε◦}c, therefore if X ̸= ε◦, then

n∑
i=0

(f(X)− f(X i))2+ = 0.

On the other hand, if X = ε◦ then X0 = X and for i ̸= 0, X i ̸= X with
conditional probability 1

1+η
. Thus,

E(
√
f,

√
f) =

pn

1 + η
.



CHAPTER 2. BECKNER INEQUALITIES 34

This shows that ρ1 ≤ n
(1+η) log(p−1)

. Since p−1 = η+(1+η)n

ηn
≥ 1

ηn
, we obtain

ρ1 ≤
1

1 + η

1

log(η−1)
.

In particular for η = 1
2n

, we get ρ1 = O
(

1
logn

)
, whereas by (2.4.9) ρ0 ≥ c for

some c > 0, independent of n.

2.4.4 The symmetric group

General moment estimates

Consider the symmetric group Sn of permutations of the set [n] equipped with
the uniform probability measure πn. We will view this measure as the stationary
distribution for the interchange process. Recall that this process describes the
dynamics of n particles, labeled by the set [n] which occupy n distinct sites
(also labelled by [n]). At rate one a randomly chosen pair of particles exchange
their positions. Let L be the infinitesimal operator for this process, i.e.,

Lf(σ) =
1

n(n− 1)

n∑
i,j=1

(
f(σ ◦ τij)− f(σ)

)
=

2

n(n− 1)

∑
1≤i<j≤n

(
f(σ ◦ τij)− f(σ)

)
,

where τij stands for the transposition of elements i and j. The corresponding
Dirichlet form is

E(f, g) = 1

2n(n− 1)n!

∑
σ∈Sn

n∑
i,j=1

(
f(σ ◦ τij)− f(σ)

)(
g(σ ◦ τij)− g(σ)

)
=

1

n(n− 1)n!

∑
σ∈Sn

∑
1≤i<j≤n

(
f(σ ◦ τij)− f(σ)

)(
g(σ ◦ τij)− g(σ)

)
.

The modified log-Sobolev inequality for this process with ρ0 ≥ 1
n−1

was ob-
tained independently by Gao–Quastel [91] and Bobkov–Tetali [42], who also
obtained the Beckner inequality (Bec-p) with αp = p(n+2)

2n(n−1)
(we note that the

normalization of the generator L differs across various references, we provide
here scaled constants matching our setting). The Poincaré constant was com-
puted earlier by Diaconis and Shahshahani [82]. These results can be considered
another example demonstrating that the behavior of constants in Poincaré,
modified log-Sobolev or Beckner inequalities can be much better than of the
constant in the classical log-Sobolev inequality, which was proved by Lee and
Yau [140] to be of order 1

n logn
. In a recent work Götze–Sambale–Sinulis [99]

used the result from [140] in combination with the Aida–Stroock approach to
obtain certain tail estimates on the symmetric group. However, the constants
in their estimates explode as n→∞.

As a consequence of Beckner inequalities we obtain the following moment
estimate for functions on the symmetric group. As explained below it generalizes
to arbitrary functions the moment bound obtained by Chatterjee [62] for a
special class of variables known as Hoeffding statistics.
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Proposition 2.4.8. Let σ be a uniform random permutation of the set [n]. For
an arbitrary function f : Sn → R and any r ≥ 2,

∥f(σ)− E f(σ)∥r ≤ D2.4.8

√
r
∥∥∥( 1

n+ 2

n∑
i,j=1

(f(σ)− f(σ ◦ τij))2
)1/2∥∥∥

r
(2.4.10)

and

∥(f(σ)−E f(σ))+∥r ≤ D2.4.8

√
r
∥∥∥( 1

n+ 2

n∑
i,j=1

(f(σ)−f(σ◦τij))2+
)1/2∥∥∥

r
, (2.4.11)

where D2.4.8 =
√ √

e√
e−1

.

Proof. We have

Γ(f)(σ) =
1

2
Lf 2(σ)− f(σ)Lf(σ) = 1

2n(n− 1)

n∑
i,j=1

(
f(σ)− f(σ ◦ τij)

)2
.

The assertion follows by the aforementioned result of Bobkov–Tetali and Propo-
sitions 2.3.1 and 2.3.3 (with s = 0 and a = infp∈(1,2]

p(n+2)
2n(n−1)

= (n+2)
2n(n−1)

).

Hoeffding statistics

In the special case of Hoeffding statistics, i.e., functions of the form

f(σ) =
n∑

k=1

akσ(k), (2.4.12)

where (aij)
n
i,j=1 is a real matrix, the inequality (2.4.10) was proved for integer

r by Chatterjee [62] (with slightly different constants), who also obtained a
Bernstein type inequality for matrices with positive bounded entries. Since
then, concentration of measure for Hoeffding statistics has been investigated,
e.g., by Albert [11] and Bercu–Delyon–Rio [30]. They obtained Bernstein type
estimates for general bounded entries. The methods used in these references are
quite diverse: while Chatterjee uses Stein’s method, Albert relies on Talagrand’s
convex distance inequality on the symmetric group [192] and Bercu–Delyon–
Rio on martingale methods (used for the first time in the context of random
permutations by Maurey [151]).

Let us mention that Hoeffding statistics have been widely studied in the lit-
erature, starting from the article [116] of Hoeffding himself who obtained their
asymptotic normality under certain assumptions (a result known as combina-
torial CLT). They are important since they include many functions of interest
in combinatorics or non-parametric statistics. In particular, it is easy to see
that one can encode in the form (2.4.12) sums of functions of samples without
replacement from a finite population.

Below we will use the second inequality of Proposition 2.4.8 together with an
approach of Boucheron–Bousquet–Lugosi–Massart [47] to obtain an inequality
for suprema of Hoeffding statistics. In the special case of sampling without
replacement this inequality will improve certain aspects of an estimate obtained
by Tolstikhin–Blanchard–Kloft [195]. Their main motivation were applications
to transductive learning, we believe that bounds of this type may be also useful
in the context of bootstrap for empirical processes. Note that in this section we
focus on the moment estimates. We will revisit Hoeffding statistics in Chapter 5,
where we prove Bennet-type estimates.
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Proposition 2.4.9. Let A be a collection of n × n matrices and let σ be a
uniform random permutation of the set [n]. Define the random variable

Z = sup
a∈A

n∑
k=1

akσ(k).

Then for any r ≥ 2,

∥(Z − EZ)+∥r ≤ 4D2.4.8

√
rA+ 10D2

2.4.8rBr, (2.4.13)

where A = E supa∈A

√∑n
k=1 a

2
kσ(k), Br =

∥∥maxk≤n supa∈A |akσ(k)|
∥∥
r
, and D2.4.8

is the constant from Proposition 2.4.8. As a consequence, for any r ≥ 0,

P
(
Z ≥ EZ + 4eD2.4.8

√
rA+ 10eD2

2.4.8rBr

)
≤ e2−r. (2.4.14)

Before we prove the above proposition, we will provide two examples of
applications, comparing it with the results mentioned above.

Example 2.4.10. If A consists of a single element and one does not pay attention
to universal constants, then inequality (2.4.14) is a strengthening of the results
by Bercu–Delyon–Rio [30] and Albert [11]. Their results give

P
(
Z ≥ EZ +K

(√
r
( 1
n

n∑
ij=1

a2ij

)1/2

+ rmax
i,j≤n
|aij|

))
≤ 2e−r (2.4.15)

for a certain universal constant K. The parameters A and Br of Proposi-
tion 2.4.9 read in this case as

A = E

√√√√ n∑
k=1

a2kσ(k), Br =
∥∥max

k≤n
|akσ(k)|

∥∥
r
.

Clearly maxij |aij| ≥ Br, moreover in certain situation maxij |aij| may be
significantly greater than the r-th moment Br (this happens when there are few
large elements in the matrix (aij) and r is not too large).

By Jensen’s inequality we also have (n−1
∑n

ij=1 a
2
ij)

1/2 ≥ A, but in fact the
difference of these two quantities is at most of the order ∥maxk |akσ(k)|∥2 (see
the proof of Proposition 2.4.9 below), so it can be absorbed in the coefficient
in front of r. Hence, (2.4.14) does not improve on the subgaussian coefficient
of (2.4.15). This is not surprising, since (as observed in [30]) if one defines

dij = aij − n−1

n∑
l=1

ail − n−1

n∑
l=1

alj + n−2

n∑
l,m=1

alm,

then
∑n

k=1 dkσ(k) = Z − EZ and n−1
∑n

ij=1 d
2
ij = Var(Z).

To summarize, the main advantage of Proposition 2.4.9 over (2.4.15) is the
fact that maxi,j≤n |aij| can be replaced by a smaller parameter Br.

Example 2.4.11. Let us now specialize to the setting of sampling without re-
placement and compare our result with Tolstikhin–Blanchard–Kloft [195]. To
this end we will need to rephrase both results in the same notation. Let us
consider a set of vectors X ⊆ {x ∈ Rn : x1 + . . . + xn = 0}. For m ≤ n let
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I1, . . . , Im be a uniform sample without replacement and J1, . . . , Jm a sample
with replacements from the set [n]. Define

Z = sup
x∈X

m∑
k=1

xIk , Z ′ = sup
x∈X

m∑
k=1

xJk .

Thus, Z ′ can be considered a supremum of the empirical process in independent
random variables Jk. The tails of such suprema have been thoroughly studied,
beginning with the seminal work by Talagrand [193], who obtained Bernstein
and Bennett type inequalities. The authors of [195] combined optimal forms of
such inequalities proved by Bousquet [52] with a stochastic domination between
Z and Z ′ (due to Hoeffding) to derive a bound of the form

P
(
Z ≥ EZ ′ +

√
2vr +

r

3
sup
x∈X
∥x∥∞

)
≤ e−r (2.4.16)

for r ≥ 0, where v = m supx∈X Var(xJ1) + 2 supx∈X ∥x∥∞ EZ ′.
One can easily see that the variable Z corresponds to the supremum of

Hoeffding statistics over matrices given by axij = xj for i ≤ m, and axij = 0 for
i > m. Therefore, Proposition 2.4.9 yields

P
(
Z ≥ EZ + 4eD2.4.8

√
rA+ 10eD2

2.4.8rBr

)
≤ e2−r (2.4.17)

with

A = E sup
x∈X

( m∑
k=1

x2Ik

)1/2

, Br =
∥∥∥ sup

x∈X
max
k≤m
|xIk |

∥∥∥
r
.

Again, in certain situations, especially for relatively small values of r, the
quantity Br may be of smaller order than supx∈X ∥x∥∞ used in (2.4.16). How-
ever, the main difference between the two estimates is the fact that (2.4.17)
provides deviation above EZ, while (2.4.16) considers deviations above EZ ′,
which always exceeds EZ (see the inequality (2.4.18) below) and in certain
situation can be significantly larger. The authors of [195] provide a bound

EZ ′ − EZ ≤ 2
m3

n
sup
x∈X
∥x∥∞.

Specializing to the case X ⊆ [−1, 1]n, it follows from the above estimate that
if one is interested in a bound on Z − EZ which is of the order

√
m (cor-

responding to the CLT type rates one would like to obtain in statistical ap-
plications), the inequality (2.4.16) is applicable for m = O(n2/5). Note that
EZ ′ ≤ m, so the quantity

√
v is of the right order

√
m. On the other hand

E supx∈X

(∑m
k=1 x

2
Ik

)1/2

also equals at most
√
m, so (2.4.17) provides a bound

on Z−EZ of the order
√
m without any restrictions on m (we remark that the

interesting case is m ≤ n/2 since thanks to the mean zero assumption one can
always pass from m to n−m).

Let us now discuss in more detail the subgaussian coefficients of the two
inequalities. As pointed out in [145, 107] it follows from an argument due to
Hoeffding [117] that if E is a normed space and f : [n]→ E, then for any convex
function Ψ: E → R,

EΨ
( m∑

k=1

f(Ik)
)
≤ EΨ

( m∑
k=1

f(Jk)
)
. (2.4.18)
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In particular this implies that

A2 ≤ E sup
x∈X

m∑
k=1

x2Ik ≤ E sup
x∈X

m∑
k=1

x2Jk ≤ m sup
x∈X

Var(xJ1) + 8 sup
x∈X
∥x∥∞ EZ ′′,

with Z ′′ = supx∈X
∑m

k=1 εkxJk , where ε1, . . . , εm are i.i.d. Rademacher’s vari-
ables independent of J1, . . . , Jm. The last inequality is a classical result of the
theory of empirical processes (see, e.g., [188, 150, 47]) based on symmetrization
and Talagrand’s contraction principle for Rademacher averages [139]. If the set
X is symmetric with respect to the origin, one can further write EZ ′′ ≤ 2EZ ′.
Thus, in this case the subgaussian coefficient of (2.4.17) is up to absolute con-
stants dominated by

√
v used in (2.4.16). Let us note that using results from [47]

one can also provide a similar bound on the subgaussian coefficient of (2.4.17)
with ∥maxi≤m supx∈X |xJi|∥2 in place of supx∈X ∥x∥∞. Since our goal is rather
to illustrate Proposition 2.4.8 than to provide the most general estimate, we
skip the details.

The above discussion shows that our estimate (2.4.17) may give better
bounds than (2.4.16). On the other hand (2.4.16) has better constants, in
particular provides the optimal constant

√
2 in the subgaussian part. Let us

remark that [195] contains also a more refined Bennett type inequality for the
deviation of Z above EZ ′, which does not follow from the moment type bounds
we consider here, however a similar improvement, giving concentration around
EZ can be up to constants recovered from the modified log-Sobolev inequality
on the symmetric group. We do not discuss it in detail in this chapter, since it
is necessarily expressed in terms of v and supx∈X ∥x∥∞ and here we are inter-
ested primarily in improvements one can obtain by looking at the p-th moments
rather than the ℓ∞-norm. We revisit this problem in depth in Chapter 5. In
particular, we obtain therein the aforementioned Bennet-type deviation bound.

Let us now pass to the proof of Proposition 2.4.9.

Proof of Proposition 2.4.9. Without loss of generality we can assume that A
is finite, the general case follows then by approximation. For i, j ∈ [n] define
Zij = supa∈A

∑n
k=1 akσ(τij(k)). Note that by the definition of Z and the triangle

inequality in ℓ2,( n∑
i,j=1

(Z − Zij)
2
+

)1/2

≤ sup
a∈A

( n∑
i,j=1

(aiσ(i) + ajσ(j) − aiσ(j) − ajσ(i))2
)1/2

≤ 2
√
n sup

a∈A

( n∑
i=1

a2iσ(i)

)1/2

+ 2 sup
a∈A

( n∑
i,j=1

a2ij

)1/2

.

Therefore, by Proposition 2.4.8, we obtain

∥(Z − EZ)+∥r ≤ 2D2.4.8

√
r
∥∥∥ sup

a∈A

( n∑
i=1

a2iσ(i)

)1/2∥∥∥
r

+2D2.4.8

√
r
(
sup
a∈A

1

n

n∑
i,j=1

a2ij

)1/2

.

(2.4.19)

We start with estimating the first summand. Denote

S = sup
a∈A

( n∑
k=1

a2kσ(k)

)1/2

, Sij = sup
a∈A

( n∑
k=1

a2kσ(τij(k))

)1/2

.
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By another application of Proposition 2.4.8, we get

∥(S − ES)+∥r ≤ D2.4.8

√
r
∥∥∥( 1
n

n∑
i,j=1

(S − Sij)
2
+

)1/2∥∥∥
r
. (2.4.20)

For a fixed value of σ let a ∈ A be such that

S =
( n∑

i=1

a2iσ(i)

)1/2

.

Fix i, j ∈ [n] and denote

s =

√∑
k ̸=i,j

a2kσ(k), x =
√
a2iσ(i) + a2jσ(j), y =

√
a2iσ(j) + a2jσ(i).

Denote also by φ the function t 7→
√
s2 + t2. Then φ is convex and increasing on

R+. Moreover, if (S−Sij)+ is nonzero, then x2 > y2, in particular x > 0 and so
φ is differentiable at x. As a consequence, by convexity of φ and monotonicity
of the function t 7→ t2+, we obtain

(S − Sij)
2
+ ≤ (φ′(x)(x− y))2+ ≤ φ′(x)2x2 =

(a2iσ(i) + a2jσ(j))
2

S2

≤ 2
a2iσ(i) + a2jσ(j)

S2
max
k≤n

a2kσ(k).

Summing over all i, j ∈ [n] we obtain
n∑

i,j=1

(S − Sij)
2
+ ≤ 4nmax

k≤n
sup
a∈A

a2kσ(k),

which in combination with (2.4.20) gives

∥(S − ES)+∥r ≤ 2D2.4.8

√
r
∥∥∥max

k≤n
sup
a∈A
|akσ(k)|

∥∥∥
r
= 2D2.4.8

√
rBr. (2.4.21)

Hence,

∥S∥r ≤ ∥ES∥r + ∥(S − ES)+∥r ≤ A+ 2D2.4.8

√
rBr. (2.4.22)

Let us note that

A = ES ≥ sup
a∈A

E
( n∑

i=1

a2iσ(i)

)1/2

.

Applying (2.4.22) with r = 2 to the one element sets {a} instead of A, we
obtain( 1

n

n∑
i,j=1

a2ij

)1/2

=
(
E

n∑
i=1

a2iσ(i)

)1/2

≤ A+ 2
√
2D2.4.8

∥∥∥max
k≤n
|akσ(k)|

∥∥∥
2

≤ A+ 2
√
2D2.4.8Br.

Combining the above inequality with (2.4.19) and (2.4.22) we obtain

∥(Z − EZ)+∥r ≤ 4D2.4.8

√
rA+ 10D2

2.4.8rBr,

which ends the proof of (2.4.13). The inequality (2.4.14) is now an easy conse-
quence of Chebyshev’s inequality in Lr (note that for r ≤ 2 the right-hand side
exceeds one, so the inequality is trivial).
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Multislices

Let us conclude this section with a remark concerning multislices. For a positive
integers n ≥ l and a sequence κ = (κ1, . . . , κl) ∈ Nl

+ such that κ1 + . . .+ κl = n
consider

Uκ = {x = (x1, . . . , xn) ∈ [l]n : #{j : xj = i} = κi for i = 1, . . . , l}

– the multislice of [l]n consisting of all the sequences which for i ≤ l take the
value i exactly κi times. If l = 2 then Uκ can be identified with a slice of
the discrete cube {0, 1}n by a hyperplane perpendicular to the vector (1, . . . , 1).
The dynamics corresponding to switching a randomly chosen pair of coordinates
of an element of Uκ is related to the Bernoulli–Laplace model of statistical
mechanics (which can also be interpreted as an urn scheme). In [42] Bobkov
and Tetali proved Beckner inequalities for this dynamics in the case of l = 2.
From this result they inferred modified log-Sobolev inequalities, which were
proven independently by Gao–Quastel [91]. Again the constant ρ1 in the log-
Sobolev inequality (LSI) degenerates as n→∞. It was first computed in [140]
for l = 2. Subsequently, estimates on this constant for general n, l, κ were
obtained in [88]. These estimates are optimal for l fixed but deteriorate as n
tends to ∞. The authors of [88] put forward a conjecture regarding the sharp
growth rate of ρ1 for all values of l, which was recently proved by Salez [177].

We would like to point out that in the case of Beckner and modified log-
Sobolev inequalities the results on the symmetric group cited in the previous
section can be projected onto Uκ yielding inequalities with constants of a better
order than ρ1, which can be then used to conclude moment estimates. We skip
the rather standard details.

2.4.5 Zero-range processes and negatively dependent bi-
nary variables

New examples of measures satisfying the modified log-Sobolev inequality have
been recently obtained in the works of Hermon and Salez [114, 115] and Cryan
et al. [74] – these regard some classes of negatively dependent random variables
on the hypercube and zero-range processes. In this section we will provide just
an outline of their results and briefly comment on what can be obtained by com-
bining them with ours. A more in-depth investigation of the stochastic covering
property (which is the main theme of [114]) and its relation to concentration is
presented in Chapter 4, cf. also Section 1.4.

Stochastic covering property

The results in [114] concern measures on X ⊆ {0, 1}n. Recall that for x, y ∈ X
we will say that x covers y (x▷ y) if

x = y or ∃i≤n x = y + ei,

where ei’s are the standard basis vectors, i.e., if x ̸= y then x can be obtained
from y by increasing a single coordinate. For probability measures ν1, ν2 on
X we say that ν1 covers ν2 if there is coupling of ν1, ν2 supported on the set
{(x, y) ∈ X 2 : x▷ y}.

Let µ be a probability measure on X and X a random vector with law µ.
For a set I ⊆ [n] we will write XI = (xi)i∈I . We say that µ satisfies the SCP if
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for every I ⊆ [n] and x, y ∈ {0, 1}I , such that P(XI = x),P(XI = y) > 0 and
x▷ y, one has

P(XIc ∈ ·|XI = y)▷ P(XIc ∈ ·|XI = x).

Let us moreover introduce a relation ∼ on X : x ∼ y if and only if x and y differ
at a single coordinate or by a transposition of two coordinates.

Examples of measures satisfying the SCP are given, e.g., by laws of weighted
random bases of balanced matroids [187], in particular the uniform measure on
the set of all spanning trees of a given graph (we identify here the spanning tree
with an element of {0, 1}E, where E is the set of edges). We refer to [170] for
further examples.

The authors of [114] obtain modified log-Sobolev inequalities for measures
with SCP.

Theorem 2.4.12. Let X be a random vector with values in X ⊆ {0, 1}n and
law µ, satisfying the SCP.

(i) Let Q be any kernel, reversible with respect to µ. Then the measure µ
satisfies (mLSI) with constant ρ0 ≥ minx,y∈X ,x∼y max(Qx(y), Qy(x)).

(ii) There exists a kernel Q such that for all x ∈ X , Qx(·) is supported on
{y ∈ X : y ∼ x},

∑
y∈X\{x}Qx(y) ≤ 1 and (mLSI) is satisfied with ρ0 ≥ 1/n.

(iii) If µ is supported on the set {x ∈ X :
∑n

i=1 xi = k}, then there exists a
kernel supported on the set of y ∈ X such that x and y differ by a transposition
of two coordinates, and such kernel verifies

∑
y∈X\{x}Qx(y) ≤ 1 and (mLSI) is

satisfied with ρ0 ≥ 1/(2k).

Combining the above theorem with Theorem 2.2.1 and Proposition 2.3.1 we
immediately obtain the following corollary.

Corollary 2.4.13. In the setting of Theorem 2.4.12, for p ∈ (1, 2], the measure
µ satisfies (Bec-p) with αp ≥ ρ0/6. As a consequence, for any function f : X →
R and r ≥ 2,

∥(f(X)− E f(X))+∥r ≤ K
√
r
∥∥∥(∑

y∈X

(f(y)− f(x))2−Qx(y)
)1/2∥∥∥

r
, (2.4.23)

where K =
√

3
√
e

ρ0(
√
e−1)

.

To the best of our knowledge, Beckner inequalities for general measures
satisfying the SCP have not been so far considered in the literature and this is
the first result that establishes them in this setting.

The case (i) of Theorem 2.4.12 applies in particular to Q given by the
Metropolis-Hastings kernel Qx(y) = 1

2kn
min

(
µ(x)
µ(y)

, 1
)

if y ∼ x and Qx(y) = 0

otherwise. Note however that, e.g., in the case of the uniform distribution on
slices of the cube application of this part of Theorem 2.4.12 gives a suboptimal
bound (cf. the discussion in Section 2.4.4 and [42, 91]). Part (ii) gives the right
order of ρ0, however the existence of Q is obtained via an inductive procedure
with respect to the dimension n and so in general it is not given by an explicit
formula. It is worth noting that from the point of view of concentration of
measure with respect to the Hamming distance, the construction of the kernel
Q might play important role. In order to obtain the same concentration profile
as in the product case, one has to construct an appropriate kernel Q – this idea
is investigated further in Chapter 4 and is the main theme of Section 4.3.
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Strongly log-concave measures

Another possible generalization of the strong Rayleigh property (apart from
the SCP described in the previous section) is the strong log-concavity (abbrev.
SLC) treated in detail in the context of homogeneous measures in [74]. Let us
recall that a polynomial P in n real variables with nonnegative coefficients is
log-concave at x ∈ [0,∞)n if the Hessian of logP is negative semi-definite at x.
A measure π on X ⊂ {0, 1}n is strongly log-concave if its generating polynomial
is log-concave at all-ones vector (1, . . . , 1) after taking any sequence of pairwise
distinct partial derivatives.

In [74] the authors verify that SCP and SLC are in general incomparable
by constructing appropriate examples. It is also known, cf. [53], that any k-
homogeneous SLC measure is supported on the set of bases of some matroid of
rank k. Using this fact, and extending the previous results by Anari et al. [13]
and Kaufman–Oppenheim [129], Cryan et al. [74] explicitly construct a down-up
random walk, which has any given k-homogeneous strongly log-concave measure
as a stationary distribution, and prove that it satisfies the modified log-Sobolev
inequality (mLSI) with ρ0 = 1/k.

Let us now revisit their construction. We refer the Reader to [166] for the
basic definitions concerning matroids. For a given k-homogeneous SLC measure
µ, let M ⊂ {0, 1}n be the associated matroid of rank k (therefore, if Mk′ =
{x ∈ M :

∑n
i=1 xi = k′} for k′ = 1, . . . , k, then µ is supported on Mk). For

x ∈M, denoteM↓
k′(x) = {y ∈Mk′ : x ≥ y} andM↑

k′(x) = {y ∈Mk′ : x ≤ y},
where x ≥ y for x, y ∈ {0, 1}n if for all i = 1, . . . , n, xi = 0 implies that yi = 0.
Consider the kernel Q = Q↑ ◦ Q↓ acting on Mk, where for x ∈ Mk, Q↓

x(y) =
1y∈M↓

k−1(x)
/|M↓

k−1(x)| is the probability kernel that samples uniformly from

the set M↓
k−1(x) and for y ∈ Mk−1, Q↑

y(x) = µ(x)1x∈M↑
k(y)

/µ(M↑
k(y)) is the

probability kernel sampling from the set M↑
k(y) with probability proportional

to µ. The above construction asserts that Q is reversible with respect to µ.
The main result of [74] is the following theorem.

Theorem 2.4.14. For any k-homogeneous SLC measure µ on {0, 1}n and dy-
namics given by (2.1.9) with the kernel Q constructed above, the modified log-
Sobolev inequality (mLSI) holds with ρ0 = 1/k.

Recently, extensions of Theorem 2.4.14 for more general classes of measures
were obtained in [71, 12]. We do not however describe these results in detail
for the sake of brevity and only mention that one can apply our results to their
bounds on the modified log-Sobolev constants in the same manner as below in
the case of [74]. Additionally, one notable feature of all mentioned works is that
they do not rely on the approach developed by Lee–Yau [140] (which exploits
the convexity of the function (a, b) 7→ (a− b)(log a− log b)). Hence, the proofs
do not seem to be easily adapted to general Phi-Sobolev inequalities (just by
changing the underlying convex function). In particular, deriving the Beckner
inequality (Bec-p) without using Theorem 2.2.1 is nontrivial in these cases.

Combining Theorem 2.4.14 with Theorem 2.2.1 and Proposition 2.3.1 we
obtain the following corollary.

Corollary 2.4.15. For any k-homogeneous SLC measure µ on {0, 1}n and
dynamics given by (2.1.9) with the kernel Q constructed above, the Beckner
inequality (Bec-p) holds with αp ≥ 1

6k
for any p ∈ (1, 2].
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As a consequence, for any f : {0, 1}n → R,

∥(f − µ(f))+∥r ≤ K ·
√
rk

∥∥√Γ+(f)
∥∥
r
,

where K =
√

3
√
e√

e−1
and Γ+ is given by (2.1.14).

Zero-range processes

Another class of examples coming from the recent work of Hermon and Salez
is described in [115] and concerns zero-range processes, i.e., stochastic systems
in which a fixed number m of particles occupy n sites. The particles leave the
present site, with rates λi depending on the number of particles they share it
with, and choose the new site according to a prescribed probability measure p
common for all the particles. More precisely, let m,n be positive integers and
let X = {x ∈ Nn :

∑n
i=1 xi = m}. Consider functions λi : {0} ∪ [m] → [0,∞),

i = 1, . . . , n, such that λi(0) = 0 and let p = (p1, . . . , pn) be a probability vector.
The zero-range dynamics is given by a Markov generator of the form

Lf(x) =
n∑

i,j=1

(f(x+ ej − ei)− f(x))λi(xi)pj, (2.4.24)

where e1, . . . , en is the standard basis in Rn. This dynamics is reversible with
respect to the probability measure µ on X , defined by

µ({x}) = 1

Z

n∏
i=1

pxi
i

λi(1) · · ·λi(xi)
. (2.4.25)

Hermon and Salez obtained a modified log-Sobolev inequality for the case
when the rates of escape are sandwiched between two linear functions, with
constant ρ0 depending only on the directional coefficients of the functions. In
particular, this provides a solution to a conjecture posed by Caputo, Dai Pra,
and Posta [55, 54]. Below we state their theorem and a corollary one can
immediately obtain from it with our results.

We remark that Beckner’s inequalities for zero-range processes were previ-
ously considered in [125] and very recently in [72] in the case of p being the
uniform distribution and under a restriction on ∆, δ (for instance [72] assumes
that ∆ ≤ 2δ). See Remark 5.3 in [72] for a detailed discussion of the applicability
of the Bakry-Émery approach used in these references. The equivalence with
the modified log-Sobolev inequality allows going beyond this restriction and
conclude Beckner inequalities directly from the result by Hermon and Salez.

Theorem 2.4.16. Assume that for l ∈ {0} ∪ [m− 1],

δ ≤ λi(l + 1)− λi(l) ≤ ∆, (2.4.26)

where δ,∆ are positive constants. Then the zero range dynamics corresponding
to the generator (2.4.24) satisfies the modified log-Sobolev inequality with ρ0 ≥
δ2

2∆
.

Theorem 2.2.1 and Proposition 2.3.1 immediately yield the following

Corollary 2.4.17. If the assumption (2.4.26) is satisfied, then the zero-range
dynamics satisfies for any p ∈ (1, 2] the Beckner inequality (Bec-p) with con-
stant αp ≥ δ2

12∆
.
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As a consequence, if X = (X1, . . . , Xn) is a random vector with law µ given
by (2.4.25), then for every function f : X → R and r ≥ 2,

∥(f(X)− E f(X))+∥r ≤

K

√
∆

δ

√
r
∥∥∥( n∑

i=1

n∑
j=1

(f(X + ej − ei)− f(X))2−λi(Xi)pj

)1/2∥∥∥
r
,

where K =
√

6
√
e√

e−1
.

2.4.6 The Poisson space

We will now present applications of our results to concentration of measure
on the Poisson space. In literature there are quite a few results, providing
functional inequalities and concentration estimates on path spaces of Poisson
point processes. In particular Ané and Ledoux [15] obtained certain modified
log-Sobolev inequalities (of a different form than (mLSI)), Wu [202] proved
a modified log-Sobolev inequality implying in particular the one from [15] as
well as (mLSI), Chafaï [57] considered general Φ-Sobolev inequalities (including
ones of Beckner type), Reynaud-Bouret [176] obtained concentration estimates
for suprema of compensated stochastic integrals (see also [121, 1] for multi-
ple stochastic integrals). More recently Reitzner introduced a version of the
convex distance inequality [175], Bachmann and Peccati [19] used modified log-
Sobolev inequalities due to Wu to obtain concentration results with focus on
geometric functionals, an approach which was subsequently extended by Bach-
mann [18], Bachmann and Reitzner [20]. Nourdin, Peccati, and Yang [163]
proved restricted hypercontractive for certain classes of functions, whereas Go-
zlan, Herry, Peccati [106] obtained transportation type inequalities.

Our goal is to complement these results with moment estimates and de-
rive from them concentration inequalities. Moment estimates of subexponential
type, i.e., with linear growth of constants as r → ∞, were obtained from the
Poincaré and Cheeger inequalities by Houdré and Privault in [119, 120]. To the
best of our knowledge the inequalities we present in Proposition 2.4.20 are the
first subgaussian type moment estimates on the Poisson space. Moreover, as
one can easily see using infinite divisibility and the Central Limit Theorem, the
growth of constants in our estimate as r →∞ is optimal.

We will start by a necessarily brief introduction of the setting. We refer
to [133, 132] for a detailed presentation of Poisson point processes and stochas-
tic calculus on the Poisson space. Furthermore, we remark, that soon after
our results were announced, the moment estimates were derived by Gusakova–
Sambale–Thäle [111], also by means of the Boucheron–Bousquet–Lugosi–Massart
approach, adapted to the case of the Poisson space. We refer the Reader to [111]
for additional examples of geometric functionals which can be treated with gen-
eral moment estimates

Let (X ,B) be a measurable space endowed with a σ-finite measure λ. Let N
be the space of all N∪ {∞}-valued measures on (X ,B) which can be expressed
as countable sums of N-valued measures. The measurable structure on N that
we consider is given by the smallest σ-field G such that for all B ∈ B the map
µ 7→ µ(B) is G-measurable. Recall that an N -valued random variable η is a
Poisson process with intensity λ if

(i) for every B ∈ B, the random variable η(B) has Poisson distribution with
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parameter λ(B) (which we interpret as the Dirac mass at λ(B) if λ(B) ∈
{0,∞}),

(ii) for every positive integer m and all pairwise disjoint sets B1, . . . , Bm ∈ B,
the random variables η(B1), . . . , η(Bm) are jointly independent.

A Poisson process η is called proper, if there exists a random variable κ ≤ ∞
and a sequence of X -valued random variables Xi such that

η =
κ∑

i=1

δXi
, (2.4.27)

where δx stands for Dirac’s mass at x. Corollary 3.7 in [133] asserts that for
every Poisson process there exists a proper Poisson process with the same dis-
tribution. We will use this fact together with σ-finiteness of λ to avoid certain
measurability issues in the definition of quantities that we are about to consider.

More precisely, let Xn ∈ B be a sequence of sets with
⋃

nXn = X , such that
λ(Xn) < ∞ for all n. We can and do assume that η is proper and consider η
as a random variable with values in the spaceM⊂ N of measures of the form
µ =

∑K
i=1 δxi

where K ≤ ∞ and xi ∈ X , such that for every n, µ(Xn) < ∞.
We will again endow this space with the smallest σ-field S such that the maps
µ 7→ µ(B) are measurable for all B ∈ B.
Remark 2.4.18. It is not difficult to see that S = {A∩M : A ∈ G}. In particular
S-measurable functions on M are just restrictions of G-measurable functions
on N . We stress that in what follows we will consider inequalities for functions
defined on the path space (N ,G), however one should remember that the un-
derlying Poisson process takes values in (M,S), which makes the quantities we
will deal with well-defined. In what follows, so as not to obscure the main ideas,
we will not discuss in detail the standard but somewhat tedious measurability
issues – we further comment on them in more detail in Appendix A.4.

For F : N → R and x ∈ X define

D+
x F (η) = F (η + δx)− F (η)

and
D−

x F (η) = F (η)− F (η − δx)
if η ≥ δx and D−

x F = 0 otherwise.
In [202] Wu proved that for arbitrary positive integrable F : N → [0,∞),

EntF ≤ E
∫
X
(D+

x Φ(F )− Φ′(F )D+
x F )λ(dx), (2.4.28)

where Φ(t) = t log t and the expectation is taken with respect to η. From this
inequality it easily follows that η satisfies the modified log-Sobolev inequality

EntF ≤ E(F, logF ) (2.4.29)

for nonnegative F : N → [0,∞), and

E(F,G) =
∫
X
E(D+

x F )(D
+
xG)λ(dx)

is a bilinear form with

Dom(E) =
{
F ∈ L0(N ,L(η)) :

∫
X
E(D+

x F )
2λ(dx) <∞

}
,
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where L(η) denotes the law of η.
Recall now the Mecke formula (see, e.g., [133, Theorem 4.1]), which asserts

that for every measurable function H : N ×X → [0,∞),

E
∫
X
H(η, x)η(dx) =

∫
X
EH(η + δx, x)λ(dx).

We will actually need a slightly different version of this formula, valid for proper
Poisson processes, given in [133, Theorem 4.5]. Namely, for µ ∈ N and x ∈ X
define µ\δx as µ − δx if µ ≥ δx, and as µ otherwise. If η is a proper Poisson
process, then for every H as above

E
∫
X
H(η\δx, x)η(dx) =

∫
X
EH(η, x)λ(dx). (2.4.30)

We remark that the assumption that η is proper allows to interpret the left-hand
side as

E
κ∑

i=1

H
( κ∑

j=1

1{j ̸=i}δXj
, Xi

)
.

Let us also note that clearly Mecke’s formula holds also for measurable functions
H : N × X → R, provided that its left- or right-hand side with H replaced by
|H| is finite.

For ρ =
∑K

k=1 δxk
∈M (with K ≤ ∞) we define a measure Qρ onM as

Qρ(A) =

∫
X
1A(ρ+ δx)λ(dx) +

∫
X
1A(ρ− δx)ρ(dx)

= λ({x : ρ+ δx ∈ A}) +
κ∑

k=1

1A(ρ− δxk
).

(2.4.31)

Using Dynkin’s π-λ theorem one can prove that the definition of Q does
not depend on the representation of ρ as a sum of Dirac’s deltas (note that we
do not assume measurability of singletons, so such a representation of ρ as a
measure on B may not be unique), moreover Q is a kernel on M (this is the
main reason for which we introduce the space M, cf. Appendix A.4 for more
discussion).

By Mecke’s formula (2.4.30) for every measurable G :M×M→ [0,∞),

E
∫
M
G(σ, η)Qη(dσ)

= E
∫
X
G(η + δx, η)λ(dx) + E

∫
X
G(η − δx, η)η(dx)

= E
∫
X
G(η, η − δx)η(dx) + E

∫
X
G(η, η + δx)λ(dx)

= E
∫
M
G(η, σ)Qη(dσ).

Thus, the kernel Qσ is reversible with respect to the law of η.
Note that by another application of Mecke’s formula (2.4.30), for any F,G ∈

Dom(E),

E(F,G) = 1

2

(
E
∫
X
(F (η)− F (η − δx))(G(η)−G(η − δx))η(dx) (2.4.32)

+ E
∫
X
(F (η + δx)− F (η))(G(η + δx)−G(η))λ(dx)

)
=

1

2
E
∫
M
(F (σ)− F (η))(G(σ)−G(η))Qη(dσ).
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We remark that the functions F,G above are defined on N , but their re-
strictions toM are S-measurable (cf. Remark 2.4.18), so the last expression in
the above formula is well-defined. In particular one can see that the value of
E(F,G) depends only on the behavior of F and G onM.

Consider now the space

A =
{
F ∈ L0(M,L(η)) :

∫
M
(F (η)− F (σ))2Qη(dσ) <∞ a.s.

}
.

Observe also that the restriction from N toM gives a natural identification of
L0(M,L(η)) and L0(N ,L(η)) (cf. again Remark 2.4.18), therefore we can also
consider A as a subspace of the latter space.

On A×A define

Γ(F,G) =
1

2

∫
M
(F (η)− F (σ))(G(η)−G(σ))Qη(dσ)

=
1

2

(∫
X
(F (η)− F (η − δx))(G(η)−G(η − δx))η(dx)

+

∫
X
(F (η + δx)− F (η))(G(η + δx)−G(η))λ(dx)

)
=

1

2

∫
X
(D−

x F (η))(D
−
xG(η))η(dx) +

1

2

∫
X
(D+

x F (η))(D
+
xG(η))λ(dx)

and

Γ+(F ) =

∫
M
(F (η)− F (σ))2+Qη(dσ) (2.4.33)

=

∫
X
(F (η)− F (η − δx))2+η(dx) +

∫
X
(F (η + δx)− F (η))2−λ(dx)

=

∫
X
(D−

x F (η))
2
+η(dx) +

∫
X
(D+

x F (η))
2
−λ(dx).

By (2.4.32) we then have

E(F,G) = EΓ(F,G),

which shows that one can interpret Wu’s inequality (2.4.29) in the setting of our
main results (cf. (2.1.9), (2.1.11), (2.1.14)) and (2.4.29) becomes just (mLSI)
with ρ0 = 1. In particular, we also obtain Beckner’s inequality (Bec-p) with
αp ≥ 1/6.
Remark 2.4.19. We remark that Γ is closely related to the carré du champ
operator for the Ornstein–Uhlenbeck process on the Poisson space (see [132]).
In [83, Proposition 2.6] it is shown that under suitable assumptions Γ(F,G)
actually coincides with the carré du champ operator. Similarly, as in [19] we
find it however simpler to introduce Γ and Γ+ via the Mecke formula (2.4.30),
which gives greater generality and does not require a detailed discussion of
domains.

Beckner’s inequality (Bec-p) and Propositions 2.3.1 and 2.3.3 imply the fol-
lowing proposition providing Sobolev type inequalities on the Poisson space.

Proposition 2.4.20. For any F : N → R and any r ≥ 2,

∥F − EF∥r ≤ D2.4.20

√
r∥
√

Γ(F )∥r

= D2.4.20

√
r
∥∥∥(∫

X
(D+

x F )
2λ(dx) +

∫
X
(D−

x F )
2η(dx)

)1/2∥∥∥
r
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and

∥(F − EF )+∥r ≤ D2.4.20

√
r∥
√

Γ+(F )∥r

= D2.4.20

√
r
∥∥∥(∫

X
(D+

x F )
2
−λ(dx) +

∫
X
(D−

x F )
2
+η(dx)

)1/2∥∥∥
r
,

where D2.4.20 =
√
3

√
e√

e−1
.

Recently Bachmann and Peccati [19] used Wu’s inequality (2.4.28) to de-
rive concentration inequalities for Poisson functionals by various variants of the
Herbst argument. They put special emphasis on increasing functionals, i.e.,
functionals F such that D+

x F ≥ 0 arguing that for them the second integral
on the right-hand side of (2.4.33) vanishes, while the first integral can be often
relatively easily estimated by appealing just to geometric properties of the func-
tional, without taking into account the dependence on the intensity λ. Further
applications of inequalities from [19] were presented in [18, 20]. The approach
used in these papers relies on Herbst’s argument, which usually requires either
that Γ+(F ) or Γ(F ) is uniformly bounded or that the function has some self-
bounding properties (e.g., Γ+(F ) ≤ φ(F ) for some function φ). One aspect
in which moment estimates of Proposition 2.4.20 complement this approach is
that they can be easily used also if Γ(F ) or Γ+(F ) have heavier tails, e.g., if
they are not exponentially integrable.

Proposition 2.4.20 may also be an efficient tool in the self-bounded setting
leading to inequalities which are (up to constants) comparable to those pre-
sented in said articles. We will illustrate it with use of the following proposition,
which may be considered a counterpart of [19, Corrolary 3.5], which instead of
moments concerns the Laplace transform.

Proposition 2.4.21. Assume that F : N → [0,∞) is a measurable function
which satisfies

Γ+(F ) ≤ FαG (2.4.34)

for some α ∈ [0, 2) and a function G : N → [0,∞). Then for r ≥ 2,

∥(F − EF )+∥r ≤ 2D2.4.20

√
r(EF )α/2∥G1/(2−α)∥1−α/2

r

+ (2D2.4.20)
2/(2−α)r1/(2−α)∥G1/(2−α)∥r,

(2.4.35)

where D2.4.20 is the constant from Proposition 2.4.20.

Proof. Denote A := ∥(F − EF )+∥r. We will first show that if EGr/(2−α) <∞,
then A <∞. Note that the inequality aα/2(a1−α/2− b1−α/2)+ ≤ (a− b)+ implies
that

FαΓ+(F
1−α/2) ≤ Γ+(F ) ≤ FαG.

As a consequence Γ+(F
1−α/2) ≤ G and thus if EGq/2 < ∞, then by Proposi-

tion 2.4.20, EF q(1−α/2) <∞. Choosing q = 2r/(2− α) we obtain that A <∞.
Passing to the main part of the proof, we can assume that the right-hand

side of (2.4.35) is finite and as a consequence A < ∞. By Proposition 2.4.20
and the assumption (2.4.34),

Ar ≤ Dr
2.4.20r

r/2 EFαr/2Gr/2 ≤ Dr
2.4.20r

r/2(EF r)α/2(EGr/(2−α))1−α/2,
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where in the second estimate we used Hölder’s inequality. Using the triangle
inequality in Lr, together with subadditivity of the function t 7→ tα/2 we get

A ≤ D2.4.20

√
r∥F∥α/2r ∥G1/(2−α)∥1−α/2

r

≤ D2.4.20

√
rAα/2∥G1/(2−α)∥1−α/2

r +D2.4.20

√
r(EF )α/2∥G1/(2−α)∥1−α/2

r ,

which easily implies that either

A ≤ 2D2.4.20

√
r(EF )α/2∥G1/(2−α)∥1−α/2

r

or
A ≤ (2D2.4.20)

2/(2−α)r1/(2−α)∥G1/(2−α)∥r,

proving the proposition.

Let us illustrate Proposition 2.4.21 with two applications.

Suprema of Poisson stochastic integrals

Let F be a countable family of real valued functions on X . Consider random
variables of the form

Z = sup
f∈F

∫
X
f(x)η(dx), (2.4.36)

where all functions f ∈ F are nonnegative and F ⊆ L1(X , λ) and

S = sup
f∈F

∫
X
f(x)(η − λ)(dx), (2.4.37)

where F ⊆ L2(X , λ). Here the compensated integral is defined in the usual
way, first directly on L1(X , λ) ∩ L2(X , λ), then extended by density – we refer
to [133, Chapter 12] for background on the Wiener-Ito integral in the Poisson
case. In the case when the functions in F are uniformly bounded and λ is
finite, concentration inequalities for Z and S were obtained by Reynaud-Bouret
in [176]. Here we will complement them with moment inequalities valid for not
necessarily bounded classes or finite intensity measures.

The inequalities we obtain can be considered counterparts of results due
to Giné–Latała–Zinn [97] for empirical processes in independent random vari-
ables. Originally they were derived from Talagrand’s concentration inequal-
ity for empirical processes and the Hoffman–Jørgensen inequality; an alternate
proof based on moment estimates of Theorem 2.4.4 was provided by Boucheron–
Bousquet–Lugosi–Massart [47]. We remark that it should be possible to use
this inequality together with infinite divisibility of Poisson processes similarly
as in [176] to recover the estimates we present below (passing through finite
intensity measures first), it seems however that this approach would require
dealing with more technicalities in comparison with a direct application of gen-
eral Poissonian moment estimates.

Let us start with the estimate on Z. Assume first that F is a finite class of
functions. Note that if f ≥ 0 for all f ∈ F , then Z(η) ≤ Z(η + δx) and as a
consequence, by (2.4.33),

Γ+(Z) =

∫
X
(D−

y Z)
2
+η(dy).
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If gη ∈ F is such that Z(η) =
∫
X gη(x)η(dx), then for all y ∈ supp(η) :=

{X1, X2, . . .}, whereXi are the random variables from the representation (2.4.27),
we have

D−
y Z ≤

∫
X
gη(x)η(dx)−

∫
X
gη(x)(η − δy)(dx) = gη(y).

Thus,

Γ+(Z) ≤
∫
X
gη(y)

2η(dy) ≤ ZG,

where

G = sup
y∈supp(η)

sup
f∈F

f(y) (2.4.38)

and as a consequence, an application of Proposition 2.4.21 with α = 1 (followed
by the monotone convergence theorem if F is infinite) gives

Corollary 2.4.22. If Z is given by (2.4.36), and EZ <∞, then for a universal
constant C, all r ≥ 2 and any ε > 0,

∥(Z − EZ)+∥r ≤ C(
√
r
√
EZ

√
∥G∥r + r∥G∥r)

≤ C(εEZ + (1 + ε−1)r∥G∥r).

Let us now pass to the variable S given by (2.4.37). By a limiting argument,
we can again assume without loss of generality that F is finite. Further we can
assume that F ⊆ L1(X , λ) ∩ L2(X , λ), so that one can consider separately
integration with respect to η and λ.

Let gη ∈ F be such that S =
∫
X gη(x)η(dx) −

∫
X gη(x)λ(dx). Arguing

similarly as for the variable Z, we have

Γ+(S) ≤
∫
X
gη(y)

2
−λ(dy) +

∫
X
gη(y)

2
+η(dy)

≤ sup
f∈F

∫
X
f(x)2λ(dx) + sup

f∈F

∫
X
f(x)2η(dx).

Thus, by Proposition 2.4.20, the subadditivity of the function x 7→ x1/2 and the
triangle inequality, we obtain

∥(S − ES)+∥r ≤ C
√
r
((

sup
f∈F

∫
X
f(x)2λ(dx)

)1/2

+
∥∥∥ sup

f∈F

∫
X
f(x)2η(dx)

∥∥∥1/2

r/2

)
.

The second term can be bounded from above by Corollary 2.4.22 applied to
F ′ = {f 2 : f ∈ F}, which results in

Corollary 2.4.23. If S given by (2.4.37) satisfies ES <∞, then for all r ≥ 4,

∥(S − ES)+∥r ≤ C
(√

rΣ + r
∥∥∥ sup

x∈supp η
sup
f∈F
|f(x)|

∥∥∥
r

)
,

where
Σ2 = sup

f∈F

∫
X
f(x)2λ(dx) + E sup

f∈F

∫
X
f 2(x)η(dx)

and C is a universal constant.

We remark that if the class F is uniformly bounded, then by Chebyshev’s
inequality the above corollary allows to recover (up to universal constants) the
exponential upper tail estimates for S obtained in [176].
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Non-negative U-statistics

Another application of Proposition 2.4.21 is related to geometric functionals of
the Poisson process, specifically certain non-negative U -statistics, investigated
recently by several authors [18, 19, 20, 106]. For a measurable kernel h : Xm →
[0,∞), symmetric under permutation of arguments, let us define

U(η) =

̸=∑
i1,...,im

h(Xi1 , . . . , Xim),

where the Xi’s are given by the representation (2.4.27) and the superscript ̸=
indicates that the summation is taken over pairwise disjoint indices.

Let us note that for nonnegative h we have D+
Xh ≥ 0, therefore

Γ+(U) =

∫
X
(D−

x U)
2
+η(dx) = m2

∑
i

( ̸=∑
i1,...,im−1 : ij ̸=i

h(Xi1 , . . . , Xim−1 , Xi)
)2

.

Therefore, using Proposition 2.4.21 and Chebyshev’s inequality, we get the fol-
lowing corollary.

Corollary 2.4.24. If U is an almost surely finite Poisson U-statistic based on
a non-negative symmetric kernel h, and there exists a ≥ 0 and α ∈ [0, 2) such
that ∑

i

( ̸=∑
i1,...,im−1 : ij ̸=i

h(Xi1 , . . . , Xim−1 , Xi)
)2

≤ aUα, (2.4.39)

then for any r ≥ 2,

∥(U − EU)+∥r ≤ C
√
rm
√
a(EU)α/2 + (Crm2a)1/(2−α),

where C is some universal constant. As a consequence, for t ≥ 0,

P(U ≥ EU + t) ≤ 2 exp
(
−min

( t2

C ′m2a(EU)α
,
t2−α

C ′m2a

))
,

where C ′ is some universal constant.

Let us remark that the references [19, 20, 106] provide also bounds on the
left tail of U . It does not seem that such a bound can be easily recovered from
the moment approach, since it relies heavily on another property of Poisson U -
statistics with non-negative kernels, namely an appropriate notion of convexity,
which allows for an application of certain correlation inequalities [19] or the
Poisson convex distance inequality [20, 106]. It is an interesting question what
moment estimates can be obtained under an additional convexity assumption.
We remark that for the usual notion of convexity on Rn, certain self-normalized
moment estimates have been derived for all measures satisfying the convex
concentration property [7].

The upper bounds on the upper tail of U , presented in the above references
are

P(U ≥ EU + t) ≤ exp
(
− ((EU + t)1−α/2 − (EU)1−α/2)2

2m2a

)
,

P(U ≥ MedU + t) ≤ 2 exp
(
− t2

4m2a(t+MedU)α

))
,
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where MedU is any median of U . One can show that their behavior (disregard-
ing the exact values of constants and using the fact that median and the mean
of concentrated random variables are not far apart) is the same as of the upper
bound of Corollary 2.4.24.

In [18] Bachmann and Reitzner verified the assumption (2.4.39) for a general
class of U -statistics of Poisson processes on Rd, with α = 2− 1

m
and a depending

on the dimension d and certain parameters of the kernel. In particular, they
showed that this assumption is satisfied in the case when U is the number of
copies of a given connected graph H on m vertices in the Gilbert graph based on
η. They also proved that the above bounds are of the right order as t→∞ and
agree with known limit theorems if one increases the intensity of the process.

This shows that the moment bounds of Proposition 2.4.20 may be an al-
ternative for proving exponential inequalities for the upper tail of geometric
functionals. It is an interesting question, however beyond the scope of this the-
sis, to verify whether Proposition 2.4.20 can give meaningful bounds in cases
when functionals in question are known to have polynomial tails.

2.5 Remarks on higher order concentration
We will now describe applications of our results to higher order concentration
inequalities, which provide estimates on probabilities of deviations from the
mean for not necessarily Lipschitz functions, expressed in terms of higher order
derivatives. Such estimates were obtained, e.g., in [8, 3, 39, 99, 4], both in the
discrete and continuous settings. Since the latter case follows in a straightfor-
ward way from results in [8] we will focus here mainly on the discrete case. We
will however start with an abstract statement, and only later specialize it to
concrete examples.

2.5.1 Abstract inequality

Let A be a linear space of functions on X and Di : A → RX , i = 1, . . . , n
be linear maps (we will think of them as directional derivatives). For positive
integers k, i1, . . . , ik denote Di1...ikf = Di1 · · ·Dikf , Dkf = (Di1...ikf)

n
i1,...,ik=1.

Thus, D = D1 corresponds to the gradient and Dk for k > 1 to tensors of
higher order derivatives, in particular Dkf(x) ∈ (Rn)⊗k. For x1, . . . , xk ∈ Rn,
let x1 ⊗ · · · ⊗ xk = (x1i1 · · ·x

k
ik
)ni1,...,ik=1 ∈ (Rn)⊗k.

Let us also define the inner product on (Rn)⊗k with the formula

⟨x, y⟩ =
n∑

i1,...,ik=1

xi1...ikyi1...ik .

The following fact was proved in [8] in the case of the usual derivatives (see
Proposition 3.2 therein). Since the easy proof is completely analogous to the
one presented in [8] (it uses only linearity of Di’s) we will skip it. Below |·|
denotes the euclidean norm on Rn.

Proposition 2.5.1. Let X be an X -valued random variable. Assume that r ≥ 2
and that there exists a constant K such that for all f ∈ A,

∥f(X)− E f(X)∥r ≤ K
∥∥∥|Df(X)|

∥∥∥
r
.
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Then for any integer d and any function f : X → R in the domain of Di1...id,
i1, . . . , id ≤ n such that Ddf(X) ∈ Lr,

∥f(X)− E f(X)∥r ≤
CdKd

rd/2
∥⟨Ddf(X), G1 ⊗ · · · ⊗Gd⟩∥r

+
d−1∑
k=1

CkKk

rk/2
∥⟨EX Dkf(X), G1 ⊗ · · · ⊗Gk⟩∥r,

where G1, . . . , Gd are i.i.d. standard Gaussian vectors in Rn, independent of X,
and C is a universal constant.

If Ddf is uniformly bounded and X satisfies Beckner’s inequality, then one
can combine the above proposition with moment estimates of Theorem 2.3.1
and inequalities for multilinear forms in i.i.d. Gaussian vectors, obtained by
Latała [135], which we will now recall.

Let us start by introducing the (rather involved) notation. For a multiindex
i = (i1, . . . , id) ∈ [n]d and I ⊆ [d] we will write iI = (ik)k∈I . We will also denote
|i| = maxj≤d ij and |iI | = maxj∈I ij. Let moreover Pd be the set of partitions of
[d] into nonempty, pairwise disjoint sets. For a partition I = {I1, . . . , Ik} ∈ Pd

and a d-indexed matrix A = (ai)i∈[n]d , define

∥A∥I = sup
{ ∑

i∈[n]d
ai

k∏
l=1

xliIl
: ∥(xliIl )∥2 ≤ 1, 1 ≤ l ≤ k

}
, (2.5.1)

where ∥(xiIl )∥2 =
√∑

|iIl |≤n x
2
iIl

. Thus, e.g.,

∥(aij)i,j≤n∥{1,2} = sup
{ ∑

i,j≤n

aijxij :
∑
i,j≤n

x2ij ≤ 1
}
=

√∑
i,j≤n

a2ij

= ∥(aij)i,j≤n∥HS,

∥(aij)i,j≤n∥{1}{2} = sup
{ ∑

i,j≤n

aijxiyj :
∑
i≤n

x2i ≤ 1,
∑
j≤n

y2j ≤ 1
}

= ∥(aij)i,j≤n∥ℓn2→ℓn2
,

∥(aijk)i,j,k≤n∥{1,2}{3} = sup
{ ∑

i,j,k≤n

aijkxijyk :
∑
i,j≤n

x2ij ≤ 1,
∑
k≤n

y2k ≤ 1
}
,

where for simplicity in the notation we skip the outer brackets and commas in
the subscript and write, e.g., ∥ · ∥{1}{2} instead of ∥ · ∥{{1},{2}}.

In the special case of d = 2, ∥ · ∥{1,2} and ∥ · ∥{1}{2} are just the Hilbert–
Schmidt and operator norms of a matrix. We remark that for every d and
I ∈ Pd we have ∥A∥I ≤ ∥A∥{[d]} =

√∑
|i|≤n a

2
i . The norm ∥A∥{[d]} can be

considered a counterpart of the Hilbert–Schmidt norm for higher order tensors.
The result by Latała provides bounds on moments of multilinear forms in

i.i.d. Gaussian variables in terms of the I-norms of the corresponding matrix of
coefficients.

Theorem 2.5.2 ([135]). Let G1, . . . , Gk be independent standard Gaussian vec-
tors in Rn and let A ∈ (Rn)⊗k. There exist constants Ck, depending only on k,
such that for any r ≥ 2,

1

Ck

∑
I∈Pk

r|I|/2∥A∥I ≤ ∥⟨A,G1 ⊗ · · · ⊗Gk⟩∥r ≤ Ck

∑
I∈Pk

r|I|/2∥A∥I ,
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Combining this result with Proposition 2.5.1, we obtain the following corol-
lary.

Corollary 2.5.3. Assume that there exist constants M,γ > 0 such that for all
functions f ∈ A, and all r ≥ 2,

∥f(X)− E f(X)∥r ≤Mrγ
∥∥∥|Df(X)|

∥∥∥
r
. (2.5.2)

Then for every integer d ≥ 1, any r ≥ 2 and for every f in the domain of Dd

such that Ddf(X) ∈ Lr,

∥f(X)− E f(X)∥r ≤Cd

(
Md

∑
J∈Pd

r(γ−
1
2
)d+

|J |
2

∥∥∥∥Ddf(X)∥J
∥∥∥
r

+
d−1∑
k=1

Mk
∑
J∈Pk

r(γ−
1
2
)k+

|J |
2 ∥EDkf(X)∥J

)
,

where Cd depends only on d. Moreover, if Ddf(x) is uniformly bounded on X ,
then for t > 0,

P(|f(X)− E f(X)| ≥ t) ≤ 2 exp
(
− 1

C ′
d

ηf (t)
)
,

where C ′
d is another constant depending only on d and

ηf (t) = min(A,B)

with

A = min
J∈Pd

( t

Md supx∈X ∥Ddf(x)∥J

) 2
(2γ−1)d+|J |

,

B = min
1≤k≤d−1

min
J∈Pk

( t

Mk∥EDkf(X)∥J

) 2
(2γ−1)k+|J |

.

Proof. To obtain the moment estimate we combine Proposition 2.5.1 with K =
Mrγ and Theorem 2.5.2. The second part follows from the first one by an
application of Chebyshev’s inequality for the r-th moment and optimization in
r.

A typical application of the above corollary is the situation in which γ = 1/2
(such a subgaussian bound holds by Proposition 2.3.3, e.g., under the assump-
tion of modified log-Sobolev inequalities) and f has bounded derivatives of
second order. The tail bound one obtains is then

P(|f(X)− E f(X)| ≥ t) ≤ 2 exp
(
− cmin

( t2

supx∈X ∥D2f(x)∥2HS + |EDf(X)|2
,

t

supx∈X ∥D2f(x)∥ℓ2→ℓ2

))
.

Estimates of this type are counterparts of the well known Hanson–Wright
inequality for quadratic forms in independent subgaussian random variables
(see [113, 134]).

Let us also mention that if X = Rn, Di’s correspond to the usual partial
derivatives, X is a standard Gaussian vector and f is a polynomial of degree d
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then the inequalities of Corollary 2.5.3 can be reversed (up to constants depend-
ing on d) [8]. The fact that in this case the assumptions of the corollary are sat-
isfied was proved for the first time by Maurey and Pisier (see, e.g., [172]). Other
continuous type examples for which this assumption is satisfied are described
in [8, 3] by means of various types of modified log-Sobolev inequalities corre-
sponding to tail behavior between exponential and Gaussian. As announced,
we will not describe in details such examples. Instead, we will now focus on the
discrete case and discuss a general situation, related to applications considered
in previous sections, in which one can find gradients Di satisfying (2.5.2).

2.5.2 Discussion on the choice of gradients

We will consider the following setting. Let G be a group with a set of generators
g1, g2, . . . , gm, acting on a countable set X (we will denote the result of the action
of g ∈ G on x ∈ X simply by gx). Assume that g1, . . . , gm are pairwise distinct,
distinct from the neutral element of G (denoted by e) and that no two distinct
elements among the gi’s are reciprocal to each other.

Let µ be a probability measure on X . Set A = {gi, g−1
i : i ≤ m} and let

λ : X × A→ [0,∞) be a function satisfying the detailed balance condition

λ(x, g)µ(x) = λ(gx, g−1)µ(gx) (2.5.3)

for x ∈ X , g ∈ A.
Finally, consider the Markov process with the generator

Lf(x) =
∑
g∈A

(f(gx)− f(x))λ(x, g)

and the corresponding Dirichlet form

E(f, h) = 1

2

∑
x∈X

∑
g∈A

(f(gx)− f(x))(h(gx)− h(x))λ(x, g)µ(x) = EΓ(f, h)

with

Γ(f, h)(x) =
1

2

∑
g∈A

(f(gx)− f(x))(h(gx)− h(x))λ(x, g)

=
1

2

∫
X
(f(y)− f(x))(h(y)− h(x))Qx(dy),

where
Qx(y) =

∑
g∈A : gx=y

λ(x, g)

Moreover the pair (Q, µ) satisfies the detailed balance condition. Therefore, if
the form E satisfies Beckner’s inequality with αp ≥ a(p−1)s, for p ∈ (1, 2], then
by Proposition 2.3.3 for all functions f : X → R, and all r ≥ 2

∥f − µ(f)∥r ≤ Kr
1+s
2

∥∥∥(∑
g∈A

(f(gx)− f(x))2λ(x, g)
)1/2∥∥∥

r
, (2.5.4)

for K =
√
κ(s)/2a.

The above inequality allows for a direct use of Corollary 2.5.3 with gradi-
ents Dgf(x) = (f(gx) − f(x))

√
λ(x, g). This choice however may have some
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disadvantages from the point of view of higher order concentration, especially
when one deals with finite groups. To illustrate this let us focus on the situation
when for some g ∈ A, g2 = e (in the sequel we will discuss natural examples
when this is true for all elements of A). One then gets

DgDgf(x) = Dg(f(gx)− f(x))
√
λ(x, g)

=
(
(f(x)− f(gx))

√
λ(gx, g)− (f(gx)− f(x))

√
λ(x, g)

)√
λ(x, g)

= (f(x)− f(gx))(
√
λ(x, g) +

√
λ(gx, g))

√
λ(x, g).

In particular, if M is the constant from Corollary 2.5.3, it may happen that

M2∥D2f(x)∥{1,2} ≥M∥Df(x)∥{1} =M |Df(x)|

and so Corollary 2.5.3 applied with d = 2 is strictly weaker than its assumption
corresponding to d = 1 (while the goal of introducing second order concentration
is handling functions for which first order bounds are too conservative). Also,
in certain situations, especially when dealing with a class of processes or when
one does not have full knowledge about the transition rates, one may want to
have a notion of gradient, which depends only on the function f and not on the
rates λ(x, gi). For these reason one may want to replace the natural choice of
the gradient with another one. We will now briefly discuss some possibilities.

Let us view the set X with the action G as a graph, i.e., define the set of
edges E = {{x, y} : x, y ∈ X ,∃i≤my = gix or x = giy}. Impose also an arbitrary
orientation on the edges, by choosing functions s, t : E → X such that for all
{x, y} ∈ E, {s(x, y), t(x, y)} = {x, y}. Then one can define for g ∈ A,

Dgf(x) =
(
f(t(x, gx))− f(s(x, gx))

)√
max(λ(x, g), λ(gx, g−1)).

Clearly, by (2.5.4), we then have

∥f(X)− E f(X)∥r ≤ Kr
1+s
2

∥∥∥|Df(X)|
∥∥∥
r
.

Moreover, for g2 = e, Dgf(x) = Dgf(gx) and so DgDgf(x) = 0. If λ∗ :=
supx∈X maxg∈A λ(x, g) <∞ one can also take

D̃gf(x) = f(t(x, gx))− f(s(x, gx)),

obtaining a gradient independent of the transition kernel, at the cost of changing
the constant K by a factor

√
λ∗. Such situation may happen especially in the

finite case, when the Markov semigroup is obtained by embedding in continuous
time a discrete time Markov chain as, e.g., in the case of Glauber dynamics (cf.
Section 2.4.3).

For instance if X = {−1, 1}m and gi’s act on X by flipping the i-th co-
ordinate then all gi’s satisfy g2i = e. In this case it is natural to choose
t(x, y) = max(x, y), s(x, y) = min(x, y) where max,min are taken with re-
spect to the lexicographic order. It is then easy to see that in this case D̃gif
coincides, up to a factor of 2, with the usual partial derivative of the polyno-
mial corresponding to the Fourier-Walsh representation of the function f . The
article [4] uses the strategy described above to obtain counterparts of Latała’s
inequalities for Gaussian polynomials for polynomials in Ising models satisfy-
ing the Dobrushin condition discussed in Section 2.4.3. We will generalize the
inequalities obtained therein in Corollary 2.5.4 below.
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Another situation in which all the gi’s are of order two is related to trans-
positions, and the action of the symmetric group, corresponding to moment
inequalities described in Propositions 2.4.8 and 2.4.12 (iii). In this case it is
also natural to use the lexicographic order to define the functions t and s. Note
that in this case we have

(
n
2

)
directional derivatives along transpositions. For

instance in the setting of Proposition 2.4.8, one has

Dτijf(x) =
1

n− 1

(
f(max(σ ◦ τij, σ))− f(min(σ ◦ τij, σ))

)
.

In the more general situation of Proposition 2.4.12 (ii) one can consider the
action of the group generated by flips and swaps of coordinates on the discrete
cube. Another types of estimates related to this example are presented in Chap-
ter 4, where flip-swap random walks are examined. Their dynamics is expressed
in terms of transpositions and changes on particular coordinates but the usual
discrete gradient is considered. One may also consider actions of infinite groups,
for instance Z or more generally Zn, as Beckner and log-Sobolev inequalities are
well known for various measures on Z, e.g., for stationary measures of various
birth-and-death processes (see [58, 77, 54, 154, 25]). In particular, Chapter 3 is
devoted to studying p-log-Sobolev inequalities on N.

2.5.3 Applications to tetrahedral polynomials

Let us now provide an application of Corollary 2.5.3 to tetrahedral polynomials
of random vectors with values in a cube, say [−1, 1]n, for which the correspond-
ing Glauber dynamics satisfies (mLSI) (as discussed in Section 2.4.3). This will
generalize results in [99, 4] concerning the Ising model and results from [100]
concerning exponential random graphs (and by the discussion in Section 2.4.3
will allow also for a slight strengthening of the dependence of constants on the
parameters in these models). Recall that a polynomial f : Rn → R is tetrahe-
dral, if it is affine in every variable, i.e., it is of the form

f(x1, . . . , xn) =
d∑

k=0

∑
I⊆[n],|I|=k

aI
∏
j∈I

xi.

Assume that X = (X1, . . . , Xn) is distributed according to a measure µ on
[−1, 1]n, which satisfies (mLSI) with constant ρ0 > 0 for the Glauber dynamics.
Recall Corollary 2.4.5. Let A be the linear space of tetrahedral polynomials
and note that for any f ∈ A, the inequality |Xi −X ′

i| ≤ 2 implies that

|f(X)− f(X i)| ≤ 2
∣∣∣ ∂f
∂xi

(X)
∣∣∣.

As a consequence, by Corollary 2.4.5, the assumptions of Corollary 2.5.3 are
satisfied with D = ∇, γ = 1/2 and K = Cρ−1

0 for some universal constant C.
Noting that partial derivatives of tetrahedral polynomials are tetrahedral, and
for a polynomial f of degree d, ∇df is constant, we obtain the following result.

Corollary 2.5.4. Assume that µ is a probability measure on [−1, 1]n, satisfying
the inequality (mLSI) with ρ0 > 0 for the Glauber dynamics. Let X be a random
vector with law µ and let f : Rn → R be a tetrahedral polynomial of degree d.
Then for any t > 0,

P
(∣∣∣f(X)− E f(X)

∣∣∣ ≥ t
)
≤ 2 exp

(
− 1

Cd

min
1≤k≤d

min
J∈Pk

( ρ
k/2
0 t

∥E∇kf(X)∥J

)2/|J |)
.

(2.5.5)
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In particular the above corollary applies to the Ising model, exponential
random graphs and hardcore models under the assumptions presented in Sec-
tion 2.4.3. Note that in these cases (or more generally for measures supported
on {−1, 0, 1}n) every polynomial can be reduced to a tetrahedral one.

Let us illustrate the above corollary with an application to triangle counts in
random graphs. Consider a simple random graph G = (V,E), where |V | = n.
For distinct vertices v, w ∈ V , let Xv,w = 1{v,w}∈E. Then, the number of
triangles in G can be written as T = 1

6

∑ ̸=
u,v,w∈V Xu,vXv,wXw,u. The problem

of tail behavior for subgraph counts in Erdős–Rényi random graphs has a long
history, and a lot of progress has been made recently in the large deviation
regime (see, e.g., [64, 144]). Here, we would like to illustrate how Corollary 2.5.4
may be used to obtain bounds for the non-product case.

Assume that G is exchangeable in the following sense: for any permutation
σ : V → V , the distribution of the random set Eσ = {{σ(v), σ(w)} : {v, w} ∈
E} is the same as that of E (in other words, the adjacency matrix of G has
distribution invariant under a simultaneous permutation of rows and columns).
Assuming that n ≥ 3 and V = [n], let us define A = EX1,2, B = EX1,2X2,3 (i.e.,
A is the probability of finding an edge and B is the probability of finding a cherry
at a fixed place in G). If the random vector (Xv,w)1≤v<w≤n satisfies (mLSI), then
one can estimate the I-norms appearing in Corollary 2.5.4 to find a tail estimate
for T . Note that the expected derivatives of T are expressed in terms of A and
B.

In the Erdős–Rényi case such estimates were obtained in [8] and combined
with a slight refinement of (2.5.5), specific to the product situation which al-
lowed to replace ρ0 with an appropriate subgaussian norm. Surprisingly, the
inequality obtained from such a general approach turned out to be optimal in
the large deviation regime for edge probability p ≥ (n1/4

√
log(n))−1. In [100]

the calculations from [8] were combined with (LSI) in the case of exponential
random graphs (cf. Section 2.4.3). The dependence on ρ1 is not specified there,
but one can easily derive it from the proof. Corollary (2.5.4) allows to relax the
dependence on ρ1 to dependence on ρ0, leading to the following estimate (we
skip the detailed calculations, which are based on those from [8] and present
just the final result):

P(|T − ET | ≥ t)

≤ 2 exp
(
− 1

C
min

( t2

n3(ρ−3
0 + ρ−2

0 A2) + n4ρ−1
0 B2

,
t

√
nρ

−3/2
0 + nρ−1

0 A
,
t2/3

ρ−1
0

))
for t ≥ 0 and a universal constant C.



Chapter 3

P-log-Sobolev inequalities

3.1 Background
Functional inequalities are one of the central objects of modern probability the-
ory. They arise naturally when studying mixing times of Markov chains and
are an important tool in proving concentration and hypercontractive estimates.
Arguably, the most prominent examples are the Poincaré and log-Sobolev in-
equalities since most of the other functional inequalities known in the literature
arise either as a modification of one of them (e.g., various modified log-Sobolev
inequalities or inequalities with defects) or as a product of some sort of proce-
dure that interpolates between the above two.

An important example of the latter type is a family of Beckner inequalities
investigated in Chapter 2. Another particular example is a family of p-log-
Sobolev inequalities introduced by Gross [108] for p > 1. His definition was
then extended by Bakry [22] to any real p. Mossel et al. [158] studied p-log-
Sobolev inequalities in the context of reverse hypercontraction.

A vibrant area of research is the study of the relations between various
inequalities. E.g., it is by now classical that the log-Sobolev inequality im-
plies the Poincaré inequality. Such sort of results can often have far-reaching
consequences as demonstrated, e.g., in [158], where the authors prove that for
0 ≤ q < p ≤ 2, the p-log-Sobolev inequality is stronger than the q-log-Sobolev
inequality (cf. Theorem 3.1.6 below). They exploit this relation further to prove
the reverse hypercontraction for measures satisfying the modified log-Sobolev
inequality, which found various applications, cf., e.g., [174, 110]. A similar situa-
tion occurred in Chapter 2, where we have proved that the modified log-Sobolev
inequality implies a particular family of Beckner inequalities, which allows de-
riving strong concentration and moment bounds from the modified log-Sobolev
inequality. Both of the mentioned results are examples of positive results (i.e.,
claiming that one inequality implies the other) and follow from abstract argu-
ments that involve direct comparison of Dirichlet forms. Similar results can be
found in, e.g., the works of Diaconis–Saloff-Coste [81] or Bobkov–Tetali [42].

Another approach needs to be taken in the case of negative results, i.e.,
when showing that one inequality does not imply another. E.g., it is classical
that the Poincaré inequality does not imply the log-Sobolev inequality. In that
case, one counterexample is the exponential measure which satisfies the Poincaré
inequality and does not satisfy the log-Sobolev inequality as the latter implies
subgaussian concentration. To prove such statements, it is often useful to derive
some characterization of the functional inequality in question. These character-
izations are often of independent interest, as the conditions they are expressed

59
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in are usually much more accessible than a direct proof of the functional in-
equalities. Some of the results that provide such characterizations include: the
work by Bobkov and Götze [37] who, by viewing the log-Sobolev inequality in
the general framework of Orlicz spaces, characterize the log-Sobolev inequality
on R; the work by Miclo [154] who uses Hardy inequalities on Z to characterize
the Poincaré inequality on trees or the work by Barthe–Roberto [26] who treat
the case of the modified log-Sobolev inequalities on R.

The aim of this chapter is to answer an open question from [158] on the
relation between p-log-Sobolev inequalities for p ∈ (0, 1], cf. Problem 3.1.1
below. Our result falls into the category of negative examples described above.
As a byproduct, we develop a sufficient condition and complement it with a
closely related necessary condition for p-log-Sobolev inequalities, which are of
independent interest. Below we describe our setting and results in more detail.

3.1.1 General setup

Let (Ω,B, µ) denote some discrete probability space. We assume that µ is fully
supported on Ω. Let P : [0,∞) × Ω × B → [0, 1] be a homogeneous Markov
transition function for which µ is an invariant measure. We assume that P is
reversible with respect to µ and that it induces a strongly continuous semigroup
(Pt)t≥0 of operators on L2(Ω, µ), defined as

Ptf(x) =

∫
Ω

f(y)P (t, x, dy).

It can be then shown that for each f ∈ L2(Ω, µ), the mapping

(0,∞) ∋ t 7→ 1

2t

∫
Ω

∫
Ω

(f(x)− f(y))2P (t, x, dy)µ(dx)

is non-increasing. Denote

H =
{
f ∈ L2(Ω, µ) : sup

t≥0

1

2t

∫
Ω

∫
Ω

(f(x)− f(y))2P (t, x, dy)µ(dx) <∞
}

(3.1.1)
to be a domain of the Dirichlet form E associated with this semigroup, given
by the formula

E(f, g) = lim
t→0+

1

2t

∫
Ω

∫
Ω

(f(x)− f(y))(g(x)− g(y))P (t, x, dy)µ(dx) (3.1.2)

for f, g ∈ H. If L is the infinitesimal generator of the semigroup (Pt)t≥0, defined
via

Lf = lim
t→0+

Ptf − f
h

with the convergence in the L2 sense, then for f, g belonging to the domain HL

of L,

E(f, g) = −
∫
fLg dµ.

We refer the Reader to [67, 90, 142, 21, 9, 6] for a detailed treatment of Markov
processes, generators, Dirichlet forms and associated domains.

Set H+ = H ∩ RΩ
+, where R+ = (0,∞). Below we gather some notation

and results from [158]. Note that while the results in [158] are stated for finite
spaces, the extension to general discrete spaces is straightforward as discussed
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in Section 12.3 therein. Moreover, in order to be consistent with [158] and
most of the relevant literature regarding characterization of functional inequal-
ities [26, 154, 37], we change the convention from the remainder of this thesis,
and throughout this chapter we keep the constants on the right-hand sides of
functional inequalities in question.

Definition 3.1.1. For p ∈ R \ {0, 1}, the p-log-Sobolev inequality is satisfied
with constant C > 0 if

Entµ(f
p) ≤ Cp2

4(p− 1)
E(fp−1, f), (3.1.3)

for all f ∈ H+, such that fp−1 ∈ H+.
The 1-log-Sobolev inequality is satisfied with constant C > 0 if

Entµ(f) ≤
C

4
E(f, log f) (3.1.4)

for all f ∈ H+, such that log f ∈ H.
The 0-log-Sobolev inequality is satisfied with constant C > 0 if

Varµ(log f) ≤
C

2
E(f,−1/f) (3.1.5)

for all f ∈ H+, such that 1/f ∈ H+.
The Poincaré inequality is satisfied with constant C > 0 if

Varµ(f) ≤
C

2
E(f, f) (3.1.6)

for all f ∈ H.

We write p-LS(C) for short to denote the p-log-Sobolev inequality with con-
stant C. We say that a pair (µ, E) satisfies the p-log-Sobolev inequality if p-
LS(C) is satisfied with some finite C > 0. If the underlying Dirichlet form E is
clear from context, we omit it and simply say the µ satisfies the p-log-Sobolev
inequality. Note that the 1-log-Sobolev inequality is often referred to as the
modified log-Sobolev (or entropic) inequality in the literature and that the 0-
log-Sobolev and 1-log-Sobolev inequalities are limiting cases for p-log-Sobolev
inequalities for p ∈ R \ {0, 1}.

Results below provide some basic relations between the inequalities intro-
duced in Definition 3.1.1.

Proposition 3.1.2 ([158, Lemma 3.1]). The Poincaré inequality (3.1.6) with
constant C > 0 is equivalent to the 0-log-Sobolev inequality with the same con-
stant C.

We set p′ = p/(p− 1) for the Hölder conjugate of p ∈ R \ {1}.

Proposition 3.1.3 ([158, Lemma 3.2]). For p ∈ R \ {1}, p-LS(C) is equivalent
to p′-LS(C).

In particular, Proposition 3.1.3 implies that the study of relations between
various p-log-Sobolev inequalities can be reduced to the case p ∈ [0, 2]. More-
over, since in the continuous setting (in the presence of the chain rule) all
p-log-Sobolev inequalities for p ̸= 0 are equivalent to the usual log-Sobolev
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inequality1 and since by Proposition 3.1.2, 0-log-Sobolev inequality is equiva-
lent to the Poincaré inequality which is strictly weaker than the log-Sobolev
inequality, the only interesting range of p is in fact p ∈ (0, 2].

Denote

Ep(f) =

{
pp′E(f 1/p, f 1/p′) if p ∈ (0, 2] \ {1},
E(f, log f) if p = 1,

(3.1.7)

so that p-LS(C) for p ∈ (0, 2] is equivalent to

Entµ(f) ≤
C

4
Ep(f).

Proposition 3.1.4 ([158, Theorem 2.1]). For any positive f , the mapping
(0, 2] ∋ p 7→ Ep(f) is non-increasing.

Remark 3.1.5. Note that [158, Theorem 2.1] is stated for p ∈ (0, 2] \ {1} but a
natural extension to the case p = 1 is straightforward as discussed in Remark 2.2
therein.

Proposition 3.1.4 serves as a tool for obtaining the following main result
of [158].

Theorem 3.1.6 ([158, Theorem 1.7]). For any 0 ≤ q ≤ p ≤ 2, p-LS(C)
implies q-LS(C). Moreover, for any 1 < q ≤ p ≤ 2, q-LS(C) implies p-LS(C̃)
with C̃ = Cqq′/pp′.

The main goal of this chapter is to provide an answer to the following ques-
tion posed in [158, Section 12].

Problem. Is there any subset I ⊂ (0, 1] with non-empty interior, such that for
any p, q ∈ I, p-LS(C) implies q-LS(c(I)C), where c(I) > 0 depends on I only?

3.2 Main result
Let µ be a measure on N with full support. We use the convention that µk =
µ({k}) and µ[k,∞) = µ([k,∞)). For any f : N → R and k ∈ N, denote
Df(k) = f(k + 1)− f(k). Consider the following Dirichlet form

E(f, g) =
∑
k≥0

Df(k)Dg(k)µk (3.2.1)

defined for f, g ∈ {h ∈ L2(Ω, µ) :
∑

k≥0(Dh(k))
2µk < ∞} =: H. The corre-

sponding birth-death dynamics generator is given by the formula

Lf(k) = Df(k)− 1{k>0}
µk−1

µk

Df(k − 1), (3.2.2)

so that E(f, g) = −
∫
fLg dµ for f, g ∈ HL ⊂ H. A Markov process generated

by L given by (3.2.2) and Dirichlet form given by (3.2.1) with stationary measure
µ being a geometric measure is investigated in [77] as an example of a pair (µ, E)
satisfying the Poincaré inequality (3.1.6) and violating the modified log-Sobolev
inequality (3.1.4).

1This can be seen by substituting f2 ← fp in the definition of the p-log-Sobolev inequality
for p ∈ R \ {0}.
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Remark 3.2.1. It follows from the general theory of birth and death processes
(see, e.g., [67, 142]), that E is indeed a Dirichlet form corresponding to a Markov
process on N. As a consequence, when proving a functional inequality in ques-
tion it actually suffices to consider simple (i.e., having finitely many jumps)
functions. Therefore, henceforth we will sometimes restrict from specifying
particular domains and simply assume that the expressions we introduce are
considered for functions for which they are well-defined as one can always re-
strict the attention to the class of simple functions.

For x > 0, set

Hp(x) =

{
pp′(x1/p − 1)(x1/p

′ − 1) if p ∈ (0, 1),

(x− 1) log(x) if p = 1
(3.2.3)

so that Ep defined in (3.1.7) is given by

Ep(f) =
∑
k≥0

f(k)Hp

(f(k + 1)

f(k)

)
µk (3.2.4)

and p-LS(C) for p ∈ (0, 1] is equivalent to

Entµ(f) ≤
C

4

∑
k≥0

f(k)Hp

(f(k + 1)

f(k)

)
µk, (3.2.5)

while 0-LS(C) (i.e., the Poincaré inequality) is equivalent to

Varµ(f) ≤
C

2

∞∑
l=0

(Df(l))2µl. (3.2.6)

Theorem below is our main result.

Theorem 3.2.2. For any p ∈ (0, 1), there exists a measure µ on N that does
not satisfy the p-log-Sobolev inequality but satisfies the q-log-Sobolev inequality
for all q ∈ (0, p). In particular, there are no intervals I that meet the conditions
posed in Problem 3.1.1.

We construct the required counterexample and verify that it satisfies the
appropriate p-log-Sobolev inequalities with the use of the theorem below, which
is of independent interest.

Theorem 3.2.3. Choose any p ∈ (0, 1] and a measure µ on N with full support
and with associated Dirichlet form E, given by the birth-death process genera-
tor (3.2.1).

If µ satisfies the Poincaré inequality (3.2.6) with some finite constant CP > 0
and

Ĉ := sup
n≥1

{[
Hp

(µ[n− 1,∞)

µ[n,∞)

)]−1

· log
( 2

µ[n,∞)

)}
<∞, (3.2.7)

then µ satisfies p-LS(C) (3.2.5) with some finite C > 0.
Contrarily, if there exists an increasing sequence τ0 < τ1 < . . . such that

lim
n→∞

{[
Hp

(µ[τn−1,∞)

µ[τn,∞)

)]−1

· µ[τn−1,∞)

µ[τn − 1,∞)
· log

( 2

µ[τn,∞)

)}
=∞, (3.2.8)

then µ does not satisfy p-LS(C) (3.2.5) with any finite C > 0.
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Remark 3.2.4. The Poincaré inequality is implied by the p-log-Sobolev inequal-
ity for any p ∈ (0, 2], cf. Theorem 3.1.6 and Proposition 3.1.2, therefore making
it a part of the sufficient condition of Theorem 3.2.3 (alongside (3.2.7)) is non-
restrictive.

Remark 3.2.5. The negation of (3.2.7) is equivalent to the existence of an in-
creasing sequence τ0 < τ1 < . . . such that

lim
n→∞

{[
Hp

(µ[τn − 1,∞)

µ[τn,∞)

)]−1

· log
( 2

µ[τn,∞)

)}
=∞.

If µ verifies the Poincaré inequality (3.2.6) with constant CP , then by Lemma 3.3.4
(cf. also Remark 3.3.3) and by Lemma 3.3.10, (v) below, for any τn−1 < τn and
some c > 0,[

Hp

(µ[τn − 1,∞)

µ[τn,∞)

)]−1

≥ 1

1 + c

[
Hp

(µ[τn−1,∞)

µ[τn,∞)

)]−1

· µ[τn−1,∞)

µ[τn − 1,∞)
.

Whence, condition (3.2.8) implies that Ĉ =∞ and thus (3.2.7) does not hold,
but the reverse needs not to be true. Thus, providing a full characterization of
p-log-Sobolev inequalities on N for p ∈ (0, 1] remains open.

3.3 Auxiliary results
In this section we gather some lemmas and known results required for the proof
of Theorem 3.2.3.

3.3.1 Hardy inequality

In the sequel we put 0 · ∞ = 0 and c/0 =∞ for any c > 0.

Definition 3.3.1. We say that a probability measure µ on N satisfies the Hardy
inequality with constant C, if

∞∑
l=0

(f(l)− f(0))2µl ≤ C
∞∑
l=0

(Df(l))2µl = CE(f, f) (3.3.1)

for all f ∈ H.

Define

Cµ = sup
k≥1

{
µ[k,∞) ·

k−1∑
l=0

1

µl

}
. (3.3.2)

The following result states that Cµ characterizes the Hardy inequality (3.3.1).

Theorem 3.3.2 (Miclo [154]). The best constant ĈH in the Hardy inequal-
ity (3.3.1),

ĈH = sup
f∈H

{∑∞
l=0(f(l)− f(0))2µl

E(f, f)
: E(f, f) > 0

}
, (3.3.3)

verifies
Cµ ≤ ĈH ≤ 4Cµ.
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Remark 3.3.3. It is easy to see that for fully supported measures, the Poincaré
inequality (3.2.6) is satisfied if and only if the Hardy inequality (3.3.1) is satis-
fied. More precisely, the best constant ĈP in the Poincaré inequality (3.2.6),

ĈP = 2 sup
f∈H

{Varµ(f)

E(f, f)
: E(f, f) > 0

}
, (3.3.4)

satisfies
2µ0ĈH ≤ ĈP ≤ 2ĈH .

Indeed, ĈP ≤ 2ĈH follows from the estimate Varµ(f) ≤
∫
(f − f(0))2 dµ. To

see that 2µ0ĈH ≤ ĈP , let fε ∈ H for any ε > 0 be such that fε(0) = 0,
E(fε, fε) > 0 and

∫
f 2
ε dµ ≥ (ĈH − ε)E(fε, fε). Then, by the Cauchy–Schwarz

inequality, (
∫
fε dµ)

2 ≤ (1− µ0)
∫
f 2
ε dµ, whence

ĈP

2
E(fε, fε) ≥ Varµ(fε) ≥ µ0

∫
f 2
ε dµ ≥ µ0(ĈH − ε)E(fε, fε),

and we conclude by taking ε→ 0+.

The quantity Cµ is useful for controlling the tail behavior of µ as demon-
strated in the lemmas below.

Lemma 3.3.4. If µ is fully supported, then

sup
k≥0

µ[k,∞)

µk

≤ 1 + Cµ (3.3.5)

and
inf
k≥1

{µ[k − 1,∞)

µ[k,∞)

}
≥ 1 +

1

Cµ

. (3.3.6)

Proof. The estimate (3.3.5) follows from the definition (3.3.2) of Cµ. Using (3.3.5),
we obtain for any k ≥ 1,

µ[k,∞) = µ[k − 1,∞)− µk−1

≤ µ[k − 1,∞)− µ[k − 1,∞)

1 + Cµ

=
(
1 +

1

Cµ

)−1
µ[k − 1,∞)

and (3.3.6) follows.

Lemma 3.3.5. If µ is fully supported, then for X ∼ µ, EX ≤ 1 + Cµ.

Proof. By Lemma 3.3.4, EX ≤
∑

k∈N µ[k,∞) ≤ (1+Cµ)
∑

k∈N µk = 1+Cµ.

3.3.2 Tail estimates

Proposition below states that the p-log-Sobolev inequality implies Poisson-type
tail behavior for p ∈ (0, 1]. It is deduced by using a variant of Herbst’s argument.

Proposition 3.3.6. If µ is fully supported and satisfies p-LS(C) (3.2.5) for
some p ∈ (0, 1] and some C < ∞, then there exists εp : (0,∞) → [0, 1], such
that εp(t)→ 0 as t→∞ and

log
(
µ[t,∞)

)
≤ −(1− εp(t))tp log(t+ 1) (3.3.7)

for any t ≥ 0.
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For the proof of Proposition 3.3.6, we need the following lemma.

Lemma 3.3.7. For any λ > 1 and p ∈ (0, 1),∫ λ

1

es/p − 1

s2
ds ≤ p

1− p
· e

λ/p

λ
= −p′ · e

λ/p

λ
. (3.3.8)

Proof. For any s > 1,

1− p
p
· e

s/p − 1

s2
≤ 1− p

p
· e

s/p

s2
≤ s− p

p
· e

s/p

s2
=

d

ds

[es/p
s

]
,

whence ∫ λ

1

es/p − 1

s2
ds ≤ p

1− p

(eλ/p
λ
− e1/p

)
≤ p

1− p
eλ/p

λ

as desired.

Proof of Proposition 3.3.6. Consider first the case p ∈ (0, 1). For s, h > 0,
x ∈ R, denote ϕh(x) = min(x, h), fs,h(x) = exp(sϕh(x)/p) and gs,h(x) =
exp(sϕh(x)/p

′). Let X ∼ µ and for h > 0, set Xh = min(X, h). For any
s, h > 0, h ∈ N, applying p-LS(C) to fs,h and using the Dirichlet form for-
mula (3.2.1), we obtain

d

ds

[ logE esXh

s

]
=

Ent(esXh)

s2 E esXh

≤ Cpp′

4s2 E esXh
E(fs,h, gs,h)

=
Cpp′

4s2 E esXh

h−1∑
k=0

(
es(k+1)/p − esk/p

)(
es(k+1)/p′ − esk/p′

)
µk

=
Cpp′

4s2
(
es/p − 1

)(
es/p

′ − 1
)∑h−1

k=0 e
sk/p+sk/p′µk

E esXh

≤ Cpp′

4s2
(
es/p − 1

)(
es/p

′ − 1
)
,

(3.3.9)

where in the last inequality we have also used that p′(es/p′ − 1) > 0. By Theo-
rem 3.1.6, µ satisfies the Poincaré inequality (3.2.6), whence by Lemma 3.3.5,
EX < 1 + Cµ <∞, cf. Remark 3.3.3. Consequently, for any λ, h > 0,

logE eλXh

λ
= EXh +

∫ λ

0

d

ds

[ logE esXh

s

]
ds

≤ EXh +
Cpp′

4

∫ λ

0

(
es/p − 1

)(
es/p

′ − 1
)

s2
ds

≤ EX +
Cpp′

4

∫ λ

0

(
es/p − 1

)(
es/p

′ − 1
)

s2
ds <∞.

(3.3.10)

Taking h → +∞ and using monotone convergence theorem in (3.3.10), we
obtain that for any λ > 0, E eλX < ∞. Therefore, we can repeat reasoning
from (3.3.9) to get that for any s > 0,

d

ds

[ logE esX
s

]
≤ Cpp′

4s2
(
es/p − 1

)(
es/p

′ − 1
)
. (3.3.11)
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For any λ > 1, by (3.3.11), estimating 1 − es/p
′ ≤ 1 for s > 1 and using

Lemma 3.3.7,∫ λ

1

d

ds

[ logE esX
s

]
ds ≤ Cpp′

4

∫ λ

1

(es/p − 1)(es/p
′ − 1)

s2
ds

≤ Cp(−p′)
4

∫ λ

1

es/p − 1

s2
ds ≤ Cpp′2

4λ
eλ/p,

whence, for t > e1/p−1, by the Chernoff bound and setting λ = p log(t+1) > 1,

log
(
P(X ≥ t)

)
≤ logE exp(−λt+ λX)

= −λt+ λ logE eX + λ

∫ λ

1

d

ds

[ logE esX
s

]
ds

≤ −λt+ λ logE eX +
Cpp′2

4
eλ/p

= −pt log(t+ 1) + p(logE eX) log(t+ 1) +
Cpp′2

4
(t+ 1)

= −
(
1− logE eX

t
− Cp′2(t+ 1)

4t log(t+ 1)

)
tp log(t+ 1).

Therefore, for any p ∈ (0, 1) and

εp(t) =

{
1 if t ≤ e1/p − 1,

min
(
1, logE eX

t
+ C

4
· 1
(1/p−1)2

· t+1
t log(t+1)

)
if t > e1/p − 1,

(3.3.12)

the estimate (3.3.7) holds for any t ≥ 0 as desired.
We turn to the case p = 1. Recall that by Theorem 3.1.6, for any p ∈ (0, 1)

the 1-log-Sobolev inequality implies the p-log-Sobolev inequality with the same
constant. Let εp be given by (3.3.12) and let φ : (0,∞) → (0, 1) be such that
φ(t) → 1 and εφ(t)(t) → 0 as t → ∞ (one can take, e.g., φ(t) = 0.5 for t ≤ ee

and φ(t) = (1 + 1/ log log t)−1 for t > ee). For t ∈ (0,∞), set

ε1(t) = 1− φ(t)
(
1− εφ(t)(t)

)
.

Then ε1(t)→ 0 as t→∞ and for any t > 0, we apply (3.3.7) with p = φ(t) to
obtain the conclusion.

3.3.3 Reduction to increasing functions

The proposition below is an adaptation of [26, Proposition 3] to the discrete
case. The proof goes along similar lines – we present it for completeness.

Proposition 3.3.8. Recall the definition (3.3.2) of Cµ and assume Cµ < ∞.
For any f : N→ R+ with a finite number of jumps and for any ρ > 1,

Entµ(f) ≤ 16Cµ(1 +
√
ρ)2E(

√
f,

√
f) +

∑
k : g(k)≥ρEµ g

g(k) log
(g(k)
Eµ g

)
µk,

where g(n) = f(0) +
∑n−1

k=0(Df(k))+.

Proof. We use the assumption that f has a finite number of jumps to make sure
that every quantity below is well-defined. Note that g ≥ f since (Df(k))+ ≥
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Df(k) for all k ∈ N. For x, t > 0, denote ψ(t, x) = x log x
t
− (x − t), ϕ(x) =

x log x and set Θ = {n ∈ N : f(n) ≥ ρE g}. Convexity of ϕ implies that
ϕ(Eµ f) ≥ ϕ(Eµ g) + ϕ′(Eµ g)(Eµ f − Eµ g), so that

Ent(f) = Eµ

[
ϕ(f)− ϕ(Eµ f)

]
≤ Eµ

[
ϕ(f)− ϕ(Eµ g) + ϕ′(Eµ g) · (Eµ g − Eµ f)

]
= Eµ ψ(Eµ g, f).

(3.3.13)

Set Uρ = (1 +
√
ρ)2. Since for x ∈ [0, ρt],

ψ(t, x) ≤ x
(x
t
− 1

)
− (x− t) = t

(x
t
− 1

)2

=
(
1 +

√
x

t

)2

(
√
x−
√
t)2 ≤ Uρ(

√
x−
√
t)2,

we obtain

Eµ ψ(Eµ g, f)1Θc ≤ Uρ Eµ(
√
f −

√
Eµ g)

2

≤ 2Uρ

(
Eµ(

√
f −√g)2 + Eµ(

√
g −

√
Eµ g)

2
)

≤ 2Uρ

(
Eµ(

√
f −√g)2 + 2Varµ(

√
g)
)
.

(3.3.14)

Let ĈH and ĈP be the best constants in the Hardy inequality (3.3.1) and the
Poincaré inequality (3.2.6) respectively, cf. the definitions (3.3.3) and (3.3.4).
By Theorem 3.3.2 and as indicated in Remark 3.3.3, ĈP ≤ 2ĈH ≤ 8Cµ. Recall
that

√
f(0) =

√
g(0), whence the RHS of (3.3.14) can be estimated from above

by

2Uρ

(
4Cµ

∞∑
k=0

(D
√
f −D√g)2(k)µk + 8Cµ

∞∑
k=0

(D
√
g)2(k)µk

)
≤ 16CµUρE(

√
f,

√
f),

where we have used the fact that 4(D
√
f − D

√
g)2 + 8(D

√
g)2 ≤ 8(D

√
f)2,

which follows from the pointwise estimate 0 ≤ D
√
g ≤ (D

√
f)+ and the fact

that for a fixed y, the convex mapping x 7→ 4(y− x)2 +8x2 on a closed interval
admits a maximum at an end of this interval.

Turning to the remaining part of the RHS of (3.3.13), we get

Eµ ψ(E g, f)1Θ = Eµ

[
f log

f

Eµ g
− (f − Eµ g)

]
1Θ

≤ Eµ

[
g log

g

Eµ g

]
1Θ ≤

∑
k : g(k)≥ρEµ g

g(k) log
g(k)

Eµ g
µk,

where in both inequalities we have used the definition of Θ and the facts that
f ≤ g and ρ > 1. Combining all the above estimates yields the conclusion.

When proving that some p-log-Sobolev inequality is satisfied, Proposition 3.3.8
allows us to restrict our attention to a special subclass of functions from H+.
This idea is formalized in the corollary below.

Corollary 3.3.9. If Cµ <∞ and∑
k : g(k)≥ρEµ g

g(k) log
(g(k)
Eµ g

)
µk ≤ CρEp(g) (3.3.15)
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for some ρ > 1, p ∈ (0, 2], some constant Cρ > 0 and any non-decreasing
function g : N → R+ with a finite number of jumps, then µ satisfies the p-log-
Sobolev inequality (3.2.5) with constant

C = 64Cµ(1 +
√
ρ)2 + 4Cρ.

Proof. By applying Proposition 3.3.8 together with condition (3.3.15), we get
that for any f : N→ R+ with a finite number of jumps

Entµ(f) ≤ 16Cµ(1 +
√
ρ)2E(

√
f,

√
f) + CρEp(g), (3.3.16)

where g(0) = f(0) and g(n) = f(0) +
∑n−1

k=0(Df(k))+ for n ≥ 1.
Note that f ≤ g by definition and that for any x,∆ > 0, the mapping

x 7→ xHp(1 + ∆/x) is non-increasing, which follows from the convexity of Hp

on [1,∞), cf. Lemma 3.3.10, (i) below, and the fact that Hp(1) = 0. Using that
Hp ≥ 0 and monotonicity of x 7→ xHp(1 + ∆/x), we obtain

Ep(f) =
∞∑
k=0

f(k)Hp

(
1 +

Df(k)

f(k)

)
µk

≥
∞∑
k=0

f(k)Hp

(
1 +

Df(k)

f(k)

)
µk1{Df(k)>0}

≥
∞∑
k=0

g(k)Hp

(
1 +

Df(k)

g(k)

)
µk1{Df(k)>0}

=
∞∑
k=0

g(k)Hp

(
1 +

Dg(k)

g(k)

)
µk = Ep(g).

(3.3.17)

By Proposition 3.1.4, E(
√
f,
√
f) ≤ E2(f) ≤ Ep(f) for any p ∈ (0, 2]. There-

fore, combining (3.3.16) and (3.3.17), we obtain that for any f : N → R+ with
a finite number of jumps,

Entµ(f) ≤
(
16Cµ(1 +

√
ρ)2 + Cρ

)
Ep(f). (3.3.18)

We conclude the result for arbitrary f by the monotone convergence theo-
rem (applied to the RHS of (3.3.18)) and Fatou’s lemma (applied to the LHS
of (3.3.18)).

3.3.4 Technical lemmas

Recall the definition (3.2.3) of Hp and note that for p ∈ (0, 1) and x > 0,
Hp(x) = pp′(x− x1/p − x1/p′ + 1).

Lemma 3.3.10. For any p ∈ (0, 1], the following properties are true:

(i) Hp is increasing and convex on [1,∞);

(ii) Hp(x) ≥ (log x)2 for x ≥ 1.

If additionally x ≥ λ for some λ > 1, then

(iii) Hp(x) ≥ (x log x) ·min
{Hp(λ)

λ log λ
,

H′
p(λ)

1+log λ
, 1
}
;

(iv) Hp(x) ≥ Hp(xc) ·min
{ Hp(λ)

Hp(λc)
,

H′
p(λ)

cH′
p(λc)

, c−1/p
}

for any c > 1;
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(v) Hp(y)

y
≤ λ

λ−1

Hp(x)

x
for any λ ≤ y ≤ x.

Proof. We start with (i) and (ii).
For p = 1, H1(x) = (x−1) log x, H1(1) = H ′

1(1) = 0 andH ′′
1 (x) =

1
x2+

1
x
> 0,

yielding (i), while (ii) follows immediately as log x < x− 1.
For p ∈ (0, 1), denote h(x) = (log x)2. Then, Hp(1) = H ′

p(1) = h(1) =
h′(1) = 0 and, using AM-GM inequality,

H ′′
p (x) =

x1/p + x1/p
′

x2
≥ 2x1/2p+1/2p′

x2
≥ 2

x2
≥ 2

1− log x

x2
= h′′(x), (3.3.19)

whence (ii) follows. Moreover, (3.3.19) implies that H ′′
p (x) ≥ 0, yielding also (i).

To see (iii), denote the function on its RHS by h̃(x) and note that by the
definition of h̃, Hp(λ) ≥ h̃(λ) and H ′

p(λ) ≥ h̃′(λ). Since for any x ≥ 1,

H ′′
p (x) =

x1/p + x1/p
′

x2
≥ x1/p−2 ≥ 1

x
= (x log x)′′,

then alsoH ′′
p (x) ≥ h̃′′(x) for any x ≥ λ and (iii) follows (note that the calculation

above also covers the case p = 1, as then 1/p′ = 0).
Similarly, if h̃(x) is the RHS of (iv), then Hp(λ) ≥ h̃(λ) and H ′

p(λ) ≥ h̃′(λ)

by the definition of h̃. As

H ′′
p (x) =

x1/p + x1/p
′

x2
≥ c−1/p · c2 (cx)

1/p + (cx)1/p
′

(cx)2
=

d2

dx2
(
c−1/pHp(cx)

)
,

it follows that H ′′
p (x) ≥ h̃′′(x) for any x ≥ λ, yielding (iv).

Finally, since Hp(1) = 0 and Hp is convex by (i), we have for any λ ≤ y ≤ x,

Hp(y)

y
≤ Hp(y)

y − 1
≤ Hp(x)

x− 1
≤ λ

λ− 1

Hp(x)

x

yielding (v).

For 1 < ρ ≤ x and k ≥ 1, denote

αx,ρ(k) = inf
{ k−1∑

s=0

Hp

(gs+1

gs

)
µs : g0 = 1 ≤ . . . ≤ gk−1 < ρ ≤ x ≤ gk

}
.

(3.3.20)
This quantity plays a crucial role in providing sufficient condition for the p-log-
Sobolev inequalities in Theorem 3.2.3. Its definition is partially inspired by an
analogous quantity defined in [26] in the continuous setting.

Lemma 3.3.11. For any 1 < ρ ≤ x and k ≥ 1,

αx,ρ(k) ≥
[k−1∑
s=0

µ−1
s

]−1

· (log x)2 (3.3.21)

and
αx,ρ(k) ≥ Hp(xρ

−1)µk−1. (3.3.22)
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Proof. We start with (3.3.21). By Lemma 3.3.10, (ii),

αx,ρ(k) ≥ inf
{k−1∑

s=0

(
log

gs+1

gs

)2

µs : g0 = 1 ≤ . . . ≤ gk−1 < ρ ≤ x ≤ gk

}
≥ inf

{k−1∑
s=0

λ2sµs :
k−1∑
s=0

λs ≥ log x
}

≥ inf
{[k−1∑

s=0

λs

]2[k−1∑
s=0

µ−1
s

]−1

:
k−1∑
s=0

λs ≥ log x
}
=

[k−1∑
s=0

µ−1
s

]−1

· (log x)2,

where in the last estimate we used the Cauchy-Schwarz inequality.
We turn to (3.3.22). By Lemma 3.3.10, Hp is non-negative and increasing

on [1,∞), whence

αx.ρ(k) ≥ inf
{
Hp

( gk
gk−1

)
µk−1 : 1 ≤ gk−1 < ρ ≤ x ≤ gk

}
= Hp(xρ

−1)µk−1

as desired.

3.4 Proof of Theorem 3.2.3

3.4.1 Sufficient condition

Fix p ∈ (0, 1] and assume that µ satisfies the Poincaré inequality (3.2.6) with
constant CP <∞ and that Ĉ <∞, i.e., the condition (3.2.7) holds. Recall the
definition (3.3.2) of Cµ and that for fully supported measures, Cµ ≤ CP/2µ0 <
∞, cf. Theorem 3.3.2 and Remark 3.3.3. We show that µ satisfies the p-log-
Sobolev inequality (3.2.5) with constant C bounded from above by a quantity
depending on Cµ and Ĉ only.

Define ρ as

ρ = min
((1 + Cµ

Cµ

)1/3
, 2
)
. (3.4.1)

By Corollary 3.3.9, it suffices to show that for any non-decreasing function
f : N→ R+ with a finite number of jumps,

∑
k : f(k)≥ρE f

f(k) log
(f(k)
Eµ f

)
µk ≤ CρEp(f) = Cρ

∞∑
k=0

f(k)Hp

(f(k + 1)

f(k)

)
µk (3.4.2)

for some constant Cρ > 0 independent of f . By the homogeneity of (3.4.2), we
can assume that f(0) = 1. Let us consider such f and denote

τ0 = 0, τk = inf{ l > τk−1 : f(l) ≥ ρf(τk−1) }

for k ≥ 1. Since f has a finite number of jumps, then there exists M ∈ N \ {0}
such that τM−1 < τM = ∞. If M = 1, then the LHS of (3.4.2) equals zero as
E f ≥ f(0) = 1 and (3.4.2) holds with any Cρ > 0. Assume therefore from now
on that M > 1. For k ∈ {1, . . . ,M − 1}, denote

γk = ρf(τk) log+
(ρf(τk)
Eµ f

)
µ[τk,∞),
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where log+(x) := max(log x, 0) and let

δk = f(τk−1)

τk−1∑
l=τk−1

Hp

(f(l + 1)

f(l)

)
µl.

Since E f ≥ f(0) = 1 and as for k ≥ 1 and l ∈ [τk, τk+1), f(τk) ≤ f(l) < ρf(τk),
we have

∑
k : f(k)≥ρEµ f

f(k) log
(f(k)
Eµ f

)
µk ≤

∑
k : f(k)≥ρ

f(k) log+
(f(k)
Eµ f

)
µk

=
M−1∑
k=1

τk+1−1∑
l=τk

f(l) log+
( f(l)
Eµ f

)
µl

<
M−1∑
k=1

ρf(τk) log+
(ρf(τk)
Eµ f

)
µ[τk, τk+1) ≤

M−1∑
k=1

γk

and as Hp ≥ 0 and by the monotonicity of f ,

∞∑
k=0

f(k)Hp

(f(k + 1)

f(k)

)
µk ≥

M−1∑
k=1

δk.

Therefore, to prove (3.4.2), it suffices to show that

M−1∑
k=1

γk ≤ Cρ

M−1∑
k=1

δk. (3.4.3)

Recall that Hp(1) = 0, Hp ≥ 0 and recall the definition (3.3.20) of αx,ρ.
Consider gl = 1 for l = 0, 1, . . . , τk−1 and gl = f(l)/f(τk−1) for l = τk−1 +
1, . . . , τk. Then, by the definition of δk, we have for any k ∈ {1, . . . ,M − 1},

αf(τk)/f(τk−1),ρ(τk) ≤ δk/f(τk−1). (3.4.4)

For k = 1, using the monotonicity of f , estimate (3.4.4) and the fact that
f(τ0) = 1 < ρ ≤ f(τ1), we get

γ1 ≤ ρf(τ1) log+
( ρf(τ1)

µ[0, τ1) + f(τ1)µ[τ1,∞)

)
µ[τ1,∞) · δ1

δ1

≤ ρf(τ1) log+
( ρf(τ1)

µ[0, τ1) + f(τ1)µ[τ1,∞)

)
µ[τ1,∞)

[
αf(τ1),ρ(τ1)

]−1 · δ1

≤ sup
{
ρx log+

( ρx

µ[0, l) + xµ[l,∞)

)
µ[l,∞)

[
αx,ρ(l)

]−1
: x ≥ ρ, l ≥ 1

}
· δ1

=: C1δ1.

(3.4.5)

For 2 ≤ k ≤M − 1 (if such exist), we estimate each γk based on two cases.
To that end, choose ε = ρ−1 and note that by the definition (3.4.1) of ρ and by
Lemma 3.3.4, for any l ≥ 1,

ε < 1 < ρ < ρ2 ≤ ε
µ[l − 1,∞)

µ[l,∞)
. (3.4.6)
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Consider the case f(τk)/f(τk−1) > εµ[τk − 1,∞)/µ[τk,∞). Using monotonicity
of f , Markov’s inequality implies that ρf(τk)

Eµ f
≤ ρ

µ[τk,∞)
. Using this estimate

together with (3.4.4), we get that

γk ≤ ρf(τk) log
( ρ

µ[τk,∞)

)
µ[τk,∞) · δk

δk

≤ ρf(τk)

f(τk−1)
log

( ρ

µ[τk,∞)

)
µ[τk,∞)

[
αf(τk)/f(τk−1),ρ(τk)

]−1 · δk

≤ sup
{ρx log( ρ

µ[l,∞)

)
µ[l,∞)

αx,ρ(l)
: l ≥ 1, x > ε

µ[l − 1,∞)

µ[l,∞)

}
· δk

=: C2δk.

(3.4.7)

If f(τk)/f(τk−1) ≤ εµ[τk − 1,∞)/µ[τk,∞), then using the estimate log+(xy) ≤
log+(x) + log+(y), we split

γk ≤ ρf(τk) log+
(ρf(τk−1)

E f
)
µ[τk,∞)︸ ︷︷ ︸

=:A

+ ρf(τk) log+
( f(τk)

f(τk−1)

)
µ[τk,∞)︸ ︷︷ ︸

=:B

,

and we estimate A and B separately using the assumption as follows:

A ≤ ερf(τk−1) log+
(ρf(τk−1)

E f
)
µ[τk − 1,∞)

≤ ερf(τk−1) log+
(ρf(τk−1)

E f
)
µ[τk−1,∞) = εγk−1

(3.4.8)

and, using monotonicity of f and (3.4.4),

B = ρf(τk) log
( f(τk)

f(τk−1)

)
µ[τk,∞) · δk

δk

≤ ρf(τk)

f(τk−1)
log

( f(τk)

f(τk−1)

)
µ[τk,∞)

[
αf(τk)/f(τk−1),ρ(τk)

]−1 · δk

≤ sup
{ρx log(x)

αx,ρ(l)
µ[l,∞) : l ≥ 1, ρ ≤ x ≤ ε

µ[l − 1,∞)

µ[l,∞)

}
· δk

=: C3δk.

(3.4.9)

Combine estimates (3.4.7), (3.4.8) and (3.4.9) to get that for k > 1,

γk ≤ εγk−1 + (C2 + C3)δk.

By (3.4.5), γ1 ≤ C1δ1, whence

(1− ε)
M−1∑
k=1

γk ≤ (C1 + C2 + C3)
M−1∑
k=1

δk. (3.4.10)

It suffices therefore to estimate the terms C1, C2 and C3.

Estimating C3

Recall the definition (3.4.9) of C3 and the relation (3.4.6) – we split the supre-
mum based on whether x ≤ ρ2 or not. By Lemma 3.3.11, eq. (3.3.21), and by
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the definition (3.3.2) of Cµ,

sup
{ρx log(x)

αx,ρ(l)
µ[l,∞) : l ≥ 1, ρ ≤ x ≤ ρ2

}
≤ sup

{ ρx

log x

[ l−1∑
s=0

µ−1
s

]
µ[l,∞) : l ≥ 1, ρ ≤ x ≤ ρ2

}
≤ Cµ

ρ3

log ρ
. (3.4.11)

Similarly, by Lemma 3.3.11, eq. (3.3.22), and by the definition (3.3.2) of Cµ,

sup
{ρx log(x)

αx,ρ(l)
µ[l,∞) : l ≥ 1, ρ2 ≤ x ≤ ε

µ[l − 1,∞)

µ[l,∞)

}
≤ sup

{ ρx log(x)
Hp(xρ−1)

µ[l,∞)

µl−1

: l ≥ 1, ρ2 ≤ x ≤ ε
µ[l − 1,∞)

µ[l,∞)

}
≤ Cµ sup

x≥ρ2

ρx log(x)

Hp(xρ−1)
. (3.4.12)

Combining (3.4.11) and (3.4.12) and using (iii) of Lemma 3.3.10 with λ = ρ
and xρ−1 ≥ ρ in place of x, we obtain

C3 ≤ Cµ

( ρ3

log ρ
+max

{
1,
ρ log ρ

Hp(ρ)
,
1 + log ρ

H ′
p(ρ)

}
· sup
x≥ρ2

ρ2 log x

log(xρ−1)

)
= Cµ

( ρ3

log ρ
+ 2max

{
1,
ρ log ρ

Hp(ρ)
,
1 + log ρ

H ′
p(ρ)

}
· ρ2

)
.

(3.4.13)

Estimating C2

Recall the definition (3.4.7) of C2 and the relation (3.4.6). By Lemma 3.3.11,
eq. (3.3.22) and using that ρ ≤ 2 by definition, we get

C2 ≤ sup
{ ρx

Hp(xρ−1)
· log

( ρ

µ[l,∞)

)
· µ[l,∞)

µl−1

: l ≥ 1, x > ε
µ[l − 1,∞)

µ[l,∞)

}
≤ sup

{ ρx

Hp(xρ−1)
· log

( 2

µ[l,∞)

)
· µ[l,∞)

µl−1

: l ≥ 1, x > ε
µ[l − 1,∞)

µ[l,∞)

}
.

(3.4.14)

For any l ≥ 1 and x > εµ[l−1,∞)
µ[l,∞)

, applying (v) of Lemma 3.3.10 with ρ−1x ≥ ρ

in place of x, ε
ρ
µ[l−1,∞)
µ[l,∞)

≥ ρ in place of y and λ = ρ (recall (3.4.6)) we get that

ρ

ε

µ[l,∞)

µ[l − 1,∞)
Hp

(ε
ρ

µ[l − 1,∞)

µ[l,∞)

)
≤ ρ2

ρ− 1

Hp(xρ
−1)

x
,

which after rearrangement (recall that ε = ρ−1) is equivalent to

ρx

Hp(xρ−1)
· µ[l,∞) ≤ ρ

ρ− 1

[
Hp

( 1

ρ2
µ[l − 1,∞)

µ[l,∞)

)]−1

µ[l − 1,∞),

which combined with Lemma 3.3.4 allows estimating further (3.4.14) as follows:

C2 ≤
ρ

ρ− 1
sup
l≥1

{[
Hp

( 1

ρ2
µ[l − 1,∞)

µ[l,∞)

)]−1

· log
( 2

µ[l,∞)

)
· µ[l − 1,∞)

µl−1

}
≤ (1 + Cµ)

ρ

ρ− 1
sup
l≥1

{[
Hp

( 1

ρ2
µ[l − 1,∞)

µ[l,∞)

)]−1

· log
( 2

µ[l,∞)

)}
.

(3.4.15)
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For any l ≥ 1, applying (iv) of Lemma 3.3.10 with c = ρ2, λ = ρ and 1
ρ2

µ[l−1,∞)
µ[l,∞)

≥
ρ in place of x (recall (3.4.6)) gives

Hp

( 1

ρ2
µ[l − 1,∞)

µ[l,∞)

)
≥ Hp

(µ[l − 1,∞)

µ[l,∞)

)
min

{ Hp(ρ)

Hp(ρ3)
,
H ′

p(ρ)

ρ2H ′
p(ρ

3)
, ρ−2/p

}
,

which combined with (3.4.15) and assumption (3.2.7) results in

C2 ≤ (1 + Cµ)
ρ

ρ− 1
max

{Hp(ρ
3)

Hp(ρ)
,
ρ2H ′

p(ρ
3)

H ′
p(ρ)

, ρ2/p
}
· Ĉ <∞. (3.4.16)

Estimating C1.

Recall the definition (3.4.5) of C1. We use the same ideas as above by considering
two cases. For any l ≥ 1, if ρ ≤ x ≤ εµ[l − 1,∞)/µ[l,∞), then

ρx log
( ρx

µ[0, l) + xµ[l,∞)

)
µ[l,∞) ≤ ρx log(ρx)µ[l,∞)

≤ 2ρx log(x)µ[l,∞) ≤ 2C3 · αx,ρ(l),
(3.4.17)

where in the fist and second step we used that x ≥ ρ > 1 and in the last step
we used the definition (3.4.9) of C3.

If x > εµ[l − 1,∞)/µ[l,∞), then by the definition (3.4.7) of C2,

ρx log
( ρx

µ[0, l) + xµ[l,∞)

)
µ[l,∞) ≤ ρx log

( ρ

µ[l,∞)

)
µ[l,∞) ≤ C2 · αx,ρ(l)

(3.4.18)
and thus combining (3.4.17) and (3.4.18), we arrive at

C1 ≤ C2 + 2C3. (3.4.19)

Final estimate

Combining (3.4.13) and (3.4.16) together with bounds (3.4.10) and (3.4.19)
yields (3.4.3) with Cρ =

2C2+3C3

1−ε
, which is bounded from above by

ρ

ρ− 1

[
2(1 + Cµ)Ĉ

ρ

ρ− 1
max

{Hp(ρ
3)

Hp(ρ)
,
ρ2H ′

p(ρ
3)

H ′
p(ρ)

, ρ2/p
}

+ 3Cµ

( ρ3

log ρ
+ 2ρ2max

{
1,
ρ log ρ

Hp(ρ)
,
1 + log ρ

H ′
p(ρ)

})]
<∞.

Therefore, we obtain (3.4.2) for any non-decreasing f : N → R+ with a finite
number of jumps and Cρ as above. Thus, Corollary 3.3.9 implies that

Entµ(f) ≤ [64Cµ(1 +
√
ρ)2 + 4Cρ]Ep(f)

for any f : N→ R+, as desired.

3.4.2 Necessary condition

For the sake of contradiction, assume that there exists a sequence 0 = τ0 < τ1 <
. . . such that (3.2.8) holds, i.e.,

βk :=
[
Hp

(µ[τk−1,∞)

µ[τk,∞)

)]−1

· µ[τk−1,∞)

µ[τk − 1,∞)
· log

( 2

µ[τk,∞)

)
→∞
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as k → ∞, and that µ verifies p-LS(C) with some finite constant C > 0. By
Theorem 3.1.6, µ satisfies the Poincaré inequality (3.1.6) with the same constant
C and therefore Cµ <∞ (recall the definition (3.3.2) of Cµ and Remark 3.3.3).
For M ≥ 1, set

fM =
[M−1∑
k=0

1[τk,τk+1)

µ[τk,∞)

]
+

1[τM ,∞)

µ[τM ,∞)
.

Then Eµ fM ≤ M + 1. Moreover, by Lemma 3.3.4, µ[τk,τk+1)

µ[τk,∞)
≥ 1

1+Cµ
for any

k ∈ N, whence

Entµ(fM) ≥ −(M + 1) log(M + 1) +
1

1 + Cµ

M∑
k=1

log
( 1

µ[τk,∞)

)
.

Similarly (recall that Hp(1) = 0),

Ep(fM) =
M∑
k=1

µτk−1f(τk − 1)Hp

( f(τk)

f(τk − 1)

)
≤

M∑
k=1

µ[τk − 1,∞)

µ[τk−1,∞)
Hp

( f(τk)

f(τk − 1)

)
=

M∑
k=1

β−1
k log

( 2

µ[τk,∞)

)
and consequently, since Entµ(fM) ≤ C

4
Ep(fM) by assumption,

M∑
k=1

[
log

( 1

µ[τk,∞)

)
·
(
1− C(1 + Cµ)

4βk

)]
≤ (1 + Cµ)

[C
4
M(log 2) sup

k
β−1
k + (M + 1) log(M + 1)

]
(3.4.20)

(recall that βk → ∞, whence supk β
−1
k < ∞). Let k0 be such that 2βk ≥

C(1 + Cµ) for every k ≥ k0. By Proposition 3.3.6, log
(

1
µ[τk,∞)

)
≥ cpτk log τk for

some constant c > 0, whence by (3.4.20)

M∑
k=k0

k log k ≤
M∑

k=k0

τk log τk

≤ 1

cp

M∑
k=k0

log
( 1

µ[τk,∞)

)
≤ c̃ · (M + 1) log(M + 1)

for M big enough and some constant c̃ > 0 independent of M . We arrive at
the desired contradiction by taking a limit as M → ∞ and by noting that∫M

k0
x log x dx ≥ ĉM2 logM for M big enough and some constant ĉ > 0 inde-

pendent of M .

3.5 Proof of Theorem 3.2.2
As a counterexample we will take the Conway–Maxwell–Poisson distribution
with parameter ν > 0, defined as µν(k) = 1

Zν
(k!)−ν for k ∈ N, where Zν =∑

k≥0(k!)
−ν is the normalizing constant, cf. [73].

For any n ∈ N, using the estimate

b! ≥ a!(b− a)! (3.5.1)
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valid for b ≥ a ≥ 0 we obtain

µν({n}) ≤ µν [n,∞) =
1

Zν

∑
k≥n

1

(k!)ν

≤ 1

Zν(n!)ν

∑
k≥0

1

(k!)ν
=

1

(n!)ν
= Zνµν({n}).

(3.5.2)

Recall the definition (3.3.2) of Cµ. Using (3.5.2) and (3.5.1), we obtain for
n ∈ N \ {0},

µν [n,∞)
n−1∑
k=0

1

µν({k})
≤ Zνµν({n})

n−1∑
k=0

1

µν({k})
= Zν

∑n−1
k=0(k!)

ν

(n!)ν
≤ Z2

ν ,

whence Cµν < ∞ and thus µν satisfies the Poincaré inequality (3.2.6) with
constant CP = 8Z2

ν , cf. Theorem 3.3.2 and Remark 3.3.3.
We first show that for any ν ∈ (0, 1], µν verifies the p-log-Sobolev inequal-

ity (3.2.5) for any p < ν. Fix some 0 < p < ν ≤ 1. By the first part of
Theorem 3.2.3, it suffices to show that

sup
n≥1

{[
Hp

(µν [n− 1,∞)

µν [n,∞)

)]−1

· log
( 2

µν [n,∞)

)}
<∞. (3.5.3)

By (3.5.2), for any n ≥ 1

nν

Zν

=
µν({n− 1})
µν({n})

1

Zν

≤ µν({n− 1})
µν [n,∞)

≤ µν [n− 1,∞)

µν [n,∞)

≤ Zν
µν({n− 1})
µν [n,∞)

≤ Zν
µν({n− 1})
µν({n})

= Zνn
ν .

(3.5.4)

This, together with Lemma 3.3.4 and the definition (3.2.3) of Hp implies that[
Hp

(µν [n− 1,∞)

µν [n,∞)

)]−1

≤
[
Hp

(
max

{1 + Cµν

Cµν

,
nν

Zν

})]−1

≤ C ′

nν/p
(3.5.5)

for any n ≥ 1 and some big enough constant C ′ > 0 (independent on n but
dependent on ν and p). By (3.5.2) and Stirling’s formula

lim
n→∞

log
(

2
µν [n,∞)

)
n log n

= ν. (3.5.6)

Combining (3.5.5) with (3.5.6) and recalling that p < ν, we obtain (3.5.3).
Finally, we show that for any ν ∈ (0, 1), µν does not satisfy the ν-log-Sobolev

inequality. By Theorem 3.2.3, it suffices to show that there exists an increasing
sequence τ0 < τ1 < . . . such that

lim
n→∞

{[
Hν

(µ[τn−1,∞)

µ[τn,∞)

)]−1

· µ[τn−1,∞)

µ[τn − 1,∞)
· log

( 2

µ[τn,∞)

)}
=∞. (3.5.7)

We choose τn = n and (3.5.7) becomes

lim
n→∞

{[
Hν

(µ[n− 1,∞)

µ[n,∞)

)]−1

· log
( 2

µ[n,∞)

)}
=∞. (3.5.8)
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Analogously as in (3.5.5), using (3.5.4) and the definition (3.2.3) of Hp, we get
that [

Hν

(µν [n− 1,∞)

µν [n,∞)

)]−1

≥
[
Hν

(
Zνn

ν
)]−1

≥ C ′′

n
(3.5.9)

for any n ≥ 1 and some small enough constant C ′′ > 0 (independent on n but
dependent on ν). We conclude (3.5.8) by combining (3.5.6) with (3.5.9).



Chapter 4

Stochastic Covering Property

4.1 Introduction
Investigating families of binary random variables with negatively dependent co-
ordinates in the recent years has attracted considerable attention, see, e.g., [169,
184, 45, 170, 131, 92, 32, 13, 16, 126]. A wide and important class of such vari-
ables is constituted by those satisfying the strong Rayleigh property (abbrev.
SRP) introduced by Borcea et al. [45]. More precisely, a probability measure π
on the hypercube Bn := {0, 1}n satisfies the SRP if its generating polynomial

Cn ∋ z 7→
∑
x∈Bn

π(x)
n∏

i=1

zxi
i

has no roots z whose all coordinates lie in the (strict) upper half-plane. The
examples of such measures are, e.g., the law of independent Bernoulli random
variables conditioned on their sum, determinantal measures, uniform measure
on the bases of balanced matroids, laws of point processes or measures obtained
by running exclusion dynamics on the cube, cf. Pemantle and Peres [170].

The main purpose of this chapter is to deepen the understanding of the
concentration of measure phenomenon in the context of strong Rayleigh distri-
butions and related classes of probability measures on the discrete cube. In some
of our considerations we will exploit only a more general notion of the stochastic
covering property (abbrev. SCP, cf. Definition 4.2.1) introduced by Pemantle
and Peres [170], since this condition already turns out to provide a useful frame-
work for proving concentration results [170, 114, 16, 131, 126, 6]. On the other
hand for some more specialized inequalities we will restrict our attention to in-
dependent Bernoulli variables conditioned on their sum taking some fixed value.
Distributions of this type generalize the uniform measure on slices of the dis-
crete cube, related to the Bernoulli–Laplace model, which has been extensively
studied, e.g., by Lee–Yau, Bobkov–Tetali, Gao–Quastel [140, 42, 91] and more
recently by Samson [181] and Sambale–Sinulis [179]. The non-uniform distribu-
tion given by conditioned Bernoulli variables has found applications, e.g., in sur-
vey sampling being a model of sampling without replacement from a finite popu-
lation, with prescribed inclusion probabilities, which maximizes the entropy (of-
ten referred to as conditional Poisson sampling). We refer to [69, 68, 70, 194, 32]
for properties and applications of this family of distributions.

79
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4.1.1 State of the art

The landmark paper that initiated the study of concentration phenomenon im-
plied by the SCP is due to Pemantle and Peres [170] who, using the martingale
method, proved a sub-Gaussian concentration bound for measures satisfying
the SCP and functions that are Lipschitz with respect to the Hamming dis-
tance dH(x, y) =

∑
i 1xi ̸=yi . Recently, Hermon and Salez [114], building on

the works [143, 124], retrieved this estimate by proving that the SCP implies
the modified log-Sobolev inequality, cf. Section 2.4.5. Their result is one of
many recent breakthrough achievements relating various types of negative de-
pendence for binary random variables to logarithmic Sobolev inequalities, see,
e.g., [13, 128, 74, 12] – we provide a more detailed description of these develop-
ments in subsequent sections.

These findings in terms of concentration of measure can be summarized as
follows (for a probability measure π on Bn and f : Bn → R, we use the notation
π(f) :=

∫
f dπ).

Theorem 4.1.1 ([170, 114]). For a probability measure π on Bn satisfying the
SCP and any f : Bn → R such that

|f(x)− f(y)| ≤ dH(x, y) ∀x, y ∈ Bn

the following estimate holds for all t > 0

π
(
f > π(f) + t

)
≤ exp(−t2/8n). (4.1.1)

If π is k-homogeneous (i.e., it is supported on the set of binary vectors with
exactly k coefficients equal to one), then n in the above expression can be replaced
with k.

Recently, a sub-exponential version of Theorem 4.1.1 for matrix-valued func-
tions has been shown by Aoun et al. [16], who develop a general framework for
deducing concentration bounds for matrix-valued functions from the Poincaré
inequality. A Bernstein-type bound for measures with the SRP, which in cer-
tain situations may give stronger concentration, has been also developed by
Kyng–Song [131] and Kaufman, Kyng and Soldá [127] for functions of the form
f(x) =

∑n
i=1 xiCi, where Ci are nonnegative definite matrices (see Theorem

4.2.8 and Remark 4.2.10 below).
While concentration estimates and functional inequalities for general SCP

measures are relatively recent, investigation of uniform measures on slices of
the discrete cube in this context has much longer history. Such measures are
of interest in relation to the Bernoulli–Laplace models of statistical physics
and to uniform sampling without replacement. In particular Lee and Yau
studied the Poincaré and log-Sobolev inequalities for such measures, whereas
Bobkov–Tetali [42] and independently Gao–Quastel [91] investigated modified
log-Sobolev inequalities relevant for concentration estimates. Strong concentra-
tion results for this case can be also obtained by projection from Talagrand’s
convex distance inequality for uniform measure on the symmetric group [192].
Samson [181] complemented this approach by proving corresponding transporta-
tion inequalities. Very recently Sambale and Sinulis [179], investigating general
multislices, recovered convex distance inequalities by means of functional in-
equalities and also obtained concentration for polynomials. One should stress
that concentration results for slices of the cube provided by the above references
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are substantially stronger than those in the spirit of (4.1.1) coming from more
general inequalities for SCP or SRP measures.

The uniform measure on slices of the cube can be seen as a special case
of the distribution of independent Bernoulli random variables conditioned on
their sum, when all the variables have the same probability of success. Such
general distributions are known to be strong Rayleigh. To our best knowledge
there has not been much work concerning refined concentration inequalities
for general measures of this type. The only exception we are aware of is a
recent article [32] by Bertail and Clémençon in which the authors, motivated
by applications to survey sampling, obtain precise Bernstein-type inequalities
for linear functionals.

4.1.2 Overview of main results

As mentioned in the prequel, various breakthrough results concerning nega-
tively dependent measures on the discrete cube have been recently obtained, in
particular in the context of functional inequalities. They have lead to optimal
rates for the speed of convergence of the associated Markov chains allowing
for improved sampling algorithms. Many of them also yield concentration re-
sults in the spirit of Theorem 4.1.1. Despite these important developments,
the theory of concentration of measure for negatively dependent measures has
not yet reached the level of completeness comparable to its counterpart in the
independent setting. This concerns among others

• generalization of (4.1.1) to weighted Hamming distances, which would lead
to a counterpart of the bounded difference inequality and allow to treat
many functionals naturally arising in combinatorics or high dimensional
geometry (see, e.g., the survey article [153] or the monograph [47]),

• improved bounds for special classes of functions, e.g., subgaussian bounds
for convex Lipschitz functions, which in the independent setting were ob-
tained first by Talagrand from his celebrated convex distance inequal-
ity [191, 192], or bounds for polynomials which are especially important
for the discrete cube due to their relation with the Fourier–Walsh expan-
sion (see, e.g., [164, 130, 135, 8]),

• inequalities for general matrix-valued functions, see [197, 168] for a de-
scription of this rich theory in the independent setting (we note impor-
tant results obtained for sums of linear combination of positive definite
matrices [131, 127] as well as a subexponential bound obtained in [16] by
means of the matrix Poincaré inequality).

In the case of independent random variables, the results mentioned above
have been obtained over the years by a mixture of many techniques, most impor-
tantly, the martingale approach, going back to Azuma and Hoeffding [17], Tala-
grand’s powerful induction techniques [192] and functional inequalities brought
forward by Ledoux [137] and developed by many authors (see [51] for a detailed
list of references). The functional inequalities involved in the proofs in the in-
dependent setting from a broader perspective correspond to a special case of
Glauber dynamics and involve changing just one coordinate in a product space
at a time, cf. Section 2.4.3. This is in contrast with the dynamics considered in
the aforementioned papers on negatively-dependent variables, especially in the
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homogeneous case. It turns out that the functional inequalities which are suf-
ficient for proving strong results on the speed of convergence of the associated
Markov processes may not lead directly to concentration results beyond (4.1.1).
This in our opinion is the main obstacle in obtaining counterparts of classical
strong concentration inequalities in the negatively dependent setting. Our goal
in this chapter is to explore such stronger concentration results, by adapting
both the martingale and functional approach. Below we present informally our
main results, referring for the details to the subsequent parts of the chapter.

The first series of results we obtain concerns general measures satisfying
the SCP for which we refine the Azuma type martingale argument used by
Pemantle and Peres [170] and generalize Theorem 4.1.1 to Lipschitz functions
with respect to more general weighted Hamming distances dα(x, y) =

∑
αi1xi ̸=yi

obtaining a bounded-difference type inequality (which corresponds to the first
item on the list above). This is the content of Theorem 4.2.3. Next, we use the
approach developed for the scalar case together with matrix bounded-difference
inequality due to Tropp [197] to get an analogous concentration for matrix-
valued functions (Theorem 4.2.5), strengthening the results of Aoun et al. [16],
in particular obtaining a subgaussian inequality in place of a subexponential
one. We note that the proof in [16] is based on the matrix Poincaré inequality,
whereas our approach relies on matrix martingale inequalities. Under a stronger
assumption of the SRP we are also able to extend the Bernstein-type inequality
of Kyng and Song [131] from linear combinations with coefficients in nonnegative
definite matrices to general functions satisfying a matrix bounded-difference
type assumptions (Theorem 4.2.8).

The second line of research presented in thesis chapter concerns the func-
tional approach to improved concentration inequalities. We develop an ab-
stract condition (Definition 4.4.3) based on a relation between the constant
in the modified log-Sobolev inequality and some quantities related to the gen-
erator of the associated Markov process and show that this condition implies
not only the bounded-difference type inequality but also Talagrand’s convex
distance inequality, matrix-Bernstein inequality and higher order concentration
for tetrahedral polynomials.

It is natural to conjecture that our condition holds for an arbitrary SCP
measure and an appropriately chosen Markov generator. While we are not able
to prove it in such generality we show that this is the case for the distribution
of Bernoulli random variables conditioned on their sum being equal to some
constant, obtaining in particular all the aforementioned concentration results.
This extends various previous works that treated uniform measures on slices
of the hypercube to the case of non-uniform measures obtained by the above
conditioning procedure. In particular, we extend the results on the modified
log-Sobolev inequality for the Bernoulli–Laplace model due to Gao–Castel [91]
and Bobkov–Tetali [42], as well as the convex distance inequality and poly-
nomial concentration obtained recently by Sambale–Sinulis [179]. We remark
that conditioned Bernoulli distribution is a very natural generalization of the
uniform measure on slices of the discrete cube, due to its relevance in survey
sampling as well as information theoretic properties (as mentioned in the intro-
duction, it is a measure with maximal entropy among all probability measures
with prescribed inclusion probabilities). We refer to the survey article [68] for a
description of statistical applications of conditional Bernoulli distributions and
to the monograph [194] for an algorithmic perspective. Let us also mention
that in recent years considerable attention in statistics has been devoted to
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Donsker type CLTs for empirical processes of sampling schemes, in particular
for the conditional Poisson sampling (rejective sampling) relying on conditioned
Bernoulli distribution (see, e.g., [31, 112]). We expect that improved concentra-
tion inequalities for this measure should lead to strengthened non-asymptotic
estimates for such processes, as it was the case in the theory of empirical pro-
cesses in independent random variables.

4.1.3 Organization of this chapter

In Section 4.2 we present our results concerning concentration for general mea-
sures satisfying the SCP/SRP. In Section 4.3 we specialize our analysis to
Bernoulli random variables conditioned on their sum being equal to some con-
stant. Then, in Section 4.4 we formulate an abstract framework that allows
to deduce the results of Section 4.3. Finally, all the proofs are presented in
Sections 4.5, 4.6 and 4.7.

4.2 Concentration under the SCP and SRP
In this section we present our concentration results for general measures sat-
isfying the SCP or SRP. Let us start with introducing some notation. For
x = (x1, . . . , xn) ∈ Bn := {0, 1}n and any S ⊂ {1, 2, . . . , n} =: [n] we use the
shorthand notation xS = (xi)i∈S. For any r ∈ [n] we denote x>r = (xi)i>r (and
analogously with relations other than >)1. We also write xi for the vector ob-
tained from x ∈ Bn by flipping its i-th coordinate and xij for the vector obtained
by swapping the i-th and j-th coordinate, i.e., xi = x ± ei and if xi ̸= xj then
xij = x± ei ∓ ej for i, j ∈ [n], where ei ∈ Bn is the vector with one on the i-th
and zeros on the remaining coordinates; whereas xij = x if xi = xj. We remark
that the notation xij should not be confused with (xi)j. The law of a random
variable X is denoted by L(X), whereas L(X|A) stands for the conditional law
of X given an event A (with an analogous convention for conditioning with
respect to σ-fields or other random variables).

Below, we recall the definition of the SCP.

Definition 4.2.1 (Stochastic covering property). For x, y ∈ Bn, we say that x
covers y, denoted x ▷ y, if x = y or x = y + ei for some i ∈ [n].

A random variable X taking values in Bn satisfies the SCP if for any S ⊂ [n]
and any x, y ∈ Bn such that P(XS = xS),P(XS = yS) > 0 and xS ▷ yS, there
exists a coupling (U, V ) between the conditional distributions L(XSc |XS = yS)
and L(XSc |XS = xS) such that U ▷ V . A measure π satisfies the SCP if X
with law π does so.

Remark 4.2.2. As indicated in the introduction, the SCP is implied by the SRP,
cf. [170]. The opposite however is not true, as is demonstrated, e.g., by Cryan
et al. in [74, Appendix A], where the authors show that yet another possible
generalization of the SRP, the strong log-concavity, is incomparable with the
SCP. In particular, they construct a distribution that is supported on the bases
of a matroid, and that satisfies the SCP and violates the log-concavity (and
whence the SRP as well).

1We adopt the convention that if x ∈ Bn then x>n = ∅ and as a consequence, e.g.,
P (· |X>n = ∅) = P (·).
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For a finite sequence x, we denote by x↓ the non-increasing rearrangement
of the elements of x and for α ∈ [0,∞)n =: Rn

+ and x, y ∈ Bn we define the
α-weighted Hamming distance dα(x, y) =

∑
i αi1xi ̸=yi . Finally, for p ∈ [1,∞],

|·|p is the ℓp norm on Rn and |·| := |·|2 denotes the Euclidean norm.

The first main result of this chapter is the following generalization of Theo-
rem 4.1.1.

Theorem 4.2.3. For a probability measure π on Bn satisfying the SCP, any
f : Bn → R and α ∈ Rn

+ such that

|f(x)− f(y)| ≤ dα(x, y) ∀x, y ∈ Bn
the following estimate holds for all t > 0:

π
(
f > π(f) + t

)
≤ exp(−t2/8|α|2).

If measure π is k-homogeneous then 8|α|2 in the above estimate can be replaced
with 16

∑k
i=1(α

↓
i )

2.

Remark 4.2.4. Theorem 4.2.3 implies Theorem 4.1.1 (up to an absolute constant
in the exponent) by taking α = (1, 1, . . . , 1). Moreover, by considering func-
tions of the form f(x) =

∑
i cixi with |c|2 ≪ n|c|2∞ in the non-homogeneous or∑k

i=1(c
↓
i )

2 ≪ k|c|2∞ in the k-homogeneous case, one can see that Theorem 4.2.3
can give substantially better concentration estimates than Theorem 4.1.1. We
remark that such general linear functional are important both from the ab-
stract geometric perspective on high dimensional probability, but also from the
statistical point of view. An important example is the Horvitz–Thompson es-
timator build over a sampling scheme defined by a k-homogeneous measure on
the discrete cube (see, e.g., [32]).

We now formulate the matrix analogue of Theorem 4.2.3. To this end, let
us denote the space of d-dimensional Hermitian matrices by Hd, the identity
matrix in Hd by Id, the maximal eigenvalue of H ∈ Hd by λmax(H) and the
operator norm of H by ∥H∥.

Theorem 4.2.5. For a probability measure π on Bn satisfying the SCP, any
f : Bn → Hd and α ∈ Rn

+ such that

∥f(x)− f(y)∥ ≤ dα(x, y) ∀x, y ∈ Bn (4.2.1)

the following estimate holds for all t > 0

π
(
λmax(f − π(f)) > t

)
≤ d exp(−t2/32|α|2).

If π is k-homogeneous then 32|α|2 in the above estimate can be replaced with
64

∑k
i=1(α

↓
i )

2.

Remark 4.2.6. Recently, Aoun et al. [16] showed that for any k-homogeneous
probability measure π on Bn satisfying the SCP and any f : Bn → Hd such that

∥f(x)− f(y)∥ ≤ dH(x, y) ∀x, y ∈ Bn
the following estimate applies

π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2

8k + 2t
√
2k

)
. (4.2.2)

The exponent in (4.2.2) is proportional to −t/2
√
2k for t big enough and whence

for such t Theorem 4.2.5 applied with α = (1, . . . , 1) improves on (4.2.2) (and
on an analogous result from [126]) as it yields a sub-Gaussian estimate.
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Remark 4.2.7. Using semigroup techniques together with matrix concentration
results implied by the Poincaré inequality due to Aoun et al. [16], we are also
able to derive a sub-exponential concentration inequality for general measures
satisfying the SCP under weaker assumptions on f than those of Theorem 4.2.5,
cf. Remark 4.3.7.

When comparing the inequality of Theorem 4.2.5 or the results from [16]
with results for matrix-valued functions of independent random variables, one
can ask if it is possible to weaken the assumptions on the function f and in-
stead of the Lipschitz constant with respect to dα use some weaker parame-
ter, involving bounds on the increments of the function in terms of the posi-
tive semidefinite order. In many situations one encounters functions for which
(f(x) − f(xi))2 ≼ C2

i where Ci are some positive semidefinite matrices and ≼
stands for the positive semidefinite order (note that considering arbitrary ma-
trices Ci is a generalization of the condition (4.2.1), which corresponds to the
special case C2

i = α2
i Id). The simplest, yet important situation of this type is

given by f(x) =
∑n

i=1 xiCi. Inequalities for such functions together with algo-
rithmic applications were considered by Kyng and Song in [131]. It turns out
that their approach can be adapted to the setting of general functions, yielding
the following theorem.

Theorem 4.2.8. Let π be a k-homogeneous probability measure Bn satisfying
the strong Rayleigh property and f : Bn → Hd be such that there exists a sequence
C1, . . . , Cn ∈ Hd satisfying

(f(x)− f(xi))2 ≼ C2
i ∀x ∈ Bn, i ∈ [n]. (4.2.3)

Then for any t > 0,

π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2

8∥π(f̃)∥ log(ek) + 4
3
Kt

)
, (4.2.4)

where f̃(x) =
∑n

i=1 xiC
2
i and K = maxi≤n ∥Ci∥.

Remark 4.2.9. In fact, the only place in the proof of Theorem 4.2.8 where we
use the SRP in its full strength is to get that P(Xi = 1 |Xi1 = 1, . . . , Xil = 1) ≤
P(Xi = 1) for X ∼ π and any i, k ∈ [n] and i1, . . . , ik ⊂ [n] \ {i}. Therefore,
in Theorem 4.2.8 it suffices to assume that π satisfies the SCP and negative
association, which is implied by the SRP, cf. [170].

Remark 4.2.10. It is natural to expect that log(ek) in (4.2.4) is just an artefact
of the proof. Very recently in Kaufman, Kyng and Soldá in [127] obtained a
Chernoff type inequality for functions of the form f(x) =

∑n
i=1 xiCi for positive

semidefinite matrices Ci, not containing this logarithmic factor, which improved
certain algorithmic constructions related to graph sparsifiers constructed via
random spanning trees, cf. [131].

Let us also point out that despite the logarithmic factor present in Theorem
4.2.8, when we specialize it to the linear function f as discussed above, it is
not directly comparable with the result from [127], which instead of ∥π(f̃)∥
uses a larger quantity K∥π(f̂)∥ with f̂(x) =

∑n
i=1 xiCi (recall that Ci’s are

nonnegative definite).
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4.3 Concentration for conditional Bernoullis
In this section, we present our concentration results concerning Bernoulli ran-
dom variables conditioned on their sum being constant. These include Tala-
grand’s convex distance inequality, matrix-Bernstein inequality and concentra-
tion for polynomials.

We start with introducing the notation. For a sequence p = (p1, . . . , pn) ∈
(0, 1)n, let B = (B1, . . . , Bn) be a sequence of independent Bernoulli random
variables with probabilities of success pi, i.e., P(Bi = 1) = 1 − P(Bi = 0) = pi
for i ∈ [n]. Finally, set X = (X1, . . . , Xn) ∼ L

(
B |

∑
iBi = k

)
for some

k ∈ {0, . . . , n} and denote the distribution of X by π(p, k).
Our first contribution is a counterpart of the celebrated convex distance

inequality, introduced for the first time by Talagrand [191] for product measures
on the cube.

Theorem 4.3.1. If π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}, then
for any A ⊂ Bn,

π(A)π
(
d2T (·, A)/84

)
≤ 1,

where
dT (x,A) = sup

α : |α|≤1

dα(x,A) for x ∈ Bn, A ⊂ Bn.

Let Mπf denote any median of f with respect to the measure π. A classical
consequence of Theorem 4.3.1 is the following fact regarding the concentration
around the median of convex functions [51]. Let us recall the classical ob-
servation that subgaussian concentration around median and mean for convex
Lipschitz functions are equivalent up to the change of constants by a universal
factor.

Corollary 4.3.2. If π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n},
then for any convex function f : Rn → R that is L-Lipschitz with respect to the
standard Euclidean distance on Rn and any t > 0,

π
(
|f −Mπf | > t

)
≤ 4 exp

(
− t2/84L2

)
.

Remark 4.3.3. If one is interested just in the lower tail of a convex function,
then one can in fact replace the Lipschitz constant L by π

(
|∇f |

)
or even certain

quantiles of |∇f |. We do not pursue this direction here and refer the Reader
to [7].

Remark 4.3.4. If f : Bn → R is dα 1-Lipschitz, then it can be extended to a
function on Rn which is |α|-Lipschitz with respect to the standard Euclidean
distance. Therefore, Corollary 4.3.2 counterparts Theorem 4.2.3 in the sense
that it yields the same concentration profile while allowing for a weaker Lipschitz
condition on f at the cost of assuming convexity.

Our next result concerns concentration for matrix-valued functions under
weaker assumptions than those in Theorem 4.2.5.

Theorem 4.3.5. Let π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}.
Assume that f : Bn → Hd is such that there is a sequence of positive semidefinite
matrices C1, . . . , Cn satisfying

(f(x)− f(xi))2 ≼ C2
i , ∀ x ∈ Bn, i ∈ [n], (4.3.1)
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where ≼ denotes the partial ordering of the set of positive semidefinite matrices.
Define the variance proxy

σ2 = 16 sup
{∥∥∑

i∈I

C2
i

∥∥ : |I| = k, I ⊂ [n]
}
.

Then for any t > 0,

π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2/(σ2 + σt)

)
.

Remark 4.3.6. Condition (4.3.1) implies that f is 1-Lipschitz with respect to the
distance dα with αi = ∥Ci∥. On the other hand, for many choices of matrices
C1, . . . , Cn it happens that σ2 ≪

∑k
i=1

(
∥Ci∥2

)↓ as n, k →∞. Therefore, while
yielding only sub-exponential concentration as opposed to the sub-Gaussian
one given by Theorem 4.2.5, Theorem 4.3.5 may improve significantly on The-
orem 4.2.5 through better parameters in the exponent.
Remark 4.3.7. By an adaptation of the proof of Theorem 4.3.5, one can obtain a
similar result for general k-homogeneous measures satisfying the SCP condition
with the variance proxy parameter

σ2 = 8 sup
{∥∥∑

i∈I

C2
i

∥∥+ kmax
i/∈I

∥∥C2
i

∥∥ : |I| ≤ k, I ⊂ [n]
}
.

Finally, let us turn to the higher order concentration. Below, for Reader’s
convenience, we repeat some parts and notation of Section 2.5. Recall that by
the Fourier–Walsh expansion (see e.g., [164]), every function f : Bn → R can be
written in a unique way as a tetrahedral polynomial, i.e., a polynomial which is
affine with respect to every variable (in particular the degree of the polynomial is
at most n). Therefore in what follows we restrict our attention to this represen-
tation. In particular, when we speak about the gradient ∇f = (∂1f, . . . , ∂nf)
or higher order derivatives ∇kf , we always think of the usual derivatives of
the polynomial function on Rn given by the tetrahedral representation of f
(sometimes referred to as the harmonic extension of f). We remark that the
directional derivatives ∂if coincide on Bn with the discrete derivatives of f given
by Dif(x) = f(max(x, xi))− f(min(x, xi)), where the maximum and minimum
are taken coordinatewise.

Let |I| be the cardinality of a set I and for a multiindex i = (i1, . . . , id) ∈ [n]d

let |i| = maxj≤d ij and |iI | = maxj∈I ij. Denote by Pd the set of partitions of
[d] into nonempty, pairwise disjoint sets. For a partition I = {I1, . . . , Ik} ∈ Pd,
and a d-indexed matrix A = (ai)i∈[n]d , recall the notation

∥A∥I = sup
{ ∑

i∈[n]d
ai

k∏
l=1

x
(l)
iIl
: |(x(l)iIl )| ≤ 1, 1 ≤ l ≤ k

}
,

where |(xiIl )| =
√∑

|iIl |≤n x
2
iIl

. Therefore, for example,

∥(aij)i,j≤n∥{1,2} = sup
{ ∑

i,j≤n

aijxij :
∑
i,j≤n

x2ij ≤ 1
}
= ∥(aij)i,j≤n∥HS,

∥(aij)i,j≤n∥{1}{2} = sup
{ ∑

i,j≤n

aijxiyj :
∑
i≤n

x2i ≤ 1,
∑
j≤n

y2j ≤ 1
}
= ∥(aij)i,j≤n∥,

∥(aijk)i,j,k≤n∥{1,2}{3} = sup
{ ∑

i,j,k≤n

aijkxijyk :
∑
i,j≤n

x2ij ≤ 1,
∑
k≤n

y2k ≤ 1
}
,
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where ∥ · ∥HS and ∥ · ∥ denote the Hilbert–Schmidt and the ℓ2 → ℓ2 operator
norm respectively.

Theorem 4.3.8. If π = π(p, k) for some p ∈ (0, 1)n and k ∈ {0, . . . , n}, then
for any tetrahedral polynomial f : Bn → R of degree d,

π
(∣∣f − π(f)∣∣ ≥ t

)
≤ 2 exp

(
− 1

Cd

min
1≤r≤d

min
J∈Pr

( t

∥π(∇rf)∥J

)2/|J |)
,

where Cd is a constant depending only on the degree d of f .

Inequalities of this type for polynomials of arbitrary degree were introduced
for the first time by Latała [135] for tetrahedral polynomials in i.i.d. standard
Gaussian variables. Subsequently they were extended to general polynomials
in independent subgaussian random variables and to certain dependent situa-
tions related to Glauber dynamics (see [8, 4, 178, 179, 6]). We remark that in
the independent, subgaussian case and d = 2 they reduce to the well known
Hanson–Wright inequality for quadratic forms, which has proved useful in non-
asymptotic analysis of random matrices and in asymptotic geometric analysis
(see, e.g., [198, Chapter 6]). It is worth mentioning that in the Gaussian case
they may be reversed up to the value of the absolute constants, thus Theo-
rem 4.3.8 shows that the measures π(p, k) exhibit Gaussian type concentration
for polynomials. As we have seen in Section 2.5.3, while calculating the norms
∥·∥J is usually difficult, estimating them is sometimes possible, leading to appli-
cations involving subgraph counts (in the Erdős-Rényi case or for some models
of random graphs with dependencies [8, 178, 179]) or to statistical applications,
e.g., in testing Ising models [76] and signal processing [199]. It is worth noting
that Theorem 4.3.8 is not a direct consequence of Corollary 2.5.4 since it is
based on a dynamics that allows to change two coordinates simultaneously.

4.4 Abstract formulations
In this section we recall some notions from the theory of Markov semigroups
and formulate the abstract counterparts of the results of Section 4.3 and of
Theorem 4.2.3. We believe that the results presented in this section might be of
separate interest as they provide a general framework for proving concentration
on the hypercube. We stress that most of the proof techniques that we exploit
were known previously – our main contribution is the abstract formulation of
these results by means of the novel stability condition (cf. Definition 4.4.3) and
their adaptation to the setting of flip-swap random walks.

Throughout this section we will rely on the usual notions from the theory of
Markov processes and Dirichlet forms specialized to finite state space. We will
briefly recall them and refer to [142, 24, 42] for details.

4.4.1 Modified log-Sobolev inequalities

Let L be the generator of a jump Markov process on some finite probability
space (M,π). In what follows we will sometimes treat L as a linear operator on
RM and sometimes identify it with the corresponding matrix, indexed by the
elements of M .

Assume that L satisfies the detailed-balance condition

∀ x, y ∈M π(x)L(x, y) = π(y)L(y, x), (4.4.1)
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which implies that π is a stationary measure for the Markov process and L
is self-adjoint on L2(π). In this chapter we consider only Markov processes
satisfying the above condition, which may not be stated explicitly in all the
results.

For a given L, we define ∆(L) := maxx−L(x, x) = maxx
∑

y : y ̸=x L(x, y) and
write E(f, g) = −π(fLg) for the Dirichlet form associated with L. In particular
E(f, g) = π

(
Γ(f, g)

)
, where Γ: RM × RM → RM given by

Γ(f, g)(x) =
1

2

∑
y∈M

(f(x)− f(y))(g(x)− g(y))L(x, y) (4.4.2)

is the corresponding carré-du-champ operator. We use shorthand notation
Γ(f, f) =: Γ(f) and observe that by the detailed-balance condition (4.4.1) we
have π

(
Γ(f)

)
= π(Γ+(f)), where

Γ+(f)(x) =
∑
y∈M

(f(x)− f(y))2+L(x, y). (4.4.3)

Finally, we denote by ρ(L) the best (the greatest) constant such that the
following modified log-Sobolev inequality is satisfied

ρ(L) Entπ(f) ≤ E(f, log f) (4.4.4)

for all functions f : M → (0,∞), where Entπ(f) = π(f log f) − π(f) log π(f)
is the entropy functional. We remark that ρ(L) is positive iff L is irreducible
on the support of π (see the discussion in [42] and [141, Chapter 12]). In what
follows we will restrict our attention to this situation, without mentioning this
assumption explicitly in each statement.

A classical observation, often referred to as Herbst’s argument (cf. the
monographs [138] by Ledoux and [51] by Boucheron et al.), says that for any
f : M → R,

π
(
f > π(f) + t

)
≤ exp(−t2ρ(L)/4∥Γ+(f)∥∞), (4.4.5)

where ∥ · ∥∞ stands for the norm in L∞(π).

4.4.2 Flip-swap random walks

Let us now recall the results due to Hermon and Salez, formulated already
in Section 2.4.5 and rephrase them in the notation more convenient for the
upcoming arguments. After Hermon and Salez [114], we say that a kernel L
generates a flip-swap random walk if L(x, y) > 0 implies that x = yi for some
i ∈ [n] (i.e., x and y differ by a flip) or x = yij for some i ̸= j, i, j ∈ [n] (i.e.,
x and y differ by a swap). The main contribution of [114] can be stated in the
following way (cf. Theorem 2.4.12 for the extended formulation of their results).

Theorem 4.4.1 ([114]). For any measure π on Bn satisfying the SCP, there
exists a kernel L generating a reversible flip-swap random walk with stationary
measure π such that ρ(L) ≥ 1 and ∆(L) ≤ n. If π is also k-homogeneous, then
∆(L) ≤ 2k as well.

Theorem 4.4.1, by means of Herbst’s argument (4.4.5), implies (up to an
absolute constant in the exponent) the estimate from Theorem 4.1.1 after ob-
serving that for a flip-swap random walk and any f : Bn → R that is 1-Lipschitz
with respect to the Hamming distance dH ,

∥Γ+(f)∥∞ ≤ ∆(L) · max
x,y∈Bn

{ (f(y)− f(x))2+ : L(x, y) > 0 } ≤ 4∆(L). (4.4.6)
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Remark 4.4.2. There are many examples of flip-swap random walks on the hy-
percube in the literature, including, e.g., the Bernoulli–Laplace model, Glauber
dynamics or base exchange random walk on matroids, cf. e.g., [42, 98, 178, 74].
We note that the results of this section apply to any flip-swap random walk as
long as we have control of its stability (cf. Definition 4.4.3) constant.

It turns out that for the proofs of all the statements of Section 4.3 it suf-
fices to demonstrate that the following condition is true for some reversible
generator L with stationary measure π(p, k) for which the modified log-Sobolev
inequality (4.4.4) is known.

Definition 4.4.3 (Stability condition). Let L be a generator of a flip-swap
random walk on Bn with invariant probability distribution π. We say that the
pair (L, π) meets the stability condition with constant R ≥ 0 (i.e., is R-stable)
if it satisfies the modified log-Sobolev inequality (4.4.4) and

max
x∈suppπ; i∈[n]

∑
y : yi ̸=xi

L(x, y) ≤ Rρ(L). (4.4.7)

If it is clear from the context which measure π is associated with L, we will
often omit it in the discussion and simply say that L is R-stable.

Remark 4.4.4. If π is not concentrated on a single point, then a random walk on
Bn with a generator L that satisfies the modified log-Sobolev inequality (4.4.4)
may be at best 0.25-stable (i.e., R ≥ 0.25). Indeed, in this case there exists
i such that π({xi = 1}), π({xi = 0}) > 0. If L satisfies the modified log-
Sobolev inequality, then it also satisfies the Poincaré inequality 1

2
ρ(L)Varπ(f) ≤

E(f, f), see e.g., [6, Proposition B.5]. Let f(x) = 1{xi=1}. By the stability
condition (4.4.7) and reversibility of L we get that

Rρ(L)π({xi = 1}) ≥
∑

x : xi=1

∑
y : yi=0

L(x, y)π(x)

=
∑
x,y

(xi − yi)2+L(x, y)π(x)

= E(f, f)

≥ 1

2
ρ(L)Varπ(f) =

1

2
ρ(L)π({xi = 1})π({xi = 0}),

which gives R ≥ 0.5 · π({xi = 0}). Similarly, by considering f(x) = 1{xi=0} we
get that R ≥ 0.5 · π({xi = 1}) as well, yielding R ≥ 0.25.

This bound is optimal, as can be seen for π being the uniform measure on
Bn and L(x, y) = 1 if there exists i such that y = xi, L(x, y) = −n if y = x and
L(x, y) = 0 otherwise (this corresponds to the special case of Glauber dynamics,
in which at rate n, a random coordinate is flipped). In this case ρ(L) = 4
(see [42, Example 3.7], note a different normalization of both the Dirichlet form
and the constant in the modified log-Sobolev inequality), whereas for all x ∈ Bn

max
i

∑
y : yi ̸=xi

L(x, y) = L(x, xi) = 1 = 0.25 · ρ(L).

Let us illustrate the notion of R-stability with another classical example.

Example 4.4.5 (Bernoulli–Laplace model). Let π be the uniform measure on
the slice of Bn consisting of elements with exactly k ones and let L be given by
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Lf(x) = 1
n

∑
i<j(f(x

ij)− f(x)) (thus the corresponding Markov process at rate
(n − 1)/2 swaps a uniformly chosen pair of coordinates). In the matrix form
this corresponds to L(x, y) = 1

n
if x ̸= y and y = xij, L(x, x) = −k(n − k)/n

and L(x, y) = 0 otherwise. It has been proved in [91] and independently in [42]
that ρ0(L) ≥ 1/2. At the same time

∑
y : yi ̸=xi

L(x, y) equals to (n − k)/n if
xi = 1 and to k/n otherwise. This shows that L is 2-stable, independently of
n and k. As mentioned in the introduction, the uniform measure on the slice
of the discrete cube can be interpreted as the distribution of i.i.d. Bernoulli
variables conditioned on their sum being equal to k. In Theorem 4.7.3 we
generalize the above observation on stability and show that if µ is the law of
general independent Bernoulli variables conditioned on their sum being equal
to a fixed constant, there exists a 2-stable generator of a random walk reversible
with respect to µ.
Remark 4.4.6. Observe that the notion of stability is invariant under scaling
of L (change of time), i.e., if L is R-stable then so is aL for any a > 0. This
leads to a tensorization property for measures admitting an R-stable generator.
More precisely, let π1, . . . , πm be measures on Bn1 , . . . ,Bnm , for which there
exist reversible flip-swap random walks with R-stable generators L1, . . . , Lm. By
changing time, we can assume without loss of generality that ρ(Li) = ρ for all
i ≤ m. Let n = n1+. . .+nm and consider the product measure π = π1⊗· · ·⊗πm
on Bn together with the generator L = L1 + . . .+ Lm, where we think of Li as
acting only on the i-th block of coordinates on Bn = Bn1 × · · · × Bnm , i.e., we
identify Li with its tensor product with identity on ⊗j ̸=iRBnj . In the matrix
form we have the representation

L(x, y) =
m∑
i=1

Li(Pix, Piy)
∏
j ̸=i

1{Pjx=Pjy},

where Pj : Bn → Bj is the projection onto the j-th factor in the product Bn =
Bn1×· · ·×Bnm Thanks to the well known tensorization property of the entropy
(see, e.g., [14, Chapter 3]) we have ρ(L) = ρ. Moreover, for i ∈ (n1 + . . . +
nj−1, n1 + . . .+ nj],∑

y∈Bn : yi ̸=xi

L(x, y) =
∑

y∈Bnj : yl ̸=(Pjx)l

Lj((Pjx), y) ≤ Rρ,

where l = i− (n1 + . . .+ nj−1). Thus, L is indeed R-stable.
This observation allows in particular to extend all the theorems od Section

4.3 to product of measures π(n, k) allowing for more general conditioning of
Bernoulli variables.

4.4.3 Concentration results

Finally, let us present the counterparts of the results of Section 4.2 and of
Theorem 4.2.3 from Section 4.3 in the abstract language of the stability condi-
tion (4.4.7). We stress here that it is the sole property needed for their proofs,
which are deferred to Section 4.7.

We start with a bounded-difference type inequality for real valued functions.

Proposition 4.4.7. If a flip-swap random walk on Bn with stationary distri-
bution π and generator L satisfies the stability condition (4.4.7), then for any
f : Bn → R and α ∈ Rn

+ such that

|f(x)− f(y)| ≤ dα(x, y) ∀x, y ∈ Bn



CHAPTER 4. STOCHASTIC COVERING PROPERTY 92

the following estimate holds for all t > 0

π
(
f > π(f) + t

)
≤ exp

(
− t2

8R|α|2
)
.

In the above estimate one can also replace 8|α|2 with 16
∑⌈∆(L)/Rρ(L)⌉

i=1 (α↓
i )

2.

Remark 4.4.8. Using the definitions of R-stability and of ∆(L) one can see that
∆(L)/Rρ(L) ≤ n and if π is k-homogeneous, then ∆(L)/Rρ(L) ≤ k.

Let us now pass to the matrix-valued case.

Proposition 4.4.9. Let a flip-swap random walk on Bn with stationary distri-
bution π and generator L satisfy the stability condition (4.4.7). Assume also
that f : Bn → Hd is such that there is a sequence of positive semidefinite matri-
ces C1, . . . , Cn satisfying

(f(x)− f(xi))2 ≼ C2
i ∀ x ∈ Bn, i ∈ [n], (4.4.8)

where ≼ denotes the positive semidefinite order on the set of symmetric matri-
ces. Set the variance proxy

σ2 = 8R · sup
{∥∥∑

i∈I

C2
i

∥∥ : |I| = ⌈∆(L)/Rρ(L)⌉, I ⊂ [n]
}
.

Then for any t > 0,

π
(
λmax(f − π(f)) > t

)
≤ d exp

(
− t2/(σ2 + σt)

)
.

Our next proposition is the convex distance inequality under R-stability.

Proposition 4.4.10. If a flip-swap random walk on Bn with some stationary
distribution π and a generator L satisfies the stability condition (4.4.7), then
for any set A ⊂ Bn

π(A)π
(
exp

( 1

40R + 4
· d2T (·, A)

))
≤ 1.

Finally, let us state the concentration result for polynomials in an abstract
version.

Proposition 4.4.11. If a flip-swap random walk on Bn with some stationary
distribution π and a generator L satisfies the stability condition (4.4.7), then
for any tetrahedral polynomial f : Bn → R of degree d

π
(∣∣f − π(f)∣∣ ≥ t

)
≤ 2 exp

(
− 1

Cd

min
1≤r≤d

min
J∈Pr

( t

Rr/2∥π(∇rf)∥J

)2/|J |)
,

where Cd is a constant depending only on the degree d of f .

Remark 4.4.12. Although Proposition 4.4.7 gives a worse constant in the expo-
nent than Theorem 4.2.3 even in the case of conditional Bernoulli distributions
π(p, k), we state it here as in principle it does not assume that π satisfies the
SCP and thus potentially can be applied in other settings.
Remark 4.4.13. The above propositions can be transferred to more general ran-
dom walks that change at each step at most a fixed number of coordinates N
(with N = 2 in the case of flip-swap random walks). We do not pursue this
direction though and do not write all the theorems in full generality for the sake
of readability.
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Remark 4.4.14. Recently, Cryan et al. [74] have shown some version of Theo-
rem 4.4.1 in the case of k-homogeneous strongly log-concave measures. Strong
log-concavity is yet another possible generalization of the SRP, which is in gen-
eral incomparable with the SCP [74]. It is known, cf. Brändén and Huh [53],
that any k-homogeneous strongly log-concave measure is supported on the set
of bases of some matroid of rank k. Using this fact, and extending the previous
results for uniform measures on the bases of matroids by Anari et al. [13] and
Kaufman and Oppenheim [128], Cryan et al. [74] explicitly construct a base-
exchange random walk, which has any given strongly log-concave measure as a
stationary distribution, and verify it satisfies the modified log-Sobolev inequal-
ity (4.4.4), cf. Section 2.4.5, where we recall their construction in detail.

Since the base-exchange random walk proposed therein is a particular in-
stance of a flip-swap random walk, a natural question is whether it satisfies the
stability condition (4.4.7), which would allow deducing concentration results
presented in this section. Unfortunately, the answer seems to be negative in
full generality as can be seen already in the case of independent Bernoulli ran-
dom variables B = (B1, . . . , Bn) with different probabilities of success P(Bi =
1) = pi conditioned on their sum being k, i.e., for the distribution π(p, k) =
L(B |

∑
iBi = k). If one chooses p1 → 1− and pj = c for j > 1 and some

c ∈ (0, 1), then it is straightforward to verify that the base-exchange random
walk of [74] is at best k-stable. Therefore, applying propositions of Section 4.4.3
to the base-exchange random walk gives much worse concentration constants
than those of Section 4.3. On the other hand, the abstract construction of a
flip-swap random walk proposed by Hermon and Salez [114], when specialized
to π(p, k) and implemented with a proper choice of couplings, gives 2-stability.
The appropriate selection of couplings is the main ingredient in the proofs of
results of Section 4.3.

In view of the above, it is an interesting problem to analyze what other
known kernels satisfy the stability condition (4.4.7) with good (dimension-
independent) constant and to look for some other criteria that would allow
to deduce this condition.

4.5 Proofs of the results of Section 4.2
In this section we provide proofs of Theorems 4.2.3, 4.2.5 and 4.2.8. Our ap-
proach relies on certain refinements of the Azuma type martingale argument
originally used by Pemantle and Peres [170]. For Theorems 4.2.3, 4.2.5 it is
based on an appropriate choice of the filtration, adapted to the structure of the
function f , as described below.

Let X ∼ π be a random variable with values in Bn satisfying the SCP
and denote suppX = { i ∈ {1, . . . , n} : Xi = 1 }. In the non-homogenous
case define a filtration F = (Fl)

n
l=0 by letting simply F0 = {∅,Ω} and Fl =

σ(X1, . . . , Xl) for l = 1, . . . , n. In the k-homogenous case introduce a family of
random variables Y1, . . . , Yk given by the conditions

L(Y1 |X) = Unif(suppX\{1, . . . , k}) and (4.5.1)
L(Yl |X, Y1, . . . , Yl−1) = Unif(suppX \ {1, . . . , k, Y1, . . . , Yl−1}),

for l = 2, . . . , k, where Unif(A) stands for the uniform distribution on the set A,
and for notational simplicity we set Unif(∅) to be the Dirac mass at 0 andX0 ≡ 1
(i.e., we add to X an additional coordinate providing no information and if the
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above sampling scheme yields all elements from suppX before sampling some
Yl, we set Yi to zero for all i ≥ l). Finally, define a filtration G = (Gl)2kl=0 setting
G0 = {∅,Ω} and Gl = σ(X1, . . . , Xl) for l ∈ [k], Gk+r = σ(X1, . . . , Xk, Y1, . . . , Yr}
for r ∈ [k].

In other words in the first k-steps the subsequent values of X at the first
k coordinates are revealed, while in the last k steps one reveals in a uniformly
random order the remaining coordinates at which X takes the value 1. Note
that if α is non-increasing (which we will assume without loss of generality)
and f is 1-Lipschitz with respect to dα then the first part of this sampling
scheme promotes the coordinates which may have the greatest impact on the
value of f(X). The construction can be thought of as a modification of the
sampling scheme proposed by Pemantle and Peres in which one immediately
starts revealing in a random order the coordinates at which X takes the value
1, which does not allow to capture the most sensitive coordinates.

The proof of Theorems 4.2.3 and 4.2.5 will be based on the following two
lemmas.

Lemma 4.5.1. Let α ∈ Rn
+ be non-increasing and let f : Bn → Hd be 1-

Lipschitz with respect to the distance dα. Assume that X is a Bn-valued random
vector satisfying the SCP. Let Ml = E[f(X) | Fl] − E[f(X) | Fl−1] for l ∈ [n].
Then for every l ∈ [n],

M2
l ≼ 4α2

l Id. (4.5.2)

Lemma 4.5.2. In the setting of Lemma 4.5.1, let us assume additionally that
X is k-homogeneous. For l ∈ [2k] define Nl = E[f(X) | Gl] − E[f(X) | Gl−1].
Then for l ∈ [k],

N2
l ≼ 4α2

l Id, (4.5.3)

while for l = k + 1, . . . , 2k,
N2

l ≼ 4α2
kId. (4.5.4)

We postpone for now the proof of the above lemmas and firstly show how
they imply Theorems 4.2.3 and 4.2.5. To this end let us recall the matrix
version of the Azuma-Hoeffding inequality due to Tropp [197, Theorem 7.1],
which asserts that if Dl, l = 1, . . . , n are Hd-valued martingale differences and
D2

l ≼ C2
l for some deterministic matrices Cl ∈ Hd, then for all t ≥ 0,

P
(
λmax

( n∑
l=1

Dl

)
≥ t

)
≤ de−t2/8σ2

,

where σ2 = ∥
∑n

l=1C
2
l ∥. Note also that for d = 1 the classical Azuma-Hoeffding

inequality (see, e.g., [84, Theorem 5.8]) allows to replace the constant 1/8 by
1/2.

Proof of Theorems 4.2.3 and 4.2.5. Since the SCP is invariant under permuta-
tions of coordinates of X, we may and do assume that α = α↓. By Lemma 4.5.1
the martingale differences Ml satisfy M2

l ≼ C2
l := 4α2

l Id. Clearly∥∥∥ n∑
l=1

C2
l

∥∥∥ = 4|α|2. (4.5.5)

If X is k-homogeneous, then by Lemma 4.5.2, N2
l ≼ C̃2

l := 4α2
min(l,k)Id. In this

case ∥∥∥ 2k∑
l=1

C̃2
l

∥∥∥ = 4
[( k∑

l=1

α2
l

)
+ kα2

k

]
≤ 8

k∑
l=1

α2
l . (4.5.6)
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We have f(X) =
∑n

l=1Ml, whereas in the k-homogeneous case f(X) =∑2k
l=1Nl (observe that after 2k-steps of the sampling procedure all the nonzero

coordinates ofX are revealed and soX is G2k-measurable). Thus, the conclusion
of Theorem 4.2.3 follows by applying estimates (4.5.5) and (4.5.6) for d = 1 to-
gether with the classical Azuma-Hoeffding inequality. Similarly, Theorem 4.2.5
follows from the matrix version of the Azuma-Hoeffding inequality.

It remains to prove Lemmas 4.5.1 and 4.5.2.

Proof of Lemma 4.5.1. Let Ax
l = {X1 = x1, . . . , Xl = xl} for x = (x1, . . . , xn) ∈

Bn and l = 0, . . . , n. Then, for l = 1, . . . , n and any x ∈ Bn such that P(Ax
l ) > 0,

E[f(X) |Ax
l ]− E[f(X) |Ax

l−1] = E[f(X) |Ax
l−1, Xl = xl]− E[f(X) |Ax

l−1]

= P(Xl ̸= xl |Ax
l−1)

(
E[f(X) |Ax

l−1, Xl = xl]− E[f(X) |Ax
l−1, Xl ̸= xl]

)
.

If P(Xl ̸= xl |Ax
l−1) ̸= 0, then by the SCP there exists a coupling (X̂, Ŷ ) between

the distributions L(X |Ax
l−1, Xl = xl) and L(X |Ax

l−1, Xl ̸= xl) that is supported
on the set { (y, z) ∈ B2

n : dH((yi)i>l, (zi)i>l) ≤ 1 }. Using this coupling, the
Lipschitz property of f , Jensen’s inequality and the fact that αi ≤ αl for any
i > l, we get that

∥E[f(X) |Ax
l ]− E[f(X) |Ax

l−1]∥
≤ P(Xl ̸= xl |Ax

l−1)E ∥f((xi)i≤l, X̂i>l)− f((xi)i<l, 1− xl, Ŷi>l)∥
≤ P(Xl ̸= xl |Ax

l−1) · 2αl ≤ 2αl,

which is equivalent to (4.5.2).

Proof of Lemma 4.5.2. Note that for l ≤ k, we have Gl = Fl. As a consequence
Nl = Ml, where Ml are martingale increments defined in Lemma 4.5.1, which
implies (4.5.3).

Consider now l > k of the form l = k + r and for x = (x1, . . . , xk) ∈ Bk
and v = (v1, . . . , vk) ∈ ({0} ∪ {k + 1, . . . , n})k set Ax,v

l = {X1 = x1, . . . , Xk =
xk, Y1 = v1, . . . , Yr = vr}. Then Fl is generated by the sets Ax,v

l . By the
definition of the variables Yr, we have {Yr = i} ⊆ {Xi = 1} and so for any x, v
such that P(Ax,v

l ) > 0,

E[f(X) |Ax,v
l ] =

E[f(X)1Ax,v
l−1

1{Xvr=1}1{Yr=vr}]

P(Ax,v
l−1, Xvr = 1, Yr = vr)

. (4.5.7)

For s ∈ [r] let ms = |{i ∈ [k] : xi = 1}|+ |{j ∈ [s− 1] : vj ̸= 0}| be the number
of ones sampled by the time k + s − 1. It follows from (4.5.1) that if ms < k
then P(Ax,v

k+s) > 0 implies that vs ̸= 0 and P(Ys = vs|X, Y1, . . . , Ys−1) =
1

k−ms
on

Ax,v
k+s−1 ∩ {Xvs = 1}, whereas if ms = k, then P(Ax,v

k+s) > 0 implies that vs = 0
and P(Ys = vs |X, Y1, . . . , Ys−1) = 1 on Ax,v

k+s−1 ∩ {Xvs = 1} = Ax,v
k+s−1. Going

back to (4.5.7) and using this observation for s = r, . . . , 1, we obtain that

E[f(X) |Ax,v
l ] = E[f(X) |Bx,v

l ],

where Bx,v
l = {X1 = x1, . . . , Xk = xk, Xv1 = . . . = Xvl−k

= 1}. We thus obtain

E[f(X) |Ax,v
l ]− E[f(X) |Ax,v

l−1]

= P(Xvr ̸= 1 |Bx,v
l−1)(E[f(X) |Bx,v

l−1, Xvr = 1]− E[f(X) |Bx,v
l−1, Xvr ̸= 1]).



CHAPTER 4. STOCHASTIC COVERING PROPERTY 96

Note that the right-hand side may be non-zero only if vr ̸= 0. In this case
using the inequality αvs ≤ αk for s ∈ [k] we can conclude as in the proof of
Lemma 4.5.1.

Let us now pass to the proof of Theorem 4.2.8.

Proof of Theorem 4.2.8. Let X be a random vector with law π and define the
random variables Yl for l ≤ n as

L(Y1 |X) = Unif(suppX) and (4.5.8)
L(Yl |X, Y1, . . . , Yl−1) = Unif(suppX \ {Y1, . . . , Yl−1}), for l = 2, . . . , k,

i.e., Y ′
l s reveal in a uniformly random order the elements of suppX. Set H0 =

{∅,Ω} and Hl = σ(Y1, . . . , Yl) for l = 1, . . . , k. Then

f(X)− E f(X) =
k∑

l=1

E[f(X) |Hl]− E[f(X) |Hl−1] =:
k∑

l=1

Dl.

We will use the matrix version of Freedman’s inequality due to Tropp [196],
which asserts (in a version specialized for our application) that if ∥Dl∥ ≤ a a.s.
for all l, and ∥

∑k
l=1 E[D2

l |Hl−1]∥ ≤ σ2 a.s., then for any t ≥ 0,

P(∥f(X)− E f(X)∥ ≥ t) ≤ 2d exp
(
− t2

2σ2 + 2at/3

)
. (4.5.9)

Consider thus a sequence of pairwise distinct v1, . . . , vk ∈ [n] and denote
Av

l = {Y1 = v1, . . . , Yl = vl}. Similarly, as in the proof of Lemma 4.5.2, if
P(Av

l ) > 0, then we have

E[f(X) |Av
l ] = E[f(X) |Bv

l ],

where Bv
l = {Xv1 = . . . = Xvl = 1}. Therefore, we have

Dl1Av
l
= P(Xvl = 0 |Bv

l−1)
(
E[f(X) |Bv

l−1, Xvl = 1]−E[f(X)|Bv
l−1, Xvl = 0]

)
1Av

l
.

(4.5.10)
Since the SRP implies the SCP, there exists a coupling (Z̃, Ẑ) between the

distributions L(X |Bv
l ) and L(X |Bv

l−1, Xvl = 0) such that Z̃ and Ẑ differ just
at coordinate vl and one additional coordinate (at which by k-homogeneity Ẑ
necessarily takes the value one). Let Ỹl be this coordinate. We have

E[f(X) |Bv
l−1, Xvl = 1]− E[f(X) |Bv

l−1, Xvl = 0] = E[f(Z̃)− f(Ẑ)], (4.5.11)

Since Ẑ Ỹl = Z̃vl , we have(
E[f(X) |Bv

l−1, Xvl = 1]− E[f(X) |Bv
l−1, Xvl = 0]

)2

(4.5.12)

=
(
E[f(Z̃)− f(Ẑ)]

)2

≼ E
[(
f(Z̃)− f(Ẑ)

)2]
= E

[(
f(Z̃)− f(Z̃vl) + f(Ẑ Ỹl)− f(Ẑ)

)2]
≼ 2E

[(
f(Z̃)− f(Z̃vl)

)2]
+ 2E

[(
f(Ẑ Ỹl)− f(Ẑ)

)2]
≼ 2C2

vl
+ 2EC2

Ỹl
,
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where in the first and second inequality we used the operator convexity of
the function x 7→ x2 (see [33, Example V.1.3]), and in the last inequality the
assumption (4.2.3).

In particular, using (4.5.10), we obtain ∥D2
l ∥ ≤ 4maxi ∥C2

i ∥, so ∥Dl∥ ≤ 2K.
Moreover, as on Av

l we have Yl = vl, by (4.5.10) and (4.5.12) we get that

D2
l 1Av

l
≼ 2(C2

Yl
+ EC2

Ỹl
)P(Xvl = 0 |Bv

l−1)
21Av

l
.

Let us now slightly change our notation and think of Ỹl as of random variable
defined on the same probability space as X, with conditional distribution with
respect to the σ-fieldHl given on each of its atoms Av

l by the above construction,
using the corresponding coupling (which depends on v1, . . . , vl). Then the above
inequality can be written as

D2
l ≼ 2

∑
vl∈[n]\{v1,...,vl−1}

(
C2

Yl
+ E[C2

Ỹl
|Av

l ]
)
P(Xvl = 0 |Bv

l−1)
21Av

l
. (4.5.13)

Let us now go back to the equations (4.5.10) and (4.5.11) and let us apply them
in the special case of the function f̃(x) =

∑n
i=1 xiC

2
i , denoting the corresponding

martingale increment by D̃l. We obtain that

D̃l1Av
l
= P(Xvl = 0 |Bv

l−1)
(
C2

Yl
− E[C2

Ỹl
|Av

l ]
)
1Av

l
.

Thus, we get that

0 = E[D̃l |Av
l−1]

=
∑

vl∈[n]\{v1,...,vl−1}

E
[
P(Xvl = 0 |Bv

l−1)1Av
l

(
C2

Yl
− E[C2

Ỹl
|Av

l ]
) ∣∣∣Av

l−1

]
,

i.e., ∑
vl∈[n]\{v1,...,vl−1}

E
[
P(Xvl = 0 |Bv

l−1)1Av
l
C2

Yl

∣∣∣Av
l−1

]
=

∑
vl∈[n]\{v1,...,vl−1}

E
[
P(Xvl = 0 |Bv

l−1)1Av
l
E(C2

Ỹl
|Av

l )
∣∣∣Av

l−1

]
,

which combined with the estimate (4.5.13) on D2
l (replacing P(Xvl = 0 |Bv

l−1)
2

by P(Xvl = 0 |Bv
l−1)) gives

E[D2
l |Av

l−1] ≼ 2
∑

vl∈[n]\{v1,...,vl−1}

E
[
(C2

Yl
+ E[C2

Ỹl
|Av

l ])

× P(Xvl = 0 |Bv
l−1)1Av

l

∣∣∣Av
l−1

]
= 4

∑
vl∈[n]\{v1,...,vl−1}

E
[
C2

Yl
P(Xvl = 0 |Bv

l−1)1Av
l

∣∣∣Av
l−1

]
≼ 4

∑
vl∈[n]\{v1,...,vl−1}

C2
vl
P(Av

l |Av
l−1)

= 4
∑

vl∈[n]\{v1,...,vl−1}

C2
vl

1

k − l + 1
P(Xvl = 1 |Bv

l−1)

≼ 4
∑

vl∈[n]\{v1,...,vl−1}

C2
vl

1

k − l + 1
P(Xvl = 1),
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where in the last inequality we used [131, Lemma 1.10], which asserts that
P(Xvl = 1) ≥ P(Xvl = 1|Bv

l−1) (we remark that this is the only place in the
proof in which we use the full strength of the strong Rayleigh property).

Extending the summation to [n], we thus obtain

E[D2
l |Hl−1] ≼ 4

n∑
v=1

C2
v P(Xv = 1)

1

k − l + 1
,

whence

k∑
l=1

E[D2
l |Hl−1] ≼ 4

n∑
v=1

C2
v P(Xv = 1) log(ek) = 4 log(ek) · E

[ n∑
v=1

XvC
2
v

]
.

Combining this with the already obtained bound ∥Dl∥ ≤ 2K allows us to ap-
ply (4.5.9) with a = 2K and σ2 = 4∥E

∑n
v=1XvC

2
v∥ log(ek), which ends the

proof of the theorem.

4.6 Proofs of the results of Section 4.4

4.6.1 Propositions 4.4.7 and 4.4.9

The main idea behind the proof of Proposition 4.4.7 is to find an estimate on
∥Γ+(f)∥∞ in terms of α, refining (4.4.6), and then to use the Herbst argument.
We will need the following lemma which we state in the matrix setting as it will
be useful for the proof of Proposition 4.4.9 as well.

Lemma 4.6.1. Let t = (t1, . . . , tn) be a sequence of nonnegative numbers and
let D1, . . . , Dn ∈ Hd be positive semidefinite matrices. Then for any T1 ≥ |t|1
and T∞ ≥ |t|∞

∥∥ n∑
i=1

tiDi

∥∥ ≤ T∞ · sup
{∥∥∑

i∈I

Di

∥∥ : I ⊂ [n], |I| ≤ ⌈T1/T∞⌉
}
. (4.6.1)

Proof. By homogeneity, we may assume without loss of generality that T∞ = 1.
We may also assume that T1 is a positive integer. Let

X =
{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ T1

}
, Y =

{
y ∈ {0, 1}n :

n∑
i=1

yi ≤ T1

}
.

Since the right-hand side of (4.6.1) equals to max{∥
∑n

i=1 yiDi∥ : y ∈ Y}, while
the left-hand side is a convex function of t, the lemma will follow once we prove
that X ⊂ convY . To this end, by the Krein–Milman theorem, it is enough to
show that Y is the set of all extreme points of the closed convex set X . Consider
any x ∈ X \ Y . Let i0 ∈ [n] be such that xi0 ∈ (0, 1). If

∑
i xi < T1 then for ε

sufficiently close to zero, x+εei0 , x−εei0 ∈ X and so x = 1
2
(x+εei0)+

1
2
(x−εei0)

is not an extreme point of X . If
∑

i xi = T1, then since T1 is an integer, there
exists i1 ̸= i0 such that xi1 ∈ (0, 1). Then x = 1

2
u+ 1

2
v, where u = x+εei0−εei1 ,

v = x− εei0 + εei1 . For ε close to zero u, v ∈ X , thus again, x is not an extreme
point.

Proof of Proposition 4.4.7. We recall that for x ∈ Bn and i, j ∈ [n], xi and xij

denote the vectors obtained from x by flipping the i-th and swapping the i-th
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and j-th coordinates respectively. For any x ∈ Bn, using the definition (4.4.3)
of Γ+, Lipschitz property of f and inequality (a+ b)2 ≤ 2(a2 + b2) we get

Γ+(f)(x) =
n∑

i=1

(f(x)− f(xi))2+L(x, xi)

+
1

2

n∑
i,j=1

(f(x)− f(xij))2+L(x, xij)

≤
n∑

i=1

α2
iL(x, x

i) +
1

2

n∑
i,j=1

(αi + αj)
2L(x, xij)1{x ̸=xij}

≤
n∑

i=1

α2
iL(x, x

i) + 2
n∑

i=1

α2
i

n∑
j=1

L(x, xij)1{x ̸=xij}

≤ 2
n∑

i=1

α2
i

∑
y : yi ̸=xi

L(x, y).

(4.6.2)

Whence, by the stability condition (4.4.7) we estimate ∥Γ+(f)∥∞ ≤ 2Rρ(L)|α|2.
Herbst’s argument (4.4.5) allows to conclude the first part.

The second part of the proposition follows by observing that for a flip-swap
random walk

n∑
i=1

∑
y : yi ̸=xi

L(x, y) ≤ 2 ·∆(L)

so by (4.6.2), Lemma 4.6.1 applied in the scalar setting d = 1 with ti =
2
∑

y : yi ̸=xi
L(x, y), Di = α2

i , T1 = 4∆(L) and T∞ = 4Rρ(L) we can estimate

∥Γ+(f)∥∞ ≤ 4Rρ(L)

⌈∆(L)/Rρ(L)⌉∑
i=1

(α↓
i )

2

and conclude again in virtue of Herbst’s argument (4.4.5).

The proof of Proposition 4.4.9 follows along similar lines to the proof of
Proposition 4.4.7, the difference being that in the end, instead of Herbst’s argu-
ment, we apply the concentration result of Aoun et al. [16], which asserts that
if L satisfies the matrix Poincaré inequality with constant CP > 0

Var(f) ≼ −CPπ(fLf) ∀ f : Bn → Hd, (4.6.3)

(where L acts on the matrix-valued function f element-wise and fLf is the
matrix product), then it satisfies the exponential concentration bound of the
form

π
(
λmax(f − π(f)) > t

)
≤ d exp

( −t2

2CPvf + t
√

2CPvf

)
, (4.6.4)

where vf = supx∥Γ(f)(x)∥ (where Γ is defined via (4.4.2), again with matrix
multiplication, and ∥ · ∥ stands for the operator norm). Note that for d =
1, (4.6.3) is just the usual scalar Poincaré inequality.

Proof of Proposition 4.4.9. For any x ∈ Bn and i, j ∈ [n], using operator con-
vexity of the function x 7→ x2 (see [33, Example V.1.3]) we get that(

f(x)− f(xij)
)2

=
[(
f(x)− f(xi)

)
+
(
f(xi)− f(xij)

)]2
≼ 2

(
f(x)− f(xi)

)2
+ 2

(
f(xi)− f(xij)

)2
. (4.6.5)
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Whence, by the definition (4.4.2) of Γ, by the assumed Lipschitz property (4.4.8)
of f and by (4.6.5), for any x ∈ Bn,

Γ(f)(x) =
1

2

n∑
i=1

(f(x)− f(xi))2L(x, xi) + 1

4

n∑
i,j=1

(f(x)− f(xij))2L(x, xij)

≼
1

2

n∑
i=1

C2
i L(x, x

i) +
1

2

n∑
i,j=1

(C2
i + C2

j )L(x, x
ij)1{x ̸=xij}

≼
n∑

i=1

C2
i ·

[ ∑
y : yi ̸=xi

L(x, y)
]
.

(4.6.6)

As both hand sides of (4.6.6) are positive semidefinite, their norms compare
as well. Therefore, as in the proof of Proposition 4.4.7, by Lemma 4.6.1 with
ti =

∑
y : yi ̸=xi

L(x, y), T1 = 2∆(L), T∞ = 2Rρ(L) and Di = C2
i

sup
x∈Bn

∥Γ(f)(x)∥ ≤ 2Rρ(L) · sup
{∥∥∑

i∈I

C2
i

∥∥ : I ⊂ [n], |I| ≤ ⌈∆(L)/Rρ(L)⌉
}
.

Since L satisfies the (scalar) modified log-Sobolev inequality (4.4.4), then it sat-
isfies the (scalar) Poincaré inequality with constant CP = 2/ρ(L) (see, e.g., [42,
p. 292], noting slightly different definitions of constants in functional inequali-
ties used therein) and whence by [122, Proposition 2.2] or [93, Theorem 1.1] it
satisfies the matrix Poincaré inequality (4.6.3) with the same constant, which
yields the conclusion in virtue of (4.6.4).

4.6.2 Proposition 4.4.10

The proof of Proposition 4.4.10 is based on the idea introduced by Boucheron
et al. [48] for independent random variables and then developed by Paulin [167]
for Glauber dynamics under the Dobrushin condition. We follow the exposition
introduced in the recent works of Sambale and Sinulis [180, 179] in the context
of sampling without replacement and adapt it to the more abstract setting
involving the stability condition given in Definition 4.4.3.

We start with the following lemmas.

Lemma 4.6.2. For any flip-swap random walk with generator L satisfying the
stability condition (4.4.7) and for any A ⊂ Bn

Γ+(d
2
T (·, A))(x) ≤ 8Rρ(L) · d2T (x,A). (4.6.7)

Moreover, for any x, y ∈ Bn and any set A ⊂ Bn,

d2T (x,A)− d2T (y, A) ≤ dH(x, y). (4.6.8)

Proof. For x ∈ Bn, α ∈ Rn and a probability measure µ on Bn, let hx(µ, α) =∑
i αiµ(z : zi ̸= xi). By Sion’s minmax theorem, cf. [51, p. 227],

dT (x,A) = inf
µ∈M(A)

sup
α∈Bn

2

hx(µ, α), (4.6.9)

whereM(A) is the set of probability measures on A and Bn
2 = {x ∈ Rn : |x| ≤

1 } is the unit ball in Rn. Let α∗ ∈ Rn
+ ∩ Bn

2 , µ∗ ∈ M(A) be such that
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dT (x,A) = hx(µ
∗, α∗) and set νy = argminν∈M(A) hy(ν, α

∗). Then

Γ+

(
dT (·, A)

)
(x) =

∑
y

[
hx(µ

∗, α∗)− inf
ν∈M(A)

sup
α∈Bn

2

hy(ν, α)
]2
+
L(x, y)

≤
∑
y

[
hx(µ

∗, α∗)− hy(νy, α∗)
]2
+
L(x, y)

≤
∑
y

[
hx(νy, α

∗)− hy(νy, α∗)
]2
+
L(x, y)

=
∑
y

[∑
i

α∗
i

(
νy(z : zi ̸= xi)− νy(z : zi ̸= yi)

)]2
+
L(x, y)

≤
∑
y

[∑
i

α∗
i1{xi ̸=yi}

]2
L(x, y)

≤ 2
∑
i

(α∗
i )

2
∑

y : yi ̸=xi

L(x, y) ≤ 2Rρ(L),

where the penultimate inequality follows since L is a flip-swap random walk and
therefore L(x, y) > 0 implies that dH(x, y) ≤ 2 and so at most two elements
of the sum

∑
i α

∗
i1{xi ̸=yi} are non-zero, whence we may apply the inequality

(a + b)2 ≤ 2(a2 + b2). The last inequality is a consequence of the condition
α∗ ∈ Bn

2 and the stability condition (4.4.7). We conclude (4.6.7) using the
definition of Γ+ and estimating (a− b)2+(a+ b)2+ ≤ 4a2(a− b)2+.

To show the second part, note that (4.6.9) together with the Cauchy–
Schwarz inequality imply that

d2T (x,A) = inf
µ∈M(A)

∑
i

(
µ(z : zi ̸= xi)

)2
=

∑
i

(
µ∗
x(z : zi ̸= xi)

)2
for some µ∗

x ∈M(A). Therefore, for any x, y ∈ Bn

d2T (x,A)− d2T (y, A) ≤
∑
i

[(
µ∗
x(z : zi ̸= xi)

)2 − (
µ∗
x(z : zi ̸= yi)

)2]
≤

∑
i

1{xi ̸=yi},

as desired.

Using the inequality 1− e−z ≤ z we observe that for any f : Bn → R,

E(ef , f) =
∑
x

π(x)ef(x)
[∑

y

(f(x)− f(y))+(1− ef(y)−f(x))L(x, y)
]

≤ π
(
efΓ+(f)

)
.

Therefore, the modified log-Sobolev inequality (4.4.4) implies the following in-
equality stated in Bobkov and Götze [37]:

ρ(L) Entπ(e
f ) ≤ π

(
ef Γ̃(f)2

)
(4.6.10)

with operator Γ̃(f) =
√

Γ+(f) (note that in [37] Γ̃ is denoted by Γ, we use Γ̃ to
avoid a conflict of notation). As a consequence, the hypothesis of [37, Theorem
2.1] (formula (1.1)) therein holds under the assumption of the modified log-
Sobolev inequality (4.4.4) (with c = 2/ρ(L)). As a result, the following lemma
follows directly by the derivation of [37, equation (2.4)] with a slight adjustment
of constants (see also [10]).
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Lemma 4.6.3. If a measure π on Bn satisfies the modified log-Sobolev inequal-
ity (4.4.4) and f : Bn → [0,∞) is such that Γ+(f) ≤ Cf for some constant
C > 0, then for all t > C/ρ(L),

π
(
exp(f/t)

)
≤ exp

( π(f)

t− C/ρ(L)

)
. (4.6.11)

We are finally in position to prove Proposition 4.4.10.

Proof of Proposition 4.4.10. To lighten notation, denote f(x) = d2T (x,A) for
x ∈ Bn and some fixed set A ⊂ Bn. Denote also h(z) = (ez − 1)/z for z ∈ [0,∞)
and Dfy(x) = f(x) − f(y) for x, y ∈ Bn, and note that h is an increasing
function. Starting with the modified log-Sobolev inequality (4.4.4) and using
the reversibility of L, we have for all λ > 0,

Entπ(e
−λf ) ≤ λ/ρ(L) · E(e−λf ,−f)

= λ/ρ(L)
∑
x,y

(
Dfy(x)

)
+

(
e−λf(y) − e−λf(x)

)
L(x, y)π(x)

= λ2/ρ(L)
∑
x

π(x)e−λf(x)
[∑

y

(
Dfy(x)

)2
+
h
(
λDfy(x)

)
L(x, y)

]
by (4.6.8)
≤ λ2h(2λ)/ρ(L) · π

(
e−λfΓ+(f)

)
≤ 8Rλ2h(2λ) · π

(
e−λff

)
by (4.6.7)
≤ 8Rλ2h(2λ) · π(e−λf )π(f),

where the last inequality follows by convexity of the function t 7→ t log t. There-
fore, using the entropy method (cf., e.g., [51, Chapter 6]) and monotonicity of
h, we have for every λ > 0,

π
(
exp(λ(π(f)− f)

)
= exp

(
λ

∫ λ

0

d

ds

[1
s
log π(e−sf )

]
ds
)

= exp
(
λ

∫ λ

0

Entπ(e
−sf)

s2π(e−sf )
ds
)

≤ exp
(
λ · 8Rπ(f)

∫ λ

0

h(2s) ds
)

≤ exp
(
4Rλ(e2λ − 1)π(f)

)
.

By Chebyshev’s exponential inequality

π(A) = π
(
π(f)− f ≥ π(f)

)
≤ exp

(
λ
(
4R(e2λ − 1)− 1

)
π(f)

)
.

Taking λ = 1
2
log(1 + 1

8R
) and estimating log(1 + x) ≥ x/(x+ 1) for x ≥ 1 gives

π(A) ≤ exp
(
− 1

4
log

(
1 +

1

8R

)
π(f)

)
≤ exp

(
− π(f)

32R + 4

)
. (4.6.12)

We conclude by dividing (4.6.12) by its right-hand side and using Lemma 4.6.3
with t = 4 + 40R and C = 8Rρ(L) (in virtue of Lemma 4.6.2).
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4.6.3 Proposition 4.4.11

We prove Proposition 4.4.11 with help of Proposition 2.3.1 from Chapter 2,
which we restate below in the current setting.

Proposition 4.6.4. If a probability measure π on Bn satisfies the modified log-
Sobolev inequality (4.4.4), then for any p ≥ 2,

∥(f − π(f))+∥p ≤ C
√
p/ρ(L)∥

√
Γ+(f)∥p, (4.6.13)

where C =
√

3
√
e/(
√
e− 1).

A general method of deriving estimates for polynomials from moment in-
equalities of the form (4.6.13) has been presented in [8] in the continuous case,
and in [4, 6] in the context of Glauber dynamics, cf. Section 2.5. To obtain
results for flip-swap random walks we will adapt a version of this method in-
troduced recently by Sambale and Sinulis [179] for multislices. Note that we
cannot apply Corollary 2.5.4 directly as a flip-swap kernel allows changing two
coordinates simultaneously,

Proof of Proposition 4.4.11. Below we write C to denote universal constants
and Ca to denote constants depending only on the parameter a. In both cases
the constants may change values between occurrences. Let f : Bn → R be a
tetrahedral polynomial. By ∂i we denote the partial derivative with respect to
the i-th coordinate. If x, y ∈ Bn differ at the i-th coordinate only, then by the
fact that f is linear in each coordinate

|f(x)− f(y)| =
∣∣∂if(x)∣∣.

Similarly, if x and y differ only by a swap of the i-th and j-th coordinate,
we have

|f(x)− f(y)| =
∣∣∂if(x)(yi − xi) + ∂jf(x)(yj − xj) + ∂i∂jf(x)(yi − xi)(yj − xj)

∣∣
≤ |∂if(x)|+ |∂jf(x)|+ |∂i∂jf(x)|.

Thus,

Γ(f)(x) =
1

2

n∑
i=1

(f(x)− f(xi))2L(x, xi) + 1

2

∑
1≤i<j≤n

(f(x)− f(xij))2L(x, xij)

≤ 1

2

n∑
i=1

|∂if(x)|2L(x, xi)

+
3

2

∑
1≤i<j≤n

xij ̸=x

(|∂if(x)|2 + |∂jf(x)|2 + |∂i∂jf(x)|2)L(x, xij)

≤ Rρ(L)
(
3.5

n∑
i=1

|∂if(x)|2 + 0.75
n∑

i,j=1

|∂i∂jf(x)|2
)
,

where in the last inequality we used the stability condition (4.4.7). Note that
since f is tetrahedral, ∂i∂if(x) = 0 for all i.

Combining the above equality with Proposition 4.6.4 we obtain that for
every tetrahedral polynomial f : Bn → R

∥f − π(f)∥p ≤ C
√
p
√
R
(∥∥|∇f |∥∥

p
+
∥∥∥∇2f∥HS

∥∥
p

)
, (4.6.14)
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where C is a universal constant.
In the subsequent part of the proof we are going to need some auxiliary

notation. For d-tensors A = (ai)i∈[n]d , B = (bi)i∈[n]d define

⟨A,B⟩ =
∑
i∈[n]d

aibi.

Let us now consider a family of stochastically independent random tensors
{GI : I ⊆ N, |I| ∈ {1, 2}}, given by G{m} = (g

{m}
i )i∈[n], G{l,k} = (g

{l,k}
i,j )i,j∈[n],

with coefficients being i.i.d. standard Gaussian variables. Denote by Pd,≤2 the
family of all partitions of the set [d] into non-empty subsets of cardinality at
most 2. Finally, for any positive integers d and l and J = {J1, . . . , Jl} ∈ Pd,≤2

define the random d-tensor GJ = (
∏l

j=1 g
Jj
iJj
)i∈[n]d . For instance G{{1,3},{2}} =

(g
{1,3}
i1i3

g
{2}
i2

)i1,i2,i3∈[n].
Using the fact that the p-th moment of a mean zero Gaussian variable with

variance σ2 is for p ≥ 2 comparable to √pσ up to universal constants, we can
rewrite (4.6.14) as

∥f(X)− E f(X)∥p ≤ C
√
R
(
∥⟨∇f(X), G{1}⟩∥p + ∥⟨∇2f(X), G{1,2}⟩∥p

)
,

(4.6.15)

where X is a random vector with law π, independent of the family {GI}.
The inequality (4.6.15) constitutes a basis for the induction argument lead-

ing to the following inequality valid for any f : Bn → R, d ≥ 1 and p ≥ 2,

∥f(X)− E f(X)∥p ≤Cd

( 2d∑
l=d

∑
J∈Pl,≤2

R|J |/2∥⟨∇lf(X), GJ ⟩∥p

+
2d−2∑
l=1

∑
J∈Pl,≤2

R|J |/2∥⟨EX ∇lf(X), GJ ⟩∥p
)
.

(4.6.16)

Before we prove the above estimate, let us show how it implies the statement
of the proposition. If f is a tetrahedral polynomial of degree d, then ∇lf = 0 for
l > d, moreover ∇df is constant and so ∇df(X) = E∇df(X). Thus, (4.6.16)
reduces to

∥f(X)− E f(X)∥p ≤ Cd

d∑
l=1

∑
J∈Pl,≤2

R|J |/2∥⟨EX ∇lf(X), GJ ⟩∥p.

We can now use moment estimates for tetrahedral homogeneous polynomials
in i.i.d. standard Gaussian variables due to Latała [135], which assert that for
any l-tensor A = (ai)i∈[n]l and p ≥ 2,

∥⟨A,G{{1},...,{l}}⟩∥p ≤ Cl

∑
J∈Pl

p|J |/2∥A∥J .

Applying this inequality to ⟨EX ∇lf(X), GJ ⟩ (we treat here EX ∇lf(X) as
a |J |-tensor by merging the indices according to the partition J ), we obtain

∥f(X)− E f(X)∥p ≤ Cd

d∑
l=1

∑
J∈Pl,≤2

R|J |/2
∑

I∈Pl : I≻J

p|I|/2∥E∇lf(X)∥I ,
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where I ≻ J if every element of I is a union of certain elements of J . Re-
arranging the terms and taking into account that in a non-trivial case R is
bounded away from zero by an absolute constant (see Remark 4.4.4), which
gives R|J |/2 ≤ CdR

l/2 for J ∈ Pl,≤2, we get

∥f(X)− E f(X)∥p ≤ Cd

d∑
l=1

∑
I∈Pl

Rl/2p|I|/2∥E∇lf(X)∥I

for p ≥ 2. This implies the tail inequality of the proposition in the stan-
dard way by the use of Chebyshev’s inequality P(|f(X)−E f(X)| ≥ e∥f(X)−
E f(X)∥p) ≤ e−p followed by an appropriate change of variables and adjust-
ment of constants. We leave the details to the Reader and turn to the proof
of (4.6.16).

We will proceed by induction on d. For d = 1, using the definitions of G{1}
and G{{1,2}} one can easily see that (4.6.16) reads as

∥f(X)− E f(X)∥p ≤C
(√

R∥⟨∇f(X), G{1}⟩∥p +
√
R∥⟨∇2f(X), G{1,2}⟩∥p

+R∥⟨∇2f(X), G{{1},{2}}⟩∥p
)
,

which is clearly weaker than (4.6.15). Let us thus assume that the inequality
holds for all positive integers smaller than d. Applying the inequality with d−1
and combining it with the triangle inequality in Lp we get (recall that the value
of Cd may change between occurrences)

∥f(X)− E f(X)∥p ≤Cd

( 2d−2∑
l=d−1

∑
J∈Pl,≤2

R|J |/2∥⟨∇lf(X), GJ ⟩∥p

+
2d−4∑
l=1

∑
J∈Pl,≤2

R|J |/2∥⟨EX ∇lf(X), GJ ⟩∥p
)

≤Cd

( 2d−2∑
l=d−1

∑
J∈Pl,≤2

R|J |/2∥⟨∇lf(X), GJ ⟩ − ⟨EX ∇lf(X), GJ ⟩∥p

+
2d−2∑
l=1

∑
J∈Pl,≤2

2R|J |/2∥⟨EX ∇lf(X), GJ ⟩∥p
)
.

(4.6.17)

An application of inequality (4.6.15) conditionally on GJ to the functions
hl,J (x) = ⟨∇lf(x), GJ ⟩ for l = d− 1, . . . , 2d− 2 and J ∈ Pl,≤2 (note that hl,J ’s
are tetrahedral polynomials), followed by the Fubini theorem, gives

∥⟨∇lf(X), GJ ⟩ − ⟨EX ∇lf(X), GJ ⟩∥p ≤ C
√
R
(
∥⟨∇l+1f(X), GJ∪{{l+1}}⟩∥p

+ ∥⟨∇l+2f(X), GJ∪{{l+1,l+2}}⟩∥p
)
,

which combined with (4.6.17) concludes the induction step, proving (4.6.16).

4.7 Proofs of the results of Section 4.3
By virtue of the abstract results of Section 4.4, all the results of Section 4.3
will follow if one proves that there exist a flip-swap random walks on Bn with
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stationary measure π = π(p, k) which satisfy the stability condition (4.4.7) with
constant R = 2 for all p ∈ (0, 1)n and k = 0, . . . , n (cf. Theorem 4.7.3). The
rest of this section is devoted to proving this theorem.

Before we proceed with the proof, let us present its outline. Our approach to
defining an R-stable generator Lπ will be based on the inductive construction
of Hermon and Salez [114]. The construction is quite abstract and at each
induction step it uses the coupling resulting from the definition of the stochastic
covering property. For obtaining the modified log-Sobolev inequality sufficient
to investigate the speed of convergence of the Markov chain or concentration
inequality as in (4.1.1), the form of the coupling is not relevant, as long as
it satisfies the SCP. In turn, in order to establish the stability condition, one
needs to control additional properties of the couplings used at various steps
of the construction. The main technical challenge is to choose them in an
appropriate, balanced way. For conditioned Bernoulli distributions it is obtained
by an explicit construction of the coupling, given in the following lemma, the
proof of which is postponed until the end of this section.

Lemma 4.7.1. For every n ∈ N, p ∈ (0, 1)n and k ∈ [n], there exists a coupling
(Z,Z ′) of measures π(p, k) and π(p, k−1) such that for all x ∈ supp π(p, k−1),
and r ∈ [n] such that xr = 0,

P(Z = x+ er |Z ′ = x) = E
[ 1{Zr=1}∑n

l=1 1{Zl=1}1{xl=0}

]
(4.7.1)

and for all x ∈ supp π(p, k), and r ∈ [n] such that xr = 1,

P(Z ′ = x− er |Z = x) = E
[ 1{Z′

r=0}∑n
l=1 1{Z′

l=0}1{xl=1}

]
. (4.7.2)

Let us now recall the inductive construction of Hermon and Salez [114] in
the k-homogeneous case. It works for any k-homogeneous probability measure
π on Bn, satisfying the SCP and produces a generator of a π-reversible flip-swap
random walk Q∗ such that ρ(Q∗) ≥ 1 and ∆(Q∗) ≤ 2k.

To simplify the notation, we are going to treat vectors x ̸=l for x ∈ Bn and
l ∈ [n] sometimes as elements of {0, 1}[n]\{l} (this is how they were defined at the
beginning of Section 4.2) and sometimes as elements of Bn−1 (with the natural
identification, i.e., preserving the order of coordinates). The exact meaning will
be clear from the context. The same convention will apply to random vectors,
e.g., to X ̸=l.

In the case n = 1, we let Q be the zero matrix, which restricted to the
support of π gives the trivial generator on the one-point space. Clearly then
ρ(Q) =∞ and ∆(Q) = 0.

For n > 1, l ∈ [n] and x, y ∈ supp π, x ̸= y, we set

Q(l)(x, y) =

{
P (U = y̸=l |V = x ̸=l)P (Xl ̸= xl) if xl ̸= yl,

Q
(l)
xl (x ̸=l, y̸=l) else,

(4.7.3)

where X is a random vector with law π and (U, V ) is any coupling between
L(X ̸=l |Xl = yl) and L(X ̸=l |Xl = xl) given by the SCP2 and Q

(l)
xl is any flip-

swap generator on Bn−1 with stationary distribution L(X ̸=l |Xl = xl) such that
2We note a small typo in the cited arxiv version of [114] – for Q to be self-adjoint we need

to have π(x) in the denominator of each expression in [114, equation (90)]. This change is
also consistent with the subsequent part of the proof in [114].
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ρ(Q
(l)
xl ) ≥ 1 and ∆(Q

(l)
xl ) ≤ 2(k − xi), the existence of which is provided by the

induction scheme. We define the diagonal elements of Q(l) so that the row sums
vanish. Finally, put

Q∗ =
1

n

n∑
l=1

Q(l). (4.7.4)

Then by (the proof of) [114, Theorem 2], we have ρ(Q∗) ≥ 1, ∆(Q∗) ≤ 2k.
Now we are in position to construct the generator Lπ. Let X ∼ π = π(p, k)

for some p ∈ (0, 1)n and k ∈ {0, . . . , n}. Observe that for any yl ∈ {0, 1},
we have L(X ̸=l |Xl = yl) = π(p ̸=l, k − yl), in particular in the above recursive
construction we can restrict our attention to the class of conditional Bernoulli
distributions and use as Q(l)

xl the generators defined for such measures in dimen-
sion n − 1. Moreover, for (U, V ) we can take the coupling (Z,Z ′) (if yl = 0)
or (Z ′, Z) (if yl = 1) given by Lemma 4.7.1 applied in dimension n − 1 with
p ̸=l instead of p (note that since the right-hand side of (4.7.1) summed over r
such that xr = 0 gives one, we indeed have Z ▷ Z ′, which makes this coupling
a legitimate choice in the Hermon–Salez construction). Let us define Lπ as the
outcome of the Hermon–Salez construction with the above choices of Q(l)

xl and
(U, V ). Thus, formally for n = 1 we let Lπ be the trivial generator and for
n > 1 and l ∈ [n] we set

Lπ =
1

n

n∑
l=1

L(l) (4.7.5)

with

L(l)(x, y) =

{
P (U = y ̸=l |V = x ̸=l)P (Xl ̸= xl) if xl ̸= yl,

Lπl
(x ̸=l, y̸=l) else,

(4.7.6)

for x ̸= y, where (U, V ) is the coupling of π(p ̸=l, k−yl) and π(p ̸=l, k−xl) given by
Lemma 4.7.1, and πl = π(p ̸=l, k− yl) (again the diagonal elements are adjusted
so that the row sums vanish).

Then, the results by Hermon and Salez, specialized to Lπ give

Proposition 4.7.2. The generator Lπ constructed according to (4.7.5) gener-
ates a reversible flip-swap random walk with stationary measure π such that
ρ(Lπ) ≥ 1 and ∆(Lπ) ≤ 2k.

Our main result concerning conditional Bernoulli distributions, underlying
all the results from Section 4.3 is

Theorem 4.7.3. The generator Lπ constructed according to (4.7.5) with sta-
tionary measure π satisfies the stability condition (4.4.7) with R = 2.

Proof of Theorem 4.7.3. We proceed by induction in the dimension n.
For n = 1 the only possibilities are k = 0 and k = 1 and in both cases

the left-hand side of (4.4.7) vanishes. Thus, the stability condition (4.4.7) is
satisfied with any nonnegative R.

Assume the induction hypothesis holds for n − 1 and fix x ∈ suppπ and
i ∈ [n]. We may and do assume that k ∈ {1, . . . , n − 1} as otherwise Lπ

trivializes.
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Since ρ(Lπ) ≥ 1, it is enough to show that

max
x∈suppπ; i∈[n]

∑
y : yi ̸=xi

Lπ(x, y) ≤ 2. (4.7.7)

As in the definition of Lπ we will denote by X a random variable with
distribution π.

If xi = 0, then by (4.7.5)∑
y : yi ̸=xi

Lπ(x, y) =
∑

j : xj=1

1

n

n∑
l=1

L(l)(x, xij)

=
1

n

∑
j : xj=1

∑
l∈[n]\{i,j}

L(l)(x, xij) +
1

n

∑
j : xj=1

L(i)(x, xij)

+
1

n

∑
j : xj=1

L(j)(x, xij),

(4.7.8)

where we recall that xij = x+ ei− ej. We estimate each term on the right-hand
side separately.

For l ∈ [n] let ζl be the unique increasing bijection between [n] \ {l} and
[n − 1]. If l ̸= i, j, then for y = xij we have yl = xl and so, by (4.7.6),
L(l)(x, y) = Lπl

(x ̸=l, y̸=l), where πl = π(p ̸=l, k − xl). Thus, denoting rl = ζl(i),
we get

1

n

∑
j : xj=1

∑
l∈[n]\{i,j}

L(l)(x, xij) =
1

n

∑
l∈[n]\{i}

∑
j ̸=l : xj=1

Lπl
(x ̸=l, (x

ij )̸=l)

=
1

n

∑
l∈[n]\{i}

∑
y∈Bn−1 : yrl ̸=(x ̸=l)rl

Lπl
(x ̸=l, y) ≤

n− 1

n
· 2, (4.7.9)

where the last inequality follows from the induction assumption applied to πl.
The second term of (4.7.8) is estimated again using the definition (4.7.6).

Indeed, if xj = 1, then for y = xij we have xi ̸= yi. Thus, recalling that (U, V )
is a coupling between the laws L(X ̸=i |Xi = 1) and L(X ̸=i |Xi = 0) such that
V ▷ U , we obtain

1

n

∑
j : xj=1

L(i)(x, xij) =
1

n

∑
j : xj=1

P
(
U = (xij) ̸=i |V = x ̸=i

)
P (Xi ̸= xi)

=
1

n
P
(
Xi = 1

)
≤ 1

n
.

(4.7.10)

Let us pass to the last term of (4.7.8). We stress that this is the crucial
part of the proof, the only one in which we use the specific form of the coupling
(U, V ) used in the construction of Lπ.

To estimate this last term we use (4.7.1) from Lemma 4.7.1 combined with
the fact that if xi = 0 and xj = 1, then for y = xij, yj = 0 ̸= xj and so
(U, V ) from (4.7.6) is the coupling between the laws π(p ̸=j, k) and π(p ̸=j, k− 1)
given by Lemma 4.7.1 (in dimension n− 1). For j ∈ [n] consider a Bn−1-valued
random vector Z(j) ∼ L(X ̸=j |Xj = 0) = π(p ̸=j, k). Note also that since X, x
have the same number of ones, we have

n∑
l=1

1{Xl=0}1{xl=1} =
n∑

l=1

1{Xl=1}1{xl=0}. (4.7.11)
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Putting all the above observations together and using Lemma 4.7.1 together
with (4.7.6) in the first step, we obtain

1

n

∑
j : xj=1

L(j)(x, xij) =
1

n

∑
j : xj=1

E
[ 1{Z(j)

i =1}∑
l ̸=j 1{Z(j)

l =1}1{xl=0}

]
P
(
Xj = 0

)
=

1

n

∑
j : xj=1

E
[
1{Xi=1}

1{Xj=0}∑
l ̸=j 1{Xl=1}1{xl=0}

]
xj = 1
=

1

n

∑
j : xj=1

E
[
1{Xi=1}

1{Xj=0}∑
l 1{Xl=1}1{xl=0}

]
(4.7.11)
=

1

n

∑
j : xj=1

E
[
1{Xi=1}

1{Xj=0}∑
l 1{Xl=0}1{xl=1}

]
=

1

n
P
(
Xi = 1

)
≤ 1

n
.

(4.7.12)

Combining the estimates (4.7.9), (4.7.10) and (4.7.12) with (4.7.8) yields
inequality (4.7.7) and thus the stability condition (4.4.7) with R = 2 in the case
xi = 0. The case xi = 1 is analogous, the main difference being that in (4.7.12)
we use (4.7.2) in place of (4.7.1) from Lemma 4.7.1.

Together the two cases give the induction step and conclude the proof of the
theorem.

Let us conclude this section with the proof of Lemma 4.7.1.

Proof of Lemma 4.7.1. For x ∈ Bn, let κ(x) =
∑

i xi and let B be a vector of
independent Bernoulli random variables with probabilities of success given by
p = (p1, . . . , pn). Consider three Bn-valued random variables: Ẑ ∼ L(B |κ(B) =
k), Z ′ ∼ L(B |κ(B) = k − 1) and Z such that for all x, y ∈ Bn,

P(Z = y|Z ′ = x) = h(y, x), (4.7.13)

where

h(y, x) = E
[ 1{Ẑr=1}∑

l 1{Ẑl=1}1{xl=0}

]
if y = x+ er for some r ∈ [n] and κ(x) = k−1, and h(y, x) = 0 otherwise. Note
that for x ∈ Bn such that κ(x) = k − 1,

∑
l 1{Ẑl=1}1{xl=0} > 0 with probability

one, so h(y, x) is well-defined. Moreover, for such x∑
y∈Bn

h(y, x) =
∑

r : xr=0

h(x+ er, x) = 1,

which guarantees the existence of the couple (Z,Z ′) satisfying (4.7.13). Thus,
to prove (4.7.1) it is enough to show that Z ∼ Ẑ, i.e., that

∑
x∈Bn

h(y, x)P(Z ′ =

x) = P(Ẑ = y) for any y ∈ Bn such that κ(y) = k.
Observe that for any r ∈ [n] such that xr = 0 and κ(x) = k − 1

P (Z ′ = x)

P(Ẑ = x+ er)
=

P (B = x)

P (B = x+ er)

P (κ(B) = k)

P (κ(B) = k − 1)

=
1− pr
pr

P (κ(B) = k)

P (κ(B) = k − 1)
.

(4.7.14)
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Moreover, for any f : Bn → R and r ∈ [n],

E
[
f(B)1{Br=1}

]1− pr
pr

= E
[
f(B + er)1{Br=0}

]
. (4.7.15)

We use (4.7.14) and (4.7.15) to get that for any such y and any r ∈ [n] such
that yr = 1 and κ(y) = k,

h(y, y − er)
P(Z ′ = y − er)

P(Ẑ = y)

(4.7.14)
= h(y, y − er)

1− pr
pr

P (κ(B) = k)

P (κ(B) = k − 1)

= E
[ 1{Br=1}1{κ(B)=k}

1{Br=1} +
∑

l ̸=r 1{Bl=1}1{yl=0}

] (1− pr)/pr
P (κ(B) = k − 1)

(4.7.15)
= E

[ 1{Br=0}1{κ(B)=k−1}

1{Br=0} +
∑

l ̸=r 1{Bl=1}1{yl=0}

] 1

P (κ(B) = k − 1)

= E
[ 1{Br=0}1{κ(B)=k−1}

1{Br=0} +
∑

l ̸=r 1{Bl=0}1{yl=1}

] 1

P (κ(B) = k − 1)

= E
[ 1{Z′

r=0}∑
l 1{Z′

l=0}1{yl=1}

]
,

(4.7.16)

where the penultimate step comes from the fact that for any u, v such that
κ(u) = κ(v) one has

∑
1{u=0}1{v=1} =

∑
1{u=1}1{v=0} applied to u = ξr(B),

v = ξr(y), where ξr is the projection from Bn to Bn−1 obtained by skipping the
r-th coordinate (note that if Br = 0 and κ(B) = k−1 then κ(u) = κ(v) = k−1).
Therefore, by (4.7.16)∑

x h(y, x)P(Z ′ = x)

P(Ẑ = y)
=

∑
r : yr=1 h(y, y − er)P(Z ′ = y − er)

P(Ẑ = y)
= 1,

which completes the proof of (4.7.1). The equality (4.7.2) follows again by
using (4.7.16).



Chapter 5

Sampling without replacement and
Hoeffding statistics

5.1 Preliminaries
In this chapter we investigate concentration properties of particular function-
als of uniform random permutations, complementing on the results from Sec-
tion 2.4.4. Namely, we focus on the suprema of empirical processes when sam-
pling without replacement. Such processes can be seen as Hoeffding statistics
for matrices of a special form with repeated rows. We also obtain correspond-
ing bounds for a single Hoeffding statistic for general underlying matrix. Such
bounds were considered extensively in the literature, cf., e.g, [30, 51, 193], and
they play an important role in various applications, e.g., in transductive learn-
ing [195], or statistical testing [11].

5.1.1 Organization of this chapter

In the rest of this section we introduce some core notation. In Section 5.2 we
present our results concerning concentration for suprema of empirical processes
when sampling without replacement. In Section 5.3 we present analogous results
for a single Hoeffding statistic. We provide remaining proofs of our concentra-
tion estimates in Section 5.4. Proofs of auxiliary facts are moved to Appendix.

5.1.2 Basic notation

Let us recall the notation of Section 2.4.4. For n ∈ N, consider the symmetric
group Sn of permutations of the set [n] := {1, . . . , n} equipped with the uniform
probability measure πn. It is the stationary distribution of the interchange
process defined via its generator L given by the formula

Lf(σ) =
1

n(n− 1)

n∑
i,j=1

(
f(σ ◦ τij)− f(σ)

)
=

2

n(n− 1)

∑
1≤i<j≤n

(
f(σ ◦ τij)− f(σ)

)
,

where τij stands for the transposition of elements i and j. By E, we denote
the expectation w.r.t. πn. Moreover, for a function f : Sn → R, denote fij(·) =

111
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f(· ◦ τij) for short. The corresponding Dirichlet form is then expressed as

E(f, g) = 1

2n(n− 1)
E

n∑
i,j=1

(fij − f)(gij − g)

=
1

n(n− 1)
E

∑
1≤i<j≤n

(gij − g)(fij − f).

If f and g have the same monotonicity, then by the reversibility of L we also
have

E(f, g) = 1

n(n− 1)
E

n∑
i,j=1

(gij − g)+(fij − f)+.

Recall that the modified log-Sobolev inequality is satisfied with constant
ρ0 > 0 if

ρ0 Entµ(f) ≤ E(f, log f) (5.1.1)

for all positive functions f . For this process, ρ0 ≥ 1
n−1

was obtained indepen-
dently by Gao–Quastel [91] and Bobkov–Tetali [42] (note that the normalization
of the generator L differs across various references – we provide here scaled con-
stants matching our setting).

5.2 Sampling without replacement – concentra-
tion for suprema

Consider a set of vectors X ⊂ Rn. As in Section 2.4.4, let I1, . . . , In be a uniform
sample without replacement and J1, . . . , Jn be a sample with replacement from
the set [n]. For m ≤ n, define

Z = sup
x∈X

m∑
k=1

xIk , Z ′ = sup
x∈X

m∑
k=1

xJk (5.2.1)

so that Z ′ can be considered a supremum of the empirical process in independent
random variables Jk.

To analyze the tails of Z, it is often convenient to represent it as a supremum
of Hoeffding statistics over a family of matrices. Namely, for x ∈ X , denote
ax ∈ Rn×n to be such that the first m rows of a consist of copies of vector x
and the remaining rows have zero entries only, i.e., aij = xj for i ≤ m, j ∈ [n]
and aij = 0 for i > m, j ∈ [n]. Then

Z = sup
x∈X

n∑
k=1

axkσk
,

where σ = (I1, I2, . . . , In) ∼ πn. Moreover, denote σij = σ ◦ τij for any i, j ∈ [n]
and

Zij = sup
x∈X

n∑
k=1

axkσij(k)
,

so that the modified log-Sobolev inequality (5.1.1) applied to the Laplace trans-
form of Z reads

Ent(eλZ) ≤ λ

n
E eλZ

∑
ij

(1− e−λ(Z−Zij))+(Z − Zij)+.
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In the sequel, we express our concentration results for Z using expectations of
the following random variables

Σ2 = sup
x∈X

m∑
k=1

x2Ik , Σ̃2 = sup
x∈X

m∑
k=1

x2Jk .

As pointed out in [107], it follows from an argument due to Hoeffding [117] (cf.
also [145]) that if E is a normed space and g : [n] → E, then for any convex
function Ψ: E → R,

EΨ
( m∑

k=1

g(Ik)
)
≤ EΨ

( m∑
k=1

g(Jk)
)
. (5.2.2)

The meaning of (5.2.2) in terms of Z and Z ′ and related quantities is explained
in the following lemma, which in particular implies that EZ ≤ EZ ′ and EΣ2 ≤
E Σ̃2. We provide its proof for completeness in Appendix B.1.

Lemma 5.2.1. Let ϕ : R→ R be convex and increasing, and let Z,Z ′ be given
by (5.2.1). Then

Eϕ(Z) ≤ Eϕ(Z ′).

Our main result regarding concentration of Z is the theorem below providing
a Bennett-type bound.

Theorem 5.2.2. Let Z be given by (5.2.1) and assume X ⊂ [−1, 1]n. Then,
for some absolute constants C1, C2 > 0,

∀ t ≥ 0 P(Z ≥ EZ + t) ≤ 2 exp
(
− t

C1

log
(
1 +

t

C2 E Σ̃2

))
,

where Σ̃2 = supx∈X
∑m

k=1 x
2
Jk

. One can take C1 = 36, C2 = 46.

Remark 5.2.3. Denote

v = m sup
x∈X

Var(xJ1) + 2EZ ′.

If X ⊂ {x ∈ [−1, 1]n :
∑

i xi = 0 }, then Tolstikhin–Blanchard–Kloft [195,
Theorem 2] proved that

∀ t ≥ 0 P(Z ≥ EZ ′ + t) ≤ exp
(
−t log

(
1 +

t

v

)
+ t− v log

(
1 +

t

v

))
. (5.2.3)

Recall that by Hoeffding’s argument (5.2.2), cf. Lemma 5.2.1, EZ ≤ EZ ′

and in many situations the latter quantity can be significantly larger. Using
symmetrization and Talagrand’s contraction principle for Rademacher averages,
cf., e.g., [139], we can estimate

E Σ̃2 ≤ m sup
x∈X

Var(xJ1) + 8E sup
x∈X

m∑
k=1

εkxJk ,

where ε1, . . . , εm are i.i.d. Rademacher variables independent of J1, . . . , Jm.
Thus, in the case when the set X is symmetric with respect to the origin we
obtain that

E Σ̃2 ≤ m sup
x∈X

Var(xJ1) + 16EZ ′ ≤ 8v
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and consequently our estimate of Theorem 5.2.2, in contrast to (5.2.3), provides
a bound on deviations around the "proper" mean, while having no worse scaling
behavior in the exponent (up to numerical constants).

It is worth noting that authors of [195] provide a bound EZ ′ ≤ EZ + 2m3

n

which shows that one can replace EZ ′ with EZ under the probability estimate
without losing much for small values of m. However, even in such a general case
of non-symmetric set X , it may also happen that EZ is significantly smaller
than EZ ′, in which situation our estimate still improves upon (5.2.3).

To prove the Bennett-type inequality of Theorem 5.2.2, we need the follow-
ing estimate due to Ledoux [137]. We provide the proof for completeness in
Appendix B.2.

Lemma 5.2.4 ([137, Proof of Theorem 2.4]). Let Z ′ be given by (5.2.1) and
assume X ⊂ [0, 1]n. Then

∀ λ ≥ 1/4 logE eλZ′ ≤ 1

16
e8λ EZ ′.

We also need the following proposition providing the Bernstein inequality
for Z. We defer its proof to Section 5.4.

Proposition 5.2.5. Let Z be given by (5.2.1) and assume X ⊂ [−1, 1]n. Then

∀ t ≥ 0 P(Z ≥ EZ + t) ≤ exp
(
−min

( t

32
,

t2

128EΣ2

))
,

where Σ2 = supx∈X
∑

k x
2
Ik

.

Proof of Theorem 5.2.2. If 32t < C1C2 E Σ̃2, then we apply Proposition 5.2.5
and estimate log(1 + x) ≤ x to get that as long as 128 ≤ C1C2,

P(Z ≥ EZ + t) ≤ exp
(
−min

( t

32
,

t2

128E Σ̃2

))
,

≤ exp
(
−min

( t

32
,

t2

C1C2 E Σ̃2

))
= exp

(
− t2

C1C2 E Σ̃2

)
≤ exp

(
− t

C1

log
(
1 +

t

C2 E Σ̃2

))
and the result follows in this case.

If 32t ≥ C1C2 E Σ̃2, then set

ρ−1 = α log
(
1 + β

t

E Σ̃2

)
for some α, β > 0 (to be fixed later) and denote

Z↓ = sup
x∈X

m∑
k=1

xIk1{|xIk
|≤ρ}

and

Z↑ = sup
x∈X

m∑
k=1

|xIk |1{|xIk
|>ρ}

so that Z ≤ Z↓ + Z↑. We estimate the tail probabilities for Z↓ and Z↑.
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Recall that by Lemma 5.2.1, EΣ2 ≤ E Σ̃2. By the estimate log(1 + x) ≤ x,
by the definition of ρ and as long as αβ ≤ 1/4,

t

32ρ
≤ αβ · t2

32E Σ̃2
≤ t2

128E Σ̃2
≤ t2

128EΣ2
,

whence, by Proposition 5.2.5 applied to Z↓/ρ,

P(Z↓ ≥ EZ↓ + t) ≤ exp
(
−min

( t

32ρ
,

t2

128EΣ2

))
= exp

(
− t

32ρ

)
= exp

(
−αt
32

log
(
1 + β

t

E Σ̃2

))
.

(5.2.4)

We turn to the tails of Z↑. Denote

Z ′
ρ = sup

x∈X

m∑
k=1

|xJk |1{|xJk
|>ρ}.

Lemma 5.2.1 applied with { (|xi|1{|xi|>ρ})
n
i=1 : x ∈ X } in place of X together

with Lemma 5.2.4 applied to Z ′
ρ yield

logE eλZ↑ ≤ logE eλZ′
ρ ≤ 1

16
e8λ EZ ′

ρ (5.2.5)

for all λ ≥ 1/4. Choose

λ∗ =
1

8
log

(
1 + β

t

E Σ̃2

)
.

Since 32t ≥ C1C2 E Σ̃2 by assumption, then λ∗ ≥ 1
8
log(1 + βC1C2

32
) ≥ 1

4
, as long

as βC1C2 ≥ 32(e2 − 1). Moreover, note that

EZ ′
ρ ≤ ρ−1 E Σ̃2 ≤ 32tρ−1

C1C1

.

Consequently, by the Chernoff bound combined with (5.2.5),

P(Z↑ ≥ t) ≤ exp
(
−tλ∗ + e8λ

∗

16
EZ ′

ρ

)
= exp

(
− t
8
log

(
1 + β

t

E Σ̃2

)
+

1

16

(
EZ ′

ρ +
EZ ′

ρ

E Σ̃2
tβ
))

≤ exp
(
− t
8
log

(
1 + β

t

E Σ̃2

)
+

1

16

(32tρ−1

C1C1

+ tβρ−1
))

= exp
(
−t log

(
1 + β

t

E Σ̃2

)
·
(1
8
− 2α

C1C2

− αβ

16

))
.

(5.2.6)

Using the estimate log(1 + x) ≤ x we obtain that

|EZ↓ − EZ| ≤ EZ↑ ≤ E Σ̃2

ρ
≤ αβt. (5.2.7)
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Thus, combining (5.2.4), (5.2.6) and (5.2.7) and as long as αβ ≤ 1/4 and
βC1C2 ≥ 32(e2 − 1), we arrive at

P(Z ≥ EZ + 2t+ αβt) ≤ P(Z↑ + Z↓ ≥ EZ + 2t+ αβt)

≤ P(Z↑ + Z↓ ≥ EZ↓ − |EZ − EZ↓|+ 2t+ αβt)

≤ P(Z↑ + Z↓ ≥ EZ↓ + 2t)

≤ P(Z↑ ≥ t) + P(Z↓ ≥ EZ↓ + t)

≤ 2 exp
(
−min

( α
32
,
1

8
− αβ

16
− 2α

C1C2

)
× t log

(
1 + β

t

E Σ̃2

))
.

Substituting t← (2 + αβ)−1t and estimating 1
2+αβ

≥ 4
9

yields

P(Z ≥ EZ + t) ≤ 2 exp
(
− 1

2 + αβ
min

( α
32
,
1

8
− αβ

16
− 2α

C1C2

)
× t log

(
1 +

β

2 + αβ

t

E Σ̃2

))
≤ 2 exp

(
−4

9
min

( α
32
,
1

8
− αβ

16
− 2α

C1C2

)
· t log

(
1 +

4β

9

t

E Σ̃2

))
≤ 2 exp

(
−4

9
min

( α
32
,
1

8
− αβ

16
− 2α

C1C2

)
· t log

(
1 +

t

C2 E Σ̃2

))
as long as αβ ≤ 1/4, βC1C2 ≥ 32(e2 − 1) and 4βC2 ≥ 9. Setting α = 2 and
β = 1

8
yields the result with C1 = 36 and C2 = 46.

5.3 Concentration for a single Hoeffding statistic
In this section, we provide concentration bounds for single Hoeffding statistics,
extending the results of Chatterjee [62], Bercu–Deylon–Rio [30] and Albert [11].
In the sequel, f denotes some Hoeffding statistics, i.e.,

f(σ) =
n∑

k=1

akσ(k), (5.3.1)

where (aij)
n
i,j=1 ∈ Rn×n is some real matrix. The main result of this section is

the following theorem. To the best of our knowledge, this is the first result that
captures both the subgaussian and Poisson behaviors of Hoeffding statistics.

Theorem 5.3.1. Let f be given by (5.3.1). If aij ∈ [−1, 1] for all i, j and∑
ij aij = 0, then for some absolute constants C1, C2 > 0,

∀ t ≥ 0 P(f ≥ t) ≤ 2 exp
(
− t

C1

log
(
1 +

t

C2 EΣ2

))
,

where Σ2 =
∑

k a
2
kσk

so that EΣ2 = 1
n

∑
ij a

2
ij. One can take C1 = C2 = 36

Remark 5.3.2. As in Bercu–Deylon–Rio [30], note that setting

dij = aij −
1

n

n∑
k=1

(
aik + akj

)
+

1

n2

n∑
k,l=1

akl
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yields Var(f) = 1
n−1

∑
ij d

2
ij and f−E f =

∑n
k=1 dkσ(k). Therefore, an application

of Theorem 5.3.1 to (f − E f)/2 in place of f (note that
∑

ij dij = 0, while
aij ∈ [−1, 1] are arbitrary) provides that

∀ t ≥ 0 P(f ≥ E f + t) ≤ 2 exp
(
− t

2C1

log
(
1 +

t

2C2Var(f)

))
. (5.3.2)

The results of [62, 30, 11] provide bounds of the form exp(−ct2/(Var(f) + t))
for some numerical constants c, which is comparable with (5.3.2) for small t
and worse for t big enough. Moreover, as shown by Hoeffding in [116] (cf. also
Bolthausen [43] for a Stein method based approach), as soon as

lim
n→∞

maxi,j∈[n] dij
Var(Sn)

= 0,

then f verifies the CLT, i.e.,
f − E f√
Var(f)

n→∞−→ N (0, 1)

in law. Clearly, the bound from (5.3.2) becomes subgaussian for small values
of t and whence matches the CLT behavior described above (up to numerical
constants). Similarly, if one chooses aij = 1{i=j}, then f becomes the number
of fixed points of a random permutation σ. The exact tail distribution of f in
such case is well known, cf. [87, Section IV.4], and is of order exp(−Ct log t) for
t big and some C > 0, which agrees with the bound (5.3.2). This shows that
Theorem 5.3.1 is optimal up to the numerical constants.

To prove the Bennett inequality of Theorem 5.3.1, we first derive it for
non-negative statistics in the theorem below.

Theorem 5.3.3. Let f be given by (5.3.1). If aij ∈ [0, 1] for all i, j, then

∀ t ≥ 0 P(f > E f + t) ≤ exp
(
− t
4
log

(
1 +

t

4E f

))
.

Remark 5.3.4. Theorem 5.3.3 already improves (up to numerical constants in
the exponent) upon a Bernstein-type bound

∀ t ≥ 0 P(f > E f + t) ≤ exp
(
− t2

4E f + 2t

)
obtained by Chatterjee [62, Proposition 1.1].

Proof of Theorem 5.3.3. Since aij ∈ [0, 1], then for any i, j,∑
ij

(fij − f)+ =
∑
ij

(aiσj
+ ajσi

− aiσi
− ajσj

)+

≤
∑
ij

(aiσj
+ ajσi

) = 2
∑
ij

aij = 2nE f.
(5.3.3)

By the modified log-Sobolev inequality, using (5.3.3) and convexity of x 7→ e2x,
we arrive at

Ent(eλf ) ≤ λ

n
E eλf

∑
ij

(eλ(fij−f)+ − 1)(fij − f)+

≤ λ

n
(e2λ − 1)E eλf

∑
ij

(fij − f)+

≤ 2λ(e2λ − 1)E f E eλf ≤ 4λ2e2λ E f E eλf
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for all λ ≥ 0. Hence, using Proposition B.3.1 with a = 4E f , b = 2 gives the
conclusion.

Finally, to prove Theorem 5.3.1, we need the following proposition. We defer
its proof to Section 5.4.

Proposition 5.3.5. Let f be given by (5.3.1). If aij ∈ [−1, 1] for all i, j, then

∀ t ≥ 0 P(f ≥ E f + t) ≤ exp
(
−min

( t

32
,

t2

128EΣ2

))
,

where Σ2 =
∑

k a
2
kσk

so that EΣ2 = 1
n

∑
ij a

2
ij.

Proof of Theorem 5.3.1. For a fixed t > 0, set

ρ−1 = 2 log
(
1 +

t

16EΣ2

)
and denote

f ↓(σ) =
∑
i

aiσi
1{|aiσi |≤ρ}

and
f ↑(σ) =

∑
i

|aiσi
|1{|aiσi |>ρ}

so that f ≤ f ↓ + f ↑. We estimate the tail probabilities for f ↓ and f ↑.
By the estimate log(1 + x) ≤ x and by the definition of ρ,

t

32ρ
≤ t2

256EΣ2
≤ t2

128EΣ2
,

whence by Proposition 5.3.5 applied to f ↓/ρ,

P(f ↓ ≥ E f ↓ + t) ≤ exp
(
−min

( t

32ρ
,

t2

128EΣ2

))
= exp

(
− t

32ρ

)
= exp

(
− t

16
log

(
1 +

t

16EΣ2

))
.

(5.3.4)

By the definitions of f ↑, ρ and estimate log(1 + x) ≤ 2 log(1 +
√
x) ≤ 2

√
x,

E f ↑ ≤ EΣ2

ρ
= 2(EΣ2) log

(
1 +

t

16EΣ2

)
≤
√
tEΣ2,

whence by Theorem 5.3.3 applied to f ↑,

P(f ↑ ≥ E f ↑ + t) ≤ exp
(
− t
4
log

(
1 +

t

4E f ↑

))
≤ exp

(
− t
4
log

(
1 +

1

4

√
t

EΣ2

))
≤ exp

(
− t
8
log

(
1 +

t

16EΣ2

))
,

(5.3.5)

where in the last step we have used again the estimate 2 log(1+
√
x) ≥ log(1+x).

Using the assumption E f = 0, triangle inequality and estimating log(1+x) ≤ x,
we obtain

|E f ↓| = |E f ↓ − E f | ≤ E f ↑ ≤ EΣ2

ρ
≤ 1

8
t. (5.3.6)
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By combining (5.3.4), (5.3.5) and (5.3.6) we arrive at

P(f ≥ 9t/4) ≤ P(f ↓ ≥ 9t/8) + P(f ↑ ≥ 9t/8)

≤ P(f ↓ ≥ E f ↓ + t) + P(f ↑ ≥ E f ↑ + t)

≤ 2 exp
(
− t

16
log

(
1 +

t

16EΣ2

))
.

Substituting t← 4t/9 yields the result.

5.4 Proof of Propositions 5.2.5 and 5.3.5
Both propositions are special cases of a more general result for suprema of
Hoeffding statistics which we provide below. Let R ⊂ Rn×n be a set of real
matrices. Denote

S = sup
r∈R

n∑
k=1

rkσk
. (5.4.1)

The main result of this section is the following estimate. It is worth mentioning
that it can be also derived (up to numerical constants) from Proposition 2.4.9.

Proposition 5.4.1. Let S be given by (5.4.1) and assume R ⊂ [−1, 1]n×n.
Then

∀ t ≥ 0 P(S ≥ ES + t) ≤ exp
(
−min

( t

32
,

t2

128EΣ2
R

))
,

where Σ2
R = supr∈R

∑
k r

2
kσk

.

Propositions 5.2.5 and 5.3.5 are special cases of Proposition 5.4.1 as illus-
trated below.

Proof of Proposition 5.2.5. Apply Proposition 5.4.1 with R = { ax : x ∈ X }
(recall the definition of the matrix ax introduced at the beginning of Section 5.2).

Proof of Propositoin 5.3.5. Apply Proposition 5.4.1 with R = {a}.

To prove Proposition 5.4.1, let us first state the modified log-Sobolev in-
equality (5.1.1) for the Laplace transform of S. For any i, j ∈ [n], denote

Sij = sup
r∈R

n∑
k=1

rkσij(k).

Then, the modified log-Sobolev inequality (5.1.1) implies that

Ent(eλS) ≤ λ

n
E
[
eλS

∑
ij

(1− e−λ(S−Sij))+(S − Sij)+

]
,

which after estimating 1− e−x ≤ x can be further specialized to

Ent(eλS) ≤ λ

n
E
[
eλS

∑
ij

(S − Sij)
2
+

]
. (5.4.2)

We need also the following auxiliary fact.
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Lemma 5.4.2. Let S be given by (5.4.1) and assume R ⊂ [0, 1]n×n. Then

∀ λ ∈ [0, 1/4] logE eλS ≤ 2λES.

Proof. Assume w.l.o.g. that R is finite. Let r̂ be a random matrix taking values
in R such that S =

∑n
k=1 r̂kσk

. We have∑
ij

(S − Sij)
2
+ ≤

∑
ij

(r̂iσi
+ r̂jσj

− r̂iσj
− r̂jσi

)2+

≤
∑
ij

(r̂iσi
+ r̂jσj

)2 ≤ 2n
∑
i

(r̂iσi
)2 ≤ 2nS,

(5.4.3)

where in the last inequality we have used that R ∈ [0, 1]n×n.
By the modified log-Sobolev inequality (5.4.2) combined with (5.4.3), we

arrive at

Ent(eλS) ≤ λ2

n
E
[
eλS

∑
ij

(S − Sij)
2
+

]
≤ 2λ2 E[eλSS]

for all λ ≥ 0. Applying Proposition B.3.2 with a = 2, b = 0 results in (1 −
2λ) logE eλS ≤ λES, for all λ ≥ 0, which yields the conclusion.

We are in position to prove Proposition 5.4.1.

Proof of Proposition 5.4.1. Let r̂ be a random matrix taking values in R such
that S =

∑n
k=1 r̂kσk

. By the triangle inequality in ℓ2,∑
ij

(S − Sij)
2
+ ≤

∑
ij

(r̂iσi
+ r̂jσj

− r̂iσj
− r̂jσi

)2+

≤ 8
∑
ij

r̂2iσi
+ 8

∑
ij

r̂2iσj
≤ 8nΣ2

R + 8
∑
ij

r̂2iσj
.

(5.4.4)

Note that∑
ij

r̂2iσj
=

∑
ij

r̂2ij = nE
∑
i

r̂2iσi
≤ nE sup

r∈R

∑
i

r2iσi
= nEΣ2

R,

whence (5.4.4) can be further specialized to∑
ij

(S − Sij)
2
+ ≤ 8n(Σ2

R + EΣ2
R). (5.4.5)

By the modified log-Sobolev inequality (5.4.2) combined with (5.4.5), we arrive
at

Ent(eλS) ≤ λ2

n
E
[
eλS

∑
ij

(S − Sij)
2
+

]
≤ 8λ2

(
(E eλS)(EΣ2

R) + E[eλSΣ2
R]
)
.

(5.4.6)

Recall the variational formula for entropy Ent(h) = sup
{
Ehg : E eg ≤ 1

}
, from

which it follows that for any h, g

Ehg ≤ Ent(h) + (Eh) log(E eg). (5.4.7)
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Applying first (5.4.7) with h = eλS, g = Σ2
R/4 and then Lemma 5.4.2 yields

E
[
eλSΣ2

R

]
≤ 4Ent(eλS)+ 4

(
E eλS

)(
logE eΣ2

R/4
)
≤ 4Ent(eλS)+ 2

(
E eλS

)(
EΣ2

R

)
,

which combined with (5.4.6) results in

(1− 32λ2) Ent(eλS) ≤ 24λ2
(
EΣR

2
)(
E eλS

)
for all λ ≥ 0, so that

Ent(eλS) ≤ 192

7
λ2
(
EΣR

2
)(
E eλS

)
≤ 32λ2

(
EΣR

2
)(
E eλS

)
for all λ ∈ [0, 1/16]. We conclude by applying Proposition B.3.3 with ε = 1

16

and b = 32EΣ2
R.
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Appendix A

Beckner inequalities and moment
estimates

Throughout this appendix, we use the notation from Chapter 2.

A.1 Auxiliary lemmas
In this section we provide proofs of technical lemmas used in Section 2.2.

Proof of Lemma 2.2.3. Consider a nonnegative f such that f, fp−1 ∈ Dom(E).
For t > 0, let ft denote min(f, t). The function x 7→ min(x, t) is a contraction,
whence ft, fp−1

t ∈ Dom(E). Moreover, for any t > 0 and any non-decreasing
function φ

(ft(x)− ft(y))(φ(ft(x))− φ(ft(y))) ≤ (f(x)− f(y))(φ(f(x))− φ(f(y))),

so by Assumption 1,
sup
t>0
E(ft, fp−1

t ) ≤ E(f, fp−1).

It remains to show that µ(fp)−µ(f)p is well-defined and is the limit of µ(fp
t )−

µ(ft)
p as t → ∞. By the Lebesgue monotone convergence theorem, it suffices

to show that µ(f) <∞. To this end it is enough to show that supt µ(ft) <∞.
This inequality is trivially satisfied if supt µ(ft)

p ≤ E(f, fp−1). Assume thus
that µ(ft)p > E(f, fp−1) for some t. Applying Beckner’s inequality (Bec-p) to
the function ft, we get that 1+αp

αp
µ(ft)

p ≥ µ(fp
t ) (recall that p/2 ≤ 1). Whence,

by the Paley–Zygmund inequality (see, e.g., [80, Corollary 3.3.2])

µ
(
f >

1

2
µ(ft)

)
≥ µ

(
ft >

1

2
µ(ft)

)
≥

( 1

2p
µ(ft)

p

µ(fp
t )

) 1
p−1 ≥ 2−

p
p−1

( αp

1 + αp

) 1
p−1
.

Thus, 1
2
µ(ft) must be bounded by an appropriate quantile of f , whence we

proved that supt>0 µ(ft) is finite as desired.

Proof of Lemma 2.2.7. Fix any s ≥ 1. The Lipschitz property of the appro-
priate maps on the interval [inf f, sup f ] and Assumption 1 imply that for any
u ∈ R, fu, fu log f ∈ Dom(E). Denote hε(x) = xε−1

ε
− log x for ε ̸= 0. Then

f s−1hε(f) ∈ Dom(E) (since Dom(E) is a linear space) and by the bilinearity of
E ,

v(s+ ε)− v(s)
ε

= E(f, f s−1 log f) + E(f, f s−1hε(f)).
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We will show that

|xs−1hε(x)− ys−1hε(y)| ≤ C|ε| · |x− y|

for all x, y ∈ [inf f, sup f ], |ε| small enough, and some positive constant C
dependent on s and f . By Assumption 1, this will allow to conclude that
|E(f, f s−1hε(f))| ≤ C|ε| · E(f, f)→ 0 as ε→ 0.

By the Taylor expansion of xε in ε with the integral form of the remainder

hε(x) =
1

ε

∫ ε

0

(ε− u)xu log2 x du,

so
xs−1hε(x)− ys−1hε(y) =

1

ε

∫ ε

0

(gu(x)− gu(y))(ε− u) du,

where gu(x) = xu+s−1 log2(x). We can and do assume without loss of generality
that ε ∈ (1 − s, 1). Recalling that f is bounded and separated from zero, it
follows that

sup
{1
2
|g′u(x)| : u ∈ (1− s, 1), x ∈ [inf f, sup f ]

}
=: C <∞.

The proof is concluded by taking the absolute value, passing with it under the
integral and estimating the increments of gu.

A.2 Known implications between functional in-
equalities

In this section we provide sketches of proofs of previously known implications
between functional inequalities discussed in Section 2.1.4. Although in the liter-
ature the results are commonly stated in the Markov kernel setting (sometimes
only in the finite state space or continuous case), their proofs are mostly based
on pointwise inequalities which imply comparison of Dirichlet forms. Hence, by
virtue of Assumption 1 they pass directly to our setting at the cost of adding just
a few technical details (needed mostly in order to make sure that all quantities
are well-defined). We remark that a section containing implications between
the Poincaré, log-Sobolev, and modified log-Sobolev inequality in an abstract
setting, but under a somewhat different set of assumptions than ours, can be
found in the article [42] by Bobkov and Tetali. In all the statements below we
assume that Assumption 1 is satisfied.

Let us start with the implication between (LSI) and (mLSI).

Proposition A.2.1. If the log-Sobolev inequality (LSI) holds with some con-
stant ρ1, then the modified log-Sobolev inequality (mLSI) holds with ρ0 ≥ 4ρ1.

Proof. The argument is based on the following pointwise inequality introduced
by Bobkov and Tetali [42]:

4
(√

a−
√
b
)2 ≤ (a− b)(log(a)− log(b)), a, b > 0. (A.2.1)

Assuming that (LSI) holds for all g ∈ Dom(E), let us consider f , such that
f, log f ∈ Dom(E). Denote fε = max(f, ε). By Assumption 1, the fact that
x 7→ max(x, ε) is a contraction and monotonicity of the log, one can easily
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see that E(fε, log(fε)) ≤ E(f, log(f)). Taking into account that Entµ(f) =
limε→0 Entµ(fε), one can thus assume that f is separated from zero. Thus,
again by Assumption 1, and Lipschitz property of the square root away from
zero, g =

√
f ∈ Dom(E), and ρ1 Entµ(f) ≤ E(

√
f,
√
f) ≤ 1

4
E(f, log(f)), where

in the last inequality we used (A.2.1) and Assumption 1.

Let us now pass to the relation between (Bec’-q) and (LSI).

Proposition A.2.2. If dual Beckner’s inequality (Bec’-q) holds for every q ∈
[1, 2) with βq bounded away from zero, then the log-Sobolev inequality (LSI)
holds as well with ρ1 ≥ 1

2
lim supq→2− βq. Conversely if (LSI) holds, then so

does (Bec’-q) for every q ∈ [1, 2), with βq ≥ qρ1.

Proof. To obtain the first part of the proposition, it is enough to apply (Bec’-q)
to |g| (note that |g| ∈ Dom(E) by Assumption 1), divide by 2− q, and pass to
the limit q → 2, observing that

µ(g2)− µ(gq)2/q

2− q
−→ 1

2
Entµ(g

2) as q → 2−.

One obtains (2−1 lim supq→2− βq) Entµ(g
2) ≤ E(|g|, |g|) ≤ E(g, g), where the last

inequality follows from another application of Assumption 1.
The second part follows from a lemma proved in [136], which asserts that if

g ∈ L2(X , µ), then the function

[1, 2) ∋ q 7−→ µ(g2)− µ(gq)2/q

1/q − 1/2

is increasing. Note that in our setting square integrability of g for g ∈ Dom(E)
is a part of the assumption (LSI).

Proposition A.2.3. If the Beckner inequality (Bec-p) holds for every p ∈ (1, 2]
with αp bounded away from zero, then the modified log-Sobolev inequality (mLSI)
holds as well with ρ0 ≥ 2 lim supp→1+ αp.

Proof. Let us consider f such that f, log(f) ∈ Dom(E). Additionally, let us
assume that f is bounded and separated from zero. In particular fp ∈ Dom(E)
for p ≥ 1. Taking the right derivative of the function p 7→ µ(fp) − µ(f)p at
p = 1 and using (Bec-p) together with Lemma 2.2.7, we obtain (mLSI) with
ρ0 ≥ 2 lim supp→1+ αp.

It remains to remove the additional assumptions on f . The assumption that
f is separated from zero can be removed in the same way as in the proof of
Proposition A.2.1. Let us therefore focus on the boundedness assumption. The
argument is a variation of the one used in Lemma 2.2.3. Setting ft = min(f, t),
by Assumption 1 we have E(ft, log(ft)) ≤ E(f, log(f)) < ∞, so it remains to
show that supt>0 µ(ft) <∞, as it will prove integrability of f , which will allow
to pass to the limit with t→∞ in (mLSI) for ft.

Let φ : [0,∞) → [0,∞) be any increasing convex function, φ(0) = 0, such
that for large x, φ(x) = x log x. Set gt = ft/µ(ft) for t > t0 = inf{t : µ(ft) > 1}
– we assume that t0 < ∞ as otherwise supt>0 µ(ft) < ∞ as desired. Since
x log x is bounded from below and Entµ(ft)/µ(ft) = µ(gt log(gt)), we obtain
supt>t0 µ(φ(gt)) <∞. Thus, by convexity and monotonicity of φ,

lim
δ→0

sup
t>t0

µ(φ(δgt)) = 0.
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Let δ < 1/4 be such that for all t > t0, µ(φ(δgt)) < 1/4. Denoting by φ∗ the
Legendre transform of φ, given by φ∗(y) = supx≥0(xy − φ(x)), we have

1 = µ(gt) ≤ δ + µ(gt1{gt>δ}) ≤ δ + µ(φ(δgt)) + φ∗(δ−1)µ(gt ≥ δ),

which gives

µ
(
f ≥ δµ(ft)

)
≥ µ

(
ft ≥ δµ(ft)

)
= µ(gt ≥ δ) ≥ 1

2φ∗(δ−1)
> 0.

This shows that supt>0 µ(ft) = supt>t0 µ(ft) is dominated by an appropriate
quantile of f and is therefore finite, ending the proof.

Let us now pass to the relation between Beckner’s inequalities (Bec-p)
and (Bec’-q).

Proposition A.2.4. Let p ∈ (1, 2] and q = 2/p ∈ [1, 2). If dual Beckner’s
inequality (Bec’-q) holds with constant βq then Beckner’s inequality (Bec-p)
holds with constant αp ≥ βq. Conversely, if (Bec-p) holds with constant αp,
then (Bec’-q) holds with constant βq ≥ q(2− q)αp.

Proof. Assume first (Bec’-q). By Lemma 2.2.3 in order to prove (Bec-p) it is
enough to show that it holds for bounded f . Assume thus that f is bounded
and f, fp−1 ∈ Dom(E). Set g = fp/2. Since p/2 ≥ p− 1, g ∈ Dom(E) and thus

βq(µ(f
p)− µ(f)p) = βq(µ(g

2)− µ(gq)2/q)

≤ (2− q)E(g, g) = 2(p− 1)

p
E(g, g)

By Lemma 2.2.5, E(g, g) ≤ p2

4(p−1)
E(f, fp−1), which implies (Bec-p).

The second part of the proposition follows by the first inequality from
Lemma 2.2.5 for functions g separated from zero and infinity (the assump-
tion is needed in order to assure that for f = g2/p we have f, fp−1 ∈ Dom(E).
An extension to general functions can be obtained by appropriate truncations
analogously as in the other implications we have considered so far. Since we do
not use this implication in any part of this paper, we skip the details.

Finally, let us show that the Poincaré inequality is implied both by the
modified log-Sobolev inequality (mLSI) and by Beckner’s inequality (Bec-p)
(with fixed p)

Proposition A.2.5. If the modified log-Sobolev inequality (mLSI) holds with
constant ρ0, then the Poincaré inequality (P) holds with λ ≥ ρ0/2.

Proof. Again the argument is well known and one just needs to adjust it to our
setting. If f ∈ Dom(E) is bounded (say ∥f∥∞ = M), then set gε = eεf . Using
Taylor’s expansion we get

Entµ(gε) =
1

2
ε2Varµ(f) + o(ε2).

On the other hand, using the inequality

(ea − eb)(a− b) ≤ eεM(a− b)2

valid for a, b ∈ [−εM, εM ], together with Assumption 1, we obtain

E(gε, log gε) ≤ ε2eεME(f, f).
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To obtain (P) for bounded functions it is thus enough to apply (mLSI) to gε
and let ε → 0+. To extend this to Dom(E) note that the Poincaré inequality
for bounded functions implies (in fact is equivalent to) (Bec-p) with p = 2 for
bounded functions. Thus by Assumption 1 and Lemma 2.2.3 if f ∈ Dom(E),
then f is square integrable. It is thus enough to set ft = max(−t,min(f, t)) for
t > 0, apply (P) to ft and pass with t→∞, using the fact that by Assumption 1,
E(ft, ft) ≤ E(f, f).
Proposition A.2.6. Let p ∈ (1, 2]. If Beckner’s inequality (Bec-p) holds with
constant αp, then the Poincaré inequality (P) holds with constant λ ≥ αp.

Proof. As in the proof of Proposition A.2.5, it is enough to prove (P) for
bounded functions. Assume thus that f ∈ Dom(E) is bounded. Then, for
sufficiently small ε, (1 + εf)p−1 ∈ Dom(E). Thus

αp

(
µ((1 + εf)p)− (µ(1 + εf))p

)
≤ p

2
E(1 + εf, (1 + εf)p−1)

=
εp

2
E(f, (1 + εf)p−1).

The Taylor expansion reveals that for ε→ 0,

µ((1 + εf)p)− (µ(1 + εf))p =
1

2
p(p− 1)ε2Varµ(f) + o(ε2).

On the other hand

εE(f, (1 + εf)p−1) = (p− 1)ε2E(f, f) + εE(f, (1 + εf)p−1 − 1− (p− 1)εf).

To finish the proof it is thus enough to show that

E(f, (1 + εf)p−1 − 1− (p− 1)εf) = o(ε)

for ε → 0+. Denote M = ∥f∥∞ and denote g(x) = (1 + x)p−1 − 1 − (p − 1)x.
For a, b ∈ [−M,M ] we have

|a− b||g(εa)− g(εb)| ≤ ε(a− b)2Aε.

where Aε = supt∈[−εM,εM ] |g′(t)|. Thus, by Assumption 1, E(f, (1 + εf)p−1 −
1− (p− 1)εf) ≤ εAεE(f, f) and it remains to show that limε→0+Aε = 0. This
is however true, since g is continuously differentiable in the neighborhood of 0
and g′(0) = 0.

Finally we address the question of the monotonicity of the constants in
Beckner’s inequalities.

Lemma A.2.7. For 1 < p− ε < p ≤ 2 and a, b, > 0,(
a(p−ε)/p − b(p−ε)/p

)(
a(p−ε)(p−1)/p − b(p−ε)(p−1)/p

)
≤ (p− ε)2(p− 1)

p2(p− ε− 1)
(a− b)(ap−ε−1 − bp−ε−1).

Proof. By the integral version of Chebyshev’s sum inequality,

a(p−ε)/p − b(p−ε)/p

a− b
· a

(p−ε)(p−1)/p − b(p−ε)(p−1)/p

a− b

=
(p− ε)/p
a− b

∫ b

a

s(p−ε)/p−1ds · (p− ε)(p− 1)/p

a− b

∫ b

a

s(p−ε)(p−1)/p−1ds

≤ (p− ε)2(p− 1)

p2
1

a− b

∫ b

a

sp−ε−2ds

=
(p− ε)2(p− 1)

p2(p− ε− 1)

ap−ε−1 − bp−ε−1

a− b
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(note that s 7→ sp−ε−2 and s 7→ s(p−ε)(p−1)/p−1 are both decreasing).

Proposition A.2.8. Suppose that for some p ∈ (1, 2] Beckner’s inequality
(Bec-p) holds with constant αp > 0. Let 0 < ε < p − 1. Then, Beckner’s
inequality (Bec-p) holds for p− ε (in place of p) with constant

αp−ε ≥
(p− ε− 1)p

(p− ε)(p− 1)
αp.

In particular, if Beckner’s inequality (Bec-p) holds for all (equivalently: for
some) p ∈ (1, 2], then the function p 7→ p

p−1
αopt
p , p ∈ (1, 2], is non-increasing.

Proof. By Jensen’s inequality, (Bec-p), and Lemma A.2.7,

αp

(
µ(fp−ε)− µ(f)p−ε

)
≤ αp

(
µ(fp−ε)− µ(f (p−ε)/p)p

)
≤ p

2
E(f (p−ε)/p, f (p−ε)(p−1)/p)

≤ p− ε
2
· (p− ε)(p− 1)

(p− ε− 1)p
E(f, fp−ε−1).

This finishes the proof.

Remark A.2.9. In the case of dual Beckner’s inequality (Bec’-q) we have:

• q 7→ 1
2−q

βopt
q , q ∈ [1, 2) is non-decreasing (just by the Jensen inequality),

• q 7→ 1
q
βopt
q , q ∈ [1, 2) is non-increasing (by a lemma proved in [136] con-

cerning the monotonicity of the function q 7→ µ(g2)−µ(gq)2/q

1/q−1/2
, q ∈ [1, 2)).

A.3 Connections with Dirichlet forms
In this section we will provide a link between our assumptions and the usual the-
ory of Dirichlet forms associated with Markov semigroups, in particular showing
that our main assumptions are satisfied in this setting. As reference, we suggest
the monographs [89, 21]. Recall that we work on a probability space (X ,B, µ).

Let P : [0,∞)×X×B → [0, 1] be a homogeneous Markov transition function
for which µ is an invariant measure. We will assume that P is reversible with
respect to µ. We will often write Pt(x,B) for P (t, x, B), and we will also denote
by (Pt)t≥0 the semigroup of operators on L2(X , µ) related to the transition
function and defined as

Ptf(x) =

∫
X
f(y)Pt(x, dy).

We will assume that this semigroup is strongly continuous.
It can be shown that for each f ∈ L2(X , µ) the function

t 7→ 1

2t

∫
X

∫
X
(f(y)− f(x))2Pt(x, dy)µ(dx)

is non-increasing. Denoting

Dom(E) =
{
f ∈ L2(X , µ) : sup

t≥0

1

2t

∫
X

∫
X
(f(y)− f(x))2Pt(x, dy)µ(dx) <∞

}
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and defining for f, g ∈ E ,

E(f, g) = lim
t→0

1

2t

∫
X

∫
X
(f(y)− f(x))(g(y)− g(x))Pt(x, dy)µ(dx)

we obtain a nonnegative definite symmetric quadratic form.
In particular, for f ∈ Dom(E) we obtain

E(f, f) = lim
t→0

1

2t

∫
X

∫
X
(f(y)− f(x))2Pt(x, dy)µ(dx),

and it is straightforward to check that the Assumption 1 is satisfied in this case.
Let us now discuss the Assumption 2. If L is the infinitesimal operator of

the semigroup (Pt)t≥0, defined as

Lf = lim
h→0+

Phf − f
h

with the convergence in the L2 sense, and f, g ∈ Dom(L), then

E(f, g) = −
∫
X
fLgdµ.

If also fg ∈ Dom(L), then one obtains further the equality (2.1.7) where the
carré du champ operator Γ is given by (2.1.8). One shows that Γ(f, f) ≥ 0.
In most applications the operator Γ is first defined on a suitable algebra of
functions A0 ⊆ Dom(L) and then extended to some larger class A. This is
the situation described, e.g., in Chapter 1.14 of [21]. In the case of diffusions
on Riemannian manifolds one usually takes A0 to be the algebra of smooth
compactly supported functions and A – the algebra of all smooth functions.
However, in the abstract setting there is no canonical choice of A, so we will
stick here to the basic case of A ⊆ Dom(L) and refer to Chapter 3 of [21] for
the axiomatic approach, which allows to introduce a general framework for an
abstract counterpart of the theory of diffusions in Rn.

The following proposition shows that in our basic setting the first part of
Assumption 2 is satisfied for every algebra A ⊆ Dom(L).

Proposition A.3.1. Assume that f : X → R is a bounded function and f, f 2 ∈
Dom(L). Let t, t′ ≥ 1 satisfy 1

t
+ 1

t′
= 1. Then for every differentiable convex,

non-decreasing function φ : [0,∞)→ R and every c ∈ R

E(φ(|f + c|), |f + c|) ≤ 2

∫
X
φ′(|f + c|)Γ(f)dµ ≤ 2

∥∥∥φ′(|f + c|)
∥∥∥
t′

∥∥∥Γ(f)∥∥∥
t
.

Proof. Note that if f 2, f ∈ Dom(L) and f is bounded then

1

u

∫
X
(f(x)− f(y))2Pu(x, dy)

=
1

u

∫
X
(f 2(y)− f 2(x))Pu(x, dy)− 2f(x)

1

u

∫
X
(f(y)− f(x))Pu(x, dy)

u→0+→ 2Γ(f) (A.3.1)

in L2.
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By boundedness of f , the fact that convex functions are locally Lipschitz,
and Assumption 1 (which we know to be satisfied in the Markov case), φ(|f +
c|), |f + c| ∈ Dom(E). Moreover, denoting g = f + c,

E(φ(|g|), |g|)

= lim
u→0+

1

2u

∫
X

∫
X
(φ(|g(x)|)− φ(|g(y)|))(|g(x)| − |g(y)|)Pu(x, dy)µ(dx)

= lim
u→0+

1

u

∫
X

∫
X
(φ(|g(x)|)− φ(|g(y)|))+(|g(x)| − |g(y)|)+Pu(x, dy)µ(dx)

≤ lim inf
u→0+

∫
X
φ′(|g(x)|) 1

u

∫
X
(f(x)− f(y))2+Pu(x, dy)µ(dx)

≤ lim inf
u→0+

∫
X
φ′(|g(x)|) 1

u

∫
X
(f(x)− f(y))2Pu(x, dy)µ(dx)

= 2

∫
X
φ′(|f(x) + c|)Γ(f)(x)dµ(dx),

where in the second equality we used reversibility of the semigroup together
with monotonicity of φ, and in the first inequality – convexity of φ. The last
equality follows by boundedness of f and (A.3.1).

This proves the first inequality of the proposition. The second one follows
by Hölder’s inequality.

As for the second part of Assumption 2, it is satisfied, e.g., if A ⊆ Dom(L) is
an algebra stable under compositions with smooth bounded Lipschitz functions
vanishing at zero, which is a common assumption in this context (see Chapter
1.13 of [21]). Indeed, in this case one can define an appropriate sequence of
smooth bounded contractions ψn : R→ R with ψn(0) = 0, converging to ψ(x) =
x pointwise and take fn = ψn(f). Then clearly fn → f and |fn| ≤ |f | µ-a.s.
Moreover, for general f such that f, f 2 ∈ Dom(L) one still has (A.3.1) but this
time in L1. Thus using the contraction property of ψn one can easily show that

Γ(fn) = Γ(ψn(f)) ≤ Γ(f) µ-a.s.

Combining this observation with Proposition A.3.1 one obtains

Proposition A.3.2. If A ⊆ Dom(L) is an algebra stable under composition
with smooth bounded Lipschitz functions vanishing at zero, then the Assump-
tion 2 is satisfied.

This gives the basic setting for applying moment estimates of Proposi-
tion 2.3.3 in the Markovian case. Clearly, in concrete applications the moment
inequalities can be extended to larger classes of functions – the details of such
an extension and the choice of the class of functions may however depend on the
particular case. We again refer to Chapter 3 of [21] for an extensive discussion
of this issue.

A.4 Measurability on the Poisson space
In this section we would like to address the measurability issues indicated in
Section 2.4.6, cf. Remark 2.4.18 therein.

Let us briefly recall the notation. The pair (X ,B) is a measurable space
endowed with a σ-finite measure λ, while N is the space of all N∪ {∞}-valued
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measures on (X ,B) which can be expressed as countable sums of N-valued
measures. The measurable structure on N is given by the smallest σ-field G
such that for all B ∈ B the map µ 7→ µ(B) is G-measurable. An N -valued
random variable η is a Poisson process with intensity λ.

Recall also that Xn ∈ B is a sequence of sets with
⋃

nXn = X , such that
λ(Xn) < ∞ for all n. We consider the space M ⊂ N of measures of the form
µ =

∑K
i=1 δxi

where K ≤ ∞ and xi ∈ X , such that for every n, µ(Xn) < ∞.
We endow this space with the smallest σ-field S such that the maps µ 7→ µ(B)
are measurable for all B ∈ B. Finally, for ρ =

∑K
k=1 δxk

∈M, A ∈ S, recall the
definition

Qρ(A) = λ({x : ρ+ δx ∈ A }) +
K∑
k=1

1A(ρ− δxk
). (A.4.1)

One of the reasons why we restrict to the space M is the possibility of
interpreting the integral with respect to ρ as a sum. For general integer-valued
measures, when a representation with Dirac deltas may not exist (see [133]) one
may encounter problems with measurability and interpretation of ρ − δx. For
instance, the example below shows that even when ρ itself is a Dirac’s delta,
the set {x : ρ ≥ δx } may not be measurable. Below we wil show that the
definition (A.4.1) of Q does not depend on the representation of ρ as a sum of
Dirac masses, and Q defined by the above formula is indeed a kernel on M.
Moreover, it can be approximated with kernels admitting finite values only.
Example A.4.1. Let X = [0, 1] and B = σ({A ⊂ [0, 1) : A is countable }) so
that

B = {C ⊂ [0, 1) : C is countable }
∪ {C ⊂ [0, 1] : [0, 1] \ C is countable and 1 ∈ C }.

Let ρ = δ1 be the Dirac mass at point 1. Then {x : ρ ≥ δx } = {1} but {1} /∈ B.
Let us now discuss the definition (A.4.1) and show thatQρ(A) is well-defined,

i.e., it is independent on the representation of ρ as a sum and that the mapping
M∋ ρ 7→ Qρ(A) is S-measurable.

Let us begin with showing the measurability of the first integral in the
definition (A.4.2). By Fubini’s theorem, it suffices to show that (x, ρ) 7→ ρ+δx is
B⊗S-measurable. Note that S is generated by the sets DB,C = { ρ : ρ(B) ∈ C }
for B ∈ B, C ∈ B(R). Thus, for arbitrary B ∈ B, C ∈ B(R),

{ (x, ρ) : ρ+ δx ∈ DB,C } = { (x, ρ) : (ρ+ δx)(B) ∈ C }
=

(
B × { ρ : ρ(B) ∈ C − 1 }

)
∪
(
Bc × { ρ : ρ(B) ∈ C }

)
∈ B ⊗ S

as desired.
Set

Qn
ρ(A) =

∫
Xn

1A(ρ+ δx)λ(dx) +
κ∑

k=1

1Xn(xk)1A(ρ− δxk
). (A.4.2)

Note that for any A ∈ S and ρ ∈ M, Qn
ρ(A) ↗ Qρ(A) as n → ∞ and that

Qn
ρ(M) = λ(Xn) + ρ(Xn) <∞.

Denote A to be those elements A ∈ S such that for any n ∈ N and ρ ∈M,
Qn

ρ(A) is independent on the representation of ρ as a sum and that ρ 7→ Qn
ρ(A)

is S-measurable
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We verify that A is a λ-system. Firstly, ∅ ∈ A. Secondly, for any pairwise
disjoint sets A1, A2, . . . ⊂ A and any n ∈ N, ρ 7→ Qn

ρ(
⋃

iAi) =
∑

iQ
n
ρ(Ai) is

well-defined and S-measurable as a countable sum of well-defined and mea-
surable mappings. Finally, for any A ∈ A and n ∈ N, ρ 7→ Qn

ρ(A
c) =

λ(Xn) + ρ(Xn) − Qn
ρ(A) is also well-defined and S-measurable as a combi-

nation of well-defined and measurable mappings (here we use the fact that
λ(Xn) + ρ(Xn) <∞ by the definition of Xn). Thus, A is a λ-system.

Consider the following π-system,

A′ =
{
{µ ∈M : µ(B1) = a1} ∩ . . . ∩ {µ ∈M : µ(Bk) = ak} :

k ∈ N, Bi ∈ B, ai ∈ N for all i ∈ {1, . . . , k}
}

We verify that for each A ∈ A′, A is S-measurable. For B ∈ B, denote B1 = B
and B−1 = Bc. For ρ ∈ M, let ρ =

∑K
i=1 δxi

for some K ≤ ∞ and X -valued
random variables x1, x2, . . . so that for any A ∈ A′,

K∑
i=1

1Xn(xi)1A(ρ− δxi
) =

K∑
i=1

1{xi∈Xn}

k∏
j=1

(
1{xi∈Bj , ρ(Bj)=aj+1} + 1{xi∈Bc

j , ρ(Bj)=aj}
)

=
K∑
i=1

∑
ε1,...,εk=±1

1{xi∈Xn ∩
⋂k

j=1 B
εj
j }

k∏
j=1

1{ρ(Bj)=aj+
εj+1

2
}

=
∑

ε1,...,εk=±1

k∏
j=1

1{ρ(Bj)=aj+
εj+1

2
}

K∑
i=1

1{xi∈Xn ∩
⋂k

j=1 B
εj
j }

=
∑

ε1,...,εk=±1

k∏
j=1

1{ρ(Bj)=aj+
εj+1

2
} · ρ

(
Xn ∩

k⋂
j=1

B
εj
j

)
,

(A.4.3)

which is S-measurable as a finite sum of finite products of measurable mappings.
Let us note that the right-hand side of (A.4.3) is also independent on the rep-
resentation of ρ as a sum of Dirac deltas. Therefore, by Sierpiński–Dynkin’s
π-λ theorem applied to systems A and A′, Q is well-defined and the mapping
M∋ ρ 7→ Qρ(A) is S-measurable for any A ∈ S.



Appendix B

Sampling without replacement and
Hoeffding statistics

Throughout this appendix, we use notation from Chapter 5.

B.1 Proof of Lemma 5.2.1
Set E = Rn and g(i) = ei, where ei ∈ Rn is a vector with 1 on the i-th coordinate
and 0’s elsewhere. Moreover, let for any v ∈ Rn,

Ψ(v) = ϕ
(
sup
x∈X
⟨x, v⟩

)
,

where ⟨·, ·⟩ is the standard dot product. Then,

ϕ(Z) = ϕ
(
sup
x∈X
⟨x,

m∑
k=1

eIk⟩
)
= Ψ

( m∑
k=1

g(Ik)
)

and identically ϕ(Z ′) = Ψ(
∑m

k=1 g(Jk)). Finally, for any v, w ∈ Rn and t ∈ [0, 1],

Ψ(tw + (1− t)v) = ϕ
(
sup
x∈X
⟨x, tw + (1− t)v⟩

)
≤ ϕ

(
t sup
x∈X
⟨x,w⟩+ (1− t) sup

x∈X
⟨x, v⟩

)
≤ tΨ(w) + (1− t)Ψ(v),

where in the first inequality we have used that ϕ is increasing, and in the second
inequality we have used that ϕ is convex. We conclude by applying Hoeffding’s
argument (5.2.2) to the pair (g,Ψ).

B.2 Proof of Lemma 5.2.4
Let us recall some facts regarding entropy. For any random variable Y measur-
able w.r.t. σ(J1, . . . , Jm) and any k ∈ [m], let E(k) denote the expectation w.r.t.
Jk only, i.e.,

E(k)[Y ] = E
[
Y | J1, . . . , Jk−1, Jk+1, . . . , Jm

]
.

For such positive Y , recall the tensorization of entropy formula (cf., e.g., [51,
Theorem 4.10])

Ent(Y ) ≤ E
m∑
k=1

Ent(k)(Y ), (B.2.1)

147
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where
Ent(k)(Y ) = E(k)

[
Y log Y

]
− E(k)

[
Y
]
logE(k)

[
Y
]

is the entropy functional corresponding to E(k). Moreover, recall the following
variational formula for the entropy

Ent(Y ) = inf
c>0

E
[
Y (log Y − log c)− (Y − c)

]
. (B.2.2)

Proof of Lemma 5.2.4. For k ∈ [m], let

Z ′
k = sup

x∈X

m∑
l=1,l ̸=k

xJl

(if m = 1, then we put u1 = 0). By the tensorization of entropy (B.2.1) and
by (B.2.2),

Ent(eλZ
′
) ≤ E

m∑
k=1

Ent(k)(eλZ
′
)

= E
m∑
k=1

inf
ck>0

E(k)
[
eλZ

′
(λZ ′ − log ck)− (eλZ

′ − ck)
]

≤ E
m∑
k=1

E(k)
[
eλZ

′
(λZ ′ − λZ ′

k)− (eλZ
′ − eλZ′

k)
]

≤ E
[
eλZ

′
m∑
k=1

ϕ(−λ(Z ′ − Z ′
k))

]
,

(B.2.3)

where ϕ(z) = ez − z − 1.
Note that

m∑
k=1

(Z ′ − Z ′
k) ≤ Z ′

and that for any z ∈ [0, 1] and λ ≥ 1/4, by the convexity of the function
z 7→ e−z/4 − 1

ϕ(−λz) = e−λz − 1 + λz ≤ e−z/4 − 1 + λz

≤ −z
4
e−1/4 + λz ≤

(
λ− 1

8

)
z.

Since X ⊂ [0, 1]n by assumption, therefore 0 ≤ Z ′−Z ′
k ≤ 1 and whence we can

estimate (B.2.3) further for any λ ≥ 1/4 as follows,

Ent(eλZ
′
) ≤

(
λ− 1

8

)
E
[
eλZ

′
m∑
k=1

(Z ′ − Z ′
k)
]
≤

(
λ− 1

8

)
E
[
eλZ

′
Z ′],

which after rearrangement yields

E
[
eλZ

′
Z ′] ≤ 8E eλZ′

logE eλZ′
,

which in turn is equivalent to

d

dλ

(
logE eλZ′) ≤ 8 logE eλZ′
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for any λ ≥ 1/4. Integrating w.r.t. λ yields that

logE eλZ′ ≤ e8λ−2 logE eZ′/4. (B.2.4)

We turn to estimating the term logE eZ′/4. Using again that 0 ≤ Z ′−Z ′
k ≤ 1,

we obtain that
m∑
k=1

(Z ′ − Z ′
k)

2 ≤ Z ′.

Moreover, by comparing the derivatives, we get that for any z ≥ 0,

ϕ(−z) ≤ z2

2

and thus we can also estimate further (B.2.3) as

Ent(eλZ
′
) ≤ λ2

2
E
[
eλZ

′
m∑
k=1

(Z ′ − Z ′
k)

2
]
≤ λ2

2
E
[
eλZ

′
Z ′].

Applying Proposition B.3.2 with a = 1
2

and b = 0 yields that

∀ λ ≥ 0
(
1− λ

2

)
logE eλZ′ ≤ λEZ ′

so that
∀ λ ∈ [0, 1/4] logE eλZ′ ≤ 8

7
λEZ ′,

which combined with (B.2.4) yields

logE eλZ′ ≤ 2

7e2
e8λ EZ ′ ≤ 1

16
e8λ EZ ′

as desired.

B.3 Variants of the Herbst argument
Throughout this section, X is a random variable such that its Laplace transform
F is well defined on [0,∞). In that case, recall that

Ent(eλX) = λF ′(λ)− F (λ) logF (λ)

for all λ ≥ 0. Below we gather some variants of the celebrated Herbst argument.

Proposition B.3.1. If for any λ ≥ 0,

λF ′(λ)− F (λ) logF (λ) ≤ aλ2ebλF (λ) (B.3.1)

for some a, b > 0, then

∀ λ ≥ 0 logE eλ(X−EX) ≤ a

b
λ(ebλ − 1) (B.3.2)

and in particular

∀ t ≥ 0 P
(
X ≥ EX + t

)
≤ exp

(
− t

2b
log

(
1 +

b

2a
t
))
. (B.3.3)
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Proof. Set H(λ) = logF (λ)
λ

for λ > 0. Then, (B.3.1) implies H ′(λ) ≤ aebλ. Since
H(0+) = EX, then for any λ > 0,

H(λ) ≤ EX +
a

b
(ebλ − 1),

which translates to (B.3.2) and consequently, by the Chernoff bound

P
(
X ≥ EX + t

)
≤ inf

λ>0
exp

(
−λt+ a

b
λ(ebλ − 1)

)
for all t ≥ 0. Choosing λ = 1

b
log(1 + b

2a
t) yields (B.3.3).

Proposition B.3.2. Assume that for all λ ≥ 0,

λF ′(λ)− F (λ) logF (λ) ≤ λ2
(
aF ′(λ) + bF (λ)

)
(B.3.4)

for some a, b ∈ R. Then

∀ λ ≥ 0 (1− aλ) logE eλX ≤ λEX + bλ2. (B.3.5)

If additionally a > 0 and X is not constant, then aEX + b > 0 and

∀ t ≥ 0 P
(
X ≥ EX + t

)
≤ exp

(
−min

( t

4a
,

t2

8(aEX + b)

))
. (B.3.6)

Proof. Set H(λ) = logF (λ)
λ

for λ > 0. Then, (B.3.4) implies

H ′(λ) ≤ a
F ′(λ)

F (λ)
+ b =

d

dλ

(
a logF (λ) + bλ

)
.

Consequently, for any λ > 0,

H(λ) ≤ H(0+) + a logF (λ) + bλ,

which is equivalent to (B.3.5) since H(0+) = EX. Subtracting (1 − aλ)λEX
from both sides gives

(1− aλ) logE eλ(X−EX) ≤ λ2(aEX + b). (B.3.7)

By Jensen’s inequality and the fact that X is not constant, logE eλ(X−EX) > 0.
If λ ≤ 1/2a, then 1/2 ≤ 1− aλ, whence (B.3.7) implies

∀ λ ∈ [0, 1/2a] 0 < logE eλ(X−EX) ≤ 2λ2(aEX + b).

Therefore, by the Chernoff bound

P
(
X ≥ EX + t

)
≤ inf

0≤λ≤1/2a
exp

(
−λt+ 2λ2(aEX + b)

)
for all t ≥ 0. Choosing λ = t

4(aEX+b)
if t ≤ 2(aEX+b)

a
and λ = 1

2a
otherwise

yields (B.3.6).
Proposition B.3.3. Assume that for some ε, b > 0 and all λ ∈ [0, ε],

λF ′(λ)− F (λ) logF (λ) ≤ bλ2F (λ). (B.3.8)

Then

∀ t ≥ 0 P
(
X ≥ EX + t

)
≤ exp

(
−min

(εt
2
,
t2

4b

))
. (B.3.9)

Proof. Dividing (B.3.8) by λ2F (λ) and integrating w.r.t. λ yields
logE eλX

λ
≤ EX + λb

for all λ ∈ [0, ε]. Therefore, by the Chernoff bound

P
(
X ≥ EX + t

)
≤ inf

0≤λ≤ε
exp

(
−λt+ bλ2

)
for all t ≥ 0. Choosing λ = t

2b
if t ≤ 2bε and λ = ε otherwise yields (B.3.9).
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