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Abstract

Computational Methods for the Analysis of Chromosomal Rearrangements

This dissertation focuses on algorithms for genome assembly and the interpretation of
changes in genome architecture caused by structural rearrangements. The introductory
chapter presents the biological background of the problem from a genetic perspective and
discusses the state-of-the art sequencing technologies. The following chapter introduces an
innovative algorithm designed for third-generation sequencing data. This method allows
for the local assembly of regions enriched in segmental duplications. It has been utilized
to reconstruct the subtelomeric sequences of selected chromosomes in Great Apes, leading
to the formulation of important hypotheses about the impact of the ancestral chromosome
fusion event on the evolution of pre-humans. Next, an enhanced method for determining
the temporal extent of large chromosomal rearrangements is presented. This method has
demonstrated its applicability in estimating the speciation times of species. The subsequent
chapter introduces a method for enumerating all possible scenarios of complex chromoso-
mal rearrangements. These rearrangements are modeled using Karyotype Graphs, which
are constructed based on known breakpoints induced by the considered rearrangements.
The chapter describes an algorithm for enumerating Minimal Linear Eulerian Decomposi-
tions of Karyotype Graphs, which works with a polynomial time delay complexity. Lastly,
a web server enabling the clinical interpretation of structural variants is introduced. The
web server features an innovative genome browser visualizing genomic regions from the
rearrangement’s breakpoint perspective.

Metody obliczeniowe w analizie rearanżacji chromosomowych

Niniejsza rozprawa opisuje algorytmy składania genomu orazmetody interpretacji zmian
występujących w jego architekturze powodowanych przez rearanżacje strukturalne. Pracę
otwiera wstęp, w którym omówiono zagadnienia biologiczne potrzebne do zrozumienia
problemów przedstawionych w pracy oraz opisano nowoczesne metody sekwencjonowa-
nia genomów. Kolejny rozdział prezentuje innowacyjną metodę asemblacji genomu, która
korzysta z danych z sekwencjonowania długimi odczytami. Metoda ta pozwala na lokalną
asemblację rejonów wzbogaconych w segmentalne duplikacje. Wykorzystano ją do odt-
worzenia sekwencji subtelomerowych wybranych chromosomów u małp człekokształt-
nych, co pozwoliło na postawienie ważnych hipotez dotyczących wpływu zdarzenia fuzji



dwóch chromosomów na ewolucję praczłowieka. Następny rozdział przedstawia opis udo-
skonalonej metody datowania dużych rearanżacji chromosomowych zachodzących w pod-
czas ewolucji gatunków. Wykazano także, że można ją wykorzystać do datowania spec-
jacji gatunków. Kolejny rozdział prezentuje metodę wyliczenia możliwych scenariuszy
złożonych rearanżacji chromosomowych. Rearanżacje te modelowane są przez tak zwany
graf kariotypowy, który tworzony jest na podstawie znanych punktów złamań rearanżacji.
W rozdziale opisany został algorytm wyliczenia minimalnych liniowych dekompozycji Eu-
lera w tym grafie działający z wielomianowym opóźnieniem czasowym. Ostatecznie za-
prezentowano serwer umożliwiający interpretację kliniczną zmian spowodowanych przez
warianty strukturalne. Udostępnia on innowacyjną przeglądarkę całogenomową pozwala-
jącą na wizualizację obszarów sąsiadujących z punktami złamań rearanżacji chromoso-
mowych.

Keywords

computational genomics, chromosomal rearrangements, Topologically AssociatingDomain,
chromosomal rearrangement, position effect, clinical genetics, de novo assembly, long reads,
complex chromosomal rearangement, enumeration, Karyotype Graph

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatyka

Subject classification

J.3. Life and Medical Sciences

Tytuł pracy w języku polskim

Metody obliczeniowe w analizie rearanżacji chromosomowych

2



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1. Genetic Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2. Sequencing Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. PhaseDancer: a novel targeted assembler of segmental duplications . . . 25
2.1. PhaseDancer algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1. Mapping phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2. Clustering phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.3. Assembling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.4. Extending phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.5. PhaseDancerViewer - intermediate results viewer . . . . . . . . . . 30
2.1.6. PhaseDancerSimulator - SDs generator . . . . . . . . . . . . . . . . 30
2.1.7. Runtime experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2. Optical genomemapping validation of the recent reference genomes

and PhaseDancer assemblies in Great Apes . . . . . . . . . . . . . 34
2.2.3. Bulk RNA-seq gene expression analysis . . . . . . . . . . . . . . . 34

2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1. Design and Implementation of PhaseDancer . . . . . . . . . . . . . 35
2.3.2. Validation on SD-rich human BAC clone sequences . . . . . . . . . 36
2.3.3. In silico verification and benchmarking . . . . . . . . . . . . . . . . 38
2.3.4. Unveiling HSA2 Fusion Event . . . . . . . . . . . . . . . . . . . . . 40
2.3.5. Great Apes genomes analysis . . . . . . . . . . . . . . . . . . . . . 42
2.3.6. Analyses of the newly assembled two chimpanzee genomes . . . . 44

2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5. Conclusions and Further Research . . . . . . . . . . . . . . . . . . . . . . . 50

3



3. Revised time estimation of the ancestral human chromosome 2 fusion . 53
3.1. Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1. Genomic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2. Efficient algorithm for the calculation of the expected number of BCSs 58
3.1.3. UBCS based evolutionary distance estimation . . . . . . . . . . . . 65
3.1.4. UBCS based estimation of the fusion time . . . . . . . . . . . . . . 67
3.1.5. Robustness of the UBCS statistics . . . . . . . . . . . . . . . . . . . 67

3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.1. Revised HSA2 fusion date . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2. Coincidence of UBCS and evolutionary distances among Great Apes 72

3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4. Conclusions and Further Research . . . . . . . . . . . . . . . . . . . . . . . 76

4. An efficient algorithm for listing the Minimal Linear Eulerian Decomposi-
tions of the Karyotype Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2. Model of complex chromosomal rearrangement . . . . . . . . . . . 82
4.1.3. Listing all distinct Minimal Ordered Eulerian Decompositions of

LDKG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.4. Recurrent approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.5. Recursion certificates . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.6. Traversal of the recursion tree . . . . . . . . . . . . . . . . . . . . . 90

4.2. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5. TADeus2: a web server facilitating the clinical diagnosis by pathogenicity
assessment of structural variations disarranging 3D chromatin structure 93
5.1. Existing tools for the clinical evaluation of SV . . . . . . . . . . . . . . . . 95
5.2. Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3. Methods of clinical evaluation of SVs . . . . . . . . . . . . . . . . . . . . . 96
5.4. Diagnosis workflow of TADeus2 web server . . . . . . . . . . . . . . . . . 99
5.5. Validation of TADeus2 gene ranking scheme . . . . . . . . . . . . . . . . . 100
5.6. Use-cases of TADeus2 workflow in a clinical diagnosis setting . . . . . . . 101
5.7. TADeus2 web server implementation and functionality . . . . . . . . . . . 108
5.8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6. Conclusions and future research . . . . . . . . . . . . . . . . . . . . . . . . . 113

4



List of Figures

2.1. A workflow of the PhaseDancer algorithm and the accompanying tools . . 27

2.2. An overview of segmental duplications (SDs) characteristics and the study
motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3. The impact of the enrichment of the BAC clones in SDs on the assembly
results for Flye, Wtdgb2 and PhaseDancer . . . . . . . . . . . . . . . . . . 38

2.4. Genome architecture flanking the HSA2 fusion site and the syntenic ge-
nomic regions in Great Apes and human . . . . . . . . . . . . . . . . . . . 39

2.5. Time complexity, feasibility, and correctness of PhaseDancer . . . . . . . . 41

2.6. Gross inversion events in the course of primate evolution . . . . . . . . . . 42

2.7. Multialignment of the genomic fragments flanking the HSA2 fusion site . 44

2.8. Expression levels of 11 transcripts in chimpanzee, bonobo, and human (CBWD2,
FOXD4L1, JMJD7, JMJD7-PLA2G4B, LINC01881, LINC01961,MALRD1,MAP-

KBP1, PLA2G4B, RABL2A, and SPTBN5) found on the extensions of the sub-
telomeric regions assembled with PhaseDancer . . . . . . . . . . . . . . . 46

2.9. The proposed model for the evolutionary HSA2 fusion event based on the
assembled SD-rich subtelomeric sequences in Great Apes chromosomes, ab-
sent in the reference genomes . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10. Normalised depth-of-coverage histogramof the alignedwhole-genomeCCS
reads of a 225-kbp region of human chromosome 10 (chr10:19075000-19300000,
NCBI hg38) in human (NA12878), two chimpanzees (Clint, Chaos), bonobo
(Mhudilbu) and gorilla (Kamilah) . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1. Examples of the substitutions classification for UBCS . . . . . . . . . . . . 58

3.2. Illustration of the procedure of compression the genomic region containing
a substitution into a vector of bins . . . . . . . . . . . . . . . . . . . . . . . 60

3.3. Illustration of the method of selecting representative windows . . . . . . . 61

3.4. UBCS statistic for 7 longest autosomal chromosomes for different number
of overlapping clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5



3.5. UBCS statistic for all 7 longest autosomal chromosomes for different defi-
nitions of BCSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6. UBCS statistic for human chromosome 2 . . . . . . . . . . . . . . . . . . . 70
3.7. UBCS statistic for human chromosome 2 and Great Ape genomes . . . . . 71
3.8. Evolutionary distances between Great Apes and Human. . . . . . . . . . . 72
3.9. UBCS statistic for all autosomal chromosomes . . . . . . . . . . . . . . . . 73

4.1. Linearly Decomposable Karyotype Graph and corresponding rearranged
genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2. Recursion tree for enumerating Minimal Ordered Eulerian Decompositions
of Augmented Linearly Decomposable Karyotype Graph . . . . . . . . . . 87

4.3. Transformation of the witness certificate showing that the vertex v is a good
neighbor of vertex u, given certain locations of other edges containing u . 89

4.4. KaryotypeGraph and corresponding five rearranged genomes for case P5513_206
from the Nazaryan-Petersen et al. (2018) study. . . . . . . . . . . . . . . . . 92

5.1. Main functionalities offered by TADeus2 together with their integration
within the clinical workflow for the pathogenicity assessment of structural
variations disarranging 3D chromatin structure . . . . . . . . . . . . . . . 95

5.2. Overview of the clinical diagnosis workflow of TADeus2 . . . . . . . . . . 97
5.3. Distribution of number of disrupted distal enhancer–promoter interactions

induced by a random breakpoint . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4. Venn diagram showing sets of candidate genes (CGs) predicted for exhibit-

ing position effects by Zapeda-Mendoza second ranking scheme and TADeus2 rank-
ing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5. Analysis of a balanced translocation 46,XX,t(6;14)(p25.1;q12) in a patient
with epileptic seizures and severe developmental delay . . . . . . . . . . . 103

5.6. Analysis of the inversion inv(7)(q21.3q35) linked to the craniofacial defects
and hearing loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7. Analysis of inversion an 46, XY, inv(X) (p22.3; q22) in a patient suffering
from a subset of PMD symptoms including moderate mental retardation . 106

5.8. Analysis of de novo microdeletion del(14)(q11.2) in a patient suffering from
familial thrombocytopenia and leukemia . . . . . . . . . . . . . . . . . . . 107

5.9. User interface of breakpoint mode of TADeus2 genome browser . . . . . . 109

6



List of Tables

2.1. Assessment of the SDs assembly quality for different tools in various evo-
lutionary topologies generated by PhaseDancerSimulator . . . . . . . . . . 37

2.2. RepeatMasker analysis of HSA2 fusion site flanking regions of 3 human
genomes fromGenome in the Bottle project repository and 10 human genomes
from T2T Diversity Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1. HSA2 formation estimates based on UBCS statistics . . . . . . . . . . . . . 78

5.1. Listing of all available tools that provide similar functionalities to TADeus2 re-
garding typical clinical use cases, TAD analysis and breakpoint viewing . . 111

5.2. Ranking of genes within 3 Mb neighborhood of rearrangement breakpoint
14q11.2(22901689-22942482) predicted as strong or probable candidates for
exhibiting position effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7





1
Introduction

Our understanding of cell biology has been revolutionized by new waves
of biotechnological methods in the last decades. In particular, fascinating
opportunities in the life sciences are provided by high-throughput sequenc-
ing technologies, also known as next-generation sequencing (NGS). These

methods enable the parallel sequencing of multiple DNA or RNA molecules in a genome-
wide, fast, cost-effective, and reproducible manner. The continuous advancement in NGS
technologies allows for new applications in the field of molecular biology, including ge-
nomics (elucidating the structure, function and evolution of the genome), transcriptomics
(the analysis of RNA transcripts) and epigenomics (studying phenotypic changes that do
not involve alternations in the genome). To exploit their full potential in all these disci-
plines, novel computational methods capable of processing massive volumes of data and
enabling drawing valuable biological insights are needed.

Since the beginning of the 21st century, high-throughput sequencing technologies, also
known as short-read or second-generation sequencing technologies, have been commer-
cially available. In recent years, the third-generation single molecule sequencing methods,
or long-read sequencing technologies, have emerged. These technologies include Nanopore
sequencing (ONT) introduced by Oxford Nanopore Technologies and single-molecule real-
time (SMRT) sequencing by Pacific Biosciences (PacBio). The advancements in next-genera-
tion sequencing (NGS) technologies have brought significant changes to the characteristics
of generated data in terms of length and accuracy, while also reducing costs. As a result,
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considerable progress has been made in uncovering the DNA sequence of a vast number
of species, producing assemblies with dramatically improved contiguity (Hotaling et al.,
2021). Whole-genome sequencing (WGS), combined with novel methods for subsequent
assembly and annotation, provides a more comprehensive outlook and understanding of
the complete genome of an organism.

Recently, owing to rapid progress in long-read sequencing technologies, the Telomere-
to-Telomere (T2T) consortium has achieved a significant milestone by releasing the first
complete sequence of the human genome (Nurk et al., 2022). This achievement was accom-
plished in noticeably shorter time and with substantially less resources compared to the
initial draft human genome produced by the Human Genome Project. They have managed
to close hundreds of the unresolved gaps covering highly complex regions present in the
latest human reference genome (hg38). This feat could not have been achieved without the
use of sophisticated algorithms tailored to the features of the sequencing technologies and
characteristics of the complex regions of the human genome.

Noticeably, NGS data have a broad range of applications in medicine. Short-reads data
are routinely used to diagnose rare diseases via sequencing of coding regions byWhole Ex-
ome Sequencing (WES) to identify variants causing rare Mendelian disorders. The advent
of long-read sequencing technologies has facilitated the rapid characterization of Structural
Variation (SV) in clinical settings, especially in case of balanced chromosomal rearrange-
ments, e.g. translocation or inversions, that cannot be detected using other methods.

Combining second-generation sequencing approaches with chromosome conformation
capture techniques has given raise to the Hi-C protocol. This method has led to enormous
progress in elucidating the chromatin conformation. Data obtained from the Hi-C protocol
are used to generate genome-widemaps of chromatin interactions at a very high resolution,
allowing for the modeling of the three-dimensional architecture of the genome.

Nevertheless, all these technological advancements in NGS and its derivative technolo-
gies require the development of novel and sophisticated bioinformatic methods. These
methods are crucial for determining the genome sequence and 3D structure of chromo-
somes, particularly in cases where they are perturbed by chromosomal rearrangements.
Likewise, procedures for extracting biological and medical insights from the analysis of
differences in genome architecture, at both intra- and inter- species level, need to be devel-
oped.

In this dissertation, we tackle the problem of detecting and interpreting changes in the
genome architecture. The consequences of these changes can be considered both species-
and individual-wise. We present two algorithms that utilize third-generation sequencing
data to uncover the genome structure. Based on the outcomes of the first algorithm, that
has been used for the local assembly of the fragments of the chimpanzee genome, we pose
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the hypothesis regarding the impact of a specific genomic event on the evolution of the an-
cient humans. This result supports the population genetics axiom that genome architecture
plays a role in shaping species evolution. The second algorithm successfully disentangles
the genome structure in patients with complex chromosomal aberrations. Additionally, we
describe a web server designed to assist clinicians in leveraging information about changes
in the chromosome structure. The tool enables prediction and interpretation of the clinical
relevance and potential risks associated with these changes. Finally, we propose a method
for the estimation of the timescope of gross evolutionary events changing the genome ar-
chitecture. We believe that the presented results constitute a significant contribution to
the interdisciplinary field of bioinformatics, and by making progress in the development of
novel computational methods and algorithms, will help in better understanding of biologi-
cal processes they describe.

As an introduction, let us provide some fundamental concepts from the field of cell
genetics and biology, as well as bioinformatic terminology that will be used throughout
the course of the work. Additionally, we will give a brief overview of the history and
characteristics of the sequencing technologies that will help to understand the nature of
the data utilized by the algorithms presented in this work.

1.1. Genetic Background

The growth, development, functioning, and reproduction of all known living organisms
are controlled by genetic information stored in the genome. This information is encoded
by units called nucleotides, which are composed of pentose sugar (ribose or deoxyribose),
phosphate group, and one nucleobase of four types: adenine [A], cytosine [C], guanine [G],
thymine [T] (or alternatively uracil [U]). Nucleotides are connected together into a chain
polymer structure by covalent bonds, joining sugar-ring molecules of two adjacent nu-
cleotide monomers using phosphate residues. A polynucleotide chain composed of A, C, G
and U constitutes a ribonucleic acid (RNA) molecule. A polymer built of two polynucleotide
chains composed of A, C, G and T is called deoxyribonucleic acid (DNA). In DNA molecules
two polynucleotide chains coil around each other using hydrogen bonds between two nu-
cleotides forming a double helix. The binding of the nitrogenous bases of the two separate
polynucleotide strands follows the pairing rule (A binds with T and Cwith G).The sequence
of nucleobases of DNA strands determines the genetic material of an organism. Each liv-
ing organism has a different DNA sequence. Human genome consists of approximately 3.2
billion nucleobases in total.

Genome of eukaryotes is composed of one or more linear chromosomes. Since chro-
mosomal DNA can be very long, it binds to specific proteins to achieve the proper level of
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compaction. The DNA helix is wrapped around nucleosomes, which are composed of four
pairs of histones. Due to such tight packaging this complex genome structure can fit into
the cell’s nucleus.

Certain genome fragments contain biological information that encodes protein produc-
tion. Such a portion of an information is called a gene. Gene expression is a complex process
of protein production consisting of a few steps. The first step is transcription, where the
content of the gene is copied from DNA to messenger RNA molecule. Next, the messenger
RNA is subject to a translation process producing a polypeptide chain, which is subse-
quently folded into a functional three-dimensional structure. The final step is the transfer
of protein into a place in a cell where it can take part into various biochemical processes.

DNA sequences are matrices for protein production and contain elements responsible
for performing structural functions or regulation of gene expression. Therefore, the identi-
fication of DNA sequences of organisms is crucial in the study of cell biology. Specifically,
the ability to acquire DNA sequences has become indispensable in basic biological research,
as well as other applied fields such as medical diagnosis, biotechnology, biological system-
atics and many more.

1.2. Sequencing Technologies

In the early 1970s, biochemists, Drs. Walter Gilbert and Frederic Sanger, devised two dif-
ferent methods for DNA sequencing. Gilbert’s method is based on the chemical process
breaking down DNA in random places. Sanger’s method, on the other hand, takes ad-
vantage of the DNA synthesis reaction. In this process, a new DNA chain is synthesized
base by base using sequence information on the template. The use of chemically modified
nucleotides, that is dideoxynucleotides, as irreversible DNA chain terminators in Sanger’s
method randomly stops the synthesis process, so a series of the DNA chains of different
lengths are produced. These fragments are separated in denaturing gel by electrophoresis,
where smaller fragments migrate faster than larger ones. The radioactive labeling enables
visualization of the fragments as bands on the gel.

Over the years, the Sanger method was further developed. The integration of the au-
tomation into the process reduced human involvement and improved efficiency. The ap-
plication of fluorescently labeled terminators, instead of radioactive ones, made it safer to
use and more robust. Additionally, the improved separation of DNA chains with the use of
capillary electrophoresis enabled high-confidence base calls. Thanks to these developments
the Sanger method became the preferred choice for the Human Genome Project. Today this
method is frequently used for low-throughput DNA sequencing. With the advent of next-
generation sequencing (NGS), this method is called first-generation sequencing.
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Next-generation sequencing. Although it is robust in sequencing individual DNA, the
Sanger method suffers from one flaw – it is relatively labor intensive. The demand for
achieving high throughput has led to the development of Next Generation Sequencing
(NGS) methods. All these techniques allow for sequencing entire genomes at relatively
low cost, enabling hundreds of millions of DNA molecules to be sequenced at a time.

There are two major paradigms in NGS methods: Second Generation Sequencing and
Third Generation Sequencing. The former, also known as short-read sequencing, provides
lower-cost, higher-accuracy data that are useful for population-level research and clinical
variant discovery. The latter, also known as long-read sequencing, by contrast, is well suited
for de novo genome assembly applications.

Second Generation Sequencing. Illumina is by far the most popular NGS platform,
generating the largest amount of NGS data. The process of sequencing employed by this
platform consists of three steps: amplification, sequencing and analyzing. Before these
steps, the DNA sample is randomly sheared into short fragments (usually around 50-500
basepairs) and ligated with adapters. Such modified DNA is loaded onto a flow cell and
amplified in wells. Each of the wells contains oligonucleotides where adapters can attach.
Then, each template molecule is clonally copied through the process of ”bridge amplifica-
tion”. The core of Illumina sequencing technology is based on the same approach as the
Sanger sequencing-by-synthesis method. What sets it apart from the Sanger method is the
incorporation of specifically modified nucleotides in the way that terminator moiety only
temporarily prevents the new DNA strand from expanding. After the optical detection of
fluorescent label specific to the nucleotide type, the terminator moiety is cleaved, and syn-
thesis resumes for the next cycle. After each round of synthesis, a camera takes a picture
of the chip, and computer software analyzes the wavelength of the fluorescent tag deter-
mining the base for every spot on it. The process continues until the full DNA molecule is
sequenced.

The overall error rate of the Illumina sequencing method is below 1% , which makes
it one of the most accurate NGS platforms currently available. The most common type of
error is single nucleotide substitution.

Third Generation Sequencing. Genomes are highly complex and contain long repeti-
tive elements, copy number alterations and structural variations that are relevant in evolu-
tion, adaptation and disease. Many of these complex elements are too long to be resolved
using short-read sequencing technologies. To bridge this gap, Third Generation Sequenc-
ing, also known as long-read sequencing technologies, have been developed. Reads pro-
duced by these technologies are several kilobases in length and allow for the resolution of
significantly larger structural features, in many cases covering the entire complex region.

13



Long reads are also useful in transcriptomics research, as they are capable of spanning entire
messenger RNA transcripts. Long-read sequencing technologies are offered commercially
by two companies, namely by Pacific BioSciences and Oxford Nanopore Technology. Both
these technologies suffer from poor sequencing accuracy compared to Illumina (90% vs.
99.9%). However, recent improvements in PacBio sequencing have led to the emergence of
HiFi technology producing long reads with accuracy comparable to short-read instruments.

Pacific BioSciences (PacBio). The PacBio instruments uses Single Molecule Real Time
(SMRT) technology, which enables detection of nucleotide incorporation events during the
elongation of the replicated strand from the non-amplified template. The template, called
a SMRTbell, is created by ligating hairpin adapters of target double-stranded DNA frag-
ments to form closed single-stranded circular DNA. SMRTbell is loaded to a chip (SMRT
cell) and immobilized at the bottom of a nanoscale unit called a zero-mode waveguide
(ZMW), which provides the smallest available volume for light detection. The DNA is se-
quenced as the polymerase adds complementary fluorescently-labeled bases to the DNA
strand by collecting light pulses emitted by laser light traveling through the glass into the
ZMW. Light pulses are monitored in parallel for the primary analysis involving basecalling
and adding quality values. Each SMRT cell contains an array of millions of ZMWs, capable
of containing an immobilized strand of library DNA.

Pacific Biosciences (PacBio) Sequel II Sequencing instrument offers two modes of se-
quencing: Continuous Long Read (CLR) and Circular Consensus Sequencing (CCS, also
referred as HiFi).

In CLRmode results are generated from a single continuous template from start to finish
and the longest possible reads ranging from 25 Kb to 175 Kb.

Since the SMRTbell is a circular structure after the polymerase replicates one strand of
the target DNA, it can continue incorporating bases of the adapter and reversed strand. If
the lifetime of the polymerase is long enough, both DNA strands can be sequenced mul-
tiple times. The CSS is a multialignment of a product from single ZWM which generate
a sequence with very high accuracy. The insert size in CCS mode ranges from 10 to 20 Kb.

Oxford Nanopore Technologies. All Oxford Nanopore Technology (ONT) sequencing
devices use flow cells containing a nanoscale protein pore serving as a biosensor. Each
nanopore is embedded in an electrically resistant polymer membrane and has its own elec-
trode connected to a channel and sensor chip measuring the electric current that flows
through the nanopore. Sequence of nucleotides is identified as it passes through such pore
by measuring alteration in the ion current. Each of the four passing nucleotides causes
characteristic variation in the current flow that allows for distinguishing of the nucleotides.
Changes in the ionic current are decoded using basecalling algorithms allowing real-time
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sequencing of single molecules. The smallest ONT device, MinION, is a single flow cell
containing 512 channels, with four nanopores per channel form which only one can be
utilized at a time, allowing concurrent sequencing up to 512 molecules. The product for
large-scale projects, PromethION, has 24 or 48 parallel flow cells incorporating up to 3,000
channels per flow cell. Currently, typical yields of MinION device are 10–15 gigabytes per
flow cell, whereas for a PromethION device a yield of 153 Gb from a single flow cell has
been described with an average sequencing speed of 430 bases per second (Wang et al.,
2021).

Although the accuracy of ONT reads is relatively low ( 85–94%), the read lengths mostly
depend on the size of the molecules in the sequencing library and several methods have
been devised for extracting and purifying high-molecular-weight DNA. Due to the im-
provement in the technology and library preparation the average length increased from
a few thousand bases at the initial release of MinION in 2014 to 23 Kb. Recently, reads
exceeding 2 Mb have been reported (Wang et al., 2021).

Optical mapping. Despite recent developments in long-read sequencing methods, alter-
native techniques are useful to complete or confirm the order of various DNA assemblies.
One of the most popular is optical genome mapping, which constructs genome-wide, high-
resolution restriction maps of the DNA.

The first step in producing such maps is fragmentation of the genome into hundreds of
kilobases long DNA molecules. Then, each DNA molecule is elongated on a plate. Next, it
is digested using restriction enzymes and fluorescently stained at cleavage sites. The order
and length of the resulting fragments are measured by imaging. Finally, the raw optical
maps are in-silico combined into consensus molecules.

Chromosome conformation capture technologies. Chromosome conformation cap-
ture technologies are molecular biology methods for uncovering the three-dimensional or-
ganization of the genome by quantifying the number of interactions between regions that
may be distant in the linear representation of the DNA molecule (Han et al., 2018). All of
the chromosome conformation capture-based technologies execute four main steps. First,
the genome is cross-linked with formaldehyde in order to preserve fragments that are in
spatial proximity. Then, these cross-linked DNA molecules are digested with the restric-
tion enzyme. The resulting fragments are ligated to form chimeric molecules, which are
subsequently reverse cross-linked to yield 3D templates. After these steps, PCR or other
sequencing methods are used to quantify the frequency of interactions. There exist sev-
eral techniques that differ in terms of the number of loci which interaction between can be
measured.
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3C (one-vs-one) The chromosome conformation capture (3C) method quantifies interac-
tions between a pair of genomics loci, as ligated fragments are selected using PCR primers
(Dekker et al., 2002). This technique can be used to validate promoter-enhancer interaction.

4C (one-vs-all) Chromosome conformation capture-on-chip (4C) (also referred as cir-
cular chromosome conformation capture) measures the interactions between one genomic
locus of interest (bait) and all other genomic loci (Simonis et al., 2006). This method involves
a second round of digestion step with a shorter restriction enzyme followed by ligation in
order to produce circularized chimeric DNA fragments containing the bait. Such circular-
ized DNA is amplified using the inverse PCR reaction. Proximity of the restriction enzyme
sites to bait allows for the capturing of the ligation product of the specified DNA region.
The library prepared in such a way can be hybridized to microarray or sequenced, resulting
in representation of the genomic neighborhood of locus of interest.

5C (many-vs-many) Chromosome conformation capture carbon copy (5C) is an en-
hanced 3C method allowing for quantifying contacts between many loci simultaneously
(Dostie et al., 2006). Themodification of the 3Cmethod that resulted in 5C relies on changes
in primer preparation method. The former technique uses specific primers, while the letter
- universal ones.

Hi-C (all-vs-all) Lieberman-Aiden et al. (2009) have developed Hi-C protocol allowing
surveying all possible pairwise interactions in fully high-throughput genome-wide man-
ner, that effectively samples millions of interactions. The difference between Hi-C and its
sister methods lies in introducing biotin into restriction enzyme cleavage sites during the
DNA cross-linking. After the ligation and DNA shearing, molecules containing biotin are
selected with streptavidin beads. The resulting library is pair-end sequenced to retrieve
DNA fragments from each end of the ligated fragment. The results are mapped onto the
reference genome and transformed to a genome-wide count matrices.

1.3. Main Results

All of the results presented in this dissertation address the problem of detecting and inter-
preting changes in the genome architecture shaped by chromosomal rearrangements. Each
of the presented chapters describe novel bioinformatic method and their application in solv-
ing some valuable biological or clinical questions. Therefore, the results are strongly inter-
disciplinary, as eachmethod is illustrated with meaningful case-study using real biomedical
data.

The results in the dissertation are organized as follows.
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Assembly of the regions enriched in segmental duplications

Ongoing improvements in sequencing technologies, both in terms of length and accuracy,
along with continuous progress in computational assembly approaches, have enhanced our
understanding of the genome architecture and evolution (Huddleston et al., 2014; il Sohn
and Nam, 2016; Amarasinghe et al., 2020). These advancements have further reinforced
the fact that segmental duplications (conventionally defined as duplicated genomic regions
longer than 1000 base pairs with sequence identity greater than 90%) play a crucial role in
driving structural changes and gene innovations, shaping the evolution of genomes, partic-
ularly in primates. Furthermore, according to the estimation by the Telomere-to-Telomere
(T2T) Consortium, segmental duplications (SDs) constitute approximately 7% of the human
genome (Vollger et al., 2022).

However, de novo assembly of SD-rich genomic regions remains a challenging compu-
tational task due to the high error rate of NGS long reads. Currently, existing assemblers
leave a significant fraction of the unassembled regions mainly corresponding to SDs when
applied to long-read data significantly shorter from Ultra-Long Oxford Nanopore or with
much lower accuracy than PacBio CCS (Vollger et al., 2019b). A possible approach to utilize
such long-read data for resolving SDs is creation of a targeted tool.

To address this challenge, we have developed PhaseDancer, a novel, fast, and robust
assembler that follows a locally-targeted approach to resolve SD-rich complex genomic re-
gions using long-read NGS data. In contrast to existing assemblers employing top-down

paradigm operating simultaneously on all existing data, PhaseDancer produces assemblies
in bottom-up manner gradually expanding sequence using sufficiently similar reads. Algo-
rithm takes as an input the initial anchor sequence which is extended iteratively, by repeat-
ing four major steps. First, reads are mapped on the anchor sequence using an index of all
reads loaded to RAM. In the second step, reads are clustered using randomized procedure
and cluster sharing most reads with the cluster selected from the previous iteration is cho-
sen. The third step is assembling selected reads into a contig, while fourth is extending the
current anchor sequence using the contig to a new anchor sequence processed in the next
iteration. After several iterations, all anchor sequences are merged to produce the final
assembled sequence. Efficient integration of the state-of-the-art components used in the
PhaseDancer workflow has enabled for generation of contigs with the fragments repeated
up to several dozen times in the genome with at least 0.1% divergence.

PhaseDancer is additionally accompanied by the viewer and SD simulator tools. Phase-
DancerViewer visualizes each step of the algorithm ie. providing a genome browser show-
ing clusters of reads mapped on the anchor sequence. Application helps in parameter tun-
ing and using the assembler in the semi-supervised mode, inspection of the assembly cor-
rectness, and drawing biological insights by analyzing clusters structure. PhaseDancer-
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Simulator generates in-silico SD sequences on the basis of user-defined scenarios of their
evolutionary history and, set of corresponding artificial reads with various characteristics.

To validate PhaseDancer, we have tested it on a golden-standard set of human BAC
clones harboring the known SDs, and in silico generated SDs. PhaseDancer BAC clones
assemblies have been compared to the results generated by Flye and Wtdgb2 using PacBio
long-read data with 45x coverage. PhaseDancer has outclassed both general-purpose as-
semblers, by resolving 292 out of 341 clones (85.5%), whereas Flye and Wtdgb2 resolved
91 (26.69%) and 77 clones (22.58%), respectively. We have benchmarked PhaseDancer as-
sembler against several commonly used assemblers supporting error-prone NGS long reads
(Canu (Koren et al., 2017), Wtdbg2 (Ruan and Li, 2020), Flye (Kolmogorov et al., 2019), Mini-
asm (Li, 2016), and SDA (Vollger et al., 2019a)) using evolutionary scenarios generated by
PhaseDancerSimulator. From 10 evolutionary scenarios, with the number of collapsed SD
copies ranging from two to twelve, PhaseDancer has resolved all of the simulated SDs with
no alignment of Phred Quality Score lower than 29 (accuracy over 99.8%), while other as-
semblers managed to resolve at most one reference SD per scenario.

Following the successful validation of PhaseDancer, we have applied our algorithm to
the unresolved subtelomeric regions of the selected chromosomes in Great Apes i.e chim-
panzee, bonobo, gorilla, and orangutan, syntenic to HSA2, to unravel the mechanism of re-
duction of the chromosome number during human speciation after divergence from chim-
panzee/bonobo. The extension of the reference sequences guided a model for HSA2 for-
mation, resulting in the 46 chromosomes of the human species versus a karyotype of 48
chromosomes in Great Apes with a putative evolutionary advantage that might have facil-
itated its fixation and accumulation.

PhaseDancer assembler and model of the HSA2 formation were presented at the 26th

Annual International Conference on Research in Computational Molecular Biology, and at the
American Society of Human Genetics 2022 Annual Meeting during poster sessions.

Methods for the estimation of the time-scope of gross evolutionary

events

The reduction of the chromosome number from 48 in the Great Apes to 46 in modern hu-
mans is thought to result from the end-to-end fusion of two ancestral non-human primate
chromosomes forming the human chromosome 2 (HSA2). Genomic signatures of this event
are the presence of inverted telomeric repeats at the HSA2 fusion site and a block of degen-
erate satellite sequences that mark the remnants of the ancestral centromere. It has been
estimated that this fusion arose up to 4.5 million years ago (Mya).

One of the methods of the estimation of the fusion time, proposed by Dreszer et al.
(2007), is based on quantifying the biased gene conversions (BGCs) events. This phe-
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nomenon occurs during recombination events (Strathern et al., 1995) and is a consequence
of favoring strong (G, C) versus weak (A, T) nucleotide pairs at the non-Watson-Crick het-
erozygous sites in heteroduplex DNA in repair process (Meunier and Duret, 2004). Dreszer
et al. (2007) has observed that BGC is locally over-represented near the telomeres of auto-
somal chromosomes. Using the Unexpected Bias Clustered Substitutions (UBCS) statistics
measuring the bias towards weak-to-strong substitutions among the clustered substitutions
and comparing their reduction in the regions near the fusion site with the orthologous
telomeric sites of the chimpanzee chromosomes 2a and 2b, authors have estimated the fu-
sion time at 0.74 Mya with a 95% confidence interval 0–2.81.

Nonetheless, the procedure of the UBCS value calculation proposed by Dreszer et al.
(2007) is strictly constrained and considers genomic regions of the size 300 bp (window)
starting every 150 bp. However, this simplification might have led to inappropriate results,
especially in the subtelomeric regions containing GC-rich isochores (Costantini et al., 2006).
To overcome this problem, we have developed an enhanced algorithm for the re-calculation
of the UBCS statistic allowing computation of its exact value for every possible window.
The revised algorithm iterates over substitutions quantifying their contribution to the UBCS
value of some genomic region. All windows containing each substitution are compressed
into the equivalent vector of bins. Then, dynamic programming techniques are employed
using formulas derived from inclusion-exclusion principle and the law of total probability
to determine the exact UBCS value for one substitution. By analyzing values of UBCS
statistics, quantifying the enrichment of weak-to-strong substitutions around the fusion
site of HSA2, we estimated the fusion formation time at around 800,000 years ago with an
upper boundary of approximately 2 Mya.

Based on the statistics derived from the enhanced algorithm, we have proposed amethod
for estimating speciation events times based on the average UBCS proportion between two
genomes. The confidence interval has been determined using the bootstrap method for se-
lected regions on the basis of which UBCS proportion has been calculated. The sampling
has been performed on subtelomeric regions of non-acrocentric chromosomes. The spe-
ciation time has been approximated by the multiplication of the UBCS proportion by the
estimated time of the human-chimpanzee split (6 Mya).

Using this method, we have reconstructed the evolutionary distances among the Great
Apes (Hominoidea). Speciation times of chimpanzee and bonobo have been estimated very
close to each other, between 4.7-6.6Mya and 5.5-7.5Mya, respectively. For gorilla, orangutan,
and gibbon, the estimates are, respectively, 6.6-9.9Mya, 12.5-18.4Mya, 20.7-29.6Mya. Note-
worthy, predictions are in agreement with the literature reports (Chan et al., 2010; Carbone
et al., 2014; Chatterjee et al., 2009; Gronau et al., 2011; Scally et al., 2012; Stone et al., 2010).

In conclusion, the results from the chapter 3 shed light on the HSA2 fusion time and
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provide a novel computational alternative for the estimation of the speciation chronology.
The content of the chapter 3 was presented at the remote 16th International Symposium on

Bioinformatics Research and Applications (ISBRA) and published in BMC genomics (Posze-
wiecka et al., 2022a).

An efficient algorithm for listing the Minimal Linear Eulerian De-

compositions of the Karyotype Graphs

Complex chromosomal rearrangements are structural alterations involving more than two
breakpoints. These alterations can change the orientation, order, and copy number of af-
fected genomic segments. When they amplify genetic material or affect homologous chro-
mosomes, the sequence of the derivative chromosomes may not be unambiguously char-
acterized solely by the breakpoints of the rearrangements. Moreover, the presence of de
novo copies of genomic fragments devoid of small polymorphisms makes it impossible to
distinguish fragments originating from different parts of derivative chromosomes. There-
fore, there is a need for an efficient algorithm that lists all possible scenarios of genomic
rearrangement formation based on their breakpoints. The resulting enumeration of such
scenarios can be subject to downstream analyses explaining their molecular consequences.

To address this challenge, we have devised an efficient algorithm for listing all possible
scenarios of complex chromosomal rearrangements. These rearrangements can be repre-
sented by a model known as the Karyotype Graph as used in the study by Aganezov et al.

(2019). Vertices in this graph represent the start and end points of genomic segments, while
edges are of two types: segmental and adjacency. The former encode segments, while the
latter encode the transitions between them. The Karyotype Graph is by definition a multi-
graph, and we refer to the copy number of an edge as multiplicity. The collection of trails
or cycles of edges with alternating types, where the number of occurrences of each edge is
equal to its multiplicity, represents an Eulerian Decomposition of the Karyotype Graph. It is
a well-known fact that the Minimal (cardinality-wise) Eulerian Decomposition of a Kary-
otype Graph consists only of linear chromosomes if it does not contain connected com-
ponents without telomeres. Each Minimal Eulerian Decomposition of such a Karyotype
Graph corresponds to a rearrangement scenario.

In Chapter 4, we present an algorithm for listing all Minimal Eulerian Decompositions
of Linearly Decomposable Karyotype Graphs. For this purpose, we have first reformulated
this problem as the equivalent problem of listing Eulerian trails satisfying some additional
properties formed by edges of alternating types in an Augmented Linearly Decomposable
Karyotype Graph built upon the input Linearly Decomposable Karyotype Graph. We have
approached the problem recursively, by extending the prefix of a trail in each step with
edges whose decremented multiplicity (by one) does not lead to the formation of non-tivial
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connected components with telomeres. To this end, we have introduced two data struc-
tures: connectivity certificate and witness certificate. The connectivity certificate is used to
determine whether decrementing the multiplicity of a given edge disconnects the graph in
an undesirable way. The properties of the witness certificate enabled for proving that decre-
menting the multiplicity of only edge incident to a given vertex can form two non-trivial
connected components. This has reduced the number of queries to the connectivity certifi-

cate during enumeration generation, resulting in significant decrease in time complexity
of the algorithm. The use of the connectivity certificate, along with certain properties of
Karyotype Graphs enable to traverse the recursion tree in a way that avoids dead ends. By
employing the aforementioned ideas, our algorithm enumerates all Minimal Linear Decom-
positions of a Karyotype Graph with a polynomial time delay complexity of O(log(n)2 · l),
where n is the number of vertices in the Karyotype Graph and l is the length of the decom-
position.

We have also demonstrated the utility of this algorithm in inferring plausible scenarios
to explain a complex congenital rearrangement in a patient harboring such alterations.

Interpretation of structural variations disarranging 3D chromatin

structure

In recent years great progress has been made in identification of SV in the human genome.
However, the interpretation of variants, especially located in non-coding DNA, remains
challenging. One of the reasons stems in the lack of tools exclusively designed for the
clinical SVs evaluation acknowledging the 3D chromatin architecture.

To bridge that gap, we have created TADeus2 a web server dedicated for a quick inves-
tigation of chromatin conformation changes, providing a visual framework for the inter-
pretation of SVs affecting topologically associating domains (TADs).

TADeus2 delivers an innovative genome browser allowing for a convenient visual in-
spection of SVs, both in a continuous genome view as well as from a rearrangement’s break-
point perspective. Breakpoint mode presents a track of two regions fused by the genome
rearrangement, together with two tracks showing wild-type regions. It should be noted
that to date this is the first genome browser with such functionality.

Importantly, TADeus2 provides quantification and ranking of SVs pathogenicity using
TADA (Hertzberg et al., 2022) and ClassifyCNV (Gurbich and Ilinsky, 2020) tools. Notice-
ably, the second tool calculates a pathogenicity score for copy-number variant (CNV) in
accordance with the American College of Medical Genetics guidelines. Additionally, an
original, sampling-based method for p-value computation, quantifying the pathogenicity
based on the number of disrupted enhancer-promoter interactions, has been proposed.

Furthermore, a scheme for ranking genes in the vicinity of SV according to their pa-
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thogenicity has been introduced. Ranking scheme uses the following gene characteristics:
ClinGen (Rehm et al., 2015) haploinsufficiency/triplosensitivity score, the number of dis-
tant candidate enhancer–promoter predicted interactions disrupted by the breakpoints of
SV, number of entries of Human Phenotype Ontology (Köhler et al., 2016) associated with
the gene, and distance from the rearrangement breakpoints. The ranking was validated
using 21 well-described cases of position effects generated by SVs and CNVs. In all cases
genes contributing to the disease have been predicted as the strong (18; 85,7%) or probable
(3; 14,3%) candidates.

This workflow has been successfully used in the analysis of four cases of position effects
in patients carrying SVs suffering from various genetic conditions. In each of these cases
putative molecular causes of syndromes have been proposed. Innovative breakpoint view
has been applied in the analysis of position effect in a balanced translocation (46,XX,t(6;14)
(p25.1;q12)) neighboring FOXG1 gene in a patient with epileptic seizures and severe de-
velopmental delay. Genomic tracks showing fused regions and two wild-type regions per-
turbed by translocation have allowed to easily pinpoint two enhancers whose displacement
lead to the abnormal phenotype. Additionally, TADeus2 ranking scheme correctly indicated
the gene responsible for the disease as a strong candidate to exhibit position effect.

Here, it should be noted that the first version of the web server was presented at the
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) and published
in the conference proceedings (Poszewiecka et al., 2018). The second extended version of
the tool was presented inNucleic Acids Researchweb server issue (Poszewiecka et al., 2022b)
and is publicly available at https://tadeus2.mimuw.edu.pl. TADeus2 and its previous version
TADeus was used in recently published studies (Pienkowski et al. (2019, 2020)).
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2
PhaseDancer: a novel targeted assembler

of segmental duplications

“You can’t make a race horse of a pig.”

“No,” said Samuel, “but you can make a very fast pig.”
— John Steinbeck, “East of Eden”

Continuous improvement of seqencing technologies along with the de-
velopment of efficient computational assembly approaches have facilitated
better understanding of genome evolution and architecture (Huddleston et al.,
2014; il Sohn and Nam, 2016; Amarasinghe et al., 2020). Segmental duplica-

tions (SDs) have been shown to be one of the key factors catalysing the dynamic evolu-
tionary rearrangements of the genomes, particularly in primates (Marques-Bonet et al.,
2009a; Stankiewicz et al., 2004; Ohno et al., 2009). Importantly, analyses of the most recent
human genome reference build (except chromosome Y) (Nurk et al., 2022) by the Telomere-
to-Telomere (T2T) Consortium have revealed that 7% of the human genome consists of SDs
(218 Mb of 3.1 Gb) (Vollger et al., 2022).

Assembly of SD-rich genomic regions has been one of the most important computa-
tional challenges in building a reference haploid genome (Vollger et al., 2022). Thus far,
a number of general purpose assemblers have been developed, e.g. FALCON (Chin et al.,
2016), Miniasm (Li, 2016), Canu (Koren et al., 2017), Flye (Kolmogorov et al., 2019), Wt-
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dbg2 (Ruan and Li, 2020), Shasta (Shafin et al., 2020), and HiCanu (Nurk et al., 2020). Ad-
ditionally, SDA assembler has been specifically dedicated to resolve SDs (Vollger et al.,
2019a). Currently, the high error rate of next generation sequencing (NGS) long-read data
leaves a significant fraction of the unassembled regions mainly corresponding to SDs and
necessitating application of targeted methods. To date, only assemblies from Ultra-Long
Oxford Nanopore (UL ONT) or high-quality PacBio circular consensus sequencing (CCS)
reads have been validated successfully on the data sets enriched with SDs; however, these
technologies are still limited by their high cost. Technologies generating reads of length
shorter than ULONT or lower accuracy than PacBio CCS (HiFi) have turned out insufficient
to accomplish these tasks (Vollger et al., 2019b).

Importantly, given that the most recent T2T human genome assembly contains over
1300 SDs sites (>10 kb long, total over 227 Mb) (Fig. 2.2A) and that SD-rich human chromo-
some 2 (HSA2) syntenic sites in Great Apes reference genomes are incomplete (Fig. 2.2B,C),
a more efficient approach to resolve their structure is needed.

We developed PhaseDancer, a novel, fast, and robust assembler that follows a locally-
targeted approach to resolve SD-rich complex genomic regions. The tool is designed to
work with long-reads (ONT, PacBio) and tuned for error-prone data (Fig. 2.1). Based on the
iterative approach with randomised clustering procedure, the workflow of PhaseDancer
enables extension of an user-provided initial sequence contig even from complex genomic
regions. To assess its performance, we validated PhaseDancer using bacterial artificial
chromosome (BAC) clones sampled from the known SDs as well as computationally simu-
lated sequences reflecting a complex evolutionary history of SDs. To demonstrate efficacy
and biological utility of PhaseDancer, we assembled subtelomeric regions of chromosomes
2Apter, 2Bpter, 9pter, 12pter, and 22qter in bonobo, chimp, gorilla, and orangutan together
with a syntenic complex SD-rich site of HSA2 fusion that reduced the number of chromo-
somes from 48 in Great Apes to 46 in Homo sapiens, Neandertals, and Denisovans (Ventura
et al., 2012; Stankiewicz, 2016; Turleau et al., 1972; Meyer et al., 2012). Based on our assem-
bled sequences, we have proposed a novel evolutionarymodel for complexHSA2 formation,
indicating the most plausible key mutational events.

2.1. PhaseDancer algorithm

PhaseDancer uses an iterative greedy strategy for repetitively extending the short initial
anchor sequence by executing the following phases: (i) mapping, (ii) clustering, (iii) assem-
bling, and (iv) extending (Fig. 2.1). Additionally, we have described in details the accompa-
nying tools: PhaseDancerViewer and PhaseDancerSimulator.

To start working with PhaseDancer, a user needs to: (i) build an index based on the read
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Figure 2.1: A workflow of the PhaseDancer algorithm and the accompanying tools. PhaseDancer works with next generation
sequencing long-read data e.g. Oxford Nanopore or PacBio. Starting with initial anchor sequence, the core workflow of PhaseDancer
iterates along four major steps: (i) mapping the reads on the anchor sequence, (ii) clustering the mapped reads and selection of a cluster
with the reads originating from the genomic region represented by the anchor sequence, (iii) assembling these reads into a contig, and
(iv) extending the current anchor sequence using the contig to a new anchor sequence processed in the next iteration. After all iterations,
the algorithm outputs the final assembled sequence. PhaseDancer is also accompanied with two supporting tools - the semi-supervised
character of PhaseDancer is provided by PhaseDancerViewer that enables the intermediate control of assembly process, whereas, Phase-
DancerSimulator generates in silico data for profound validation of the algorithm. Thanks to its high efficiency, PhaseDancer can be used
for resolving challenging genomic tasks, involving SD assembly.

data (using minimap2 (Li, 2016) tool), (ii) load the index to the RAM, and (iii) prepare the
initial anchor sequences to be extended by PhaseDancer.

2.1.1. Mapping phase

An anchor sequence is mapped on the set of all reads using an inverted index loaded to
RAM. Some randomly selected reads from the sample are then sent to the standard input of
the mapper to load the buffer of minimap2, forcing the tool to output mappings at least once
per iteration. As a result, the process of receiving the output from the mapper determines
the end of the entries from the anchor sequence. The output from the anchor sequence is
further processed when the first entry from the randomly selected reads is recognised.

The Pairwise mApping Format (PAF) entries generated by minimap2 are then processed
to filter the reads with the sufficiently large coverage (parameterised by default with at
least half of the anchor length). Selected reads are then retrieved from a FASTA file using
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the Faidx index.
Finally, the reads are homopolymer-compressed (HPC) and mapped on the HPC anchor

sequence to produce a BAM file that is an input to the next PhaseDancer phase.

2.1.2. Clustering phase

The HPC (homopolymer-compressed) reads overlapping the full HPC anchor sequence are
selected using the .bam alignment file from the previous step. Using this alignment mis-
matches are analysed to find candidates for cis-morphisms. Here, a cis-morphism refers to
a single nucleotide difference between two or more segmental duplications.

To detect cis-morphisms, the frequency of the second most common nucleotide is com-
puted for each locus. A locus is identified as a cis-morphism when the corresponding sec-
ond most common nucleotide frequency is greater than a given threshold value (parameter
dependent on sequencing technology and the coverage). Additionally, when the number
of the identified cis-morphisms is greater than a given upper-bound (by default set to 200),
only those with the largest percent of the second most common base are retained. Such
filtered cis-morphisms are then used for clustering.

The first step of clustering is based on the graph connectivity analysis. A graph used for
clustering reads is called a similarity graph. A set of vertices of the similarity graph corre-
sponds to the reads overlapping the full HPC anchor sequence. Each edge of the similarity
graph connects vertices most similar to each other according to a Hamming distance of cis-
morphisms (0.4). The decomposition of the similarity graph into the connected components
corresponds to the partition of the computed reads.

In the second step, each block in the partition is subdivided into clusters using cis-
morphisms derived from the reads composing the block. The clustering process is based on
random simulations and generates multiple alternative clusterings of reads.

In each simulation, a random cis-morphism is selected iteratively to partition the set
of all reads based on the observed nucleotides. The procedure is applied recursively until
either no cis-morphisms are present in the processed set of reads, or the number of reads
in each constructed cluster falls below a certain threshold (this threshold is sequencing
technology-dependent, yet it is assumed to be 0.8 × coverage).

Given all the alternative clusterings of reads, we assign the best clustering to each block.
To evaluate the quality of a clustering, we compute the sum of distances between each
read and its nearest cluster. In this context, the distance between a read and a cluster
is determined by the Hamming distance between the read and the consensus sequence
derived from all reads in the cluster. The best clustering is the one that minimises the sum
of distances across all reads.

The final clustering of all reads is a union of all clusters from all blocks. The cluster
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used for the extension of the anchor sequence maximises the number of reads shared with
the cluster selected for the extension in the previous iteration. In particular, in the first
iteration, the cluster is selected by the similarity to the initial sequence (i.e. Hamming
distance between the sequence and clusters consensuses).

2.1.3. Assembling phase

Reads from the selected cluster are pre-processed based on their mapping to the anchor
sequence by truncating fragments exceeding the sequence by given flanking threshold. The
procedure is applied to ensure even coverage and the fixed length of the assembly required
by wtdbg2 (Ruan and Li, 2020). Then, the reads are assembled using wtdbg2. This process
is fast and precise as it operates only on the reads from one cluster originating from one
genomic region with the read number approximated by the coverage of the sequencing
data.

2.1.4. Extending phase

Thenewly assembled sequence is aligned to the anchor sequence using the edlib library (Šošić
and Šikić, 2017) minimising the Levenshtein distance. The flanking part is used for the ex-
tension of the current anchor sequence to the new anchor sequence processed in the next
iteration (Mapping phase) of PhaseDancer.

Implementation details

PhaseDancer was implemented as a Snakemake (Mölder et al., 2021) workflow. The source
code, the docker image of PhaseDancer, and the toy-example alongwith the detailedmanual
are available at https://github.com/bposzewiecka/phaseDancer.

PhaseDancer uses the index of all sequencing data loaded into RAM to query for reads
that are similar to the anchor sequence. Therefore, before running the main workflow the
index build for all sequencing data needs to be generated. PhaseDancer uses minimap2
.mmi files generated with:

• --idx-no-seq parameter to reduce the memory required for the index to be stored
(if used, the mapper can produce an output only in the PAF format),

• -p 0 -N 3000 parameters to ensure that all reads having fragments similar to the
anchor sequence are outputted,

• -K 1 parameter to force the mapper to generate an output once per read.
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As a reference point for the memory usage, an index of 200 GB stored in a FASTA file uses
approximately 150 GB of RAM.

Before the first iteration of PhaseDancer, the minimap2 index has to be loaded into the
RAM together with two processes running in an infinite loop and handling the standard input
and output of the mapper. The former receives sequences from the pipeline and sends them
to the standard input of the mapper, the latter receives the output in the PAF format from
the mapper, selects the reads using the Faidx index, and sends them back to the pipeline.

PhaseDancer enables the concurrent extension of many sequences. To accomplish this
functionality, the input sequences are sent to the mapper using the flock command. Then,
the process retrieving the mapping results allows for the multiplexing of PAF entries sent
from many other processes. Distinction of the sender process of an entry is based on
a uniquely identifying name.

2.1.5. PhaseDancerViewer - intermediate results viewer

PhaseDancer is accompanied by PhaseDancerViewer, an application for the visualisation
of its intermediate assembly results obtained at the end of each algorithm iteration. The
Viewer enables monitoring the assembly process in a semi-supervised mode. User can
interfere the assembly process and re-tune the parameters of PhaseDancer. For every iter-
ation, it displays the reads mapped on an anchor sequence grouped and colored by clus-
ters. The application visualizes clusters using an embeddable implementation of the Inte-
grative Genomics Viewer (IGV). The source code with the documentation is available at
https://github.com/bposzewiecka/phaseDancerViewer.

2.1.6. PhaseDancerSimulator - SDs generator

PhaseDancer is targeted at resolving SD-rich genomic regions, thus the standard methods
dedicated to assemblers evaluation and benchmarking are unsuitable or even inadequate.
To show the advantages of PhaseDancer and verify its robustness, we implemented a sim-
ulator generating contigs and recapitulating the complex history of SDs formation.

PhaseDanceSimulator extends the method proposed by Chaisson et al. (Chaisson et al.,
2017). The simulation process follows the simplified model based on the tree topology.
Fragments from a reference genome are assigned to the root of the tree and child sequences
are generated by copying a parent node sequence and mutating each base at a fixed rate per
base. PhaseDancerSimulator supports four topology types: flat, bifurcating, cascading, and
random (Tab. 2.1). Moreover, the ends of the generated contig sequences can be extended
with a randomly generated sequence.

PhaseDancerSimulator supports Oxford Nanopore and PacBio Sequel technologies us-
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ing PBSIM2 (Ono et al., 2021) to simulate reads. Other simulation parameters include,
e.g. mutation rate, mean and standard deviation of the read length, read accuracy, chem-
istry, and coverage. Additionally, the tool can generate assemblies using Canu (Koren et al.,
2017), Wtdbg2 (Ruan and Li, 2020), Flye (Kolmogorov et al., 2019), and Miniasm (Li, 2016)
that can be used for benchmarking of the assemblies.

The source code and the documentation of PhaseDancerSimulator are available at https:
//github.com/bposzewiecka/PhaseDancerSimulator.

2.1.7. Runtime experiments

T2T data of SDs were used as a reference point to asses the distribution of the number
of stacked SDs in the human genome needed to specify the parameters for the runtime
experiments. We calculated the percent of all SD bases that have no more than n stacked
SDs as: ≤ 5 ≈ 65%; ≤ 10 ≈ 79%; ≤ 15 ≈ 83%; ≤ 20 ≈ 87%; ≤ 30 ≈ 90%. Moreover, the
median number of the stacked SDs for the interstitial SDs was equal to 2. Importantly, the
cases with more than 20 stacked SDs related to very short fragments.

Therefore, to conduct runtime experiments, we generated data using PhaseDancer-
Simulator for the number of clusters varying from 1 up to 40 (mutation rate 0.001, P6C4
PacBio chemistry, coverage 40x, sequencing error 15%, mean read length 18 kb, read length
standard deviation of 3 kb, flat tree topology). The upper bound was set to 40 because in the
real data scenario cases with more clusters are extremely rare, thus they do not influence
the effective runtime of the algorithm.

Importantly, when assessing the runtime of the PhaseDancer number, we observed that
the main bottleneck of the PhaseDancer workflow is the clustering procedure. To optimise
this step, we paralleled this procedure and measured the execution time of one iteration
given the number of processes used. For such generated datasets and the number of pro-
cesses used (1, 5, 10, 20), we ran the experiments for 100 iterations aiming to assemble
the ∼ 0.5 Mb regions. To asses the time performance of PhaseDancer, one iteration time
was computed for each run. The final results of the time experiments are presented in
Figure 2.5A.

2.2. Methods

2.2.1. Datasets

Whole genome sequencing of two chimpanzees Using long-read PacBio Sequel II
technology, we whole genome sequenced two chimpanzee (Chaos and Toby from the Hous-
ton Zoo) genomes. Chaos’ genome was sequenced using CLR technology with 70x cover-
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age, whereas Toby’s genome using CCS (HiFi) technology with 20x coverage.
First, the peripheral blood DNA samples were assessed as suitable for PacBio Sequel II

sequencing. DNAwas fragmented with the Covaris® g-TUBE® device. Next, DNA damages
were repaired using the DNA Damage Repair reagents (PacBio).

To ligate the hairpins (SMRTbell™ templates) to the DNA fragments, BLUNT hairpin
adapters (20µM) oligonucleotide pre-annealed stocks) were used. To remove failed ligation
products, exonuclease was added. Three-step AMPure PB Size-Selection and Purification
was performed. Prior to sequencing, primer was annealed to both ends of the SMRTbell
template. The binding reaction was performed and DNA sequencing polymerases were
bound to the primer-annealed SMRTbell templates (at 30℃ for 30 minutes).

The template-polymerase complex was transferred to a 96-well sample plate with ad-
justed concentrations and volumes. The DNA fragments in a zero-mode waveguide well
were sequenced using PacBio Sequel II repeatedly in the sequencing process. The obtained
broadcasts were self corrected to obtain highly accurate CCS reads. The resulting CCS data
quality control confirmed its validity to perform the downstream analyses of theWGS from
PacBio Sequel II. The P1 ratio of the two cells was over 89.62%, the average length of sub-
reads was 14,666 bp, the read N50 was 22,239 bp, the longest read length is 268,467 bp, and
the total data was 231,859,915,436 bp.

Reference genomes All reference genomes of human and Great Apes used in this study
were downloaded from the UCSC Genome Browser (https://hgdownload.soe.ucsc.
edu/downloads.html) (Kent et al., 2002):

• Genome Reference Consortium Human GRCh38.p13; hg38 assembly of human geno-
me (December 2013);

• T2T Consortium/T2T-CHM13 v2.0 assembly of the human genome (January 2022);

• University of Washington Clint_PTRv2; panTro6 assembly of the chimpanzee (Pan
troglodytes) genome (University of Washington, January 2018));

• Chimpanzee Sequencing and Analysis Consortium Build 3.0; panTro5 assembly of
the chimpanzee (Pan troglodytes) genome (May 2016);

• University of Washington Mhudiblu_PPA_v0 assembly; panPan3 assembly of the the
bonobo (Pan paniscus) genome (May 2020);

• Max-Planck Institute for Evolutionary Anthropology panpan1.1; panPan2 assembly
of the bonobo (Pan paniscus) genome (August 2015);

• University ofWashington Kamilah_GGO_v0; gorGor6 assembly of the gorilla (Gorilla
Gorilla) genome (August 2019);
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• University of Washington Susie_PABv2; ponAbe3 assembly of the orangutan (Pongo
pygmaeus abelii) genome (University of Washington, January 2018).

Great Apes NGS data from public repositories The following PacBio circular consen-
sus sequencing (CCS) data for Great Apes were used to validate and extend the existing
references:

• Chimpanzee (Clint), BioSample SAMN15896587, Bioproject PRJNA659034 (Primate
genome sequencing and assembly),

• Bonobo (Mhudiblu), BioSample SAMN11123633, Bioproject PRJNA691628 (bonobo
and gorilla HiFi reads),

• Gorilla (Kamilah), BioSample SAMN11078986, Bioproject PRJNA691628 (bonobo and
gorilla HiFi reads),

• Orangutan (Susie), BioSample SAMN15896588, Bioproject PRJNA659034 (Primate ge-
nome sequencing and assembly).

Analysis of polymorphisms To assess the polymorphisms flanking the HSA2 fusion
site, we analysed NGS data (Nanopore, PacBio CLR, and CCS HiFi) from two data sources:
Genome in the Bottle (3 individuals: https://github.com/genome-in-a-bottle/giab_data_in-
dexes) and T2T Diversity Panel (10 individuals: HG01109, HG01243, HG02080, HG03098,
HG02055, HG03492, HG02723, HG02109, HG01442, HG02145, https://github.com/human-
pangenomics/hpgp-data).

Optical genome mapping data All OGM data representing assembly of raw molecules
in CMAP format were provided by Bionano Genomics and downloaded from NCBI FTP sites
usingURLs provided in ftp://ftp.ncbi.nlm.nih.gov/pub/supplementary_data/bionanomaps.csv.
We used the optical genomic maps generated with the nicking enzymes BssSI and BspQI of
the chimpanzee and orangutan genomes from the bioproject PRJNA369439, and the bonobo
genome from the bioproject PRJNA672266. Gorilla Bionano Genomics data from the bio-
project PRJNA369439 were generated with DLE1 nicking enzyme.

Transcriptomic analysis Bulk RNA-seq data from three species: human, bonobo, and
chimpanzee available at https://www.ncbi.nlm.nih.gov under the bioproject PRJNA527986
were used to perform the comparative transcriptomic analyses of the transcriptomes from
the PhaseDancer-extended subtelomeric regions.
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2.2.2. Optical genomemapping validation of the recent reference genomes

and PhaseDancer assemblies in Great Apes

To validate the assemblies of the reference genomes used in our work, we used the Bio-
nano Genomics data described above. Data processing pipeline followed the producer
guidelines for running Bionano Solve in the Command Line (Guidelines at https://bio-
nanogenomics.com/).

FASTA files of the genome reference builds were in silico digested with the nicking en-
zymes using HybridScaffold script to produce files in the CMAP format. Then, the mapping
was performed using the producer provided runCharacterize.py script with preset param-
eters optArguments_haplotype_saphyr.xml (for BssSI and BspQI enzymes) and optArgu-
ments_haplotype_DLE1_saphyr.xml (for DLE1 enzyme) accompanying the script. The pro-
duced mapping was visualised using the Bionano Access Server.

2.2.3. Bulk RNA-seq gene expression analysis

RNA-seq data (Khrameeva et al., 2020) from 33 brain sites of human, chimpanzee, and
bonoboweremapped on themasked reference human genome hg38 using theminimap2 (Li,
2016). The hard-masked sequences correspond to the fusion site syntenic regions. Hard-
masking was done in order to force unique mapping of the transcripts on the near fusion
site region.

A subset of transcripts that were identified on the PhaseDancer assembled subtelomeric
sequence extensions: CBWD2, FOXD4L1, JMJD7, JMJD7-PLA2G4B, LINC01881, LINC01961,
MALRD1, MAPKBP1, PLA2G4B, RABL2A, and SPTBN5, was selected to perform the down-
stream comparative transcriptomic analysis. The selected transcripts coordinates at hg38
genome were downloaded using UCSC hgTables form GENECODE V41 track.

The downstream analysis was performed using a custom-made python script. The anal-
ysis starts by defining for each transcript the set of coordinates that describe any of its
exomes. For each coordinate, we calculated its coverage using the pileup query. Next,
for each transcript (for all its exome coordinates) we calculated the average coverage nor-
malised by the sample size (i.e. the total length of all reads in the brain region RNA-seq data
in question). The final results were visualised and compared between the brain regions us-
ing R-script (Figure 2.8).
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Figure 2.2: An overview of segmental duplications (SDs) characteristics and the study motivation. Based on the most recent
T2T human genome assembly: (A) A contour plot of the SD abundance given their sequence identity (90–100%, x axis) and the total
length (Mb, y-axis, log-scale), where the blue colour intensifies with the increasing number of SDs; (B) A barplot of the SDs total length
(Mb, log-scale, y-axis) given the total number of SDs copies (x-axis) located at the interstitial (top, blue) and non-interstitial (bottom,
yellow) genomic regions; (C) An area plot of the SDs’ total length (Mb, log-scale, y-axis) for SDs with at least given number of copies
(x-axis) and the minimal percent of sequence identity (area colour). Here, the number of stacked SDs per base is the number of reads
overlapping a given base position of the reference genome. (D) A normalised depth-of-coverage histogram of the aligned whole-genome
circular consensus sequencing (CCS) reads in the human (NA12878), two chimpanzees (Clint, Chaos), bonobo (Mhudilbu), and gorilla
(Kamilah) genomic regions syntenic to those flanking the HSA2 fusion site. For bonobo and both chimpanzees two depth-of-coverage
tracks are shown. The top track presents the full scale of all data, whereas the bottom track zooms-in the coverage of values excluding
the extremely high coverage region. The red line on each of the top tracks indicates the y-axis limit of the bottom track. (E) Optical
genome mapping was used to assess the current incompleteness of the subtelomeric assemblies in chimpanzee and bonobo genomes
(panTro5, panTro6, and panPan3). Each of the subtelomeric ends was estimated to lack at least 0.3 Mb of the DNA sequence. Note, the
high coverage of the ∼31 kb fragment previously found to be amplified about 400 times in the chimp genome (Cheng et al., 2005).

2.3. Results

2.3.1. Design and Implementation of PhaseDancer

In contrast to the existing long-read assemblers that follow the top-down paradigm and
operating simultaneously on all existing reads, we implemented an approach with contigs
generated in a bottom-up manner, working with a gradually expanded set of sufficiently
similar reads. As a result, our de novo assembler can generate several Mb long contigs
enriched with SDs.

The algorithm implements an iterative strategy for extending the initial anchor se-
quence by finding the best fitting set of reads to expand the processed anchor sequence.

Due to the efficient integration of the state-of-the-art components used in the workflow
(see Methods), PhaseDancer generates contigs with the fragments repeated up to several
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dozens times in the genomewith at least 0.1% divergence. The preprocessing time of 200 GB
FASTQ data is approximately one hour. The conducted runtime experiments have proven
that PhaseDancer is a fast and robust assembler (Fig. 2.5A, B). For example, the targeted as-
sembly of a 1 Mb SD contig (coverage 40x, sequencing error 15%, average read length 18 kb
with standard deviation 3 kb) took on average 20 minutes on the server with 56 Intel(R)
Xeon(R) E5-2690 v4 @ 2.60GHz CPUs (see Methods).

PhaseDancer is accompanied by two supporting tools, PhaseDancerViewer and Phase-
DancerSimulator. PhaseDancerViewer visualises the intermediate results of each algorithm
iteration and enables running the assembler in a monitored and semi-supervised fashion,
facilitating the PhaseDancer parameters tuning. PhaseDancerSimulator generates in sil-

ico SD sequences, resulting from various scenarios of a parameter-controlled evolutionary
processes. Such synthetic data provide a broad scope of model testing and verification
strategies with the a priori known dataset.

2.3.2. Validation on SD-rich human BAC clone sequences

To validate the PhaseDancer assembly quality, first, we used a set of BAC clones from the
haploid CHM13hTERT human cell line (sequenced using PacBio RS II; coverage 45x, N50
20,000), considered as a gold-standard for a validation and benchmarking (Nurk et al., 2022).
We employed a validation pipeline commonly used to measure the quality of assemblies on
such data, available at https://github.com/skoren/bacValidation (Nurk et al., 2020;
Shafin et al., 2020). This pipeline evaluates two measures describing the quality of the as-
sembly of the BAC clones sequences: (i) resolving success (BAC clone is considered as
resolved if an alignment covers 99.5% of its length), (ii) alignment accuracy (measured as
a median of the PhredQuality Scores (Q) (Ewing and Green, 1998) of the alignment identity
of the resolved BAC clones). The score Q quantifies the probability (p) of an incorrect base
call as p = 10−

Q
10 .

PhaseDancer performance was compared with the results obtained from Flye and Wt-
dgb2 assemblers that work with the error-prone PacBio reads. Out of 341 BAC clones stud-
ied, PhaseDancer resolved 292 clones (85.5%, median Phred Quality Value: 26.81), whereas
Flye and Wtdgb2 resolved 91 (26.69%, med. 36.48) and 77 clones (22.58%, med. 30.07), re-
spectively.

Additionally, the impact of the enrichment of BAC clones in SD regions on the assembly
results of each tool has been analyzed. To this end, BAC clone sequences were mapped on
the T2T genome assembly and using the data from the “SEDEF Segmental Dups” track
on UCSC genome browser the average number of stacked SDs for each BAC clone have
been computed. The BAC clone was considered as enriched in SDs when the number of
SDs is above 0.5. Therefore, 283 of 341 (83 %) BAC clones can be considered as rich in SD
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Table 2.1: Assessment of the SDs assembly quality for different tools (columns) in various evolutionary topologies generated
by PhaseDancerSimulator (rows). For each table cell: (i) upper value - Phred Quality Score (Q), the larger value the lower error
frequency in the assembled sequences; (ii) lower value - a percent of correctly resolved SDs (the expected are sequences from the leaves
of the assessed topology). The comparison was evaluated for the following parameters setting of PhaseDancerSimulator: coverage 40x,
sequencing error 15%, SD sequence identity 99.5%, average read length 18 kb, read length standard deviation 3 kb, and the simulated SD
contig size 0.5 Mb. Timeout - the computation time exceeded 96 hours; N/A - not available, the assembly process failed.

SDs History PhaseDancer Canu Miniasm Flye Wtdbg2 SDA
29.42 20.73 9.19 23.05 17.80 30.21

100.0% 50.0% 50.0% 50.0% 50.0% 0%1

30.19 21.64 8.92 22.91 17.65 30.41

100.0% 25.0% 25.0% 25.0% 25.0% 100%

30.26 20.76 8.92 22.89 - -

100.0% 12.5% 12.5% 12.5% 0.0% Timeout

30.14 18.74 8.85 20.27 - -

100.0% 12.5% 12.5% 12.5% 0.0% Timeout

30.08 18.71 8.76 - - -

100.0% 8.3% 8.3% N/A 0.0% N/A

29.83 17.34 8.53 17.901 - -

100.0% 12.5% 12.5% 12.5% 0.0% Timeout

30.10 19.63 8.91 21.25 17.19 -

100.0% 25.0% 25.0% 25.0% 25.0% Timeout

30.24 18.25 8.45 18.22 - -

100.0% 12.5% 12.5% 12.5% 0.0% Timeout

30.13 18.90 8.59 - - -

100.0% 8.3% 8.3% N/A 0.0% N/A

30.04 17.93 8.55 - - -

100.0% 8.3% 8.3% N/A 0.0% N/A
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regions. All assemblers have resolved BAC clones not enriched in SDs. In the resolving BAC
clones augmented with SDs PhaseDancer compared favorably against other assemblers.
PhaseDancer resolved 81.9%, while Wtdbg and Flye, respectively 7,4% and 12,0% (Fig. 2.3).

Importantly, after backtracking of the PhaseDancer failures, we established that the
unresolved BAC clones represented either SD regions with low-coverage or SDs enriched
in highly repetitive tandem repeats.

Figure 2.3: The impact of the enrichment of the BAC clones in SDs on the assembly results for Flye, Wtdgb2 and Phase-
Dancer. Histograms display the number of BAC tasks (y-axis) given the number of stacked segmental duplications within a given BAC
sample data (x-axis) for each assembler. The color indicates whether the assembly tasks were resolved (blue) or non-resolved (yellow).

2.3.3. In silico verification and benchmarking

To evaluate the accuracy of the PhaseDancer performance, we tested the quality of the as-
sembled sequences from the collapsed SDs generated by PhaseDancerSimulator. We simu-
lated the collapsed SDs using 10 different evolutionary scenarios: flat with two, four, and
eight leaves; three types of bifurcating; cascading with four and eight leaves; and two ran-
dom with 12 leaves (Table 2.1). PhaseDancerSimulator was run with the above-mentioned
set of parameters. Additionally, for each of the simulated SDs, random sequences were
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Figure 2.4: Genome architecture flanking the HSA2 fusion site and the syntenic genomic regions in Great Apes and human.
From the top, the figure depicts the sequences from: orangutan (PAB) and gorilla (GGO) chromosomes 2Apter and 2Bpter; chimpanzee
(PTR) and bonobo (PPA) chromosomes 2Apter, 2Bpter, 9pter, 12pter and 22qter; and human HSA2, all together with the corresponding
coding regions track. Each individual contig is represented by a uniquely coloured stripe consistent among species/chromosomes,
labelled with the coordinates with respect to the human genome build (hg38) and designated with the arrowheads indicating the DNA
strand. Dark grey contigs with white crosses depict strongly mosaic SDs or tandem repeats that cannot be graphically presented in
a legible way. Brown arrowheads depict the TAR1 satellite and degenerate telomeric repeats at the HSA2 fusion site and their orthologs in
Great Apes. Below each contig assembly a coloured stripe depicts: (i) green - the novel reconstructed assembly alongwith an approximate
size, (ii) pink - the high homology region between chromosomes 2Apter and 2Bpter presumably triggering the fusion event, and (iii)
grey - the region that was lost after the fusion event with respect to the HSA2. HSA2 is also equipped with a track of collapsed SDs
including ∼190 kb fragment homologous to HSA9pter and three fragments ∼68 kb in size in total homologous to HSA22pter. The azure
contig (chr2:113,523-113,554 kb) was found to be amplified ∼400 times in the chimpanzee genome (Cheng et al., 2005).

added at their beginnings and ends. Unique random sequences preceding each collapsed
SD portion of the generated sequences were used as an initial anchor sequence for the
assembly process.

On such generated synthetic datasets, PhaseDancer was benchmarked against the sev-
eral commonly used assemblers supporting error-prone NGS long reads: Canu (Koren et al.,
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2017), Wtdbg2 (Ruan and Li, 2020), Flye (Kolmogorov et al., 2019), Miniasm (Li, 2016), and
SDA (Vollger et al., 2019a).

To compare the assembly quality of the above tools, we calculated the Levenshtein dis-
tance between all assembled contigs and the simulated SDs. Next, for each assembled con-
tig, we assigned the simulated SD for which: (i) the alignment covers at least 95% of the
contig length, and (ii) the alignment Phred Quality Score was highest among all SDs. This
assignment procedure allowed us to determine the number of the resolved simulated SDs
generated by each assembler.

PhaseDancer has successfully resolved all of the simulated SDs with no alignment of
Phred Quality Score lower than 29 (accuracy over 99.874%). Other assemblers managed
to resolve at most one reference SD per scenario, and only Canu (Koren et al., 2017), and
Miniasm (Li, 2016) produced one sequence for all scenarios. Flye (Kolmogorov et al., 2019)
resolved one simulated SD only for models consisting of up to eight SDs, whereas Wt-
dbg2 (Ruan and Li, 2020) resolved only up to four SDs. Some assemblers failed to complete
their assembly task either due to exceeding the 96-hour time limit or execution error dur-
ing the assembly process (Table 2.1). Additionally, we broadly assessed the PhaseDancer
performance on in silico reads of various properties provided by PhaseDancerSimulator
(Figure 2.5).

2.3.4. Unveiling HSA2 Fusion Event

Following the successful validation of PhaseDancer, we applied our algorithm to the un-
resolved subtelomeric regions of the selected chromosomes in Great Apes i.e chimpanzee,
bonobo, gorilla, and orangutan, syntenic to HSA2, to unravel the mechanism of reduc-
tion of the chromosome number during human speciation after divergence from chim-
panzee/bonobo. These regions likely reflect high similarity with the ancestral chromosomes
2Apter and 2Bpter, that might have predisposed them for the evolutionary chromosomal
fusion event.

Based on classical cytogenetics (Yunis and Prakash, 1982; Turleau et al., 1972; Leje-
une et al., 1973; Dutrillaux, 1979) and molecular methods (Ijdo et al., 1991; Kasai et al.,
2000; Avarello et al., 1992; Wienberg et al., 1994; Allshire et al., 1988; Wienberg et al., 1990;
Wells et al., 1990; Jauch et al., 1992). HSA2 was proposed to have arisen as a product of
the end-to-end fusion of telomeric repetitive sequences of the ancestral primate chromo-
somes 2Apter and 2Bpter. Subsequently, the unstable dicentric chromosome was rescued
by a loss of satellite DNA sequences in the vestigial centromere at 2q21.2 (Ijdo et al., 1991;
Martin et al., 2002; Miga, 2017; Chiatante et al., 2017; Baldini et al., 1993; Avarello et al.,
1992; Lejeune et al., 1973; Dutrillaux, 1979; Roberto et al., 2008). Prior to the fusion, both
ancestral chromosomes 2A and 2B underwent ancestral large pericentric inversions, before
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Figure 2.5: Time complexity, feasibility, and correctness of PhaseDancer. (A) Computational time performance (y-axis) for
different number of stacked SDs (x-axis) and processes (colour scale). Each boxplot represents 100 iterations of PhaseDancer for a given
setting. (B) Feasibility space for SDs in human. PhaseDancer resolves all SDswith the number of stacked SDs per base as for SDs identified
by T2T human genome assembly (area plot, Fig. 2.2C). For a given number of stacked SDs (x-axis) the height of each bar indicates an
average runtime of PhaseDancer iteration (right y-axis) along with standard deviation (error bars) and individual measurements (points).
(C) The evaluation of PhaseDancer assemblies using the PhredQuality Score (Q; y-axis). The samples used for evaluation were generated
by PhaseDancerSimulator, with fixed parameters including a coverage of 40x, an average read length of 18 kb, and a read length standard
deviation of 3 kb. The x-axis represents different sequencing error levels, while the colour scale indicates different numbers of cis-
morphisms per 10 kb window. The additional upper panel in the figure shows the percentage of assembly tasks with no errors (Q >
60) using bar plots. Remarkably, our analysis revealed no significant changes in assembly quality for different PhaseDancerSimulator
topologies (SDs evolutionary scenarios). (D) Correctness of the PhaseDancer assemblies was assessed using optical genome mapping
(OGM). All HSA2 syntenic sites of the chimpanzee genome were in concordance with the corresponding OGM molecules (BssSI enzyme
shown).

the chimp-gorilla lineage split (Yunis and Prakash, 1982; Kasai et al., 2000; Wienberg et al.,
1994; Roberto et al., 2008) and after the orangutan-gorilla divergence (Yunis and Prakash,
1982; Kasai et al., 2000; Ventura et al., 2011; Wienberg et al., 1994), respectively (Figure 2.6).

We confirmed the incompleteness and partial incorrectness of the latest genome builds
of the subtelomeric sequences of Great Apes chromosomes 2Apter and 2Bpter using optical
genomemapping (OGM) and direct sequence analysis. The uniqueness and non-recurrence
of this event was validated by analysing the human population SNV and SV polymorphisms
flanking the HSA2 fusion site (Fig. 2.4, Fig. 2.4 and Tab.2.2).
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Figure 2.6: Gross inversion events in the course of primate evolution. Note that the orangutan’s acrocentric Chr2B was inverted
to form the gorilla’s Chr2B, and later the chimpanzee and bonobo. Later, a similar event formed the chimpanzee and bonobo metacentric
Chr2A after inversion on the gorilla acrocentric Chr2A. Eventually, the chromosomal fusion created the human Chr2 from the ancestral
Chr2A and Chr2B and reduced the number of human chromosomes from 48 to 46.

2.3.5. Great Apes genomes analysis

Orangutan. The orangutan genome differs from gorilla genome by one and from chim-
panzee, bonobo, and human genomes by two gross chromosomal inversions rearranging
them from acrocentric to submetacentric chromosomes. Using PhaseDancer in combina-
tion with OGM, we confirmed that the regions syntenic to the HSA2 fusion site map to the
latest orangutan genome build showing any structural variations.

Gorilla. PhaseDancer generated assembly extending GGO2Bpter with ∼330 kb, reaching
the highly repetitive subtelomeric satellites (StSats) regions. The novel fragment of the
GGO2Bpter is homologous to the proximal side of the HSA2 fusion. However, inside this
fragment, we identified an ∼54 kb sequence homologous to the distal side of the HSA2
fusion (chr2:113,496-113,550 kb). The ∼44 kb contig onGGO2Apter (Fig. 2.4, the grey contig)
is a region that maps to many different locations not related to the fusion site. Using OGM,
we confirmed the presence of an erroneously scaffolded ∼89Mb region in the latest GorGor6
assembly.

Chimpanzee. Using OGM, we found false positive breakpoints on PTR2Apter in the lat-
est chimpanzee chromosome build (panTro6) that resulted in placing the subtelomeric re-
gion interstitially, whereas no errors were found in the PTR2Bpter subtelomeric region.
PhaseDancer extended both PTR2Apter and PTR2Bpter with an ∼270 kb sequence, reach-
ing StSats repetitive sequences, each harbouring ∼240 kb of the fully homologous frag-
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ments. Importantly, the detected homologies encompass a fragment of ∼190 kb that was
likely deleted during the fusion event, whereas the remaining ∼68 kb fragment is homol-
ogous to HSA2 near the fusion site. By homology to the human reference genome (in-
cluding chromosomes 2, 7, 10, and 15), on the deleted fragments we annotated six cod-
ing genes: MAPKBP1, JMJD7 PLA2G4B, JMJD7-PLA2G4B, SPTBN5, and MALRD1 and one
lncRNA LINCO1881. All coding regions were subjected to the downstream transcriptomic
analyses and their activity was assessed in different locations of human brain using the
RNA-seq transcriptomic data (Khrameeva et al., 2020) (Fig. 2.8).

Interestingly, we found a strong homology between the region chr2:113,554-113,604 kb
next to the fusion site and the chimpanzee subtelomeric region at PTR12pter and extended
this region towards StSats. As a result, we identified an ∼168 kb homology of PTR12pter to
both PTR2Apter and PTR2Bpter, adjacent to an ∼31 kb fragment that was found to be am-
plified ∼400 times in the chimpanzee genome (Cheng et al., 2005) and homologous also to
the region near the HSA2 fusion site (chr2:113,523-113,554 kb; Fig. 2.2D, 2.4). Similarly, se-
quence homology between the human chromosomal region chr2:113,625-113,670 kb and the
chimpanzee subtelomeric region at chromosome 22q led us to explore PTR22qter. The as-
sembled fragment encompasses greater than 240 kb highly homologous fragment between
PTR22qter and PTR2Apter and PTR2Bpter, adjacent also to the above-mentioned ∼31 kb
fragment (as in PTR12pter). Finally, on the PTR9p subtelomeric region, we identified an
∼61 kb fragment homologous to the HSA2 fusion site. However, extension towards StSats
did not reveal any additional homology to HSA2, PTR2Apter, or PTR2Bpter.

Bonobo. Analogously to the above Great Apes, both PPA2Apter and PPA2Bpter subtelom-
eric regionswere validated usingOGMandwere extended to the StSats repetitive sequences
by ∼270 kb and ∼120 kb, respectively. Approximately 150 kb of homology was detected
between these chromosomes and the fragments of ∼190 kb and ∼280 kb from PPA2Apter
and PPA2Bpter, respectively, were found to be absent on HSA2. Similarly to the chim-
panzee genome, because of the discovered homology between HSA2 fusion site and the
bonobo chromosomal regions PPA9pter, PPA12pter, and PPA22qter, we assembled their
subtelomeric regions revealing strong homologies to PPA2Apter and PPA2Bpter. However,
an extension of PPA9pter from the ∼61 kb homology region with HSA2 towards StSats con-
firmed an additional homology (separated by an insertion) to the above-mentioned ∼31 kb
fragment amplified in chimpanzee (Fig. 2.2D, 2.4) (Cheng et al., 2005). Similarly to chim-
panzee genome, the selected transcripts were analysed to determine genes distinguishing
the species Fig. 2.8, Methods). Using OGM, we independently validated the presented novel
assemblies, extending the current reference genomes of bonobo, chimpanzee, and gorilla,
generated using PhaseDancer (data shown for chimpanzee, Fig. 2.5D).

Human. Finally, using PhaseDancer, we assembled the NGS data from ten individuals from
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Figure 2.7: Multialignment of the genomic fragments flanking the HSA2 fusion site. Fragments of the assembled contigs
flanking the fusion site for 13 human genomes were multialigned by CLUSTALW algorithm with default parameters. For the alignment
fragments of the assembled fusion sites contigs were annotated by RepeatMasker (Tab. 2.2. Fragments subsequently annotated as TAR1
satellite, G-rich low-complexity region, (CTAACC)n simple repeat, and inverted TAR1 satellite was used for the multialignment. In the
multialignment visualisation, each region is depicted with a distinct colour.

the Human Pangenome Project, T2T Diversity Panel (Wang et al., 2022) and three individ-
uals from the Genome in the Bottle project (Zook et al., 2016). The selected individuals
represent five main human superpopulations: African, admixed American, East Asian, Eu-
ropean, and South Asian. In particular, we assessed the polymorphisms of the 5 kb region
directly flanking the HSA2 fusion site. The selected sequences corresponding to the region
were subjected to the downstream analyses using RepeatMasker and multialigned to de-
tect any possible genomic variety. No significant structural variations (i.e. duplications,
deletions, inversions, indels) were detected (Tab. 2.4) and Fig. 2.7).

2.3.6. Analyses of the newly assembled two chimpanzee genomes

To confirm the structure of the assembled genomic extensions obtained using PhaseDancer,
we incorporated additional NGS long-reads from two different chimpanzee individuals se-
quenced for this study (Chaos and Toby). The datasets are publicly available in NCBI SRA
repositories under the accession number PRJNA905805 (Methods). Our analyses of the
WGS data confirmed the computed subtelomeric structures, and found no significant poly-
morphisms (data not shown), further confirming the structure of the obtained assemblies.
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Table 2.2: RepeatMasker analysis of HSA2 fusion site flanking regions of 3 human genomes from Genome in the Bottle
project repository and 10 human genomes from T2T Diversity Panel. Contigs spanning the fusion site were assembled using
PhaseDancer for 3 human genomes from Genome in the Bottle project repository: HG001, HG002, HG005 and for 10 human genomes
from T2T Diversity Panel: HG01109, HG01243, HG02080, HG03098, HG02055, HG03492, HG02723, HG02109, HG01442, HG02145, Each
of these contigs was aligned to the 5kb region directly flanking the HSA2 fusion site (chr2:113,601,000-113,605,999 (hg38)). The table lists
the output of the RepeatMasker for the aligned fragments for the repeats immediately flanking the fusion site (TAR1 satellite, G-rich
low-complexity region, (CTAACC)n simple repeat, and inverted TAR1 satellite).

score % div. % del. % ins. query
begin

query
end

strand repeat class/family repeat
begin

repeat end

Reference hg38
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
136 13,6 0,4 2,5 1683 1929 + G-rich Low_complexity 1 242
329 8,5 1,5 3,5 1930 2478 + (CTAACC)n Simple_repeat 1 538
5395 10,3 2,3 1,3 2479 3531 C TAR1 Satellite/subtelo (316) 1063

HG001
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
173 13,4 0,3 2,3 1683 1990 + G-rich Low_complexity 1 302
329 8,5 1,5 3,5 1991 2539 + (CTAACC)n Simple_repeat 1 538
5489 10,2 2,4 1,6 2540 3624 C TAR1 Satellite/subtelo (316) 1092

HG002
2701 12 0,8 0,9 976 1652 + TAR1 Satellite/subtelo 1 676
181 13,3 0,3 2,2 1654 1973 + G-rich Low_complexity 1 314
329 8,5 1,5 3,5 1974 2522 + (CTAACC)n Simple_repeat 1 538
5395 10,3 2,3 1,3 2523 3575 C TAR1 Satellite/subtelo (316) 1063

HG005
2863 11,8 0,7 1,3 977 1682 + TAR1 Satellite/subtelo 1 702
165 13,8 0,3 2,7 1684 1986 + G-rich Low_complexity 1 296
303 7,3 1,8 3,9 1987 2532 + (CTAACC)n Simple_repeat 1 535
5200 10,7 4,1 0,6 2533 3566 C TAR1 Satellite/subtelo (319) 1069

HG01109
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
181 13,3 0,3 2,2 1683 2002 + G-rich Low_complexity 1 314
325 8,6 1,5 3,4 2003 2544 + (CTAACC)n Simple_repeat 1 532
5395 10,3 2,3 1,3 2545 3597 C TAR1 Satellite/subtelo (316) 1063

HG01243
2872 11,6 0,7 1,3 977 1682 + TAR1 Satellite/subtelo 1 702
161 13,6 0,3 2,8 1684 1980 + G-rich Low_complexity 1 290
325 8,4 1,5 3,6 1981 2523 + (CTAACC)n Simple_repeat 1 532
5200 10,7 4,1 0,6 2524 3560 C TAR1 Satellite/subtelo (316) 1072

HG01442
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
176 13,6 0,3 2,3 1683 1996 + G-rich Low_complexity 1 308
329 8,5 1,5 3,5 1997 2545 + (CTAACC)n Simple_repeat 1 538
5489 10,2 2,4 1,6 2546 3630 C TAR1 Satellite/subtelo (316) 1092

HG02055
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
179 13,7 0,3 2,2 1683 2002 + G-rich Low_complexity 1 314
329 8,5 1,5 3,5 2003 2551 + (CTAACC)n Simple_repeat 1 538
5395 10,3 2,3 1,3 2552 3604 C TAR1 Satellite/subtelo (316) 1063

HG02080
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
180 12,8 0,3 2,3 1683 1996 + G-rich Low_complexity 1 308
329 8,5 1,5 3,5 1997 2545 + (CTAACC)n Simple_repeat 1 538
5473 10,3 2,4 1,6 2546 3630 C TAR1 Satellite/subtelo (316) 1092

HG02109
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
180 12,8 0,3 2,3 1683 1996 + G-rich Low_complexity 1 308
329 8,5 1,5 3,5 1997 2545 + (CTAACC)n Simple_repeat 1 538
5473 10,3 2,4 1,6 2546 3630 C TAR1 Satellite/subtelo (316) 1092

HG02145
2872 11,6 0,7 1,3 977 1682 + TAR1 Satellite/subtelo 1 702
165 13,8 0,3 2,7 1684 1986 + G-rich Low_complexity 1 296
322 8,3 1,5 3,6 1987 2523 + (CTAACC)n Simple_repeat 1 526
5195 10,9 2,4 1 2524 3545 C TAR1 Satellite/subtelo (316) 1036

HG02723
2872 11,6 0,7 1,3 977 1682 + TAR1 Satellite/subtelo 1 702
159 14,1 0,3 2,8 1684 1980 + G-rich Low_complexity 1 290
303 7,3 1,8 3,9 1981 2526 + (CTAACC)n Simple_repeat 1 535
5248 10,6 4,1 1,1 2527 3592 C TAR1 Satellite/subtelo (319) 1098

HG03098
2872 11,6 0,7 1,3 977 1682 + TAR1 Satellite/subtelo 1 702
161 13,6 0,3 2,8 1684 1980 + G-rich Low_complexity 1 290
325 8,4 1,5 3,6 1981 2523 + (CTAACC)n Simple_repeat 1 532
5200 10,7 4,1 0,6 2524 3560 C TAR1 Satellite/subtelo (316) 1072

HG03492
2872 11,6 0,7 1,3 976 1681 + TAR1 Satellite/subtelo 1 702
181 13,3 0,3 2,2 1683 2002 + G-rich Low_complexity 1 314
326 8,7 1,5 3,5 2003 2551 + (CTAACC)n Simple_repeat 1 538
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Figure 2.8: Expression levels of 11 transcripts in chimpanzee, bonobo, and human (CBWD2, FOXD4L1, JMJD7, JMJD7-
PLA2G4B, LINC01881, LINC01961, MALRD1, MAPKBP1, PLA2G4B, RABL2A, and SPTBN5) found on the extensions of the
subtelomeric regions assembled with PhaseDancer. No data available for: Substantia Nigra (Pan paniscus), Globus Pallidus (Pan
troglodytes).

2.4. Discussion

We have shown the extent to which PhaseDancer can serve as an efficient, robust, and re-
liable tool resolving complex SD-rich genomic regions. Compared to the latest, commonly
used assemblers, it provides themost accurate data, even for SDswith highly complex struc-
tures in the shortest time. Moreover, such tasks are accomplished also for the error-prone
long reads.

Consequently, PhaseDancer has enabled substantial and robust extensions of the Great
Apes subtelomeric regions evolutionarily important for the HSA2 formation. We have pro-
vided the validated and publicly available tool relying on the currently most efficient soft-
ware and technologies that can be further developed and extended also at the community-
based level.

The results of our assemblies have allowed us to propose a scenario of the evolution-
ary formation of the HSA2 fusion involving not only chromosomes 2Apter and 2Bpter as
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Figure 2.9: The proposed model for the evolutionary HSA2 fusion event based on the assembled SD-rich subtelomeric se-
quences in Great Apes chromosomes, absent in the reference genomes. The fusion site is flanked proximally and distally, re-
spectively, by the ∼190 kb and ∼68 kb SDs homologous to human chromosomes 9p24.3 and 22q13.33 (98.9% and 97.8-99.1% sequence
identity). The ∼190 kb fragment harbouring FOXD4L1 (red solid rectangle) (Fig. 2.4), and likely originating from an ancestral locus syn-
tenic to chromosome 9q21.11 in human, was previously shown to be duplicatively transposed to chromosome PTR2Apter after gorilla
had branched off the common chimp-human ancestor lineage (Martin et al., 2002; Ventura et al., 2012; Lese et al., 1999; Wong et al.,
2004). Both copies flank the evolutionarily pericentromeric inversion in the human and chimp genomes that arose after the gorilla diver-
gence (Martin et al., 2002; Fan et al., 2002a; Wong et al., 2004). We have proposed that a portion of the PTR9pter copy was also copied onto
chromosome PTR22qter and later PTR2Bter before the gorilla-chimp divergence (Martin et al., 2002; Fan et al., 2002a; Ning et al., 1996;
Wong et al., 1999). Importantly, our assemblies revealed substantially long homology (∼190kb) between the lost fragments (within the
yellow band) of the ancestral chromosomes 2Apter (Pre HSA2A) and 2Bpter (Pre HSA2B) that might have served as a substrate of mis-
alignment during meiosis. The fusion occurred within TAR1 satellite and degenerate telomeric repeats present in both Pre HSA2Apter
and Pre HSA2Bpter. Submicroscopic subtelomeric rearrangements in human are relatively common cause of genomic imbalances in
patients with developments delay/intellectual disability (Flint et al., 1995). Analyses of these sequences showed that two copies of the
following six protein coding genes FOXD4L1, JMJD7-PLA2G4B, MAPKBP1, PGM5P4, SPTBN5, CBWD2, and MALRD1 and three lncRNAs,
LINC01881 and LINC01961, and PGM5P4-AS1 might have been lost during the fusion event (Fig. 2.4, Fig.2.8).

hypothesised in the current models, but also 9pter and 22qter chromosomes (Fig. 2.9). The
existing reference genome sequences of the SD- and StSat-rich subtelomeric regions in the
majority of Great Apes chromosomes remain, to a large extent, incomplete. Corrobora-
tively, our assembled sequences of chromosomes 2Apter and 2Bpter in chimp and gorilla
are in concordance with the previously published results of the FISH studies with the hu-
man cosmid and fosmid probes from the HSA2 fusion site (Fan et al., 2002a; Ventura et al.,
2012).

Supporting the notion of Ventura et al. (Ventura et al., 2012) that the pericentric inver-
sion of chromosome 2A predisposed the chimpanzee and human genomes to formation of
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StSat-rich subtelomeric heterochromatin, whereas the HSA2 fusion prevented our geno-
me from these expansions, we found multiple copies of two unstable genomic segments
admixed with the StSat repetitive DNA sequences on the subtelomeric regions of chromo-
somes 2Apter and 2Bpter in chimpanzee and bonobo as well as on chromosome 2Bpter in
gorilla. The copies of the above-mentioned ∼31 kb fragment mapping proximally to the fu-
sion site and amplified ∼400 times in the chimp genome (Cheng et al., 2005) are admixed to
StSat sequences on chromosomes 2Bpter in chimp and 2Apter in bonobo (Fig. 2.2D, 2.4, 2.9).
Moreover, the copies of the ∼82 kb block 1 (chr10:19,112,612-19,194,164) and the ∼43 kb
block 2 (chr10:19,238,586-19,281,823) (Marques-Bonet et al., 2009a; Ventura et al., 2012),
originating from the ancestral locus orthologous to HSA 10p12.31 and expanded in gorilla
with greater than 100 copies and 23-50 copies in chimpanzee and bonobo, but present only
in a single copy in human (Fig. 2.10), are directly admixed to StSat sequences on chromo-
some 2Bpter both in bonobo (chr10:19,112,645-19,123,078) and in gorilla (chr10:19,220,718-
19,229,071 and chr10:19,233,190-19,244,822) as proposed by Ventura et al. (Ventura et al.,
2012).

Out of six protein coding genes (each in two copies) FOXD4L1, JMJD7-PLA2G4B, MAP-

KBP1, PGM5P4, SPTBN5,CBWD2, andMALRD1 and three lncRNAs LINC01881 and LINC01961,
and PGM5P4-AS1 that might have been deleted during the fusion event (Fig. 2.4, 2.9), thus
far, only MAPKBP1 has been disease-related in human in an autosomal recessive manner
(MIM 617271). Interestingly, FOXD4, a member of the forkhead/winged helix-box tran-
scription factor gene family, highly conserved among vertebrates, has been shown recently
to play an important role in brain development. In Xenopus embryo, Foxd4l1.1 (previously
Foxd5a/b), known to play an essential role in maintaining an immature neural fate by reg-
ulating several neural transcription factors (Yan et al., 2009, 2010), was found to strongly
inhibit mesoderm- and ectoderm-specific marker genes to maintain neural fate by nega-
tively regulating Chordin transcription (Kumar et al., 2021b). In mice, Foxd4, required in the
transition of the mESCs from pluripotency to neuroectoderm precursor cells, was found to
be essential in the anterior mesoderm and in the anterior neuroectoderm for rostral neural
tube closure and neural crest specification during head development. Interestingly, loss of
Foxd4 manifested with craniofacial malformations and neural tube closure defects (McMa-
hon et al., 2021). Foxd4 in mice is also essential for establishing neural cell fate and for
neuronal differentiation (Sherman et al., 2017). Loss of FOXD4 in human was proposed
to be responsible for developmental delay in patients with Chromosome 9p deletion (9p-)
syndrome (MIM 158170) (Ng et al., 2020). However, the FOXD4 gene paralogs have not
been disease associated, likely because of their multi-copy redundancy. Of note, we found
increased expression of all human FOXD4 paralogs in cerebellum and FOXD4L2 in tibial
nerve (https://gtexportal.org/), suggesting their potential role in bipedalism.
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Figure 2.10: Normalised depth-of-coverage histogram of the aligned whole-genome CCS reads of a 225-kbp region of hu-
man chromosome 10 (chr10:19075000-19300000, NCBI hg38) in human (NA12878), two chimpanzees (Clint, Chaos), bonobo
(Mhudilbu) and gorilla (Kamilah). This region is segmentally duplicated in the chimpanzee, bonobo and gorilla mainly in subtelom-
eres. In gorilla, two depth-of-coverage tracks are shown. The Y-axis limit of the top track allows for the presentation of all data. The
Y-axis limit of the bottom track allows for the presentation of values apart from the region with extremely high coverage. Red line on
the top track marks the Y-axis limit of the bottom track.

HSA2 was estimated to have occurred 0.74 Mya (Dreszer et al., 2007), ∼3.5 Mya (Miga,
2017), greater than 4 Mya (Ventura et al., 2012), between 1-6 Mya (Fan et al., 2002a), and
between 5-6 Mya (Chiatante et al., 2017). Most recently, by re-analysing the enrichment
of weak-to-strong (AT to GC) substitutions around the fusion site, we dated its formation
at ∼0.9 Mya with an upper boundary of ∼1.5 Mya (Poszewiecka et al., 2022a). However,
it is tempting to speculate that HSA2 fusion was a major evolutionarily event that had ini-
tiated the separation of Hominina from Pan (chimpanzee and bonobo) and introduced the
reproductive barrier between them. Moreover, the early HSA2 stabilisation by fusion of
chromosomes 2A and 2B harbouring these genome destabilising chr2 and chr10 segments
could explain the absence of the StSat-rich cap sequences (StSat, SatIII, and rDNA ) ex-
panded in gorilla, chimpanzee, and bonobo (Ventura et al., 2012). Our genomic analyses in
13 individuals revealed no evidence of variability at the HSA2 fusion site, including the ter-
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minal degenerate repeats as well as the flanking complex SDs in humans ( Fig. 2.7, Tab. 2.2),
implying that HSA2 fusion was most likely a nonrecurrent event. We have proposed that
large paralogous sequences on distal chromosomes 2Apter and 2Bpter, representing, re-
spectively, orthologous regions on chromosomes 9pter and 22qter in Great Apes, might
have facilitated meiotic misalignment between these chromosomes. Our computational
analyses of the Great Apes genomes revealed that the ∼800 bp TAR1 satellite and degen-
erate telomeric repeats present at the HSA2 junction site have orthologous copies in both
PTR2Apter and PTR2Bpter, indicating where the break and fusion might have occurred
(Fig. 2.9).

PhaseDancer is a cutting-edge tool for targeted de-novo genomic assemblies, including
complex SD-rich regions. The potential applications include also: (i) assembly of the sub-
telomeric and complex regions of human chromosomes, (ii) fast assembly of the unique
genomic regions, and (iii) assessment of the SD copy-number. In addition to the presented
evolutionary events it also has potential in personalised medicine for targeting patient-
specific SD-related disorders.

2.5. Conclusions and Further Research

In this chapter an innovative assembler PhaseDancer specialized at resolving SDs has been
presented. Its utility has been proven by successful assembly of subtelomeric regions of
selected chromosomes of primates and validation on real and synthetic data.

Since the architecture of PhaseDancer is modular, improvements of individual moving
parts responsible for different assembly steps are seamless. Useful advancement may be
introduced in the clustering module by enhancing the cis-morphisms detection procedure,
and in the method of grouping reads into clusters. Another room for improvement is the
assembly step, where currently third-party general-purpose assembler is used. This tool
can be replaced by a custom multi-alignment procedure utilizing the information about the
location of mappings onto the anchor sequence, which is now neglected. Inclusion of this
information will definitely improve the quality of the assembly in regions enriched in short
tandem duplication, which currently used assembler, wtdbg2, tends to collapse.

Moreover, future improvements may take advantage of other types of sequencing data
in the assembly process. The short-read data can be used in two procedures: cis-morphisms
detection and polishing of the assembly results. However, it is worth nothing that all of
these changes have to be done with great attention, as they may introduce errors, especially
when an assembled fragment is very similar to other fragments from the genome. Optical
genome mapping data also can be incorporated into the workflow in the cluster selection
step.
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The idea of local assembly using long-read sequencing technology can be further de-
veloped and applied. Possible use case is the assembly of clinically relevant fragments
of genomes, which can be subsequently visually inspected using the accompanied Phase-
DancerViewer. These include assembly of complex chromosomal rearrangements like du-
plication–triplication/inversion–duplication (DUP–TRP/INV–DUP) syndromes (Carvalho
and Lupski, 2016; Schuy et al., 2022). PhaseDancer may also be utilized for closing gaps
in the existing assemblies, which typically are enriched with SDs. Another application is
the extension of the assembly results obtained from very fast assemblers, but which are “rel-
atively conservative in (segmentally) duplicated regions”, like Shasta (Shafin et al., 2020).
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3
Revised time estimation of the ancestral

human chromosome 2 fusion

“A czy przyroda kolebka

Myślała kiedyś dokładnie

Po co jej wielkie mamuty

Ani wygląda to ładnie

Ani z nich skóra na buty.

Nie ma co pytać, koledzy: robiła i tak jej wyszło.

Nikt nie wymyślał specjalnie tego w czym żyć nam przyszło.

Uprzedzam o tym lojalnie.”
— Jacek Kleyff, “Huśtawki”

The reduction of the chromosome number from 48 in the Great Apes to 46 in
modern humans, as discussed andmodelled in the previous chapter, is thought
to be the result of the end-to-end fusion of two ancestral non-human primate
chromosomes, forming the human chromosome 2 (HSA2). Genomic signa-

tures of this event includes the presence of inverted telomeric repeats at the HSA2 fusion
site, which was extensively analysed in genomes of selected individuals representing five
main human superpopulations in Chapter 2. Additionally, remnants of the ancestral cen-
tromere are marked by a block of degenerate satellite sequences. It has been estimated that
this fusion arose between 0.74 and 4.5 million years ago (Mya).
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The ancestral chromosomal fusion, creating the human chromosome 2 (HSA2) and re-
duction of the chromosome number from 48 in the Great Apes to 46 in modern humans
was described nearly four decades ago (Yunis and Prakash, 1982; Ijdo et al., 1991; Luke and
Verma, 1995). To better understand this event, the 2q13–q14.1 fusion site has been analyzed
using different computational and molecular methods.

Fluorescence in-situ hybridization (FISH) analyses confirmed that two ancestral Great
Ape chromosomes fused at their telomeric repeats to form the HSA2 (Kasai et al., 2000).
Subsequent studies confirmed also the presence of multiple subtelomeric duplications (SD)
with other autosomal chromosomes (Hillier et al., 2005) and described the gene content
at the fusion site (Fan et al., 2002b,a). Additionally, the comparison of SDs between the
chimpanzee and human genomes not only enabled estimation of the genomic duplication
rate, but also suggested SDs as the key cause of transcriptional differences between species
and the formation of the ancestral fusion. A 40 kb SD near the fusion site has been identified
in 300-500 copies in the chimpanzee genome but only in 4-5 copies in the modern human
genome (Cheng et al., 2005).

Using the yeast genome with the functional single-chromosome as a model, it was
shown that the reduction of the number of chromosomes does not always have to lead
to fatal genetic dysfunctions (Luo et al., 2018; Shao et al., 2018).

These genomic observations have raised questions about the time scope when this
gross chromosomal aberration arose. Dreszer et al. (2007) have proposed a time estima-
tion method based on the analysis of the fixed substitutions in the human and chimpanzee
genomes since their divergence from the common ancestor. The authors have referred to
the biased gene conversions (BGCs) occurring due to the mutagenic recombination events
(Strathern et al., 1995) and the associated DNA repair processes to favor strong (GC) ver-
sus weak (AT) nucleotide pairs at the non-Watson-Crick heterozygous sites in heterodu-
plex DNA (Meunier and Duret, 2004). Importantly, it has been broadly discussed that BGC
may be one of the main evolutionary mechanism (Marais, 2003; Duret and Galtier, 2009).
However, Dreszer et al. (2007) observed that particularly weak-to-strong (AT to GC) sub-
stitutions over-represented locally, e.g. clustering densely near the telomeres of the au-
tosomal chromosomes. Furthermore, using the Unexpected Bias Clustered Substitutions
(UBCS) statistics measuring the bias towards weak-to-strong substitutions among the clus-
tered substitutions, a similar over-representation for human and chimpanzee orthologous
regions was detected. This observation suggested the existence of a stable evolutionary
force that had led to the formation of the biased clusters of substitutions. As expected,
around the ancestral HSA2 fusion site, an additional local maximum of the UBCS statistic
values was determined. To approximate the time of the fusion event Dreszer et al. (2007)
assumed that: (i) human-chimpanzee split had occurred 6 Mya and (ii) the rate of the UBCS
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accumulation is constant. Based on that, they compared the reduction of the bias in the
regions near the fusion site with the orthologous telomeric sites of the chimpanzee chro-
mosomes 2a and 2b. As a result, they estimated the fusion time at 0.74 Mya with a 95%
confidence interval 0–2.81 Mya.

A phylogenetic analysis of the SVA elements (i.e. composite repetitive elements named
after its main components, SINEs, VNTRs and Alus) was performed by Wang et al. (2005).
The authors showed that within this hominid-specific retroposone family, both SVA-E and
the SVA-F subfamilies are restricted to the human lineage. Additionally, based upon the
nucleotide divergence, they estimated the expansion time of these subfamilies at 3.5 Mya
(with a GC content-dependent range of 2.5–4.5 Mya), which provided a lower bound of the
human-chimpanzee speciation event.

In support of these estimations, using the next generation sequencing (NGS) with a high
read coverage, Meyer et al. (2012) have reconstructed a genome of theDenisovans, an extinct
relative of the Neandertals, and identified an evidence of the HSA2 fusion event. These
findings corroborated the theory that theDenisovans (and presumably also theNeandertals)
had shared the fused HSA2 with modern humans. Moreover, the studies on the shared
centromere sequence organization in the Denisovan and Neandertal genomes provided an
additional premise that the HSA2 fusion arose prior to our last common ancestor with
Hominins (Miga, 2017).

We present the revised estimation of the HSA2 fusion time. Our results are twofold.
First, we developed a novel algorithm for the re-calculation of the UBCS statistics defined
by Dreszer et al. (2007). The estimation procedure of the expected number of the so-called
clustered substitutions was modified through the introduction of the inclusion-exclusion
principle. Our approach allows to calculate the exact value of UBCS statistic even for the
complex structures of the intersecting clusters, which was unattainable with the original
method. Consequently, we calculated the UBCS statistics for the Great Apes family and
the updated estimation of the HSA2 fusion time. Furthermore, we discuss how the UBCS
statistics can be used to derive evolutionary distances within the Great Apes family. Finally,
we present an observation on the linearity of the number of biased clustered substitutions
(BCS) occurrences with respect to time.

In the following section, we introduce the genomic datasets used in this study, i.e. the
Great Apes, and modern humans. We then describe in detail the UBCS statistics and discuss
its deficiencies and potential oversights. Next, we comment on the introduced changes in
the UBCS statistics and their impact on the estimation of the ancestral fusion time. We
point out other observations regarding the evolutionary events related to weak-to-strong
mutations. Finally, we discuss the possible improvements that could be implemented into
our analyses, especially when the missing fragments of the Great Apes chromosomes are

55



available.

3.1. Materials and Methods

To better estimate the times of HSA2 fusion and split of modern human and Great Apes,
we used the latest builds of these genomes. We present the derivation of the formulas used
for the calculation of the UBCS statistics and emphasize the differences in calculations of
the substitutions clusters as well as estimation method of the fusion time along with the
determination of its confidence interval.

3.1.1. Genomic Data

All of the sequences and alignment files of themodern human andGreat Apes genomes used
in this study were downloaded from the UCSC Genome Browser (https://hgdownload.
soe.ucsc.edu/downloads.html) (Kent et al., 2002).

1. The analyses of substitutions between the modern human and Great Apes genomes
were based on the reciprocal best alignments of:

• the hg38 human genome assembly (December 2013)

• the Clint_PTRv2/panTro6 assembly of the chimpanzee (Pan troglodytes) genome
(panTro6, University of Washington, January 2018)).

• the Mhudiblu_PPA_v0 assembly of the bonobo (Pan paniscus) genome (Univer-
sity of Washington, May 2020).

• the GSMRT3/gorGor6 assembly of the gorilla (Gorilla gorilla) genome (gorGor6,
University of Washington, August 2019).

• the Susie_PABv2/ponAbe3 assembly of the orangutan (Pongo pygmaeus abelii)
genome (ponAbe3, University of Washington, January 2018).

• the Nleu_3.0/nomLeu3 assembly of the gibbon (Nomascus leucogenys) genome
(nomLeu3, Gibbon Genome Sequencing Consortium, October 2012).

2. The substitutions between themodern human and Great Ape genomeswere classified
using the February 2019 (Mmul_10) assembly of the Rhesus (Macacamulatta) genome
(rheMac10, The Genome Institute at Washington University School of Medicine) as
an outgroup. For this purpose, we used the chain file hg38.rheMac10.rbest.chain and
the reference sequence of the Rhesus genome (rheMac10).

Data processing and analyses as well as statistical procedures were conducted using
scripts written in the Python and R programming languages. The principal pipeline was
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implemented as a Snakemake (Köster and Rahmann, 2012)workflow tomake it reproducible
and scalable. All scripts and Snakemake workflow files are publicly available at GitHub
page: https://github.com/bposzewiecka/tytus.

Identification of single-nucleotide differences between the modern

human and Great Ape genomes

The analyses of the biased clustered substitutions (BCSs) require a distinction between the
types of substitutions within the specific genomes.

First, single-nucleotide differences (SNDs) between the modern human and Great Apes
genomes where identified using the reciprocal best alignments (the human genome was the
target, and the Great Apes genomes were queries). The reciprocal best liftover chain file
was used to map human genome regions to its homolog in the Rhesus (Macaca mulatta)
genome.

Next, based on the processing procedures suggested by Dreszer et al. (2007), SNDs be-
tween the modern human and Great Apes’ genomes were filtered. An SND was discarded
if one of the conditions in the 11-base pair (bp) window with the SND in the middle was
met: (i) a deletion or an insertion was present, (ii) more than 2 differences between the
target and query were found, (iii) the target sequence could not be lifted-over to the Rhesus
(Macaca mulatta).

Finally, each resulting SND was classified into one of the following three groups: (i) de-
rived in target, (ii) derived in query, or (iii) inconclusive. If the human and Rhesus genome
nucleotides were the same, the SND was classified as derived in query. Conversely, if the
Great Apes and Rhesus genome nucleotides were the same, it was considered as derived in
target. Other substitutions were classified as inconclusive. If the Rhesus base was A or T
and derived base was C or G, the SND was considered as a biased substitution.

Having prepared the classification of SND between genomes, we proceed with their
clustering and calculation of the statistics that summarizes the local enrichment in biased

substitutions. Below, we refer to SND as a substitution.
Dreszer et al. (2007) defined the UBCS statistics as the difference between the observed

and the expected number of BCSs in each window of 1 Mb (referred to as a region) on an
entire chromosome (all windows are disjoint). For this purpose, a substitution is considered
to be a clustered substitution (CS) if it belongs to a 300 bp window with at least four other
substitutions. Next, a CS is considered a BCS if it belongs to a window with at least 80%
of weak-to-strong substitutions (Fig. 3.1). In this setting, the null-hypothesis assumes no
relationship between the bias towards weak-to-strong substitutions and the clustering of
substitutions.

Nonetheless, Dreszer et al. (2007) presented the method of computing the expected
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Figure 3.1: Examples of the substitutions classification for UBCS.The above figure depicts three 300 bp windows of two sequences,
Seq 1 (reference) and Seq 2. Within each window substitutions that occurred on Seq 2 with respect to Seq 1 are denoted. The red color of
the font is used for weak-to-strong substitutions. In the window A, all substitutions are considered as clustered substitutions (CSs), but
not Biased Clustered Substitutions (BCSc), since only 50% of all substitutions are weak-to-strong. In the window B all substitutions are
BCSs, because 5 out of 6 (≥ 80%) substitutions are weak-to-strong. The remaining substitutions from the window C are neither clustered
nor biased, because there are four substitution within this window.

.

number of BCSs only for a simplified case when one substitution can be included in at
most 2 clusters. However, especially in the subtelomeric regions containing GC-rich iso-
chores (Costantini et al., 2006), the structure of the intersecting clusters can be more com-
plex.

More precisely, Dreszer et al. (2007) relaxed the definition of CS by considering 300 bp
windows that start at coordinates that are multiples of 150. In such a case, the computation
of the expected number of BCSs simplifies, as at most 2 clusters sharing the same substitu-
tion have to be considered. Dreszer et al. (2007) provided an example of computation the
probability that a substitution is BCS in one specific arrangement of substitutions in the
overlapping bins. The method is based on the conditioning on the number of substitutions
in the first cluster. Dreszer et al. (2007) do not provide any estimates of the complexity of
their method.

Here, we have devised an efficient algorithm allowing for the computation of the UBCS
statistics considering windows starting at coordinates that are divisors of the window’s
length. If a divisor is equal to 1, the algorithm during the computation of the probability
that a given substitution is BC takes into account every possible window that the considered
substitution is contained in. Such a procedure results in the precise calculation of the UBCS
statistics by taking into account all possible window configurations of CSs. We also provide
an estimation of the time and memory complexity of the described algorithm.

3.1.2. Efficient algorithm for the calculation of the expected number

of BCSs

The expected number of BCS can be obtained by summing the probability of being BC
for each substitution in the genomic region. Here we present an algorithm for computing
the probability that a substitution is biased clustered (BC) given p̂ and the arrangement
of substitutions in all windows containing it. In the calculation of the expected number of
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BCSs no association between bias and clustering is assumed. This quantity depends on the
proportion of BS to all substitutions (p̂) and the arrangement of substitutions in a genomic
region.

Our algorithm compresses the genomic region containing each substitution into bins.
Dynamic programming techniques allow for the computation of a probability that is tractable
for the analyzed data in terms of time and computational memory consumption. To explain
how the algorithm works, firstly we describe the procedure of compression of the genomic
region containing the substitution in question into the vector of bins. Secondly, we present
the derivations of formulas allowing for the application of the dynamic programming tech-
nique. Then, the pseudocode of the algorithm is shown. Finally, we explore the time and
memory complexity of the algorithm.

The procedure of compression of the genomic region containing substitution into
a vector of bins

Let us denote W as an event that a substitution at the coordinate j in the genome is BC
and the respective probability as p′j . To determine the value of p′j all windows containing
this substitution have to be considered as the potential biased clusters. Let m be a size of
a window, and Wi an event that a window starting at a position j − m + i is BC, where
i ∈ {1, . . . ,m}. The event W is a sum of the events that each window containing the
coordinate j is BC, and can be expressed as:

p′j = P (W ) = P (W1 ∪W2 ∪ · · · ∪Wm)

The number of the components of the sum needed to compute p′j can be significantly
reduced by unifying equal events and eliminating events with a zero probability. Therefore,
from the windows that contain the same set of substitutions, only one representative can
be left as a witness of being clustered. Windows containing less than 5 substitutions can
be omitted, as their respective probabilities are zeros (because they are non-clustered).

Let us refer to the minimal set of windows that have to be considered in computing
the probability ofW after applying those rules as representative windows, and the number
of such windows as n.

For the computation of a P (W ), a region covered by the representative windows can be
compressed to a vector of size 2 ·n−1. Each element of such a vector represents a fragment
of this region and stores the number of substitutions contained within it. Let us refer to
each element of a such compressed representation as a bin. The coordinates of starts and
ends of consecutive bins are determined by the ordered coordinates of starts and ends of
all representative windows. The i-th cluster is defined as n bins starting at the i-th position

59



(A) j - 7 j - 6 j - 5 j - 4 j - 3 j - 2 j - 1 j j + 1 j + 2 j + 3 j + 4 j + 5 j + 6 j + 7 

                

                

                

(B)                

                

                

                

                

                

                

                

                

                

                

(C)                

   Bin1 Bin2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7    

                

(D) Cluster 1              
 Cluster 2              
 Cluster 3              
 Cluster 4              

Figure 3.2: Illustration of the procedure of compression the genomic region containing a substitution into a vector of bins.
Thefigure shows a compression procedure of a region of the genome containing a coordinate j and all windows of sizem = 8 containing
this coordinate. Substitutions are depicted as dots.
(A) Configuration of substitutions around the considered substitution at the j-th coordinate in the genome. All windows
containing substitution from j-th coordinate (depicted in pink) cover a region from j − 7 to j + 7.
(B) Classification of all possible windows containing substitution at the j-th coordinate. All windows of size m containing the
j-th coordinate are shown. Representative windows are depicted in blue. Window depicted in yellow is excluded because it contains
the same set of substitutions as the preceding window. Windows starting depicted in orange are excluded as they contain less than
5 substitutions.
(C) Definition of bins based on all representative windows composition around the j-th coordinate. Starts and ends of repre-
sentative windows (depicted by thick borders) mark the starts and ends of the bins. Note that substitution from the j-th coordinate is
located in the middle bin.
(D) Resulting set of clusters corresponding to the representative windows. These clusters will be used for calculation of the
probability that substitution from the j-th coordinate is the BCS (see Algorithm 3.).

and corresponds to the i-th representative window. This procedure of the compression
windows into bins ensures that the substitution from the j-th coordinate is contained in
the middle bin.

The upper bound for the cardinality of a minimal set of representative windows

Method of the construction of a minimal set of representative windows:

1. For each substitution from region starting at the (j − m + 2)-th and ending at the
(j−1)-th coordinate, the first window that does not contain the previous substitution
in the considered sequence is selected (in case there is no previous substitution we
select the first window).
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Figure 3.3: Illustration of themethod of selecting representative windows. The figure shows a method of selecting representative
windows from the region of the genome containing coordinate j and all windows of sizem = 8 containing this coordinate. Substitutions
are depicted as dots.
(A) Configuration of substitutions around the considered substitution at the j-th coordinate in genome. All windows contain-
ing substitution from j-th coordinate (depicted in pink) cover a region from j − 7 to j + 7.
(B) Candidates for representative windows corresponding to substitutions located in region from (j − 6)-th to (j − 1)-th
coordinate. For each substitution from region starting at (j − 6)-th and ending at (j − 1)-th coordinate, the first window that does
not contain the previous substitution is selected (indicated by the red arrows).
(C) Candidates for representative windows corresponding to substitutions located in region from j-th to (j + 7)-th coordi-
nate. For each substitution from region starting at j-th and ending at j + 7 first window that contains this substitution is selected.
(D) Minimal set of representative windows. Windows with insufficient number of substitutions are removed from union of windows
selected in (B) and (C).

2. For each substitution from region starting at the j-th and ending at the j + m − 1

the first window that contains this substitution is selected (the first window is always
selected because it always contains substitution at the j-th coordinate).

3. From the set of windows selected in step 1 and 2 those with insufficient number of
substitutions to satisfy BC conditions are removed.

To justify that events assigned to a set of windows selected in step 1 and 2 are equivalent
to W , assume the opposite. Then, there must exist a window that is not equivalent to
any of the selected windows and is not preceded by a substitution and does not end with
a substitution. Let t be the starting coordinate of such window, and define lj as the distance
from coordinate j-th coordinate to the coordinate with the first substitution on the left of it.
Window starting at t−min(lt, lt+m−1) coordinate is equivalent to the window starting at
t, which contradicts with the initial assumption (min(lt, lt+m−1) is strictly greater then 0,
since window starting at t-th coordinate is not preceded by a substitution and do not ends
with the substitution).
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In the method of the construction of the set, for each substitution at most one repre-
sentative window is selected. Hence, the upper bound for the number of selected windows
is equal to the number of substitutions in the region covered by all windows containing
substitution at j-th coordinate.

Derivation of formulas used in the algorithm

The probability that s substitution form bin n is BC is equal to the probability of the sum
of events that each cluster containing it is biased.

Let us denote:

• A as an event, that a substitution from n-th bin is BC (this substitution corresponds
to the substitution located at j-th coordinate in the considered genomic region),

• Ak as an event, that the k-th cluster is biased,

p′j = P (A) = P (A1 ∪ A2 ∪ · · · ∪ An)

Notice that the eventA corresponds to the previously considered eventW and the selected
representative windows Wi correspond to the clusters Ai and obviously P (W ) = P (A) .
Now, the formula for P (A) can be written as a sum:

P (A) = P (A1) + P (A2 ∩ ¬A1) + P (A3 ∩ ¬A1 ∩ ¬A2) + . . .

+ · · ·+ P (An ∩ ¬A1 ∩ ¬A2 ∩ · · · ∩ ¬An−1)
(3.1)

According to the law of total probability, for each k, every component of the above sum
(3.1) of a form P (Ak ∩ ¬A1 ∩ ¬A2 ∩ · · · ∩ ¬Ak−1) can be expressed as:∑

P (Ak ∩ ¬A1 ∩ ¬ ∩ · · · ∩ ¬Ak−1|Xk = xk, . . . , Xk+n−2 = xk+n−2) ·

P (Xk = xk, . . . , Xk+n−2 = xk+n−2)
(3.2)

where Xk is a random variable specifying the number of the biased substitutions in the
k-th bin, the summation is done for all xk ∈ {0, bk}, . . . , xk+n−2 ∈ {0, bk+n−2}. Next,
since both events Ak and ¬A1 ∩ ¬A2 ∩ · · · ∩ ¬Ak−1 are conditionally independent given
Xk = xk, . . . , Xk+n−2 = xk+n−2, each component of the sum (3.2) is equal to the product
of the following three terms:

P (Ak|Xk = xk, . . . , Xk+n−2 = xk+n−2) (3.3)

P (¬A1 ∩ ¬A2 ∩ · · · ∩ ¬Ak−1|Xk = xk, . . . , Xk+n−2 = xk+n−2) (3.4)

P (Xk = xk, . . . , Xk+n−2 = xk+n−2) (3.5)
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The first term (3.3) specifies the probability that a cluster is BC, given the frequencies of the
first n− 1 bins. By the law of the total probability, it can be computed by conditioning on
the frequency of the last bin in the cluster:

P (Ak|Xk = xk, . . . , Xk+n−2 = xk+n−2) =

=
∑

xk+n−1∈{0,sk+n−1}

P (Ak|Xk = xk, . . . , Xk+n−1 = xk+n−1) · P (Xk+n−1 = xk+n−1)

The value of the expression P (Ak|Xk = xk, . . . , Xk+n−1 = xk+n−1) indicates that the k-th
cluster containing

∑k+n−1
i=k xi biased substitutions is biased.

The second term (3.4) specifies the probability, that the first k−1 clusters are not biased,
given the frequencies of the last n− 1 bins of the k − 1-th cluster. By conditioning on the
frequencies of the k − 1-th bin, this probability can be expressed using the low of total
probability as:

P (¬A1 ∩ · · · ∩ ¬Ak−1|Xk = xk, . . . , Xk+n−2 = xk+n−2) =

=
∑

xk−1∈{0,bk−1}

P (¬A1 ∩ · · · ∩ ¬Ak−1|Xk−1 = xk−1, . . . , Xk+n−2 = xk+n−2) ·

P (Xk−1 = xk−1)

Yet events, ¬A1 ∩ · · · ∩ ¬Ak−2 and ¬Ak−1 are conditionally independent given Xk−1 =

xk−1, . . . , Xk+n−2 = xk+n−2, thus:

P (¬A1 ∩ · · · ∩ ¬Ak−1|Xk = xk, . . . , Xk+n−2 = xk+n−2) =

=
∑

xk−1∈{0,bk−1}

P (¬Ak−1|Xk−1 = xk−1, . . . , Xk+n−2 = xk+n−2) ·

P (¬A1 ∩ · · · ∩ ¬Ak−2|Xk−1 = xk−1, . . . , Xk+n−2 = xk+n−2) · P (Xk−1 = xk−1)

The value of the probability P (¬Ak−1|Xk−1 = xk−1, Xk = xk, . . . , Xk+n−2 = xk+n−2)

indicates that the k − 1-th cluster containing
∑k+n−2

i=k−1 xi biased substitutions is biased.
Finally, events ¬A1 ∩ ¬A2 ∩ · · · ∩ ¬Ak−2|Xk−1 = xk−1, . . . , Xk+n−3 = xk+n−3 and

Xk+n−2 = xk+n−2 are independent, thusP (¬A1∩¬A2∩· · ·∩¬Ak−1|Xk+1 = xk+1, . . . , Xk+n−2 =

xk+n−2) is equal to:

P (¬A1 ∩ ¬A2 ∩ · · · ∩ ¬Ak−1|Xk−1 = xk−1, . . . , Xk+n−3 = xk+n−3)

Pseudocode of the algorithm

An algorithm for computing the probability that a substitution is BC is a straightforward
application of the formulas derived above.

Computing all conditional probabilities given by the expression in Eq. (3.2) requires
generating a Cartesian product representing all possible frequencies of biased substitu-

63



tions in n − 1 subsequent bins. A pseudocode of the recursive function Generate-bin-

frequencies is presented as Algorithm 1. This function returns a list of 2-tuples contain-
ing a list of frequencies together with their respective probabilities.

Algorithm 1:
Generate-bin-frequencies(bin_sizes, p̂)

Data: A list of bin sizes and the probability that a substitution is biased
Result: A list of 2-tuples containing all possible frequencies of biased

substitutions bins and their respective probabilities
1 if length(bin_sizes) = 0 then
2 return list(tuple(list(), 1))

3 end

4 result← list()

5 for k ← 0 to bin_sizes[1] do
6 freqs_with_prob←

Generate-bin-frequencies(Sublist(bin_sizes, 2, n), p̂)

7 for ( freqs, prob) ∈ freqs_with_prob do
8 new_freqs← list(k) + freqs
9 new_prob← prob · binom(sizes[1], k, p̂)

10 result.append(tuple(new_freqs, new_prob))
11 end

12 end

13 return result

The function Binom-from(bin_size, start_size, p̂) (Algorithm 2) returns the probabil-
ity that a bin of size bin_size contains start_size or more biased substitutions, where p̂

is the probability that substitution is biased.

The function Get-probability-of-BCS(bin_sizes, p̂) (Algorithm 3) takes as the ar-
guments a list of sizes of consecutive bins of all clusters that contain a given substitution
and a probability that the substitution is biased. The function returns the probability that
the substitution contained in the middle bin is BC.

In the lines 4-5 of the Algorithm 3, the first component of the sum (3.1) is computed.
Next components are evaluated in n − 1 iterations of the main loop in which the func-
tion Generate-bin-frequencies is used for generation of all possible frequencies of the
BSs in subsequent n− 1 bins starting from the k-th bin.

Then, in the lines 16-18, the value of the conditional probability of the event that the
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Algorithm 2:
Binom-from(bin_size, start_freq, p̂)

Data: Bin size (bin_size), start frequency (start_freq), and the probability of
success (p̂)

Result: The procedure returns a sum of values of PMF of binomial distribution
with parameters bin_size and p̂ with the number of successes ranging
from start_size to bin_size

1 result← 0

2 for k ← start_size to bin_size do
3 result← result + binom(bin_size, k, p̂)

4 end

5 return result

cluster k is biased (term from Eq. (3.3)) is computed. In the lines 19-23, the value of the
conditional probability that all previous clusters are not biased (term from Eq. (3.4)) is eval-
uated. For this purpose, the values from the dictionary prev_mem_dict are used. The
values in the dictionary mem_dict are updated for the use in the next iteration.

In the line 25, the result is updated by adding the product of the two probabilities
(Eq. (3.3) and Eq. (3.4)) and the probability that n − 1 bins contain the certain number
of biased substitutions.

Analysis of the computational complexity of the algorithm

For the computation of the probability that a substitution is BC, the required memory is
proportional to 2c, where c is the maximum number of substitution in a clusters. The inner
loop iterates over Cartesian product representing all possible frequencies of the biased sub-
stitutions in n − 1 subsequent bins adding to the dictionary one value per iteration. Time
complexity of the algorithm is proportional n · 2c as main loop n − 1 times iterate over
Cartesian product defined above.

3.1.3. UBCS based evolutionary distance estimation

Finally, to determine whether and how the average proportion between the values of the
introduced UBCS statistics for two genome sequences within both telomere regions cor-
relates with the time of evolutionary speciation events, we derived the following UBCS
proportion measure.

Specifically, let us assume that there are two genome sequences Gx and Gy, N chromo-
somes and M windows of size 1 Mb on telomeric regions of each chromosome. We denote
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Gxi
j
as j-th window on the i-th chromosome of the genome Gx and the value of its UBCS

statistic as U(Gxi
j
), and x as the inverted sequence of x (i.e. the first window of x are the

last 1 Mb of x). We calculate the average UBCS proportion between telomeres on p and q

arms of i-th chromosomes of genomes Gx and Gy as:

Tp(i) =
∑M

j=1 U(Gxi
j
)∑M

j=1 U(Gyij)
Tq(i) =

∑M
j=1 U(Gxi

j
)∑M

j=1 U(Gyij)

and the evolutionary distance based on the average UBCS proportion between genomes Gx
and Gy as:

Gx||Gy = median({Tp(i) : i ∈ CT p} ∪ {Tq(i) : i ∈ CT q})

where CT p and CT q are sets of so called control chromosomes used to measure UBCS pro-
portion between genomes on p and q arm respectively.

Such defined proportions allowed us to estimate the possible branching times in the
evolutionary tree for each of the considered Great Apes genomes, that will be described in
the next section.

For this purpose, we have computed the UBCS statistics using the human genome as
a target and the Great Apes genomes as queries. Then, we have compared the distances
between genome of the chimpanzee and all other Apes genomes by determining the value
of an UBCS proportion Gx||Gy defined above. We have used 10 windows of the size of 1 Mb,
and the following sets of the control chromosomes CT p = {1, 4, 5, 6, 8, 10, 12, 16, 17, 19}
and CT q = {all autosomes} \ {15, 18, 19, 20} for p and q arms, respectively. From the
set of autosomal chromosomes, the short arms of the acrocentric chromosomes and the
arms of chromosomes that were rearranged in human and Great Apes genomes were ex-
cluded. The confidence interval for the UBCS proportion was determined using the boot-
strap method. The bootstrap sample was constructed by sampling with replacement of the
15 out of 28 telomeres, and 8 of 10 windows on the basis of which UBCS proportion is calcu-
lated. The sampling procedure was repeated 1000 times for each species, and confidence in-
tervals were determined by eliminating 5% of the most extreme values. Speciation time was
approximated bymultiplication the UBCS proportion (quantifying the distance between the
chimpanzee genome to genome of interest) by the estimated time of the human-chimpanzee
split. We have fixed the human-chimpanzee speciation time at 6 Mya. The confidence in-
tervals for the speciation events were obtained by rescaling the confidence intervals of the
UBCS proportions in the same manner. For the purpose of more informative visualizations,
in all of the figures regarding UBCS statistics, the loess regression function was used to
smooth the curves.
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3.1.4. UBCS based estimation of the fusion time

Our method of estimation of the HSA2 fusion time is based on two natural assumptions.
First, analogously to Dreszer et al. (2007), we assumed a constant evolutionary force that has
lead to the accumulation of BCS near telomeres in each species. Interestingly, our analysis
of all Great Apes genomes revealed that the rate of this accumulation differs among species.
The second assumption considers the time of human-chimpanzee split at approximately
6 Mya.

The method of the fusion time estimation proposed by Dreszer et al. (2007) used also
a third assumption that the ratio of UBCS between the p and q arms of any chromosome is
similar for human and chimp. This assumption is clearly violated in the data and therefore
we have devised a different estimation procedure.

For the calculation of the fusion time, let us define R as a proportion of time of the
last 6 million years that two chromosomes were not fused. Then, the fusion time can be
estimated as 6 Mya · (1 − R). We can approximate R as a ratio of two quantities: the
proportion of UBCS values in the region right next to the fusion site (homologous to the
chimpanzee p arm on chromosome 2B) and the UBCS proportion Gx||Gy, comparing the
statistic values computed using the substitution derived in human and in chimpanzee since
the divergence from common ancestor. The former proportion, reflects the decline in the
accumulation of BCS after the fusion event, the latter accounts for the differences in the
rate of accumulation of BCS between human and chimp. For this estimation we have used
the following sets of control chromosomes CT p = CT q = {1..12, 16, 17}. To increase
the robustness of the procedure we repeated the calculation for the telomeric regions of
different sizes (from 10 Mb to 25 Mb). The final evaluation of the fusion time used a median
value of the proportions.

3.1.5. Robustness of the UBCS statistics

Comparison of the UBCS statistics for different number of overlaping windows

Figure 3.4 shows that the increasing number of windows considered in the calculation of
the UBCS statistics, results in higher values of this statistic near telomeres. This shows that
the extent of biased gene conversion phenomenon is captured more precisely when we
consider more windows that substitution can be contained in. The Fig. 3.4 is accompanied
with the first three rows of Table 3.1, were estimates for corresponding number of windows
are presented.
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Figure 3.4: UBCS statistic for 7 longest autosomal chromosomes for different number of overlapping clusters. UBCS statistic
is computed for windows of 300 bp that start every: (i) 150 bp - one substitution can be contained in 2windows, (ii) 20 bp - one substitution
can be contained in 15 windows, (iii) 300 bp - one substitution can be contained in 300 windows.

Comparison of the UBCS statistics for different definitions of BCSs

To assess the robustness of the algorithm with respect to its parameters we have evaluated
the data for human and chimpanzee for different values of window sizes: 250 and 300;
minimal percent of substitutions in window to consider a substitution biased : 75%, 80%,
83%; number of substitutions in the window to be considered clustered : 5 and 6. First of all
the trends of the UBCS statistics are conserved for all telomere sites (significant increase
of values) as well as around the fusion site of the Chr2. Additionally, we observe a low
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magnitude standard deviations from the values presented in the main article Fig. 3.5 shows
UBCS values for selected set of parameters. The exact estimates with confidence intervals
are also presented in the last four rows of the Table 3.1.

Figure 3.5: UBCS statistic for all 7 longest autosomal chromosomes for different definitions of BCSs. Substitution is defined as
BCS if belongs to a window of 300 bp: (i) with at least 5 substitutions with at least 80% of weak-to-strong substitutions, (ii) with at least
6 substitutions with at least 75% of weak-to-strong substitutions, (iii) with at least 6 substitutions with at least 80% of weak-to-strong
substitutions, (iv) with at least 6 substitutions with at least 85% of weak-to-strong substitutions.
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3.2. Results

Figure 3.6: UBCS statistic for human chromosome 2 The figure above presents the values of the UBCS statistics along the whole
chromosome 2. The vertical line denotes the ancestral fusion site point (chr2:113,500,000). One can observe how the lines corresponding
to the same organism (solid vs dashed) differ from each other settling the difference between time estimation of the ancestral evolutionary
split.

We present a revised estimation of the ancestral HSA2 fusion date based on themodified
UBCS statistics. Furthermore, we present how the statistics corresponds to the evolutionary
distances between human and Great Apes. Using the UBCS proportion between species,
we have calculated the rates in which the BCS occurred in the telomeric regions. We have
then used them to predict the timeline of the evolutionary events in the human lineage.

3.2.1. Revised HSA2 fusion date

First, after Dreszer et al. (2007), we have applied the UBCS statistics using the single
nucleotide differences with a region of orthology in chimpanzee (Pan troglodytes). Ad-
ditionally, we have added its evolutionary relative bonobo (Pan paniscus) to verify whether
the UBCS statistics are consistent as might be expected in the context of evolutionary re-
search (Hey, 2010).

In Fig. 3.6, we present the UBCS statistics values for both species that clearly indicate
the HSA2 fusion site. Consequently, we have re-estimated the ancestral fusion date using
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the comparisons between the chimpanzee and modern human genomes to approximately
0.9 Mya with a 95% confidence interval of 0.4 - 1.5 Mya.

Figure 3.7: UBCS statistic for human chromosome 2 and Great Ape genomes (Top panel) UBCS statistic for substitutions derived
in human are depicted as dots. Lines are the UBSC statistic values smoothed using loess regression. HSA2 shows the peak of the UBCS
values near the ancestral fusion site. Atypical central peak occurs for the UBCS statistic computed using comparisons of the human to
all Great Ape genomes. (Bottom panel) Values of p̂ parameter (proportion of weak-to-strong in all substitutions) for every 1 Mb window
of substitution derived in human chromosome 2.

Additionally, we have applied the same procedure of the fusion time estimation to the
pair of the bonobo (Pan paniscus) and the modern human genomes. Since currently it is as-
sumed that the present-day bonobo species have diverged from the common ancestor with
modern human at the same time as chimpanzee (Hey, 2010), we expected that the estima-
tion of the HSA2 fusion time will be similar to the one calculated based on the chimpanzee
genome. Nonetheless, a time point was estimated as 0.67 Mya with 95% confidence inter-
val 0-1.3 Mya. On one hand, this result contradicts the evolutionary reports. On the other
hand, we observed a clear difference between themutational dynamics of BCS on both sides
of the fusion site. The proximal side maintains full compatibility between species, while on
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the distal side there is a double difference between species. In the next chapter, we discuss
the possible reasons of these differences.

3.2.2. Coincidence of UBCS and evolutionary distances among Great

Apes

Similarly as above, we have applied the UBCS statistics using single nucleotide differences
within a region of homology to three more hominidae species: gorilla (Gorilla Gorilla),
orangutan (Pongo pygmaeus abelii), and gibbon (Nomascus leucogenys). We show that for
all five species, the UBCS statistics is monotonic as a measure of evolutionary distance
(i.e. that species that are more evolutionary distant from human, have speciated prior to
the others that have higher values of this statistics).

Figure 3.8: Evolutionary distances between Great Apes and Human. All recent reports about the possible speciation events times
are shown. For each species, the minimal and the maximal dates are denoted on the horizontal time axis. Using the UBCS statistics
proportions, we have estimated the time of the following divergence events from the human lineage for all species: Chimpanzee: 4.77-
6.52 Mya, Bonobo: 4.35-5.85 Mya, Gorilla: 6.62-9.89 Mya, Orangutan: 12.53-18.42 Mya, Gibbon: 20.68-29.62 Mya. Please note, that each
period calculated with the timeframe overlaps the with time frames taken from the literature.

Furthermore, based on the observation that the telomeric values of the UBCS statistics
are consistently elevated for all autosomal chromosomes among all Great Apes (see Fig. 3.9),
we have searched for the irregularity pattern. We have studied the relationship between the
enrichment of BCS, thus values of the UBCS statistics, and evolutionary distances between
organisms.

In the literature there are many reports aiming to estimate the speciation date of ho-
minidae species from human (see Fig. 3.8). Starting chronologically, using Bayesian anal-
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Figure 3.9: UBCS statistic for all autosomal chromosomes. The figure presents the value of the UBCS statistics over autosomal
chromosomes for all five Great Apes studied in this chapter.
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ysis with the relaxed clock model, the last common ancestor (LCA) of Gibbon (Nomascus

leucogenys) and human was estimated by Chan et al. (2010) to have lived 19.25 Mya (95%
confidence interval: 15.54–22.99 Mya). Using the relaxed clock model Chatterjee et al.

(2009) estimated this event at 21.5 Mya (18.9-24.3). Carbone et al. (2014) suggested 1̃6.8 Mya
(15.9-17.6) assuming a split timewithmacaque of 29Mya and using the Bayesian coalescent-
based methodology (Gronau et al., 2011). Next, Orangutan (Pongo Pygmaeus Abelli) was
estimated to speciate 18 Mya (Satta et al., 2004) by applying the maximum likelihood (ML)
method to intron sequences of 20 different loci. Later, a split time of 14.02Mya (12.24–15.89)
was suggested by Chan et al. (2010) using the samemethod as for gibbons (Chan et al., 2010).
Chatterjee et al. (2009) provided an estimation of 15.9 Mya (13.7-18.3). Speciation of Gorilla
(Gorilla Gorilla) population by Chan et al. (2010) was estimated at 8.95 Mya (6.95–11.08).
Raaum et al. (2005) suggested 8.1 Mya (7.1–9.0), whereas Scally et al. (2012) based on assem-
bly and analysis of a genome sequence and fossil evidence places the specialization event
at approximately 10 Mya. Further, based on coalescent hidden Markov model framework
using in the context of incomplete lineage sorting, the existence of the LCA of chimpanzee
and human was estimated at 6 Mya by Scally et al. (2012), 4 Mya by Hobolth et al. (2011)
and 6.5–4.2 Mya by Stone et al. (2010) (see also references therein).

Based on the cited literature reports describing the estimations of the LCAs between
various species and the over-representation of BCS near telomeric regions, we have found
a specific relationship between UBCS statistics proportion and evolutionary distances for
two given species. Using the method described in the subsection 2.5, we have calculated
the speciation time for each pair of species based on their UBCS proportion Gx||Gy. For
each species, for both minimal and maximal speciation time from the literature, we have
estimated the average speciation value with respect to other species. As a result, we report
the predictions of the speciation dates for all successive species. Chimpanzee and bonobo
were are estimated to diverge very close to each other, between 4.7-6.6 Mya and 5.5-7.5
Mya, respectively. For gorilla, orangutan, and gibbon, the estimates are, respectively, 6.6-
9.9 Mya, 12.5-18.4 Mya, 20.7-29.6 Mya. Overall, our results are consistent with the literature
reports; however, the elder two species have a bit less robust estimation (see Fig. 3.8). In the
Discussion section, we comment on the quality of this estimation as well as possible future
improvements.

3.3. Discussion

Here, we provide a revised method for calculation of the UBCS statistics proposed by
Dreszer et al. (2007). We have re-calculated the time of the HSA2 fusion event at approxi-
mately 0.9 Mya (0.4-1.5 Mya), using the same human and chimpanzee genomes comparison.
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To verify our approach, we have used the bonobo genome as query because of their common
evolutionary history (Hey, 2010). Interestingly, our results suggest that the fusion might
have occurredmore recently, approximately 0.6Mya. We propose that this discrepancymay
result from the quality of the bonobo genome assembly. Using the UCSC Browser (Kent
et al., 2002), we have observed that the genomic region distal to the HSA2 fusion site maps
well to the near-telomeric region of chimpanzee chromosome 2B, and thus the correspond-
ing UBCS statistics has high values (Fig. 3.6). Conversely, the genomic region proximal to
the fusion site maps to the ambiguous region surrounded by closely located centromere and
the large sequence gap. This observations may explain that the HSA2 fusion had a head-to-
head type, but likely a big telomeric and sub-telomeric portion containing genes was lost
(Stankiewicz, 2016).

Furthermore, we draw the reader’s attention to the speciation estimation among the
Great Apes. The short literature review described in the previous section presents how im-
precise these estimations are. The differences in the calculated dates of the speciation events
span from 2.5 Mya (chimpanzee) up 5 Mya (gibbon), demonstrating how challenging they
are. We provide an evidence, that the UBCS statistic tracks a characteristic property of the
human genomics, similar to the GC-content and consequently the BGC pattern (Romiguier
and Roux, 2017; Meunier and Duret, 2004; Strathern et al., 1995) and, can providemore accu-
rate dating. It should be also noted that the evolutionary distance of Hylobatidae and Pong-
inae from modern Homo sapiens are substantial, that predictions based only on one type
of data become rather blurred and imprecise. A remedy to that could be to use multi-layer
models that would bring together various types of genomic and other -omic data (Marques-
Bonet et al., 2009b; Pinu et al., 2019).

More recently, mapping the sequenced reads from modern humans and ancient Ho-
minini (French, Han, Papuan, San, Yoruba, Neandertal, Denisovan) to the chimpanzee ref-
erence sequence (pantro2 version) facilitated more precise speciation events dating (Re-
ich et al., 2010). Quality scores given by Burrows-Wheeler Aligner (Li and Durbin, 2009)
and ANFO (https://bioinf.eva.mpg.de/anfo/) software packages for mapping low-
divergent sequences against a large reference genome that aim to reflect the confidence
of its mapping to the chimpanzee genome have been used. Further adequate thresholds
and restrictions to filter out the tentative nucleotides were applied. For the remaining data,
the total number of transversion substitutions between all possible pairs of organism sam-
ples was counted. Finally, correction of the genetic divergence for sequencing error was
estimated and revealed two principal observations: (i) the pairwise comparison of diver-
gence results between 7 Hominins suggest that Neandertal and Denisovan are on average
genetically related to each other more than either of them is related to modern humans;
(ii) assuming human-chimpanzee genetic divergence at 6.5 Mya Neandertal and Denisovan
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divergence from a common ancestor was estimated to 644,000 years ago, while the diver-
gence of both Neandertals and Denisovans to present-day Africans was estimated to 812,000
years ago.

These results are consistent with the reports by Green et al. (2010) who presented a draft
sequence of the Neandertal genome. Using the numbers of transversions on the human
lineage and the Neandertal-human ancestor to chimpanzee lineage the average divergence
between DNA sequences inNeandertals and present-day humans, it was estimated as a per-
centage of the lineage from the modern human reference genome to the common ancestor
of all considered organisms (i.e Neandertals, modern humans, and chimpanzees). The final
estimate for the average divergence of Neandertal and modern human autosomal DNA se-
quences was estimated at 825,000 years ago, assuming the same human-chimpanzee split
time.

3.4. Conclusions and Further Research

Herein, we aimed to aggregate the available genomic knowledge about the Great Apes
species in order to provide more accurate estimation of the HSA2 chromosomal fusion
time. We used an improvement of the approach described by Dreszer et al. (2007). We
point out the drawbacks of their UBCS statistic and propose the improvements that made
it more robust to parameter changes as well as taking into account the cardinality of the
repetitive weak-to-strong substitutions within the analyzed scope. Finally, we provide the
time estimations of the major speciation events that have occurred on the human lineage.

A possible extension of the presented work is to analyze the Hominini genomes. We
intend to estimate the speciation events of Denisovans and Neandertals based on the UBCS
statistics. Another interesting task would be to use more sophisticated way to estimate
the evolutionary distances among Great Apes utilizing UBCS statistics with an incorpo-
ration a formal statistical model. The aim would be to make use of the theory of Hidden
Markov Models (e.g. as presented in Hobolth et al. (2007, 2011)) or to formulate a Bayesian,
coalescent-based model, e.g. as the one by Gronau et al. (2011).
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Get-probability-of-BCS(bin_sizes, p̂)
Data: A list of consecutive bin sizes of clusters containing substitution and the

probability that substitution is biased
Result: The probability that the substitution from the middle bin is biased

clustered
1 n← length(bin_sizes) / 2 + 1

2 result← 0

3 first_cluster_size← sum(Sublist(bin_sizes, 1, n))

4 start_size← ceil(0.8· first_cluster_size)
5 result← Binom-from(first_cluster_size, start_size, p̂)
6 mem_dict← dictionary(1)

/* dictionary returning 1 by default */

7 for k ← 2 to n do
8 cond_sizes← Sublist(bin_sizes, k, k + n− 2)

9 cluster_size← sum(Sublist(bin_sizes, k, k + n− 1))

10 prev_cluster_size← sum(Sublist(bin_sizes, k − 1, k + n− 2))

11 prev_mem_dict← mem_dict
12 mem_dict← dictionary(0)

/* dictionary returning 0 by default */

13 for (cond_freqs, cond_prob) ∈ Generate-bin-frequencies(cond_sizes, p̂)
do

14 cond_freq_size← sum(cond_freqs)
15 n_a← 0

16 start_size← ceil(0.8 · cluster_size − cond_freq_size)
17 bin_size← bin_sizes [k + n− 1]
18 a← Binom-from(bin_size, start_size, p̂)
19 upper_bound← min(ceil(0.8 · prev_cluster_size− 1), bin_sizes [k− 1])
20 for freq ← 0 to upper_bound do
21 mem_key← list(freq) + Sublist (cond_freqs, 1, n− 2)
22 n_a← n_a + binom(bin_sizes [k − 1], freq, p̂) · prev_mem_dict

[mem_key ]
23 end
24 mem_dict [cond_freqs ]← n_a
25 result← result + a · n_a · cond_prob
26 end

27 end
28 return result
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Table 3.1: HSA2 formation estimates based on UBCS statistics. The table provides information on the estimated time of HSA2
formation with respect to different parameters used in the UBCS-based method. The Table can be cross-referenced with Fig. 3.4 and 3.5.

Number of
bins within
the windows
size

Minimal num-
ber of weak to
strong substi-
tutions

Minimal
percent of
biased weak
to strong
substitutions
(%)

Estimated
speciation
time (MYA)

95% Confi-
dence Interval
(MYA)

300 5 80% 0.8 0-2.02
15 5 80% 1.0 0-2.23
2 5 80% 1.3 0.31-2.35
300 6 83.33% 1.2 0-2.63
2 6 83.33% 1.5 0.33-2.66
300 6 75% 1.0 0-1.98
2 6 75% 0.9 0-2.35
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4
An efficient algorithm for listing

the Minimal Linear
Eulerian Decompositions
of the Karyotype Graphs

“In trying to count our many blessing

the difficulty is not to find things to count,

but to find time to enumerate them all.”
— Aiden Wilson Tozer

As described in previous chapters, DNA rearrangements are important sour-
ces of structural changes that impact the evolution of species. Importantly,
evolution is an ongoing process that shapes genomes of individuals and,
consequently, affects their development and functioning. Novel types of se-

quencing technologies allow us to explore the enormous plasticity of genomes, particularly
when it comes to de novo chromosomal rearrangements.

DNA rearrangements reshape a genome by breaking it in two or more segments and
rejoining them in a different order, potentially resulting in the loss or gain of some frag-
ments. The most common and well-studied genomic rearrangements are those with two
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breakpoints, such as deletions, duplications, inversions, and translocations. Others, involv-
ing more than two breakpoints, are termed complex chromosomal rearrangements (CCR).
Over the last decade, new types of CCRs have been identified, characterized by a substantial
number of breakpoints generated in a single mutational event. These phenomena are col-
lectively known as chromoanagenesis in the scientific literature. They are categorized into
the three groups based on the location of involved breakpoints and the mechanisms of their
formation, namely chromothripsis, chromoplexy, and chromoanasynthesis. Chromothrip-
sis was initially described in cancer (Stephens et al., 2011) and subsequently observed in
patients with congenital disorders (Kloosterman et al., 2011; Collins et al., 2017; Wecksel-
blatt et al., 2015), as well as unaffected individuals (De Pagter et al., 2015). It represents
a single catastrophic event involving one chromosome shuttering fragments of the geno-
me, potentially resulting in the loss of DNA fragments. In this type of CCR, breakpoints
cluster in one or a few chromosomal loci without any specific order and orientation. In
the second type of massive CCR, called chromoplexy, breakpoint junctions can occur inter-
and intra-chromosomally. This phenomenon was first observed in prostate cancer (Baca
et al., 2013) and recently reported in a healthy female carrying two de novo CCRs involving
six chromosomes, with a total of 137 breakpoint junctions (Eisfeldt et al., 2021). The hall-
mark of the third type of massive CCR, termed chromoanasynthesis, is a presence of copy
number alterations along with copy-neutral fragments. This phenomenon in germline cells
was first analyzed by Liu et al. (2011), and recently described in Nazaryan-Petersen et al.

(2018) study. Both chromothripsis and chromoplexy are explained by the non-homologous
end joining mechanism, which repairs double-strand breaks during chromatin disruption,
whereas chromoanasynthesis is elucidated by replication-based mechanisms.

Chromothripsis and chromoplexy events do not result in the amplification of genetic
material. Hence, if they affect only one of the two homologous chromosomes, the order
and orientation of the rearranged fragments in the derivative chromosomes is determined
unambiguously. In case of the chromoanasynthesis, however, the structure of the derivative
chromosomes in most cases cannot be elucidated based solely on the rearrangement break-
points. This is because the amplified fragments are longer than the available long-reads data
and lack small polymorphisms, making it impossible to distinguish the amplified copies.

A model of CCR changing the amount of the genetic material, called Karyotype Graph
(KG), has been proposed for cancer genomes (Aganezov et al., 2019) and can be straightfor-
wardly applied to the constitutional genome rearrangements. This model, however, does
not provide information about the structure of the underlying derivative chromosomes,
which hinders the comprehensive analysis of functional genomics changes caused by CCRs.

To address this issue, Aganezov et al. (2019) formulated theMinimal Eulerian Decompo-
sition Problem (MEDP), which aims to find a collection of linear and/or circular derivative
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chromosomes with the minimal cardinality that can be inferred from KG . By implementing
the concept of omnitigs (Tomescu and Medvedev, 2016) for KGs, the authors introduced the
Consistent Contig Covering Problem (CCCP) to recover unambiguous contigs that can be
inferred from KGs. Moreover, they have proposed a polynomial time algorithm for solv-
ing this problem and successfully applied it to the highly rearranged 17 prostate cancer
genomes. However, in case of chromoanasynthesis, which is characterized by the errors in
DNA replication, the resulting unambiguous contigs are often very short. This limitation
highlights the necessity for an efficient algorithm that can enumerate all possible scenarios
of such CCRs.

Listing of all object satisfying a specified property is one of the fundamental and ex-
tensively studied problems in combinatorics and graph theory. Examples of problems of
this type include the enumeration of spanning trees (Shioura et al., 1997), st-paths (Birmelé
et al., 2013), k disjoint st-paths (Grossi et al., 2018) , cycles (Birmelé et al., 2013), maximal
cliques (Tomita et al., 2006) and many others (Wasa, 2016). The output length of enumer-
ation problems often grows exponentially with the size of the input, so the complexity of
such problems is characterized in terms of both input and output size (output-sensitive).
For enumeration algorithms there are several complexity classes, such as polynomial delay
algorithms, where the time taken to generate two consecutive output solutions have to be
polynomial in the input size.

In this chapter, we propose the enumeration algorithm for efficient listing all Minimal
Linear Eulerian Decompositions of KG with an time delay of O(log(n)2 · l), where n is
a number of vertices in KG and l is a length of the decomposition. To this end, we traverse
recursion tree in a way that avoids dead ends. This is accomplished by incorporating the
concept of a certificate, which is a data structure that ensures the existence of at least one
solution in the currently processed node of the recursion tree. Finally, we apply our al-
gorithm to enumerate all possible rearrangement scenarios in case of a one proband with
congenital chromoanasynthesis from the Nazaryan-Petersen et al. (2018) study.

4.1. Methods

4.1.1. Preliminaries

Given an undirected multi-graph G = (V,E), we define the number of vertices in G as n
and the number of edges as m. Each vertex is uniquely represented by a number from the
set {1..n} and referred to as a vertex number. The multiplicity is a function µ : E → N≥0

encoding edges copy number. The sum of all multiplicies of a graph,
∑

e∈E µ(e), is referred
to as l. A non-trivial graph is a graph where

∑
e∈E µ(e) 6= 0.

A trail is a sequence of adjacent vertices and edges, where the number of the occurrences
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of edges is less than or equal to their multiplicities. For s, t ∈ V , an st-trail, denoted as
s t is a trail where the first vertex is s and the last vertex is t. Let τ be a t u trail, we
denote Gr τ as a graph G with multiplicities decremented by the number of occurrences
of the corresponding edges in the trail τ . For an edge {u, v}, we denote t  u · (u, v) as
the extension of the trail τ with the new edge {u, v}.

Each trail can be represented as a sequence of ordered pairs of vertices, which we refer
to as an edge representation of a trail. Let us define a canonical trail as a trail whose edge rep-
resentation is lexicographically less than or equal to the edge representation of the reversed
trail.

4.1.2. Model of complex chromosomal rearrangement

Here, we present a model of the CCRs called Karyotype Graph. This model was introduced
by Aganezov et al. (2019) and therefore in our definitions we follow the nomenclature used
therein.

Let the reference genome be a set of reference chromosomes described by their names
and lengths. An extremity is defined by a reference chromosome, coordinate, and type (tail
or head). A reference chromosome fragment (RCF) is a pair of extremities from the same
chromosome, with one being a tail extremity, T , and the other being a head extremity, H
(f = [fT , fH ]). A RCF represents a continuous part of the chromosome constrained by the
two extremities. The coordinate of a tail extremity of an RCF is less than the coordinate
of its head extremity. Each reference chromosome can be partitioned into a set of non-
overlapping RCFs and each element of this partition is called a segment. An unordered
pair of head and tail extremities from the same segment is referred to as a segment edge.
An unordered pair of two extremities that is not a segment edge is called an adjacency.
An adjacency formed by head and tail extremity from two consecutive segments in the
reference chromosome is referred as reference adjacency. An adjacency that is not a reference
adjacency forms a breakpoint adjacency.

Definition 1 (Karyotype graph (KG)). A Karyotype Graph is a undirected multi-graph build

upon the partition of the reference chromosomes into segments. A set of extremities establishes

the vertices of the graph. The edges in this graph can be classified into two types: segment

edges (encoding segments) and adjacency edges (encoding transitions between segments).

Copy number excess x(v) on vertex v is defined as the difference between the multiplicity
of a segment edge containing v and the sum of the multiplicities of adjacencies incident to
v, doubled in case of adjacency (v, v). A vertex v with a copy number excess greater then
0 is referred as a telomere.

Derivative chromosome is defined as a sequence of directed RCFs, where RCF in the for-
ward direction is described by a pair [fT , fH ], and in the reverse direction as a pair [fH , fT ].
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Figure 4.1: Linearly Decomposable Karyotype Graph and corresponding rearranged genomes. (A)The Linearly Decomposable
Karyotype Graph depicts two reference chromosomes. The first reference chromosome consists of segments A, B, C, and D, while
the second one of segments E, F, G, and H. Segment edges are represented as solid lines, with color corresponding to the reference
chromosomes. Reference adjacencies are shown as black dashed lines, and breakpoint adjacencies are shown as pink dashed lines. Edges
with copy numbers different from one are labeled accordingly. The deleted segment (F, with copy number 0) is depicted in faded color.
Extremities are shown in light green boxes, with telomeres depicted as squares and other extremities as circles. Tail and head extremities
are marked with superscripted T and H letters, respectively. (B) Two rearranged genomes are shown, each consisting of two derivative
chromosomes corresponding to the Linearly Decomposable Karyotype Graph shown in panel (A). Adapted from Aganezov et al. (2019).

In such a sequence, two consecutive RCFs with the same orientation cannot originate from
subsequenct fragments in the reference genome (the sequence of RCFs describing the rear-
rangement should be as short as possible). Rearranged genome is defined as a sequence of
derivative chromosomes. Partition into segments inferred from a rearranged genome is defined
naturally.

The KG inferred from rearranged genome is defined by the set of extremities obtained
from partition into segments. As defined above, the edges of a KG are of two types: ad-
jacency edges and segment edges. Using partition into segments derived from rearranged
genome, each RCF of the derivative chromosome is converted into a sequence of consecu-
tive segments. Each segment in this sequence establishes segment edge, denoted as [sTi , sHi ],
while the neighboring segment extremities reference adjacency edge [sHi , sTi+1]. Each pair of
the neighboring extremities from an RCF forms one breakpoint adjacency edge. Therefore,
the graph defined in such a way is a multigraph.

Every derivative chromosome is represented as a path consisting of alternating segment

and adjacency edges starting and ending with a segment edge. Each breakpoint adjacency

edge demarcates two RCF fragments represented by a sequence of alternating segment edges

and reference adjacency edges starting and ending with a segment edge.

A Linearly Decomposable Karyotype Graph (LDKG) is a KG that can be inferred from
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some rearranged genome. Every rearranged genome is represented by one LDKG, while
a LDKG can represent several rearranged genomes.

An example of LDKG and corresponding linear rearranged genomes is presented in Fig. 4.1.

Definition 2 (Eulerian Decomposition of KG). An Eulerian Decomposition of KG is a se-

quence of alternating segment-adjacency linear trails and cycles in which every edge e is used

exactly µ(e) times.

Lemma 1. KG has an Eulerian Decomposition if and only if for all v ∈ V , it holds that

x(v) ≥ 0 (Aganezov and Raphael, 2020; Aganezov et al., 2019; Oesper et al., 2012; Pevzner,

1995).

Lemma2. Number of linear trails in any EulerianDecomposition ofKG is equal to
∑

v∈E
x(v)

2
(Aganezov et al., 2019).

Let us refer to the number of linear trails in Eulerian Decomposition of KG as k.

Lemma 3. KG that has Eulerian decomposition is Linearly Decomposable if and only if it does

not contain connected components without telomeres.

Proof. If KG is Linearly Decomposable it cannot contain connected components without
telomeres, because each Eulerian Decompositions of such component, by lemma 2, does
not contain linear trails. If KG with Eulerian Decomposition does not have connected com-
ponents without telomeres, any of its Eulerian Decomposition can be transformed to Linear
Decomposition by merging iteratively cycles with linear trails using shared segment edges
until there are no cycles.

Definition 3 (Minimal Eulerian Decomposition of LDKG). The Minimal Eulerian Decom-

position of LDKG refers to the decomposition with the minimal cardinality.

Throughout the article, we consider the Minimal Eulerian Decomposition of LDKG. Ac-
cording to the definition of LDKG this decomposition consists only of linear derivative chro-
mosomes. Although, it is worth noting that there may exist a Minimal Eulerian Decomposi-

tion of certain KGs containing cycles representing circular chromosomes.

Definition 4 (Minimal Ordered Eulerian Decomposition of LDKG). The Minimal Ordered

Eulerian Decomposition (MOED) of LDKG is a list of linear derivative chromosomes forming

the Minimal Eulerian Decomposition of LDKG in their canonical representation and sorted in

lexicographic order.

All definitions, apart from LDKG and MOED, was taken from Aganezov et al. (2019).
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4.1.3. Listing all distinct Minimal Ordered Eulerian Decompositions

of LDKG

Definition 5 (Augmented Linearly Decomposable Karypotype Graph). Augmented Lin-

early Decomposable Karyotype Graph (ALDKG) is built upon the Linearly Decomposable Kary-

otype Graph by adding to it supplemental vertices sT and sH , corresponding supplemental seg-

mental edge {sT , sH} with the multiplicity 2 · k, and supplemental adjacency edge {sT , sT}
with the multiplicity k − 1. Additionally, for every telomere t, an adjacency edge {t, sH} in
LDKG is added, with the multiplicity equal to the copy number excess x(t). The vertex number

assigned to sH is 0 and to sT is m+ 1.

The method of constructing ALDKG guarantees that it is connected and contains only
one telomere sT with copy number excess x(sT ) equal to 2. Therefore, using lemma 2 and
the fact that LDKG is connected, the MOED of ALDKG consists of one linear trail.

Let us redefine MOED for ALDKG by introducing additional constraint requiring that
the subsequence of an edge representation of a trail, composed of all consecutive ordered
edges starting with sH is sorted using vertex number of the second element of the ordered
edge. With such redefined notion of MOED for ALDKG, the enumeration of MOEDs in
LDKG is in one-to-one correspondence betwwen the enumeration of MOEDs of ALDKG.
The MOED of LDKG is obtained from MOED of ALDKG by removing from the only trail
all edges incident to sT and sH .

Construction of ALDKG is similar to the construction of modified graph used in the
proof of Theorem 1 in Aganezov et al. (2019). The approach to the the enumeration of
MOEDs is similar to the procedure used in Grossi et al. (2018), although application in this
context it is completely original.

4.1.4. Recurrent approach

Generating all possible MOEDs of ALDKG begins with exploring trails starting with sup-
plemental segmental edge (sT , sH) and it can be viewed as a recursive scheme, where cur-
rently explored beginning of a trail sT  u is already fixed (initially u = sH , where sH

is supplementary head vertex). It proceeds recursively by extending the trail sT  u at
each step by adding the two consecutive edges (adjacency and segmental) to the trail. For
this purpose, each good neighbor v of u is explored. A good neighbor of vertex u differ-
ent from sT is a vertex v such that {u, v} is an adjacency edge and the reduced graph
ALDKG′ ≡ ALDKG r (sT  u) · (u, v) does not contain more than one non-trivial
connected components. A vertex v is a good neighbor of sT , if it is incident to sT using
adjacency edge and has the lowest vertex number. For each good neighbor v, the recursion
proceeds with the extended trail sT  w ≡ (sT  u) · (u, v) · (v, w), where {v, w} is
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a segmental edge and u is set to w. The recursive procedure terminates when all edges are
used up.

The recursion tree that is traversed while generating all possible MOEDs of ALDKG
is presented in Fig. 4.2. Throughout the rest of the article we will use term nodes when
referring to the recursion tree, and vertices when referring to the input ALDKG.

4.1.5. Recursion certificates

To make recursion efficient, two auxiliary data structures are introduced: the witness cer-
tificate and the connectivity certificate. The former is used to derive some properties of
MOEDs, which helps in reduction of the time complexity of the algorithm, while the latter
enables efficient queries preventing from the creation of dead ends in the recursion tree.

Witness certificate

Definition 6 (Witness certificate). For a given LDKG the witness certificate is defined as

any Minimal Ordered Eulerian Decomposition of LDKG.The trials in the witness certificate are

referred to using their edge representation.

The properties of the witness certificate are utilized to reduce the number of queries to
the connectivity certificate. This is achieved by ensuring that the decrementing by one the
multiplicity of only one adjacency edge incident to the processed vertex can result in dead
end in the recursion tree.

Let us denote the i-th trail in witness certificate as Ti and the first edge of T1 as (t, u).
A positive answer to the question of whether some vertex v is a good neighbor of u can be
given in the following cases:

1. pair (u, v) is the second element of the trail T1.

2. pair (u, v) or (v, u) is an element of a trail Ti different from the T1 (Fig. 4.3a, Fig. 4.3b).

3. pair (v, u) is an element of the trail T1 (Fig. 4.3c).

4. pair (u, v) is an element of the trail T1 and there exists another trail Ti with an edge
containing vertex u (Fig. 4.3d, Fig. 4.3e).

5. pair (u, v) is an element of the trail T1 and there exists another pair of vertices in T1

containing u that is located further in a T1 (Fig. 4.3f, Fig. 4.3g).

By applying appropriate transformations to the trails from thewitness certificate we can
obtain another Minimal Eulerian Decomposition of LDKG beginning with the segmental
edge (t, u), followed by the adjacency edge (u, v) and containing the samemultiset of edges.
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Figure 4.2: Recursion tree for enumerating Minimal Ordered Eulerian Decompositions of Augmented Linearly Decompos-
able Karyotype Graph. τi denotes the i-th trail in the MOED of LDKG corresponding to ALDKG. The recursion begins by extending
a trail formed by a single supplemental segmental ordered edge (sT , sH) with a vertex that is a telomere with the lowest vertex number

in the corresponding LDKG. The top tree is built of paths that represent all feasible choices of τ1 and its leaves on the first dashed level
correspond bijectively to trails τ1. All leaves of the top tree are the roots of the recursion tree for unary nodes that generate paths cor-
responding to visiting vertices sH and sT and continuing the extension of a trail with a vertex that is a telomere with the lowest vertex
number in corresponding LDKG that has not have been used. Traversing the unary node chain produces a fragment of a trail equal to
(t1, sH), (sH , sT ), (sT , sT ), (sT , sH), (sH , t2), there t1 and t2 are telomeres in the corresponding LDKG. Leaves in the third dashed
levels correspond bijectively to trails τ2, and so on. Nodes b, c, d correspond to possible choices of τ1, whereas nodes e and f correspond
to possible choices of τ2 where τ1 is represented by a path ending with node b (respectively g, when τ1 is represented by c, next h and i,
when τ1 is represented by path ending with node d). Nodes from the last dashed line (from p to w) correspond bijectively to a sequence
of trails τ1, ..., τk that form MOED of LDKG. The recursion ends by extending the trail with an adjacency edge incident to sH and the
supplemental segmental ordered edge (sH , sT ).
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Therefore, the only case when witness certificate cannot be used to confirm that the
vertex v is a good neighbor of vertex u using simple transformations is when the pair (u, v)
represents last occurrence of u in a trail T1 and all of other pairs containing u belong to the
trail T1 but do not include the vertex v. Let us refer to such a vertex as uncertain vertex.

Connectivity certificate

Definition 7 (Connectivity certificate). A connectivity certificate represents a dynamicmulti-

graph initially equal to ALDKG. . It allows for the decrementing and incrementing the multi-

plicity of edges, as well as answering for the queries regarding the presence of more than one

non-trivial connected component.

The connectivity certificate is used to determine whether decrementing the multiplicity
of a given edge from a multi-graph built upon ALDKG results in the formation of two non-
trivial connected components. This data structure can be used to answer such questions by
querying whether, after decrementing the multiplicity of the edge in question, the vertices
forming the edge are not isolated and are connected to the supplemental vertex sH through
a trail with edges of multiplicity greater than 0.

Lemma 4. The connectivity certificate can be built in O(log2(n) · m) amortized time and

enables incrementing and decrementing the multiplicity of an edge in O(log2(n)) amortized

time.

An efficient implementation of a connectivity certificate can be achieved by using the
data structure based on Euler tour trees proposed by Holm et al. (2001). This data structure
enables queries for the connectivity of two vertices in a graph, as well as the addition and
removal s in amortized O(log2(n)) time.

Since the KG graph is a multi-graph, an additional data structure is needed to store,
for every vertex, a list of vertices incident to it along with their multiplicities. This can be
implemented using AVL trees (Adelson-Velskii and Landis, 1962), which hich allow for the
addition, removal, and querying for entries, as well as locating the next entry inO(log(m))

time, where m is the number of entries.
The dynamic graph can be built by adding all edges of the ALDKG to initially empty

data structure proposed by Holm et al. (2001). This can be done inO(log2(n) ·m) amortized
time, since the number of edges not incident to supplemental vertices is at most m and the
number of edges incident to supplemental vertices does not exceed 2 ·m. The dictionary
storing all vertices and edges incident to them, along with their multiplicities, can be built
by enumerating all edges of ALDKG in O(log(m) ·m) time.

Decrementing the multiplicity of an edge requires decrementing the corresponding
multiplicities in the dictionary. If the resulting multiplicity is equal to 0, the edge should
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(a) Transformation for (u, v) ∈ Ti, i 6= 1.

(b) Transformation for (v, u) ∈ Ti, i 6= 1.

(c) Transformation for (v, u) ∈ T1 .

(d) Transformation for (u, v) ∈ T1, ∃(u, x) ∈ Ti, i 6= 1.

(e) Transformation for (u, v) ∈ T1, ∃(x, u) ∈ Ti, i 6= 1.

(f) Transformation for (u, v) ∈ T1, ∃(u, x) ∈ T1 , such that (x, u) has greater position in T1 than (u, v).

(g) Transformation for (u, v) ∈ T1, ∃(x, u) ∈ T1 , such that (x, u) has greater position in T1 than (u, v).

Figure 4.3: Transformation of the witness certificate showing that the vertex v is a good neighbor of vertex u, given certain
locations of other edges containing u. Segmental edges are depicted as solid lines, while adjacency edges are depicted as dashed
lines. Arrows indicate the ordering of vertices in the edges which is preserved during transformations.
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be removed from the dynamic graph, and the appropriate entries should be deleted from
the dictionary. Similarly, incrementing the multiplicity of an edge requires incrementing
the corresponding multiplicities in the dictionary if such entries exist. Otherwise, the edge
should be added to the dynamic graph, and the corresponding entries should be added to
the dictionary.

4.1.6. Traversal of the recursion tree

The connectivity certificate is employed to:

1. ensure the existence of at least one good neighbor of the currently processed vertex
u (there are no dead ends in the recursion tree).

2. locate next good neighbor of the currently processed vertex u and save space by keep-
ing only one in the recursion stack instead of a the list of vertices.

3. quickly skip nodes with only one good neighbor of u.

At least one good neighbor of u. Throughout the traversal of a recursion tree the invariant is
that the connectivity certificate is connected, which guarantees, by Lemma 3, the existence
of at least one MOED that extends the currently processed trail sT  u. This, in turn,
ensures that at least one good neighbor exists for the processed vertex u.

Next good neighbor of u. The next good neighbor is retrieved from the vertex index using
ordering based on their vertex numbers. This ensures a reduction in the space of the re-
cursion stack and guarantees that the produced MOEDs will be returned in lexicographic
order, where the alphabet is a set of edge representations of trails.

Lemma 5. Given a trail sT  w = (sT  u) · (u, v) · (v, w) and a connectivity certificate C
corresponding to it, the next good neighbor (in terms of ordering using vertex indices) can be

found in O(log2(n)) amortized time.

Proof. First, multiplicities of edges (u, v) and (v, w) are increased by one in C . Then, the
next entry after (u, v), such that it forms adjacency edge is retrieved from the edge index

and verified if it is a good neighbor using C . If the answer is positive, the vertex is returned.
Otherwise, the next vertex incident to u that form with u an adjacency edge is returned, as
only one vertex can be the uncertain vertex. All operations concerning C take O(log2(n))

amortized time.

Lemma 6. Given the current node of the recursion tree and connectivity certificate C for its

trail sT  u, the certificates for the parent or for a child of the node can be computed in

O(log2(n)) amortized time.
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Proof. Let (sT  u′) be a trail in the parent node, where v′ is a good neighbor of u′. Then
the connectivity certificate for a child can be obtained by decrementing the multiplicity of
edges (u′, v′) and (v′, w′) by one in C .

Let sT  w = (sT  u) · (u, v) · (v, w) be a C in the child node. The connectivity
certificate for the parent node is obtained by increasing the multiplicity of edges (u, v) and
(v, w) by one in C . All these operations take O(log2(n)) amortized time.

Theorem 1. Given an ALDKG all its MOEDs can be listed in lexicographic order (where the

alphabet is a set of edge representations of trails) without duplicates with O(log2(n) · l) time

cost per solution. The initial setup time is O(log2(n) ·m), and the space complexity required

for the algorithm is O(log(m) · l).

By the definition of a good neighbor given a partial trail sT  u a simple induction
shows that the algorithm will generate all MOEDs having sT  u as a prefix. No MOEDs
will be listed twice for the same reason. Suppose, by contradiction, that there exists aMOED
that is not outputted. Let sT  u be the recursion node that fails to generate a child. By
the definition of a good neighbor, this is a contradiction, as using it we find all v that can
extend to obtain sT  u · (u, v)

Let m1, and m2 be MOEDs and let sT  u be their common longest prefix sequence of
edges in the trail, followed by the next edge. Let sT  u · (u, v1) and sT  u · (u, v2) be the
respective trails, where v1 6= v2. Due to the fact that prefixes ofMOEDs are always extended
by a pair of edges and the second one is a segmental edge determined unambiguously based
on the first adjacency edge, the {u, v1} and {u, v2} are adjacency edges. Without loss of
generality let us assume that v1 < v2. The recursion traverses child elements of a parent in
an order of their vertex number som1 will be generated beforem2, ensuring that all MOEDs
will be returned in lexicographic order (where the alphabet is a set of edge representations
of trails).

Since the algorithm spends O(log2(n)) amortized time in each node of the recursion
tree, and there are l nodes for each solution, we get O(log2(n) · l) amortized time per
solution. The space complexity is O(log(m) · l), as the recursion stack can be at most O(l)

long and the memory per node is constant, AVL tree used in O(m), and dynamic graph
proposed by Holm et al. (2001) is O(log(m) ·m).

4.2. Results and discussion

We have applied our enumeration algorithm for listing rearrangement scenarios for the
case P5513_206 from Nazaryan-Petersen et al. (2018) study. Our algorithm found two ad-
ditional scenarios supplementing the three plausible end products of rearrangement pre-
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Figure 4.4: Karyotype Graph and corresponding five rearranged genomes for case P5513_206 from the Nazaryan-Petersen
et al. (2018) study.

sented in this study. Karyotype Graph modeling this CCR and corresponding five rear-
ranged genomes are shown in Fig. 4.4.

The algorithm presented in this chapter can be further developed to enable listing of
Minimal Eulerian Decomposition containing circular derivative chromosomes. One possi-
ble direction for extending the algorithm is to incorporate the notion of a centromere and
enumerate derivative chromosomes with a sound number of such elements, or specify the
complexity class of a problem defined in this manner.

The further directions for the development and clinical application of the presented
algorithm include the incorporation of optical genome mapping data in the enumeration
procedure. This enhancement would allow for pruning the recursion tree or assigning an
alignment score to determine the quality of the match between a given rearrangement sce-
nario and optical genomemapping data. Possible clinical applications also involve the anal-
ysis of highly rearranged cancer genomes.
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5
TADeus2: a web server facilitating the

clinical diagnosis by pathogenicity
assessment of structural variations

disarranging 3D chromatin structure

“The greatest value of a picture

is when it forces us to notice

what we never expected to see.”
— John Wilder Tukey

In previous chapters, we have described methods for disentangling structural rear-
rangements and shown that they have a significant impact on the course of evolution
and serve as important sources of genetic variability. These rearrangements alter the
chromatin structure, and can result in the misregulation of spatiotemporal gene ex-

pression, leading to disease, even if its breakpoints do not affect coding regions. In this
chapter, we present a web server facilitating the diagnosis of the clinical consequences of
such structural alterations.

In the last decades, the field of clinical genetics has been revolutionised by NGS tech-
nologies (Zhang et al., 2011). One of the most popular approaches for identifying the molec-
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ular etiology of human diseases is the sequencing of coding regions, which constitute less
than 3% of the genome (Hangauer et al., 2013). However, the application of whole exome
sequencing (WES) characterized the genotype-phenotype correlation in only 25–40% of pa-
tients (Sawyer et al., 2016). This diagnostic rate can be attributed to the limitation of WES,
as it targets only coding regions, while other causes of pathology, such as structural vari-
ants (SVs) and copy number variants (CNVs) are often located in non-coding DNA (Kumar
et al., 2021a; Zare et al., 2017).

SV and CNV might lead to disease through 4 main mechanisms: (i) direct disruption
or deletion of a gene leading to haploinsufficiency (Harewood et al., 2012); (ii) generation
of SV/CNV derived fusion genes – a mechanism often present, but not limited to cancer
cells (Mitelman et al., 2007; Mertens et al., 2015; Eykelenboom et al., 2012); (iii) changes in
the gene dosage due to duplication (Lupski, 1999) and (iv) disruption of the epigenetic equi-
librium caused by displacement of regulatory elements (Harewood et al., 2010; Harewood
and Fraser, 2014). The lattermechanism is often caused by changes in the three-dimensional
(3D) chromatin structure. The 3D genome architecture controls spatiotemporal gene ex-
pression and plays a key role in the development and disease (Aigner et al., 1974). At the
(sub)megabase scale, the 3D chromatin structure is organized into topologically associated
domains (TADs), delimited by boundaries enriched in CTCF binding sites (Dixon et al., 2012;
Chen et al., 2019). TADs facilitate enhancer-promoter contacts within their bodies and in-
sulate inter-TADs chromatin interactions (Flavahan et al., 2019; Lupiáñez et al., 2015).

Interestingly, the disruption of TADs or the formation of a novel TADs can lead to gene
deregulation associated with congenital disorders e.g. brachydactyly, a limb malformation
affecting finger development (Lupiáñez et al., 2015), and Cooks syndrome, a congenital
disorder affecting digits and nails (Franke et al., 2016).

Despite the characterization of the genotype-phenotype correlation in a number of dis-
eases linked to SVs and CNVs in non-coding DNA, the evaluation of their pathogenicity
caused by the disruption of long-range regulatory interactions remains challenging (Let-
tice et al., 2011; Harewood and Fraser, 2014). More evidence points towards the fact that
computational investigation of non-coding variants severity is helpful in the diagnosis of
genetic disorders (Wells et al., 2019; Zhang and Lupski, 2015; Momozawa and Mizukami,
2020).

For this reason, there is a clear need for an easy to use web server that enables a quick
evaluation of chromatin conformation changes and provides a visual framework for the
interpretation of SVs/CNVs affecting TADs structures.
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TADeus2
https://tadeus2.mimuw.edu.pl 

a web server facilitating the clinical diagnosis by pathogenicity assessment
of structural variations disarranging 3D chromatin structure

Visualization
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Figure 5.1: Main functionalities offered by TADeus2 together with their integration within the clinical workflow for the pathogenicity
assessment of structural variations disarranging 3D chromatin structure.

5.1. Existing tools for the clinical evaluation of SV

The growing number of NGS data from symptomatic SVs/CNVs carriers led to the emer-
gence of multiple databases inspiring further studies regarding the role of gene position
effect (GPE) in the patient phenotype. For example, Zepeda-Mendoza et al. (2017) applied
the haploinsufficiency and triplosensivity scores to characterize GPE derived from balanced
translocations in 17 subjects from the Developmental Genome Anatomy Project (GDAP).
Ruifeng et. al. using data from ClinVar database (Landrum et al., 2017) introduced the
Structure Influence score to prioritize and designate SVs that are likely to disturb gene reg-
ulation through TADs disorganization. Ibn-Salem et al. (2014) based on the DECIPHER
database (containing nearly one thousand deletions) (Firth et al., 2009) showed that only
4.5% of analyzed deletions can disrupt TAD boundaries leading to the gene misexpression
due to enhancer adoption.

Investigation of NGS data from symptomatic patients carrying SVs led also to the de-
velopment of multiple tools designed for clinical evaluation of SVs, including: 3Disease
Browser (Li et al., 2016), PhenogramViz (Köhler et al., 2014), GeCCO (Hehir-Kwa et al., 2010),
or rankings based on HI scores (Huang et al., 2010). However, PhenogramViz, GeCCO and

95



HI scores do not use the chromatin conformation and regulatory data for the SV-induced
pathogenecity estimation, while 3Disease Browser does not evaluate any novel SVs.

Among the newest web-services providing an extended palette of features for SVs/CNVs
evaluation in the clinical context are 3D Genome Browser (Wang et al., 2018) and CNVx-
plorer (Requena et al., 2021). The main functionalities provided by 3D Genome Browser
consist of analysis of disease-associated SVs and 3D chromatin structure by visualization
and integration of Hi-C and ChIP-seq data. This tool also enables inspection of inter-
chromosomal interactions. However, it is limited only to the uni-directed strand view
(hg19), and does not provide any views for comparisons of the rearranged genome struc-
ture vs. wild-type. The CNVxplorer mines a comprehensive set of clinical, genomic, and
epigenomic features associated with CNVs making it one of the most versatile diagnosis
tools available online. Nonetheless, it focuses only on CNVs and does not consider bal-
anced rearrangements events. Summarized evaluation of tools with purpose comparable to
TADeus2 is presented in the Table 5.1.

5.2. Our approach

To address existing challenges and provide a competitive tool, we have developed TADeus2 –
a web server for a quick evaluation of SVs/CNVs that provides a visual framework to aid
the medical expert in the interpretation of variant pathogenicity in the context of changes
in the TADs organization (Fig. 5.1). Based on the type of a variant TADeus2 allows to vi-
sualize the affected region in two modes: (i) syntenic mode dedicated for the analysis of
deletions and duplications; (ii) breakpoint mode designed for translocations and inversions.
The former mode allows visualization of one genomic region, while the latter enables anal-
ysis of two different genome loci joined together during the rearrangement event. Both
modes integrate multiple datasets (e.g. Hi-C or ChIPseq) either available on the server or
provided by the user. The tool is user-friendly and allows to perform a customized analysis
by providing the genomic coordinates of the analyzed variants. It should be emphasized
that TADeus2 and its previous version TADeus (Poszewiecka et al., 2018) was successfully
used in the recently published studies Pienkowski et al. (2019, 2020).

5.3. Methods of clinical evaluation of SVs

Evaluation of the gene pathogenicity

To assess and rank the pathogenicity of a gene TADeus2 score is introduced. For a given
gene g its value is calculated based on the following indicators: (i) CG(g): the ClinGen
haploinsufficiency/triplosensitivity score (Rehm et al., 2015), (ii) EPdis(g): the number of
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Figure 5.2: Overview of the clinical diagnosis workflowof TADeus2 Theabove diagram outlines the subsequent steps recommended
for the SVs/CNVs evaluation. The pipeline starts with the specification of a pair of coordinates accompanied by a Hi-C matrix of interest.
Using two different views the structural rearrangements can be visualized and inspected. Next, based on numerous indicators of disease-
causing putative genes candidates for further analysis can be selected. Finally, position effects can be evaluated thanks to provided
databases from UCSC e.g. H3K27ac or experimentally verified regulatory elements. All the obtained outcomes are candidates for any
further confirmation with wet experiments.

distant candidate enhancer–promoter predicted interactions disrupted by the breakpoints
based on Thurman et al. (2012), (iii) HPO(g): the number of names and links to the asso-
ciated phenotype described in Human Phenotype Ontology (HPO) – the ontology of phe-
notypic abnormalities with associated diseases and genes (Köhler et al., 2016), (iv) dist(g):
the distance from the rearrangement breakpoints. The final formula is accordingly a scaled
sum of the four compounds:

score(g) =I (CG(g) = 1 ) + I (EPdis(g) > 0 )+

+ I (HPO(g) > 0 ) + I ( dist(g) < 1Mb ) ,

where CG(g) is equal to 1 when g falls into one of the ClinGen categories: Sufficient Evi-
dence, Emerging Evidence, Autosomal Recessive; and I(c) = 1, when a condition c is met
and 0 otherwise.

As an example consider gene g = TBR1 ranked as first in evaluation of structural vari-
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ant involving chromosome 2 (exemplary case study from the main page of the web ser-
vice). This gene is annotated in ClinGen, so CG(g) = 1, there are 38 disrupted distant
enhancer-promoter interactions, i.e. EPdis(g) > 0, also the HPO(g) > 0 as several abnor-
mal phenotypes have been found in HPO, and finally the distance of the TBR1 gene from
the breakpoint is small enough, i.e. dist(g) < 1Mb. In total we get a Total Pathogenecity
Score equal to 4.

TADeus2 rank gene table

The table is ordered by the aforementioned ranking score in the descending order. Genes
with the equal scores are secondary sorted by the number of the disrupted enhancer–
promoter interactions and the distance from the rearrangement breakpoints. For the con-
venience of the user the final importance ranking is color-coded with a dark-pink to white
scale. Additionally, for a broader perspective, the disease and inheritance type from Online
Mendelian Inheritance in Man (OMIM) (Hamosh et al., 2005) and pLI score from Genome
Aggregation Database (gnomAD) (Karczewski et al., 2020), were added.

SVs/CNVs pathogenicity assessment

To evaluate the pathogenicity of a rearrangement TADeus2 uses the state-of-the-art, third-
party software: TADA (available only for autosomes) (Hertzberg et al., 2022) and Classify-
CNV (Gurbich and Ilinsky, 2020) as well as an original statistical significance p-value.

TADA automatically ranks Copy Number Variants (CNVs) based on a extensive cata-
logue of functional annotations supported by enrichment analysis. The software is based
on a machine-learning classifier to accurately predict and prioritize pathogenic deletion or
duplication to produce a well-calibrated pathogenicity score.

ClassifyCNV, uses pre-parsed publicly available databases to calculate a pathogenici-
ty score for each duplication and deletion. Importantly, the tool is an implementation of
the 2019 ACMG guidelines for variant interpretation that provide a set of criteria to score
variants and place them into one of the five classification tiers (Riggs et al., 2020).

Finally, we propose calculation of an empirical p-value to assess the statistical signifi-
cance of the predicted number of interrupted interactions between the cis-regulatory ele-
ments, which is a good predictor of SVs pathogenicity (D’haene and Vergult, 2021).

To this end we compute the null hypothesis probability distribution - the probability
distribution for all possible numbers of disrupted interactions induced by a random break-
point. We sample 104 loci and compute the number of potential disruptions that would
occur because of a breakpoint in that loci 5.3. The resulting distribution is approximated
by a mixture of the 0-concentrated Dirac distribution and the geometric distribution:
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Figure 5.3: Distribution of number of disrupted distal enhancer–promoter interactions induced by a random breakpoint.
Histogram of the number of distal enhancer-promoter interactions for 10000 randomly chosen breakpoint loci (blue bars) and the prob-
ability density function given by equation 5.3 with parameters estimated using this sample (red line).

P(X = k|p, δ) =


δ, for k = 0

(1− δ)p(1− p)k−1, for k > 0

0, for k < 0

for some p ∈ (0, 1) and δ ∈ (0, 1) parameters, which we estimated from the data (Fig. 5.3).
The proportion of breakpoints in all genome loci that do not disrupt any predicted promoter–
enhancer interactions is an estimator of δ (0.0924), while p (0.01174) was estimated as
the maximum likelihood estimation (MLE). As a result, the smallest number of enhancer–
promoter interactions broken by a rearrangement breakpoint that is statistically significant
(i.e p-value ≤ 0.05) is equal to 246.

5.4. Diagnosis workflow of TADeus2 web server

The input of TADeus2 consists of breakpoint coordinates (hg38) previously identified ex-
perimentally. The analysis starts with the selection of an adequate Hi-C matrix (currently,
data from 8 different cell-types are available). The Hi-C matrix is displayed as a triangle plot
(upper triangle rotated by 45 degrees) and TADs structure is visualized (red lines), in order
to investigate the SV role in reorganization of the domains (often linked to symptomatic
gene misexpression). Based on the type of a variant the user should choose either syntenic
mode (deletion or duplication), or breakpoint mode (translocation, inversion). The former,
presents a continuous sequence of a genomic region and is designed to generate a ranked
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table of putative disease-causing genes. The latter integrates two genomic fragments from
different loci (e.g. located at distinct chromosomes) as if it was a continuous genome chunk,
allowing visualization of the new rearrangement. To use this mode the user should spec-
ify the coordinates of the breakpoints and the direction of the fused strands (e.g. in the
case of translocation between p and q arms, a forward reverse strand fusion occurs). The
breakpoint view also includes wild-type regions that compose the rearrangement. Further
analysis (in both modes) includes an integration of additional tracks containing publicly
available or self-uploaded datasets. After the selection of disease causing putative genes
(based on the TADeus2rank gene table or the interpretation of particular tracks e.g. gno-
mAD pLI) the user should focus on the characterization of the cis-regulatory landscape
within the region of interest. This can be achieved by: (i) identification of candidate en-
hancers (CEs) based on the histone marks (H3K27ac, H3K4me1), chromatin accessibility
(DNAseI), and conservation; (ii) investigation of the track with experimentally validated
enhancers; (iii) analysis of putative enhancer-promoter interactions based on Virtual 4C.
Finally, verification of the regulatory elements, enhancer-promoter interactions, disrupted
genes should be further confirmed experimentally. For the convenience of the reader, the
overview of the clinical diagnosis workflow is also presented in Fig. 5.2.

5.5. Validation of TADeus2 gene ranking scheme

Comparison of TADeus2ranking schemes with ranking scheme pre-

sented in Mendoza et al.

Zepeda-Mendoza et al. (2017) analyzed 17 subjects with apparently balanced chromosomal
abnormalities with breakpoints in the non-coding regions (15 translocations and 2 inver-
sions). Using their second ranking scheme, they predicted 116 genes for exhibiting position
effects (15 genes as strong candidates and 101 genes as probable candidate). Second rank-
ing scheme will be used to validate TADeus2 ranking scheme that prioritize genes near
rearrangement breakpoint according to their clinical relevance.

TADeus2 ranking scheme was validated by analyzing chromosomal rearrangement pre-
sented in Zepeda-Mendoza et al. (2017). The method implemented in TADeus2 predicted
156 genes that may exhibit position effects (25 genes as strong candidates and 131 genes as
probable candidates). TADeus2 ranking and second ranking scheme from Zepeda-Mendoza
et al. (2017) predicted 113 common genes. Fig. 5.4 presents Venn diagram showing sets of
genes predicted as strong and probable candidates for exhibiting position effects by Zapeda-
Mendoza second ranking scheme and the TADeus2 ranking scheme.
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Figure 5.4: Venn diagram showing sets of candidate genes (CGs) predicted for exhibiting position effects by Zapeda-Mendoza
second ranking scheme and TADeus2 ranking scheme. Genes predicted by Zepeda-Mendoza second ranking scheme as strong
candidates are shown in yellow while probable candidates are shown in green. Genes predicted by TADeus2 ranking scheme as strong
candidates are shown in blue while probable candidates are show in red.

Validation of TADeus2 gene ranking scheme on data obtained from

the literature

In order to test TADeus2 accuracy a detailed search of literature was performed to find well-
described cases of position effects generated by SVs and CNVs. For each case, breakpoints,
clinical presentation and genes that according to authors contribute to the disease were col-
lected. A table ranking disease-causing putative genes close to the SV/CNV was generated
only for the chromosome where the disease causing gene was present. In total, 21 distinct
cases were found and used to validate the TADeus2 ranking method. For 18 (85,7%) cases,
the genes contributing to the disease were predicted as the strongest candidates (top scores
if compared to the rest of the genes localized on the same chromosome). In the remaining
3 (14,3%) cases, genes were predicted as the most probable candidates with lower scores.

5.6. Use-cases of TADeus2workflow in a clinical diagnosis

setting

Below we present in detail three selected cases from the set described above an one case of
position-effect in patient from Baylor College of Medicine clinical chromosomal microarray
database of 65,000 patient.
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Case 1 – Position effect in a balanced translocation neighbouring

FOXG1 gene.

Murcia Pienkowski et al. identified the exact structure of a balanced chromosomal translo-
cation (46,XX,t(6;14)(p25.1;q12)) in a patient with epileptic seizures and severe developmen-
tal delay (Pienkowski et al., 2019). The breakpoint on chromosome 6 disrupted theTXNDC5
gene in the second intron (chr6:7903201 hg38), while chromosome 14 was damaged in non-
coding DNA (chr14:29266318). TADeus2 ranking was used to establish genes that have
a higher probability of being responsible for the disease. On chromosome 6 the highest
score was assigned to gene FDSP. At the same time on chromosome 14 FOXG1 was chosen
as the gene with the highest probability to impact the phenotype.

Based on the clinical picture that the patient displayed we decided to conduct the next
steps of the analysis using data Hi-C from neural progenitor cells (NPC). The following
tracks have been added to the breakpoint view: Genes coloured by pLI score, Virtual 4C
for promoter regions (+/- 2.5 kb from transcription start site (TSS)) for DSP and FOXG1

and experimentally validated functional elements from NCBI database (Fig. 5.5). The re-
sult indicate that FOXG1 lost contact with 4 experimentally verified enhancers, while DSP
did not lose any, making FOXG1 the most probable cause of the disease (see the red box
in Fig. 5.5). Indeed, at least 11 translocations located in proximity of FOXG1 in patients
with Rett-like syndrome have been described. Furthermore, it has been proposed that loss
of only one active FOXG1 enhancer is not clinically relevant (Mehrjouy et al., 2018). This
is consistent with our results as the analyzed translocation leads to displacement of two
apparently important enhancers: hs433 and hs342; and two enhancers with unknown im-
pact on FOXG1: hs1168 and hs598. hs433 is thought to bring other enhancers into physical
contact with FOXG1 (Ibn-Salem et al., 2014), while hs342 is the main candidate for the reg-
ulation of FOXG1 expression (Mehrjouy et al., 2018). Overall, TADeus2 indicated correctly
the gene responsible for the disease as well as important regulatory elements that might
have been at the root of the patient phenotype. Importantly, further experimental inves-
tigation of cis-regulatory landscape encompassing FOXG1 might shed more light into the
etiology of the patients phenotype.

Case 2 – Position effect in an inversion accompanied with a deletion

located nearby DLX5 and DLX6 genes.

Kerry Brown et al. identified a paracentric inversion of the long arm of chromosome 7,
inv(7)(q21.3q35) in five patients with hearing loss and craniofacial defects (Brown et al.,
2010). The breakpoint in q21.3 (accompanied by a 5.1 kb deletion (chr7:96,935,329-96,940,443;
hg38)) is located within non-coding region, 65-80 kb away from DLX5and DLX6 genes,
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Figure 5.5: Analysis of a balanced translocation 46,XX,t(6;14)(p25.1;q12) in a patient with epileptic seizures and severe de-
velopmental delay. Visualization of the breakpoint fusion chromosome der(14) (A) and wild type chromosomes: chromosome 14 (B)
chromosome 6 (C). NPC Hi-C data was used to generate the chromatin architecture (top track). The figure contains the following tracks:
gene gnomAD pLI score (bottom track) in color-scale (0=blue and 1=red), virtual 4C for promoter regions (+/- 2.5 kb from TSS) for
FOXG1 and DSP and experimentally validated functional elements. The enhancers displaced by the translocation are marked with the
red rectangle.

while the 7q35 breakpoint disrupts the CNTNAP2 gene, between exon two and ten.

First, we used TADeus2 to analyze the potential role of 7q35 breakpoint in the molec-
ular etiology of hearing loss and craniofacial defects. Characterization of the chromatin
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architecture surrounding the breakpoint region revealed no genes within the TAD except
CNTNAP2 (Fig. 5.6a). However, the pLI score for CNTNAP2 was equal to zero, suggesting
that disruption of one copy of CNTNAP2 has a low probability of being responsible for the
abovementioned defects. Indeed, the spatiotemporal expression analysis of CNTNAP2 dur-
ing mouse embryonic development revealed no expression in the majority of tissues linked
to the patient’s phenotype (Brown et al., 2010). Moreover, the CNTNAP2-/- mice present
no abnormalities in craniofacial and inner ear development (Poliak et al., 2003). Therefore,
for further analysis we focused on the 7q21.3 breakpoint region.

The TADeus2 ranking list pointed DLX5 and DLX6 as genes with a high probability of
being responsible for these developmental abnormalities (top two genes with rank score:
300), with the pLI score equal to 0.2184 and 0.9213, respectively. Based on these results
we extended our analysis by implementing the TADeus2 browser tracks with: experimen-
tally validated functional elements from NCBI database and virtual 4C for DLX5 and DLX6

promoter regions (+/- 2.5 kb from TSS). Multiple enhancers are located within the genomic
region affected by the inversion, and in close 3D proximity withDLX5 andDLX6 promoters
(based on virtual 4C).

This suggests that the inversion might disrupt long-range contacts between six experi-
mentally validated enhancers (in the red rectangle) and promoters of DLX5 and DLX6, most
likely leading to a misregulation of these two genes (Fig. 5.6b)).

Importantly, DLX5 is expressed in the otic placode and vesicle (involved in formation
of inner ear vestibular structures), and in the semicircular canals of the inner ear (Merlo
et al., 2002b). Deletion of DLX5 and DLX6 leads to dysplastic ears and congenital deaf-
ness (Chromosome 7 Annotation Project, http://www.chr7.org), which is consistent with
the mouse phenotype. The DLX5 knockout as well as DLX5 and DLX6 double knockout
mice are characterized by the craniofacial malformations and abnormalities in the ear de-
velopment (Merlo et al., 2002b; Acampora et al., 1999; Merlo et al., 2002a). Collectively,
TADeus2 results align with literature results suggesting that changes in theDLX5 andDLX6
gene dosage caused by disruption of enhancer-promoter connections may lead to the pa-
tient phenotype.

Case 3 - Position effect on PLP1 may cause a subset of Pelizaeus-

Merzbacher disease symptoms

Pelizaeus-Merzbacher disease (PMD, MIM 312080) is an X linked recessive dysmyelination
disorder in which formation of meylin in the central nervous system is affected. PMD
typically manifests with nystagmus, spastic quadriplegia, ataxia, and developmental de-
lay. Mutation within the PLP1 gene are responsible for 15–20% of PMD cases. This gene
is triplosensitive and its duplications accounts for the majority of PMD cases (60–70%).
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Figure 5.6: Analysis of the inversion inv(7)(q21.3q35) linked to the craniofacial defects and hearing loss. (A) Visualisation of
the 7q35 breakpoint located between CNTNAP2 exon two and ten. Stem cell derived myoblasts were used to visualise the chromatin
architecture (top track) combined with gene gnomAD pLI score (bottom track) in color-scale (0=blue and 1=red). (B) Visualisation of
the breakpoint in q21.3 located centromeric to DLX5 and DLX6. The Hi-C data was used from stem cell derived myoblasts (top track),
followed by analysis of gene gnomAD pLI scores, and also cis-regulatory elements (middle tracks). The putative interactions between
DLX5, DLX6 promoters (+/- 2.5 kb from TSS) and non-coding DNA were investigated using Virtual 4C (bottom track). The enhancers
affected by inversion are marked with the red rectangle.

Therefore, position effect may by possible cause PMD in the remaining 10–25% of patients.

Muncke et al. (2004) reported a patient with a subset of the PMD symptoms, includ-
ing moderate intellectual disability and cerebellar ataxia associated with dysmyelination.
Patient and his unaffected mother carried an apparently balanced inversion with the break-
points in Xp22 and Xq22. The breakpoint on the short arm of the X chromosome does not
disrupt any gene and is unlikely to be causative as patient’s mother is unaffected. Thus, the
breakpoint on the long arm the chromosome X is probably responsible for the pathogenesis
as it cannot be compensated for in the male patient.

Physical mapping revealed that Xq22 breakpoint disrupts a putative pseudogeneGLRA4
and resides 70 Kb upstream to PLP1. The genomic region in the neighborhood of the break-
point is shown in Fig. 5.7. Muncke et al. (2004) excluded GLRA4 as a source of the dys-
myelination defect and suggested that position effect on PLP1 is causative for a subset of
PMD symptoms in the affected patient.

TADeus2 ranking was used to find the gene responsible for this pathogenesis. It in-
cluded 100 genes in the 3 Mb regions flanking the Xq22 breakpoint. PLP1 was the only
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Figure 5.7: Analysis of an inversion 46, XY, inv(X) (p22.3; q22) in a patient suffering from a subset of PMD symptoms
including moderate mental retardation. Visualization of±0.5Mb region flanking inversion breakpoint on Xq22 region. The precise
breakpoint site is located in the 70 Kb region downstream PLP1 and is depicted by two vertical red lines. The figure contains the following
tracks: (i) Hi-C data from GM12878 Human B-lymphoblastoids cell line, (ii) distant candidate enhancer–promoter interaction filtered to
those associated with PLP1 gene visualised as arcs, (iii) gene gnomAD pLI score in color-scale (0=blue and 1=red)

gene classified as a strong candidate for exhibiting position effect and 18 genes were pre-
dicted as probable candidates. PLP1 has a Clingen score of 3, indicating a sufficient evidence
for dosage pathogenicity. The rearrangement breakpoint disrupts 55 predicted enhancer–
promotes interactions, the distance from the rearrangement breakpoints is smaller than
1 Mb and has the assigned phenotypes in OMIM and HPO, thus PLP1 gets the highest pos-
sible score (4). The list of phenotypes associated with PLP1 displayed in the ranking table
includes Pelizaeus-Merzbacher disease.

Case 4 - Position effect on SLC7A7 in patient with de novomicrodele-

tion 14q11.2

We queried the Baylor College of Medicine clinical chromosomal microarray database of
65,000 patients and identified 11 CNVs in nine patients that do not overlap any protein-
coding sequence.

Patientwith familial thrombocytopenia and leukemia in ChromosomalMicroarrayAnal-
ysis (CMA) revealed a deletion within chromosome band 14q11.2 spanning approximately
0.448 Mb. The presence of smaller 0.04 Mb interval within the 0.448 Mb loss indicated a ho-
mozygous deletion. Fig. 5.8 shows a ±0.8 Mb neighborhood of that SVs.

TADeus2 has been used to rank the genes near the breakpoints of this rearrangement
according to their potential for exhibiting position effects. SLC7A7 is the highest ranked
gene and it gets the highest possible score as it fulfills all the criteria used in the ranking
scheme for gene evaluation: its ClinGen haploinsufficiency score is 30 indicating associ-
ation with autosomal recessive phenotype, the rearrangement breakpoints disrupt 28 pu-
tative enhancer-promoter interactions, the distance from the gene to the rearrangement
breakpoint is 340,742 bases, and the gene has associated phenotypes in OMIM and HPO.
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Figure 5.8: Analysis of de novo microdeletion del(14)(q11.2) in a patient suffering from familial thrombocytopenia and
leukemia Visualization of region flanking deletions located centromeric to SLC7A7 gene. The breakpoints of 0.448 Mb deletion are
visualised as vertical black lines and smaller internal 0.04 Mb deletion as red lines. The figure contains the following tracks: (i) Hi-C
data from GM12878 Human B-lymphoblastoids cell line, (ii) distant candidate enhancer–promoter interaction filtered to those associated
with SLC7A7 gene visualised as arcs, (iii) gene gnomAD pLI score in color-scale (0=blue and 1=red), (iv) DNase I Hypersensitivity Signal
from Encode, (v) genes from BIOMART database.

Table 5.2 shows genes in 3 Mb neighborhood of deletion that are predicted as strong or
probable candidates for exhibiting position effects.

SLC7A7 is associated with lysinuric protein intolerance (LPI, MIM #222700) that is
caused by homozygous or compound heterozygous mutation of that gene. LPI is associated
with a variety of clinical symptoms, including hematologic abnormalities like thrombocy-
topenia. One of the phenotypes in HPO associated with SLC7A7 is thrombocytopenia and
it consistent with patient phenotype.

It should be noted that smaller homozygous deletion includes the T-cell receptor alpha
gene cluster. Heterozygous copy number changes in this region are common polymorphic
findings. Clinical significance of this subregion, which includes the TRDC (T-cell receptor
delta chain C region) is currently not clear. The DECIPHER patient (338650) with a similar
homozygous deletion has T-cell acute lymphoblastic leukemia.
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5.7. TADeus2 web server implementation and functional-

ity

TADeus2 can serve as a genome browser that display Hi-C matrices in conjunction with di-
verse genomic assays outputs. The user can create a plot and add tracks using the preloaded
public data or its own datasets. Currently, TADeus2 allows users to upload the genomic data
in BED (BED3, BED6, BED9 and BED12) and BEDGraph format.

Intrachromosomal interaction matrices are visualized with the upper triangle rotated
by 45 degrees with bins aligned to the corresponding chromosomal coordinates. Addition-
ally TADs can be plotted as triangles on such rotated heatmap. TADeus2 can visualize one
dimensional discrete genomic features, such as genes, enhances or SVs as tiles. Data repre-
senting genes (in BED12 format) can be displayed in flybase format or in format that shows
introns. Data from 3C, ChIA-Pet experiments or enhancer-promoter pairs can be visualized
as arcs whereas domains as triangles. To emphasize some important genomic loci, the user
can provide the coordinates that will be marked by the vertical dashed lines.

Breakpoint mode - innovative genome browser functionality

TADeus2 genome browser provides innovative breakpointmode for visualizing region flank-
ing rearrangement locus as continuous fragment (Fig. 5.9). Additionally, in this mode, wild-
type regions can be displayed to show the entire view of regions that were fused by the
rearrangement enabling exploring genomic features that were perturbed by the rearrange-
ment. Intuitive interface enables setting the coordinates and direction of fused regions,
resize the visualized region, and shift the rearrangement breakpoint from the center of the
plot to either side. Notably, to date, there is no genome browser with such functionality
(Table 5.1).

Implementation and architecture of TADeus2 web server

TADeus2 is implemented as a Django application using MySQL database as data storage.
Fragments of code from HiCExplorer (Ramírez et al., 2018) are reused in the track plot
module. All the presented command-line tools (e.g TADA, classifyCNV) incorporated in
TADeus2 are accompanied with a responsive and user-friendly graphical interface devel-
oped with Bootstrap v4. Additionally, JavaScript snippets enable customization of forms
and export of any user-defined plots that are produced using the pythonmatplotlib package.
Finally, TADeus2 provides the rest-API that can be utilized by external applications.
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Figure 5.9: User interface of breakpoint mode of TADeus2 genome browser. Figure presents the user interface of the genome
browser in breakpoint mode. At the top, a panel for defining the coordinates and directions of fused regions together with the properties
of visualized regions is shown. Widgets from panel enable resizing the shown region, shifting the rearrangement breakpoint from the
center of the plot, and customizing the wild-type options. Below, three tracks showing genomic data from the region defined using the
user interface are shown. The top track presents a fused rearranged region. As the “shift” number field from the user interface panel
is set to the negative value (-200,000), the breakpoint (red vertical line) is moved to the left side, so the region of the right fused strand
takes slightly more space than the left one. The middle and bottom tracks present entire wild-type regions enabling the user to inspect
their genomic features extended beyond the rearrangement breakpoint.

Available experimental data

Currently, TADeus2 allows the user to upload genomic data in BED and BEDGraph format.
The user is also provided with over 30 preloaded, publicly available datasets described in
detail at https://tadeus2.mimuw.edu.pl/datasources/.

Web server instance and code availability

TADeus2 is publicly available at https://tadeus2.mimuw.edu.pl. Detailed tutorial, help pages,
short videos presenting functionality of application, and a FAQ section are provided. The
tool is free and open to all users and there is no login requirement. TADeus2 source code
and installation instructions are available at https://github.com/bposzewiecka/tadeus2. The
software is distributed under a GNU General Public License v3.0.

5.8. Conclusions

In this chapter, we presented TADeus2 web server with all its features. The tool is an on-
line solution for visualization and analysis of SVs and CNVs in the context of chromatin
conformation. Thanks to an easy to use and user-friendly interface, TADeus2 is suitable as
a handful framework for preliminary clinical diagnosis of patients for non-bioinformatician
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experts.
The future directions for the improvement of the web server include additional expan-

sions of the breakpoint view that would allow the view of more breakpoint coordinates
at once (particularly useful for visualisation of inversions, duplications, and complex re-
arrangements i.e. chromothripsis). In addition, we plan to implement a functionality that
provides a visualization of chromatin conformation in 3D.

Moreover, to predict the TAD structure affected by the SVs, Akita software (Fuden-
berg et al., 2020) will be used to generate a new Hi-C matrix for the rearranged TAD. This
functionality is currently under development, with a beta version available for the user.
Furthermore, the statistical modeling of chromatin organization disorders caused by struc-
tural variants will be further developed to achieve higher accuracy in its assessment. Lastly,
we state that TADeus2 will benefit from regular updates using the wealth of data publicly
available.
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TADeus2 X X X X X X X X X

3D Genome Browser1

(Wang et al., 2018)
X X X X X X2

3DIV3

(Yang et al., 2018)
X X X X X

HiGlass
(Kerpedjiev et al., 2018)

X X X X

Juicebox
(Durand et al., 2016)

X X X

WashU Epigenome
Browser
(Li et al., 2019)

X X

HUGIN
(Martin et al., 2017)

X X X

3Disease Browser
(Li et al., 2016)

X X

Table 5.1: Listing of all available tools that provide similar functionalities to TADeus2 regarding typical clinical use cases, TAD analysis
and breakpoint viewing.
1 Inter-chromosomal interaction mode is regarded as breakpoint mode for comparisons.
2 As UCSC or WashU session link.
3 Complex SV and 3D genome view is regarded as breakpoint mode for comparisons.
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Table 5.2: Ranking of genes within 3 Mb neighborhood of rearrangement breakpoint 14q11.2(22901689-22942482) predicted as strong
or probable candidates for exhibiting position effect

Gene
symbol

pLI ClinGen Enhancer–
promoter
interaction
number

Distance
from
breakpoints

Phenotypes
in OMIM
or HPO

Rank

SLC7A7 0.0021 30 28 340,742 Yes 4

CEBPE 0.0024 30 0 646,343 Yes 3

MRPL52 0.0001 NA 12 361,764 No 2

LRP10 0.0002 NA 10 408,307 No 2

PRMT5 0.9948 NA 8 456,312 No 2

OXA1L 0.0000 NA 5 298,525 No 2

DAD1 0.2765 NA 3 115,693 No 2

ABHD4 0.0001 NA 2 138,783 No 2

OR6E1P NA NA 2 229,792 No 2

TRAC NA NA 0 78,615 Yes 2

MMP14 0.9871 NA 0 375,754 Yes 2

PABPN1 0.5998 NA 0 852,912 Yes 2

SALL2 0.0000 NA 0 912,457 Yes 2

MYH6 0.0000 NA 0 935,004 Yes 2

MYH7 0.0001 0 0 962,445 Yes 2

RPGRIP1 0.0000 30 0 1,123,022 Yes 2

TGM1 0.0000 30 0 1,791,156 Yes 2

PNP 0.0656 30 0 1,964,576 Yes 2
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6
Conclusions and future research

“Zniknął za rogiem

I przepadł jak szyszka

Ale nie płaczmy, bo

Ale nie płaczmy, bo

Nie o to chodzi by złowić króliczka,

Ale by gonić go,

Ale by gonić go,

Ale by gonić go!”
— Agnieszka Osiecka ,“Króliczek”

This dissertation encompasses various approaches to investigate genome ar-
chitecture, primarily focusing on the detection and interpretation of chromo-
somal rearrangements while also exploring their contribution to evolutionary
history.

A significant contribution of this research is the introduction of an innovative approach
for the local assembly of regions enriched in segmental duplications. This algorithm follows
a novel bottom-up paradigm for constructing contigs. The successful application of this tool
in reconstructing selected chimpanzee subtelomeres has led to the formulation of a valu-
able hypothesis concerning the impact of the ancestral fusion event on human evolution.
Furthermore, an improved method for estimating the temporal scope of major evolutionary
eventswas introduced. Thismethod, alongwith its new application in estimating speciation
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events, offers enhanced accuracy in understanding the timeline of evolutionary processes.
Additionally, a procedure for enumerating all possible scenarios of complex chromosomal
rearrangements was presented. This method proved valuable in the analysis of structural
alterations in a patient harboring such rearrangements, providing insights into the under-
lying mechanisms of their formation. Lastly, a web service was developed to facilitate the
clinical evaluation of changes in genome architecture caused by structural variants. This
software introduces a novel genome browser that provides a unique visualization perspec-
tive on genomic features from the vantage point of rearrangement breakpoints. Overall,
this dissertation presents a comprehensive exploration of genome architecture, unveiling
new methodologies and tools that contribute to our understanding of chromosomal rear-
rangements and their significance in both evolutionary and clinical contexts.

Based on the work presented in this dissertation and the interdisciplinary nature of this
research, there are several potential avenues for future exploration that can contribute to
both the field of algorithmics and clinical applications.

Firstly, future work could involve refining and expanding the algorithmic approaches
for detecting and interpreting chromosomal rearrangements. By incorporating advanced
machine learning techniques and leveraging large-scale genomic datasets, we can aim to
enhance the accuracy and efficiency of structural variant analysis. Such advancements
would not only benefit the algorithmics field but also have direct implications for clinical
applications, improving the detection and understanding of genomic changes associated
with structural variants in patients and their impact on phenotypic traits.

Furthermore, there is an opportunity to explore the evolutionary implications of chro-
mosomal rearrangements in a broader range of species. By studying the impact of rear-
rangements in diverse organisms and their subsequent effects on speciation events, we can
gain a deeper understanding of the evolutionary dynamics underlying genomic architec-
ture. Combining genomics and evolutionary biology can provide valuable insights into the
role of rearrangements in shaping species divergence and adaptation.

Additionally, the development of the web service introduced in this dissertation opens
up avenues for further improvement and expansion. Future work could involve incorporat-
ing additional features into the service, such as predictive modeling of disease risk based on
structural variants. Integrating population-level data into the analysis can provide a more
comprehensive understanding of the prevalence and impact of rearrangements in different
populations. Furthermore, the inclusion of interpretability tools can aid clinicians in effec-
tively comprehending and communicating the implications of genomic changes associated
with rearrangements, ultimately benefiting clinical decision-making and patient care.

By pursuing these directions for future research, the interdisciplinary nature of this
work can continue to yield significant contributions to both algorithmics and clinical ap-
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plications. The integration of advanced algorithms, evolutionary insights, and clinical rel-
evance holds the potential to revolutionize personalized medicine, improve diagnostic ca-
pabilities, and enhance patient outcomes.
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