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Abstract

This work is devoted to lower bounds on running time under strong complexity
assumptions. We prove that under the Exponential Time Hypothesis there is no
algorithm working in time

• 2o(n logn) (times a polynomial in the bit size) for Channel Assignment,

• 2o(n
√

logn) for Subgraph Isomorphism,

• 2o(n
3/2) for Rainbow k-Coloring (for any k ≥ 2),

• f(b) · 2o(log b)·n for (a:b)-coloring (for any computable f(b)),

• O∗(2o(d log d)) for Minimax Approval Voting.

This in particular exclude the existence of algorithms solving these problems in time
O∗(cn) (or O∗(cd) in the case of Minimax Approval Voting) for any constant
c. Moreover in the cases of Channel Assignment, (a:b)-coloring and Mini-
max Approval Voting our lower bounds are tight, showing that currently known
algorithms are optimal (unless ETH fails).

We also give a lower bound of a different flavor. We show that improving over
the best known algorithm for 4-OPT Detection (a problem related to Traveling
Salesman Problem), would imply an improvement for All Pairs Shortest Paths.

Keywords: Lower Bounds, Fine Grained Complexity, Exponential Time Hypothesis.
ACM Classification: F.2.2.
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Chapter 1

Introduction

We would like to be able to quickly solve combinatorial problems that appear in theory
or in the real life. However for many of them we do not know efficient algorithms.
Therefore the question arises: is it because it is generally impossible or maybe just
we do not know appropriate tools yet? In order to answer this question we need
to understand the reason of the hardness of the particular problem. One approach
to investigate it is to reduce another, perhaps more familiar, problem to our target
problem. Such a reduction shows that the target problem has enough expressive
power to capture the hardness of the source problem. If the reduced instance is
concise enough we can usually derive interesting conclusions about the dependency
between the time complexities of these two problems.

This approach is commonly used for NP-hard problems. For example, one can
reduce an n-variable instance of 3-CNF-SAT to an equivalent nO(1)-vertex instance
of 3-Coloring and the reduction algorithm works in polynomial time. There are
two ways of looking at the consequences of this reduction. First, it means that if
P 6= NP then 3-Coloring has no polynomial time algorithm. However, even if we
do not believe that P 6= NP the reduction carries an important message: instead of
working on a polynomial time algorithm for 3-Coloring one should rather focus on
the structurally simpler 3-CNF-SAT.

In this thesis we investigate reductions that are more constrained than the classic
polynomial reductions. For example one can observe that the classic reduction from
3-CNF-SAT to 3-Coloring transforms an input formula ϕ into an O(|ϕ|)-vertex
graph, i.e., the size of the output instance is not only polynomial but even linear.
This means that a 2o(n)-algorithm for 3-Coloring implies a 2o(|ϕ|) algorithm for
3-CNF-SAT. Again we can interpret this in two ways. First, it is a hint for the
researchers to study rather 3-CNF-SAT directly than try to improve the algorithm
for 3-Coloring, that captures the full power of 3-CNF-SAT in more convoluted
way. On the other hand, if one believes that no 2o(|ϕ|) algorithm for 3-CNF-SAT
exists it means there is no hope for 2o(n) algorithm for 3-Coloring. This belief can
be captured as a hypothesis, which strengthens P 6= NP, and says that 3-CNF-SAT
has no 2o(|ϕ|)-time algorithm. Actually, Impagliazzo, Paturi and Zane [76, 77] show
that it is equivalent to assume a slightly weaker claim as follows.
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Hypothesis 1 (Exponential Time Hypothesis (ETH) [76]). There exists a constant
c > 0, such that there is no deterministic algorithm solving 3-CNF-SAT in time
O∗(2cn).1

By now ETH became one of standard assumptions for proving lower bounds
(see [102] for a survey).

As discussed above, a linear reduction from 3-CNF-SAT to 3-Coloring shows
that the known O(1.33n)-time algorithm for 3-Coloring [10] is essentially optimal
(up to constants). The same situation holds for many NP-complete graph problems,
i.e., we know algorithms running in time 2O(n), and this is tight under ETH. This is
obviously the case for problems asking for a set of vertices, like Clique or Vertex
Cover, or more generally, for problems which admit polynomially (or even subexpo-
nentially) checkable O(n)-bit certificates. But there are 2O(n)-time algorithms also for
some problems for which such certificates are not known, including e.g., Hamiltonic-
ity [71] and Graph Coloring [90]. However, for some problems 2O(n) algorithms
are not known, for example the Channel Assignment problem, which is a gener-
alization of Graph Coloring, where every edge uv of the graph comes with integer
weight w, which means that the colors of u and v must differ by at least w. The best
known algorithm for Channel Assignment works in 2O(n logn) time. How can we
prove it is tight?

For example this thesis contains a reduction from 3-CNF-SAT to Channel As-
signment which transforms an instance of 3-CNF-SAT with n variables (and O(n)
clauses, which will be explained later) into an instance of Channel Assignment of
size O(n/ log n). This compression is an important feature of our reduction and it is
different than in the case of many classic reductions for showing NP-hardness. As a
corollary, a hypothetical 2o(n logn)-time algorithm for Channel Assignment would
imply a 2o(n)-time algorithm for 3-CNF-SAT. If we assume the Exponential Time
Hypothesis (ETH) then we obtain that Channel Assignment cannot be solved in
time 2o(n logn) and the currently known algorithm is essentially optimal. It is worth
to note that even though our reduction works in polynomial time it could work as
well in arbitrarily large time complexity that is in 2o(n) and still composed with a
2o(n logn)-time algorithm for Channel Assignment it would solve 3-CNF-SAT in
time 2o(n).

In this thesis we mostly focus on such instance-compressing reductions which
exclude 2O(n) algorithms. By studying these dependencies we try to discover the
underlying structure of hardness among NP-complete problems. This young subfield,
living on the border of algorithmics and complexity theory, is known under the name
of Fine Grained Complexity.

Let us mention also a stronger version of ETH called Strong Exponential Time
Hypothesis (SETH) [76, 77] that says that for every ε < 1 there exists k > 3 such
that k-CNF-SAT cannot be solved in time O∗(2εn). Indeed, an algorithm refuting
even this stronger version would be a breakthrough. SETH can be useful for example
if one cares about the multiplicative constant in the exponent, i.e., if one’s goal is to

1The O∗ notation suppresses factors polynomial in the input size.
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prove a lower bound for some problem that would be of the form Ω∗(2cn) for some
particular value of c > 0.

Although we will not spend much time on the polynomial-time problems in this
dissertation it is worth to mention that the landscape of the fine grained complexity
for the problems that are solvable in polynomial time is also very interesting. We have
three main assumptions that are used for showing polynomial-time lower bounds:

• the already mentioned Strong Exponential Time Hypothesis (SETH),

• APSP assumption, that states that All Pairs Shortest Paths cannot be
solved in time O(n3−δ(logM)O(1)) for any δ > 0, and

• 3SUM assumption, that states that 3SUM cannot be solved in time O(n2−δ)
for any δ > 0.

One may be surprised by seeing SETH on this list as the statement of SETH regards
exponential time complexity of k-CNF-SAT. However there is a reduction from k-
CNF-SAT to Orthogonal Vectors that gives a polynomial-time lower bound for
Orthogonal Vectors under the assumption of SETH [131]. In consequence, fur-
ther reductions can possibly start from Orthogonal Vectors instead of starting
directly from k-CNF-SAT. A famous result from 2014 by Backurs and Indyk says
that Edit Distance cannot be solved in time O(n2−δ) for any δ > 0 unless SETH
fails [9]. The second assumption is connected to the class of polynomial-time solvable
problems called a class of subcubic equivalence to All Pairs Shortest Paths
(APSP) [132, 3]. In this class either each of the problems has a O(n3−δ(logM)O(1))-
time algorithm for some δ > 0 depending on the problem, or none of them has.
A notable member of this class of problems is Negative Edge-Weighted Tri-
angle [132] because it is very convenient starting point for the further reductions.
Also the last of these three assumptions implies a number of polynomial-time lower
bounds [61]. The most natural question is about possible dependencies between these
three assumptions. Does one of the assumptions imply one of the others? In 2016
Carmosino, Gao, Impagliazzo, Mihajlin, Paturi and Schneider showed that under
NSETH (co-nondeterministic version of SETH) such reductions from k-CNF-SAT
to APSP or to 3SUM cannot exist [20]. While NSETH may or may not be true,
this is certainly an obstacle showing that proving these two dependencies (if they do
exist) can be hard. Another approach to connect somehow these three assumptions
is to find a problem such that if any of the the (preferably) three assumptions is
true then this intermediate problem is also hard. An example of such a problem that
merges two different assumptions, namely APSP and 3SUM, is Zero Weight Tri-
angle [120, 132] and for merging all the three assumptions we have Single Source
Flow and Triangle Collection [4].

In this dissertation we present a few examples of ETH based lower bounds and also
one example of a reduction from All Pairs Shortest Paths to a polynomial-time
problem.
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1.1 Organization of the dissertation

In Section 1.2 of the introduction we introduce the problems considered in this dis-
sertation, discuss the related work and state our results. In Chapter 2 we present the
common preliminaries and notation. Each of the chapters 3-8 corresponds to one of
the considered problems.

1.2 Considered problems

1.2.1 Channel Assignment

Assume that we are given a symmetric weight function w : V 2 → N (we assume that
0 ∈ N). The elements of V will be called vertices (as w induces a graph on the vertex
set V with edges corresponding to positive values of w). We say that w is `-bounded
when for every x, y ∈ V we have w(x, y) ≤ `. An assignment c : V → Z is called
proper when for each pair of vertices x, y we have |c(x)− c(y)| ≥ w(x, y). The number
(maxv∈V c(v)−minv∈V c(v) + 1) is called the span of c.

Channel Assignment
Input: w : V 2 → N, s ∈ N
Question: Is there a proper assignment of span at most s?

In the optimization version of the problem the goal is to find an assignment of
minimum span.

Note that the special case when w is 1-bounded corresponds to the classical
graph coloring problem. It is therefore natural to associate the instance of the
channel assignment problem with an edge-weighted graph G = (V,E) where E =
{uv : w(u, v) > 0} with edge weights wE : E → N such that wE(xy) = w(x, y) for
every xy ∈ E (in what follows we abuse the notation slightly and use the same letter
w for both the function defined on V 2 and E). The minimum span is called also the
span of (G,w) and denoted by span(G,w).

It is interesting to realize the place of Channel Assignment in a hierarchy of
constraint satisfaction problems. We have already seen that it is a generalization of the
classical graph coloring. It is also a special case of the constraint satisfaction problem
(CSP). In CSP, we are given a vertex set V, a constraint set C and a number of colors
d. Each constraint is a set of pairs of the form (v, t) where v ∈ V and t ∈ {1, . . . , d} .
An assignment c : V → {1, . . . , d} is proper if every constraint A ∈ C is satisfied, i.e.,
there exists (v, t) ∈ A such that c(v) 6= t. The goal is to determine whether there is
a proper assignment. Note that Channel Assignment corresponds to CSP where
d is equal to the maximum allowed span and every edge uv of weight w(uv) in the
instance of Channel Assignment corresponds to the set of all constraints of the
form {(u, t1), (v, t2)} where |t1 − t2| < w(uv).

In the general (unbounded) case of Channel Assignment the best known al-
gorithm runs in O∗(n!) time, where n is the number of the vertices (see McDi-
armid [114]). However, there has been some progress on the `-bounded variant.
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McDiarmid [114] came up with an O∗((2`+ 1)n)-time algorithm which has been next
improved by Král [85] to O∗((` + 2)n), further to O∗((` + 1)n) by Cygan and Kowa-
lik [42] and to O∗((2

√
`+ 1)n) by Kowalik and Socała [84]. These are all dynamic

programming (and hence exponential space) algorithms. The last but one applies the
fast zeta transform to get a minor speed-up and the last one uses the meet-in-the-
middle approach. Interestingly, all these works show also algorithms which count all
proper assignments of span at most s within the same running time (up to polynomial
factors) as the decision algorithm.

Since graph coloring is solvable in time O∗(2n) [12] it is natural to ask whether
Channel Assignment is solvable in time O∗(cn), for some constant c. It was an
open problem (see [85, 42, 75]) to find such a O(cn)-time algorithm for c independent
of ` or prove that it does not exist under a reasonable complexity assumption. The
problem mentioned above becomes even more interesting when we realize that under
ETH, CSP does not have a O∗(cn)-time algorithm for a constant c independent of d,
as proved by Traxler [128].

Our Results. The main result contained in Chapter 3 is a proof that Channel
Assignment does not admit a O(cn)-time algorithm for any constant c under the
ETH assumption. By applying a sequence of reductions (see Figure 1.1) starting
in 3-CNF-SAT and ending in Channel Assignment we were able to solve the
mentioned open problem regarding the hypothetical O∗(cn)-time algorithm solving
Channel Assignment for any constant c and to show the following theorem.

Theorem 1. Unless ETH fails, there is no algorithm solving Channel Assignment
in time 2o(n logn) · rO(1) where n is the number of the vertices and r is the bit size of
the instance.

Recall that the currently best known algorithm works in time O∗(n!) = 2O(n logn),
so our lower bound is tight.

In order to get the lower bound we show that in polynomial time one can transform
an instance of 3-CNF-SAT with n variables into an instance of our target problem
with O

(
n

logn

)
vertices. Then a 2o(n logn)-time algorithm for our target problem would

imply a 2o(n)-time algorithm for 3-CNF-SAT which contradicts the ETH. However
such reductions which compress the size of the instance from O(n) to e.g. O

(
n

logn

)
are very rare (for more examples of sublinear reductions see: [47], [101], [103]). As
shown in Figure 1.1 we do this for the problem Equal Weight Matchings defined
as follows:

Equal Weight Matchings
Input: Two complete weighted bipartite graphs G1 = (V1 ∪ W1, E, w1) and
G2 = (V2∪W2, E, w2) such that |V1| = |W1| and |V2| = |W2| . The weight functions
w1, w2 have nonnegative integer values.
Question: Are there two perfect matchings M1 in G1 and M2 in G2 such that
w1 (M1) = w2 (M2)?

9



3-CNF-
SAT
O(n)

→
Family In-
tersection

O(n)
→

Equal Weight
Matchings
O
(

n
logn

) →
Channel

Assignment
O
(

n
logn

)
Figure 1.1: The sequence of the used reductions and the size of the instance.
The compression follows between Family Intersection and Equal Weight
Matchings. While the definition of Family Intersection is rather technical
the Equal Weight Matchings problem is quite natural and it can be used as
a generic problem without 2o(n logn)-time algorithm.

Theorem 2. Unless ETH fails, there is no algorithm solving Equal Weight Match-
ings in time 2o(n logn) · rO(1) where n is the total number of vertices, and r is the bit
size of the input.

Note that in order to show that a new problem P does not admit a 2o(n logn)-time
algorithm it suffices to give a reduction that preserves the size of the instance (up
to the big-O notation) from Equal Weight Matchings to P. We showed such a
reduction for Channel Assignment and we hope that the same thing can also be
done for other problems.

1.2.2 Subgraph Isomorphism

Perhaps the most basic relation between graphs is that of being a subgraph. We
say that G is a subgraph of H if one can remove some edges and vertices of H, so
that what remains is isomorphic to G. Formally, the question of one graph being a
subgraph of another is the base of the Subgraph Isomorphism problem.

Subgraph Isomorphism
Input: Undirected graphs G, H.
Question: Is G a subgraph of H, i.e., does there exist an injective function
g : V (G)→ V (H), such that for each edge uv ∈ E(G) we have g(u)g(v) ∈ E(H)?

Subgraph Isomorphism is an important and very general question, having the
form of a pattern matching – we will call G the pattern graph and H the host graph.
Observe that several flagship graph problems can be viewed as instances of Subgraph
Isomorphism:

• Hamiltonian: is Cn (a cycle with n vertices) a subgraph of G?

• Clique: is Kk a subgraph of G?

• 3-Coloring: is G a subgraph of Kn,n,n, a complete tripartite graph with n
vertices in each of its three independent sets?

• VertexCover: is G a subgraph of H, H being a full join between a clique of
size k and an independent set of size n− k?
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One can continue showing the richness of Subgraph Isomorphism by simple linear
reductions from Bandwidth, Set Packing and several other problems.

All of the mentioned problems are NP-complete, and the best known algorithms
for all the listed special cases work in exponential time. In fact, all those problems
are well-studied from the exact exponential algorithms perspective [10, 11, 12, 14, 46],
where the goal is to obtain an algorithm of running time O(cn) for smallest possible
value of c. Furthermore, the Subgraph Isomorphism problem was very extensively
studied from the viewpoint of fixed parameter tractability2, see [112] for a discussion of
19 different parametrizations. All the mentioned special cases of Subgraph Isomor-
phism admit O(cn) time algorithms, by using either branching, inclusion-exclusion
principle or dynamic programming. On the other hand, a simple exhaustive search
for the Subgraph Isomorphism problem – numerating all possible mappings from
the pattern graph to the host graph – runs in 2O(n logn) time, where n is the total
number of vertices of the host graph and pattern graph.

Therefore, a natural question is whether Subgraph Isomorphism admits an
O(cn) time algorithm. This was repeatedly posed as an open problem [1, 5, 55, 56, 75].
In particular, Fomin and Kratsch in their monograph [59] put the existence of O(cn)
time algorithm for Subgraph Isomorphism among the few questions in the open
problems section.

Our results and techniques The first result of Chapter 4 is a self-contained
reduction which transforms a 3-CNF-SAT formula into a subexponential number
of sublinear instances of the Subgraph Isomorphism problem. It results in the
following theorem.

Theorem 3. There is no algorithm which solves Subgraph Isomorphism in time
2o(n

√
logn), unless the Exponential Time Hypothesis fails.

Graph Homomorphism has a similar definition to Subgraph Isomorphism,
except that the mapping is not constrained to be injective (i.e., in a homomorphism
many vertices of the pattern graph may be mapped to the same vertex of the host
graph). One could think that Graph Homomorphism is a harder problem than
Subgraph Isomorphism. For example Amini, Fomin and Saurabh [5] and Curt-
icapean, Dell and Marx [37] have shown that counting subgraphs can be reduced to
counting homomorphisms.

Our second result is a simple reduction, which given an instance of Graph Ho-
momorphism produces a single exponential number of instances of Subgraph Iso-
morphism. Even though from the perspective of polynomial time algorithms such a
reduction gives no implication in terms of which problem is harder, in our setting it
is enough to obtain a lower bound for Subgraph Isomorphism. The proof of the
following theorem is based on a simple scheme of guessing preimage sizes, an idea
used also in the proof of Theorem 3.

2For more on FPT algorithms see the textbook of Cygan et al. [41].
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Theorem 4. Given an instance (G,H) of Graph Homomorphism one can in
O(2nnO(1)) time create 2n instances of Subgraph Isomorphism with n vertices,
where n = |V (G)|+ |V (H)|, such that (G,H) is a yes-instance iff at least one of the
created instances of Subgraph Isomorphism is a yes-instance.

The theorem above becomes particularly interesting in connection with the fol-
lowing theorem of Fomin, Golovnev, Kulikov and Mihajlin [57] (published finally
in the merged article of Cygan, Fomin, Golovnev, Kulikov, Mihajlin, Pachocki and
Socała [38, 40]).

Theorem 5 ([57, 38]). Let G be an n-vertex graph and H be an h := h(n)-vertex
graph. Unless ETH fails, for any constant D ≥ 1 there exists a constant c = c(D) > 0
such that for any function 3 ≤ h(n) ≤ nD, there is no O (hcn) time algorithm deciding
whether there is a homomorphism from G to H.

Theorem 4 combined with Theorem 5 implies a tight lower bound for Subgraph
Isomorphism.

Theorem 6. There is no algorithm which solves Subgraph Isomorphism in time
2o(n logn), unless the Exponential Time Hypothesis fails.

1.2.3 Rainbow k-Coloring

Consider an undirected graph G = (V,E) and an arbitrary function c : E → {1, ..., k}
called coloring. A path with all edges of different colors is called a rainbow path. We
say that c is a rainbow coloring if every pair of vertices is connected by a rainbow
path. A minimum such k, called the rainbow connection number can be viewed as
yet another measure of graph connectivity. The concept of rainbow coloring was in-
troduced by Chartrand, Johns, McKeon, and Zhang [28] in 2008, while also featured
in an earlier book of Chartrand and Zhang [29]. Chakraborty, Fischer, Matsliah,
and Yuster [22] describe an interesting application of rainbow coloring in telecom-
munications. The problem is intensively studied from the combinatorial perspective,
with over 100 papers published by now (see the survey of Li, Shi, and Sun [95] for
an overview). In this dissertation we focus on the computational complexity of the
following decision problem.

Rainbow k-Coloring
Input: G = (V,E), k
Question: Does G have the rainbow connection number at most k?

It was conjectured by Caro, Lev, Roditty, Tuza, and Yuster [21] that the Rain-
bow k-Coloring problem is NP-complete for k = 2. This conjecture was confirmed
by Chakraborty et al. [22]. Ananth, Nasre, and Sarpatwar [6] noticed that the proof
of Chakraborty et al. in fact proves NP-completeness for every even k > 1, and com-
plemented this by showing NP-completeness of the odd cases as well. An alternative
hardness proof for every k > 1 was provided by Le and Tuza [91]. For complexity
results on restricted graph classes, see e.g., [25, 26, 27, 51].
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Unfortunately it seems that the best known worst-case running time bound for
Rainbow k-Coloring is km2knO(1), where m is the number of edges, which is
obtained by checking each of the km colorings by a simple 2knO(1)-time dynamic
programming algorithm [129]. Even in the simplest variant of just two colors, i.e.,
k = 2, this algorithm takes 2O(n2) time if the input graph is dense. Note that this
algorithm is much slower than algorithms for many NP-complete problems such as
Hamiltonicity, Subgraph Isomorphism or Channel Assignment.

Main Result. Our main result concerning rainbow coloring is the following theorem.

Theorem 7. For any k ≥ 2, Rainbow k-Coloring can be solved neither in 2o(n
3/2)

nor 2o(m/ logm) time where n and m are the number of vertices and edges respectively,
unless ETH fails.

Hence, this is an NP-complete graph problem which does not admit a 2o(n
c)-time

algorithm (under reasonable complexity assumptions), for a constant c > 1. Such
lower bounds are fairly rare in the literature.

In Chapter 5 we also study a natural generalized problem, called Subset Rain-
bow k-Coloring, introduced by Chakraborty et al. [22] as a natural intermediate
step in reductions from 3-CNF-SAT to Rainbow k-Coloring. In Subset Rain-
bow k-Coloring, we are given a connected graph G, and a set of pairs of vertices
S ⊆

(
V (G)

2

)
. Elements of S are called requests. For a given coloring of E(G) we say

that a request {u, v} is satisfied if u and v are connected by a rainbow path. The goal
in Subset Rainbow k-Coloring is to determine whether there is a k-coloring of
E(G) such that every pair in S is satisfied. Theorem 7 implies that Subset Rainbow
k-Coloring admits no algorithm running in time 2o(n

3/2), under ETH. We show also
two more lower bounds, as follows.

Theorem 8. For any k ≥ 2, Subset Rainbow k-Coloring can be solved neither
in time 2o(n

3/2), nor in time 2o(m), nor in time 2o(s) where n is the number of vertices,
m is the number of edges, and s is the number of requests, unless ETH fails.

An interesting feature here is that for k = 2 the 2o(m) and 2o(s) bounds are tight
up to a polynomial factor (a 2mnO(1) algorithm is immediate, and a 2|S|nO(1)-time
algorithm is discussed in the paper of Kowalik, Lauri and Socała [83]). Moreover for
every integer k ≥ 3, Subset Rainbow k-Coloring parametrized by |S| is fixed
parameter tractable and it has an algorithm running in time |S|O(|S|)nO(1) [83]. This
shows that our lower bound in terms of s for Subset Rainbow k-Coloring is
nearly tight.

1.2.4 Multicoloring and low degree monomial testing

The complexity of determining the chromatic number of a graph is undoubtedly
among the most intensively studied computational problems. Countless variants and
generalizations of graph colorings have been introduced and investigated. Here, we
focus on multicolorings, also known as (a:b)-colorings. In this setting, we are given
a graph G, a palette of a colors, and a number b ≤ a. An (a:b)-coloring of G is
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Figure 1.2: A (5:2)-coloring of the dodecahedron (left) which can be seen as a
homomorphism to KG5,2 (the Petersen graph, right). The homomorphism is given
by identifying the pairs of opposite vertices in the corresponding regular solid.

any assignment of b distinct colors to each vertex so that adjacent vertices receive
disjoint subsets of colors. The (a:b)-coloring problem asks whether G admits an
(a:b)-coloring. For b = 1 we obtain the classic graph coloring problem. The smallest
a for which an (a:b)-coloring exists is called the b-fold chromatic number, denoted by
χb(G).

The motivation behind (a:b)-colorings can be perhaps best explained by showing
the connection with the fractional chromatic number. For a graph G, it is denoted as
χf (G) and defined as the optimum value of the following natural linear programming
relaxation of the problem of computing the chromatic number of G, expressed as
finding a cover of the vertex set using the minimum possible number of independent
sets:

minimize
∑
I∈I(G)

xI

∀v∈V (G)

∑
v∈I∈I(G)

xI ≥ 1

∀I∈I(G) xI ≥ 0.

It can be easily seen that by relaxing the standard coloring problem by allowing
b times more colors while requiring that every vertex receives b colors and adjacent
vertices receive disjoint subsets, with increasing b we approximate χf (G) better and
better. Consequently, limb→∞ χb(G)/b = χf (G).

Another connection concerns Kneser graphs. Recall that for positive integers a,
b with b < a/2, the Kneser graph KGa,b has all b-element subsets of {1, 2, . . . , a}
as vertices, and two subsets are considered adjacent if and only if they are disjoint.
For instance, KG5,2 is the well-known Petersen graph (see Fig. 1.2, right). Thus,
(a:b)-coloring of a graph G can be interpreted as a homomorphism from G to the
Kneser graph KGa,b (see Fig. 1.2). Kneser graphs are well studied in the context of
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colorings, mostly due to the celebrated result of Lovász [105], who determined their
chromatic number, initiating the field of topological combinatorics.

Multicolorings and (a:b)-colorings have been studied both from combinatorial [33,
54, 98] and algorithmic [30, 69, 70, 81, 87, 109, 113, 126] points of view. The main real-
life motivation comes from the problem of assigning frequencies to nodes in a cellular
network so that adjacent nodes receive disjoint sets of frequencies on which they can
operate. This makes (near-)planar and distributed settings particularly interesting
for practical applications. We refer to the survey of Halldórsson and Kortsarz [68] for
a broader discussion.

In Chapter 6 we study the computational complexity of the following decision
problem.

(a:b)-coloring
Input: G = (V,E), a, b ∈ N
Question: Is G (a:b)-colorable?

Since the problem is already NP-hard for a = 3 and b = 1, we do not expect it to
be solvable in polynomial time, and hence we look for an efficient exponential-time al-
gorithm. A straightforward dynamic programming approach yields an algorithm with
running time O∗(2n · (b + 1)n) as follows. For each function η : V (G) → {0, 1, . . . , b}
and each k = 0, 1, . . . , a, we create one boolean entry D[η, k] denoting whether one
can choose k independent sets in G so that every vertex v ∈ V (G) is covered exactly
η(v) times. Then value D[η, k] can be computed as a disjunction of values D[η′, k−1]
over η′ obtained from η by subtracting 1 on vertices from some independent set in G.

This simple algorithm can be improved by finding an appropriate algebraic for-
mula for the number of (a:b)-colorings of the graph and using the inclusion-exclusion
principle to compute it quickly, similarly as in the case of standard colorings [12].
Such an algebraic formula was given by Nederlof [118, Theorem 3.5] in the context
of a more general Multi Set Cover problem. Nederlof also observed that in the
case of (a:b)-coloring, a simple application of the inclusion-exclusion principle to
compute the formula yields an O∗((b + 1)n)-time exponential-space algorithm. Hua
et al. [74] noted that the formulation of Nederlof [118] for Multi Set Cover can
be also used to obtain a polynomial-space algorithm for this problem. By taking all
maximal independent sets to be the family in the Multi Set Cover problem, and
applying the classic Moon-Moser upper bound on their number [117], we obtain an
algorithm for (a:b)-coloring that runs in time O∗(3n/3 · (b+ 1)n) and uses polyno-
mial space. Note that by plugging b = 1 to the results above, we obtain algorithms
for the standard coloring problem using O∗(2n) time and exponential space, or us-
ing O∗(2.8845n) time and polynomial space, which almost matches the fastest known
procedures [12].

The complexity of (a:b)-coloring becomes particularly interesting in the con-
text of the Graph Homomorphism problem. By the celebrated result of Hell and
Nešetřil [72] the problem is in P if H is bipartite and NP-complete otherwise. For
quite a while it was open whether there is an algorithm for Graph Homomorphism
running in time 2O(n+h). As we mentioned in Theorem 5, an algorithm with run-
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ning time 2o(n log h) contradicts the Exponential Time Hypothesis. However, Graph
Homomorphism is a very general problem, hence researchers try to uncover a more
fine-grained picture and identify families of graphs H such that the problem can
be solved more efficiently whenever H ∈ H. For example, Fomin, Heggernes and
Kratsch [58] showed that when H is of treewidth at most t, then Graph Homo-
morphism can be solved in time O∗((t + 3)n). It was later extended to graphs of
cliquewidth bounded by t, with O∗((2t+ 1)max{n,h}) time bound by Wahlström [130].
On the other hand, H needs not be sparse to admit efficient homomorphism testing:
the family of cliques admits the O∗(2n) running time as shown by Björklund et al. [12].
As noted above, this generalizes to Kneser graphs KGa,b, by the O∗((b + 1)n)-time
algorithm of Nederlof. In this context, the natural question is whether the appearance
of b in the base of the exponent is necessary, or whether there is an algorithm running
in time O∗(cn) for some universal constant c independent of b.

Our contribution. We show that the algorithms for (a:b)-coloring men-
tioned above are essentially optimal under the Exponential Time Hypothesis. Specif-
ically, we prove the following results:

Theorem 9. If there is an algorithm for (a:b)-coloring that runs in time f(b) ·
2o(log b)·n, for some computable function f(b), then ETH fails. This holds even if the
algorithm is only required to work on instances where a = Θ(b2 log b).

Corollary 10. If there is an algorithm for Graph Homomorphism that runs in
time f(h) · 2o(log log h)·n, for some computable f(h), then ETH fails. This holds even if
the algorithm is only required to work on instances where H is a Kneser graph KGa,b

with a = Θ(b2 log b).

The bound for (a:b)-coloring is tight, as the straightforward O∗(2n · (b+ 1)n) =
2O(log b)·n dynamic programming algorithm already shows. At first glance, one might
have suspected that (a:b)-coloring, as an interpolation between classical coloring
and fractional coloring, both solvable in 2O(n) time [66], should be just as easy; The-
orem 9 refutes this suspicion.

Corollary 10 in particular excludes any algorithm for testing homomorphisms
into Kneser graphs with running time 2O(n+h). It cannot give a tight lower bound
matching the result mentioned in Theorem 5 for general homomorphisms, because
h = |V (KGa,b)| =

(
a
b

)
is not polynomial in b. On the other hand, it exhibits the first

explicit family of graphs H for which the complexity of Graph Homomorphism
increases with h.

In the proof, we first show a lower bound for the list variant of the problem, where
every vertex is given a list of colors that can be assigned to it (see Section 6.1 for
formal definitions). The list version is reduced to the standard version by introducing
a large Kneser graph KGa+b,b; we need a and b to be really small so that the size of
this Kneser graph does not dwarf the size of the rest of the construction. However,
this is not necessary for the list version, where we obtain lower bounds for a much
wider range of functions b(n).
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Theorem 11. If there is an algorithm for List (a:b)-coloring that runs in time
2o(log b)·n, then ETH fails. This holds even if the algorithm is only required to work on
instances where a = Θ(b2 log b) and b = Θ(b(n)) for an arbitrarily chosen polynomial-
time computable function b(n) such that b(n) ∈ ω(1) and b(n) = O(n/ log n).

Finally, we observe that from our main result one can infer a lower bound for the
complexity of the (r, k)-Monomial Testing problem. In the following definition a
polynomial is homogeneous if all its monomials have the same total degree k.

(r, k)-Monomial Testing
Input: An arithmetic circuit that evaluates a homogeneous polynomial
P (x1, x2, . . . , xn) over some field F, a parameter r.
Question: Does P have some monomial in which every variable has individual
degree not larger than r

Abasi et al. [2] gave a randomized algorithm that solves this problem in time
O∗(2O(k· log r

r
)), where k is the degree of the polynomial, assuming that F = GF(p) for

a prime p ≤ 2r2 + 2r. This algorithm was later derandomized by Gabizon et al. [60]
within the same running time, but under the assumption that the circuit is non-
cancelling: it has only input, addition, and multiplication gates. Abasi et al. [2] and
Gabizon et al. [60] gave a number of applications of low-degree monomial detection to
concrete problems. For instance, r-Simple k-Path, the problem of finding a walk of
length k that visits every vertex at most r times, can be solved in time O∗(2O(k· log r

r
)).

However, for r-Simple k-Path, as well as other problems that can be tackled using
this technique, the best known lower bounds under ETH exclude only algorithms with
running time O∗(2o(

k
r

)). Whether the log r factor in the exponent is necessary was
left open by Abasi et al. and Gabizon et al.

We observe that the List (a:b)-coloring problem can be reduced to (r, k)-
Monomial Testing over the field GF(2) in such a way that an O∗(2k·o(

log r
r

))-
time algorithm for the latter would imply a 2o(log b)·n-time algorithm for the former,
which would contradict ETH. Thus, we show that the known algorithms for (r, k)-
Monomial Testing most probably cannot be sped up in general; nevertheless,
the question of lower bounds for specific applications remains open. However, go-
ing through List (a:b)-coloring to establish a lower bound for (r, k)-Monomial
Testing is actually quite a detour, because the latter problem has a much larger ex-
pressive power. Therefore, we also give a more straightforward reduction that starts
from a convenient form of Subset Sum; this reduction also proves the lower bound
for a wider range of r, expressed as a function of k.

1.2.5 Minimax Approval Voting

One of the central problems in artificial intelligence and computational social choice is
aggregating preferences of individual agents (see the overview of Conitzer [34]). Here
we focus on multi-winner choice, where the goal is to select a k-element subset of a
set of candidates. Given preferences of the agents over the candidates, a multi-winner

17



voting rule can be used to select a subset of candidates that in some sense are preferred
by the agents. This scenario covers a variety of settings: nations elect members of
parliament or societies elect committees [23], web search engines choose pages to
display in response to a query [50], airlines select movies available on board [123, 52],
companies select a group of products to promote [106], etc.

We restrict our attention to approval-based multi-winner rules, i.e., rules where
each voter expresses his or her preferences by providing a subset of the candidates
which he or she approves. Various voting rules are studied in the literature. In the
simplest one, Approval Voting (AV), occurrences of each candidate are counted and
k most often approved candidates are selected. While this rule has many desirable
properties in the single winner case [53], in the multi-winner scenario its merits are
often considered less clear [89], e.g., because it fails to reflect the diversity of interests
in the electorate [82]. Therefore, numerous alternative rules have been proposed, in-
cluding Satisfaction Approval Voting, Proportional Approval Voting, and Reweighted
Approval Voting (see [82] for details). We study a rule called Minimax Approval Vot-
ing (MAV), introduced by Brams et al. [15]. Here, we see the votes and the choice as
0-1 strings of length m (characteristic vectors of the subsets, i.e., the candidate i is
approved if the string contains 1 at position i). For two strings x and y of the same
length the Hamming distance H(x, y) is the number of positions where x and y differ,
e.g., H(011, 101) = 2. In MAV, we look for a 0-1 string with exactly k ones that min-
imizes the maximum Hamming distance to a vote. In other words, MAV minimizes
the disagreement with the least satisfied voter and thus it is highly egalitarian: no
voter is ignored and a majority of voters cannot guarantee a specific outcome [15, 92].

Our focus is on the computational complexity of computing the choice based on
the MAV rule. The decision version of MAV is formally stated below.

Minimax Approval Voting
Input: A multiset S = {s1, . . . , sn} of 0-1 strings of length m (also called votes),
two integers k and d.
Question: Does there exist a string s ∈ {0, 1}m with exactly k ones such that
for every i = 1, . . . , n we have H(s, si) ≤ d?

In the optimization version of Minimax Approval Voting we minimize d, i.e.,
given a multiset S and an integer k as before, the goal is to find a string s ∈ {0, 1}m
with exactly k ones which minimizes maxi=1,...,nH(s, si).

A reader familiar with string problems might recognize that Minimax Approval
Voting is tightly connected with the following classical NP-complete problem called
Closest String.

Closest String
Input: A multiset S = {s1, . . . , sn} of 0-1 strings of length m (also called votes),
an integer d.
Question: Does there exist a string s ∈ {0, 1}m such that for every i = 1, . . . , n
we have H(s, si) ≤ d?

Indeed, LeGrand et al. [93] showed that Minimax Approval Voting is NP-

18



complete by a reduction from Closest String with binary alphabet. (First proof
of NP-completeness of Minimax Approval Voting was shown using reduction from
Vertex Cover [92].) This motivated the study on Minimax Approval Voting
in terms of approximability and fixed-parameter tractability.

Previous results on Minimax Approval Voting The first approximation re-
sult was a simple 3-approximation algorithm due to LeGrand et al. [93], obtained by
choosing an arbitrary vote and taking any k approved candidates from the vote (ex-
tending it arbitrarily to k candidates if needed). Next, a 2-approximation was shown
by Caragiannis et al. [19] using an LP-rounding procedure. Finally, Byrka et al. [17]
presented a polynomial time approximation scheme (PTAS), i.e., an algorithm that
for any fixed ε > 0 gives a (1 + ε)-approximate solution in polynomial time. More
precisely, their algorithm runs in time mO(1/ε4) + nO(1/ε3) which is polynomial in the
number of voters n and the number of alternatives m.

The study of FPT algorithms for Minimax Approval Voting was initiated
by Misra et al. [116]. They show for example that Minimax Approval Voting
parameterized by k (the number of ones in the solution) is W [2]-hard, which implies
that there is no FPT algorithm, unless there is a highly unexpected collapse in param-
eterized complexity classes. From a positive perspective, they show that the problem
is FPT when parameterized by the maximum allowed distance d or by the number of
votes n. Their algorithm runs in time O∗(d2d).3

Previous results on Closest String It is interesting to compare the known
results on Minimax Approval Voting with the corresponding ones on the better
researched Closest String. The first PTAS for Closest String was given by Li
et al. [94] with running time bounded by nO(1/ε4) where n is the number of the input
strings. This was later improved by Andoni et al. [7] to nO(

log 1/ε

ε2
), and then by Ma et

al. [107] to nO(1/ε2).
The first FPT algorithm for Closest String, running in time O∗(dd) was given

by Gramm et al. [64]. This was later improved by Ma et al. [107], who gave an
algorithm with running time O∗(2O(d) · |Σ|d), which is more efficient for constant-size
alphabets. Further substantial progress is unlikely, since Lokshtanov et al. [103] have
shown that Closest String admits no algorithms running in time O∗(2o(d log d)) or
O∗(2o(d log |Σ|)), unless the Exponential Time Hypothesis (ETH) [76] fails.

The discrepancy between the state of the art for Closest String and Minimax
Approval Voting raises interesting questions. First, does the additional constraint
on the number of ones in Minimax Approval Voting really make the problem
harder and the PTAS has to be significantly slower? Similarly, although in Minimax
Approval Voting the alphabet is binary, no O∗(2O(d))-time algorithm is known, in

3Actually, in the article [116] the authors claim the slightly better running time of O∗(dd).
However, there is a flaw in the analysis [100, 115]: it states that the initial solution v is at distance
at most d from the solution, while it can be at distance 2d because of what we call here the k-
completion operation. This increases the maximum depth of the recursion to d (instead of the
claimed d/2).
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contrast to Closest String. Can we find such an algorithm? Our goal is to answer
the latter of these questions.

Our results We show that, unless the ETH fails, there is no algorithm for Minimax
Approval Voting running in time O∗(2o(d log d)). In other words, the algorithm of
Misra et al. [116] is essentially optimal, and indeed, in this sense Minimax Approval
Voting is harder than Closest String.

Consequences The lower bound presented in this thesis first appeared in the article
of Cygan, Kowalik, Socała and Sornat [44]. The lower bound motivated further
positive results contained in the paper of Cygan et al. [44], namely, a parameterized
approximation scheme, i.e., a randomized Monte-Carlo algorithm which, given an
instance (S, k, d) and a number ε > 0, finds a solution at distance at most (1 + ε)d
in time O∗((3/ε)2d) or reports that there is no solution at distance at most d (with
arbitrarily small positive constant probability of error in the case of the negative
answer). Note that our lower bound implies that, under (randomized version of)
ETH, this is essentially optimal, i.e., there is no parameterized approximation scheme
running in time O∗(2o(d log(1/ε))). Indeed, if such an algorithm existed, by picking
ε = 1/(d+ 1) we would get an exact algorithm which contradicts our lower bound.

It is also worthwhile to mention that the parametrized approximation scheme
served in the work of Cygan et al. [44] as a tool to get a faster PTAS for Minimax
Approval Voting.

Theorem 12 ([44]). For each ε > 0 we can find (1 + ε)-approximate solution for the
Minimax Approval Voting problem in time nO( log 1/ε

ε2
) ·mO(1) with probability at

least 1− r, for any fixed r > 0.

1.2.6 k-OPT Detection

In the Traveling Salesman Problem (TSP) one is given a complete graph G = (V,E)
and a weight function w : E → N. The goal is to find a Hamiltonian cycle in
G (also called a tour) of minimum weight. This is one of the central problems in
computer science and operation research. It is well known to be NP-hard and has been
researched from different perspectives, most notably using approximation [8, 31, 121],
exponential-time algorithms [71, 80] and heuristics [119, 97, 36].

In practice, TSP is often solved by means of local search heuristics where we begin
from an arbitrary Hamiltonian cycle in G, and then the cycle is modified by means of
some local changes in a series of steps. After each step the weight of the cycle should
improve; when the algorithm cannot find any improvement it stops. One of the most
successful examples of this approach is the k-opt heuristic, where in each step an
improving k-move is performed. Given a Hamiltonian cycle H in a graph G = (V,E)
a k-move is an operation that removes k edges from H and adds k edges of G so that
the resulting set of edges H ′ is a new Hamiltonian cycle. The k-move is improving
if the weight of H ′ is smaller than the weight of H. The k-opt heuristic has been
introduced in 1958 by Croes [36] for k = 2, and then applied for k = 3 by Lin [96]
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in 1965. Then in 1972 Lin and Kernighan designed a complicated heuristic which
uses k-moves for unbounded values of k, though restricting the space of k-moves
to search to so-called sequential k-moves. A variant of this heuristic called LKH,
implemented by Helsgaun [73], solves optimally instances up to 85 900 cities. Among
other modifications, the variant searches for non-sequential 4- and 5-moves. From
the theory perspective, the quality of the solutions returned by k-opt, as well as the
length of the sequence of k-moves needed to find a local optimum, was studied, among
others, by Johnson, Papadimitriou and Yannakakis [78], Krentel [86] and Chandra,
Karloff and Tovey [24]. More recently, smoothed analysis of the running time and
approximation ratio was investigated by Manthey and Veenstra [88] and Künnemann
and Manthey [108].

We study the k-opt heuristic but we focus on its basic ingredient, namely on
finding a single improving k-move. We consider the following decision problem.

k-OPT Detection
Input: A TSP tour H in an edge weighted complete graph G.
Question: Does there exist an improving k-move?

In the optimization version, called k-OPT Optimization, the goal is to find
a k-move that gives the largest weight improvement, if any. Unfortunately, these
are computationally hard problems. Namely, Marx [110] has shown that k-OPT
Detection is W [1]-hard, which means that it is unlikely to be solvable in f(k)nO(1)

time, for any function f . Later Guo, Hartung, Niedermeier and Suchý [67] proved that
there is no algorithm running in time no(k/ log k), unless Exponential Time Hypothesis
(ETH) fails. This explains why in practice people use exhaustive search running in
O(nk) time for every fixed k, or faster algorithms which explore only a very restricted
subset of all possible k-moves.

Very recently, de Berg, Buchin, Jansen and Woeginger [48] have shown that it
is possible to improve over the naive exhaustive search. For every fixed k ≥ 3 their
algorithm runs in time O(nb2k/3c+1) and uses O(n) space. In particular, it gives O(n3)
time for k = 4. Thus, the algorithm of de Berg et al. is of high practical interest:
the complexity of the k = 4 case now matches the complexity of k = 3 case, and
hence it seems that one can use 4-opt in all the applications where 3-opt was fast
enough. De Berg et al. show also that a progress for k = 3 is unlikely, namely k-OPT
Detection has an O(n3−ε)-time algorithm for some ε > 0 iff All Pairs Shortest
Paths problem can be solved in O(n3−δ)-time algorithm for some δ > 0.

Cygan, Kowalik and Socała [43] extend the line of research started in [48] by show-
ing an algorithm running in time O(n(1/4+εk)k) for every fixed k, where limk→∞ εk = 0.
The values of εk are computed for every k ≤ 10 (see Table 1.1 for the values k ≤ 8).
In particular the new algorithm improves over the previous one by de Berg et al. [48]
for every k ≥ 5.

Our Results. We show a good reason why it may be hard to improve over the
O(n3)-time algorithm of de Berg et al. for 4-OPT Optimization:

Theorem 13. If there is ε > 0 such that 4-OPT Detection admits an algorithm
in time O(n3−ε · (logM)O(1)), then there is δ > 0 such that both Negative Edge-
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k 2 3 4 5 6 7 8 . . . ∞

known
algorithm n2 n3 n3 n3.4 n4 n4.25 n4 2

3 . . . n(1/4+εk)k

for εk → 0

source folk. folk. [48] [43] [43] [43] [43] [43]

known
lower
bound

n2 n3−ε n3−ε n2 nΩ(k/ log k)

source folk. [48] this
thesis folklore [67]

Table 1.1: Known running times and lower bounds for k-OPT Detection
depending on k. (Up to the big-O and big-Ω respectively.)

Weighted Triangle and All Pairs Shortest Paths admit an algorithm in
time O(n3−δ · (logM)O(1)), where in all cases we refer to n-vertex input graphs with
integer weights from {−M, . . . ,M}.

Note that although the family of 4-moves contains all 3-moves, it is still possible
that there is no improving 3-move, but there is an improving 4-move. Thus the
previous lower bound of de Berg et al. does not imply our lower bound, though
our reduction is essentially an extension of the one by de Berg et al. [48] with a
few additional technical tricks. Table 1.1 summarizes the current state of the art
regarding lower and upper bounds for k-OPT Detection.

1.3 Articles

Most of this dissertation comes from the following articles and preprints:

• Tight Lower Bound for the Channel Assignment Problem, ACM Trans. Algo-
rithms, 2016 [125]. The extended abstract of the publication was published in
the proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA, 2015 [124]. The results of this article are contained
in Chapter 3.

• The Hardness of Subgraph Isomorphism, which is a joint work with Marek Cy-
gan and Jakub Pachocki, CoRR, 2015 [45]. This preprint contains the proofs of
Theorems 3 and 4 which are presented in Chapter 4 of this dissertation. Theo-
rems 4, 5 and 6 are contained in the merged paper Tight bounds for Graph Ho-
momorphism and Subgraph Isomorphism authored by Cygan, Fomin, Golovnev,
Kulikov, Mihajlin, Pachocki and Socała [38]. Its journal version [40] is currently
accepted to Journal of the ACM (JACM).
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• On the Fine-Grained Complexity of Rainbow Coloring which is a joint work
with Łukasz Kowalik and Juho Lauri. The extended abstract of this publication
was published in the proceedings of the 24th Annual European Symposium on
Algorithms, ESA, 2016 [83]. The lower bound results of this article are contained
in Chapter 5.

• Tight lower bounds for the complexity of multicoloring, which is a joint work
with Marthe Bonamy, Łukasz Kowalik, Michał Pilipczuk and Marcin Wrochna,
CoRR, 2016 [13]. This work is currently accepted to the 25th Annual European
Symposium on Algorithms (ESA 2017). The results of this work are contained
in Chapter 6.

• Approximation and Parameterized Complexity of Minimax Approval Voting which
is a joint work with Marek Cygan, Łukasz Kowalik and Krzysztof Sornat. The
extended abstract of this publication was published in the proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 2017 [44]. The lower
bound result of this article is contained in Chapter 7.

• Improving TSP tours using dynamic programming over tree decomposition,
which is a joint work with Marek Cygan and Łukasz Kowalik, CoRR, 2017 [43].
This work is currently accepted to the 25th Annual European Symposium on
Algorithms (ESA 2017). The lower bound result of this work is contained in
Chapter 8.
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Chapter 2

Notation and Preliminaries

2.1 Notation
For an integer k, by [k] we denote the set {1, 2, . . . , k} . By xk we denote the falling
factorial, i.e., xk = x(x− 1) · · · (x− k + 1). For a (partial) function c, by Dom(c) we
denote its domain. The O∗( ) notation suppresses polynomial factors.

If I and J are instances of decision problems P and R, respectively, then we say
that I and J are equivalent, when either both I and J are YES-instances or both are
NO-instances of the respective problems.

For standard graph-theoretic notions, we refer the reader to [41, 49]. For problem
definitions, we refer the reader to Appendix A.

2.2 Exponential-Time Hypothesis toolbox
The Exponential Time Hypothesis (ETH) of Impagliazzo et al. [76] states that there
exists a constant c > 0, such that there is no algorithm solving 3-CNF-SAT in time
O∗(2cn). During the recent years, ETH became the central conjecture used for proving
tight bounds on the complexity of various problems.

2.2.1 Reducing from 3-CNF-SAT

One of the most important results connected to ETH is the Sparsification Lemma [77],
which essentially gives a reduction from an arbitrary instance of k-CNF-SAT to an
instance where the number of clauses is linear in the number of variables.

Lemma 14 (Sparsification Lemma [76]). For each ε > 0 there exist a constants cε,
such that any 3-CNF-SAT formula ϕ with n variables can be expressed as ϕ = ∨ti=1ψi,
where t ≤ 2εn and each ψi is a 3-CNF-SAT formula with the same variable set as ϕ,
but contains at most cεn clauses. Moreover, this disjunction can be computed in time
O∗(2εn).

The following well-known corollary can be derived by combining ETH with the
Sparsification Lemma.
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Theorem 15 (see e.g. Theorem 14.4 in [41]). Unless ETH fails, there is no algo-
rithm for 3-CNF-SAT that runs in time 2o(n+m), on formulas with n variables and
m clauses.

We need the following regularization result of Tovey [127]. Following Tovey, by
(3,4)-CNF-SAT we call the following variant of 3-CNF-SAT.

(3,4)-CNF-SAT
Input: A k-CNF-SAT formula ϕ where each clause of the input formula con-
tains exactly 3 different variables, and each variable occurs in at most 4 clauses.
Question: Is ϕ satisfiable?

Lemma 16 ([127]). Given a 3-CNF-SAT formula ϕ with n variables and m clauses
one can transform it in polynomial time into an equivalent (3,4)-CNF-SAT instance
ϕ′ with O(n+m) variables and clauses.

Theorem 15 and Lemma 16 give the following corollary.

Corollary 17. Unless ETH fails, there is no algorithm for (3,4)-CNF-SAT that runs
in time 2o(n), where n denotes the number of variables of the input formula.

(3,4)-CNF-SAT has the following useful property that we exploit in a few of
our proofs. For a given formula ϕ being an instance of (3,4)-CNF-SAT consider a
bipartite graph where the vertices of one side are the variables of ϕ and the vertices of
the other side are the clauses of ϕ. In this graph we put an edge between a variable and
a clause if and only if the variable appears in the clause. Such a graph has a bounded
degree and therefore for any constant distance d ≥ 1 we can find in polynomial time a
distance-d-coloring with k = O(1) colors. Namely, if two vertices/clauses are colored
with the same color it means that there is no path of length d or shorter between
them which means that they are fairly independent of each other. This exposes a lot
of additional structure of the given (3,4)-CNF-SAT instance that can be used during
the reduction.

Note also that if some color classes are larger than, say, d(n+m)/ke we can split
them into smaller chunks and this will multiply the total number of colors only by a
constant factor and therefore we can assume that all the colors are small.

2.2.2 Reducing from other problems

Sometimes it is more convenient to start a reduction from a problem other than
3-CNF-SAT variations.

3-Coloring
Input: A graph G.
Question: Is it possible to color the vertices of G with three colors in such a
way that there are no adjacent vertices of the same color?

There is a well known reduction from 3-CNF-SAT to 3-Coloring (see e.g. [122,
104, 62, 39] for the discussion).

26



Theorem 18. There is a polynomial-time reduction that transforms an instance of 3-
CNF-SAT with n variables and m clauses into an equivalent instance of 3-Coloring
with O(n+m) vertices and maximum degree four.

This together with the Sparsification Lemma 14 gives a very useful corollary.

Corollary 19 (folklore). Assuming ETH, there is no 2o(n)-time algorithm for 3-
Coloring on n-vertex graphs of maximum degree four.

The 3-Coloring problem was used in the papers of Fomin et al. [57] and Cygan
et al. [38] to prove Graph Homomorphism and Subgraph Isomorphism lower
bounds. It was used also in [103] to prove a lower bound for k × k-Clique which is
another convenient starting point.
k × k-Clique
Input: A graph G over the vertex set V = [k] × [k], i.e., V forms a grid (as a
vertex set; the edge set of G is a part of the input and it can be arbitrary) with
k rows and k columns.
Question: Is there in G a clique containing exactly one vertex in each row?

Theorem 20 (Lokshtanov et al. [103]). Assuming ETH, there is no 2o(k log k)-time
algorithm for k × k-Clique.

In k×k-HittingSet we are givenm sets S1, S2, . . . Sm ⊆ [k]×[k] and the question
is whether there is a set S ⊆ [k]× [k] containing exactly one element from each row
such that S ∩ Si 6= ∅ for every i ∈ [m].

Theorem 21 (Lokshtanov et al. [103]). Assuming ETH, there is no 2o(k log k) · nO(1)-
time algorithm for k × k-HittingSet.

k × k-Clique, k × k-HittingSet and a few similar problems were used in the
paper of Lokshtanov et al. [103] for Closest String, Distortion and Disjoint
Paths lower bounds. The k × k-Clique problem is also used in Chapter 7 of this
dissertation to prove a lower bound for Minimax Approval Voting. In fact in
Chapter 7 we present also a reduction from 3-CNF-SAT, hence it is possible to
compare them.

Another interesting problem is Carry-Less Subset Sum.
Carry-Less Subset Sum
Input: n + 1 numbers s, a1, . . . , an, each represented as n decimal digits. For
any number x, the j-th decimal digit of x is denoted by x(j). It is assumed that∑n

i=1 a
(j)
i < 10, for every j = 1, . . . , n.

Question: Does there exist a sequence of indices 1 ≤ i1 < . . . < ik ≤ n such
that

∑k
q=1 aiq = s?

Note that by the small sum assumption, this is equivalent to the statement that∑k
q=1 a

(j)
iq

= s(j), for every j = 1, . . . , n. The standard NP-hardness reduction from
3-CNF-SAT to Subset Sum (see e.g. [35]) in fact gives instances of Carry-Less
Subset Sum of linear size, yielding the following.
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Lemma 22. Unless ETH fails, the Carry-Less Subset Sum problem cannot be
solved in 2o(n) time.

We provide a bit more detailed proof in Chapter 6 where we use Lemma 22 for
proving a lower bound for (r, k)-Monomial Testing.
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Chapter 3

Channel Assignment

In this chapter we prove that there is no algorithm solving Channel Assignment
in time 2o(n logn) (times a polynomial in the bit size), unless ETH fails.

Organization of the chapter. In Section 3.1 we describe a sequence of reductions
starting in 3-CNF-SAT and ending in Equal Weight Matchings and the conclu-
sions on the hardness of Equal Weight Matchings. In Section 3.2 we present a
reduction from Equal Weight Matchings to Channel Assignment and prove
the hardness of Channel Assignment.

Additional notation for this chapter. We denote an instance of (decisional)
Channel Assignment by I = (G,w, s) where the instance is satisfied when span(G,w)
≤ s.

3.1 Hardness of Equal Weight Matchings

In this section we describe a sequence of reductions starting in 3-CNF-SAT and
ending in Equal Weight Matchings and the consequences of these reductions
on the complexity of Equal Weight Matchings. In the second of these two
reductions we compress the instance of sizeO(n) to an instance withO

(
n

logn

)
vertices,

which is an important part of our result.

3.1.1 From 3-CNF-SAT to Family Intersection.

The intuition is that for a given instance of 3-CNF-SAT we consider a set of the
occurrences of the variables in the formula i.e. we treat any two different occurrences
of the same variable as they were two different variables. Note that in a 3-CNF-SAT
instance with n variables and m clauses we have 3m occurrences of the n variables so
there are 23m assignments of the occurrences.

We would like to represent two useful subsets of the set of all 23m assignments of the
occurrences. The first is the set of the consistent assignments i.e. such assignments
of the occurrences that all the occurrences of the same variable have the same value.
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The second is the set of the assignments of the occurrences such that every clause is
satisfied (although they are allowed to have different values for different occurrences
of the same variable i.e. they do not need to be consistent). Note that the instance
of 3-CNF-SAT is a YES-instance if and only if the intersection of these two sets is
nonempty.

To represent those two sets we would like to use the following concept. For a
function f : [a] × [b] → N we define Xf = {

∑a
i=1 f (i, σ (i)) |σ : [a]→ [b]} . We call

this set an f -family.
We will define a function f such that the elements of the f -family Xf correspond

to the assignments of the occurrences such that every two occurrences of the same
variable have the same value. Then we define another function g such that the g-
family Xg represents the assignments of the occurrences such that every clause is
satisfied. Thus we reduce 3-CNF-SAT into the following problem:
Family Intersection
Input: A function f : [a]× [b]→ N and a function g : [c]× [d]→ N.
Question: Is Xf ∩Xg nonempty?

Example 1. Let us illustrate our approach on a 2-CNF-SAT formula ϕ = (α∨β)∧
(¬α∨γ). So n = 3 andm = 2.We can make a distinction between different occurrences
of the same variables ϕ′ = (α1 ∨ β1) ∧ (¬α2 ∨ γ1). So we have four occurrences of the
variables and 24 = 16 assignments. We represent those assignments as numbers from
the set {0, 1, . . . , 24 − 1} However, it will be convenient to refer to these numbers as
bit vectors of length 4 where the i-th bit represents the value of the i-th occurrence
(among all the occurrences of all the variables).

To represent the set of the consistent assignments of the occurrences we can use
a function f : [n] × [2] → N such that the value of f(i, 1) is a bit vector rep-
resenting all the occurrences of the i-th variable and f(i, 2) = 0. So in our ex-
ample we have f(1, 1) = 10102, f(2, 1) = 01002, and f(3, 1) = 00012. Therefore
Xf = {00002, 00012, 01002, 01012, 10102, 10112, 11102, 11112} .

To represent the set of the assignments which satisfies all the clauses we can use
a function g : [m] × [3] → N such that g(i, j) is a j-th assignment (in some fixed
order) of the occurrences of the variables in the i-th clause which satisfies this clause.
Note that every clause in 2-CNF-SAT have 3 assignments of the occurrences which
satisfy this clause. So in our example we have g(1, 1) = 10002, g(1, 2) = 01002,
g(1, 3) = 11002, g(2, 1) = 00002, g(2, 2) = 00012 and g(2, 3) = 00112. Therefore
Xg = {01002, 01012, 01112, 10002, 10012, 10112, 11002, 11012, 11112}.

The set Xf ∩ Xg = {01002, 01012, 10112, 11112} is the set of all the consistent
assignments of the occurrences such that each clause is satisfied.

We can formalize our observation as following.

Lemma 23. There is a polynomial time reduction from a given instance of 3-CNF-
SAT with n variables and m clauses into an instance of Family Intersection with
f : [n]× [2]→ N and g : [m]× [7]→ N such that maxXf < 23m and maxXg < 23m.
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Proof. Let V = {v1, v2, . . . , vn} and C = {c1, c2, . . . , cm} be the sets of variables and
clauses of the input formula, respectively. Let D = {d1, d2, . . . , d3m} be the set of all
3m occurrences of our n variables in our m clauses. We will treat these occurrences
as separate variables. For every variable vi ∈ V we define a set Ii ⊆ [3m] such that
j ∈ Ii if and only if dj is an occurrence of the variable vi. Similarly for every clause
ci ∈ C we define a set Ji ⊆ [3m] such that j ∈ Ji if and only if dj is an occurrence
(of any variable) belonging to the clause ci. For every i ∈ [m] we have |Ji| = 3.

For every clause ci we can treat the subsets of Ji as the assignments of the occur-
rences dj belonging to the clause ci. We treat the subset K ⊆ Ji as the assignment
of the occurrences in the clause ci such that the occurrence dj is set to 1 if and only
if j ∈ K, otherwise it is set to 0. We say that K ⊆ Ji satisfies the clause ci if the
corresponding assignment of the occurrences satisfies this clause.

For every clause ci ∈ C let us define the set

Pi = {K ⊆ Ji : K satisfies the clause ci} .

Again note that we treat here all the occurrences as the different variables. Note that
|Pi| = 7 for every i, so we can denote Pi = {P 1

i , P
2
i , . . . , P

7
i } .

A number from 0, 1, . . . , 23m − 1 can be interpreted in the binary system as the
characteristic vector of length 3m of a subset of the indices of the occurrences i.e., that
the i-th bit represents if the occurrence di belongs to this subset or not. We define a
function f : [n]× [2]→ N such that for every i ∈ [n] we set f (i, 1) =

∑
j∈Ii 2j−1 and

f (i, 2) = 0. In other words the number f (i, 1) represents the characteristic vector of
all the occurrences of the variable vi. Note that {σ : [n]→ [2]} corresponds to the set
of all assignments of variables. Therefore Xf is the set of all the characteristic vectors
which represent all the assignments of the occurrences such that all the occurrences
of the same variable have the same value.

We define a function g : [m] × [7] → N such that for every i ∈ [m] and for
every j ∈ [7] we can set g (i, j) =

∑
k∈P ji

2k−1. Then for every i ∈ [m] the numbers
g (i, 1) , g (i, 2) . . . , g (i, 7) represent the characteristic vectors of all the assignments
of the occurrences in the clause ci which satisfy this clause. Therefore the set Xg is
the set of all the characteristic vectors which represents the assignments of all 3m
occurrences such that all the clauses are satisfied.

It follows that the set Xf ∩ Xg is the set of all the characteristic vectors which
represent the assignments of the occurrences such that all the occurrences of the same
variable have the same value and all the clauses are satisfied. In other words, elements
of Xf ∩Xg correspond to satisfying assignments.

3.1.2 From Family Intersection to Equal Weight Match-
ings.

Consider an f -family Xf and a g-family Xg for some functions f : [n] × [2] → N
and g : [m] × [7] → N. In this section we show how to encode Xf in some weighted
bipartite graph G1 so that the set of the weights of the perfect matchings in G1 will
be equal to Xf . Similarly we will encode Xg in some bipartite graph G2 such that

31



the set of the weights of the perfect matchings in G2 will be equal to Xg. So the set
Xf ∩ Xg is nonempty if and only if G1 and G2 contain perfect matchings with the
same weight. Moreover the number of the vertices of the graph G1 will be O

(
n

logn

)
and the number of the vertices of the graph G2 will be O

(
m

logm

)
. This is a crucial

step of our construction, because the instance size decreases (by a logarithmic factor).
Before we describe the reduction we need two following technical lemmas which

describe a construction of permutations with certain properties. The permutations
correspond naturally to perfect matchings in bipartite graphs. Elements of [k]b will
be treated as b-character words over alphabet [k] , i.e. for x ∈ [k] and w ∈ [k]b by xw
we mean the word of length b+1 obtained by concatenating x and w. For convenience
we define a set N̂ =

{
0̂, 1̂, 2̂, . . .

}
as a copy of the natural numbers N and for every

n ∈ N we define ˆ[n] =
{

1̂, 2̂, . . . , n̂
}
. Every set ˆ[k]

b
is just a copy of [k]b so we refer to

bijections between [k]b and ˆ[k]
b
as to permutations.

The first lemma provides a way of merging k permutations φ1, φ2, . . . , φk : ˆ[k]
b
→

[k]b into one permutation φ : ˆ[k]
b+1
→ [k]b+1 in a way specified by a function ρ :

ˆ[k]
b
→ [k] . The second lemma is using the first one to provide a way of encoding a

function with one argument and k values as a permutation of the number of elements
that is sublinear with respect to the size of the domain of the function. This leads us
later in the reduction to the way of encoding an f -family in a full weighted bipartite
graph with sublinear number of the vertices.

Lemma 24. For every b ∈ N and for a given sequence of permutations φ1, φ2, . . . , φk :
ˆ[k]
b
→ [k]b and for every function ρ : ˆ[k]

b
→ [k] there is a permutation φ : ˆ[k]

b+1
→

[k]b+1 such that

(i) for every x ∈ [k] and for every ŵ ∈ ˆ[k]
b
there exists y ∈ [k] such that φ (x̂ŵ) =

yφx (ŵ) and moreover

(ii) for every ŵ ∈ ˆ[k]
b
we have φ

(
1̂ŵ
)

= ρ (ŵ)φ1 (ŵ) .

Before we proceed to the proof we suggest the reader to take a look at an example
in Figure 3.1 (b = 1, k = 3).

Proof. We start with the permutation x̂ŵ 7→ xφx (ŵ) which already satisfies the con-
dition ∃yφ (x̂ŵ) = yφx (ŵ) . Then we are going to swap the values for some (disjoint)
pairs of the arguments in order to fulfill the condition φ

(
1̂ŵ
)

= ρ (ŵ)φ1 (ŵ) . Such
swaps are preserving the condition of being permutation. Moreover we perform only
such swaps that preserve also the ∃yφ (x̂ŵ) = yφx (ŵ) condition.

For every ŵ ∈ ˆ[k]
b
we need to put φ

(
1̂ŵ
)

= ρ (ŵ)φ1 (ŵ) . Let us assign x = ρ(ŵ)
and û = φ−1

x (φ1 (ŵ)) . Note that φx (û) = φ1 (ŵ) . If x 6= 1 then we can put φ (x̂û) =
1φ1 (ŵ) . So we have swapped the values for the arguments 1̂ŵ and x̂û. Our function
is still a permutation. Note that the condition ∃yφ (x̂u) = yφxû is still preserved
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〈1̂, 1̂〉
〈1̂, 2̂〉
〈1̂, 3̂〉

〈2̂, 1̂〉
〈2̂, 2̂〉
〈2̂, 3̂〉
〈3̂, 1̂〉
〈3̂, 2̂〉
〈3̂, 3̂〉

〈1, 1〉
〈1, 2〉
〈1, 3〉 (ρ(〈2̂〉) = 1)

〈2, 1〉
〈2, 2〉
〈2, 3〉

〈3, 1〉 (ρ(〈3̂〉) = 3)

〈3, 2〉 (ρ(〈1̂〉) = 3)
〈3, 3〉

〈1̂〉
〈2̂〉
〈3̂〉

〈1̂〉
〈2̂〉
〈3̂〉
〈1̂〉
〈2̂〉
〈3̂〉

〈1〉
〈2〉
〈3〉

〈1〉
〈2〉
〈3〉
〈1〉
〈2〉
〈3〉

(ρ)

Figure 3.1: Merging three permutations (presented as perfect matchings) with
respect to the function ρ such that ρ

(
〈1̂〉
)

= 3, ρ
(
〈2̂〉
)

= 1 and ρ
(
〈3̂〉
)

= 3.

because φx (û) = φ1 (ŵ) . We just need to show that the swaps can be performed
independently.

For every i ∈ [k] a function φ−1
i ◦φ1 is a permutation so for every ŵ ∈ ˆ[k]

b
the values

of ρ (ŵ)φ−1
ρ(ŵ) (φ1 (ŵ)) are pairwise different. Indeed for two different û, ŵ ∈ ˆ[k]

b
either

the values ρ (û) and ρ (ŵ) are different or ρ (û) = ρ (ŵ) = x for some x ∈ [k] and then
(φ−1

x ◦ φ1) (û) 6= (φ−1
x ◦ φ1) (ŵ) so then the values φ−1

ρ(û) (φ1 (û)) and φ−1
ρ(ŵ) (φ1 (ŵ)) are

different. Therefore our pairs of the arguments to swap are pairwise disjoint. Thus
all the swaps can be performed independently.

So for every x ∈ [k] and ŵ ∈ ˆ[k]
b
we have

φ (x̂ŵ) =


ρ (ŵ)φ1 (ŵ) for x̂ = 1̂

1φx (ŵ) for x̂ 6= 1̂ ∧ ρ
(
φ−1

1 (φx (ŵ))
)

= x

xφx (ŵ) in other cases.

The intuition of the following lemma is that for every sequence ŵ ∈ ˆ[k]
b
and for

every i ∈ [b] such that ŵi = 1̂ we can pick a value α (ŵ, i) ∈ [k] and there is a
permutation φ : ˆ[k]

b
→ [k]b such that for every sequence ŵ ∈ ˆ[k]

b
and for every i ∈ [b]

such that ŵi = 1̂ we have φ (ŵ)i = α (ŵ, i) .

Lemma 25. Let b ∈ N and α : ˆ[k]
b
× [b] → [k] ∪ {⊥} such that for every ŵ ∈ ˆ[k]

b

and for every i ∈ [b] holds α (ŵ, i) 6= ⊥ if and only if ŵi = 1̂. There is a permutation
φ : ˆ[k]

b
→ [k]b such that for every ŵ ∈ ˆ[k]

b
and for every i ∈ [b] if ŵi = 1̂ then

φ (ŵ)i = α (ŵ, i) .

Proof. We will use an induction on b.
For b = 0 we have φ (ε) = ε.
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〈
1̂(1), 1̂(2)

〉 〈
1̂(3), 2̂

〉 〈
2̂, 1̂(4)

〉 〈
2̂, 2̂
〉〈

1(i), 1(ii)

〉
f
(
1, 1(i)) + f(2, 1(ii)

)
f
(
3, 1(i)

)
f
(
4, 1(ii)

)
0〈

1(i), 2(ii)

〉
f
(
1, 1(i)) + f(2, 2(ii)

)
f
(
3, 1(i)

)
f
(
4, 2(ii)

)
0〈

2(i), 1(ii)

〉
f
(
1, 2(i)) + f(2, 1(ii)

)
f
(
3, 2(i)

)
f
(
4, 1(ii)

)
0〈

2(i), 2(ii)

〉
f
(
1, 2(i)) + f(2, 2(ii)

)
f
(
3, 2(i)

)
f
(
4, 2(ii)

)
0

Figure 3.2: The weights on the edges of a graph encoding an f -family for f :
[4] × [2] → N. The lower indices (1), (2), (3) and (4) are added to indicate the
correspondence between the occurrences of 1̂ and the elements of [n] (the first
argument of the function f). The lower indices (i) and (ii) are added to indicate
the correspondence between the second argument of the function f and the position
in the (two element) sequence 〈·, ·〉.

For b > 0 we can define functions α1, α2, . . . , αk : ˆ[k]
b−1
× [b− 1] → [k] ∪ {⊥}

such that for every x ∈ [k] every ŵ ∈ ˆ[k]
b−1

and every i ∈ [b− 1] we put αx (ŵ, i) =
α (x̂ŵ, i+ 1) . From the inductive hypothesis for b − 1 used for every function of
α1, α2, . . . , αk we got the permutations φ1, φ2, . . . , φk : ˆ[k]

b−1
→ [k]b−1 such that for

every x ∈ [k] for every ŵ ∈ ˆ[k]
b−1

and for every i ∈ [b− 1] we have that if ŵi = 1̂
then φx (ŵ)i = αx (ŵ, i) = α (x̂ŵ, i+ 1) .

Now we can use Lemma 24 to merge the permutations φ1, φ2, . . . , φk using a func-
tion ρ : ˆ[k]

b−1
→ [k] such that ρ (ŵ) = α

(
1̂ŵ, 1

)
for every ŵ ∈ ˆ[k]

b−1
. We obtain one

permutation φ : ˆ[x]
b
→ [x]b such that by Lemma 24 (i) for every x̂ ∈ ˆ[k], for every

ŵ ∈ ˆ[k]
b−1

and for every i ∈ [b− 1] we have that φ (x̂ŵ)i+1 = φx (ŵ)i . So if ŵi = 1̂

then φ (x̂ŵ)i+1 = φx (ŵ)i = α (x̂ŵ, i+ 1) . Also by Lemma 24 (ii), for every ŵ ∈ ˆ[k]
b−1

we have that φ
(
1̂ŵ
)

1
= ρ (ŵ) = α

(
1̂ŵ, 1

)
. So for every ŵ ∈ ˆ[k]

b
and for every i ∈ [b]

we have that if ŵi = 1̂ then φ (ŵ)i = α (ŵ, i) , as required.

Now we can describe the reduction.

Lemma 26. For k ≥ 2 and a function f : [n]× [k]→ N there is a complete bipartite
graph G = (V1 ∪ V2, E, w) such that

• for every x ∈ Xf there exists a perfect matching M of G such that w(M) = x,

• for every perfect matching M of G we have w(M) ∈ Xf ,

• |V1| = |V2| = O
(

nk2 log k
logn+log k

)
.

Before the proof we present an informal idea. For some number b we define two
sets of the vertices of our bipartite graph as V1 = ˆ[k]

b
and V2 = [k]b i.e. as the sets

of words of the length b. The number b is chosen in such a way that the sets V1 and
V2 are small enough and at the same time b is large enough that the total number
of occurrences of the character 1̂ in all the words in V1 is at least n. Each such an
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〈1̂(1), 1̂(2)〉

〈1̂(3), 2̂〉

〈2̂, 1̂(4)〉

〈2̂, 2̂〉

〈1(i), 1(ii)〉

〈1(i), 2(ii)〉

〈2(i), 1(ii)〉

〈2(i), 2(ii)〉

f(1, 1(i)) + f(2, 1(ii))

f(1, 1(i)) + f(2, 2(ii))

f(1, 2
(i) ) +

f(2, 1
(ii) )

f(1, 2
(i) ) +

f(2, 2
(ii) )

f(3, 1(i)
)

f(3, 2(i))

f(3, 1(i))

f(3, 2
(i) )

f(
4,

1 (ii
))

f(4, 1(ii))
f(4, 2

(ii)
)

f(4, 2(ii))

0
0
0
0

Figure 3.3: The graph encoding an f -family for f : [4] × [2] → N. The lower
indices (1), (2), (3) and (4) are added to indicate the correspondence between the
occurrences of 1̂ and the elements of [n] (the first argument of the function f). The
lower indices (i) and (ii) are added to indicate the correspondence between the
second argument of the function f and the position in the (two element) sequence
〈·, ·〉.

occurrence of 1̂ can be used to encode the values of f for one fixed first argument and
therefore we need at least n of them. Then if 1̂ is the i-th character of some word
v1 ∈ V1 and c is the i-th character of some word v2 ∈ V2 then if this occurrence of
1̂ encodes the values of f for some fixed first argument j then we add f(j, c) to the
weight of the corresponding edge in our bipartite graph. Now we can proceed to the
formal proof of the lemma.

Proof. Let us consider the smallest b ∈ N+ such that c = b · kb−1 ≥ n. Later we will
show that |V1| = |V2| = kb is sufficient. Through out the proof |V1| = |V2| = kb.

For convenience we extend our chosen function f : [n]×[k]→ N to f : [c]×[k]→ N
in such a way that for every i = n + 1, n + 2, . . . , c and for every j ∈ [k] we put
f (i, j) = 0. Note that the f -family Xf does not change after this extension.

Let V1 = ˆ[k]
b
and V2 = [k]b be the sets of words of length b over the alphabets

respectively ˆ[k] and [k] . Note that |V1| = |V2| = kb. Let β : V1× [b]→ [c]∪{⊥} be any
function such that if ŵj 6= 1̂ then β (ŵ, j) = ⊥ and every value from the set [c] is used
exactly once, i.e., for every x ∈ [c] there is exactly one argument (ŵ, j) ∈ V1× [b] such
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that β (ŵ, j) = x. Note that such a function always exists because the total number
of the occurrences of 1̂ in all the words in V1 is exactly c = b · kb−1.

Now we define our weight function w : V1 × V2 → N as follows

w
(
t̂, u
)

=
∑
i∈[b]

β(t̂,i)6=⊥

f
(
β
(
t̂, i
)
, ui
)
.

An example of such weight function can be found in Figure 3.2 (or in Figure 3.3 as a
picture of a bipartite graph).

Note that because β picks every value from the set [c] exactly once, then β(t̂, i)→
φ(t̂)i defines a function, say σ, from [c] to [k]. Then for every permutation φ : V1 → V2

we have ∑
t̂∈V1

w
(
t̂, φ
(
t̂
))

=
∑
t̂∈V1

∑
i∈[b]

β(t̂,i)6=⊥

f
(
β
(
t̂, i
)
, φ
(
t̂
)
i

)
∈ Xf .

In other words the set of the weights of all perfect matchings in G is a subset of Xf

as required.
We also need to show that for every x ∈ Xf there exists some permutation φ :

V1 → V2 such that
∑

t̂∈V1 w
(
t̂, φ
(
t̂
))

= x. This permutation gives us a corresponding
perfect matching of weight x in G. Let us take a function σ : [c]→ [k] such that x =∑

i∈[c] f (i, σ (i)) , which exists by the definition of Xf . Define α : ˆ[k]
b
× [b]→ [k]∪{⊥}

as follows:

α (û, i) =

{
σ (β (û, i)) for ûi = 1̂

⊥ for ûi 6= 1̂.

Now we can use Lemma 25 with function α to obtain a permutation φ : ˆ[k]
b
→ [k]b

such that for every û ∈ ˆ[k]
b
and for every i ∈ [b] if ûi = 1̂ then φ (û)i = σ (β (û, i)) .

So we have that ∑
û∈ ˆ[k]

b

w (û, φ (û)) =

=
∑
û∈ ˆ[k]

b

∑
i∈[b]

β(û,i)6=⊥

f (β (û, i) , σ (β (û, i))) =

=
∑
i∈[c]

f (i, σ (i)) = x.

Hence we have shown that Xf is the set of weights of all perfect matchings in graph
G. The last thing is to show that the number of the vertices is sufficiently small.
Since bkb ≥ nk we must have b > logk(nk/ logk(nk)) ∼ logk(nk). Then, since (b −
1)kb−2 < n we must have kb < nk2/(b− 1) ≤ (1 + o(1))nk2/ logk(nk) = O

(
nk2

logk nk

)
=

O
(

nk2 log k
logn+log k

)
. So |V1| = |V2| = kb = O

(
nk2 log k

logn+log k

)
, as required.

Lemma 26 immediately implies the following result.
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Lemma 27. There is a polynomial time reduction that for an instance I = (f, g) of
Family Intersection with f : [a]× [b]→ N and g : [c]× [d]→ N reduces it into an
instance of Equal Weight Matchings J = (G1, G2) with |V (G1)| = O

(
ab2 log b

log a+log b

)
and |V (G2)| = O

(
cd2 log d

log c+log d

)
vertices. The sets of the weights of all perfect matchings

in G1 and in G2 are equal respectively to Xf and Xg.

Together with Lemma 23 we obtain the following theorem.

Theorem 28. There is a polynomial time reduction from a given instance of 3-CNF-
SAT with n variables and m clauses into an instance of Equal Weight Matchings
with |V (G1)| = O

(
n

logn

)
, |V (G2)| = O

(
m

logm

)
and the maximum matching weights

bounded by 23m.

Using Theorem 15 we can prove the following lower bound.

Theorem 2. Unless ETH fails, there is no algorithm solving Equal Weight Match-
ings in time 2o(n logn) · rO(1) where n is the total number of vertices, and r is the bit
size of the input.

Proof. For a given instance of 3-CNF-SAT with n variables andm clauses we can use
the reduction from Theorem 28 to obtain an instance of Equal Weight Match-
ings. The total number of the vertices in the new instance is

|V (G1)|+ |V (G2)| = O

(
n

log n
+

m

logm

)
=

= O

(
n+m

log (n+m)
+

n+m

log (n+m)

)
= O

(
n+m

log (n+m)

)
because the function n

logn
is nondecreasing for the sufficiently big values of n.Weights

of the matchings are bounded by 23m and the bit size of the instance

r = O

((
n+m

log (n+m)

)2

log 23m

)
= nmO(1).

Then let us assume that there is an algorithm solving Equal Weight Matchings
in 2o(n logn)rO(1)-time. Then we could solve our instance of 3-CNF-SAT in time

2o(
n+m

log(n+m)
log( n+m

log(n+m)))nmO(1)O(1)
=

= 2o(
n+m

log(n+m)
log(n+m))nmO(1) = 2o(n+m)

which contradicts ETH by Theorem 15.
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3.2 Hardness of Channel Assignment

Consider two weighted complete bipartite graphs G1 and G2.We would like to encode
them in a Channel Assignment instance in such a way that this Channel As-
signment instance is a YES-instance if and only if there are two perfect matchings,
one in G1 and the other in G2, of the same weight.

Because Channel Assignment is a natural generalization of a classical graph
coloring problem we will refer to the assignments as colorings. It is very convenient
because we then can refer to the value assigned to a vertex v as to the color of v.

Consider an instance I = (V, d, s) of Channel Assignment where d is our weight
function and s is a maximum allowed span. We say that c : V → Z is a YES-coloring
if c is a proper coloring and has span at most s. Note that an instance of Channel
Assignment is a YES-instance if and only if it has a YES-coloring.

Our approach is that we encode those graphs G1 and G2 separately in such a
way that we have a special vertex vM whose color in every YES-coloring represents a
weight of some perfect matching in G1 and on the other hand in every YES-coloring
its color represents (in a similar way) a weight of some perfect matching in G2. So a
YES-coloring would be possible if and only if the graphs G1 and G2 have two perfect
matchings, one in G1 and the other in G2, with equal weights.

Before we present a way to encode a weighted complete bipartite graph in a
Channel Assignment instance we would like to present the two lemmas to merge
those two encoded graphs into a one instance of Channel Assignment. In order
to do that we use the following concepts.

We say that instance I is (x, y)-spanned for some vertices x, y ∈ V if for every YES-
coloring c of I we have |c (x)− c (y)| = s− 1. We say that an instance I = (V, d, s) of
Channel Assignment is (X, Y )-spanned for some nonempty subsets of the vertices
∅ 6= X, Y ⊆ V if it is (x, y)-spanned for every two vertices x ∈ X and y ∈ Y.

Lemma 29. For every (u, v)-spanned instance I1 = (V1, d1, s) and (w, z)-spanned
instance I2 = (V2, d2, s) of Channel Assignment there is a ({u,w} ,
{v, z})-spanned instance I = (V1 ∪ V2, d, s) of Channel Assignment such that

(i) for every YES-coloring c of I the coloring c |V1 is a YES-coloring of I1 and the
coloring c |V2 is a YES-coloring of I2,

(ii) for every YES-coloring c1 of I1 and every YES-coloring c2 of I2 such that c1 (u) =
c2 (w) , c1 (v) = c2 (z) and for every x ∈ V1 ∩ V2 we have c1 (x) = c2 (x) there
exists a YES-coloring c of I such that c |V1= c1 and c |V2= c2.
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Proof. Let B = {u,w} × {v, z} ∪ {v, z} × {u,w} and let

d(x, y) =



s− 1 if (x, y) ∈ B
max{d1(x, y), d2(x, y)} if x, y ∈ V1 ∩ V2

d1(x, y) if x, y ∈ V1 and
{x, y} 6⊆ V1 ∩ V2

d2(x, y) if x, y ∈ V2 and
{x, y} 6⊆ V1 ∩ V2

0 otherwise.

Our instance is ({u,w} , {v, z})-spanned because for all the pairs in B we set the
minimum allowed distance to at least s− 1. Note that for i = 1, 2, for every x, y ∈ Vi
we have d(x, y) ≥ di(x, y). Hence every proper coloring c of I has the property that
c |V1 is a proper coloring of I1 and c |V2 is a proper coloring of I2. Also the maximum
allowed spans of I, I1, I2 are the same, so for every YES-coloring c of I coloring c |V1
is a YES-coloring of I1 and c |V2 is a YES-coloring of I2. Hence (i) is clear.

For (ii), consider a YES-coloring c1 of I1 and a YES-coloring c2 of I2 such that
c1 (u) = c2 (w) and c1 (v) = c2 (z) and such that for every x ∈ V1 ∩ V2 we have
c1 (x) = c2 (x) . Then we define a coloring c

c (x) =

{
c1 (x) if x ∈ V1

c2 (x) if x ∈ V2.

We know that c1 (u) = c2 (w) and c1 (v) = c2 (z) so all the vertices of V1 ∪ V2 have
colors between c1 (u) and c1 (v) , i.e., the span of c is at most s as required. It is
straightforward to check that c is a proper coloring.

Lemma 30. For every (vL, vR)-spanned instance I = (V, d, s) of Channel As-
signment and for every numbers l, r ∈ N there exists a (wL, wR)-spanned instance
I ′ = (V ∪ {wL, wR} , d′, l + s+ r) such that

(i) for every YES-coloring c of I there is a YES-coloring c′ of I ′ such that c′ |V = c,

(ii) for every YES-coloring c′ of I ′ such that c′ (wL) ≤ c′ (wR) we have that

• a coloring c′ |V is a YES-coloring of I,
• c′ (vL) = c′ (wL) + l and c′ (vR) = c′ (wR)− r.

Proof. We assume that wL, wR 6∈ V. We put

d′ (x, y) =



l + s− 1 + r for {x, y} = {wL, wR}
l for {x, y} ∩ {wL, wR} =

{wL}
r for {x, y} ∩ {wL, wR} =

{wR}
d (x, y) for x, y ∈ V.
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v1 v2 v3 v4 v5 v6 v7 v8w1 w2 w3

vM = w2

aπ(1) aπ(2) bπ(1) bπ(2)

2M 2M 2M 2M 2M 2M 2M

M
M M

M
M M

M
M M

M

vL = v1 vR = v8

M + w
(
v

(1)
π(1), v

(2)
1

)
M + w

(
v

(1)
π(2), v

(2)
2

)M +m−w(v
(1)
π(1), v

(2)
1 )

M +m− w
(
v

(1)
π(2), v

(2)
2

)

8M 8M

Figure 3.4: A weighted complete bipartite graph (G,w) with |V1| = |V2| = 2
encoded in a Channel Assignment form. The color of the vertex vM = w2

corresponds to the weight of the perfect matching in G given by the permutation
π and is equal to c (vM ) = c (vL) + 7M +w (Mπ) . The picture is simplified. Some
of the edges and corresponding to them minimum distances are omitted in the
picture.

It is straightforward to check that d′ satisfies (i) and (ii).

Lemma 31. Let G = (V1 ∪ V2, E, w) be a weighted complete bipartite graph with
nonnegative weights and such that |V1| = |V2| . Let n = |V1| , m = maxe∈E w(e),
M = n ·m+ 1, l = (4n− 1) ·M and s = (8n− 1) ·M. There exists a (vL, vR)-spanned
instance I = (V, d, s) of Channel Assignment with |V | = O (n) and such that for
some vertex vM ∈ V,

(i) for every YES-coloring c of I such that c (vL) ≤ c (vR) there exists a perfect
matching MG in G such that c (vM) = c (vL) + l + w (MG) and

(ii) for every perfect matching MG in G there exists a YES-coloring c of I such that
c (vL) ≤ c (vR) and c (vM) = c (vL) + l + w (MG) .

Proof. Let V1 =
{
v

(1)
1 , v

(1)
2 , . . . , v

(1)
n

}
and V2 =

{
v

(2)
1 , v

(2)
2 , . . . , v

(2)
n

}
.We will build our

Channel Assignment instance step by step. A simplified picture of the instance
can be found in Figure 3.4. The outline of the proof is following:

• We will define the vertices of our Channel Assignment instance and we will
force some properties of its colorings by putting appropriate weights on the
edges. We specify those properties as Claims.

• We start with defining the vertices vL = v1, v2, . . . , v4n = vR. These vertices will
be used as a backbone of our Channel Assignment instance i.e. we force
them to be colored in a strictly ascending way (or strictly descending, but we
assume the ascending order without loss on generality). All the following groups
of the vertices that we will add later will be colored in relation to the colors of
v1, v2, . . . , v4n.
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Claim 1 For every YES-coloring c and for every i < j we have that c (vi) <
c (vj) .

• Then we add the vertices w1, w2, . . . , w2n−1 and interleave them with the ver-
tices v1, v2, . . . , v4n.

Claim 2 For every YES-coloring c the colors of the vertices in the sequence

v1, v2, w1, v3, v4, w2, v5 . . . , v4n−2, w2n−1, v4n−1, v4n

are increasing.

• Next we add the vertices a1, a2, . . . , an and interleave them with the previous
vertices, but in an arbitrary order πc.

Claim 3 For every YES-coloring c there is a permutation πc such that the
colors of the vertices of the sequence

v1, aπc(1), v2, w1, v3, aπc(2), v4, w2, v5 . . . , v2n−1, aπc(n), v2n

are increasing.

• Similarly we add vertices b1, b2, . . . , bn in an arbitrary order ρc.

Claim 4 For every YES-coloring c there is a permutation ρc such that the
colors of the vertices in the sequence

v2n+1, bρc(1), v2n+2, wn+1, v2n+3, bρc(2), v2n+4, wn+2,

v2n+5 . . . v4n−1, bρc(n), v4n

are increasing.

• Then we force that the vertices a1, a2, . . . , an and the vertices b1, b2, . . . , bn are
colored in exactly the same (arbitrary) order i.e. the order πc is exactly the
same as the order ρc.

Claim 5 For every YES-coloring c there is a permutation πc such that the
colors of the vertices in the sequence

v1, aπc(1), v2, w1, v3, aπc(2), v4, w2, v5 . . . , v2n−1, aπc(n),

v2n, wn, v2n+1, bπc(1), v2n+2, wn+1, v2n+3, bπc(2), v2n+4,

wn+2, v2n+5 . . . v4n−1, bπc(n), v4n

are increasing.
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• Then, with all the above construction specified, we state the dependency be-
tween the set of all the possible colors of the vertex vM and the set of the
possible weights of the matchings in our bipartite graph.

Claim 6 Let π : [n]→ [n] be any permutation and

Mπ =
{
v

(1)
i v

(2)
π(i) : i ∈ [n]

}
be the corresponding perfect matching in G. There is exactly one YES-coloring
c such that πc = π. Moreover c(vM) = c(vL) + l + w(Mπ).

Now we can present the proof in a formal way. Let us introduce the vertices
vL = v1, v2, . . . , v4n = vR to set V. Because of the symmetry of colorings we can
assume that for every coloring c of our instance we have c (vL) ≤ c (vR) . Indeed we
know that for every coloring c a symmetric coloring c′(v) = 1 + span(c) − c(v) has
the same span as c and is proper if and only if c is proper.

We set the minimum distance d (vL, vR) = s − 1. Then for every YES-coloring c
we have that |c (vL)− c (vR)| = s − 1 so our instance is (vL, vR)-spanned. For ev-
ery i, j ∈ [4n] such that i 6= j and {i, j} 6= {1, 4n} we set the minimum distance
d (vi, vj) = |i− j| · 2M. Then we can prove the following claim.

Claim 1 For every YES-coloring c and for every i < j we have that c (vi) < c (vj) .
Proof of the claim: We have assumed w.l.o.g. that for all colorings we have

c (vL) ≤ c (vR). Note that for i 6= j we have c(vi) 6= c(vj). If there are i < j such
that c(vj) < c(vi) then c(vR) − c(vL) = c(vR) − c(vi) + c(vi) − c(vj) + c(vj) − c(vL)
≥ 2M × ((4n− i) + (j − i) + (j − 1)) ≥ 2M × (4n− 1 + 2(j − i)) ≥ 2M × (4n + 1)
> s a contradiction. This proves the claim.

Note that for every YES-coloring and for every i ∈ [4n− 1] we have

2M ≤ c (vi+1)− c (vi) ≤ 2M + n ·m < 3M, (3.1)

otherwise c(vR)− c(vL) ≥ (4n− 2) · 2M + 2M + n ·m+ 1 = s, so c has span at least
s+ 1, a contradiction.

Let us introduce new vertices w1, w2, . . . , w2n−1 to set V. For every i ∈ [2n− 1]
and j ∈ [4n] we set the minimum distances d (wi, vj) = |4i+ 1− 2j| · M. For ev-
ery YES-coloring c and for every i ∈ [2n− 1] we have c (v2i) + M ≤ c (wi) ≤
c (v2i+1) − M by (3.1), otherwise we have that c(vj) ≤ c(wi) ≤ c(vj+1) for some
j 6= 2i (because c(v4n) − c(v1) = s − 1 so every YES-coloring uses only colors from
the interval [c(v1), c(v4n)]) and then c(vj+1) − c(vj) ≥ d(vj, wi) + d(wi, vj+1) and
{vj, vj+1} 6= {v2i, v2i+1} so at least one of these two distances is at least 3M and
therefore c(vj+1)− c(vj) ≥ 3M +M > 3M, a contradiction with (3.1). Thus infer the
following claim.

Claim 2 For every YES-coloring c the colors of the vertices in the sequence

v1, v2, w1, v3, v4, w2, v5 . . . , v4n−2, w2n−1, v4n−1, v4n (3.2)
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are increasing.
We introduce new vertices a1, a2, . . . , an and for every i ∈ [n] and j ∈ [4n] we set

the minimum distances

d (ai, vj) =



M + w
(
v

(1)
i , v

(2)
j/2

)
when j ≤ 2n and

2 | j
M when j ≤ 2n and

2 - j
(j − 2n) · 2M +M when j > 2n.

Then for every YES-coloring c and for every i ∈ [n] we have c (ai) ≤ c (v2n) because in
other case we have c(vj) ≤ c(ai) ≤ c(vj+1) for some j ≥ 2n and then c(vj+1)− c(vj) ≥
d(vj, ai) + d(ai, vj+1) ≥M + 3M > 3M, a contradiction with (3.1).

Moreover for every i ∈ [n] and every j ∈ [2n− 1] we set the minimum distance
d (ai, wj) = 2M. Therefore by (3.1) and (3.2) for every YES-coloring c and every
i ∈ [n] the vertex ai is colored with the color from one of the intervals (c (v2j−1) , c (v2j))
for some j ∈ [n] .

Finally for every i, j ∈ [n] such that i 6= j we set the minimum distance d (ai, aj) =
4M so by (3.1) we know that for every YES-coloring c and every i ∈ [n] exactly one
one vertex aj of the vertices a1, a2, . . . , an is colored with the color from the interval
(c (v2i−1) , c (v2i)) . The assignment of vertices a1, a2, . . . , an to intervals (c(v1), c(v2)),
(c(v3), c(v4)), . . . , (c(v2n−1), c(v2n)) determines a permutation πc : [n] → [n], i.e.,
πc(i) = j if aj gets a color from (c(v2i−1), c(v2i)). Hence we get the following claim:

Claim 3 For every YES-coloring c there is a permutation πc such that the colors
of the vertices of the sequence

v1, aπc(1), v2, w1, v3, aπc(2), v4, w2, v5 . . . , v2n−1, aπc(n), v2n

are increasing.
Similarly we introduce new vertices b1, b2, . . . , bn and for every i ∈ [n] and j ∈ [4n]

we set the minimum distances

d (bi, vj) =



(2n− j + 1) · 2M +M when j ≤ 2n

M +m− w
(
v

(1)
i , v

(2)
j/2−n

)
when j > 2n

and 2 | j
M when j > 2n

and 2 - j.

Also for every i ∈ [n] and every j ∈ [2n− 1] we set the minimum distance d (bi, wj) =
2M and for every i, j ∈ [n] such that i 6= j we set the minimum distance d (bi, bj) =
4M. Hence similarly as before, for every YES-coloring c and every i ∈ [n] exactly
one vertex bj of the vertices b1, b2, . . . , bn is colored with the color from the interval
(c (v2n+2i−1) , c (v2n+2i)) . Analogously as before, the colors of the vertices b1, b2, . . . , bn
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determine a permutation ρc : [n]→ [n]. Thus we have the following claim.

Claim 4 For every YES-coloring c there is a permutation ρc such that the colors
of the vertices in the sequence

v2n+1, bρc(1), v2n+2, wn+1, v2n+3, bρc(2), v2n+4, wn+2,

v2n+5 . . . v4n−1, bρc(n), v4n

are increasing.
For every i ∈ [n] we set the minimum distance d (ai, bi) = n · 4M. Then we

know that for every YES-coloring c we have π−1
c (i) ≤ ρ−1

c (i) otherwise we can take
j = 2π−1

c (i)−1 and k = 2n+2ρ−1
c (i) and then (c(bi)−c(ai))+2M ≤ c(vj)−c(vk) and

k− j ≤ 2n so the sequence v1, v2, . . . , vj, vk, . . . , v4n has at least 4n− 2n+ 1 = 2n+ 1
elements so c(v4n)− c(v1) ≥ (2n− 1) · 2M + (c(vk)− c(vj)) ≥ (2n− 1) · 2M + (c(bi)−
c(ai)) + 2M ≥ (2n − 1) · 2M + n · 4M + 2M = n · 8M > (n − 1) · 8M − 1 = s − 1,
a contradiction. Since πc and ρc are permutations, we further infer that for every
YES-coloring c we have πc = ρc. Hence we have the following claim.

Claim 5 For every YES-coloring c there is a permutation πc such that the colors
of the vertices in the sequence

v1, aπc(1), v2, w1, v3, aπc(2), v4, w2, v5 . . . , v2n−1, aπc(n),

v2n, wn, v2n+1, bπc(1), v2n+2, wn+1, v2n+3, bπc(2), v2n+4,

wn+2, v2n+5 . . . v4n−1, bπc(n), v4n

are increasing.
This ends the description of the instance I. Note that I is (vL, vR)-spanned be-

cause d(vL, vR) = s−1. Let us put vM = wn.We are going to show the following claim.

Claim 6 Let π : [n] → [n] be any permutation and Mπ =
{
v

(1)
i v

(2)
π(i) : i ∈ [n]

}
be

the corresponding perfect matching in G. There is exactly one YES-coloring c such
that πc = π. Moreover c(vM) = c(vL) + l + w(Mπ).

Proof of the claim: Let us consider a sequence of the vertices

v1, aπ(1), v2, w1, v3, aπ(2), v4, w2, v5 . . . , v2n−1, aπ(n),

v2n, wn, v2n+1, bπ(1), v2n+2, wn+1, v2n+3, bπ(2), v2n+4,

wn+2, v2n+5 . . . v4n−1, bπ(n), v4n

and the coloring c implied by the minimum distances of pairs of consecutive elements
in this sequence, i.e., c (v1) = 1, c

(
aπ(1)

)
= c (v1) + d

(
v1, aπ(1)

)
, c (v2) = c

(
aπ(1)

)
+

d
(
aπ(1), v2

)
, c (w1) = c (v2) + d (v2, w1) , c (v3) = c (w1) + d (w1, v3) , . . . , c (v4n) =

c
(
bπ(n)

)
+ d

(
bπ(n), v4n

)
. We need to check that all the minimum distance constraints

d are satisfied and that the span of this coloring is not greater than s.
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Note that for every i ∈ [4n] and for every vertex x ∈ V such that vi 6= x we have
d(x, vi) ≥ M. Therefore for every i ∈ [4n− 1] we have c(vi+1) − c(vi) = (c(vi+1) −
c(x)) + (c(x)− c(vi)) = d(x, vi+1) + d(vi, x) ≥ 2M where x is the vertex separating vi
and vi+1 in the sequence. Thus for every i, j ∈ [4n] we have |c(vi)−c(vj)| ≥ |i−j|·2M
so if {i, j} 6= {1, 4n} then |c(vi)− c(vj)| ≥ d(vi, vj). Hence also for every i ∈ [2n− 1]
and j ∈ [4n] we have |c(wi)−c(vj)| = |c(wi)−c(vk)|+ |c(vk)−c(vj)| ≥M+ |k−j| ·2M
where in case that j ≤ 2i we have k = 2i and in this case M + |k − j| · 2M =
|4i − 2j + 1| · M and in case that j > 2i we have k = 2i + 1 and in this case
M+ |k−j| ·2M = |2j−4i−1| ·M = |4i−2j+1| ·M so in both cases |c(wi)−c(vj)| ≥
|4i−2j+ 1| ·M = d(wi, vj). We will check the distance between vL = v1 and vR = v4n

later.
For every i ∈ [n] and vertex aπ(i) the closest vertex vj to the left is v2i−1 and to

the right is v2i. They are immediate neighbors of aπ(i) in the sequence so from the
definition of c we have |c(aπ(i)) − c(v2i−1)| = d(v2i−1, aπ(i)) and |c(v2i) − c(aπ(i))| =
d(aπ(i), v2i). Note that for every j ∈ [2n] we have d(aπ(i), vj) ≤ 2M and then for
every j ∈ [2i− 2] we have |c(aπ(i))− c(vj)| = (c(v2i−1)− c(vj))+(c(aπ(i))− c(v2i−1)) ≥
2M+M > d(aπ(i), v2i−1). Similarly for every 2i+1 ≤ j ≤ 2n we have |c(aπ(i))−c(vj)| =
((c(v2i)−c(aπ(i)))+(c(vj)−c(v2i)) ≥M+2M > d(aπ(i), vj). For every 2n+1 ≤ j ≤ 4n
we have |c(vj) − c(aπ(i))| = (c(v2i) − c(aπ(i))) + (c(v2n) − c(v2i)) + (c(vj) − c(v2n)) ≥
M + 0 + (j − 2n) · 2M = d(aπ(i), vj). Because π is a permutation thus we obtain that
for every i ∈ [n] and for every j ∈ [4n] we have |c(ai)− c(vj)| ≥ d(ai, vj).

For every i ∈ [n] and j ∈ [2n− 1] there is at least one vertex vk with color between
the colors c(ai) and c(wj) so |c(ai)− c(wj)| = |c(ai)− c(vk)|+ |c(vk)− c(wj)| ≥ 2M =
d(ai, wj). For every i, j ∈ [n] such that π−1(i) < π−1(j) there are at least two vertices
vk, vk+1 with colors c(ai) ≤ c(vk) ≤ c(vk+1) ≤ c(aj). Therefore |c(aj) − c(ai)| =
(c(vk)−c(ai))+(c(vk+1)−c(vk))+(c(aj)−c(vk+1)) ≥M+2M+M = 4M = d(ai, aj).

Similarly we can check that for every i ∈ [n] and j ∈ [4n] we have |c(bi)− c(vj)| ≥
d(bi, vj), that for every i ∈ [n] and j ∈ [2n− 1] we have |c(bi)− c(wj)| ≥ d(bi, wj) and
for every i, j ∈ [n] such that i 6= b we have |c(bi)− c(bj)| ≥ d(bi, bj).

We need also to check that for every i ∈ [n] we have |c(ai) − c(bi)| ≥ n · 4M =
d(ai, bi). Indeed |c(bi) − c(ai)| = (c(v2i) − c(ai)) + (c(v2n+2i−1) − c(v2i)) + (c(bi) −
c(v2n+2i−1)) ≥M + (2n− 1) · 2M +M = n · 4M = d(ai, bi).

Now we are going to deal with the distances between vL, vM and vR. The sum of
the minimum color distances of neighboring elements in the prefix of our sequence:

v1, aπ(1), v2, w1, v3, aπ(2), v4, w2, v5 . . . , v2n−1, aπ(n), v2n,

wn, v2n+1

is exactly 2n · 2M +w (Mπ) . The sum of the minimum color distances of neighboring
elements in the suffix of our sequence:

v2n+1, bπ(1), v2n+2, wn+1, v2n+3, bπ(2), v2n+4, wn+2,

v2n+5 . . . v4n−1, bπ(n), v4n

is exactly (2n− 1) · 2M + n ·m−w (Mπ) . So the total sum for the whole sequence is
exactly (4n− 1) · 2M + n ·m = s− 1 and it does not depend on the permutation π.
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Figure 3.5: Two weighted complete bipartite graphs (G1, w1) (with n1 = 2) and
(G2, w2) (with n2 = 3) encoded in a Channel Assignment form. The color of
the vertex vM = w2 corresponds to the weight of some perfect matching in G1 and
to the weight of some perfect matching in G2. These two weights have to be equal.
The picture is simplified. Some of the edges are omitted in the picture. Note that
the values M and m can be different for (G1, w1) and for (G2, w2).

Therefore |c(vR) − c(vL)| = s − 1 = d(vL, vR). This was the last constraint to check
and hence we have shown that c is proper. On the other hand the span of c is s so
c is a YES-coloring. Moreover we have c (vM) = c (vL) + (4n− 1) ·M + w (Mπc) =
c (vL) + l + w (Mπc) . Note that all the distances of pairs of consecutive elements of
(the whole) sequence are tight, i.e., these distances are equal to the minimum allowed
distances for these pairs of the vertices and therefore we cannot decrease any of these
distances. On the other hand the span of c is maximum so we cannot increase any
of these distances without exceeding the maximum span or violating some of the
constraints provided by d. Therefore c is the only one YES-coloring for which the
colors of the vertices of this sequence are increasing. Hence c is the only one YES-
coloring such that πc = π. This ends the proof of the claim.

Thus there is a one-to-one correspondence between permutations and YES-colorings.
Moreover we know that for every YES-coloring c we have c (vM) = c (vL)+ l+w (Mπc)
where Mπc is the perfect matching in G corresponding to permutation πc. Hence we
have shown (i) and (ii) as required.

Lemma 32. There is a polynomial time reduction such that for a given instance
I = (G1, G2) of Equal Weight Matchings with n1 = |V (G1)| , n2 = |V (G2)| and
such that the weight functions of G1 and G2 are bounded by respectively m1 and m2

reduces it into an instance of Channel Assignment with O (n1 + n2) vertices and
the maximum edge weight in O (n2

1m1 + n2
2m2) .

In the proof we use Lemma 31 to encode G1 and G2 in two instances of Channel
Assignment, then we extend them to the common length using Lemma 30 and finally
we merge them using Lemma 29. A simplified picture of the obtained Channel
Assignment instance can be found in Figure 3.5.

Proof. Let use Lemma 31 on graph G1 to obtain a
(
v

(1)
L , v

(1)
R

)
-spanned Channel

Assignment instance I1 = (V1, d1, s1) with l1 = O (n2
1m1) , s1 = 2l1 + n1 · m1 =

O (n2
1m1) and with the vertex v(1)

M (as in the statement of Lemma 31). The number
of the vertices in V1 is O (n1) . Similarly, let I2 = (V2, d2, s2) be a

(
v

(2)
L , v

(2)
R

)
-spanned
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Channel Assignment instance with l2 = O (n2
2m2) , s2 = 2l2 + n2 ·m2 = O (n2

2m2)

and with the vertex v(2)
M obtained from Lemma 31 from graph G2. The number of the

vertices in V2 is O (n2) .

Let us identify vertices v(1)
M and v(2)

M , i.e., v(1)
M = v

(2)
M = vM and V1 ∩ V2 = {vM} .

And let lmax = max {l1, l2} = O (n2
1m1 + n2

2m2) and s = lmax+max {s1 − l1, s2 − l2} =
O (n2

1m1 + n2
2m2) .Our span will be s. Note that then every edge with a weight greater

than s − 1 forces that our instance is a NO-instance. So if we have an edge with a
weight greater that s we can replace it with the same edge with but a weight equal
to s and the instance will be still a NO-instance. Therefore weights of all our edges
will be bounded by O (n2

1m1 + n2
2m2) .

We can use Lemma 30 with l = lmax − l1 and with r = s − (lmax + s1 − l1) for
extending the instance I1 into a

(
w

(1)
L , w

(1)
R

)
-spanned instance

I ′1

(
V ′1 = V1 ∪

{
w

(1)
L , w

(1)
R

}
, d′1, s

)
of Channel Assignment. For every YES-coloring c′1 of I ′1 we know that c′1 |V1 is a
YES-coloring of I1 and for every YES-coloring c1 of I1 there exists a YES-coloring c′1
of I ′1 such that c′1 |V1= c1 so from the properties of I1 (obtained from Lemma 31) we
know that

• for every YES-coloring c′1 of I ′1 such that c′1
(
w

(1)
L

)
≤ c′1

(
w

(1)
R

)
there exists a

perfect matching M1 in G1 such that c′1 (vM) = c′1

(
w

(1)
L

)
+ lmax + w1 (M1) and

• for every perfect matching M1 in G1 there exists a YES-coloring c′1 of I ′1 such
that c′1

(
w

(1)
L

)
≤
(
w

(1)
R

)
and c′1 (vM) = c′1

(
w

(1)
L

)
+ lmax + w1 (M1) .

Similarly we can use Lemma 30 with l = lmax− l2 and with r = s− (lmax − l2 + s2)

for extending the instance I2 into a
(
w

(2)
L , w

(2)
R

)
-spanned instance I ′2(V ′2 = V2 ∪

{w(2)
L , w

(2)
R }, d′2, s) of Channel Assignment such that

• for every YES-coloring c′2 of I ′2 such that c′2
(
w

(2)
L

)
≤ c′2

(
w

(2)
R

)
there exists a

perfect matching M2 in G2 such that c′2 (vM) = c
(
w

(2)
L

)
+ lmax + w (M2) and

• for every perfect matching M2 in G2 there exists a YES-coloring c′2 of I ′2 such
that c′2

(
w

(2)
L

)
≤
(
w

(2)
R

)
and c′2 (vM) = c′1

(
w

(2)
L

)
+ lmax + w1 (M1) .

Now we can use Lemma 29 to merge the instances I ′1 and I ′2 into a one ({w(1)
L , w

(2)
L },

{w(1)
R , w

(2)
R })-spanned instance I ′ = (V ′1 ∪ V ′2 , d, s) .A simplified picture of the obtained

instance can be found in Figure 3.5. Note that V ′1 ∩ V ′2 = {vM} so

• for every YES-coloring c of I ′ such that c
(
w

(1)
L

)
≤ c

(
w

(1)
R

)
there exist perfect

matchingsM1 in G1 andM2 in G2 such that c (vM) = c
(
w

(1)
L

)
+lmax+w1 (M1) =

c
(
w

(1)
L

)
+ lmax + w2 (M2) , so w1 (M1) = w2 (M2) and
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• for every two perfect matchings M1 in G1 and MG2 in G2 such that w1 (M1) =

w2 (M2) there is a YES-coloring c of I such that c
(
w

(1)
L

)
≤ c

(
w

(1)
R

)
and

c (vM) = c
(
w

(1)
L

)
+ lmax + w1 (M1) .

Therefore the Channel Assignment instance I ′ has a YES-coloring if and only if
there are two perfect matchingsM1 in G1 andM2 in G2 such that w1 (M1) = w2 (M2) .
By Lemma 29 and Lemma 30 we know that I ′ has O (n1 + n2) vertices.

Now we can use the results of Section 3.1 to get the following two theorems.

Theorem 1. Unless ETH fails, there is no algorithm solving Channel Assignment
in time 2o(n logn) · rO(1) where n is the number of the vertices and r is the bit size of
the instance.

Proof. For a given instance of Equal Weight Matchings with n vertices and the
weights bounded bym we can transform it by Lemma 32 into an instance of Channel
Assignment with n′ = O(n) vertices and the weights bounded by ` = O(n2m). Note
that for the bit size r′ of the new instance we have r′O(1) = (n′)2`

O(1)
= n,mO(1) =

rO(1). Let us assume that we can solve Channel Assignment in 2o(n logn)rO(1)-
time. Then we can solve our instance in time 2o(n

′ logn′)r′O(1) = 2o(n logn)rO(1) which
contradicts ETH by Theorem 2.

Theorem 33. Unless ETH fails, there is no algorithm solving Channel Assign-
ment in time 2n·o(log log `) ·rO(1) where n is the number of the vertices, ` is a maximum
weight of the edge and r is the bit size of the instance.

Proof. For a given instance of 3-CNF-SAT with n variables and m clauses we use the
reduction from Theorem 28 to obtain an instance of Equal Weight Matchings
with |V1| = O

(
n

logn

)
, |V2| = O

(
m

logm

)
and the maximum matching weights bounded

by 23m. Then we use the reduction from Lemma 32 to obtain an instance of Channel
Assignment with

n′ = O

(
n

log n
+

m

logm

)
= O

(
n+m

log(n+m)

)
vertices and the weights on the edges bounded by

` = O

((
n

log n
+

m

logm

)2

· 23m

)
.

Then log ` = O(n + m) and r = O((n′)2 · log `) = O((n + m)3). Let us assume that
there is an algorithm solving Channel Assignment in 2n·o(log log `)rO(1)-time then
we can solve our instance in time

2O( n+m
log(n+m))·o(logO(n+m))O((n+m)3)

O(1)
=

= 2O( n+m
log(n+m))·o(log(n+m))n+mO(1) = 2o(n+m)

which contradicts ETH by Theorem 15.
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Chapter 4

Subgraph Isomorphism

In this chapter we prove that there is no algorithm solving Subgraph Isomorphism
in time 2o(n

√
logn), unless ETH fails.

Additional notation for this chapter. All the graphs used in this chapter are
undirected, however in edge colored graphs there might be several parallel edges
between the same pair of vertices.

For a CNF-SAT formula ϕ let Var(ϕ) be the set of variables of ϕ, whereas
Clauses(ϕ) is the set of clauses of ϕ.

4.1 Overview of the reduction
Note that due to the Corollary 17 we can start our reduction from (3,4)-CNF-SAT
instead of more general 3-CNF-SAT. In Sections 4.2 -4.4 we present our reduction
from (3,4)-CNF-SAT to Subgraph Isomorphism, which is self-contained and in-
dependent of [56]. Throughout the reduction we define the size of a Subgraph
Isomorphism instance to be the total number of vertices in the pattern and host
graphs. Our reduction can be broken into three steps:

• First, in Section 4.2, we preprocess the given (3,4)-CNF-SAT formula and pack
its variables and clauses into groups of logarithmic size. Importantly, we ensure
that there is only a limited interaction between the groups by marking variables
with colors – applying further steps of the reduction for an arbitrary grouping
would not yield a superexponential lower bound for Subgraph Isomorphism.

• Next, in Section 4.3, we use the packing to create 2O(n/ logn) smaller instances of
a variant of the Subgraph Isomorphism problem, where additionally vertices
and edges have colors which have to be preserved by the mapping. This proves
that the color variant of Subgraph Isomorphism admits a tight lower bound
of 2Ω(n logn) under the Exponential Time Hypothesis. In this step, we use a
simple technique of guessing preimage sizes, which allows us to circumvent the
usual technical difficulties of encoding valuations by permutations.

• Finally, in Section 4.4 we reduce the color version of Subgraph Isomorphism
to the original variant, incurring an O(

√
log n) increase in the instance size.
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Definition 34. We define the (c, t)-Subgraph Isomorphism problem as a gener-
alization of Subgraph Isomorphism where every vertex of the pattern and host
graphs is colored in one of c colors, and every edge is colored in one of t colors, and
the mapping is restricted to preserving vertex and edge colors.

In particular, Subgraph Isomorphism is the same as (1, 1)-Subgraph Iso-
morphism. The pipeline of our lower bound consists of two steps. First, in Lemma 35,
given a (3,4)-CNF-SAT formula with n variables we construct a set of 2O(n/ logn) in-
stances of (O(1), O(log n))-Subgraph Isomorphism of O(n/ log n) size each. Note
that the number of vertex colors is constant, whereas the number of edge colors is
logarithmic. In the second step (Lemma 45) we reduce to the original variant of Sub-
graph Isomorphism, with an additional increase in the instance size by a factor of
O(
√

log n), leading to a final size of O(n/
√

log n), which is sublinear.

Lemma 35. Given a (3,4)-CNF-SAT formula ϕ with n variables one can in 2O(n/ logn)

time create a set S of 2O(n/ logn) instances of (O(1), O(log n))-Subgraph Isomor-
phism of size O(n/ log n), such that ϕ is satisfiable iff any instance in S is satisfiable,
and the host graph and the pattern graph have the same number of vertices for every
instance in S.

Lemma 36. An instance of (c, t)-Subgraph Isomorphism, where the host graph
and the pattern graph have the same number of vertices, can be reduced to an equivalent
instance of Subgraph Isomorphism with O(c

√
t) times more vertices.

Having the two lemmas above, which we prove in the remainder of this chapter,
we can prove Theorem 3.

Theorem 3. There is no algorithm which solves Subgraph Isomorphism in time
2o(n

√
logn), unless the Exponential Time Hypothesis fails.

Proof. Assume that a 2o(n
√

logn) time algorithm exists for the Subgraph Isomor-
phism problem, where n = |V (G)| + |V (H)|. We show an algorithm solving a given
(3,4)-CNF-SAT formula ϕ with n variables in time 2o(n), leading to a contradiction
with the Exponential Time Hypothesis by Corollary 17.

Indeed, the prerequisites of Lemma 35 are satisfied, and in 2O(n/ logn) time we can
obtain a corresponding set S of 2O(n/ logn) instances of (O(1), O(log n))-Subgraph
Isomorphism of size O(n/ log n) each. Next, we apply Lemma 45 to transform each
instance in S into an instance of Subgraph Isomorphism of size O(n/

√
log n),

obtaining the set S′. Finally, we apply the hypothetical 2o(n
√

logn)-time algorithm to
the instances in S′, leading to 2O(n/ logn)2o(n) = 2o(n) running time.

We prove Lemma 35 in Section 4.3 and Lemma 45 in Section 4.4. However, before
we describe the reduction, in Section 4.2 we present how to group clauses of a given
(3,4)-CNF-SAT formula in a way that allows a sublinear reduction to Subgraph
Isomorphism.
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4.2 Grouping clauses

As we already mentioned, when proving superexponential lower bounds based on the
Exponential Time Hypothesis, we need to come up with a reduction producing an
instance of Subgraph Isomorphism of sublinear number of vertices. In this section
we show how to preprocess a given (3,4)-CNF-SAT formula and partition its clauses
into groups of logarithmic size. Our grouping is far from arbitrary, as we need to
precisely control the interactions between clauses sharing the same variables.

Before we arrive at our main structural lemma, we need a simple step in which we
assign colors to variables so that no clause contains two variables of the same color
and moreover the counts of variables in each color are balanced.

First we show the existence of a potentially unbalanced 9-coloring.

Lemma 37. Given a (3,4)-CNF-SAT formula ϕ with n variables we can color the
variables of ϕ in polynomial time using at most 9 colors, so that no clause contains
two variables of the same color.

Proof. Construct an auxiliary graph Gϕ, the vertex set of which is the set of variables
of S, where two vertices of Gϕ are adjacent iff they both appear in at least one of the
clauses of ϕ. Note that the maximum degree of Gϕ is bounded by 8, as each variable
appears in at most 4 clauses and each clause contains at most 3 literals. Consequently,
we can color Gϕ with at most 9 colors in a greedy manner.

Lemma 38. Given an integer k > 9 and a (3,4)-CNF-SAT formula ϕ with n vari-
ables we can color the variables of ϕ in polynomial time using at most k colors, so
that no more than dn/(k− 9)e variables share the same color and no clause contains
two variables of the same color.

Proof. First, color the variables into 9 colors using Lemma 37. Then, while there
exists a color with more than dn/(k−9)e variables assigned to it, separate dn/(k−9)e
of them to form a new color. This can occur at most k − 9 times, and the lemma
follows.

Having Lemma 38 we are ready to pack the clauses of a given (3,4)-CNF-SAT
formula into 2k groups, which is the main structural insight in our reduction. It is
important that no two clauses from the same group contain variables of the same
color.

Lemma 39. Given a (3,4)-CNF-SAT formula ϕ with n ≥ 16 variables one can in
polynomial time construct:

• a coloring l : Var(ϕ)→ [k] of the variables in ϕ into k colors, such that no two
variables contained in a clause of ϕ share the same color, and

• a packing h : Clauses(ϕ) → [2k] of the clauses into 2k groups indexed by
{0, . . . , 2k − 1}, such that for any i ∈ [2k] no two clauses that are mapped
to i contain variables of the same color,
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where k := dlog n− log log ne+ 9.

Proof. Let l be the coloring guaranteed by Lemma 38. We slightly overload the
notation and by l(C) denote the set of colors of variables in C ∈ Clauses(ϕ).

We construct the packing h in a greedy manner. Consider all the clauses of
Clauses(ϕ) one by one in an arbitrary order. When a clause C ∈ Clauses(ϕ) is
processed, we find any group i ∈ [2k], such that the set of colors of variables appearing
in clauses already assigned to i is disjoint from l(C). If several such sets i exist, we
pick an arbitrary one and assign h(C) := i.

It remains to prove that such an i always exists for the value of k as stated in the
lemma. We prove this by contradiction: suppose that at some point, for some clause
C, for every i one of the colors in l(C) is already present in a clause already assigned
to i. Let ml(C) be the number of clauses of ϕ containing at least one color from l(C).
As there are exactly 2k groups, and we cannot assign C to any of them, it means that

ml(C) ≥ 2k ≥ 512n/ log n , (4.1)

since each of the 2k groups is blocked by a different clause containing at least one
color from l(C).

On the other hand we have only 3 colors in l(C) and we know by Lemma 38, that
no more than dn/(k−9)e variables are assigned to any color, and by the upper bound
on the frequency of each variable of ϕ we know that no variable occurs in more than 4
clauses. Consequently, the number of clauses having at least one common color with
C is upper bounded by

ml(C) ≤ 3 · dn/(k − 9)e · 4 ≤ 12 · (n/(k − 9) + 1)

≤ 12 · (n/(log n− log log n) + 1) ≤ 12 · (2n/ log n+ 1)

≤ 12 · (2n/ log n+ 0.5n/ log n) ≤ 30n/ log n , (4.2)

where in the last two inequalities we have used that log n− log log n ≥ 0.5 log n and
n/ log n ≥ 2 for n ≥ 16. Note that (4.2) yields a contradiction with (4.1), and the
lemma follows.

4.3 From (3,4)-CNF-SAT to Subgraph Isomorphism
with colors

The technical crux of our result is a method of encoding information in permutations
– mappings from the pattern graph to the host graph. The intuition behind this
technique is that the number of permutations of an n element set is n! = 2Θ(n logn)

and therefore a single permutation carries Θ(n log n) bits of information. This means
that from the information-theoretic perspective it should be possible to encode an
assignment of Boolean values to n variables using a permutation of O(n/ log n) ele-
ments.

Every element in a permutation is responsible for encoding some number of bits,
forming what we call a pack of bits. We do not restrict ourselves to packs of constant
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size, but each pack we create is of size no greater than logarithmic. The position of
an element in a permutation should uniquely determine the values of all the bits from
its pack. The problem is, however, that in a permutation no two elements can be
mapped to the same position, which potentially might make it impossible to assign
the same valuation to two different packs of bits.

Here, we present a new and simple way of circumventing this obstacle by guessing
the sizes of preimages in a mapping corresponding to a satisfying assignment. Less
formally, what we do is replicate some positions and remove other ones, so that in
some branch our guess will transform a mapping we had in mind into a permutation.

We would like to note that encoding groups of bits by a position in a permutation
was already used by Marx, Lokshtanov and Saurabh [103] in the k×k-Permutation
Clique problem, as well as in Chapter 3 of this dissertation in the lower bound for
the Channel Assignment problem.

In the remainder of this section we prove Lemma 35, that is show how to transform
a (3,4)-CNF-SAT formula ϕ into 2O(n/ logn) instances of (O(1), O(log n))-Subgraph
Isomorphism with O(n/ log n) vertices. In order to do this we need to introduce
notation for binary strings. Assume for a moment, that n is a power of two, i.e.,
n = 2k for k ∈ N. One can view elements in a permutation as integers between 0 and
n−1, denoted as [n], but also as a set of binary strings of length k – being the binary
representations of numbers from [n], denoted as 2[k]. We will use the two conventions
interchangeably and for this reason we need the following notation regarding binary
strings. Let B := {0, 1}∗ be the set of all binary strings. and Bk := {0, 1}k be the
set of binary strings of size exactly k. For a binary string s, let |s| be its length. We
denote the i-th digit (starting from 0) of a binary string s as si.
Lemma 35. Given a (3,4)-CNF-SAT formula ϕ with n variables one can in 2O(n/ logn)

time create a set S of 2O(n/ logn) instances of (O(1), O(log n))-Subgraph Isomor-
phism of size O(n/ log n), such that ϕ is satisfiable iff any instance in S is satisfiable,
and the host graph and the pattern graph have the same number of vertices for every
instance in S.
Proof. Assume we are given a (3,4)-CNF-SAT formula ϕ with n variables. Define
k := dlog n − log log ne + 9. We prove that solving ϕ can be reduced to solving less
than 22k+1

= 2O(n/ logn) instances of (3, k)-Subgraph Isomorphism, with vertex
colored denoted as red, green and blue, and edge colors denoted by [k], where the
number of vertices of both the pattern and host graph equals

2k + 8 ·
(
k

3

)
+ 1 = O(n/ log n) .

Satisfying assignment gadget.
The assignment gadget G consists of a path on 8 ·

(
k
3

)
red vertices, with a single green

vertex appended at one end. The red vertices will be uniquely identifiable based on
the distance from the green vertex. Each red vertex will correspond to a choice of 3
distinct indices from [k] and an assignment of binary values to each of them:

(i1, i2, i3, b1, b2, b3) ∈ [k]3 ×B3 ,

i1 < i2 < i3 .
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Satisfying Assignment Gadget

Assignment Encoding Vertices

8
(
k
3

)
+ 1

2k

Figure 4.1: A simplified view of the pattern graph.

Intuitively, an edge between one of the clause vertices and a red vertex will indicate
that ‘in this pack of clause valuations, the variables at positions i1, i2, i3 are not as-
signed values b1, b2, b3 at the same time’. All edges in G are of color 0.

Pattern graph construction.
The pattern graph will be constant across all the created instances. The pattern

graph P consists of 2k blue vertices corresponding to packs of clauses and a copy of
the satisfying assignment gadget G. First, find the coloring l and packing h guaran-
teed by Lemma 39. We associate each blue vertex of P with a different group in the
image of h.

For every variable x in S and every two distinct clauses C1, C2 containing x, we
add an edge of color l(x) between the blue vertices corresponding to h(C1) and h(C2).
Intuitively, these edges signify that x has to have a consistent valuation when choosing
valuations of variables in packs containing C1 and C2.

Additionally, for every clause C in ϕ we add an edge of color 0 between h(C) (i.e.,
the pack containing C) and the red vertex (i1, i2, i3, b1, b2, b3), where i1 < i2 < i3 are
the colors of variables in C and (b1, b2, b3) is their only valuation that does not satisfy
C.

Host graph construction.
We will generate a different host graph for every sequence of preimage sizes of the
valuations of the groups. Fix a sequence s0, s1, . . . , s2k−1, such that si ≥ 0 for all i
and

∑
si = 2k.

The number of possible such sequences s is(
2k+1 − 1

2k − 1

)
≤ 22k+1

.

The host graph Hs consists of 2k blue vertices corresponding to valuations of the
groups of clauses and a copy of the satisfying assignment gadget G. For the binary
string of length k corresponding to i ∈ [2k], we generate si vertices corresponding to
it.

For j ∈ Zk, we join two blue vertices u, v in Hs with an edge of color j iff uj = vj,
that is iff the j-th bit in both strings is the same. Intuitively, lack of an edge of color
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j between two blue vertices u, v in Hs disallows assigning two packs of clauses to
vertices u and v when the variable of color j in both packs is the same, as it would
lead to inconsistent valuation.

For every blue vertex u in Hs and red vertex v = (i1, i2, i3, b1, b2, b3) in G, we
connect u and v with an edge of color 0 iff uij 6= bj for some j ∈ Z3. Less formally,
lack of an edge between a blue vertex u and a red vertex v = (i1, i2, i3, b1, b2, b3) means
that a pack of clauses can be assigned to u, only if the valuation corresponding to
the bit string associated with u only if there is no clause such that assigning values
b1, b2, b3 to variables of colors i1, i2, i3, respectively, would cause some clause from the
pack to be unsatisfied.

Proof of correctness.
As the construction can be carried out in polynomial time per instance and both the
host and pattern graphs have O(n/ log n) vertices as promised, it remains to prove
that ϕ is satisfiable iff for some instance the pattern graph P is a subgraph of the
host graph Hs.

Claim 40. If ϕ is satisfiable, then for some sequence of preimage sizes s, P is a
subgraph of Hs.

Proof: First, assume that ϕ is satisfiable and let val : Var(ϕ)→ {true, false} be a
satisfying assignment. We construct a mapping g : V (P ) → V (H) as follows. For a
group i ∈ [2k] let Vari be the set of variables occurring in all the clauses assigned to i
by the packing h. If any colors do not occur in l(Vari), add arbitrary variables to Vari
so that l(Vari) = [k]. Define f(i) = val|Vari , i.e., the bit string representing valuation
of variables from Vari by val. Let s be the sequence of preimage sizes of f . A bijection
g corresponding to f exists between the blue vertices of P and Hs. We extend g to
all the vertices of P by mapping each vertex of the satisfying assignment gadget G
in P to its corresponding copy in Hs, obtaining a bijection g′ : V (P )→ V (Hs).

It remains to check that b′ preserves all the edges. Clearly, the edges within the
satisfying assignment gadget G are preserved. Consider any edge of color c ∈ [k] in
the pattern graph between two blue vertices u, v, corresponding to groups i and j. By
construction, this means that the packs h−1(i) and h−1(j) share a variable of color c,
which means that by the definition of f the bit strings f(i) and f(j) assign the same
value to the index corresponding to this variable. As g extends f , we have g(i) = f(i)
and g(j) = f(j), hence the bit strings corresponding to g′(u) and g′(v) have the same
value on the c-th position, hence by construction of the host graph g′(u) and g′(v) are
connected by an edge of color c. Finally, we inspect the edges between blue vertices
and red vertices. Consider a blue vertex u associated with a set A ⊆ [k], which is
connected to some red vertex v = (i1, i2, i3, b1, b2, b3), because of a clause C ∈ h−1(A).
As val is a satisfying assignment and g extends bit strings assigned by f , we infer
that the vertex g(u) is connected to the red vertex v. Consequently, P is a subgraph
of Hs witnessed by the mapping g′. y

Now we prove the following claim.

Claim 41. If for any s it holds that P is a subgraph of Hs, then ϕ is satisfiable.
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Proof: Let g be a mapping from P to Hs witnessing the fact that P is a subgraph
of Hs. As g respects colors, we infer that the single green vertex in P is mapped to
the single green vertex in Hs. Similarly all the red vertices of P have to be mapped
to red vertices of Hs. Additionally the distance between each red vertex v and the
green vertex in P cannot be smaller than the distance between g(u) and the green
vertex in Hs. As red vertices induce a path, and the green vertex is pendant to one if
its ends, we infer that g assigns each vertex of the satisfying-assignment-gadget in P
to its copy in Hs (in short, by construction there are no non-trivial automorphisms
of the gadget).

Construct an assignment val : Var(ϕ) → {true, false} as follows. For a vari-
able x ∈ Var(ϕ) find any clause C that contains x and assign val(x) to true iff
g(h(C))l(x) = 1, where h(C) is the blue vertex associated with C and l(x) is the color
of the variable x. Note that by construction the assignment val is well-defined, as
edges between blue vertices guarantee consistence. Consider a clause C. The edges
between h(C) and red vertices in the pattern graph P have to be preserved by g,
and we already observed that g maps red vertices of P to their corresponding copies
in Hs. Hence, we infer that there is an edge between g(h(C)) and the red vertex
v = (i1, i2, i3, b1, b2, b3), where b1, b2, b3 is the only assignment to variables of C, where
l(C) = {i1, i2, i3}, which does not satisfy C. This in turn implies that for at least one
variable of C the assignment val assigns a different value than the one corresponding
to the appropriate bit from {b1, b2, b3}. Consequently, val is a satisfying assignment.

y
Claims 40 and 41 prove equivalence of the formula ϕ and created instances of

(3, k)-Subgraph Isomorphism, hence the proof of Lemma 35 follows.

We would like to note that Lemma 35 implies a tight bound for the auxiliary
version of Subgraph Isomorphism with colors, even in the case when the number
of vertex colors is constant and the number of edge colors is logarithmic.

Corollary 42. There is no 2o(n logn) time algorithm for the (O(1), O(log n))-Subgraph
Isomorphism problem, unless the Exponential Time Hypothesis fails.

4.4 Removing the colors
In this section we prove Lemma 45, first by showing how to remove colors from edges,
and next by removing colors from vertices.

Lemma 43. An instance (G,H) of (c, t)-Subgraph Isomorphism such that |V (G)| =
|V (H)| can be reduced to an instance (G′, H ′) of (c+ 1, 1)-Subgraph Isomorphism
with O(

√
t) times more vertices such that |V (G′)| = |V (H ′)|.

Proof. Let (G,H) be an instance of (c, t)-Subgraph Isomorphism such that |V (G)| =
|V (H)|. Assume that none of the vertices of the instance (G,H) was colored yellow.
Let t′ := 2

⌈√
t
⌉
. Note that for t ≥ 1 we have

⌈√
t
⌉
≥ 1 and then(

t′

2

)
=

2
⌈√

t
⌉
· (2
⌈√

t
⌉
− 1)

2
≥
⌈√

t
⌉2

≥ t.
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Figure 4.2: The reduction described in Lemma 43. In the example, t = 3,
t′ = 2

⌈√
t
⌉

= 4, p(red) = (1, 2), p(green) = (1, 3) and p(blue) = (1, 4).

Therefore for each color x ∈ [t] we can pick a different pair p(x) := (i, j) where
1 ≤ i < j ≤ t′.

For every vertex u in either the pattern or the host graph, we replace it by a
gadget consisting of t′ + 2 vertices (see Fig. 4.2):

• a center vertex u′0 of the same color as u, and

• a path on t′ + 1 yellow vertices u′1, . . . , u′t′+1, the first t′ of which are connected
to the center vertex.

For every edge (u, v) of color x in either the pattern or the host graph, we replace
it by the edges (u′i, v

′
j) and (u′j, v

′
i) in the modified graph, where (i, j) = p(x). We

denote this new instance of (c + 1, 1)-Subgraph Isomorphism as (G′, H ′). Note
that |V (G′)| = (t′+2) · |V (G)| and |V (H ′)| = (t′+2) · |V (H)| hence |V (G′)| = |V (H ′)|
and also |V (G′)| = O(

√
t) · |V (G)| and |V (H ′)| = O(

√
t) · |V (H)|.

It remains to prove that G is a subgraph of H iff G′ is a subgraph of H ′. If G
is a subgraph of H then there exists an injective function f : V (G) → V (H) such
that edges and colors are preserved. Note that every vertex of the instance (G′, H ′)
is of the form u′i for some vertex u of the instance (G,H). Let g : V (G′) → V (H ′)
be a function such that g(u′i) = f(u)′i. The function g is an injection because the
function f is an injection. The function g preserves the colors of the vertices because
col(g(u′0)) = col(f(u)′0) = col(f(u)) = col(u) = col(u′0) and for i > 0 the color of u′i
is always yellow. The function g preserves also the edges. Let u′iv′j be an edge in G′
such that i ≤ j (we can assume this w.l.o.g.). If u = v then there exists also an edge
f(u)′if(u)′j = g(u′i)g(v′j) in H ′ because all the gadgets have exactly the same structure
of the internal edges i.e. if there exists an edge u′iu′j in a gadget for any vertex u then
for every vertex v there exists an edge v′iv′j in a gadget for vertex v. If u 6= v then
1 ≤ i < j ≤ t′ and there exists an edge uv of the color x = p−1(i, j) in G and then
there exists an edge f(u)f(v) of the color x in H and (because (i, j) = p(x)) we
know that there exists an edge f(u)′if(v)′j = g(u′i)g(v′j) in H ′. The edges of (G′, H ′)
have only one color thus g preserves the colors of the edges trivially. Hence G′ is a
subgraph of H ′.

If G′ is a subgraph of H ′ then there exists an injective function g : V (G′)→ V (H ′)
such that edges and colors are preserved. The vertices of the form u′0 are the only
vertices of G′ and H ′ which are not yellow. Therefore if g(u′i) = v′j, then i = 0 iff
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Figure 4.3: The reduction described in Lemma 44. In the example, the green and
blue colors of the vertices represent the numbers 2 and 3 respectively and the blue
color of the edges represent the number 1.

j = 0. If g(u′0) = v′0 then for every u′i such that 1 ≤ i ≤ t′ we have g(u′i) = v′j for
some 1 ≤ j ≤ t′ because the vertices u′1, u′2, . . . , u′t′ are yellow neighbors of u′0 and
the vertices v′1, v′2, . . . , v′t′ are the only yellow neighbors of v′0. On the other hand we
know that |V (G)| = |V (H)| and then the number of the vertices of the form u′i for
1 ≤ i ≤ t′ is the same in G′ and in H ′. Therefore for every vertex v′i in H ′ such that
1 ≤ i ≤ t′ there exists a vertex u′j in G′ such that 1 ≤ j ≤ t′ and g(u′j) = v′i. Therefore
if g(u′i) = v′j then i = t′ + 1 iff j = t′ + 1. Moreover the vertices u′1, u′2, . . . , u′t′ create
a path (in this order) and the only directed paths containing exactly the vertices
{v′1, v′2, . . . , v′t′} = g({u′1, u′2, . . . , u′t′}) are v′1, v′2, . . . , v′t′ and v′t′ , v

′
t′−1, . . . , v

′
1. But the

vertex u′t′ is a neighbor of the vertex u′t′+1 and the vertex v′1 has no neighbor of the
form w′t′+1 for any vertex w in H. On the other hand the vertex u′t′+1 has to be
mapped to a vertex of the form w′t′+1 for some vertex w in H. Therefore the path
u′1, u

′
2, . . . , u

′
t′ is mapped to the path v′1, v

′
2, . . . , v

′
t′ i.e. for every vertex u′i such that

1 ≤ i ≤ t′ we have g(u′i) = v′i. Let f : V (G) → V (H) be a function such that
f(u) = v iff g(u′0) = v′0. (note that then f(u)′0 = v′0 = g(u′0)). The function f is an
injection because the function g is an injection. The function f preserves the colors
of the vertices because col(f(u)) = col(f(u)′0) = col(g(u′0)) = col(u′0) = col(u). The
function f preserves also the edges with their colors because if there is an edge uv of
the color x in the graph G then for (i, j) = p(x) there is an edge u′iv′j in the graph
G′ and therefore there is an edge g(u′i)g(v′j) = f(u)′if(v)′j in the graph H ′ and then
there is an edge f(u)f(v) of the color x in the graph H. Hence G is a subgraph of
H.

Having reduced the number of edge colors down to one, it remains to reduce the
number of vertex colors. Note that in the following lemma it would be enough to
assume t = 1, however we prove the lemma in a more general form as it does not
affect the complexity of the proof.

Lemma 44. An instance (G,H) of (c, t)-Subgraph Isomorphism such that |V (G)| =
|V (H)| can be reduced to an instance (G′, H ′) of (1, t)-Subgraph Isomorphism with
O(c) times more vertices such that |V (G′)| = |V (H ′)|.

Proof. Let (G,H) be an instance of (c, t)-Subgraph Isomorphism such that |V (G)| =
|V (H)|. Number the vertex colors arbitrarily from 1 to c and number the edge colors
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arbitrarily from 1 to t. We can assume that for every vertex color the number of the
vertices in this color in G and in H is the same because otherwise we can produce a
trivial NO instance as (G′, H ′). In both pattern and host graphs, for each vertex v,
attach i + 1 new leaves v1, v2, . . . , vi+1 to it, where i is the color of v, using edges of
color 1 (or any fixed color from 1 to t). We also denote v0 = v. Consider the (1, t)-
Subgraph Isomorphism instance (G′, H ′) on the new graphs. For every vertex
color the number of the vertices in that color in G is the same as in H and therefore
the number of added leaves is the same in G′ as in H ′. Hence |V (G′)| = |V (H ′)|.

If G is a subgraph of H then there exists an injective function f : V (G)→ V (H)
such that edges and colors are preserved. Note that every vertex of the instance
(G′, H ′) is of the form vi for some vertex v of the instance (G,H). Let g : V (G′) →
V (H ′) be a function such that g(vi) = f(v)i which is a correctly defined function
because col(v) = col(f(v)) and therefore v0 has the same number of leaves in the
graph G′ as f(v)0 in the graph H ′. The function g is an injection because the function
f is an injection. The function g preserves the colors of the vertices trivially. We show
that the function g preserves also edges and their colors. Let assume that there is an
edge uivj for i ≤ j (we can assume that w.l.o.g) of the color x in the graph G′. If j > 0
then u = v, i = 0 and x = 1 and there exists also an edge f(u)0f(u)j = g(ui)g(vj)
of the color 1 = x in the graph H ′. Otherwise we have i = j = 0 and then there
exists an edge uv of the color x in the graph G thus there exists an edge f(u)f(v) of
the color x in the graph H hence there exists an edge f(u)0f(v)0 = g(ui)g(vj) of the
color x in the graph H ′. Therefore G′ is a subgraph of G.

If G′ is a subgraph of H ′ then there exists an injective function g : V (G′)→ V (H ′)
such that edges and colors are preserved. All vertices from the original pattern graph
have to be matched to vertices from the original host graph, as they are the only
ones of degree greater than 1 in the new graphs. But the number of the vertices
of the form u0 is the same in G′ as in H ′ because |V (G)| = |V (H)|. Therefore for
every vertex of the form v0 in H ′ there exists a vertex of the form u0 in G′ such that
g(u0) = v0. Hence, the leaves have to map to leaves. But the number of leaves is the
same in G′ as in H ′. Thus for every leaf vi in H ′ there exists a leaf uj in G′ such
that g(uj) = vi. Hence all the leaves are used and then for every vertex u0 in G′ the
number of leaves of u0 in G′ is the same as the number of leaves of g(u0) in H ′. Let
us consider a function f : V (G) → V (H) such that f(u) = v iff g(u0) = v0 (then
f(u)0 = v0 = g(u0)). Note that f = g|V (G). The function f is an injection because
the function g is an injection. The function f preserves the colors of the vertices
because for every v in the graph G we have that v0 has exactly col(v) + 1 leaves as
neighbors in the graph G′ and then g(v0) = f(v)0 has also exactly col(v) + 1 leafs as
neighbors. But on the other hand the vertex f(v)0 has exactly col(f(v)) + 1 leafs as
neighbors in the graph H ′ and therefore col(f(v)) = col(v). The function f preserves
also the edges with their colors because for every edge uv of a color x in the graph G
there exists an edge u0v0 of the color x in the graph G′ and therefore there exists an
edge g(u0)g(v0) = f(u)0f(v)0 of the color x in the graph H ′ and hence there exists
an edge f(u)f(v) of the color x in the graph H. Therefore G is a subgraph of H.
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Lemma 45. An instance of (c, t)-Subgraph Isomorphism, where the host graph
and the pattern graph have the same number of vertices, can be reduced to an equivalent
instance of Subgraph Isomorphism with O(c

√
t) times more vertices.

Proof. The claim follows directly from consecutive application of Lemmas 43 and
44.

4.5 From Graph Homomorphism to Subgraph Iso-
morphism

In this section we present a reduction which shows that one can solve the Graph
Homomorphism problem by solving 2|V (G)|+|V (H)| instances of the Subgraph Iso-
morphism problem, demonstrating that the lower bound of 2Ω(|V (G)| log |V (H)|) of Fomin
et al. [57, 38] implies a 2Ω(n logn) lower bound under the Exponential Time Hypothesis
for the Subgraph Isomorphism problem, where n = |V (G)|+ |V (H)|.

Graph Homomorphism
Input: undirected graphs G, H.
Question: Is there a homomorphism fromG toH, i.e., does there exist a function
h : V (G)→ V (H), such that for each edge uv ∈ E(G) we have h(u)h(v) ∈ E(H).

Theorem 4. Given an instance (G,H) of Graph Homomorphism one can in
O(2nnO(1)) time create 2n instances of Subgraph Isomorphism with n vertices,
where n = |V (G)|+ |V (H)|, such that (G,H) is a yes-instance iff at least one of the
created instances of Subgraph Isomorphism is a yes-instance.
Proof. Let (G,H) be an instance of Graph Homomorphism and denote n = V (G)+
V (H). Note that any homomorphism h from G to H can be associated with some
sequence of non-negative numbers (|h−1(v)|)v∈V (H), being the numbers of vertices of
G mapped to particular vertices of H. The sum of the numbers in such a sequence
equals exactly |V (G)|. As the number of such sequences is

(
V (G)+V (H)−1

V (H)−1

)
≤ 2n, we can

enumerate all such sequences in time 2nnO(1). For each such sequence (av)v∈V (H) we
create a new instance (G′, H ′) of Subgraph Isomorphism, where the pattern graph
remains the same, i.e., G′ = G, and in the host graph H ′ each vertex of v ∈ V (H) is
replicated exactly av times (possibly zero). Observe that |V (H ′)| = |V (G′)|.

We claim that G admits a homomorphism to H iff for some sequence (av)v∈V (H)

the graph G′ is a subgraph of H ′. First, assume that G admits a homomorphism
h to H. Consider the instance (G′, H ′) created for the sequence av = |h−1(v)| and
observe that we can create a bijection h′ : V (G′)→ V (H ′) by assigning v ∈ V (G′) to
its private copy of h(v). As h is a homomorphism, so is h′, and as h′ is at the same
time a bijection, we infer that G′ is a subgraph of H ′.

On the other hand if for some sequence (av)v∈V (H) the constructed graph G′ is a
subgraph of H ′, then projecting the witnessing injection g : V (G′) → V (H ′) so that
g′(v) is defined as the prototype of the copy g(v) gives a homomorphism from G to
H, as copies of each v ∈ V (H) form independent sets in H ′.
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Chapter 5

Rainbow Coloring

In this chapter we prove that there is no algorithm solving Rainbow k-Coloring
in time 2o(n

3/2) for any k ≥ 2, unless ETH fails.

Organization of the chapter. The main difficulties we encountered are sketched
in Section 5.1. The further sections contain consecutive steps of our reduction.

Additional notation for this chapter. All graphs we consider in this chapter are
simple and undirected. We denote ∆1(G) = max{∆(G), 1}.

By Ē we denote the set of anti-edges, i.e., Ē =
(
V
2

)
\ E. When G = (V,E) is a

graph then Ḡ = (V, Ē) is its complement graph.

5.1 Overview
The main goal of this chapter is to show that for any k ≥ 2 Rainbow k-Coloring
does not admit an algorithm running in time 2o(n

3/2), unless the Exponential Time
Hypothesis fails. Let us give a high-level overview of our proof. A natural idea would
be to begin with a 3-CNF-SAT formula φ with n variables and then transform it
in time 2o(n) to an equivalent instance G = (V,E) of Rainbow k-Coloring with
O(n2/3) vertices. Then indeed a 2o(|V |

3/2)-time algorithm that solves Rainbow 2-
Coloring can be used to decide 3-CNF-SAT in time 2o(n). Note that in a typical
NP-hardness reduction, we observe some polynomial blow-up of the instance size.
For example, one can verify that in the reduction of Chakraborty et al. [22] showing
the NP-hardness of Rainbow k-Coloring, the initial 3-CNF-SAT formula with n
variables andm clauses is transformed into a graph with Θ(n4+m4) vertices and edges.
In our case, instead of a blow-up we aim at compression: the number of vertices needs
to be much smaller than the number of variables in the input formula φ. As usual
in reductions, variables and clauses in φ are going to correspond to some structures
in G, called gadgets. The compression requirement means that our gadgets need to
share vertices. To make our lives slightly easier, we apply Sparsification Lemma 14,
which allows for assuming that the number of clauses is O(n).

Note that by using the Sparsification Lemma we tweak our general plan a bit:
instead of creating one equivalent instance, we are going to create 2εn instances (for
arbitrarily small ε), each with O(n2/3) vertices. Then we use Lemma 16 to further
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Figure 5.1: The road map of our reductions.

simplify the instance in such a way that each variable occurs in at most 4 clauses,
indeed, we obtain an instance of (3,4)-CNF-SAT.

Now our goal is to transform a (3,4)-CNF-SAT formula φ with n variables to a
graph with O(n2/3) vertices — an equivalent instance of Rainbow k-Coloring. We
do it in four steps (see Fig 5.1).

In the first step we transform φ to an instance I = (G,S, c0) of Subset Rain-
bow 2-Coloring Extension, which is a generalization of Subset Rainbow 2-
Coloring, where c0, called a precoloring, is a partial coloring of the edges of G into
two colors and the goal is to determine if there is an edge-coloring of E(G) which
extends c0 and such that all pairs of S are satisfied. The first step is crucial, because
here the compression takes place: |V (G)| = O(n2/3) and E(G) = O(n). The major
challenge in the construction is avoiding interference between gadgets that share a
vertex: to this end we define various conflict graphs and we show that they can be
vertex-colored in a few colors. This reduction is described in Section 5.2.

In the second step (Lemma 47) we reduce Subset Rainbow 2-Coloring Ex-
tension to Subset Rainbow k-Coloring Extension, for every k ≥ 3. In the
third step (Lemma 48) an instance of Subset Rainbow k-Coloring Extension
is transformed to an instance of Subset Rainbow k-Coloring, for every k ≥ 2.
The number of the vertices in the resulting instance does not increase more than by a
constant factor. These steps are rather standard, though some technicalities appear
because we need to guarantee additional properties of the output instance, which are
needed by the reduction in the fourth step.

The last step (Section 5.3), where we reduce an instance (G = (V,E), S) of Subset
Rainbow k-Coloring to an instance G′ of Rainbow k-Coloring, is yet another
challenge. We would like to get rid of the set of requests somehow. For simplicity, let
us focus on the k = 2 case now. Here, the natural idea, used actually by Chakraborty
et al. [22] is to create, for every {u, v} 6∈ S, a path (u, xuv, v) through a new vertex
xuv. Such a path cannot help any of the requests {u′, v′} ∈ S to get satisfied (since
if it creates a new path P ′ between u′ and v′, then P ′ has length at least 3), and by
coloring it into two different colors we can satisfy {u, v}. Unfortunately, in our case
we cannot afford for creating a new vertex for every such {u, v}, because that would
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result in a quadratic blow up in the number of vertices. However, one can observe
that for any biclique (a complete bipartite subgraph) in the graph (V,

(
V
2

)
\ S) it is

sufficient to use just one such vertex x (connected to all the vertices of the biclique).
By applying a result of Jukna [79] we can show that in our specific instance of Subset
Rainbow 2-Coloring which results from a (3,4)-CNF-SAT formula, the number
of bicliques needed to cover all the pairs in

(
V
2

)
\ S is small enough. We show a

2|V (G)||V (G)|O(1)-time algorithm to find such a cover. Although this algorithm does
not seem fast, in our case |V (G)| = O(n2/3), so this complexity is subexponential in
the number of variables of the input formula, which is enough for our goal. The case
of k ≥ 3 is similar, i.e., we also use the biclique cover. However, the details are much
more technical because for each biclique we need to introduce a much more complex
gadget.

5.2 From (3,4)-CNF-SAT to Subset Rainbow k-Co-
loring

Let Subset Rainbow k-Coloring Extension be a generalization of Subset
Rainbow k-Coloring, where c0 is a partial k-coloring of the edges of G and the
goal is to determine if there is an edge-coloring of E(G) which extends c0 and such
that all pairs of S are satisfied. In the beginning of this section we show a reduction
(Lemma 46) from (3,4)-CNF-SAT to Subset Rainbow 2-Coloring Extension.

For an instance I = (G,S, c0) of Subset Rainbow k-Coloring Extension
(for any k ≥ 2), let us define a precoloring conflict graph CGI . Its vertex set is the
set of colored edges, i.e., V (CGI) = Dom(c0). Two different colored edges e1 and e2

(treated as vertices of CGI) are adjacent in CGI when they are incident in G or there
is a pair of endpoints u ∈ e1 and v ∈ e2 such that uv ∈ E(G) ∪ S.

In what follows the reduction in Lemma 46 is going to be pipelined with further
reductions going through Subset Rainbow k-Coloring Extension and Sub-
set Rainbow k-Coloring to Rainbow k-Coloring. In these three reductions
we need to keep the instance small. To this end, the instance of Subset Rainbow
2-Coloring Extension resulting in Lemma 46 has to satisfy some additional prop-
erties, which are formulated in the claim of Lemma 46. Their role will become clearer
later on.

Lemma 46. Given a (3,4)-CNF-SAT formula ϕ with n variables one can construct in
polynomial time an equivalent instance (G,S, c0) of Subset Rainbow 2-Coloring
Extension such that G has O(n2/3) vertices and O(n) edges. Moreover, ∆(G) =
O(n1/3), ∆(V (G), S) = O(n1/3), |Dom(c0)| = O(n2/3) and along with the instance
I = (G,S, c0) the algorithm constructs a proper vertex 4-coloring of (V (G), E ∪ S)
(so also of (V (G), S)) and a proper vertex O(n1/3)-coloring of the precoloring conflict
graph CGI .

Proof. Let m denote the number of clauses in ϕ. Observe that m ≤ 4
3
n. Let Var and

Cl denote the sets of variables and clauses of ϕ. For more clarity, the two colors of the
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partial coloring c0 will be called T and F . Let us describe the graph G along with a
set of anti-edges S. Graph G consists of two disjoint vertex subsets: the variable part
and the clause part. The intuition is that in any 2-edge coloring of G that extends c0

and satisfies all pairs in S

• edge colors in the variable part represent an assignment of the variables of ϕ,

• edge colors in the clause part represent a choice of literals that satisfy all the
clauses, and

• edge colors between the two parts make the values of the literals from the clause
part consistent with the assignment represented by the variable part.

The variable part. The vertices of the variable part consist of themiddle setM and⌈
n1/3

⌉
layers L1 ∪ L2 · · · ∪ Ldn1/3e. The middle set M consists of vertices mi for each

i = 1, . . . ,
⌈
n2/3

⌉
+ 9. For every i = 1, . . . ,

⌈
n1/3

⌉
the layer Li consists of two parts:

upper L↑i = {ui,j : j = 1, . . . ,
⌈
n1/3

⌉
+3} and lower L↓i = {li,j : j = 1, . . . ,

⌈
n1/3

⌉
+3}.

We are going to define four functions: mid : Var → M , lay, up, low : Var →
[
⌈
n1/3

⌉
]. Then, for every variable x ∈ Var we add two edges

ulay(x),up(x)mid(x), mid(x)llay(x),low(x).

Moreover, we add the pair px = {ulay(x),up(x), llay(x),low(x)} to S. In other words, x
corresponds to the 2-path ulay(x),up(x)mid(x)llay(x),low(x). Now we describe a careful
construction of the four functions, that guarantee several useful properties (for exam-
ple edge-disjointness of paths corresponding to different variables).

Let us define the variable conflict graph GV = (Var, EGV ), where for two variables
x, y ∈ Var we have xy are adjacent iff they both occur in the same clause. Since
every variable occurs in at most 4 clauses, ∆(GV ) ≤ 8. It follows that there is a
proper vertex 9-coloring α : V ar → [9] of Gv, and it can be found by a simple
linear time algorithm. Next, each of the 9 color classes α−1(i) is partitioned into⌈
|α−1(i)|/

⌈
n1/3

⌉⌉
disjoint groups, each of size at most

⌈
n1/3

⌉
. It follows that the

total number ng of groups is at most
⌈
n2/3

⌉
+9. Let us number the groups arbitrarily

from 1 to ng and for every variable x ∈ Var, let g(x) be the number of the group that
contains x. Then we define mid(x) = mg(x). Since any group contains only vertices
of the same color we can state the following property:

(P1) If variables x and y occur in the same clause then mid(x) 6= mid(y).

Now, for every variable x we define its layer, i.e., the value of the function lay(x).
Recall that for every i = 1, . . . ,

⌈
n2/3

⌉
+ 9 the i-th group mid−1(mi) contains at most⌈

n1/3
⌉
variables. Inside each group, number the variables arbitrarily and let lay(x) be

the number of variable x in its group, lay(x) ∈ [n1/3]. This implies another important
property.

(P2) If variables x and y belong to the same layer then mid(x) 6= mid(y).
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Observe that every layer gets assigned at most
⌈
n2/3

⌉
+ 9 variables. For every

layer Li pick any injective function hi : lay−1(i) → [
⌈
n1/3

⌉
+ 3]2. Then, for every

variable x ∈ Var we put (up(x), low(x)) = hlay(x)(x). Note that by (P2) we have the
following.

(P3) For every variable x there is exactly one 2-path in G connecting px, namely
(ulay(x),up(x), mid(x), llay(x),low(x)).

(P4) For every pair of variables x, y the two unique paths connecting px and py are
edge-disjoint.

Although we are going to add more edges and vertices to G, none of these edges
has any endpoint in

⋃
i Li, so P3 will stay satisfied.

The clause part. The vertices of the clause part are partitioned into O(m1/3)
clusters. Similarly as in the case of variables, each clause is going to correspond to a
pair of vertices in the same cluster. Again, the assignment of clauses to clusters has to
be done carefully. To this end we introduce the clause conflict graph GC = (Cl, EGC ).
Two different clauses C1 and C2 are adjacent in GC if C1 contains a variable x1

and C2 contains a variable x2 such that mid(x1) = mid(x2). Fix a variable x1.
Since |mid−1(mid(x1))| ≤

⌈
n1/3

⌉
, there are at most

⌈
n1/3

⌉
variables x2 such that

mid(x1) = mid(x2). Since every clause contains 3 variables, and each of them is
in at most 4 clauses, ∆(GC) ≤ 12

⌈
n1/3

⌉
. It follows that in polynomial time we

can find a proper coloring β of the vertices of GC into at most 12
⌈
n1/3

⌉
+ 1 colors.

Moreover, if for any color j its color class β−1(j) is larger than
⌈
n2/3

⌉
we partition it

into
⌈
|β−1(j)|/

⌈
n2/3

⌉⌉
new colors. Clearly, in total we produce at most 4

3

⌈
n1/3

⌉
new

colors in this way because m ≤ 4
3
n ≤ 4

3

⌈
n1/3

⌉
·
⌈
n2/3

⌉
. Hence, in what follows we

assume that each color class of β is of size at most
⌈
n2/3

⌉
, and the total number of

colors s ≤ 14
⌈
n1/3

⌉
+ 1. In what follows we construct s clusters Q1, . . . , Qs. Every

clause C ∈ Cl is going to correspond to a pair of vertices in the cluster Qβ(C).
Fix i = 1, . . . , s. Let us describe the subgraph induced by clusterQi. Define cluster

conflict graph Gi = (β−1(i), EGi). Two different clauses C1, C2 ∈ β−1(i) are adjacent
in Gi if there are three variables x1, x2, and x3 such that (i) C1 contains x1, (ii) C2

contains x2, (iii) (lay(x1), up(x1)) = (lay(x3), up(x3)) and (iv) mid(x2) = mid(x3).
Fix a variable x1 which appears in a clause C1 ∈ β−1(i). By our construction,
there are at most

⌈
n1/3

⌉
+ 2 other variables x3 that map to the same pair as x1

by functions lay and up. For each such x3 there are at most
⌈
n1/3

⌉
variables x2 such

that mid(x2) = mid(x3); however, at most one of these variables belongs to a clause
C2 from the same cluster β−1(i), by the definition of the coloring β. It follows that
∆(Gi) ≤ 12(

⌈
n1/3

⌉
+ 2). Hence in polynomial time we can find a proper coloring γi

of the vertices of Gi into at most 12(
⌈
n1/3

⌉
+ 2) + 1 colors. Similarly as in the case of

the coloring β, we can assume that each of the color classes of γi has at most
⌈
n1/3

⌉
clauses, at the expense of at most

⌈
n1/3

⌉
additional colors. It follows that we can

construct in polynomial time a function g : Cl→ [
⌈
n1/3

⌉
] such that for every cluster

i = 1, . . . , s and for every color class S of γi g is injective on S. Let ni ≤ 13
⌈
n1/3

⌉
+25
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be the number of colors used by γi. For notational convenience, let us define a function
γ : Cl→ [maxi ni] such that for any clause C we have γ(C) = γβ(C)(C).

We are ready to define the vertices and edges of Qi. It is a union of three disjoint
vertex sets Ai, Bi, and Ci. We have Ai = {ai,j : j = 1, . . . ,

⌈
n1/3

⌉
}, Bi = {bki,j : j =

1, . . . , ni, k = 1, 2, 3}, and Ci = {ci,j : j = 1, . . . , ni}. For every j = 1, . . . , ni and for
every k = 1, 2, 3 we add edge ci,jbki,j to G, and we color it by c0 to color F . (These
are the only edges pre-colored in the whole graph G.) For every clause C ∈ β−1(i)
we do the following. For each k = 1, 2, 3, add the edge (ai,g(C), b

k
i,γ(C)) to G. Finally,

add the pair {ai,g(C), ci,γ(C)} to S. Clearly, the following holds:

(P5) Let C be any clause. Let i = β(C) and let j = g(C). Then there are exactly
three 2-paths between aβ(C),g(C) and cβ(C),γ(C), each going through bkβ(C),γ(C) for
k = 1, 2, 3.

Connections between the two parts. Consider a clause C = {`1, `2, `3} and its
k-th literal `k for each k = 1, 2, 3. Then for some variable x we have `k = x or `k = x̄.
We add the edge bkβ(C),γ(C)mid(x) and we add the pair {mid(x), aβ(C),g(C)} to S. If
`k = x, we also add the pair {bkβ(C),γ(C), ulay(x),up(x)} to S; otherwise we add the pair
{bkβ(C),γ(C), llay(x),low(x)} to S. We claim the following.

(P6) Every edge between the two parts was added exactly once, i.e., for every edge uv
such that u is in the clause part and v is in the variable part, there is exactly one
clause C and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x),
where x is the variable in `k.

Indeed, assume for a contradiction that there is a clause C1 with its k1-th lit-
eral containing x1 and a clause C2 with its k2-th literal containing x2 such that
bk1β(C1),γ(C1) = bk2β(C2),γ(C2) and mid(x1) = mid(x2). Then C1 6= C2 by (P1). Since
mid(x1) = mid(x2), C1 and C2 are adjacent in the clause conflict graph GC . It
follows that β(C1) 6= β(C2), so two different clusters share a vertex, a contradiction.

This finishes the description of the instance (G,S, c0). (See Fig. 5.2.)

Size and time. The construction clearly takes polynomial time. In the variable part
we have |M | =

⌈
n2/3

⌉
+ 9 and each of the

⌈
n1/3

⌉
layers contains 2

⌈
n1/3

⌉
+ 6 vertices.

It follows that the variable part contains O(n2/3) vertices. In the clause part we have
s = O(n1/3) clusters. For each i = 1, . . . , s, the cluster Qi has 4ni +

⌈
n1/3

⌉
= O(n1/3)

vertices. Hence the clause part also has O(n2/3) vertices.
In the variable part there are two edges per variable, so 2n in total. In the

clause part there are 3ni edges in i-th cluster, i.e., O(n2/3) in total, and 3 edges
per clause, i.e., 3m = O(n) in total. Finally, for every clause we added 3 edges
between the variable part and the clause part, so 3m = O(n) in total. It follows that
|E(G)| = O(n).

Maximum degree of G. Consider a vertex ui,j ∈ L↑i , for some i = 1, . . . ,
⌈
n1/3

⌉
and

j = 1, . . . ,
⌈
n1/3

⌉
+ 3. The only edges incident to ui,j are those of the form ui,jmid(x),

for some variable x such that lay(x) = i and up(x) = j. Since hi is injective, there
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(one of O(n1/3) clusters)

O(n1/3)O(n1/3)O(n1/3)
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Figure 5.2: A simplified view of the obtained instance. Edges (solid lines) and
requests (dashed lines) representing one variable and one clause that contains this
variable are presented on the picture.

are at most
⌈
n1/3

⌉
+ 3 variables in lay−1(i)∩ up−1(j). Hence degG(ui,j) ≤

⌈
n1/3

⌉
+ 3.

Analogously, the same bound holds for vertices in
⋃
i L
↓
i . Consider a vertex mj in

M . For every variable x ∈ mid−1(mj) vertex mj is adjacent with exactly two vertices
in the variable part (one in

⋃
i L
↑
i , one in

⋃
i L
↓
i ), which results in 2

⌈
n1/3

⌉
incident

edges in total. Moreover, for every variable x ∈ mid−1(mj) vertex mj has at most
4 edges to the clause part, since x occurs in at most 4 clauses. It follows that
degG(mj) ≤ 6

⌈
n1/3

⌉
. Now we focus on the clause part. Since every cluster has

O(n1/3) vertices, and there are no edges between the clusters, every vertex in the
graph induced by the clause part has degree O(n1/3). Vertices in

⋃
iAi ∪

⋃
iCi have

no more edges in G. It remains to consider an arbitrary vertex bki,j and count the
edges connecting it to the variable part. These edges are of the form bki,jmid(x), for
some variable x that occurs in a clause C such that β(C) = i and γi(C) = j. Since
|γ−1
i (j)| ≤ ni, there are O(n1/3) such clauses C, and each of them contains three

variables. Hence there are O(n1/3) edges connecting bki,j and the variable part and
degG(bki,j) = O(n1/3). To sum up, ∆(G) = O(n1/3), as required.

Maximum degree of GS = (V, S). Let us inspect each kind of vertices in V
separately.

First consider a vertex ui,j ∈ L↑i in the variable part. It is incident with two kinds
of edges in GS. The edges of the first kind are of the form {ui,j, li,low(x)}, for some
variable x such that lay(x) = i and up(x) = j. Since |up−1(j)| ≤

⌈
n1/3

⌉
+ 3, we get

that ui,j is incident with at most
⌈
n1/3

⌉
+ 3 edges of the first kind. The edges of the

second kind are of the form {bkβ(C),γ(C), ui,j}, for some variable x in k-th literal of a
clause C such that lay(x) = i and up(x) = j. Since |up−1(j)| ≤

⌈
n1/3

⌉
+ 3 and x is

in at most 4 clauses, we get that ui,j is incident with at most 4(
⌈
n1/3

⌉
+ 3) edges of

the second kind. It follows that degGS(ui,j) = O(n1/3). In an analogous way we can
bound the degree of vertices in sets L↓i .

Consider a vertex mj ∈ M in the variable part. It is incident with edges of
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the form {mj, aβ(C),g(C)}, for some variable x from a clause C such that mid(x) =
mj. Since |mid−1(mj)| ≤

⌈
n1/3

⌉
and every variable is in at most 4 clauses, we get

degGS(mj) = O(n1/3).
Consider a vertex ai,j in the clause part. It is incident with at most ni = O(n1/3)

edges of the form {ai,j, ci,γ(C)}, since |Ci| = ni. It is also incident with edges of
the form {mid(x), ai,j}, where x is a variable in a clause C such that β(C) = i and
g(C) = j. Since g is injective on every color class of γi, so |g−1(j)∩β−1(i)| is bounded
by the number of colors in γi, which is O(n1/3). Hence there are O(n1/3) clauses C
with g(C) = j and each of them contains three variables, so degGS(ai,j) = O(n1/3).

Consider a vertex bki,j in the clause part. It is incident with at most |γ−1(j)| ≤ n1/3

edges of the form {bki,j, ulay(x),up(x)} or {bki,j, llay(x),low(x)}, where x is the variable in
the k-the literal of a clause C such that β(C) = i and γ(C) = j. It follows that
degGS(bki,j) ≤ n1/3.

Finally consider a vertex ci,j in the clause part. It is incident with at most
⌈
n1/3

⌉
edges of the form {ai,g(C), ci,j}, since |Ai| =

⌈
n1/3

⌉
. Hence degGS(ci,j) ≤

⌈
n1/3

⌉
.

To sum up, ∆(GS) = O(n1/3), as required.

Additional properties. We have |Dom(c0)| =
∑

i 3|Ci| = O(n2/3). Notice that
the vertices of (V (G), E∪S) can be partitioned into four independent sets as follows:
I1 =

⋃
i L
↑
i ∪
⋃
iAi, I2 = M , I3 =

⋃
iBi, I4 =

⋃
i L
↓
i ∪
⋃
iCi. This defines the desired

4-coloring of (V (G), E ∪ S). Now consider the precoloring conflict graph CGG,S,c0 .
Notice that for every i = 1, . . . , s clusterQi has 3ni = O(n1/3) colored edges. For every
i = 1, . . . , s, color the vertices of CGG,S,c0 corresponding to the colored edges of Qi

using different colors from 1 to 3ni. Notice that two colored edges e1, e2 ∈ Dom(c0)
that belong to different clusters are not adjacent in the precoloring conflict graph
CGG,S,c0 . Hence we defined a proper O(n1/3)-coloring of CGG,S,c0 .

From an assignment to a coloring. Let ξ : Var → {T, F} be a satisfying
assignment of ϕ. We claim that there is a coloring c of E(G) which extends c0

and satisfies all pairs in S. We define c as follows. Denote F = T , T = F and
ξ(x) = ξ(x). For every variable x ∈ Var we put c(ulay(x),up(x)mid(x)) = ξ(x) and
c(mid(x)llay(x),low(x)) = ξ(x). By (P3) and (P4) each edge is colored exactly once.
Note that it satisfies all the pairs in S between vertices in the variable part.

For each clause C and each of its literals `k do the following. Let us color the
edge aβ(C),g(C)b

k
β(C),γ(C) with the color ξ(`k). Since g is injective on color classes

of γβ(C), after processing all the literals in all the clauses, no edge is colored more
than once. Recall that for every clause C we added exactly one pair to S, namely
{aβ(C),g(C), cβ(C),γ(C)}. Pick any of C’s satisfied literals, say `k. Note that the pair
{aβ(C),g(C), cβ(C),γ(C)} is then satisfied, because edge aβ(C),g(C)b

k
β(C),γ(C) is colored by T

and bkβ(C),γ(C)cβ(C),γ(C) is colored by F . Hence all the pairs in S between vertices in
the clause part are satisfied.

Now let us color the edges between the clause part and the variable part. Con-
sider any such edge uv, i.e., u is in the clause part and v is in the variable part.
By (P6), there is exactly one clause C and exactly one literal `k ∈ C such that
u = bkβ(C),γ(C) and v = mid(x), where x is the variable in `k. Color the edge
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bkβ(C),γ(C)mid(x) with the color ξ(`k). Then the pair {mid(x), aβ(C),g(C)} is satisfied
by the path (mid(x), bkβ(C),γ(C), aβ(C),g(C)), since c(bkβ(C),γ(C)aβ(C),g(C)) = ξ(`k). Assume
`k = x. Then the pair

{bkβ(C),γ(C), ulay(x),up(x)}

is satisfied by the path (bkβ(C),γ(C),mid(x), ulay(x),up(x)), since its first edge is colored by
ξ(`k) = ξ(x) and its second edge is colored by ξ(x). Analogously, when `k = x̄, then
the pair {bkβ(C),γ(C), llay(x),low(x)} is satisfied by the path (bkβ(C),γ(C),mid(x), llay(x),low(x)),
since its first edge is colored by ξ(`k) = ξ(x) and its second edge is colored by ξ(x).

It follows that we colored all the edges and all the pairs in S are satisfied, so
(G,S, c0) is a YES-instance, as required.

From a coloring to an assignment. Let c : E(G)→ {T, F} be a coloring which
extends c0 and satisfies all pairs in S. Consider the following variable assignment: for
every x ∈ Var, we put ξ(x) = c(ulay(x),up(x)mid(x)). We claim that ξ satisfies all the
clauses of ϕ. Consider an arbitrary clause C = {`1, `2, `3}.

Since the pair {aβ(C),g(C), cβ(C),γ(C)} is satisfied, there is a 2-color 2-path P between
aβ(C),g(C) and cβ(C),γ(C). Recall that N(cβ(C),γ(C)) = {bkβ(C),γ(C) : k = 1, 2, 3}, so there
is k = 1, 2, 3 such that bkβ(C),γ(C) is the internal vertex on P . Since c extends c0 and
c0(bkβ(C),γ(C)cβ(C),γ(C)) = F , we infer that c(aβ(C),g(C)b

k
β(C),γ(C)) = T . Let x be the

variable in the literal `k.
Since the pair {mid(x), aβ(C),g(C)} is satisfied, there is a 2-color 2-path Q be-

tween mid(x) and aβ(C),g(C). Then the internal vertex of Q is bk′β(C′),γ(C′), for some
clause C ′ and integer k′ = 1, 2, 3. Let y be the variable in the k′-th literal of
C ′. Since there is an edge between mid(x) and bk

′

β(C′),γ(C′), from (P6) we infer that
mid(y) = mid(x). If C = C ′ and k′ 6= k, then by (P1) we get that mid(x) 6= mid(y),
a contradiction. If C 6= C ′, since mid(y) = mid(x), the clauses C and C ′ are ad-
jacent in the clause conflict graph GC , so β(C ′) 6= β(C). However, then the edge
bk

′

β(C′),γ(C′)aβ(C),g(C) of Q goes between two clusters, a contradiction. Hence C ′ = C

and k′ = k, i.e., Q = (mid(x), bkβ(C),γ(C), aβ(C),g(C)). Since c(bkβ(C),γ(C)aβ(C),g(C)) = T ,
we get c(mid(x)bkβ(C),γ(C)) = F . Now assume w.l.o.g. that `k = x, the case `k = x̄ is
analogous.

Since the pair {bkβ(C),γ(C), ulay(x),up(x)} is satisfied, there is a 2-color 2-path R be-
tween bkβ(C),γ(C) and ulay(x),up(x). Then the internal vertex z of R belongs to M . By
(P6) there is a literal `k which belongs to a clause C2 and contains a variable x2

such that z = mid(x2) and bkβ(C),γ(C) = bkβ(C2),γ(C2). In particular, β(C) = β(C2) and
γ(C) = γ(C2). Assume C2 6= C. There is a variable, say x3, corresponding to edge
mid(x2)ulay(x),up(x), i.e., mid(x2) = mid(x3) and ulay(x),up(x) = ulay(x3),up(x3). It follows
that C and C2 are adjacent in Gβ(C), which contradicts the fact that γ(C) = γ(C2).
Hence C2 = C, i.e., there is exactly one 2-path between bkβ(C),γ(C) and ulay(x),up(x), and
it goes through mid(x). Since c(mid(x)bkβ(C),γ(C)) = F and the path is 2-color, we get
that c(ulay(x),up(x)mid(x)) = T . Hence ξ(`k) = ξ(x) = T , so clause C is satisfied, as
required. It finishes the proof.
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Figure 5.3: The gadget added to every vertex v ∈ V in Lemma 47.

Lemma 47. For any fixed k ≥ 3, there is a polynomial time algorithm which given
an instance I = (G = (V,E), S, c0) of Subset Rainbow 2-Coloring Extension
constructs an equivalent instance I ′ = (G′ = (V ′, E ′), S ′, c′0) of Subset Rainbow
k-Coloring Extension such that |V ′| = O(k|V |), |E ′| = |E| + O(k|V |), |S ′| =
|S|+ |E|, ∆(G′) ≤ ∆1(G)+2 and |Dom(c′0)| = |Dom(c0)|+O(k|V |). Let GS = (V, S)
and GS′ = (V ′, S ′). Then ∆(GS′) ≤ ∆(G) + ∆(GS). Moreover, given a proper vertex
p-coloring of GS the algorithm outputs also a (p + 1)-coloring of GS′. Also, given a
proper vertex q-coloring of GE∪S = (V,E ∪ S) and a proper vertex `-coloring of the
precoloring conflict graph CGI the algorithm outputs a proper (` + O(q))-coloring of
the precoloring conflict graph CGI′.

Proof. Construction. Let us denote the colors of c0 by 1 and 2. Let

V ′ = V ∪
⋃
v∈V

{v1
1, v

2
1, v2, v3, . . . , vk−1},

E ′ = E ∪
⋃
v∈V

{vv1
1, v

1
1v2, vv

2
1, v

2
1v2, v2v3, v3v4, . . . , vk−2vk−1},

S ′ = S ∪ {uk−1v : uv ∈ E and u < v}
and Dom(c′0) = Dom(c0) ∪ (E ′ \ E). Let c′0|Dom(c0) = c0 and let for every v ∈ V
c′0(vv1

1) = 1, c′0(vv2
1) = 2, c′0(v1

1v2) = 3, c′0(v2
1v2) = 3, and c′0(vivi+1) = i + 2 for

every i ∈ {2, 3, . . . , k − 2}. (See Fig 5.3.) Note that for every vertex uk−1 such
that u ∈ V we have degGS′ (uk−1) ≤ degG(u) and for every vertex v ∈ V we have
degGS′ (v) ≤ degGS(v) + degG(v). Hence ∆(GS′) ≤ ∆(G) + ∆(GS), as required.

Equivalence. Assume (G = (V,E), S, c0) is a YES-instance of Subset Rainbow 2-
Coloring Extension and let c be the corresponding 2-coloring. Define a coloring
c′ of E(G′) as c′|E = c and c′|E′\E = c′0|E′\E. Note that c′ is an extension of c′0.
Moreover, c′ satisfies all the pairs of S using rainbow paths in E because c satisfies
S. All the pairs of the form {uk−1, v} for some uv ∈ E where u < v are satisfied
because one of the paths vuu1

1u2u3 . . . uk−1 and vuu2
1u2u3 . . . uk−1 is rainbow. Hence

(G′, S ′, c′0) is a YES-instance of Subset Rainbow k-Coloring Extension.
Now assume that (G′ = (V ′, E ′), S ′, c′0) is a YES instance of Subset Rainbow

k-Coloring Extension and let c′ be the corresponding k-coloring. Then we claim
that c = c′|E is a coloring of E(G) that satisfies S and extends c0. It is easy to see
that c extends c0, because c′0 extends c0 and c′ extends c′0.
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Now we show that c(E) ⊆ {1, 2}. Indeed, for every edge uv ∈ E such that
u < v the distance between the vertices uk−1 and v is k. Hence all rainbow paths
between uk−1 and v are of length exactly k. There are exactly two paths of length k
between them, namely vuu1

1u2u3 . . . uk−1 and vuu2
1u2u3 . . . uk−1. Exactly one of them

is rainbow, so c(uv) = 2 (if the first one is rainbow) or c(uv) = 2 (otherwise), as
required.

Finally we show that all pairs in S are satisfied by c. Pick any {u, v} ∈ S.
Note that no (u, v)-path in G′ visits a vertex from V ′ \ V because every vertex v ∈
V separates the vertices in {v1

1, v
2
1, v2, v3, . . . , vk−1} from the rest of the graph. It

follows that the rainbow path that satisfies {u, v} in c′ also satisfies {u, v} in c. This
finishes the proof that (G,S, c0) is a YES-instance of Subset Rainbow 2-Coloring
Extension.

Additional Properties. The vertex (p+ 1)-coloring of GS′ = (V ′, S ′) can be easily
obtained from the p coloring of GS = (V, S). Indeed, all the independent sets of
GS = (V, S) are also independent in GS′ = (V ′, S ′) and all the added vertices V ′ \ V
form an independent set in GS′ = (V ′, S ′). Therefore it is sufficient to extend the
input p-coloring with one additional color for the vertices of V ′ \ V .

Let α : Dom(c0)→ [`] be the given vertex `-coloring of CGI , and let h : V → [q]
be the given vertex q-coloring of the graph GE∪S = (V,E ∪ S). Note that in G′ we
have not added any edge or requirement between any two vertices of V . Therefore
CGI′ [Dom(c0)] = CGI . Hence it suffices to extend α to a coloring α′ of CGI′ . The
remaining elements, i.e., elements from Dom(c′0) \ Dom(c0) get new colors, from the
set {` + 1, ` + 2, . . . ` + O(q)}, as follows. For every vertex v ∈ V we put α′(vv1

1) =
`+ 2h(v)− 1 and α′(vv2

1) = `+ 2h(v). Thus we added 2q new colors. Note that their
corresponding color classes are independent sets in CGI′ . In what follows they stay
independent because will not use these 2q colors any more. Next, for every vertex
v ∈ V we put α′(v1

1v2) = `+2q+1 and α′(v2
1v2) = `+2q+2. Again, the corresponding

color classes are independent in CGI′ . If k = 3 then we have just properly colored
all the vertices of CGI′ , i.e., the edges of Dom(c′0). If k > 3 then for every vertex
v ∈ V we color the remaining path v3v4 . . . vk−1 using alternating sequence of colors
`+ 2q + 3, `+ 2q + 4, `+ 2q + 5, `+ 2q + 3, `+ 2q + 4, . . .. Thus we have obtained a
proper vertex (`+ 2q + 5)-coloring of the graph CGI′ , as required.

Lemma 48. For any fixed k ≥ 2, given an instance (G = (V,E), S, c0) of Subset
Rainbow k-Coloring Extension together with a proper vertex `-coloring of the
precoloring conflict graph CGI one can construct in polynomial time an equivalent
instance (G′ = (V ′, E ′), S ′) of Subset Rainbow k-Coloring such that |V ′| =
|V |+O(k2`), |E ′| = |E|+ |Dom(c0)|+O(k2`), |S ′| = |S|+ 2|Dom(c0)|+O(k2`). Let
GS = (V, S) and GS′ = (V ′, S ′). Then ∆(GS′) = O(∆(GS) + ∆(G) + |Dom(c0)|/`).
Moreover if we are given a proper vertex p-coloring of the graph GS = (V, S) then we
can output also a proper vertex (p+ 2)-coloring of the graph GS′ = (V ′, S ′).

Proof. Construction. Let f : Dom(c0)→ [`] be the vertex `-coloring of the precol-
oring conflict graph CGI . If there is a color class larger than d|Dom(c0)|/`e we split
it into two colors: one of size dDom(c0)/`e and the rest. We repeat this procedure
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Figure 5.4: Construction in Lemma 48. Dashed lines denote requests.

until none of the color classes is larger than d|Dom(c0)|/`e. This process introduces
at most ` new colors, since ` · d|Dom(c0)|/`e ≥ |Dom(c0)|. Hence in what follows we
assume that f is an `′-coloring of CGI such that each color class is of size at most
d|Dom(c0)|/`e, where `′ ≤ 2`.

Let V ′ = V ∪{vi : i ∈ [3k2`′]}. For every α ∈ [`′], β ∈ [k] and γ ∈ [3k] let us denote
id(α, β, γ) = (α−1)·3k2+(β−1)·3k+γ. Note that for every i ∈ [3k2`′] there is exactly
one triple (α, β, γ) ∈ [`′] × [k] × [3k] such that i = id(α, β, γ). Moreover, for every
edge uv ∈ Dom(c0), such that u < v, we denote prj(uv) = id(f(uv), c0(uv), c0(uv)).
Let

E ′ = E ∪ {vivi+1 : i ∈ [3k2`′ − 1]} ∪ {vprj(uv)+k−1u : uv ∈ Dom(c0) and u < v}

and

S ′ = S ∪ {{vi, vi+k} : i ∈ [3k2`′ − k]}
∪ {{vprj(uv), u}, {vprj(uv)+1, v} : uv ∈ Dom(c0) and u < v}.

From the above, if we have uv, u′v′ ∈ Dom(c0) such that u < v, u′ < v′ and prj(uv) =
prj(u′v′) then f(uv) = f(u′v′) and c0(uv) = c0(u′v′).

Equivalence. Assume c is a k-coloring of E that satisfies all the constraints of S
and extends the coloring c0. We define a coloring c′ : E ′ → [k] as follows. For every
edge xy ∈ E we put c′(xy) = c(xy). Let us define

x mod1 y = 1 + (x− 1) mod y.

The edges of the path (v1, . . . , v3k2`′) are colored with the sequence (1, . . . , k) repeated,
i.e., for every i = 1, . . . , 3k2`′−1 we put c′(vivi+1) = i mod1 k. Finally, for every edge
uv ∈ E, such that u < v, we put

c′(vprj(uv)+k−1u) = (c0(uv)− 1) mod1 k.

We claim that c′ is a k-coloring of E ′ that satisfies all the constraints of S ′. Indeed,
every constraint of S is satisfied because c′ extends c. Every constraint of the form
{vi, vi+k} is satisfied because of the path (vi, vi+1, . . . vi+k). Finally, note that

c′(vprj(uv), vprj(uv)+1) = c0(uv) mod1 k = c0(uv)
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and the path (vprj(uv), vprj(uv)+1, . . . , vprj(uv)+k−1) uses all the colors except for (prj(uv)+
k−1) mod1 k = (c0(uv)−1) mod1 k. But c′(vprj(uv)+k−1u) = (c0(uv)−1) mod1 k. So,
for every uv ∈ Dom(c0) such that u < v the constraints {vprj(uv), u} and {vprj(uv)+1, v}
are satisfied because of the paths P 1

uv = (vprj(uv), vprj(uv)+1, . . . , vprj(uv)+k−1, u) and
P 2
uv = (vprj(uv)+1, vprj(uv)+2, . . . ,
vprj(uv)+k−1, u, v), respectively.

Now assume c′ is a k-coloring of E ′ that satisfies all the constraints of S ′. The
distance between i = id(a, s, s) and j = id(a, s + 1, s + 1) is equal 3k + 1. Moreover
the distance between i = id(a, k, k) and j = id(a + 1, 1, 1) is equal 2k + 1. So if for
some different i, j = 1, . . . , 3k2`′ such that i < j both i and j have neighbors in V ,
then |i− j| ≥ 2k + 1. This has three consequences:

(i) for any i ∈ [3k2`′ − k], there is exactly one path of length at most k between vi
and vi+k, namely (vi, vi+1, . . . , vi+k),

(ii) for any uv ∈ Dom(c0), u < v, there is exactly one path of length at most k
between vprj(uv) and u, namely P 1

uv, and exactly one path of length at most k
between vprj(uv)+1 and v, namely P 2

uv,

(iii) for any pair of vertices u, v ∈ V every path of length at most k between u and
v does not contain any edge vivi+1, for i ∈ [3k2`′ − 1].

From (i) it follows that (c′(v1v2), c′(v2v3), . . . , c′(vkvk+1)) is a permutation of all k
colors, and this permutation repeats 3k`′ times, i.e., for every i ∈ [3k2`′−k−1] we have
c′(vivi+1) = c′(vk+ivk+i+1). Let c′′ be the coloring of E ′ obtained from c′ by permuting
the colors so that for every i = 1, . . . , 3k2`′ − 1 we have c′′(vivi+1) = i mod1 k.
Obviously, c′′ satisfies S ′, since c′ does. We claim that the coloring c = c′′ |E satisfies
all the constraints of S and extends c0.

Consider an arbitrary edge uv ∈ Dom(c0), with u < v. Note that c′′(vprj(uv), vprj(uv)+1)
= prj(uv) mod1 k = c0(uv). Hence the path (vprj(uv), vprj(uv)+1, . . . , vprj(uv)+k−1) uses
all the colors except for (c0(uv)−1) mod1 k. From (ii) and the fact that {vprj(uv), u} ∈
S ′ we infer that P 1

uv is rainbow, which implies c′′(vprj(uv)+k−1u) = (c0(uv)−1) mod1 k.
Hence the path (vprj(uv)+1, . . . vprj(uv)+k−1, u) uses all the colors except for c0(uv). From
(ii) and the fact that {vprj(uv)+1, v} ∈ S ′ we infer that P 2

uv is rainbow, which implies
that c′′(uv) = c0(uv). This shows that c′′ extends c0, and hence so does c.

In the previous paragraph we showed that for every edge uv ∈ Dom(c0), with
u < v, we have c′′(vprj(uv)+k−1u) = (c0(uv)− 1) mod1 k. Note that if there is an edge
vprj(uv)+k−1u

′ for some u′ ∈ V , it means that there is u′v′ ∈ Dom(c0) such that u′ < v′

and prj(uv) = prj(u′v′). Hence c0(u′v′) = c0(uv), and by the previous paragraph,
c′′(vprj(uv)+k−1u

′) = (c0(u′v′) − 1) mod1 k = (c0(uv) − 1) mod1 k = c′′(vprj(uv)+k−1u).
In other words, for every i = 1, . . . , 3k2`′, all the edges between vi and V have the
same color in c′′. This, combined with (iii) means that for every pair of vertices
u, v ∈ V every rainbow path in c′′ is contained in E. Hence, for any {u, v} ∈ S the
rainbow path between them in c′′ is also a rainbow path in c, so c satisfies {u, v}.
This ends the proof of the equivalence.
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Additional properties. Note that for every vertex v ∈ V ′ \V we have degGS′ (v) ≤
2+d|Dom(c0)|/`′e and for every vertex v ∈ V we have degGS′ (v) ≤ degGS(v)+degG(v).
Hence ∆(GS′) = O(∆(GS) + ∆(G) + |Dom(c0)|/`), as required.

Note that in the graph GS′ [V ′ \V ] all the connected components are paths. Hence
the vertices of V ′ \V can be colored using two colors in GS′ . By merging this coloring
with the given p-coloring of the vertices of graph GS we obtain a proper vertex (p+2)-
coloring of GS′ .

5.3 From Subset Rainbow k-Coloring to Rainbow
k-Coloring

The basic idea of our reduction from Subset Rainbow k-Coloring to Rainbow
k-Coloring is to modify the graph so that the pairs of vertices from Ē \ S can be
somehow trivially satisfied, without affecting the satisfiability of S. To this end we use
a notion of biclique covering number (called also bipartite dimension). The biclique
covering number bc(G) of a graph G is the smallest number of biclique subgraphs of
G that cover all edges of G. The following proposition is well-known.

Proposition 49 (Folklore). It holds that bc(Kn) = dlog ne, and the corresponding
cover can be constructed in polynomial time.

Proof. Assume V (Kn) = {0, . . . , n−1}. The i-th biclique contains edges between the
vertices that have 0 at the i-th bit and the vertices that have 1 at the i-th bit.

Let G = (V1, V2, E) be a bipartite graph. Then Ĝ denotes the bipartite comple-
ment of G, i.e, the bipartite graph

(V1, V2, {v1v2 : v1 ∈ V1, v2 ∈ V2, and v1v2 6∈ E}).

We will use the following result of Jukna. Recall that we denote ∆1(G) = max{∆(G), 1}.

Theorem 50 (Jukna [79]). If G is an n-vertex bipartite graph, then bc(Ĝ) = O(∆1(G)·
log n).

Let us call the cover from Theorem 50 the Jukna cover. In our application we
need to be able to compute the Jukna cover fast.

Lemma 51. The Jukna cover can be constructed in (i) expected polynomial time, or
(ii) deterministic 2nnO(1) time.

Proof. Denote ∆ = ∆(G). If ∆ = 0 the claim follows from Proposition 49, so in what
follows assume ∆ ≥ 1. Jukna [79] shows a simple worst-case linear time algorithm
which samples a biclique in G. Then it is proved that after sampling t bicliques,
the probability that there is an edge not covered by one of the bicliques is at most
n2e−t/(∆e). It follows that the probability that more than ∆e(2 lnn + 1) samples are
needed is at most e−1. If after ∆e(2 lnn + 1) samples some edges is not covered, we
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discard all the bicliques found and repeat the whole algorithm from the scratch. The
expected number of such restarts is 1/(1− e−1) = O(1).

Now we proceed to the second part of the claim. Let G = (V1, V2, E). For every
subset A ⊆ V1 we define the biclique BA = (A,B,EA), where B is the set of vertices
of V2 adjacent in Ĝ to all vertices of A. Clearly, BA is a subgraph of Ĝ and for every
subset A ⊆ V1 it can be found in time linear in the size of Ĝ. Our deterministic
algorithm works as follows: as long as not all edges of Ĝ are covered, it picks the
biclique BA which maximizes the number of new covered edges of Ĝ. Since all the
bicliques in the set {BA : A ⊆ V1} can be listed in time O(2n|E(Ĝ)|), the total
running time is t2nnO(1), where t is the size of the returned cover. It suffices to show
that t = O(∆ log n).

Jukna [79] shows that if set A is chosen by picking every vertex of V1 independently
with probability 1

∆
, then for any edge uv ∈ E(Ĝ), Pr[uv ∈ EA] ≥ 1

∆e
. Consider any

step of our algorithm and let R ⊆ E(Ĝ) be the set of the edges of Ĝ which are not
covered yet. By the bound on Pr[uv ∈ EA] and the linearity of expectation a set A
sampled as described above covers at least |R|/(∆e) new edges in expectation. In
particular, it implies that there exists a set A ⊆ V1 that covers at least |R|/(∆e) new
edges. Let α = (1 − 1

∆e
)−1. By the Taylor expansion of log(1 − x), it follows that

t = O(logα |E(Ĝ)|) = O(log n/ logα) = O(∆ log n).

Lemma 52. Let G be an n-vertex graph with a given proper vertex p-coloring. Then
the edges of Ḡ can be covered by O(p2∆1(G) log n) bicliques from Ḡ so that any edge
of G and any biclique have at most one common vertex. This cover can be constructed
in (i) expected polynomial time, or (ii) deterministic 2nnO(1) time.

Proof. The edges of Ḡ between the vertices of any color class form a clique, so by
Proposition 49 we can cover its edges using O(log n) bicliques. If an edge of G has
both endpoints in such a biclique, these endpoints have the same color, contradiction.
For two different colors i and j the edges of G between their color classes form a
bipartite graph of maximum degree at most ∆(G). Hence by Lemma 51 we can cover
the edges of its bipartite complement using O(∆1(G) log n) bicliques. If an edge uv
of G has both endpoints in such a biclique, then either (i) these endpoints have the
same color, contradiction, or (ii) these endpoints belong to two different parts of the
biclique, so uv is in the biclique and hence uv ∈ E(Ḡ), a contradiction. Summing
over all color classes and pairs of color classes, we use O(p2∆1(G) log n) bicliques, as
required.

Now we proceed to the actual reduction. Somewhat surprisingly, the k = 2
requires a slightly different construction than the k ≥ 3 case, so we partition the
proof into two lemmas.

Lemma 53. Given an instance (G = (V,E), S) of Subset Rainbow 2-Coloring
together with a proper p-coloring of the graph GS = (V, S), one can construct an equiv-
alent instance G′ of Rainbow 2-Coloring such that |V (G′)| = O(|V |+ p2∆1(GS) ·
log |V |), |E(G′)| = O(|E(G)| + (|V | + p2∆1(GS) log |V |) · p2∆1(GS) log |V |). The
construction algorithm can run in (i) expected polynomial time, or (ii) deterministic
2|V ||V |O(1) time.
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Proof. Let us consider a biclique covering of the complement of the graph GS with q =
O(p2∆1(GS) log n) bicliques (U1, V1;E1), (U2, V2;E2), . . . , (Uq, Vq;Eq) as in Lemma 52.
Let W = {w1, w2, . . . , wq}, T = {t1, t2, t3}, V (G′) = V ∪ W ∪ T and E(G′) =

E(G)∪(W×W )∪(T×T )∪({t2}×W )∪({t3}×(V ∪W ))∪
(⋃

1≤i≤q{wi} × (Ui ∪ Vi)
)

(we abuse the notation assuming that × operator returns unordered pairs minus
loops).

If (G,S) is a YES-instance then there exists a coloring cS such that all the con-
straints in S are satisfied. We extend this coloring to a coloring of E(G′) as follows.

c(e) =


cS(e) for e ∈ E(G),
1 for e ∈ (W ×W ) ∪ (T × T ) ∪ ({t3} ×W )

∪
(⋃

1≤i≤q{wi} × Ui
)
,

0 for e ∈ ({t2} ×W ) ∪ ({t3} × V ) ∪
(⋃

1≤i≤q{wi} × Vi
)
.

It suffices to show that all anti-edges of G′ are satisfied by the coloring c. An anti-edge
uv inside the set of the vertices V either belongs to S and it is satisfied by a path in G
or it belongs to one of the bicliques (Ui, Vi;Ei) and then it is satisfied by a path uwiv.
Inside W and T all the vertices are connected directly. An anti-edge vw between V
and W is connected by a path vt3w. The vertices of T are connected with V via {t3}
and with W via {t2} ({t3} is also connected directly to W ). So G′ is a YES-instance.

If G′ is a YES-instance then there exists a coloring c such that all the anti-edges
in G′ are satisfied. Note that S ∩ E(G′) = ∅. An anti-edge belonging to S cannot
be satisfied by a path using any vertex from W because it is not covered by any of
the added bicliques. It cannot be also satisfied by a path using vertex t3 because t3
is the only common neighbor of t1 and the vertices of V . Therefore in c all the edges
connecting V with t3 have to be in the same color, i.e., the color different from c(t1t3).
Moreover t3 is the only vertex of T that is adjacent to V . Hence every anti-edge in S
is satisfied using only paths inside G. Therefore c |V is also a coloring satisfying an
instance (G,E, S).

We added only O(p2∆1(GS) log |V |) new vertices and O((p2∆1(GS) log |V |)2

+ |V |p2∆1(GS) log |V |) = O((|V |+ p2∆1(GS) log |V |) · p2∆1(GS) log |V |) edges.

Lemma 54. For any fixed k ≥ 3, given an instance (G = (V,E), S) of Sub-
set Rainbow k-Coloring together with a p-coloring of the graph GS = (V, S),
one can construct an equivalent instance G′ of Rainbow k-Coloring such that
|V (G′)| = O(|V | + kp2∆1(GS) log |V |), |E(G′)| = O(|E(G)| + |V |p2∆1(GS) log |V |).
The construction algorithm can run in (i) expected polynomial time, or (ii) determin-
istic 2|V ||V |O(1) time.

Proof. In what follows we assume that G contains an isolated vertex v∗, for oth-
erwise we can just add it (without changing S) and get an equivalent instance of
Subset Rainbow k-Coloring. Let us consider a biclique cover of the comple-
ment of the graph GS with q = O(p2∆1(GS) log |V |) bicliques B1 = (U1, V1;E1), B2 =
(U2, V2;E2), . . . , Bq = (Uq, Vq;Eq) as in Lemma 52. Note that because of the existence
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of v∗, every vertex of G belongs to at least one biclique. We construct a graph G′ as
follows. Begin with G′ = G. Next, for every biclique Bi, i = 1, . . . , q we add

• a 2(k − 1)-cycle Ci = (vi,0, vi,1, . . . , vi,k−2, wi,k−3, . . . , wi,1),

• an edge uvi,0 for every u ∈ Ui,

• an edge vvi,k−2 for every v ∈ Vi.

We denote wi,0 = vi,0 and wi,k−2 = vi,k−2. For every i = 1, . . . , q, the cycle Ci
partitions into two paths Pi = (vi,0, vi,1, . . . , vi,k−2) and Qi = (wi,0, vi,1, . . . , wi,k−2).
Next, we add 2 dlog qe vertices a1, . . . , adlog qe and b1, . . . ,
bdlog qe.

At this point, the construction differs a bit depending on the parity of k.
Assume k is odd. For every i = 1, . . . , q, the middle vertices of the paths Pi

and Qi, i.e., the vertices vi,(k−3)/2, vi,(k−1)/2, wi,(k−3)/2, wi,(k−1)/2 are called portals. For
every t = 1, . . . , dlog qe we put edges between {at, bt} and all portals.

Assume k is even. Then there are two kinds of portals. For every i = 1, . . . , q,
the middle vertex of the paths Pi and Qi, i.e., the vertices vi,(k−2)/2, wi,(k−2)/2 are
called 1-portals. For every i = 1, . . . , q, the neighbors of the 1-portals on Pi and
Qi, i.e., the vertices vi,(k−4)/2, vi,k/2, wi,(k−4)/2, wi,k/2 are called 0-portals. For every
t = 1, . . . , dlog qe and for every i, we put edges between {at, bt} and all θt(i)-portals
of Ci, where θt(i) is the t-th bit of i.

Finally, form a clique from all vertices ar and br for r = 1, . . . , dlog qe. This
completes the construction. Note that we have added 2(k−1)q+2 dlog qe = O(kq) =
O(kp2∆1(GS) log |V |) vertices and at most q(2(k− 1) + |V |+ 8 dlog qe) + 2 dlog qe2 =
O(q|V |) = O(|V |p2∆1(GS) log |V |) edges.

Assume that (G,S) is a YES-instance of Subset Rainbow k-Coloring, and
let c be the corresponding coloring. We will show that there is a rainbow k-coloring
c′ of E(G′). Define c′(e) = c(e) for e ∈ E. Next, for every biclique Bi, i = 1, . . . , q we
define colors of the corresponding edges as follows.

• The edges of the cycle (vi,0, vi,1, . . . , vi,k−2, wi,k−3, . . . , wi,1) are colored with col-
ors 2, 3, . . . , k − 1, 2, . . . , k − 1 respectively.

• for every u ∈ Ui, we put c′(uvi,0) = 1,

• for every v ∈ Vi, we put c′(vvi,k−2) = k.

Assume k is odd. For every t = 1, . . . , dlog qe and for every i = 1, . . . , q consider
the set At,i (resp. Bt,i) of four edges between at (resp. bt) and the portals of Ci. If
θt(i) = 0 the edges of both At,i and Bt,i are colored with k+1

2
. If θt(i) = 1 the edges

of At,i are colored with 1 and the edges of Bt,i are colored with k.
Assume k is even. For every t = 1, . . . , dlog qe and for every i = 1, . . . , q consider

the set At,i (resp. Bt,i) of four or two edges between at (resp. bt) and the θt(i)-portals
of Ci. If θt(i) = 0 the edges of both At,i and Bt,i are colored with k

2
. If θt(i) = 1 the

edges of At,i are colored with 1 and the edges of Bt,i are colored with k.
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Figure 5.5: Illustration of the k = 5 case. Rectangular labels denote colors. Here,
t is the number of any bit on which i and j differ; θt(i) = 0 and θt(j) = 1.

Finally, the clique formed of vertices ar and br is colored in color k. (See Fig 5.5
for an illustration of the k = 5 case.) Now we need to verify whether every pair u, v
of vertices of (G′, c′) is connected by a rainbow path. Let us consider cases depending
on the types of vertices in the pair.

• If u, v ∈ V and {u, v} ∈ S then u and v are connected by a rainbow path in
(G, c), and we can use the same path.

• If u, v ∈ V and {u, v} 6∈ S then let Bi be the biclique that contains uv and
assume w.l.o.g. u ∈ Ui and v ∈ Vi. Then the path (u, vi,0, . . . , vi,k−2, v) is
colored by (1, 2, . . . , k − 1, k) and hence is rainbow.

• Assume u ∈ V and v ∈ Cj for some j = 1, . . . , q. Pick any biclique Bi that
contains u. Assume that u ∈ Ui (the case u ∈ Vi is symmetric). If i = j we
use the path which begins with uvi,0 (colored by 1) and then continues to v
using the shortest path on Cj. Since Cj is colored using only colors 2, . . . , k−1,
this path is rainbow. Hence we can focus on the case i 6= j. Let t be any
bit on which i and j differ. Assume k is odd. If v ∈ {vj,0, . . . , vj,(k−3)/2},
say v = vj,`, we use the path (u,wi,0, . . . , wi,(k−3)/2, bt, vj,(k−3)/2, . . . , vj,`). De-
pending on whether θt(i) is 0 or 1, the successive edges of this path have colors
(1, k−1, . . . , k+3

2
, k+1

2
, k, k−1

2
, . . . , `+2) or (1, k−1, . . . , k+3

2
, k, k+1

2
, k−1

2
, . . . , `+2).

The remaining three cases v ∈ {vj,(k−1)/2,
. . . , vj,k−2}, v ∈ {wj,0, . . . , wj,(k−3)/2} and v ∈ {wj,(k−1)/2, . . . , wj,k−2} are analo-
gous. When k is even, θt(i) = 0 and v ∈ {vj,0, . . . , vj,(k−2)/2}, say v = vj,`, we
use the path (u,wi,0, . . . , wi,(k−4)/2, bt, vj,(k−2)/2, . . . , vj,`). Again, there are three
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more analogous cases when θt(i) = 0 and four ones when θt(i) = 1. When
u ∈ Vi the paths are analogous, but we use at instead of bt, to avoid repeating
the color k.

• If u ∈ V and v = ar or v = br for some r = 1, . . . , dlog qe, the requested path is
a subpath of one of the rainbow paths described in the previous case.

• Assume u ∈ Ci and v ∈ Cj for some i, j = 1, . . . , q. When i = j we can reach
v from u by a rainbow path going through the shortest path in Ci. Assume
i 6= j. Let t be the first bit on which i and j differ. Let us describe the case
of odd k only (the case of even k is similar, but slightly different, because of
non-symmetric neighborhoods of vertices ar and br). Denote clonej(vi,r) = vj,r
and clonej(wi,r) = wj,r. Recall that for every path vi,0, . . . , vi,k−2 there are two
portals, similarly for every path wi,0, . . . , wi,k−2. Two portals x1 and x2 on the
same path are called twins and we denote twin(x1) = x2 and twin(x2) = x1. If
vi,r is a portal then wi,r is also a portal and we denote opposite(vi,r) = wi,r and
opposite(wi,r) = vi,r. First assume the shortest path P from u to clonei(v) in Ci
goes through a portal. Let x be the first portal visited by P from u. Then the
rainbow path from u to v is formed by going in P from u to x, then going to
at, and then either through twin(clonej(x)) to v using the shortest path on Cj,
when v 6= clonej(x), or directly to clonej(x), when v = clonej(x). The colors are
the same as on path P , plus color 1 (and plus color k+1

2
when v = clonej(x)), so

the path is rainbow. Now assume that P does not go through a portal. Then
the rainbow path from u to v is formed by going in P from u to the nearest
portal x, then going through at to clonej(opposite(x)), and then to v using the
shortest path on Cj. This path uses colors of [k] \ c(E(P )) ∪ {1}, each exactly
once.

• If u ∈ Ci for some i and v = ar for some r = 1, . . . , dlog qe, the requested path
is a subpath of one of the rainbow paths described in the previous case; when
v = br we use the path to ar and extend it by the edge arbr.

• If {u, v} ⊆ {ar : r = 1, . . . , dlog qe} ∪ {br : r = 1, . . . , dlog qe}, then u and v
are adjacent, hence connected by a rainbow path of length 1.

Now assume that G′ is a YES-instance of Rainbow k-Coloring, and let c′ be
the corresponding coloring. We claim that the coloring c′|E(G) of E(G) satisfies all
the pairs in S. It follows from the observation that for every {u, v} ∈ S every path
between u and v that leaves E(G) either has length at least k + 1, or contains two
edges avi,0 and vi,0b for some i = 1, . . . , q and a, b ∈ Ui, or contains two edges avi,3
and vi,3b for some i = 1, . . . , q and a, b ∈ Vi.

5.4 Putting everything together

By pipelining lemmas 16, 46, 47 and 48 we get the following corollary.
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Corollary 55. Fix k ≥ 2. Given a 3-CNF-SAT formula ϕ with m clauses one
can construct in polynomial time an equivalent instance (G = (V,E), S) of Subset
Rainbow k-Coloring such that |V | = O(m2/3), |E| = O(m), ∆((V, S)) = O(m1/3),
and the graph GS = (V, S) is O(1)-colorable.

Note that in Corollary 55 we have |S| = |V |∆((V, S)) = O(m). It follows that the
Sparsification Lemma (Lemma 14) and Corollary 55 imply Theorem 8.

Pipelining Corollary 55 and Lemma 53 (for k = 2) or Lemma 54 (for k ≥ 3) gives
the following corollary.

Corollary 56. Fix k ≥ 2. Given a 3-CNF-SAT formula ϕ with O(m) clauses
one can construct an equivalent instance G of Rainbow k-Coloring with O(m2/3)
vertices and O(m logm) edges. The construction algorithm can run in (i) expected
polynomial time, or (ii) deterministic 2O(m2/3) time.

Again, the above and the Sparsification Lemma immediately imply Theorem 7.
(Note that we do not use the randomized reduction algorithm — we state it just in
case it is useful in some other applications.)
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Chapter 6

Multicoloring and low-degree
monomial testing

In this chapter we prove that there is no algorithm solving (a:b)-coloring in time
f(b) · 2o(log b)·n for any computable function f(b), unless ETH fails. Additionally we
prove that there is no algorithm solving (r, k)-Monomial Testing in time 2o(k·

log r
r

) ·
|C|O(1), also unless ETH fails.

Organization of the chapter. In Section 6.1 we recall definitions and well-known
facts. We also discuss d-detecting families, the main combinatorial tool used in our
reduction. In Section 6.2 we prove the lower bound for the list version of the problem,
i.e., Theorem 11, and then in Section 6.3 we present the few steps needed for the
standard version, thereby proving Theorem 9. Section 6.4 is devoted to deriving
lower bounds for low-degree monomial testing.

Additional notation for this chapter. All graphs we consider in this chapter are
simple and undirected. By ] we denote the disjoint union, i.e., by A ] B we mean
A ∪B with the indication that A and B are disjoint.

6.1 Preliminaries

List and nonuniform list (a:b)-coloring. For integers a, b and a graph G with
a function L : V (G) → 2[a] (assigning a list of colors to every vertex), an L-(a:b)-
coloring of G is an assignment of exactly b colors from L(v) to each vertex v ∈ V (G),
such that adjacent vertices get disjoint color sets. The List (a:b)-coloring problem
asks, given (G,L), whether an L-(a:b)-coloring of G exists.

As an intermediary step of our reduction, we use the following generalization of
list colorings where the number of demanded colors varies with every vertex. For
integers a, b, a graph G with a function L : V (G) → 2[a] and a demand function
β : V (G) → {1, . . . , b}, an L-(a:β)-coloring of G is an assignment of exactly β(v)
colors from L(v) to each vertex v ∈ V (G), such that adjacent vertices get disjoint
color sets. Nonuniform List (a:b)-coloring is then the problem in which given
(G,L, β) we ask if an L-(a:β)-coloring of G exists.
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d-detecting families. The crucial ingredient in the proof of Theorem 11 is
the usage of d-detecting matrices introduced by Lindström [99]. We choose to work
with their combinatorial formulation, hence we shall talk about d-detecting families.
Suppose we are given some universe U and there is an unknown function f : U →
{0, 1, . . . , d− 1}, for some fixed positive integer d. One may think of U as consisting
of coins of unknown weights that are integers between 0 and d − 1. We would like
to learn f (the weight of every coin) by asking a small number of queries of the
following form: for a subset X ⊆ U , what is

∑
e∈X f(e) (the total weight of coins

in X)? A set of queries sufficient for determining all the values of an arbitrary f is
called a d-detecting family. Of course f can be learned by asking |U | questions about
single coins, but it turns out that significantly fewer questions are needed: there is
a d-detecting family of size O(|U |/ log |U |), for every fixed d [99]. The logarithmic
factor in the denominator will be crucial for deriving our lower bound. Let us state
this notion in a formal way.

Definition 57. A d-detecting family for a finite set U is a family F ⊆ 2U of subsets
of U such that for every two functions f, g : U → {0, . . . , d− 1}, f 6= g, there is a set
S in the family such that

∑
x∈S f(x) 6=

∑
x∈S g(x).

A deterministic construction of sublinear, d-detecting families was given by Lind-
ström [99], together with a proof that even the constant factor 2 in the family size
cannot be improved.

Theorem 58 ([99]). For every constant d ∈ N and finite set U , there is a d-detecting
family F on U of size 2|U |

logd |U |
· (1 + o(1)). Furthermore, F can be constructed in |U |O(1)

time.

Other constructions, generalizations, and discussion of similar results can be found
in Grebinski and Kucherov [65], and in Bshouty [16]. Note that the expression∑

x∈S f(x) is just the product of f as a vector in [d]|U | with the characteristic vector
of S. Hence, instead of subset families, Lindström speaks of detecting vectors, while
later works see them as detecting matrices, that is, (0, 1)-matrices with these vectors
as rows (which define an injection on [d]|U | despite having few rows). Similar defi-
nitions appear in the study of query complexity, e.g., as in the popular Mastermind
game [32].

While known polynomial deterministic constructions of detecting families involve
some number theory or Fourier analysis, their existence can be argued with an ele-
mentary probabilistic argument. Intuitively, a random subset S ⊆ U will distinguish
two distinct functions f, g : U → {0, . . . , d − 1} (meaning

∑
x∈S f(x) 6=

∑
x∈S g(x))

with probability at least 1
2
. This is because any x where f and g disagree is taken

or not taken into S with probability 1
2
, while sums over S cannot agree in both cases

simultaneously, as they differ by f(x) and g(x) respectively. There are dn ·dn function
pairs to be distinguished. In any subset of pairs, at least half are distinguished by
a random set in expectation, thus at least one such set exists. Repeatedly finding
such a set for undistinguished pairs, we get | log 1

2
(dn · dn)| = O(n log d) sets that

distinguish all functions. More strongly though, when two functions differ on more
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values, the probability of distinguishing them increases significantly. Hence we need
fewer random sets to distinguish all pairs of distant functions. On the other hand,
there are few function pairs that are close, so we need few random sets to distinguish
them all as well. This allows to show that in fact O( n

logd n
) random sets are enough

to form a d-detecting family with positive probability [65].
Let us now sketch how d-detecting families are used in the proof of Theorem 11.

Given an instance ϕ of 3-CNF-SAT with n variables and O(n) clauses, and a number
b ≤ n/ log n, we will construct an instanceG of List (a:b)-coloring for some a. This
instance will have a positive answer if and only if ϕ is satisfiable, and the constructed
graph G will have O(n/ log b) vertices. It can be easily seen that this will yield the
promised lower bound.

Partition the clause set C of ϕ into groups C1, C2, . . . , Cp, each of size roughly b;
thus p = O(n/b). Similarly, partition the variable set V of ϕ into groups V1, . . . , Vq,
each of size roughly log2 b; thus q = O(n/ log b). In the output instance we create one
vertex per each variable group—hence we have O(n/ log b) such vertices—and one
block of vertices per each clause group, whose size will be determined in a moment.
Our construction ensures that the set of colors assigned to a vertex created for a
variable group misses one color from some subset of b colors. The choice of the
missing color corresponds to one of 2log2 b = b possible boolean assignments to the
variables of the group.

Take any vertex u from a block of vertices created for some clause group Cj. We
make it adjacent to vertices constructed for precisely those variable groups Vi, for
which there is some variable in Vi that occurs in some clause of Cj. This way, u can
only take a subset of the above missing colors corresponding to the chosen assignment
on variables relevant to Cj. By carefully selecting the list of u, and some additional
technical gadgeteering, we can express a constraint of the following form: the total
number of satisfied literals in some subset of clauses of Cj is exactly some number.
Thus, we could verify that every clause of Cj is satisfied by creating a block of |Cj|
vertices, each checking one clause. However, the whole graph output by the reduction
would then have O(n) vertices, and we would not obtain any non-trivial lower bound.
Instead, we create one vertex per each question in a d-detecting family on the universe
U = Cj, which has size O(|Cj|/ log |Cj|) = O(|Cj|/ log b). Then, the total number of
vertices in the constructed graph will be O(n/ log b), as intended.

6.2 Hardness of List (a:b)-coloring

In this section we show our main technical contribution: an ETH-based lower bound
for List (a:b)-coloring. We begin with the key part: reducing an n-variable in-
stance 3-CNF-SAT to an instance of Nonuniform List (a:b)-coloring with only
O( n

log b
) vertices. Next, it is rather easy to reduce Nonuniform List (a:b)-coloring

to List (a:b)-coloring.
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6.2.1 The nonuniform case

We prove the following theorem through the remaining part of this section.

Theorem 59. For any instance φ of (3,4)-CNF-SAT with n variables and any inte-
ger 2 ≤ b ≤ n/ log2 n, there is an equivalent instance (G, β, L) of Nonuniform List
(a:2b)-coloring such that a = O(b2 log b), |V (G)| = O( n

log b
) and G is 3-colorable.

Moreover, the instance (G, β, L) and the 3-coloring of G can be constructed in nO(1)

time.

Consider an instance φ of 3-CNF-SAT where each variable appears in at most
four clauses. Let V be the set of its variables and C be the set of its clauses. Note
that 1

3
|V | ≤ |C| ≤ 4

3
|V |. Let a = 12b2 · blog2 bc. We shall construct, for some integers

nV = O(|V |/ log b) and nC = O(|C|/b):

• a partition V = V1 ] . . . ] VnV of variables into groups of size at most blog2 bc,

• a partition C = C1 ] . . . ] CnC of clauses into groups of size at most b,

• a function σ : {1, . . . , nV } → [12 · b · blog2 bc],

such that the following condition holds:

For any j = 1, . . . , nC , the variables occurring in clauses of Cj are all
different and they all belong to pairwise different variable groups. More-
over, the indices of these groups are mapped to pairwise different values
by σ.

(z)

In other words, any two literals of clauses in Cj have different variables, and if they
belong to Vi and Vi′ respectively, then σ(i) 6= σ(i′).

Lemma 60. Partitions V = V1 ] . . . ] VnV , C = C1 ] . . . ] CnC and a function σ
satisfying (z) can be found in time O(n).

Proof. We first group variables, in a way such that the following holds: (P1) the
variables occurring in any clause are different and belong to different variable groups.
To this end, consider the graph G1 with variables as vertices and edges between any
two variables that occur in a common clause (i.e. the primal graph of φ). Since no
clause contains repeated variables, G1 has no loops. Since every variable of φ occurs
in at most four clauses, and since those clauses contain at most two other variables,
the maximum degrees of G1 is at most 8. Hence G1 can be greedily colored with 9
colors. Then, we refine the partition given by colors to make every group have size at
most blog2 bc, producing in total at most nV := d|V |/blog2 bce+ 9 groups V1, . . . , VnV .
(P1) holds, because any two variables occurring in a common clause are adjacent in
G1, and thus get different colors, and thus are assigned to different groups.

Next, we group clauses in a way such that: (P2) the variables occurring in clauses
of a group Cj are all different and belong to different variable groups. For this,
consider the graph G2 with clauses as vertices, and with an edge between clauses
if they contain two different variables from the same variable group. By (P1), G2
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V1

blog2 bc variables
V2 V3 . . . VnV

C1 b clauses

. . . . . .
CnC

. . .

v1 v2 v3 . . .
vnV

u1,1 u1,2

. . .
u1,2nF

w1

. . .
unC ,1 unC ,2

. . .
unC ,2nF

wnC
Figure 6.1: (left) The groups of variables and clauses of the formula; literals in
C1 are joined with their variables. Since no variable of V2 occurs in C1, we have
2 6∈ I1 – this may allow us to make σ(2) the same number as σ(3), say, reducing
the total number a of colors needed. (right) The constructed graph; thick lines
represent edges to all vertices corresponding to C1.

has no loops. Since every clause contains exactly 3 variables, each variable is in a
group with at most blog2 bc − 1 others, and every such variable occurs in at most
4 clauses, the maximum degree of G2 is at most 12(blog2 bc − 1). We can therefore
color G2 greedily with 12blog2 bc colors. Similarly as before, we partition clauses into
nC := d|C|/be+ 12blog2 bc monochromatic groups C1, . . . , CnC of size at most b each.
Then (P2) holds by construction of the coloring.

Finally, consider a graph G3 with variable groups as vertices, and with an edge
between two variable groups if they contain two different variables occurring in clauses
from a common clause group. More precisely, Vi and Vi′ are adjacent if there are two
different variables x ∈ Vi and x′ ∈ Vi′ , and a clause group Cj with clauses c and c′

(possibly c = c′), such that x occurs in c and x′ occurs in c′. By (P2), G3 has no loops.
Since a variable has at most blog2 bc − 1 other variables in its group, each of these
variables occur in at most 4 clauses, each of these clauses has at most b − 1 other
clauses in its group, and each of these contains exactly 3 variables, the maximum
degree of G3 is at most 4 · (blog2 bc− 1) · (b− 1) · 3. We can therefore color it greedily
into 12bblog2 bc colors. Let σ be the resulting coloring. By (P2) and the construction
of this coloring, (z) holds.

The colorings can be found in linear time using standard techniques. Note that we
have nV = d|V |/blog2 bce + 9 = O(|V |/ log b). Moreover, since b ≤ n/ log2 n, we get
log2 b ≤ log2 n ≤ n

b
= Θ(|C|/b) and hence nC = d|C|/be+ 12blog2 bc = O(|C|/b).

For every 1 ≤ i ≤ nV , the set Vi of variables admits 2|Vi| ≤ b different assignments.
We will therefore say that each assignment on Vi is given by an integer x ∈ [b], for
example by interpreting the first |Vi| bits of the binary representation of x as truth
values for variables in Vi. Note that when |Vi| < log2 b, different integers from [b] may
give the same assignment on Vi.

For 1 ≤ j ≤ nC , let Ij ⊆ {1, . . . , nV } be the set of indices of variable groups
that contain some variable occurring in the clauses of Cj. Since every clause contains
exactly three literals, property (z) means that |Ij| = 3|Cj| and that σ is injective
over each Ij. See Fig. 6.1.

For 1 ≤ j ≤ nC , let {Cj,1, . . . , Cj,nF
} be a 4-detecting family of subsets of Cj, for

some nF = O( b
log b

) (we can assume nF does not depend on j by adding arbitrary sets
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when |Cj| < b). For every 1 ≤ k ≤ nF, let Cj,nF+k = Cj \ Cj,k.
We are now ready to build the graph G, the demand function β : V (G) →

{1, . . . , 2b}, and the list assignment L as follows.

(1) For 1 ≤ i ≤ nV , create a vertex vi with β(vi) = b− 1 and L(vi) = {b · σ(i) + x |
x ∈ [b]}.

(2) For 1 ≤ j ≤ nC and 1 ≤ k ≤ 2nF, create a vertex uj,k adjacent to each vi for
i ∈ Ij.
Let β(uj,k) = |Cj,k| and

L(uj,k) = {b·σ(i) + x | 1 ≤ i ≤ nV , x ∈ [2|Vi|] such that
x gives an assignment of Vi that satisfies some clause of Cj,k}.

(3) For 1 ≤ j ≤ nC , create a vertex wj, adjacent to each vi for i ∈ Ij and to each uj,k
(1 ≤ k ≤ 2nF). Let β(wj) = 2|Cj| and L(wj) =

⋃
i∈Ij{b · σ(i) + x | x ∈ [b]}.

Before giving a detailed proof of the correctness, let us describe the reduction in
intuitive terms. Note that vertices of type vi get all but one color from their list; this
missing color, say b ·σ(i)+xi, for some xi ∈ [b], defines an assignment on Vi. For every
j = 1, . . . , nC the goal of the gadget consisting of wj and vertices uj,k is to express
the constraint that every clause in Cj has a literal satisfied by this assignment. Since
wj, uj,k are adjacent to all vertices in {vi | i ∈ Ij}, they may only use the missing
colors (of the form b · σ(i) + xi, where i ∈ Ij). Since |Ij| = 3|Cj|, there are 3|Cj|
such colors and 2|Cj| of them go to wj. This leaves exactly |Cj| colors for vertices of
type uj,k, corresponding to a choice of |Cj| satisfied literals from the 3|Cj| literals in
clauses of Cj. The lists and demands for vertices uj,k guarantee that exactly |Cj,k|
chosen satisfied literals occur in clauses of Cj,k. The properties of 4-detecting families
will ensure that every clause has exactly one chosen, satisfied literal, and hence at
least one satisfied literal. We proceed with formal proofs.

Lemma 61. If φ is satisfiable then G is L-(a:β)-colorable.

Proof. Consider a satisfying assignment η for φ. For 1 ≤ i ≤ nV , let xi ∈ [2|Vi|] be
an integer giving the same assignment on Vi as η. For every clause c of φ, choose one
literal satisfied by η in it, and let ic be index of the group Vic containing the literal’s
variable. Let α : V (G) →

(
[a]
≤2b

)
be the L-(a:β)-coloring of G defined as follows, for

1 ≤ i ≤ nV , 1 ≤ j ≤ nC , 1 ≤ k ≤ 2nF:

• α(vi) = L(vi) \ {b · σ(i) + xi}

• α(uj,k) = {b · σ(ic) + xic | c ∈ Cj,k}

• α(wj) = {b · σ(i) + xi | i ∈ Ij \ {ic | c ∈ Cj}}.

Let us first check that every vertex v gets colors from its list L(v) only. This is
immediate for vertices vi and wj, while for uj,k it follows from the fact that xic gives
a partial assignment to Vi that satisfies some clause of Cj,k.
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Now let us check that for every vertex v, the coloring α assigns exactly β(v) colors
to v. For α(vi) this follows from the fact that |L(vi)| = b and 0 ≤ xi < 2|Vi| ≤ b.
Since by property (z), σ is injective on Ij, and thus on {ic | c ∈ Cj,k} ⊆ Ij, we have
|α(uj,k)| = |Cj,k| = b(uj,k). Similarly, since σ is injective on Ij and |Ij \ {ic | c ∈
Cj}| = 3|Cj| − |Cj| = 2|Cj|, we get |α(wj)| = 2|Cj| = β(wj).

It remains to argue that the sets assigned to any two adjacent vertices are disjoint.
There are three types of edges in the graph, namely viuj,k, viwj, and wjuj,k. The
disjointness of α(wj) and α(uj,k) is immediate from the definition of α, since Cj,k ⊆ Cj.
Fix j = 1, . . . , nC . Since σ is injective on Ij, for any two different i, i′ ∈ Ij, we have
b · σ(i) + xi 6∈ L(vi′). Hence,⋃

i∈Ij

α(vi) = {b · σ(i) + x | i ∈ Ij and x ∈ [b]} \ {b · σ(i) + xi | i ∈ Ij}.

Since α(uj,k), α(wj) ⊆ {b · σ(i) + xi | i ∈ Ij}, it follows that edges of types viuj,k and
viwj received disjoint sets of colors on their endpoints, concluding the proof.

Lemma 62. If G is L-(a:β)-colorable then φ is satisfiable.

Proof. Assume that G is L-(a:β)-colorable, and let α be the corresponding coloring.
For 1 ≤ i ≤ nV , we have |L(vi)| = b and |α(vi)| = b− 1, so vi misses exactly one

color from its list. Let b · σ(i) + xi, for some xi ∈ [b], be the missing color. We want
to argue that the assignment x for φ given by xi on each Vi satisfies φ.

Consider any clause group Cj, for 1 ≤ j ≤ nC . Every vertex in {wj} ∪ {uj,k |
1 ≤ k ≤ 2nF} contains {vi | i ∈ Ij} in its neighborhood. Therefore, the sets α(uj,k)
and α(wj) are disjoint from

⋃
i∈Ij α(vi). Since L(uj,k), L(wj) ⊆ {b · σ(i) + x′ | i ∈

Ij, x
′ ∈ [b]}, we get that α(uj,k) and α(wj) are contained in the set of missing colors

{b · σ(i) + xi | i ∈ Ij} (corresponding to the chosen assignment). By property (z),
this set has exactly |Ij| = 3|Cj| different colors. Of these, exactly 2|Cj| are contained
in α(wj). Let the remaining |Cj| colors be {b · σ(i) + xi | i ∈ Jj}, for some subset
Jj ⊆ Ij of |Cj| indices.

Since α(uj,k) is disjoint from α(wj), we have α(uj,k) ⊆ {b ·σ(i)+xi | i ∈ Jj} for all
k. By definition of Ij, for every i ∈ Jj ⊆ Ij there is a variable in Vi that appears in
some clause of Cj. By property (z), it can only occur in one such clause, so let li be
the literal in the clause of Cj where it appears. For every color b · σ(i) + xi ∈ α(uj,k),
by definition of the lists for uj,k we know that xi gives a partial assignment to Vi that
satisfies some clause of Cj,k. This means xi makes the literal li true and li occurs in
a clause of Cj,k. Therefore, for each k, at least |α(uj,k)| = |Cj,k| literals from the set
{li | i ∈ Jj} occur in clauses of Cj,k and are made true by the assignment x.

Let f : Cj → {0, 1, 2, 3} be the function assigning to each clause c ∈ Cj the
number of literals of c in {li | i ∈ Jj}. By the above,

∑
c∈Cj,k f(c) ≥ |Cj,k| for

1 ≤ k ≤ 2nF. Since each literal in {li | i ∈ Jj} belongs to some clause of Cj, we have∑
c∈Cj f(c) = |Jj| = |Cj|. Then,∑

c∈Cj,k

f(c) =
∑
c∈Cj

f(c)−
∑

c∈Cj,nF+k

f(c) ≤ |Cj| − |Cj,nF+k| = |Cj,k|.
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Hence
∑

c∈Cj,k f(c) = |Cj,k| for 1 ≤ k ≤ 2nF. Let g : Cj → {0, 1, 2, 3} be the constant
function g ≡ 1. Note that ∑

c∈Cj,k

g(c) = |Cj,k| =
∑
c∈Cj,k

f(c).

Since {Cj,1, . . . , Cj,nF
} is a 4-detecting family, this implies that f ≡ 1. Thus, for

every clause c of Cj we have f(c) = 1, meaning that there is a literal from the set
{li | i ∈ Jj} in this clause. All these literals are made positive by the assignment
η, therefore all clauses of Cj are satisfied. Since j = 1, . . . , nC was arbitrary, this
concludes the proof that η is a satisfying assignment for φ.

The construction can clearly be made in polynomial time and the total number
of vertices is nV + nC ·O( b

log b
) + nC = O( n

log b
). Moreover, we get a proper 3-coloring

of G, by coloring vertices of the type vi by color 1, vertices of the type uj,k by color
2, and vertices of the type wj by color 3. By Lemmas 61 and 62, this concludes the
proof of Theorem 59.

6.2.2 The uniform case

In this section we reduce the nonuniform case to the uniform one, and state the
resulting lower bound on the complexity of List (a:b)-coloring.

Lemma 63. For any instance I = (G, β, L) of Nonuniform List (a:b)-coloring
where the graph G is t-colorable, there is an equivalent instance (G,L′) of List
((a+ tb):b)-coloring. Moreover, given a t-coloring of G the instance (G,L′) can be
constructed in time polynomial in |I|+ b.

Proof. Let c : V (G)→ [t] be a t-coloring of G. For every vertex v, define a set of filling
colors F (v) = {a+ c(v)b+ i : i = 0, . . . , b− |β(v)| − 1} and put L′(v) = L(v)∪F (v).

Let α : V (G)→ 2[a] be an L-(a:β)-coloring of G. We define a coloring α′ : V (G)→
2[a+tb] by setting α′(v) = α(v) ∪ F (v) for every vertex v ∈ V (G). Observe that
α′(v) ⊆ L′(v) and |α′(v)| = |α(v)| + (b − |β(v)|) = b. Since α was a proper L-(a:β)-
coloring, adjacent vertices can only share the filling colors. However, the lists of
adjacent vertices have disjoint subsets of filling colors, since these vertices are colored
differently by c. It follows that α′ is an L′-(a:b)-coloring of G.

Conversely, let α′ : V (G)→ 2[a+tb] be an L′-(a:b)-coloring of G. For every vertex v,
we have |α′(v)∩ [a]| = b−|α′(v)∩F (v)| ≥ b− (b−|β(v)|) = |β(v)|. Define α(v) to be
any cardinality β(v) subset of α′(v)∩ [a]. It is immediate that α is an L-(a:β)-coloring
of G.

We are now ready to prove one of main results of this chapter.

Theorem 11. If there is an algorithm for List (a:b)-coloring that runs in time
2o(log b)·n, then ETH fails. This holds even if the algorithm is only required to work on
instances where a = Θ(b2 log b) and b = Θ(b(n)) for an arbitrarily chosen polynomial-
time computable function b(n) such that b(n) ∈ ω(1) and b(n) = O(n/ log n).
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Proof. Let b(n) be a function as in the statement. We can assume w.l.o.g. that
2 ≤ b(n) ≤ n/ log2 n (otherwise, replace b(n) with b′(n) = 2 + bb(n)/cc in the rea-
soning below, for c a big enough constant; clearly b′(n) = Θ(b(n))). Fix a function
f(b) = o(log b) and assume there is an algorithm A for List (a:b)-coloring that
runs in time 2f(b)·n, whenever b = Θ(b(n)). Consider an instance of (3,4)-CNF-
SAT with n variables. Let b = b(n). By Theorem 59 in nO(1) time we get an
equivalent instance (G, β, L) of Nonuniform List (a:(2b))-coloring such that
a = Θ(b2 log b), |V (G)| = O( n

log b
), and a 3-coloring of G. Next, by Lemma 63 in

nO(1) time we get an equivalent instance (G,L′) of List ((a + 6b):(2b))-coloring.
Finally, we solve the instance (G,L′) using algorithm A. Since b(n) = ω(1), we have
f(b(n)) = o(log(b(n))), and A runs in time 2o(log b(n))·|V (G)|. Thus, we solved (3,4)-
CNF-SAT in time 2o(log b(n))·|V (G)| = 2o(log b(n))· n

log b(n) = 2o(n). By Corollary 17, this
contradicts ETH.

6.3 From List (a:b)-coloring to (a:b)-coloring

Finally, we reduce List (a:b)-coloring to (a:b)-coloring. This is done by in-
creasing the number of colors by b, adding a Kneser graph KGa+b,b (which can be
colored essentially only by assigning each b-set of colors to its corresponding vertex),
and replacing the lists by edges to appropriate vertices of the Kneser graph.

We will need the following well-known property of Kneser graphs (see e.g., Theo-
rem 7.9.1 in the textbook [63]).

Theorem 64. If p > 2q then every homomorphism from KGp,q to KGp,q is an
automorphism.

We proceed with the reduction.

Lemma 65. Given an instance of List (a:b)-coloring with n vertices, an equiv-
alent instance of (a + b : b)-coloring with n +

(
a+b
b

)
vertices can be computed in

max{n,
(
a+b
b

)
}O(1)-time.

Proof. Let (G,L) be an instance of List (a:b)-coloring where G is a graph and
L : V (G)→ 2[a] describes the lists of allowed colors. Define a graph K with V (K) =(

[a+b]
b

)
and

E(K) = {XY : X, Y ∈ V (K) and X ∩ Y = ∅ }.

That is, K is isomorphic to the Kneser graph KGa+b,b. Then let V ′ = V (G) ] V (K)
and

E ′ = E(G) ] E(K) ] { vX : v ∈ V (G) and X ∈ V (K) and L(v) ∩X = ∅ }.

The graph G′ = (V ′, E ′) has n +
(
a+b
b

)
vertices, and the construction can be done in

time polynomial in n+
(
a+b
b

)
. Let G′ be our output instance of ((a+b):b)-coloring.

We will show that it is equivalent to the instance (G,L) of List (a:b)-coloring.
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Let us assume that α : V (G) →
(

[a]
b

)
is an L-(a:b)-coloring of G. Consider α′ :

V (G′)→
(

[a+b]
b

)
such that

α′(v) =

{
α(v) for v ∈ V (G)

v for v ∈ V (K) =
(

[a+b]
b

)
.

We claim that α′ is an ((a + b):b)-coloring of G′. Indeed, for every edge uv ∈ E(G)
we have α′(u) ∩ α′(v) = α(u) ∩ α(v) = ∅ because α is an L-(a:b)-coloring of G. For
every edge XY ∈ E(K) we have α′(X) ∩ α′(Y ) = X ∩ Y = ∅. For every edge
vX ∈ E(V (G), V (K)) we have α′(v) ∩ α′(X) = α(v) ∩X ⊆ L(v) ∩X = ∅.

Now, let us assume that α′ : V (G′)→
(

[a+b]
b

)
is an ((a+b):b)-coloring of G′. Recall

that α′ is a homomorphism of G′ to KGa+b,b. Denote φ = α′|V (K). By Theorem 64,
φ is an automorphism of K. Define α′′ = φ−1 ◦ α′. Then α′′ is an ((a + b):b)-
coloring of G′ with the property that α′′(X) = X for every X ∈ V (K). We claim
that α′′|V (G) is an L-(a:b)-coloring of G. Since α′′ is a ((a + b):b)-coloring of G′,
it suffices to show that α′′(v) ⊆ L(v) for every vertex v ∈ V (G). Pick a color
γ 6∈ L(v). Let Xγ be the b-element set consisting of γ and arbitrary b − 1 elements
from [a+ b]\ ([a]∪{γ}). Then L(v)∩Xγ = ∅ and hence vXγ ∈ E(G′). It follows that
Xγ ∩ α′′(v) = α′′(Xγ) ∩ α′′(v) = ∅, and in particular γ 6∈ α′′(v). Thus, α′′(v) ⊆ L(v)
as required.

We now prove our main result.

Theorem 9. If there is an algorithm for (a:b)-coloring that runs in time f(b) ·
2o(log b)·n, for some computable function f(b), then ETH fails. This holds even if the
algorithm is only required to work on instances where a = Θ(b2 log b).

Proof. Fix a computable function f(b), a function g(b) = o(log b) and assume there is
an algorithm A for (a:b)-coloring that runs in time f(b) ·2g(b)·n for a given n-vertex
graph, whenever a = Θ(b2 log b). Without loss of generality we can replace f(b) by
any non-decreasing function f ′(n) such that f ′(n) ≥ f(n) and f ′(n) > n. Intuitively,
we now define an unbounded function b(N) which should be at least 2, at most the
inverse of f , and small enough so that 2O(b log b) ≤ N

log b
. The following function is ω(1)

and a standard argument shows how to compute it in NO(1) time (see Lemmas 3.2
and 3.4 in [18]).

b(N) = min (max{b : f(b) ≤ N} , max{b : b log b ≤ logN/ log logN}) + 2.

Consider an instance of (3,4)-CNF-SAT with N variables. Let b = b(N). By
Theorem 59 in NO(1) time we get an equivalent instance (G, β, L) of Nonuniform
List (a:(2b))-coloring such that a = Θ(b2 log b), |V (G)| = O( N

log b
), and a 3-coloring

of G. Next, by Lemma 63 in NO(1) time we get an equivalent instance (G,L′) of List
((a+ 6b):(2b))-coloring. Then, by Lemma 65, in time max{N,

(
a+8b

2b

)
}O(1) = NO(1)

we get an equivalent instance G′ of ((a + 8b):(2b))-coloring such that |V (G′)| =
|V (G)|+

(
a+8b

2b

)
. Observe that since a = Θ(b2 log b) and b log b ≤ logN/ log logN ,(

a+8b
2b

)
≤ (a+ 8b)2b = 2O(b log b) = 2O(logN/ log logN) = N o(1) = o(N/log b(N))
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Hence |V (G′)| = O( N
log b

). Finally, we solve the instance G′ using algorithm A. Since
b(N) = ω(1), we have g(b(N)) = o(log(b(N))). Therefore, A runs in time

f(b) · 2o(log b(N))·|V (G′)| ≤ N · 2o(log b(N))·O(N/ log b(N)) = 2o(N)

solving the instance φ of (3,4)-CNF-SAT in time 2o(N). By Corollary 17, this con-
tradicts ETH.

Corollary 10. If there is an algorithm for Graph Homomorphism that runs in
time f(h) · 2o(log log h)·n, for some computable f(h), then ETH fails. This holds even if
the algorithm is only required to work on instances where H is a Kneser graph KGa,b

with a = Θ(b2 log b).

Proof. Fix a computable function f(h) and assume there is an algorithmA for Graph
Homomorphism that runs in time f(h) · 2o(log log h)·n for a given n-vertex graph,
whenever H is a Kneser graph Ka,b with a = Θ(b2 log b). Consider an instance of
(a:b)-coloring with n vertices and a = Θ(b2 log b). This is an instance of Graph
Homomorphism with h =

(
a
b

)
≤ ab = 2O(b log b), hence A solves it in

f(h) · 2o(log log h)·n = f(2O(b log b)) · 2o(log(b log b))·n ≤ f ′(b) · 2o(log b)·n

for some computable function f ′(b) ≥ f(2Θ(b log b)), which contradicts Theorem 9.

6.4 Low-degree testing

In this section we derive lower bounds for (r, k)-Monomial Testing. In this prob-
lem, we are given an arithmetic circuit C over some field F (with input, constant,
addition, and multiplication gates). One gate is designated to be the output gate,
and it computes some polynomial P of the variables x1, x2, . . . , xn that appear in the
input gates. We assume that P is a homogeneous polynomial of degree k, i.e., all
its monomials have total degree k. The task is to verify whether P contains an r-
monomial, i.e., a monomial in which every variable has its individual degree bounded
by r, for a given r ≤ k. Abasi et al. [2] gave a very fast randomized algorithm for
(r, k)-Monomial Testing.

Theorem 66 (Abasi et al. [2]). Fix integers r, k with 2 ≤ r ≤ k. Let p ≤ 2r2 + 2r
be a prime, and let g ∈ GF(p)[x1, . . . , xn] be a homogeneous polynomial of degree
k, computable by a circuit C. There is a randomized algorithm running in time
O(r2k/r|C|(rn)O(1)) which:

• with probability at least 1/2 answers YES when g contains an r-monomial,

• always answers NO when g contains no r-monomial.
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This result was later derandomized by Gabizon et al. [60] under the assumption
that the circuit is non-cancelling, that is, it contains only input, addition, and mul-
tiplication gates. Many concrete problems like r-Simple k-Path can be reduced
to (r, k)-Monomial Testing by encoding the set of candidate objects as monomi-
als of some large polynomial, so that “good” objects correspond to monomials with
low individual degrees. As we will see in a moment, this is also the case for List
(a:b)-coloring.

Let (G = (V,E), L) be an instance of the List (a:b)-coloring problem and let I
be the family of all independent sets of G. We denote n = |V |. Let Ca(G,L) denote
the set of all functions c : V → 2[a] such that for every edge uv ∈ E the sets c(u) and
c(v) are disjoint, and for every vertex v we have c(v) ⊆ L(v). Consider the following
polynomial in n(a+ 1) variables {xv}v∈V and {yv,j}v∈V,j∈[a], over GF(2).

pG =
∑

c∈Ca(G,L)∑
v |c(v)|=bn

∏
v∈V

x|c(v)|
v

∏
j∈c(v)

yv,j. (6.1)

Note that every summand in expression (6.1) has a different set of variables, there-
fore it corresponds to a monomial (with coefficient 1). Then the following proposition
is immediate.

Proposition 67. There is a list (a:b)-coloring of graph G iff pG contains a b-monomial.

Now we show that pG can be evaluated relatively fast.

Lemma 68. The polynomial pG can be evaluated using a circuit of size 2n·max{a, n}O(1).

Proof. Consider the following polynomial:

qG =
a∏
j=1

∑
I∈I

∏
v∈I

xvyv,j. (6.2)

Observe that pG is obtained from qG by removing all monomials of degree different
than 2bn. Eq. (6.2) shows that qG can be evaluated by a circuit Cq of size |I| ·
max{a, n}O(1) = 2n ·max{a, n}O(1). We obtain from Cq a circuit Cp for pG by splitting
gates according to degrees, in a bottom-up fashion, as follows.

Every input gate u of Cq is replaced with a gate u1 in Cp. Every addition gate
u with inputs x and y in Cq is replaced in Cp by 2an addition gates u1, . . . , u2an,
where ui has inputs xi and yi (whenever xi and yi exist). Every multiplication gate
u with inputs x and y in Cq is replaced in Cp by 2an addition gates u1, . . . , u2an.
Moreover, for every pair of integers 1 ≤ r, s ≤ 2an we create a multiplication gate
ur,s with inputs xr and ys (whenever they exist) and make it an input of the addition
gate ur+s. It is easy to see that for every gate u of Cq, for every i, the gate ui of Cp
evaluates the same polynomial as u, but restricted to monomials in which the total
degree is equal to i. When o is the output gate of Cq, then o2bn is the output gate of
Cp. Clearly, |Cp| ≤ (2an+ 1)2|Cq|.

92



Since pG is a homogeneous polynomial of degree k = 2bn, by putting r = b we can
combine Proposition 67, Theorem 66 and Lemma 68 to get yet another polynomial-
space algorithm for List (a:b)-coloring, running in time O(bO(n)nO(1)). Similarly,
if the running time in Theorem 66 was improved to 2o(log r/r)·k ·|C|·max{r, n}O(1), then
we would get an algorithm for List (a:b)-coloring in time O(2o(log b)nnO(1)), which
contradicts ETH by Theorem 11. However, a careful examination shows that this
chain of reductions would only yield instances of (r, k)-Monomial Testing with
r = O(

√
k/ log k). Hence, this does not exclude the existence of a fast algorithm that

works only for large r. Below we show a more direct reduction, which excludes fast
algorithms for a wider spectrum of pairs (r, k).

We will use Carry-Less Subset Sum as a convenient starting point for the
further reduction.

Lemma 22. Unless ETH fails, the Carry-Less Subset Sum problem cannot be
solved in 2o(n) time.

Proof. Let ϕ be an instance of 3-CNF-SAT with N variables and M clauses. By a
standard NP-hardness reduction for Subset Sum (see e.g. the textbook of Cormen
et al. [35]) in polynomial time one can build an equivalent instance of Carry-Less
Subset Sum, with O(N + M) numbers, each having of O(N + M) decimal digits,
and with the sum of j-th digit in all the numbers not exceeding 7. In case the number
of numbers is different from the length of their decimal representations, we can make
them equal by padding the instance by zero numbers or with zeros in the decimal
representations. Thus, by Theorem 15, an 2o(n) algorithm for Carry-Less Subset
Sum would contradict ETH.

We proceed to reducing Carry-Less Subset Sum to (r, k)-Monomial Test-
ing. Let us choose a parameter t ∈ {1, . . . , n}. Assume w.l.o.g. that t divides n
(otherwise, add zeros at the end of every input number). Let q = n/t. For an n-digit
decimal number x, for every j = 1, . . . t, let x[j] denote the q-digit number given by
the j-th block of q digits in x, i.e., x[j] = (x(jq−1) · · ·x((j−1)q))10.

Let r = 10q − 1. Define the following polynomial over GF(2):

qS =
n∏
i=1

(
yi + zi ·

t∏
j=1

x
a
[j]
i
j

)
·

t∏
j=1

xr−s
[j]

j =
∑

S⊆{1,...,n}

t∏
j=1

x
∑
i∈S a

[j]
i +r−s[j]

j

∏
i 6∈S

yi
∏
i∈S

zi.

Proposition 69. (s, a1, . . . , an) is a YES-instance of Carry-Less Subset Sum iff
qS contains the monomial

∏t
j=1 x

r
j

∏
i 6∈S yi

∏
i∈S zi, for some S ⊆ {1, . . . , n}.

Proof. Consider the following polynomial over GF(2):

rS =
∑

S⊆{1,...,n}

t∏
j=1

x
∑
i∈S a

[j]
i +r−s[j]

j

∏
i 6∈S

yi
∏
i∈S

zi.

The summands in the expression above have unique sets of yi variables, so each of
them corresponds to a monomial (of coefficient 1). It is clear that these monomials
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where for every j the degree of xj is exactly r are in one-to-one correspondence
with solutions of the instance (s, a1, . . . , an). The claim follows by observing that
polynomials rS and qS coincide.

Let pS denote the polynomial obtained from qS by filtering out all the monomials
of degree different than k = tr + n.

Proposition 70. (s, a1, . . . , an) is a YES-instance of Carry-Less Subset Sum iff
pS contains an r-monomial.

Proof. If (s, a1, . . . , an) is a YES-instance and let then by Proposition 69 polynomial
qS contains the monomial

∏t
j=1 x

r
j

∏
i 6∈S yi

∏
i∈S zi, which is an r-monomial. This

monomial has degree tr + n, so it is contained in pS as well.
Conversely, assume pS contains an r-monomial m. Every monomial of qs (and

hence also of pS) contains exactly one of the variables yi and zi, with degree 1, for
every i = 1, . . . , n. It means that the total degree of xj-type variables in m is tr.
Hence, since m is an r-monomial, each of xj’s has degree exactly r. In other words,
m is of the form

∏t
j=1 x

r
j

∏
i 6∈S yi

∏
i∈S zi, for some S ⊆ {1, . . . , n}. Then (s, a1, . . . , an)

is a YES-instance of Carry-Less Subset Sum by Proposition 69.

Proposition 71. pS can be evaluated by a circuit of size O(nt2r+n2t), which can be
constructed in time polynomial in n+ t+ r.

Proof. Polynomial qS can be evaluated by a circuit of size O(nt). The circuit for pS
is built using the construction from Lemma 68. Thus, its size is O(nt(tr + n)) =
O(nt2r + n2t).

With this reduction, we obtain our main lower bound for (r, k)-Monomial Test-
ing. We state it in the most general, but technical form, and derive an exemplary
corollary below.

Theorem 72. If there is an algorithm solving (r, k)-Monomial Testing in time
2o(k log r/r)|C|O(1), then ETH fails. The statement remains true even if the algorithm
works only for instances where r = 2Θ(n/t(n)) and k = t(n)2Θ(n/t(n)), for an arbitrarily
chosen function t : N → N computable in 2o(n) time, such that t(n) = ω(1) and
t(n) ≤ n for every n.

Proof. By Lemma 22, it suffices to give an algorithm for Carry-Less Subset Sum
that works in time 2o(n), where n is the number of input numbers. Let t = t(n) and
q = n/t, r = 10q − 1, k = tr + n as before. Note that r = 2Θ(n/t(n)). Also, since
10n/t(n) = Ω(n/t(n)), k = Θ(t(n)10n/t(n) + n) = Θ(t(n)10n/t(n)) = t(n)2Θ(n/t(n)).

By Proposition 70, solving Carry-Less Subset Sum is equivalent to detecting
an r-monomial in pS, which is a homogeneous polynomial of degree k = tr + n. Let
C be the circuit for pS; by Proposition 71 we have |C| = O(nt2r + n2t). If this can
be done in time 2o(k log r/r)|C|O(1), we get an algorithm for Carry-Less Subset Sum
running in time

2o(k log r/r)|C|O(1) = 2o((tr+n)q/r)(ntr)O(1) = 2o(n+nq/10q)(ntr)O(1) = 2o(n)(ntr)O(1).
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Recall that t ≤ n and r = 10n/t − 1 = 2o(n), since t = t(n) = ω(1). Hence (ntr)O(1) =
2o(n)nO(1). The claim follows.

Theorem 73. Let σ ∈ [0, 1). Then, unless ETH fails, there is no algorithm for (r, k)-
Monomial Testing that solves instances with r = Θ(kσ) in time 2o(k·

log r
r

) · |C|O(1).

Proof. We prove that an algorithm for (r, k)-Monomial Testing with properties
as in the statement can be used to derive an algorithm for the same problem with
properties as in the statement of Theorem 72, which implies that ETH fails. Take t
to be a positive integer not larger than n such that

1

2
≤ 10n/t − 1

(t · (10n/t − 1) + n)σ
≤ 2; (6.3)

it can be easily verified that since σ < 1, for large enough n such an integer t ≤ n
always exists. Moreover, we have that t = t(n) ∈ ω(1) and t(n) can be computed
in polynomial time by brute-force. Hence, t(n) satisfies the properties stated in
Theorem 72.

Let t = t(n) and q = n/t. Define r = 10q − 1 and k = tr + n, then (6.3) is
equivalent to

1/2 ≤ r/kσ ≤ 2.

Hence r = Θ(kσ). Consequently, the assumed algorithm solves (r, k)-Monomial
Testing in time 2o(k log r/r)|C|O(1), however in the proof of Theorem 72 we have
shown that the existence of an algorithm that achieves such a running time for this
particular choice of parameters implies that ETH fails.

In particular, no algorithm solves (r, k)-Monomial Testing in time 2o(
log r
r

)·k ·
|C|O(1) for all input values r, unless ETH fails.
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Chapter 7

Minimax Approval Voting

In this chapter we prove that if there is no algorithm solving Minimax Approval
Voting in time O∗(2o(d log d)) unless ETH fails.

Organization of the chapter. We present two independent reductions proving
that there is no algorithm solving Minimax Approval Voting in time O∗(2o(d log d))
assuming ETH: a direct reduction form 3-CNF-SAT in Section 7.1 and then in
Section 7.2 a simpler version where the starting problem is k × k-Clique.

Additional notation for this chapter. For a set of words S ⊆ {0, 1}m and a
word x ∈ {0, 1}m we denote H(x, S) = maxs∈S H(x, s). For a string s ∈ {0, 1}m, the
number of 1’s in s is denoted as n1(s) and it is also called the Hamming weight of
s; similarly n0(s) = m− n1(s) denotes the number of zeros. Moreover, the set of all
strings of length m with k ones is denoted by Sk,m, i.e., Sk,m = {s ∈ {0, 1}m : n1(s) =
k}. s[j] means the j-th letter of a string s. For a subset of positions P ⊆ [m] we
define a subsequence s|P by removing the letters at positions [m] \ P from s.

For a string s ∈ {0, 1}m, any string s′ ∈ Sk,m at distance |n1(s) − k| from s is
called a k-completion of s. Note that it is easy to find such a k-completion s′: when
n1(s) ≥ k we obtain s′ by replacing arbitrary n1(s) − k ones in s by zeros; similarly
when n1(s) < k we obtain s′ by replacing arbitrary k − n1(s) zeros in s by ones.

7.1 Reduction from (3,4)-CNF-SAT

Lemma 74. Given a (3,4)-CNF-SAT formula ϕ with n variables one can construct
in polynomial time an equivalent instance (S, k, d) of the Minimax Approval Voting
problem such that S has O(n) words of length m = O(n2/ log2 n), k = O(n/ log n)
and d = O(n/ log n).

Proof. Let m denote the number of clauses in ϕ. Observe that m ≤ 4
3
n. Let Var and

Cl denote the sets of variables and clauses of ϕ. Put Cl = {c1, ..., cm}. Choose a close
ci0 = (xr1 , xr2 , xr3 , ) ∈ Cl. Now choose p ∈ {1, 2, 3}. There exists exactly one y ∈ Var
such that xrp = y or xrp = ¬y. Define x′rp = y.

The instance. There exists a O(1)-coloring of all variables such that there is no
pair of variables of the same color in the same clause. Next, each of the O(1) color
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classes is partitioned into disjoint groups, each of size at most A = dlog(n/ log n)e .
Denote by k the total number of groups and by G1, ..., Gk the groups. So k =
O(n/ log(n/ log n)) = O(n/ log n). If a group has τ < A elements we add A − τ
new variables. So now every group has exactly A elements and Var ⊆ ∪i∈{1,...,k}Gi.
From the above it follows that for every group of variables Gi there exist exactly 2A

assignments. For i ∈ {1, ..., k} denote by Φi = {φ1
i , ..., φ

2A

i } the set of all possible
assignments of Gi.

Let us describe the words. Every word L consists of k blocks L1, ..., Lk, each of
size (3/2) · 2A. Denote

L = (L1, L2, ..., Lk) = (l11, l
2
1, ..., l

(3/2)·2A
1 , l12, l

2
2, ..., l

(3/2)·2A
2 , ..., l1k, l

2
k, ..., l

(3/2)·2A
k ).

For any word v by lji (v) we will denote the suitable letters of the word v. So the size
of every word is equal m = k · O(2A) = O(n2/ log2 n). Put d = (3/2) · 2A + k − 1 =
O(n/ log n). Now define the set {s1, ..., sN} where N = k + m. Choose i0 ∈ {1, ..., k}
and define the word si0 . For i ∈ {1, ..., k} and j ∈ {1, ..., (3/2) · 2A} let

lji (s
i0) =

{
1 if i = i0,
0 otherwise.

Now choose i0 ∈ {1, ...,m}. So we have the clause ci0 = (xr1 , xr2 , xr3 , ) ∈ Cl. Let
x′rp ∈ Gip for p ∈ {1, 2, 3}. The numbers i1, i2, i3 are different. Define the word sk+i0 .

For i ∈ {1, ..., k} and j ∈ {1, ..., (3/2) · 2A} let

lji (s
k+i0) =

{
1 if ∃p∈{1,2,3} i = ip, j ≤ 2A and φji (xrp) = 1,
0 otherwise.

Notice that we constructed our instance in polynomial time.

Some remarks. It is easy to see that for every word si for i ∈ {1, ..., N} we
have n1(si) = (3/2) · 2A. Denote by v ∈ Σm a word such that n1(v) = k. Because
d = (3/2) · 2A +k− 1 from this it follows that for every word si (where i ∈ {1, ..., N})
we have H(si, v) ≤ d if and only if the words si and v have at least one common letter
1.

From an assignment to a word. Let ξ : Var→ {0, 1} be a satisfying assignment
of ϕ. We claim that there is a string v ∈ Σm with maxx∈S H(x, v) ≤ d and n1(v) = k.
Define ξ : ∪i∈{1,...,k}Gi → {0, 1}. For g ∈ ∪i∈{1,...,k}Gi put

ξ(g) =

{
ξ(g) if g ∈ Var,
0 otherwise.

For every i ∈ {1, ..., k} denote φjii = ξ |Gi . Now we will define v as follows. For
i ∈ {1, ..., k} and j ∈ {1, ..., (3/2) · 2A} let

lji (v) =

{
1 if j = ji,
0 otherwise.
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Notice that we have n1(Li) = 1 for i ∈ {1, ..., k} and n1(v) = n1(L) = k. From the
remarks above it follows that maxx∈{s1,...,sk}H(x, v) ≤ d.

Now we claim that maxx∈{sk+1,...,sk+m}H(x, v) ≤ d. Choose i0 ∈ {1, ...,m}. We will
show that H(sk+i0 , v) ≤ d. So we have the clause ci0 = (xr1 , xr2 , xr3 , ) ∈ Cl. Denote
x′rp ∈ Gip for p ∈ {1, 2, 3}. Because ξ : Var → {0, 1} is a satisfying assignment of
ϕ there exists p ∈ {1, 2, 3} such that ξ(xrp) = 1. But x′rp ∈ Var, so ξ(xrp) = 1.

Assume p = 1. So φji1i1 (xr1) = ξ |Gi1 (xr1) = 1. From this by the definition of the word
sk+i0 we have lji1i1 (sk+i0) = 1. But lji1i1 (v) = 1. From the remarks above it follows that
H(sk+i0 , v) ≤ d. The proof is similar if p = 2 or p = 3.

From a word to an assignment. Let v ∈ Σm be a string with maxx∈S H(x, v)
≤ d and n1(v) = k. We will define ξ : Var → {0, 1}, a satisfying assignment of ϕ.
From the remarks above it follows that for every word si (where i ∈ {1, ..., k}) the
words si and v have at least one common letter 1. So for every i ∈ {1, ..., k}) we have

(3/2)·2A∑
j=1

lji (v) ≥ 1.

But
k∑
i=1

(3/2)·2A∑
j=1

lji (v) = k.

Consequently for every i ∈ {1, ..., k} we have

(3/2)·2A∑
j=1

lji (v) = 1,

that means that for every i ∈ {1, ..., k} there exists exactly one number ji ∈ {1, ..., (3/2)·
2A} such that ljii (v) = 1. Now define ξ : ∪i∈{1,...,k}Gi → {0, 1} such that for every
i ∈ {1, ..., k}

ξ |Gi=

{
φjii if ji ≤ 2A,
φ1
i otherwise.

Because the sets Gi are disjoint the above definition is correct. Define ξ : Var→ {0, 1}
by ξ = ξ|Var. Now we will show that ξ is the satisfying assignment of ϕ. Choose a
clause ci0 = (xr1 , xr2 , xr3 , ) ∈ Cl and denote x′rp ∈ Gip for p ∈ {1, 2, 3}. We claim
that ξ satisfies the clause ci0 . Because H(sk+i0 , v) ≤ d from the remarks above it
follows that the words sk+i0 and v have at least one common letter 1. So there exist
i ∈ {1, ..., k} and j ∈ {1, ..., (3/2) · 2A} such that lji (sk+i0) = lji (v) = 1. From this it
follows that j = ji. From the definition of the word sk+i0 there exists p ∈ {1, 2, 3}
such that i = ip, j ≤ 2A and φji (xrp) = 1. Because xrp ∈ Gip it is easy to see that
ξ(xrp) = ξ(xrp) = φji (xrp) = 1. So ξ satisfies the clause ci0 .
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0 ... 0 1 ... 1 0 1 ... 1 0 ... 0 1 ... 1 0 1 ... 1 0...0
0 on b-th position 0 on b′-th position︸ ︷︷ ︸ ︸ ︷︷ ︸

a-th block a′-th block

Figure 7.1: Nonedge string.

7.2 Reduction from k × k-Clique

In this subsection we show a lower bound for Minimax Approval Voting param-
eterized by d. To this end, we use a reduction from k × k-Clique.

Lemma 75. Given an instance I = (G, k) of k × k-Clique with k ≥ 2, one can
construct an instance I ′ = (S, k, d) of Minimax Approval Voting, such that I ′ is
a yes-instance iff I is a yes-instance, d = 3k − 3 and the set S contains O(k

(
2k−2
k−2

)
)

strings of length k2 + 2k− 2 each. The construction takes time polynomial in the size
of the output.

Proof. Each string in the set S will be of size m = k2 + 2k − 2. Let us split the set
of positions [m] into k+ 1 blocks, where the first k blocks contain exactly k positions
each, and the last (k + 1)-th block contains the remaining 2k − 2 positions. Our
construction will enforce that if a solution exists, it will have the following structure:
there will be a single 1 in each of the first k blocks and only zeros in the last block.
Intuitively the position of the 1 in the first block encodes the clique vertex of the first
row of G, the position of the 1 in the second block encodes the clique vertex of the
second row of G, etc.

We construct the set S as follows.

• (nonedge strings) For each pair of nonadjacent vertices v, v′ ∈ V (G) of G
belonging to different rows, i.e., v = (a, b), v′ = (a′, b′), a 6= a′, we add to S a
string svv′ , where all the blocks except a-th and a′-th are filled with zeros, while
the blocks a, a′ are filled with ones, except the b-th position in block a and the
b′-th position in block a′ which are zeros (see Fig. 7.1). Formally, svv′ contains
ones at positions {(a− 1)k+ j : j ∈ [k], j 6= b} ∪ {(a′− 1)k+ j : j ∈ [k], j 6= b′}.
Note that the Hamming weight of svv′ equals 2k − 2.

• (row strings) For each row i ∈ [k] we create exactly
(

2k−2
k−2

)
strings, i.e., for

i ∈ [k] and for each set X of exactly k − 2 positions in the (k + 1)-th block we
add to S a string si,X having ones at all positions of the i-th block and at X, all
the remaining positions are filled with zeros (see Fig. 7.2). Note that similarly
as for the nonedge strings the Hamming weight of each row string equals 2k−2,
and to achieve this property we use the (k + 1)-th block.

To finish the description of the created instance I ′ = (S, k, d) we need to define
the target distance d, which we set as d = 3k − 3. Observe that as the Hamming
weight of each string s′ ∈ S equals 2k − 2, for s ∈ {0, 1}m with exactly k ones we
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0 ... 0 1 ... 1 0 ... 0 0 0 1 0 1 1 0 ... 0 1 0︸ ︷︷ ︸ ︸ ︷︷ ︸
i-th block ones at positions X, |X| = k − 2

Figure 7.2: Row string.

have H(s, s′) ≤ d if and only if the positions of ones in s and s′ have a non-empty
intersection.

Let us assume that there is a clique K in G of size k containing exactly one vertex
from each row. For i ∈ [k] let ji ∈ [k] be the column number of the vertex of K from
row i. Define s as a string containing ones exactly at positions {(i−1)k+ji : i ∈ [k]},
i.e., the (k + 1)-th block contains only zeros and for i ∈ [k] the i-th block contains a
single 1 at position ji. Obviously s contains exactly k ones, hence it suffices to show
that s has at least one common one with each of the strings in S. This is clear for the
row strings, as each row string contains a block full of ones. For a nonedge string svv′ ,
where v = (a, b) and v′ = (a′, b′) note that K does not contain v and v′ at the same
time. Consequently s has a common one with svv′ in at least one of the blocks a, a′.

In the other direction, assume that s is a string of length m with exactly k ones
such that the Hamming distance between s and each of the strings in S is at most d,
which by construction implies that s has a common one with each of the strings in
S. First, we are going to prove that s contains a 1 in each of the first k blocks (and
consequently has only zeros in block k + 1). For the sake of contradiction assume
that this is not the case. Consider a block i ∈ [k] containing only zeros. Let X be
any set of k − 2 positions in block k + 1 holding only zeros in s (such a set exists as
block k+ 1 has 2k− 2 positions). But the row string si,X has 2k− 2 ones at positions
where s has zeros, and consequently H(s, si,X) = k+ (2k− 2) = 3k− 2 > d = 3k− 3,
a contradiction.

As we know that s contains exactly one one in each of the first k blocks let ji ∈ [k]
be such a position of block i ∈ [k]. Create X ⊆ V (G) by taking the vertex from
column ji for each row i ∈ [k]. Clearly X is of size k and it contains exactly one
vertex from each row, hence it remains to prove that X is a clique in G. Assume the
contrary and let v, v′ ∈ X be two distinct nonadjacent vertices of X, where v = (i, ji)
and v′ = (i′, ji′). Observe that the nonedge string svv′ contains zeros at the ji-th
position of the i-th block and at the ji′-th position of the i′-th block. Since for i′′ ∈ [k],
i′′ 6= i, i′′ 6= i′ block i′′ of svv′ contains only zeros, we infer that the sets of positions
of ones of s and svv′ are disjoint leading to H(s, svv′) = k + (2k − 2) = 3k − 2 > d, a
contradiction.

As we have proved that I is a yes-instance of k× k-Clique iff I ′ is a yes-instance
of Minimax Approval Voting, the lemma follows.

We are ready to prove the main result of this section.

Theorem 76. There is no 2o(d log d) max{n,m}O(1)-time algorithm for Minimax Ap-
proval Voting unless ETH fails.
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Proof. Using Lemma 75, the input instance G of k × k-Clique is transformed into
an equivalent instance I ′ = (S, k, d) of Minimax Approval Voting, where n =
|S| = O(k

(
2k−2
k−2

)
) = 2O(k), each string of S has length m = O(k2) and d = Θ(k).

Using a 2o(d log d) · max{n,m}O(1)-time algorithm for Minimax Approval Voting
we can solve k × k-Clique in time 2o(k log k)2O(k) = 2o(k log k), which contradicts ETH
by Theorem 20.
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Chapter 8

4-OPT Detection for Traveling
Salesman Problem

In this chapter we prove that for any ε > 0 an algorithm solving 4-OPT Opti-
mization in time O(n3−ε) would imply an algorithm solving All Pairs Shortest
Paths in time O(n3−δ) for some δ > 0.

More precisely, we work with the decision version, called 4-OPT Detection,
where the input is the same as in 4-OPT Optimization and the goal is to determine
if there is a 4-move which improves the weight of the given Hamiltonian cycle. To
this end, we reduce the Negative Edge-Weighted Triangle problem, where
the input is an undirected, complete graph G, and a weight function w : E(G)→ Z.
The goal is to determine whether G contains a triangle whose total edge-weight is
negative.

Lemma 77. Every instance I = (G,w) of Negative Edge-Weighted Triangle
can be reduced in O(|V (G)|2) time into an instance I ′ = (G′, w′, C) of 4-OPT De-
tection such that G contains a triangle of negative weight iff I ′ admits an improving
4-move. Moreover, |V (G′)| = O(|V (G)|), and the maximum absolute weight in w′ is
larger by a constant factor than the maximum absolute weight in w.

Proof. Let V (G) = {v1, . . . , vn}. Then let Vup = {a1, b1, . . . , an, bn}, Vdown = {a′1, b′1,
. . . , a′n, b

′
n} and V (G′) = Vup ∪̇ Vdown. Let W be the maximum absolute value of a

weight in w. Then let M1 = 5W + 1 and M2 = 21M1 + 1 and let

w′(u, v) =



0 if (u, v) is of the form (ai, b
′
i)

w(vi, vj) if (u, v) is of the form (ai, bj) for i < j or (a′i, bj) for
j < i

M1 if (u, v) is of the form (ai, bi)

−3M1 if (u, v) is of the form (a′i, b
′
i)

−M2 if (u, v) is of the form (bi, ai+1) or (b′i, a
′
i+1) or (a1, a

′
1)

or (bn, b
′
n)

M2 in other case.
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0

w(vi, vj) w(vj, vk)

w(vi, vk)

Figure 8.1: A simplified view of the instance (G′, w′, C) together with an example
of a 4-move. The added edges are marked as blue (dashed) and the removed edges
are marked as red (dotted).

Note that the cases are not overlapping. (Note also that although some weights are
negative, we can get an equivalent instance with nonnegative weights by adding M2

to all the weights.) Let C = a1, b1, . . . , an, bn, b
′
n, a

′
n, . . . ,

b′1, a
′
1. The construction is illustrated in Fig. 8.1
If there is a negative triangle vi, vj, vk for some i < j < k in G then we can

improve C by removing edges (ai, bi), (aj, bj), (ak, bk) and (a′k, b
′
k) and inserting edges

(ai, bj), (aj, bk), (ak, b
′
k) and (a′k, bi). The total weight of the removed edges is M1 +

M1 + M1 + (−3M1) = 0 and the total weight of the inserted edges is w(vi, vj) +
w(vj, vk) + 0 + w(vk, vi) < 0 hence indeed the cycle is improved.

Let us assume that C can be improved by removing 4 edges and inserting 4 edges.
Note that all the edges of weight −M2 belong to C and all the edges of weight M2 do
not belong to C. All the other edges have absolute values of their weights bounded
by 3M1. Therefore even a single edge of the weight −M2 cannot be removed and
even a single edge of the weight M2 cannot be inserted because a loss of M2 cannot
be compensated by any other 7 edges (inserted or removed), as they can result in a
gain of at most 7 · 3M1 < M2. Hence in the following we treat edges of weights ±M2

as fixed, i.e., they cannot be inserted or removed from the cycle. Note that the edges
of C that can be removed are only the edges of the form (ai, bi) (of weights M1) and
(a′i, b

′
i) (of weights −3M1).

All the edges of weight −3M1 already belong to C and all the remaining edges of
the graph that can be inserted or removed from the cycle are the edges of the weight
M1 belonging to C and the edges of absolute values of their weights bounded by W.
Therefore we cannot remove more than one edge of the weight −3M1 from C because
a loss of 6M1 cannot be compensated by any 2 removed and 4 inserted edges (we
could potentially gain only 2M1 + 4W < 3M1). Hence we can remove at most one
edge of the weight −3M1 from C. For the same reason if we do remove one edge of

104



the weight −3M1 (i.e., of the form (a′i, b
′
i)) from C we need to remove also three edges

of the weights M1 (i.e., of the form (aj, bj)) in order to compensate the loss of 3M1

(otherwise we could compensate up to 2M1 + 5W < 3M1).
Note that the only edges that can be added (i.e., the edges with the weights less

thanM2 that do not belong to C) are the edges of the form (ai, bj) for i < j, (a′i, bj) for
j < i and (ai, b

′
i). Therefore if the removed edges from G[Vup] are (ai1 , bi1), . . . , (ai` , bi`)

for some i1 < . . . < i` (and no other edges belonging to G[Vup]) then in order to close
the cycle we need to insert some edge incident to bi1 but since for any i0 < i1 there is
no removed edge (ai0 , bi0) it cannot be an edge of the form (ai0 , bi1). Hence it has to
be an edge of the form (a′j, bi1) for some j > i1. But then also the edge (a′j, b

′
j) has to

be removed. Therefore if we remove at least one edge of the form (ai, bi) then we need
to remove also an edge of the form (a′j, b

′
j) (and as we know this implies also that at

least three edges of the form (ai, bi) have to be removed). So if any edge is removed,
then exactly three edges of the form (ai, bi) and exactly one edge of the form (a′j, b

′
j)

have to be removed. Note that this implies also that the total weight of the removed
edges has to be equal to zero.

Clearly the move has to remove at least one edge in order to improve the weight
of the cycle. Let us assume that the removed edges are (ai, bi), (aj, bj) and (ak, bk)
for some i < j < k and (a′`, b

′
`) for some `. For the reason mentioned in the previous

paragraph in order to obtain a Hamiltonian cycle one of the inserted edges has to be
the edge (a′`, bi). Also the vertex bj has to be connected with something but the vertex
a′` is already taken and hence it has to be connected with the vertex ai. Similarly
the vertex bk has to be connected with aj because a′` and ai are already taken. Thus
ak has to be connected with b′` and this means that k = `. The total weight change
of the move is negative and therefore the total weight of the added edges has to be
negative (since the total weight of the removed edges is equal to zero). Thus we have
w(vi, vj) + w(vj, vk) + w(vk, vi) = w′(ai, bj) + w′(aj, bk) + w′(a′k, bi) + w′(ak, b

′
k) < 0.

So vi, vj, vk is a negative triangle in (G,w).

Theorem 13. If there is ε > 0 such that 4-OPT Detection admits an algorithm
in time O(n3−ε · (logM)O(1)), then there is δ > 0 such that both Negative Edge-
Weighted Triangle and All Pairs Shortest Paths admit an algorithm in
time O(n3−δ · (logM)O(1)), where in all cases we refer to n-vertex input graphs with
integer weights from {−M, . . . ,M}.

Proof. The first part of the claim follows from Lemma 77, while the second part follows
from the reduction of All Pairs Shortest Paths to Negative Edge-Weighted
Triangle by Vassilevska-Williams and Williams (Theorem 1.1 in [132]).
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Chapter 9

Further Work

An obvious idea for further work is improving some lower bounds from this thesis
which are not tight enough. Two most natural examples are listed below.

• Is there a 2n·o(log `) · rO(1)-time algorithm for Channel Assignment with the
weight function bounded by `?

• Is there a 2o(n
2)-time algorithm for Rainbow k-Coloring?

For some problems considered in this thesis one can formulate complexity questions
which were not addressed here. Let us mention three of them.

• Is there an nO(1/ log ε)-time PTAS for Minimax Approval Voting or Closest
String?

• Is there a no(k)-time algorithm for k-OPT Detection?

• Is there a reduction from 4-OPT Detection to All Pairs Shortest Paths
showing that if there exists an algorithm solving All Pairs Shortest Paths
in time O(n3−δ · (logM)O(1)) for some δ > 0 then there exists an algorithm
solving 4-OPT Detection in time O(n3−ε · (logM)O(1)) for some ε > 0? This
question is in fact a question whether 4-OPT Detection belongs to the class
of subcubic equivalence to the All Pairs Shortest Paths problem (note that
in Chapter 8 we presented the reduction in the other direction). This class is
a class of problems including All Pairs Shortest Paths such that either
each problem of this class admits an algorithm working in time O(n3−ε) for
some ε > 0 depending on the problem or none of these problems admits such a
subquadratic algorithm.

Finally there are some fundamental open problems in the area of fine-grained com-
plexity which were not mentioned in this thesis. (For the definitions of the problems
below, we refer the reader to Appendix A.)

• Is there a 2o(n
2)-time algorithm for Edge Coloring?

• Is there a 2O(n) · rO(1)-time algorithm for Integer Linear Programming?
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lower bound under ETH upper bound
Channel Assignment with
`-bounded weight function 2n·Ω(log log `) · rO(1) 2n·O(log `) · rO(1)

Rainbow k-Coloring 2Ω(n3/2) 2O(n2)

PTAS for
Minimax Approval Voting

nΩ(1/ε) nO(log ε/ε2)

PTAS for Closest String nΩ(1/ε) nO(1/ε2)

Edge Coloring 2Ω(n) 2O(n2)

Integer Linear Programming 2Ω(n) · rO(1) 2O(n logn) · rO(1)

Generalized T -Coloring and
Generalized List T -coloring
with `-bounded weight function

2n·Ω(log `/ log2 log `) · rO(1) 2n·O(log `) · rO(1)

k-OPT Detection nΩ(k/ log k) nO(k)

Subgraph Isomorphism
with k := |E(G)| f(k)nΩ(k/ log k) nO(k)

Table 9.1: Differences between known lower bounds under ETH and known
algorithms for various problems.

• Is there an f(k)no(k)-time algorithm for Subgraph Isomorphism where n is
the number of the vertices in the host graph, k is the number of edges of the
pattern graph and f is an arbitrary function (see [111])?

• Given a family of graphs H can we infer the time complexity of Graph Ho-
momorphism or Subgraph Isomorphism problems restricted only to host
graphs that belongs to H? In particular, is there a criterion that settles whether
for a given family H there exists an algorithm that in time cn for some c > 0
solves Graph Homomorphism restricted only to host graphs that belongs to
H? For example if H is the family of all cliques then there exists such a cn-time
algorithm since this problem is exactly the Graph Coloring problem that
can be solved in time O∗(2n) [12]. But if H is the family of all Kneser graphs
then Corollary 10 states that there is no such cn algorithm for any c > 0. Can
we say something more about this cn dichotomy? Perhaps we can even chop
the spectrum of different time complexities that belong to O(hn) into segments
and provide a set of criteria that tell us which segment of the complexities the
problem of Graph Homomorphism with host graphs from the given family H

belongs to. Very recently a slightly different dichotomy for counting subgraphs
was found by Curticapean, Dell and Marx [37]. Namely, depending whether
the vertex-cover number is bounded in the given family of pattern graphs G the
problem of counting subgraphs restricted only to pattern graphs G that belongs
to G is either polynomial-time solvable or #W[1]-complete when parametrized
by the pattern size |V (G)|.

For the known bounds see Table 9.1.
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Appendix A

Problem Definitions

(3,4)-CNF-SAT
Input: A k-CNF-SAT formula ϕ where each clause of the input formula con-
tains exactly 3 different variables, and each variable occurs in at most 4 clauses.
Question: Is ϕ satisfiable?

3-Coloring
Input: A graph G.
Question: Is it possible to color the vertices of G with three colors in such a
way that there are no adjacent vertices of the same color?

(a:b)-coloring
Input: G = (V,E), a, b ∈ N
Question: Is G (a:b)-colorable?

All Pairs Shortest Paths
Input: A graph G and a function w : E(G)→ Z called a weight function.
Output: A matrix A with rows and columns indexed by the vertices of G such
that for every u, v ∈ V (G) the cell A[u, v] ∈ Z ∪ {+∞} contains a minimum
weight of a path from u to v in G (where the weight of the path is the sum of
the weights of its edges).

Carry-Less Subset Sum
Input: n + 1 numbers s, a1, . . . , an, each represented as n decimal digits. For
any number x, the j-th decimal digit of x is denoted by x(j). It is assumed that∑n

i=1 a
(j)
i < 10, for every j = 1, . . . , n.

Question: Does there exist a sequence of indices 1 ≤ i1 < . . . < ik ≤ n such
that

∑k
q=1 aiq = s?

Channel Assignment
Input: w : V 2 → N, s ∈ N
Question: Is there a proper assignment of span at most s?
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Closest String
Input: A multiset S = {s1, . . . , sn} of 0-1 strings of length m (also called votes),
an integer d.
Question: Does there exist a string s ∈ {0, 1}m such that for every i = 1, . . . , n
we have H(s, si) ≤ d?

Edge Coloring
Input: A graph G and a number k ∈ N.
Question: Is it possible to color the edges of G with k colors in such a way
that there are no adjacent edges of the same color?

Equal Weight Matchings
Input: Two complete weighted bipartite graphs G1 = (V1 ∪ W1, E, w1) and
G2 = (V2∪W2, E, w2) such that |V1| = |W1| and |V2| = |W2| . The weight functions
w1, w2 have nonnegative integer values.
Question: Are there two perfect matchings M1 in G1 and M2 in G2 such that
w1 (M1) = w2 (M2)?

Family Intersection
Input: A function f : [a]× [b]→ N and a function g : [c]× [d]→ N.
Question: Is Xf ∩Xg nonempty?

Generalized List T -coloring
Input: A graph G = (V,E), a function Λ : V → 2N, a function t : E → 2N and
a number s ∈ N.
Question: Is there an assignment c : V → [s] such that for every vertex v ∈ V
we have c(v) ∈ Λ(v) and for every edge uv ∈ E we have |c(u)− c(v)| 6∈ t(uv).

Generalized T -Coloring
Input: A graph G = (V,E), a function t : E → 2N and a number s ∈ N.
Question: Is there an assignment c : V → [s] such that for every edge uv ∈ E
we have |c(u)− c(v)| 6∈ t(uv).

Graph Coloring
Input: A graph G and a number k ∈ N.
Question: Is it possible to color the vertices of G with k colors in such a way
that there are no adjacent vertices of the same color?

Graph Homomorphism
Input: undirected graphs G, H.
Question: Is there a homomorphism fromG toH, i.e., does there exist a function
h : V (G)→ V (H), such that for each edge uv ∈ E(G) we have h(u)h(v) ∈ E(H).
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Integer Linear Programming
Input: An n×m integer matrix A and a vector b ∈ Zm.
Question: Does the linear program Ax ≤ b have an integral feasible solution?

k-CNF-SAT
Input: A formula ϕ in Conjunctive Normal Form with each clause of size at
most k.
Question: Is ϕ satisfiable?

k × k-Clique
Input: A graph G over the vertex set V = [k] × [k], i.e., V forms a grid (as a
vertex set; the edge set of G is a part of the input and it can be arbitrary) with
k rows and k columns.
Question: Is there in G a clique containing exactly one vertex in each row?

k-OPT Detection
Input: A TSP tour H in an edge weighted complete graph G.
Question: Does there exist an improving k-move?

Minimax Approval Voting
Input: A multiset S = {s1, . . . , sn} of 0-1 strings of length m (also called votes),
two integers k and d.
Question: Does there exist a string s ∈ {0, 1}m with exactly k ones such that
for every i = 1, . . . , n we have H(s, si) ≤ d?

Negative Edge-Weighted Triangle
Input: A graph G and a function w : E(G)→ Z called a weight function.
Question: Is there a triangle (i.e. a cycle of length 3) in G such that its weight
(i.e. the sum of the weights of its edges) is negative?

Rainbow k-Coloring
Input: G = (V,E), k
Question: Does G have the rainbow connection number at most k?

(r, k)-Monomial Testing
Input: An arithmetic circuit that evaluates a homogeneous polynomial
P (x1, x2, . . . , xn) over some field F, a parameter r.
Question: Does P have some monomial in which every variable has individual
degree not larger than r

121



Subgraph Isomorphism
Input: Undirected graphs G, H.
Question: Is G a subgraph of H, i.e., does there exist an injective function
g : V (G)→ V (H), such that for each edge uv ∈ E(G) we have g(u)g(v) ∈ E(H)?

Subset Sum
Input: n+ 1 numbers s, a1, . . . , an.
Question: Does there exist a sequence of indices 1 ≤ i1 < . . . < ik ≤ n such
that

∑k
q=1 aiq = s?
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distance-d-coloring, 26
distortion, 27
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edit distance, 7
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Exponential Time Hypothesis, 25

f -family, 30
family intersection, 30
fine grained complexity, 6
fractional chromatic number, 14

graph coloring, 6
graph homomorphism, 11, 60
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improving k-move, 20
integer linear programming, 109
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k-opt heuristic, 20
k-opt optimization, 21
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non-cancelling circuit, 17
nonuniform list (a:b)-coloring, 83
NSETH, 7

orthogonal vectors, 7

pattern graph, 10
proportional approval voting, 18

r-Simple k-Path, 17
rainbow k-coloring, 12
rainbow connection number, 12
rainbow path, 12
reweighted approval voting, 18

satisfaction approval voting, 18
set packing, 11
SETH, 6
single source flow, 7
Sparsification Lemma, 25
Strong Exponential Time Hypothesis, 6
subgraph isomorphism, 10
subset rainbow k-coloring extension, 65
subset sum, 123

travelling salesman problem, 23
triangle collection, 7
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