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Abstract

Oriented coloring of 2-dimensional grids

Anna Nenca

An oriented coloring of an oriented graph 8 is a homomorphism from 8 to an oriented
graph ﬁ such that ﬁ has neither loops nor arcs in opposite directions. The oriented
chromatic number 7(8) of an oriented graph @ is the smallest number of vertices of H
for which there exists a homomorphism from 8 to ﬁ The oriented chromatic number
of an undirected graph is the maximal chromatic number over all possible orientations of
G. In this thesis, we consider the oriented chromatic number of four families of graphs,
namely: 2-dimensional grids, cylindrical grids, toroidal grids and strong-grids. A 2-
dimensional grid G(m,n) is the Cartesian product P,,,[(JP, of two paths on m and n
vertices, the Cartesian product of a cycle C, and a path P, is called a cylindrical grid
Cyl(m,n) = C,,0P,, whereas the Cartesian products of two cycles is called a toroidal
grid T(m,n) = C,OC,. A strong-grid G¥(m,n) is the strong product P, X P, of
two paths on m and n vertices. Closely related to oriented coloring is signed coloring.
A signed graph is a pair (G, o), where G = (V(G), E(G)) is an undirected graph and
o: E(G) = {+,—} is a function which marks each edge with ”+” or ”—". Two signed
graphs are equivalent if one of them can be changed to the other by a sequence of
resigning operations. The single resigning operation chooses a vertex v € V(G) and
flips the signs of all edges incident to v. By [G, o] we shall denote the equivalence class
of the signed graph (G, o). Each element of class [G, o] is called a presentation. The
coloring of signed graphs is defined through homomorphism. The signed graph [G, o] is
colored by the signed graph (Gs, 03), if there exists a presentation (G, 01) of [G, o] and a
vertex-mapping ¢ from G to G2 which preserves signs of the edges. The signed chromatic
number of the signed graph [G, o], denoted by xs([G, 0]), is the size of the smallest graph
which colors [G,o]. The signed chromatic number x(G) of the undirected graph G is
the maximum of the signed chromatic numbers over all signed graphs with underlining

graph G.

The main results of the thesis are listed below:



1. We establish the new lower bound of eight for oriented chromatic number of the
family of all grids by showing that there exists an orientation of a grid that cannot
be colored by seven colors. This also gives the new lower bound of eight for the

family of all cylindrical grids and for the family of all toroidal grids. (Chapter 3.)

2. We present an oriented graph with ten vertices, namely, ﬁm, which colors all
orientations of all grids with eight rows. This gives the new upper bound of ten
for the oriented chromatic number for the families of all grids with six, seven and

eight rows. (Chapter 4.)

3. We show that every toroidal grid can be colored with twenty seven colors. (Chap-
ter 6.)

4. We show that any orientation of any cylindrical grid with circuit at most seven can
be colored by the graph ﬁlo. (Chapter 6.)

5. We give new lower and upper bounds for the oriented chromatic number of strong-
grids. We show that there exists an orientation of a strong-grid G¥(2,398) that
cannot be colored with ten colors. This gives the new lower bound of eleven for the
oriented chromatic number of the family of all strong-grids. Furthermore, we show
that any orientation of any strong-grid can be colored with eighty eight colors.
(Chapter 7.)

6. We show that any signed grid with at most seven rows can be colored with five

colors. (Chapter 8.)
7. We show that the lower bound for the signed chromatic number of the family of
all grids is five. (Chapter 8.)
The main results of the dissertation are published in (|11-13]) or are accepted for publi-
cation ([35]).
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Streszczenie

Zorientowane kolorowanie dwuwymiarowych krat

Anna Nenca

Zorientowane kolorownie skierowanego grafu ﬁ to homomorfizm grafu ﬁ w skierowany
graf ﬁ, ktory nie ma petli ani tukéw w przeciwnych kierunkach. Zorientowana liczba
chromatyczna 7(8) skierowanego grafu 8, to najmniejsza liczba wierzchotkéw w grafie
ﬁ, dla ktoérego istnieje homomorfizm z grafu 8 w graf ﬁ Zorientowana liczba chro-
matyczna grafu nieskierowanego to maksymalna zorientowana liczba chromatyczna po
wszystkich orientacjach grafu G. Tematem tej rozprawy jest zorientowana liczba chro-
matyczna czterech klas graféw: 2-wymiarowych krat, cylindrycznych krat, toroidalnych
krat oraz silnych krat. 2-wymiarowa krata G(m,n) to iloczyn kartezjanski P,,0P,
dwoch $ciezek o m i n wierzchotkach, cylindryczna krata Cyl(m,n) = C,,0P, to iloczyn
kartezjariski cyklu Cy, i Sciezki P,, natomiast iloczyn kartezjanski dwoch cykli to krata
toroidalna T'(m,n) = C,,0C,. Silng kratag G®(m,n) = P, X P, nazywamy silny
iloczyn dwoch $ciezek o m i n wierzchotkach. Scigle powiazane z kolorowaniem zori-
entowanym jest kolorowanie oznakowane. Oznakowany graf (ang. signed graph) to para
(G,0), gdzie G = (V(G), E(G)) jest nieskierowanym grafem, a o : E(G) — {+,—} to
funkcja przyporzadkowujaca kazdej krawedzi znak ”+” lub ”—”. Dwa oznakowane grafy
sa robwnowazne, jesli jeden z nich moze byé zamieniony w drugi za pomoca ciaggu oper-
acji zmiany znakéw. Pojedyncza operacja zmiany znakéw, dla wybranego wierzchotka
v € V(G), zamienia znaki wszytkich krawedzi incydentnych z v. Poprzez [G, o] bedziemy
oznacza¢ klase rownowaznosci grafu oznakowanego (G, o). Kazdy element klasy [G, o]
nazywamy reprezentantem tej klasy. Kolorowanie grafow oznakowanych definiujemy
poprzez homomorfizm. Graf oznakowany [G,o] jest kolorowalny za pomoca (Ga,02),
jezeli istnieje reprezentant (G,oq) klasy [G, o] i odwzorowanie ¢ z V(G) w V(G2) za-
chowyjace znaki krawedzi. Oznakowana liczba chromatyczna oznakowanego grafu [G, o]
to najmniejsza liczba wierzchotkow grafu kolorujacego graf [G,o]. Oznakowana liczba
chromatyczna x(G) grafu G to maksymalna liczba sposrod wszystkich oznakowanych

liczb chromatycznych wszystkich oznakowanych graféw powstatych na bazie G.

A



Glowne wyniki rozprawy sa nastepujace:

1. Ustalamy nowa dolna granice osiem dla zorientowanej liczby chromatycznej krat,
przedstawiajac orientacje kraty, ktora wymaga o$miu koloréw do zorientowanego
kolorowania. Daje to rowniez nowa dolna granice osiem dla rodziny wszystkich

cylindrycznych krat oraz dla rodziny wszystkich toroidalnych krat. (Rozdziat 3.)

2. Przedstawiamy skierowany graf z dziesiecioma wierzchotkami, nazwany ﬁm, taki,
ze dowolna orientacja kraty z o$mioma wierszami posiada homomrfizm w ﬁlo-
Otrzymalismy w ten sposéb nowe goérne ograniczenie zorientowanej liczby chro-
matycznej dla rodzin wszystkich krat z szeScioma, siedmioma oraz oSmioma wier-

szami. (Rozdzial 4.)

3. Pokazujemy, ze dowolna orientacja toroidalnej kraty jest kolorowalna za pomoca

dwudziestu siedmiu kolorow. (Rozdziat 6.)

4. Pokazujemy, ze dowolna orientacja cylindrycznej kraty o obwodzie cyklu co na-

jwyzej siedem moze byé pokolorowana przy pomocy ﬁlo- (Rozdziat 6.)

5. Ustanawiamy nowa gérna i dolna granice zorientowanej liczby chromatycznej rodziny
wszystkich silnych krat. Pokazujemy, ze istnieje orientacja silnej kraty G¥(2, 398),
ktora nie moze by¢ pokolorowana za pomoca 10 koloréw. Wyznaczamy w ten
spos6b nowe dolne ograniczenie zorientowanej liczby chromatycznej wszystkich sil-
nych krat. Ponadto, pokazujemy, ze dowolna orientacja dowolnej silnej kraty moze

by¢ pokolorowana za pomoca osiemdziesieciu o$miu koloréw. (Rozdziat 7.)

6. Pokazujemy, ze dowolna oznakowana krata z co najwyzej siedmioma wierszami

moze by¢ pokolorowana za pomocg pieciu kolorow. (Rozdzial 8.)
7. Pokazujemy, ze dolna granica oznakowanej liczby chromatycznej rodziny wszystkich
krat jest pie¢. (Rozdzial 8.)
Wyniki przedstawiowe w dysertacji zostaly opublikowane w pracach ([11-13]) lub sa
przyjete do publikacji w ([35]).

Stowa kluczowe: kraty, zorientowane kolorowanie, oznakowane kolorowanie, problem

kombinatoryczny
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Chapter 1

Introduction

Let G = (V(G), E(G)) be a simple undirected graph. A proper vertex coloring of graph
G is a function that assigns colors to vertices of GG such that any two adjacent vertices
have different colors. An orientation of G is a directed graph d = (V(a), A(a)) that
is obtained from G by replacing each edge {u,v} by one of two arcs on vertices u and

v. For example, Figure 1.1 presents all four orientations of path Ps;. A tournament is

FIGURE 1.1: Possible orientations of path Psj.

an orientation of a clique. We say that directed graph is an oriented graph if it has

neither loops nor arcs in opposite directions. An oriented coloring c of an oriented graph

G = (V(a), A(a)) is a coloring of vertices of & such that

(i) ¢ is proper,

(ii) ¢ respects the orientation: if the arc (y,z) goes from color ¢(y) to ¢(z), then no

other arc can go in the opposite direction, i.e., from ¢(z) to ¢(y).

Figure 1.2 shows an orientation of cycle C4 and an oriented coloring. Observe that this
orientation cannot be colored with three colors. The oriented chromatic number 7(8)
of an oriented graph 8 is the smallest number of colors needed in its oriented coloring.
The oriented coloring ¢ of 8 can be viewed as a homomorphism from ?f to an oriented
graph ﬁ In this case, the oriented chromatic number of an oriented graph 8 is the

smallest number of vertices of ﬁ such that there exists a homomorphism c : 8 — ﬁ In

1



2 Introduction

FIGURE 1.2: An orientation of cycle Cy and its exemplary oriented coloring.

such a case, we shall call Ff) a coloring graph. The oriented chromatic number Y(G) of
an undirected graph G is the maximal chromatic number over all possible orientations
of G. For example, for C4, we have 7(04) = 4. The oriented chromatic number of a

family of graphs is the maximal chromatic number over all possible graphs of the family.

Oriented coloring was introduced by Courcelle in 1994. In his paper [8], oriented coloring
was considered as a tool for encoding graph orientations with the help of vertex labels.
Since then, several authors have studied links between the oriented chromatic number
and other parameters of graphs. Raspaud and Sopena [42] considered relations between
the oriented chromatic number and the acyclic chromatic number x,(G), i.e., the smallest
number of colors needed for a proper vertex coloring of G with the additional condition

that every cycle of G uses at least three colors. They proved the following:

Theorem 1.1 (Raspaud and Sopena [42]).
If Xa(G) <k, then X (G) < k- 2F71,

Ochem in [36] proved that this bound is tight for & > 3. Kostochka, Sopena and Zhu
[26] proved the following:

Theorem 1.2 (Kostochka, Sopena and Zhu [26]).
If X(G) < k, then xo(G) < kos2([loga K1+k/2)1+1

Borodin, Kostochka, Nesetfil, Raspaud and Sopena [6] showed that there are relations
between the oriented chromatic number of a graph and the maximum average degree
mad(G) = max{z"“fi%f' : H C G}, and girth, where girth(G) is the length of the
shortest cycle of G.

Theorem 1.3 (Borodin, Kostochka, Nesetfil, Raspaud and Sopena [6]).
For any graph G,

o if mad(G) < I, then X (G) < 5;

e if mad(G) < i and girth(G) > 5, then X(G) <7T;

e if mad(G) < 3, then X (G) < 11;
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o if mad(G) < 12, then ¥ (G) < 19.

Pinlou, Borodin, Ivanova, Kostochka and Marshall have improved some upper bounds
on the oriented chromatic numbers of graphs with bounded maximum average degree by

showing the following:

Theorem 1.4 (Borodin, Ivanova and Kostochka |7]).
For any graph G, if mad(G) < % and girth(G) > 5, then X (G) < 5.

Theorem 1.5 (Pinlou [38]).
For any graph G, if mad(G) < 13—0 and girth(G) > 5, then Y(G) < 16.

Theorem 1.6 (Marshall [29)]).
For any graph G if mad(G) < %, then Y(G) < 11. This bound is sharp.

In [25], Klostermeyer and MacGillivray proved that the oriented k-coloring problem
(whether a given oriented graph 8 has 7(8) < k) can be decided in polynomial time
if £ < 3, and is NP-complete if k > 4. Several authors bounded the oriented chromatic
number for some classes of graphs, such as outerplanar graphs |16, 40, 48, 49|, graphs
with bounded degree [1, 14, 26, 29, 48, 51, 54|, k-trees [48], Halin graphs [15, 23| and

graphs with given excess [22].

For planar graphs, since every planar graph is acyclically 5-colorable (see [5]), using the

result of Theorem 1.1, we obtain the following;:

Theorem 1.7 (Raspaud and Sopena [42]).
For any planar graph G, X (G) < 80.

This upper bound has not been improved yet. Sopena showed in [49] that there exists
an oriented planar graph with an oriented chromatic number of at least 16. Marshall

improved the lower bound to 17 in [27] and to 18 in [28].

In this dissertation, we discuss the oriented chromatic number of four families of graphs,
namely, 2-dimensional grids, cylindrical grids, toroidal grids and strong-grids. A 2-
dimensional grid G(m,n) (or simply grid) is an undirected graph with vertices V' =
{(4,7) : 1 <i<m;1 <j<n}and edges {(i,7),(i+1,j)} for 1 <i<m;1<j<n,or
{(2,7), (i, j + 1)} for 1 < i < m;1 < j < n. We shall say that the grid G(m,n) has m
rows and n columns. A grid G(m,n) can be viewed as the Cartesian product of paths
P,, and P,. The Cartesian product of a cycle C}, and a path P, is called a cylindrical
grid Cyl(m,n) = Cp,OP, or simply a cylinder and the Cartesian products of two cycles
is called a toroidal grid T'(m,n) = C,,0C,, or simply a toroid.



4 Introduction

Let G denote the set of all orientations of all grids and let G,, denote the set of all
orientations of all grids with m rows. The problem of establishing the oriented chromatic
number of grids was considered by several authors [4, 18, 41, 53]. The exact values of
the oriented chromatic number of grids with two, three and four rows are summarized
in Table 1.1. Fertin, Raspaud and Roychowdhury established the upper bound for the

oriented chromatic number of grids.

Theorem 1.8 (Fertin, Raspaud and Roychowdhury [18]).

X(G) < 11.

Fertin et al. (see Lemma 2.24) showed that any orientation of any grid can be colored

by the Paley tournament ?11, see Definition 2.2. They also formulated two conjectures:

Conjecture 1.9 (Fertin, Raspaud and Roychowdhury [18]).

Every oriented grid can be colored with seven colors.

Conjecture 1.10 (Fertin, Raspaud and Roychowdhury [18]).

Every oriented grid can be colored by the Paley tournament ?7.

Szepietowski and Targan 53] presented an orientation of G(5,35) that cannot be colored
by ?7, which contradicts Conjecture 1.10. However, their oriented grid can be colored
by other coloring graphs with seven vertices. Hence, Conjecture 1.9 has been still an

open problem.

Let Cyl (T, respectively) denote the set of all orientations of all cylinders (toroids, respec-
tively) and let Cyl,,, (Tm, respectively) denote the set of all orientations of all cylinders
(toroids, respectively) with circuit m. Jamison and Matthews in [24] considered the

acyclic chromatic numbers of cylinders and toroids. They proved that:

Theorem 1.11 (Jamison, Matthews [24]).

i Xa(cylm) = 3; fOT m 7é 4’
i Xa(cyl4) =4,
i Xa(T(m7 n)) =4, for (mvn) ie (373)7

* Xa(T(3,3)) =5.

Hence, by Theorem 1.1, we have:
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Corollary 1.12.

o X(Cyl,) <12, form # 4,

o X(Cyly) <32,

o X(T(m,n)) <32, for (m,n) # (3,3),
X

(T(3,3)) < 80.

Marshall [29] has proved that:

Theorem 1.13 ( Marshall [29)]).

Every orientation of every cylindrical grid can be colored by the Paley tournament ?11.

Aravind, Narayanan and Subramanian [2] discussed the oriented chromatic number of
strong products of paths G¥(m,n), called strong-grids. A strong-grid G¥(m,n) is a
graph with the vertex set V(P,,) x V(P,) and where two vertices are adjacent if and
only if they are adjacent in one coordinate and adjacent or equal in the other; see Figure

1.3. Let G¥ denote the set of all orientations of all strong-grids and let QE denote the

FIGURE 1.3: Strong-grid G¥(2,3).

set of all orientations of all strong-grids with m rows. They showed the following:

Theorem 1.14 (Aravind, Narayanan and Subramanian |[2]).

o 8 < X (G¥(2,n)) <11, for every n > 5.

e 10 < X (G¥(3,n)) < 67, for every n > 5.

Sopena proved the following:

Theorem 1.15 (Sopena [50]).
X (G¥) < 126.

Closely related to oriented coloring is signed coloring. The graphs with edges marked by
”4+” and ”—" signs were introduced by F. Harary in 1954 [21] to model social interaction
within a group. Afterwards they were used as a way of extending classical problems
in graph theory such as Hadwiger’s conjecture. A signed graph is a pair (G, o), where
G = (V(G), E(G)) is an undirected graph and o : E(G) — {+, —} is a function which
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)

marks each edge with ”+” or ”—". Two signed graphs are equivalent if one of them can
be changed to the other by a sequence of resigning operations. The single resigning
operation chooses a vertex v € V(G) and flips the signs of all edges incident to v. By
[G, o] we shall denote the equivalence class of the signed graph (G, o). Each element of

[G, o] is called a presentation of [G,o].

Some authors use different names for signed graph. They call a presentation (G, o) a
signified graph or a 2-edge-colored graph. In this thesis I shall follow [52] and call both
(G,0) and [G, o] signed graphs. The difference can be recognized by the braces. I hope
that this will not lead to confusion. The coloring of signed graphs is defined through
homomorphism. The signed graph [G, o] is colored by the signed graph (Ga,02), if
there exists a presentation (G, o01) of [G, o] and a vertex-mapping ¢ from G to Go which
preserves signs of the edges. Observe that if [G, o] is colored by (Ga,02), then [G, o]
is also colored by any signed graph (Gz,03) which is equivalent to (G2, 02). Hence, we
can say that [G, o] is colored by [G2,02]. The chromatic numbers are defined as usual.
The signed chromatic number of the signed graph [G, o], denoted by xs([G,0]), is the
size of the smallest graph which colors [G, o]. The signed chromatic number xs(G) of
the undirected graph G is the maximum of the signed chromatic numbers over all signed
graphs with underlining graph G. The signed chromatic number x(F) of the family of

graphs F is the maximum over all graphs in F.

Some authors consider coloring without resigning. Such coloring is called 2-edge-coloring.
The signed graph (G, o) is 2-edge-colored by the signed graph (Ga,02), if there exists a
vertex-mapping ¢ from G to Go which preserves signs of the edges. The 2-edge-colored
chromatic number of the signed graph (G, o), denoted by x2((G, o)), is the size of the
smallest graph which colors (G, o).

The connection of signed graphs and their coloring with classical problems of graph
coloring is described by Naserasr, Rollova, and Sopena in [32]. Colorings of signed graphs
and homomorphisms of signed graphs have been widely studied in recent years [9, 31—
34, 44, 52, 55]. The authors pay particular attention to study planar graphs and their
subclass such as planar graphs with given girth [39] or grids |3, 10]. Some authors (see
Sen [44]) observed that most results in oriented coloring had a similar "signed version”

and could be proved using the same proof techniques, with little adoptions.
Ochem, Pinlou and Sen proved that:
Theorem 1.16 (Ochem, Pinlou and Sen [39)]).

If G admits an acyclic k-coloring, then xs(G) < k- 282,

Bensmail [3] studies 2-edge-colored chromatic number of grids. He showed that:
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Theorem 1.17 (Bensmail [3]).

e 8<x2(0) <11

. a(G(22) =4 and xa(C(2m)) =5, forn >3,

e 2(G(3,3))>6 and x2(G(3,n)) > 7, for large enough n,
e x2(G(4,n)) <9, forn >1,

e x2(G(5,n)) > 8, for large enough n

Recently Dybizbanski [10] showed that:

Theorem 1.18 (Dybizbanski [10]).

x2(G) <9.

In Chapter 3, we show that there exists an orientation of a grid that cannot be colored
by seven colors. We shall call an orientation of a grid that cannot be colored by a
given coloring graph ﬁ a trap. We use a greedy algorithm that finds a trap for a given
oriented graph ﬁ We have found traps for all of 456 non-isomorphic tournaments
on seven vertices. Any oriented grid, that contains all the abovementioned traps as
subgraphs cannot be colored by any coloring graph with seven vertices. This constitutes
a counterexample to Conjecture 1.9 and provides a new, best known so far, lower bound

for the oriented chromatic number of grids:

8<N(9).

The result was published in [11].

In Chapter 4, we improve the upper bound for the oriented chromatic number of grids
with eight rows. We present a coloring graph with ten vertices, namely, ﬁm, which is
the graph obtained from the Paley tournament ?11 by removing one vertex. We show
that any orientation of any grid with eight rows can be colored by ﬁlo. This improves
upon the result of Theorem 1.8 published in 2003 in [18]. The results of this chapter

were accepted for publication in [35].

In Chapter 5, we consider the family G5 of oriented grids with five rows. We improve the
upper bound for the oriented chromatic number of G5 by presenting a coloring graph,
with nine colors, which can be used to color any orientation of any grid in Gs. Our proof
uses similar algorithm to the one designed by Szepietowski and Targan in [53]. The result
was published in [12].

In Chapter 6, we consider cylinders Cyl(m,n) and toroids T'(m,n). Grids are subgraphs

of cylinders and toroids. Hence, the orientation of a grid with seven rows found in
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Chapter 3 gives the lower bound 8 for cylinders and toroids with m > 7. We also give
another proof of Theorem 1.13 of Marshall. We think, that our proof is simpler and more
direct. Furthermore, we improve the upper bound for the oriented chromatic number of

toroids by showing that
X (T) <27

Moreover, using the method from Chapter 4 and the coloring graph ﬁlo we show that
Y(Cylm) < 10, for m = 3,4,5,6,7. The results are summarized in Table 1.2. Some of

them were accepted for publication in [35].

In Chapter 7, we consider strong-grids G¥(m,n). We give new lower and upper bounds

for the oriented chromatic number of the family G¥, by showing that
11 < ¥Y(G%) < 88.

The results for strong-grids are summarized in Table 1.3. Some of them were published

in [12].

In Chapter 8, we consider signed grids [G(m,n),o]. Using an algorithm similar to an
algorithm described in Chapter 5, we show that every signed grid with at most seven
rows can be colored with five colors, by the signed Paley graph SP;. This gives the
exact value xs(G(m,n)) =5, for 3 < m < 7 and n > 4. Moreover, we show that the
signed chromatic number for the class of all 2-dimensional grids lies between 5 and 6. It
is worth noticing that the upper bound 6 follows from Theorem 1.16 of Ochem, Pinlou
and Sen [39] or from Lemma 30(3) in [31] of Montejano et al. (note that grids admit an
acyclic 3-coloring [17]). However, we think that our proof of the upper bound is much
more direct and constructive. The results of Chapter 8 were published in [13] and are

summarized in Table 1.4.
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Chapter 2

Preliminaries

An undirected graph G consists of a non-empty finite set V(G) of elements, which are
called vertices, and a set E(G) of unordered pairs of V(G), which are called edges, i.e.,
E(G) C (V(QG)). A directed graph G consists of a non-empty finite set V(a) of ver-
tices and a set A(a) of ordered pairs of elements of V(a), which are called arcs, with
A(a) C (V(a))2 An arc (u,v) € A(a) is said to be directed from u to v. The vertices
u,v are incident to the arc (u,v), and we shall say that v and v are adjacent to each
other. For a vertex u & V(a), the indegree of u is the number of arcs that are directed
to u, and the outdegree of u is the number of arcs that are directed from u. The vertex
u is called a source if it is of indegree zero and a sink if it is of outdegree zero. If u is
neither a source nor a sink, it is called an internal vertex. If V(a) = {v1,...,un}, the
adjacency matriz of 6 is the n x n matrix A = (a;;) where a;; is the number of arcs
from v; to v;.

In this dissertation, we shall only deal with directed graphs without loops (i.e., no arc
of the form (u,u)) and without arcs in opposite directions (i.e., if (u,v) € A(ﬁ), then
(v,u) ¢ A(a)) We shall call such graphs oriented graphs. An orientation of an undi-
rected graph G is a directed graph 8 obtained from G by replacing each edge by one of
the two possible arcs with the same ends. A tournament is an oriented graph in which
every two vertices are adjacent. In other words, a tournament is an orientation of a

clique K,,.

A homomorphism from a graph (= (V(@),A(a)) to a graph H= (V(ﬁ),A(ﬁ)) is
a mapping ¢ : V(@) — V(ﬁ) such that (¢(u),p(v)) € A(ﬁ) for all (u,v) € A(Zf)
If there is a homomorphism from 8 to ﬁ, we shall say that ﬁ colors 8 or that 8 is
colored by ﬁ We shall call any oriented graph a coloring graph, especially when it is

used for coloring.

11



12 Preliminaries

Two oriented graphs ﬁl = (V(ﬁl), A(ﬁl)) and ﬁQ = (V(ﬁg), A(ﬁg)) are isomorphic
if there is a bijection 7: V(ﬁl) — V(ﬁz) such that (u,v) € A(ﬁl) if and only if
(m(u), 7(v)) € A(H>).

An automorphism of ﬁ is an isomorphism from ﬁ to ﬁ Let Aut(ﬁ) denote the set of all
automorphisms of ﬁ If ﬁ — ﬁ is an automorphism of ﬁ and c is a homomorphism
from 8 to ﬁ, then avo c: 8 — ﬁ is also a homomorphism.

We shall denote the converse of 8, i.e., the oriented graph obtained from 8 by reversing
all arcs, i.e., (u,v) € A(aR) & (v,u) € A(a), by ar.

An oriented graph ﬁ is self-converse if there is an isomorphism from Ff) to its converse
ﬁR, and H is arc-transitive if for any two pairs of arcs (u,v) € A(ﬁ) and (z,y) € A(ﬁ)7
there is an automorphism f : ﬁ — ﬁ such that f(u) = x and f(v) =y.

Lemma 2.1. Let ﬁ be arc-transitive, 8 be an oriented graph, (u,v) € A(a) and
(x,y) € A(ﬁ) Then the following two statements are equivalent:

e There is a homomorphism from 8 to ﬁ

o There is a homomorphism h from @ to ﬁ, that satisfies h(u) = x and h(v) = y.
g

Lemma 2.2. Let h be a homomorphism from Zf to ﬁ Then, h is a homomorphism

from 81% to ﬁR. Moreover, ifﬁ is self-converse, then there exists a homomorphism h'

from 8R to ﬁ

0

Corollary 2.3. If an oriented graph 8 can be colored by ﬁ, then its converse 8R can
be colored by ﬁR. Moreover, ifﬁ 1s self-converse, then 8R can be colored by ﬁ

Lemma 2.4. If an oriented graph 8 1s colored by an oriented graph ﬁ, then 3 can be

colored by a tournament ?

Proof. The graph 8 can be colored by any tournament ? that contains ﬁ as a subgraph.
O

Definition 2.5. A 2-dimensional grid G(m,n) is an undirected graph with vertices
V ={@j) : 1 <i<ml < j < n} and edges of the form {(i,5),(i + 1,5)} for
1<i<myl<j<mn,or{(,j),(@j+1)}for1 <i<m;1<j<n.

Definition 2.6. A cylindrical grid Cyl(m,n), or simply a cylinder, is an undirected
graph with vertices V.= {(4,7) : 1 < i < m;1 < j < n} and edges of the form
{(,7),i+1,9)for 1 <i<m;1<j<n,or{(ij),(i,j+1)}for1<i<m;1<j<n
or edges of the form {(m,j),(1,5)} for 1 <j <n.
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Definition 2.7. A toroidal grid T'(m,n), or simply a toroid, is an undirected graph with
vertices V = {(7,7) : 1 <i <m;1 < j < n} and edges of the form {(i,7),(i + 1,j)} for
1<i<myl<j<n,or{(ij),(i,j+1)} for 1 <i<m;1<j<n,or{(m,j),(1,7)}
for 1 <j <mn,or {(i,1),(i,n)} for 1 <i < m.

We denote the family of all orientations of all grids (cylinders, toroids, respectively) by G
(Cyl, T, respectively) and the family of all orientations of all grids with m rows by G,,.
By Cyl,,, (Tm, respectively) we denote the set of all orientations of all cylinders (toroids,

respectively) with circuit m.
Definition 2.8. The comb R,, is an undirected graph with the set of vertices V(R,,) =

{(1,1),...,(m,1), (1,2),...,(m,2)} and edges of the form {(i,1), (¢,2)} for 1 <i < m
or {(7,2),(1 4+ 1,2)} for 1 < i < m; see Figure 2.1. The vertices (1,1),...,(m,1) form

the first column of the comb R,,, while (1,2),...,(m,2) form the second column.

(1,1)e ————— o(1,2)
(2,1)0 ———— 0(2,2)

|

|

|

|

|

|

|

|

(m-1,1)¢ ———— o(m —1,2)

(m,1)@ ————— @(m, 2)

FIGURE 2.1: Comb R,,.

2.1 Reachable colorings

For an orientation 8 of G(m,n) and i < n, we denote the induced subgraph of 8 formed
by the vertices of the first ¢ columns by 8(1) Note that, for i > 1, a(z + 1) consists of
8(1) and an oriented comb, which we denote by ﬁ(H— 1), where vertices (1,17), ..., (m,1)
form the first column of ﬁ(z + 1) and vertices (1,7 +1),...,(m,i+ 1) form the second
column of ﬁ(z + 1); see Figure 2.2.

Definition 2.9. For an orientation ﬁ of the comb R,,, a coloring graph ﬁ and a
sequence s = (81,...,8m) € V(ﬁ)m, let
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Gi+1) (i) R(i+1)

FIGURE 2.2: Formation of G (i + 1).

NEXT(s,ﬁ,ﬁ) = {(dy,...,dn) : there exists a coloring ¢ : B - ﬁ, such that
c(i,1) = s; and ¢(4,2) = d;, for 1 < i <m}.

The set NEXT (s, ﬁ, ﬁ) is the set of reachable colorings of the second column of the
orientation ﬁ of the comb R,,, when the vertices of the first column of ﬁ are colored by

s.
Definition 2.10. For an orientation ﬁ of the comb R,,, a coloring graph ﬁ and a set
S of sequences S C V(ﬁ)m, NEXT(S, ﬁ, ﬁ) = Uses NEXT (s, ﬁ, ﬁ)

The set NEXT(S, ﬁ, ﬁ) can be computed by a simple procedure.

Procedure Nextm(S,ﬁ, ﬁ)
Input: a set S C V(ﬁ)m, an orientation ﬁ of the comb R,, and a coloring graph ﬁ
Output: the set D = NEXT(S, ﬁ, ﬁ)

1. D :=10

2. for every (s1,...,8nm) €S

3 color the first column of K with (S15--+,Sm)

4. for every coloring (di,...,dy,) of the second column of R
5 that is consistent with ﬁ
6 D := D U {(d1,...,dm)}

7. return D

Definition 2.11. For an orientation G of the grid G(m,n) and a coloring graph ﬁ,
we shall denote by S (8,ﬁ) the set of reachable colorings of the last column of 6
by ﬁ, ie., S(a,ﬁ) = {(c1,...,¢m) : there exists a coloring c¢ : 8 — ﬁ, such that
c(l,n) =cy,...,c(m,n) =cp}.

We will use the notation S (8) if the coloring graph is obvious from the context.

The set S (8, ﬁ) can be computed by the following procedure.
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Procedure Reachablecolorings(a7 ﬁ)
Input: m,n, an orientation 8 of the grid G(m,n) and a coloring graph ﬁ
Output: the set S(a,ﬁ)

SG = S(G(), H)

1

2. for j :=2 ton

3. SG := NEXT(SG, B(j), H)
4. return SG

We denote by S(ﬁ) the family S(ﬁ) = {5(8, ﬁ) el G} and by Sm(ﬁ) the family

S(H) = {S(G,H): G € Gn}.

Lemma 2.12. All orientations in G are colorable by a coloring graph ﬁ if and only if
)¢ S(ﬁ) All orientations in Gy, are colorable by H if and only if O ¢ Sm(ﬁ),

Proof. We prove only the first part of the lemma.
It )¢ S(ﬁ), then for cach ¢ € G we have () # 5(8, ﬁ) and G is colorable by H.
If every Ge G is colorable by ﬁ, then () # 5(8, ﬁ) Hence, () ¢ S(ﬁ) O

Lemma 2.13. Ift € 5(8, ﬁ) and h: H — H is an automorphism of ﬁ, then h(t) €

S(G,H).

O

We define the equivalence relation on V(@)m, by t ~ s iff there exists an automorphism

h:H = H such that s = h(t).
In several parts of this dissertation, we shall use algorithms that generate the families

Sm(ﬁ) for some m and ﬁ Here, we describe a simple version of such an algorithm:

Algorithm SimpleGenerating(m, H})
INPUT: (1) m - the number of rows, (2) H - the coloring graph.
OUTPUT: the set Sm(ﬁ) is printed.

First, for every orientation ? of the path P,,, the algorithm computes the set Sm(?, ﬁ)

and puts it in a queue (). Next, it repeats the following steps:

(1) It takes a set S from the queue Q.
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(2) For every orientation R of the comb R,,, it computes the set
S'=NEXT(S, ﬁ, ﬁ), and puts S’ in queue Q if it is new.

Lemma 2.14. The algorithm Algorithm SimpleGenerating(m, ﬁ) generates the set Sm(]_-jz)
If T e Sm(ﬁ), e, T = S(a,ﬁ) for some Ge Gm, then T is generated by Algorithm
SimpleGenerating(m, ﬁ) On the other hand, if Algorithm SimpleGenerating(m., ﬁ) gen-
erates T', then T € Sm(ﬁ)

O

Algorithm SimpleGenerating is not practical in the general case. Our experiments show
that it is difficult to calculate the family Sm(ﬁ) even for small values of m. However, if
ﬁ has a large group of automorphisms, then there are far fewer reachable colorings to
check.

2.2 Paley tournament ?p

Let p be a prime number such that p = 3 mod 4, and let Z, = {0,...,p — 1} be the
ring of integers modulo p. We denote by QR = {r : r # 0,r = s?, for some s € Z,}

the set of nonzero quadratic residues of Z, and by NR = {—z : z € QR} the set of
quadratic nonresidues. The set QR is a subgroup of Z; = {1,...,p — 1} of order %,

QRNNR =0, and QRUNR = Zj.

Lemma 2.15 ([43|). The product of two quadratic residues or of two quadratic non-
residues is a quadratic residue, whereas the product of a quadratic residue and a quadratic

nonresidue is a quadratic nonresidue.

Definition 2.16. The directed graph 71, with set of vertices V(?p) = Z, and set of
arcs A(?p) ={(z,y) : z,y € Zy and y — z € QR} is called the Paley tournament of
order p.

Observe that ?p is a tournament; i.e., for every pair u,v of distinct vertices in V(?p),

either (u,v) € A(?p) and (v, u) ¢ A(?p), or (u,v) ¢ A(?p) and (v, u) € A(?p).
Lemma 2.17. If a € QR and b € Z,, then the mapping f : ?p — ?p defined by

f(xz)=a-xz+0bis an automorphism.

Proof. By Lemma 2.15, we have f(v) — f(u) =a-(v—u) € QR if and only if v —u €
QR. O



Preliminaries 17

Lemma 2.18 (Fried [19]). The Paley tournament ?p is arc-transitive; i.e., for any two
pairs of arcs (u,v), (z,y) € A(?p), there exists an automorphism h such that h(u) = x
and h(v) = y.

Proof. Let h be the mapping h : ?p — ?p defined by

hz)=(y—a) (v—w) " ztz—u (y—z) (v-u)"

By Lemma 2.17, h is an automorphism, h(u) = x, and h(v) = y. O

Lemma 2.19. The Paley tournament ?p 1s self-converse; i.e., ?p and its converse 75‘

are isomorphic.

Proof. Consider the function f : ?5{ — ?p defined by f(z) = —z. An arc (z,y) €
A(?ﬁ) if and only if (—z, —y) € A(?p).

Suppose that 7 and j are positive integers. Consider the star K ; with the set of vertices
V(K1) = {x,v1,v2,...,v;} and edges of the form {x,v;} for 1 < k <. Let f() be an

orientation of the star Ky ;.

Definition 2.20. We say that the coloring graph H has the property P(i, j) if: ]V(ﬁ)] >
¢ and for every orientation of the star K ; and every sequence of different colors given

for vy, ..., v;, we can choose j different ways to color x, the universal vertex of the star.

Lemma 2.21 ([14]). Ifp is a prime with p = 3 (mod 4), then the Paley tournament ?p
has properties P(1, %) and P(2, %).

If p =7, we have the Paley tournament ?7 = (V(?ﬁ, A(?ﬂ), where V(?7) = Z7 and
A(?7) ={(z,z+bmod 7) : z € V(?ﬁ, b=1,2, or 4}; see Figure 2.3. If p = 11, then
T = (V(T 1), A(T 1)), where V(T 11) = Z11 and A(T11) = {(z,2 +bmod 11) : z €
V(?H), b=1,3,4,50r 9} is the Paley tournament of order eleven; see Figure 2.4.

Lemma 2.22 (Borodin et al. [6]). For any two distinct vertices u,v € ?11 and any
ortentation ﬁ of P3 (see Figure 1.1), there exist at least two distinct paths of length 2

with orientation ? that join the vertices u and v.

Lemma 2.23. No graph on ten vertices satisfies Lemma 2.22.
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3
4

FI1GURE 2.3: Paley tournament of order 7.

FIGURE 2.4: Paley tournament of order 11.

Proof. Any vertex u € ﬁ has at least four outgoing arcs and at least four ingoing arcs.

Since

Z indegree(v) = Z outdegree(v),

vev(H) veV(H)

there is a vertex u with indegree 4. Let v be a vertex with (v, u) € A(ﬁ) There do not
exist four distinct vertices x1, 2, x3, x4 such that

® U< T <0,

o U< X9,

® U< T3 —0,

® U< Ty — V.
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Lemma 2.24 (Fertin, Raspaud and Roychowdhury [18]).
Any orientation of any grid can be colored by ?11.

2.3 Tromp graph 775(8)

Definition 2.25. Let 8 be an oriented graph and 8’ be an isomorphic copy of 8 For
every u € V(B), by u' € V(B’ ) we denote the isomorphic copy of u. The Tromp graph
ﬁ(@) has 2|V(8)| + 2 vertices and is defined as follows, see [38]:

o V(THG)) = V(G)UV(G") U {0, 00},

* vuev(a)(u7 OO)? <OO7 Ul)7 (Uly OO/), (OO,, U) c A(ﬁ(a)%

* vu,vGV(B), (u,v)EA(a) (u’ U>’ (u,’ U/)7 (Uv U/)7 (vlv ’LL) € A(ﬁ(a))a

see Figure 2.5. The vertices u € V(a) and v’ € V(a’) are called twin vertices.

oo’

H
FIGURE 2.5: Tromp graph Tr(a).

Suppose that ¢ and j are positive integers. Consider the star K ; with the set of vertices
V(K1) = {x,vi,v2,...,v;} and edges of the form {z,v;} for 1 < k < ¢; and a Tromp
graph ﬁ(@) Let & be an orientation of the star Ki; and c : K = ﬁ(@) be a
homomorphism. We say that the sequence of colors (¢(v1), c(v2), ..., c(v;)) is compatible
with the orientation & if for every pair of vertices vy, v;, k # [ colors ¢(vg) and c¢(v;) are

compatible, which means:
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(1) c(vk) # c(vy) if (vg, x) and (z,v;) € K orif (v, z) and (x,vg) € ?,
(2) c(vg) # c(v) if (vg, z) and (v, z) € K orif (x,v) and (z,vg) € K.

%
Definition 2.26. We say that the Tromp graph Tr(a) has the property P.(i,7) if:
\V(7)‘ > 4 and for every orientation T(} of the star Ki; and every sequence of colors
(c(v1),c(v2),...,c(vi)) compatible with ?, we can choose j different ways to color x, the

universal vertex of the star.

Lemma 2.27 (Ochem, Pinlou [37]). If p is a prime with p =3 (mod 4), and the Paley

%
tournament ?p has property P(i—1,7) for somei,j > 2, then the Tromp graph Tr(?zy)
has property P.(i,j).



Chapter 3

A lower bound for oriented

chromatic number of grids

In this chapter, we disprove Conjecture 1.9, which was put forward by Fertin, Raspaud,

and Roychowdhury [18] in 2003, by showing the following:

Theorem 3.1 (Dybizbanski, Nenca (2012) [11]).
There exists an orientation of a grid that cannot be colored by any coloring graph with

seven vertices.

Corollary 3.2. ¥ (G) > 8.

We shall say that an oriented grid 8 is a trap for ﬁ if 8 is not colorable by ﬁ After
many trials, we have found an orientation X, which is shown in Figure 3.1, with the

following property.

Lemma 3.3. The orientation X of the grid G(5,33), which is shown in Figure 3.1, can
be colored by only nine (non-isomorphic) tournaments on seven vertices, namely, by ﬁo,
ﬁl, ﬁg, ﬁg, ﬁ4, ﬁ5, ﬁ6, ﬁ% and ﬁg, which are defined by the adjacency matrices
shown in Figures 3.2, 3.3, 3.4, and 3.5.

21
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FIGURE 3.1: Orientation A of G(5,33).

Proof. There are 456 non-isomorphic tournaments on seven vertices. We use nauty [30]
to generate all of them. We have found that the set S (Z, ﬁ) of reachable colorings of the
last column of Z (see Definition 2.11) is empty for each of these 456 tournaments except

the following;: ﬁo, ﬁl, ﬁg, ﬁg, ﬁ4, ﬁg), ﬁ& ﬁ% and ﬁg, for which the adjacency

matrices are presented in Figures 3.2, 3.3, 3.4, and 3.5.
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T

— O+ O O OO
S —=H O = O O
— O O O O
— O O O — O
OO O A A —H O
OO A A —H O
S = — O O - O
L 1
T 1
— —H O O O OO
— O~ O O O
SO —=H O O O =
OO OO o
S OO A —=H O
OO H H O —H O
O = = = O O
L

FIGURE 3.2: Adjacency matrices of coloring graphs ﬁo and ﬁl

I

— o O O OO
O = = O O O
— O O O O
OO OO~
— oo A - OO
SO = A = O
O —H O —H O — O
L 1
T 1
— - OO OO OO
O —H O —H O O
— O O O O —
— O O O — O
OO O A —H — O
OO HH - OO
S —=H = OO~ O
L 1
T 1
o —H O O - O O
O—H H O OO
— o O O O —H O
OO OO
— OO A~ O
SO = A - O O
O O A O —~H
L

FIGURE 3.3: Adjacency matrices of coloring graphs ﬁg, ﬁg,, and ﬁ4

r

—_ o O —A O OO
— o - O O O
O —H O O O v~
OO OO - - O
SO O A —=H O
SO = - O —
O == — — O O
L 1
r 1
— - O O O OO
O —-H O —H O O -
— o O OO —
— O O O - O
OO O ~H —~H —~
OO +HH - OO
O+ -4 O O — O
L

FIGURE 3.4: Adjacency matrices of coloring graphs ﬁ5 and ﬁ6.

T

— o O O O O O
— o - O O O
O —H O O O v~
— O O O
SO O A = O
OO~ H O~ O
SO = - O — O O
L ]
T 1
— O —H O OO
—N o 4 O O O
SO —H O O O v~
— o O O - — O
SO O A —H O -
OO - H O~ O
S = - O — O O
L

F1cURE 3.5: Adjacency matrices of coloring graphs ﬁ7 and ﬁs
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3.1 Traps

Let m be a specified number of rows. To find traps for tournaments ﬁo, ﬁl, ﬁg, ﬁ:g,
ﬁ4, ﬁ5, ﬁG and ﬁg, we use a greedy algorithm FindTrap,,; see below. For a given
tournament ﬁ, if the algorithm stops, then it returns a trap, i.e., an orientation of a grid

with m rows that cannot be colored by ﬁ

The algorithm starts with the grid G((m, 1), which is shown in Figure 3.6. There are 21
orientations of G(m,1). For every orientation 81 of G(m,1), the algorithm computes
the set S (81, ﬁ) of reachable colorings of 81. It chooses an orientation ?‘3 that gives
a smallest set T = S(gl,ﬁ). If there is more than one orientation with the same
cardinality of the set of reachable colorings, the algorithm chooses the one that occurs
first.

o(1,1)

o(2,1)

o(m—1,1)

o(m,1)

FIGURE 3.6: Grid G(m,1)

Next, for every orientation ﬁ of the comb R,,, the algorithm computes the set

NEXT(T, ﬁ, H}), see Definition 2.10. Once again, it chooses an orientation of R,, that
gives a smallest set of reachable colorings of the second column of the comb. The grid 8
is extended by the chosen orientation of R,,. In the same way, the algorithm adds the
next oriented combs one by one, each time choosing an orientation that gives a smallest
set of reachable colorings on the second column of the comb. The algorithm stops when
the empty set of colorings is reached. Now, we shall present a more formal description

of the algorithm.
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FindTrapm(ﬁ).

INPUT: a coloring graph ﬁ

OUTPUT: if the algorithm stops, it returns an oriented grid 3 with m rows that is not
colorable by ﬁ

1. min := o0

2. for every orientation P of G(m,1)
3. SG := S(P,H)

4. if min > #SG then

5. min := #SG

6. T := SGE

7. 8 1= ?

8. while T" # 0 do

9. min := o0

10. for every orientation ﬁ of the comb R,
1. SG := NEXT(T, K, H)
12. if min > #SG then

13. min := #SG

14. T := SG

15. extComb := ﬁ

16. 8 = 8 + extComb

17. T := 1T

18. return 8

First, in lines 1-7, the algorithm finds 8 — the orientation of the first column that gives
a smallest set of reachable colorings. The set of reachable colorings is stored in T'. The
while loop (lines 8-17) builds the next columns of the grid one by one. At the beginning
of the loop, in line 8, 8 stores the oriented grid that has been built so far, and T stores
the set of colorings that are reachable on the last column of 8 If the set T is not
empty, then the algorithm searches for an orientation of the comb, which will be added
as the next column. The for loop, in lines 10-15, for every orientation ﬁ of the comb,
computes the set SG = NEXT(T, ﬁ, ﬁ) of reachable colorings on the second column
of the comb ﬁ It stores in extComb the orientation that gives a smallest set and in T”
the set of colorings that are reachable on extComb. After checking all orientations, in
lines 12-15, the grid 8 is extended by the orientation extComb, and the set T stores

the set of reachable colorings on the new last column.

Lemma 3.4. For every coloring graph ﬁ € {ﬁg,ﬁg,ﬁ4,ﬁ5,ﬁ6}, there exists an
orientation of a grid @ with five rows such that 8 cannot be colored by ﬁ
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Proof. Using FindTrap,,, we have found five orientations of grids: ﬁ, 8, B, ﬁ and ?
(see Figures 3.7, 3.8, 3.9, 3.10, 3.11) such that

S(B,H,) =0,
o S(CHjz) =0,
e S(D,Hy) =0,
o S(E,Hs) =0,
o S(F,Hg) =0,

FIGURE 3.7: Orientation B of G(5,14) that is not colorable by ﬁg.

FIGURE 3.8: Orientation C' of G(5,12) that is not colorable by ﬁg.
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FIGURE 3.9: Orientation D of G(5,23) that is not colorable by ﬁ4.

FI1GURE 3.10: Orientation ﬁ of G(5,21) that is not colorable by ﬁg).

FIGURE 3.11: Orientation ? of G(5,14) that is not colorable by ﬁ@.
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Hence, we have found traps (non-colorable grids) with five rows for all coloring graphs
with seven vertices except four: ﬁo, ﬁl, ﬁ7 and ﬁg. The graph ﬁ7 is isomorphic
to the Paley tournament ?7 (see Section 2.2) and the graph ﬁg, which we call ?, is
obtained from ?7 by reversing one arc. When we run FindT'raps on these graphs for
grids with 5 rows, it loops and does not stop. This does not mean that every grid with

five rows can be colored by them because the algorithm omits many orientations of grids.
Lemma 3.5. There exists an orientation 7 with 5 rows (see Figure 3.12) such that
%

? cannot be colored by ?7 and there exist orientations 7, I_g and L with 7 rows (see
Figures 3.13, 3.14, 3.15) such that

° 7 cannot be colored by ﬁo.

° [_(> cannot be colored by ﬁl.

%

e L cannot be colored by %7.

Proof. For ?7, Szepietowski and Targan [53| found a trap with 35 columns. We have

used a similar method and found an orientation 7 of G(5,28) that cannot be colored by
77; see Figure 3.12.

FIGURE 3.12: Orientation 7 of G(5,28) that is not colorable by ?7.

We have found the orientation J of G(7,10), the orientation K of G(7,13) and the
orientation f of G(7,22) by running FindTrap; for grids with 7 rows.
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FI1GURE 3.13: Orientation 7 of G(7,10) that is not colorable by ﬁo.

FIGURE 3.14: Orientation K of G(7,13) that is not colorable by ﬁl.
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FIGURE 3.15: Orientation L of G(7,22) that is not colorable by ?7.
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3.2 Proof of Theorem 3.1

If an orientation 8 of a grid cannot be colored by a given tournament ﬁ, then any
orientation that contains ﬁ as a subgraph cannot be colored by ﬁ Hence, if we join
the orientations Z, ?, 8, B, E, ?, 7, 7, ? and f in a single large grid 877162
with 7 rows and 162 columns, we obtain an oriented grid that cannot be colored by any

coloring graph with seven vertices.
O

After many experiments with several heuristic algorithms we have found traps 7’ and
K’ with five rows such that J' cannot be colored by ﬁo and K’ cannot be colored by
ﬁl (see Figures 3.16 and 3.17). Hence we have found traps with five rows for all coloring

graphs with seven vertices except %7.

FIGURE 3.16: Orientation J of G(5,30) that is not colorable by ﬁo.
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FIGURE 3.17: Orientation K’ of G(5,34) that is not colorable by ﬁl.



Chapter 4

An upper bound for oriented
chromatic number of grids with 6, 7,

or 8 rows

In this chapter, we present a new upper bound for the oriented chromatic number of

grids with eight rows by showing the following:

Theorem 4.1. [Nenca [35]]
Every orientation of every grid with eight rows can be colored by ten colors. Moreover,

there exists a coloring graph ﬁlo with ten vertices that colors every grid with eight rows.

Proof. The theorem follows immediately from Lemma 4.7. O

Corollary 4.2. Every orientation of every grid with less than eight rows can be colored

by ten colors.

To prove Theorem 4.1, we present a coloring graph with ten vertices, which is denoted
by ﬁm, that can be used to color every orientation of grids with eight rows. This
improves by one the bound presented in 2003 in Theorem 1.8 of Fertin, Raspaud and
Roychowdhury.

4.1 The coloring graph ﬁlo-

Consider the coloring graph ﬁm obtained from the Paley tournament ?11 by removing
one vertex, say 0, i.e., V(ﬁlo) ={1,2,3,4,5,6,7,8,9,10} = Z1; — {0} and (u,v) €
A(ﬁm) if (v—u)€{1,3,4,5,9} = QR; see Figure 4.1.

33
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FI1GURE 4.1: Coloring graph ﬁlo-

Lemma 4.3. For every a € {1,3,4,5,9}, the function hy(x) = ax (mod 11) is an

automorphism of ﬁlo-

Proof. By Lemma 2.17, for each a € {1,3,4,5,9} = QR, the function h,(x) is an auto-
morphism of ?11 such that h,(0) = 0. Therefore, h, is an automorphism of ﬁlo- O

Lemma 4.4. Let 8 be an orientation of a grid, and let v be one of its vertices. Then,

the following two statements are equivalent:

(a) There ezists an oriented coloring ¢ : G- ﬁlo-

(b) There exists an oriented coloring ¢ : [ ﬁm such that ¢'(v) € {1,10}.

Proof. 1t suffices to show that (a) implies (b). If there exists an oriented coloring c :
8 — ﬁlo, then the composition h, o ¢ is an oriented coloring for every a € QR. Table
4.1 shows automorphisms of ﬁ10~ If ¢(v) € QR, then there exists a € QR such that
a-c(v)=1.If ¢(v) €{2,6,7,8,10}, then there exists a € QR such that a - ¢(v) = 10.

O
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X 11213456 |7|8]9]|10
hi(z)=2 (mod 11) | 1| 2 |3 |4|5| 6 | 7 |8 9]10
hs(x) =3x (mod 11) |3 | 6 |9 |1 |4| 7 |10 2 |5 | 8
hy(x) =4x (mod 11) | 4| 8 |1 |59 2| 6 [10|3| 7
hs(x) =5z (mod 11) |5 (10 |4 |93 | 8 | 2 | 7 |1]| 6
ho(x) =9z (mod 11) |9 | 7 |5 |31 |10]| 8 41 2
TABLE 4.1: Automorphisms of ﬁm.
4.2 Set closed under extension
Let Rg be the comb with eight rows; see Definition 2.8.
Definition 4.5. A set S C (V(ﬁlo))8 is closed under extension if
(a) for every orientation ﬁ of the path Ps = (vi,...,vs), there exists an oriented
coloring ¢ : P ﬁlg such that (c(v1),...,c(vs)) € S;
(b) for every orientation ﬁ of the comb Rg and every sequence
(c1,...,c8) € S, there exists an oriented coloring c : ﬁ — ﬁlo and a automorphism

hg of ﬁw such that

(1) (e(1,1),...,¢(8,1)) = (¢1,...,c8) and
(2) (hgoc(1,2),...,hqg0c(8,2)) € S.

Lemma 4.6. There exists a nonempty set S C (V(ﬁlo))g that is closed under extension.

Proof. To prove the lemma, we use a computer. We have designed an algorithm that

finds a proper set S. Let

S:mw(Pg) = {(Cl,...,68) 1Cc € {1,10}, and VQSiSn C; € V(ﬁlg), and Ci—1 7'5 CZ'}.

For every sequence t = (t1,...,t3) € S}, ., (Pg), there exists an orientation P of the path

max
Py = (v1,...,vg) and a coloring ¢: P> ﬁm such that (c¢(v1),...,c(vs)) =t. For a set
T, a sequence t = (t1,...,tg) € T, and an orientation ﬁ of the comb Rg, we say that ¢
can be extended in T on ﬁ if there exists a coloring c : ﬁ — ﬁw and a automorphism

h, such that

o (c(1,1),...,¢(8,1) =t

o (hgoc(1,2),...,hg0c(8,2)) €T.
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The algorithm starts with 7' = .S

max

(Pg). In the while loop, for each sequence ¢t € T" and
for each orientation ﬁ of the comb Rg, the algorithm checks if ¢ can be extended in T
on ﬁ If the sequence t cannot be extended, then ¢ is removed from T'. After the while
loop, the set T' satisfies condition b) of Definition 4.5. If 7" is not empty, then it also
satisfies condition a). In this case, S = T is returned. If T" is empty, then the algorithm

returns NO.

Algorithm ComputeSetS
OUTPUT: a nonempty set S C (V(ﬁlo))8 that is closed under extension or NO if such

a set does not exist.

1. compute the set S, .. (FPs)

2. T := 55,0.(Fs)

3. SetlIsReady := false

4. while not SetIsReady

5. SetIsReady := true

6. for every sequence t = (t,...,t3) €T

7. color the first column of the comb Rg
8. by setting c(i,1) =1¢; for 1 <i<8
9. SeqCanBeExtended := true

10. for every orientation ﬁ of the comb Rg
11. if t cannot be extended on ﬁ

12. SeqCanBeExtended := false

13. if not SeqCanBeExtended

14. T :=T—-1

15. SetIsReady := false

16. if T =10

17. return NO

18. else

19. S =T

10. return the set S

Using the Algorithm ComputeSet, we have found a nonempty set S that is closed under
extension. The set S is posted on the website https://inf.ug.edu.pl/grids/. O

Lemma 4.7. Every orientation 8 of the grid G(8,n) can be colored by ﬁlo.


https://inf.ug.edu.pl/grids/
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Proof. For a specified orientation G of G(8,n) and i < n, we denote the induced sub-
graph of 8 that is formed by the first ¢ columns by 8(2) It is easy to show by induction
that for every i, there is a coloring c : 8(@) — ﬁm and an automorphism h, of ﬁlg
such that (hq 0 ¢(1,4),...,hq 0c(8,47)) = s for some s € S. O

Theorem 4.1 provides the new upper bound of ten for the oriented chromatic number
of grids with eight rows, which also holds for grids with six or seven rows. In the next
chapter, we prove that nine colors are sufficient for the oriented coloring of grids with

five rows.






Chapter 5

Grids with five rows

In this chapter, we focus on grids with five rows. In Chapter 4, we showed that every
orientation of a grid with at most eight rows can be colored with 10 colors. Fertin et al.
in [18] presented an orientation of the grid G(4,5) that cannot be colored with six colors.
Thus, the bounds for grids with five rows, were 7 < 7(g5) < 10. In this chapter, we show
that there exists a coloring graph with nine vertices, which is denoted by ﬁg, that can
be used for the oriented coloring of any orientation of grids with five rows. The coloring
graph ﬁg is obtained from the Paley tournament ?7 by adding two vertices, namely,
one sink and one source; see Figure 5.1. More precisely, V(ﬁg) =1{0,1,2,3,4,5,6,7,8}
and (u,v) € A(ﬁg) if

e yyv<Tandv—u=1,2, or4 (mod 7),

e u="7 orv=_.

F1GURE 5.1: Coloring graph ﬁg.

39
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Theorem 5.1 (Dybizbariski, Nenca [12]).
Every oriented grid with five rows can be colored with nine colors. Moreover, there is an

oriented graph ﬁg with nine vertices that colors every oriented grid with five rows.

First, we consider the family GZ of all orientations of all grids with five rows such that
all vertices in the first, third and fifth rows, except possibly those in the last column,
are internal. In Section 5.1, we show that every 8 € G: can be colored by the Paley
tournament ?7 by showing that the empty set is not reachable on the last column of
any grid 3 € Gg. Since the Paley tournament ?7 is arc-transitive and self-converse, we
do not need to generate the whole family 85(?7). In Section 5.2, we prove that every
grid 8 € G5 can be colored by ﬁg.

5.1 Coloring G;

In this section, we prove that every grid 8 in G5 can be colored by the Paley tournament
?7; see Section 2.2. The tournament ?7 is self-converse, and the function f(z) = —=z
is an isomorphism from ?7 to ??; see Lemma 2.19. Therefore, we can only consider

grids @ that have the arc ((1,n),(2,n)) in the last column. Let gg denote the family
g§ = {8 €Gs:((1,n),(2,n)) € A(a), where n is the number of columns}.

Similarly, let Qg denote the family of all orientations of grids with five rows with the arc
((2,n),(1,n)) in the last column. Let g;# =G: mgg and Q;T =G: mgg. Clearly, 8 € Q;‘L
if and only if BR € Q;T.

Let t = (t1,...,t5) be asequence of elements of Z7. We denote the sequence (—t1, ..., —t5)

by —t. For a set of sequences T', we denote by —T the set {—t: ¢t € T'}.

Lemma 5.2. Ifa is colorable by 77, then GR is colorable by ?7. If a set T C (Z7)?

is reachable on the last column of 8, then —T is reachable on the last column of 8R,

O
By Lemma 2.18, the tournament ?7 is arc-transitive. Arc (0,1) € A(?7). Hence, by
Lemma 2.1, if a grid 8 € Q;i can be colored by ?7, then there is a coloring c : 8 — ?7
such that ¢(1,n) = 0 and ¢(2,n) = 1. Hence, to determine whether all grids in G are
colorable by ?7, it suffices to check whether all grids 8 € Q;i are colorable by ?7.
Moreover, we can only check if there exists a coloring c : 8 — 77 such that ¢(1,n) =0
and ¢(2,n) = 1.
For G ¢ Q;i, we denote by ngl(ﬁ) the set
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SOV(C) = {(c3,earc5) < (0,1, ¢3,ca,¢5) € S(G, To)}s

where § (8, ?7) is the set of reachable colorings of the last column of [€ by ?7 (see
Definition 2.11), and we denote by Sg’lthe family {Sg’l(g) .G e ggi}.

Lemma 5.3. If (0,1, s3, 54, 55) ~ t for somet € 3(8,77), then (ss3, s4,55) € Sg’l(a).
Proof. Suppose that c : d = 77 is a coloring of G such that c(last column) =
t. Since (0,1,ss3,84,85) ~ t, there is an automorphism h : ?7 — ?7 such that
h(t) = (0,1,ss3,84,55). Hence, the coloring h o ¢ : 8 — ?7 is a coloring of 8

with (0,1, s3,84,85) = h o c(last column). Hence, (0,1, s3,4,55) € 5(8,?7), and
(53,54, 85) € S (G). 0

Lemma 5.4. The following three conditions are equivalent.

(1) Every grid 8 € G& is colored by ?7.
(2) Every grid 8 € Qgi 15 colored by ?7.
(3) 0 ¢ SY(T).

Proof. (1) < (2) follows from Lemma 5.2.

2)=3)0¢ Sg’1(77) if and only if Vaeg? 3. c: G- 77.
O

For a given set S € 8?’1 and an orientation ﬁ of the comb Rs, we define the set
NEXTY'(S, R):

o If ﬁ € Qé, then

NEXTYY(S, R) = {(es,c1,¢5) : 3 te NEXT(S, R, T'7)

and t~ (0, 17 C3,C4, 65)};
e if B €G], then

NEXTYY(S, R) = {(cs,ca,c5) : & te NEXT(S, R, T'7)
and —t~ (0,1,c3,c4,¢5)},
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where NEXT (S,ﬁ, ?7) is the set of colorings of the second column of F when the
vertices of the first column of ﬁ are colored by sequences s € S; see Definition 2.10. Let
us denote by @(8) the sequence (6(1,n),d(3,n),d(5,n)), where

0 if uw is a sink or a source,
1 otherwise.

Consider the comb Rs, where (z1,x2,x3,24,x5) is the first column of Rs. Let T =
52’1(8) for some orientation G of G(5,n). Suppose that we glue together the grid
G(5,n) and the comb Rj in such a way that the last column of G(5,n) becomes the first
column of Rs. We shall say that an orientation ﬁ of the comb Ry is good for T and
O(G) = = (61,3, 05) € {0,1} if for each i € {1,3,5)

e 5 =0(z;)=1or

e 0; = 6(z;) = 0 and the arcs of the last column of 8 and the arcs from ﬁ do not

form a sink or a source in y.

Now, we describe an algorithm that generates the set Sg 1. The algorithm uses a queue

Q.

The algorithm starts with the grid G(5,1). For every orientation P of G(5,1) with
the arc ((1,1),(2,1)) € ?, it computes the pair (Sg’l(ﬁ),é(?)) and puts it into the
queue Q. Next, the algorithm takes from the queue one by one a pair (7,®) and,
for every orientation ﬁ of the comb Ry, checks whether the orientation ﬁ is good
for T and ®. If so, the algorithm computes ® = (4(1,2),6(3,2),d(5,2)) and the set
T = NEXTY'(T, R) and adds the pair (T”,®') to the queue @ if it is new.

Algorithm GenerateSets
OUTPUT: the set Sg’l is printed on the screen.

for every orientation P € ggj¢
compute (Sg,l(?)7(1)(?))
Q « (SV'(P),®(P))
print Sg’l(?)
while Q # () do
(T,8) « Q

for each orientation ﬁ of the comb Rj

0 N O O b W N

if the orientation ﬁ is good for 7 and @
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9. T = NEXTONT, B)

10. o' = (6(1,2),6(3,2),4(5,2))

11. if (T’,®’) was never in the queue
12. Q<+ (T,

13. print T’

Lemma 5.5. (1) For every C e gg‘i, the pair (52’1(8)@(3)) appears in the queue.

(2) For every pair (T, ®) that appears in the queue, there exists a grid 8 € ggi such

that (T, ®) = (S¥1(C), d(G)).

Proof. (1) Proceed by induction on the number n of columns of 8

For n = 1, the lemma clearly holds. Suppose that the lemma holds for grids with n
columns and G is the orientation of the grid G(5,n+1). The orientation G = 8(n+ 1)
consists of a(n) and the orientation B — ﬁ(n + 1) of the comb Rjs; see Figure 5.2.
Since 8 € Qgi, 8 has only internal vertices in the first, third and fifth rows, ex-
cept possibly in the last column. Hence, the orientation R is good for S’g’l(a(n))
and (6(1,n),0(3,n),0(5,n)). First, suppose that 8(71) € Q;i; see Figure 5.2.

e G ) B

FIGURE 5.2: Formation of 8, when 8(n) egrt.

By the induction hypothesis, (Sg’l(a(n)),Q(a(n))) appears in the queue. Now, we
shall show that
$21(@) = NEXT (1 (T (m). B).

and the pair (52’1(8), @(8)) also appears in the queue. Note that @(8) = @(ﬁ)
First inclusion C:

Suppose that ¢t = (t3,t4,t5) € 5271(5); see Figure 5.3. There exists a coloring c :
d - ?7 such that ¢(n+1 th column) = (0,1,t3,4,t5). Consider c¢(n th column) =
t=(t],...,t5) € S(B(n), ?7) There exists an automorphism « € Aut(?ﬁ such that
a(t') = (0,185, ;. 14) € S (G (n).
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t 0
y 1Y

th — t3
O/ —
e — ts

F1GURE 5.3: Coloring c.

G(n) 7

0 a(0)
1 a(l)
ty —— ots)
ty, —— ofts)
te ats)

FIGURE 5.4: Coloring « o c.

aoc(n+1 th column) € NEXT(a(t'), ﬁ, ?7),

and
aoc(n+1 th column) = (0, 1, 3,14, t5).
Hence,
aoc(n+1 th column) ~ (0,1, ts,t4,15)
and

(t3, ta,t5) € NEXTON(SON (G (n)), K).

Now, inclusion D:

Let t = (t3,t4,t5) € NEXTE?’I(Sg’l(a(n)), ﬁ) Then, there exists t’ = (¢],...,t;) such
that ¢ ~ (0,1,t3,t4,t5) and ¢ € NEXT(Sg’l(a(n)),ﬁ,?ﬂ. Hence, there exists a
coloring ¢ : ﬁ — ?7 such that

c (first column of ﬁ) = (0,1, s3,84,85) € 550’1(8(71)),

and

 (second column of ﬁ) = (8], th, t5, 1), t5),
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and there exists a coloring ¢ : a(n) — ?7 such that
' (n th column of a(n)) = (0,1, s3, 54, S5).

By combining colorings ¢’ and ¢”, we obtain a coloring ¢ of G with ' — ¢(n+1 column).

Hence, by Lemma 5.3, (t3,t4,15) € ngl(ﬁ).

Now, suppose that 8(71) € ggT; see Figure 5.5. Consider 8R, which is composed of

e G B

FIGURE 5.5: Case 2, G (n) € G2,

BR(n) and ﬁR; see Figure 5.6.

el GR(n) RE

FIGURE 5.6: Case 2, 812(”) e gt

By the induction hypothesis, ngl(ﬁR(n)) appears in the queue. Now, we shall show
that
SO = NEXTYN (S (G (n), BP).

Thus, the pair (Sg’l(g), @(ﬁ)) appears in the queue.

First inclusion C:

Suppose t = (t3,t4,t5) € 5271(3). Then there exists a coloring c : ¢ - 77 such
that ¢(n+1 th column) = ¢ = (0,1,¢3,t4,¢5). Consider coloring ¢(n th column) = ¢/ =

CARAY
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—th —0
—t/2 jr -1
—ty — —t3
—t),  —
—tL — —t5

FI1GURE 5.7: Coloring c.

Sequence t' € S(a(n),?ﬁ, and sequence —t' € S(BR(n),?ﬂ; see Figure 5.7. There
exists an automorphism a € Aut(?ﬁ such that

1 1 "

a(=t) =t"=(0,1,t5,t,,t5)

and
17 1 1"

(5,11, 2) € SPH(GR(n)).

Since BR ¢ Q;T, the function NEXTg’l(Sg’l(aR(n)),ﬁR) returns, among other se-

GR(n) R

0 a(—0)
1 a(—1)
ta  — a(—t3)
tn — a(—t)
t5 o(—ts5)

FI1GURE 5.8: Coloring « o c.

quences, the sequence equivalent to —a(—(0,1,%3,t4,t5)), which is equivalent to the

sequence (0, 1,3, t4,t5). Hence,
(t3,ta,ts) € NEXTON (SO (GR(n)), BR).

Now, inclusion D:
Let t = (t3,t4,t5) € NEXTS’l(S(aR(n),?ﬂ,ﬁR). Since KR € gg‘T, there exists
t' = (t},...,tt) such that

—t' ~ (0,1,t3,t4,t5)

and

t € NEXT(S®' (CGE(n)), K®, T»).
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Hence, there exists a coloring ¢’ : ﬁR — 77 such that
c (first column of ﬁR) = (0,1, s3,54,55) € Sg’l(aR(n))
and
¢ (second column of ﬁR) = (t),...,t5),

and there exists a coloring ¢” : 8R(n) — ?7 such that
¢’ (n th column) = (0,1, s3, s4, 55).
By combining colorings ¢’ and ¢, we obtain a coloring ¢ of 3 with
—t' = ¢(n+1 column).

Hence, t € Sg’l(g).

(2) Now we prove that if a pair (7, ®) appears in the queue, then T € Sg’l. The
proof is by induction on the iteration number of the while loop at which (7', ®) appears
in the queue. If T is generated before the while loop, then T' € Sg’l. Assume that we
are at the ¢ th iteration and a pair (T, ®) is in the queue ). Then, T € Sg’l. We need to
show that NEXTE?’l(T, ﬁ) € Sg’l. Since T € Sg’l, there is an orientation G of G(5,n)
for some n such that 5211(8) — T. Consider the orientation G’ of the grid G(5,n + 1)
such that 8’(71) — G and ﬁ(n%— 1) = R. Then, the set § = NEXT50’1(T, ﬁ) is the set
of reachable colorings on the last column of 8’, ie., S = Sg’l(gl). Hence, S € 550’1.

After running Algorithm GenerateSets, we found that the algorithm ends with empty
queue @ and that no pair of the form ((), ®) is reachable. Thus, we have the following

lemma:

Lemma 5.6. FEvery 8 S g§¢ can be colored with ?7.

5.2 Proof of Theorem 5.1

Proof. Let 8 be an orientation of G(5,n), where n > 5. We show that there exists a
homomorphism v from 8 to ﬁg. To show this, we construct a new orientation 8’ of

G(5,n) by reversing some arcs in 8 For every column 7,
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e if (1,4) is a sink or a source, then we reverse the arc between (1,4) and (2,1);
e if (3,7) is a sink or a source, then we reverse the arc between (3,7) and (2,17);

e if (5,7) is a sink or a source, then we reverse the arc between (5,7) and (4, 7).

We leave every horizontal arc unchanged, and we reverse at most one arc incident to any
vertex in the first, third or fifth row. Thus, there is no sink or source vertex in the first,
third or fifth row of G Hence, by Lemma 5.6, there is a coloring 7/ : [ ?7. We
can color 8 using a homomorphism 7 : 8 — ﬁg in the following way:

e if vertex a is in the second or fourth row, we set y(a) := 7/(a);

e if vertex a is in the first, third or fifth row and it is not a sink or a source in 8,
we set y(a) :=+/(a);

e if vertex a is in the first, third or fifth row and it is a sink or a source in 8, then
we set
E 3

~v(a) := 7 if a is a source in 8;

* ~v(a) := 8 if a is a sink in a.

To show that v is a homomorphism from 8 to ﬁg, consider an arc (a,b) € 8 There

are four possible cases:

If the arc (a,b) has not been reversed and the colors of a and b have not been

changed, then these colors fit in both ?7 and ﬁg.

e If the arc (a,b) has not been reversed and the color of one of its ends, say a, has
been changed, then vertex a is a sink or a source and its color matches the color
of vertex b because y(b) € V(?7).

e If the arc (a,b) has not been reversed but the colors of both its ends has been
changed, then a and b are in the same row, namely, the first, third or fifth row.
This is possible only if one of them is a sink and the other is a source. Then, their

colors are 7 and 8 and fit in ﬁg.

e If the arc (a,b) has been reversed, then a is a source (or b is a sink, respectively)
in the first, third, or fifth row and receives color 7 (or 8, respectively). The other
end of the arc is in the second or the fourth column. Thus, it has a color from 77
and (7,v(b)) € A(ﬁg) (or (y(a),8) € A(ﬁg), respectively).
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Lemma 5.7. There exists an orientation of G(7,28) that cannot be colored by ﬁg.

Proof. We use a similar algorithm to the algorithm described in the proof of Lemma
5.6 and construct an orientation 65’28 of the grid G(5,28) (see Figure 5.9) with only
internal vertices in the second, third and fourth rows that cannot be colored by the Paley
tournament ?7. An orientation of G(7,28) is created from 65,28 by adding two extra
rows: one above the first row — row 0 — and one below the fifth row — row 6 — in such
a way that there are only internal vertices in the first and fifth rows. Hence, we cannot
use color 7 or 8 to color any vertex in rows 1-5, and the obtained orientation cannot be

colored by ﬁg. O

FIGURE 5.9: Oriented grid 85,28.






Chapter 6

Cylindrical grid and toroids

In this chapter, we consider the oriented chromatic number of cylinders Cyl(m,n) =

C,OP, and toroids T'(m,n) = C,,0C,, see Figure 6.1 and Figure fig:t.

e Q\é\e—/@/é)l)

(m=11 " (m,1) (L,1)

FIGURE 6.1: Cylindrical grid Cyl(m,n).

We know that:

Theorem 6.1 (Marshall [29]).
Every orientation of every cylindrical grid can be colored by the Paley tournament ?11,

see Figure 2.4.

This theorem was proved by Marshall in [29] in a more general form. We give another

proof of the theorem. We think that our proof is simpler and more direct.

51
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FIGURE 6.2: Toroid T(m,n).

Theorem 6.2.
There exists an orientation of a cylindrical grid that cannot be colored by any coloring
graph with seven vertices.

Moreover, we show that:

Theorem 6.3 (Nenca [35]).
Every orientation of every cylindrical grid with circuit m = 3,4,5,6,7 can be colored by

the coloring graph ﬁlo, see Section 4.1 and Figure 4.1.
Furthermore, we improve the upper bound for oriented chromatic number of toroids, by
showing that:
Theorem 6.4.
Every orientation of a toroid Cp,,[dC,,, with m,n > 3, can be colored with 27 colors.
We also show, that:
Theorem 6.5. a) X (C30C3) =9,
b) X (C50C,) < 16, for n > 3,
¢) X (C40C,) < 18, forn > 3,
d) X (Cs0C,,) < 20, forn > 4,
e) X (Cs0Cy) < 22, forn > 5,

f) X(Cy0C,) < 24, for n > 6.
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6.1 Upper and lower bounds for ' (Cyl)

In Chapter 3 we showed that there exists an oriented grid G(7,162) which cannot be
colored with 7 colors. This implies Theorem 6.2 and the lower bound 8 < Y(Cyl), since
grids are subgraphs of cylindrical grids.

Before presenting the proof of Theorem 6.1 we first give some properties of the coloring
graph ?11.

Lemma 6.6 (Marshall [29]). For every set S C V(T11) with |S| = 4, we have |outdegree(S)| >
10 and |indegree(S)| > 10. In other words both oriented neighborhoods of S contain all

colors with possible one exception.

Lemma 6.7. Consider the comb Ry, see Figure 6.3, with arbitrary orientation ﬁ and
suppose that the first column of ﬁ, i.e. vertices uq, ug, us, Uq, s already colored, by colors
(c1,c2,¢3,¢4) in such a way that ¢; # ciy1, for 1 < i < 3. Then there are at least two
colors available for vy, such that for each of them we can obtain four different colors for

vg tn an oriented coloring.

U1 U1
U2 U2
us V3
Ug Vg

FIGURE 6.3: Comb Ry.

Proof. By computer. O
Suppose that ¢ and j are positive integers. Consider the star K ; with the set of vertices
V(K1) = {x,v1,v2,...,v;} and edges of the form {z,v;} for 1 <k <.

Lemma 6.8. Suppose that:

° I_() is an orientation of the star Ki o,

e S is any subset of the vertex set of ?11 of cardinality 4 whose elements correspond

to available colors for the vertex vy of 7(),

e and c¢(vy) is a color chosen for the vertex vs.

Then there are at least four different ways to color x - the universal vertex of the star.

Proof. Tt follows from Lemma 6.6 and the fact that for any vertex u € ?11 we have

loutdegree(u)| = |indegree(u)| = 5. O
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Lemma 6.9. Suppose that:

° [_(> is an orientation of the star K3

e S is any subset of the vertex set of ?11 of cardinality 4 whose elements correspond

to available colors for the vertexr vy of }_(>,

e and c(v2) and c(vs) are any two different colors for vertices vo and vs.
Then we can color x - the universal vertex of the star.
Proof. 1t follows from Lemma 6.6. O
Now we shall prove Theorem 6.1.

Proof of Theorem 6.1. Since ﬁlo is a subgraph of ?11, Theorem 6.3 implies that cylin-
drical grids with circuit m = 3,4 can be colored by ?11. Let m > 5 and let ? be any
orientation of cylindrical grid Cyl(m,n) = C,,00F,. We identify each vertex u € ? with
the pair of its coordinates (4,7), 1 < i <m, 1 < j < n. We shall show that 7 can be
colored by ?11. We color the vertices of 7 row by row. For the first row, clearly, it is
always possible to color any oriented cycle by homomorphism to ?11 using Lemma 2.22.
Now, suppose that ¢ > 1 and the rows from 1 to ¢ — 1 are already colored. By Lemma
6.7, there are two possible colors for vertex (1,7), such that each of them ensures four
possibilities of colors for vertex (4,7). We choose the one which is different from the color
of vertex (m,i —1). Let us denote by S(j) the set of possible colors for vertex (j,1), for
2 < j < 4. Now for each j = 5,6,...,m — 1 we define set S(j) as a result of applying
Lemma 6.8 for the set S(j — 1) and the color of (j,i — 1). By Lemma 6.9, we can color
the vertex (m,i). Now we can color vertices (2,1), (3,7), ..., (m —1,4) in reverse order.
First, for the vertex (m — 1,7) we choose the color ¢(m — 1,7) € S(m — 1) such that the
orientation of the edge {c¢((m — 1,1)),c((m, 7))} in ?11 equals to the orientation of the
edge {(m —1,4),(m, i)} in Y. Consecutive vertices we color in the same way. Similarly,

we color the following rows. O

6.2 Cylindrical grids Cyl(m,n) with m = 3,4,5,6,7

In order to proof Theorem 6.3 we use a computer. We have designed an algorithm,
similar to the one described in Chapter 4, that finds a set S that is cycle-closed under

extension.
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Definition 6.10. For m > 3, the m-sunlet graph Sun,, is an undirected graph with the
set of vertices V(Sun,,) = {(1,1),...,(m,1), (1,2),...,(m,2)} and edges of the form
{(4,1),(4,2)} for 1 < i < m, or {(,2),(i +1,2)} for 1 < i < m, or {(m,2),(1,2)}; see
Figure 6.4.

(4,1)

FIGURE 6.4: m-sunlet graph.

Definition 6.11. Let H be a coloring graph. A set Sm(ﬁ) C (V(ﬁ))m is cycle-closed

under extension if:

(a) for every orientation T of the cycle Cp, = (v1,...,vy), there exists a coloring

¢: C — H such that (c(v1),...,c(vm)) € Sm(ﬁ),

—
(b) for every orientation Sun of the m-sunlet graph Sun,, and for every sequence

o
(c1,...,¢m) € Sm(ﬁ), there exists a coloring ¢ : Sun — H such that:

(1) (e(1,1),...,¢(m,1)) = (c1,...,cm) and
2) (e(1,2), ..., c(m,2)) € Sm(H)

Lemma 6.12 (Nenca [35]). For each m = 3,4,5,6,7, there ezists a nonempty set
Sm(ﬁlo) C (V(ﬁlo))m, which is cycle-closed under extension.

Proof. In order to prove the lemma we use a computer. We have designed an algorithm,
similar to the Algorithm ComputeSetS described in Chapter 4, which finds a set cycle-
closed under extension. The algorithm, for a given m, uses the m-sunlet Sun,, instead
of a comb Rg. Using the algorithm we have found that for each m = 3,...,7, there exists

a nonempty set cycle-closed under extension. O
Lemma 6.13 (Nenca [35]). For each m = 3,...,7 every orientation 7 of the cylindrical

grid Cyl(m,n) can be colored by ﬁm-

Proof. For a given m, let 7 be an arbitrary given orientation of Cyl(m,n). For i < n,

we denote the induced subgraph of Y that is formed by the first ¢ cycles by 7(2) It is
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easy to show by induction that for every 4, there is a coloring c : 7(2) — ?[)10 such that

c(1,i),...,¢(m,i)) = s for some s € S,. O

6.3 Toroid

In Section 2.3 we describe the Tromp graphs, see Definition 2.25. Consider the Tromp
_)
graph 724 = T?"(?H). Applying Lemma 2.21 and Lemma 2.27 we have:

Lemma 6.14.

(a) The Paley tournament ?11 has properties P(1,5), P(2,2).

(b) The Tromp graph ﬁ(?u) has properties P.(2,5), P.(3,2).

Proof of Theorem 6.4. Let 7 be any orientation of a toroid T'(m,n). We identify each
vertex u € ? with the pair of its coordinates (i,j), 1 <i<m, 1 <j <n.

Consider the cylinder T obtained from T° by removing the vertices (i,n — 1) and (i,n),
for 1 < i < m. By Theorem 6.1 there exists a coloring c : 8 — ?11. We construct the

coloring of ? in following way:

Step 1 color vertices (7,7), 1 <i<m,1<j<n-—2by ?11,
Step 2 color vertices (1,n — 1) and (1,n) by ?24, see Figure 6.5, in such a way that:
— colors of vertices (1,n — 1) and (2,n — 2) are compatible in the star {(2,n —
1)7 (27n - 2)7 (17n - 1)}
— colors of vertices (1,7 — 1) and (m,n — 2) are compatible in the star {(m,n —
1)7 (mvn - 2)7 (1777' - 1)}
— colors of vertices (1,n—1) and (1,1) are compatible in the star {(1,n), (1,n—
1), (L, 1)}
— colors of vertices (1,n) and (2, 1) are compatible in the star {(2,n), (2,1), (1,n)}

— colors of vertices (1,n) and (m, 1) are compatible in the star {(m, n), (m, 1), (1,n)}

Step 3 color vertices (2,n — 1) and (2,n) by ?24, see Figure 6.5.

In order to color (2,n — 1), consider the star {(2,n — 1), (1,n — 1), (2,n —2)}, see
Figure 6.5. Colors in the leaves of the star are compatible. Indeed: the color in
(1,n — 1) has been chosen to be compatible with the color of (2,n —2). Hence, by
Property P.(2,5), we have at least five colors to color (2,n — 1). We choose one

which is compatible with
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Step 4

Step b

O O O O
(3,n-2) (3,n-1) (3,n) (3,1)
O O O O
(2,n-2) (2,n-1) (2,n) (2,1)
O D} C O
(1,n-2) (1,n-1) (1,n) (1,1)
O O O O
(m,n-2) (m,n-1) (m,n) (m,1)

FIGURE 6.5: Vertices of toroid ?

— the color of (3,n — 2) in the star {(3,n —1),(3,n —2), (2,n — 1)},

— the colors of (2,1) and (1,n) in the star {(2,n),(2,1), (2,n —1),(1,n)},
To color vertex (2,n) consider the star {(2,n),(2,1), (2,n —1),(1,n)}, see Figure
6.5. Colors in the leaves are compatible, so by Property P.(3,2) we have at least

two ways to color vertex (2,n). We choose the one which is compatible with the

color of vertex (3,1) in the star {(3,n),(3,1),(2,n)}.
In the same way we color vertices (j,n — 1) and (j,n), for 3 <j <m —2.

Consider last four vertices of ?, namely a = (m—1,n—1),b=(m—1,n), c =
(m,n—1) and d = (m,n), see Figure 6.6. Consider the star {a, (m—1,n—2), (m—
2,n—1)}. The colors in leaves are compatible, so using Property P.(2,5) there are

at least five colors to color vertex a. We choose the one which is compatible:

— with colors of vertices (m,n—2) and (1,n—1) in the star {¢, (1,n—1), (m,n—
2),a} and

— with colors of vertices (m —1,1) and (m — 2, n) in the star {b,(m—1,1), (m —
2,n),a}

We have used 24 colors so far. For vertices b, ¢, d we use three additional colors.

O

In order to prove Lemma 6.5 first we prove the following lemma:

Lemma 6.15. X (C,,0C,) < X (CpnOP,_2) + 2m, for m,n > 3.
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(1,n-1) (1,n)

(m,n-2) c d (m,1)
O O O O
(m-1,n-2) a b (m-1,1)
O O O O
@) O

(m-2,n-1) (m-2,n)

FIGURE 6.6: Last four vertices of ?

Proof. The proof resembles the Proof of Theorem 6.4. Let ? be any orientation of a
toroid T'(m,n). Once again, we identify each vertex u € ? with the pair of its coordinates
(i,7), 1 <i<m, 1< j <n. Consider the cylinder 8 obtained from ? by removing the
vertices (i,n — 1) and (i,n), for 1 <i < m. Let ﬁ be a coloring graph, such that there
exists a coloring c : 8 — ﬁ We construct the coloring of ? in following way:

Step 1 color vertices (i,j), 1 <i<m,1<j<n-—2by ﬁ,

Step 2 color vertices (j,n — 1) and (j,n), for 1 < 7 < m with additional 2m colors.

Proof of Theorem 6.5.

It is easy to see that nine colors are sufficient to color any orientation of 7°(3,3). On
the other hand, it is tedious but easy task to check that there exists an orientation of
T'(3,3) such that any two distinct vertices u,v of T'(3,3) are connected by a direct path

of length at most 2. The remaining cases follow from Lemma 6.15 and Lemma 6.3. [



Chapter 7

The oriented chromatic number of

strong-grids

In this chapter, we improve the bounds for the oriented chromatic number of the family

G¥ of all strong-grids by showing that:

Theorem 7.1. 11 < ' (G%) < 88.

Moreover, we show that:

Theorem 7.2 (Dybizbaiiski and Nenca (2017)). There exists an orientation of the
strong-grid G¥(2,398) that cannot be colored by any coloring graph with ten vertices.
This gives the exact value for the oriented chromatic number of the strong-grids with
two rows.

Corollary 7.3. ¥ (G¥) = 11.

Furthermore, we give new upper bounds for the oriented chromatic numbers of the family
of strong-grids with three or four rows by showing that:

Theorem 7.4 (Dybizbaniski and Nenca (2017)). Every orientation of every strong-grid

with & rows can be colored by the Paley tournament ?19.
Corollary 7.5. 11 < ¥(G%) < 19.

Theorem 7.6. Every orientation of every strong-grid with 4 rows can be colored by a

coloring graph with 38 vertices.
Corollary 7.7. 11 < Y (G¥) < 38.

99
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Similarly as in Chapter 2 we define a strong-comb.

Definition 7.8. The strong-comb RZ is an undirected graph with the set of vertices
V(RE) = {(1,1),...,(m,1),(1,2),...,(m,2)} and edges of the form {(i, 1), (i,2)}, for
1 < <m, and edges of the form {(,2), (i+1,2)}, {(4,1),(¢+1,2)}, or {(i+1,1),(3,2)},

for 1 < i < m; see Figure 7.1. The vertices (1,1),...,(m,1) form the first column of the
comb while (1,2),...,(m,2) form the second column.
(1,1)e o(1,2)

X

(2,1)e

°(2,2)

(m—1,1)e o(m—1,2)

X

(m,1)e

*(m,2)

FIGURE 7.1: The strong-comb R%.

Let H be a coloring graph, s be a sequence s = (S1,...,8p,) € V(ﬁ)m and B% be an
orientation of the strong-comb RX. By NEXT (s, ﬁg, ﬁ) we define the set of reachable
colorings of the second column of the orientation ﬁ'z’, when the vertices of the first column
of K% are colored by s. Furthermore, NEXT(S, ﬁg, ﬁ) = Useg NEXT (s, ﬁg, ﬁ)
For an orientation 8& of a strong-grid G¥, and a coloring graph ﬁ, we define:

oS (8&, ﬁ) the set of reachable colorings of the last column of ég,

o SB(H)={S(C%.H): G% e g¥},

o S2(H) the family S2(H) = {S(G%, H) : G¥ € g8},

7.1 Upper bound for ¥ (G%(m,n))

Consider the Paley tournament 743. Applying Lemma 2.21 we have:
Corollary 7.9. The Paley tournament ?43 has properties P(1,21), P(2,10).
Lemma 7.10 ([14]). The smallest Paley tournament with the property P(3,3) is ?43.

%
Consider the Tromp graph ?88 = TT‘(?43), see Definition 2.25. Applying Lemma 2.21

and Lemma 2.27 we have:
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Corollary 7.11. The Tromp graph ﬁ(?@,) has properties P.(2,21), P.(3,10), P.(4,3).

_>
Lemma 7.12. Let (u,v) € A(Tr(a)) be an arc. Then neither w = v nor u and v are

twin vertices.

Corollary 7.13. Suppose that x and y form an arc in a grid, they are leaves in an
%
oriented star I—%, and they are already colored by a Tromp graph Tr(a), then the colors

c(x) and ¢(y) are compatible.

The upper bound from Theorem 7.1 follows from the following theorem:

3

Theorem 7.14. Every orientation of every strong-grid G*(m,n) can be colored by a

’f‘( 43).

2l

coloring graph with 88 vertices, namely, by the Tromp graph

Proof. Let 8® be any orientation of strong-grid G¥(m,n). We identify each vertex
u € 8& with the pair of its coordinates (i,j), 1 <i<m, 1< j <n.

(1,1) (1,2) (1,3) (1,n)
Q o O - o

(2,1) 2) (2,3) (2,n)
C D O
¢ e 0

(3,1) .2) (3,3) (3,n)
e e Or === mm e O

(4,1) i (4,2) (4,3) (4,n)
b o O 5

(m,1) (m,2) (m,3) (m,n)

FIGURE 7.2: Strong-grid G¥(m,n).

We shall show that gg can be colored by ?88 = ﬁ(?m). We color the vertices of 8&

column by column in such a way that colors ¢(i, 7) and ¢(i + 2, j) are compatible in the
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star (i + 1,5+ 1),(4,7), (i + 2,7). For the first column, clearly, it is always possible to
color any oriented path by homomorphism to ?gg in such a way, that the vertices (i, 1)
and (i +2,1) has colors compatible in the star {(i+1,2), (¢,1), (i +2,1)}. Now, suppose
that j > 1 and the columns from 1 to j — 1 are already colored in this way. In order
to color the vertex (1,j) consider the star {(1,7),(1,7 —1),(2,5 — 1)}, see Figure 7.3.
Vertices (1,7 — 1) and (2,5 — 1) are neighbors, hence by Corollary 7.13, their colors are

(27.]_1)
FIGURE 7.3: Star {(1,7),(1,7 —1),(2,5 — 1)}.

compatible. Thus, by Property P.(2,21), there are 21 colors available for (1, ), and we
can choose a color which is compatible with the colors of vertices (2,5 — 1) and (3,7 — 1)

in the star {(2,7),(1,7), (1,7 —1),(2,7 —1),(3,7 — 1)}, see Figure 7.4.

(Lj_l) (17.])
(2)j_1) (2a.])
(3:-1)

FIGURE 7.4: Star {(2»])7 (Lj)v (L] - 1)7 (23.7 - 1)’ (37] - 1)}

In order to color (2, j), consider the star {(2,7), (1,7), (1,7 —1),(2,7—1),(3,5 —1)}, see
Figure 7.4. Colors in the leaves of the star are compatible. Indeed: colors in the pair
(4,7 —1),(i + 2,5 — 1) are compatible, by induction hypothesis. The color in (1,7) has
been chosen to be compatible with the color of (3,5 — 1), and colors in every other pair
are compatible, because it (the pair) forms an arc. Hence, by Property P.(4,3), we have
at least three colors to color (2, j). We choose one which is compatible with the color of
(4,7 — 1) in the star {(3,7),(2,7), (2,7 —1),(3,7 —1),(4,7 — 1)}, see Figure 7.5.

(2,j-1) (2,))
(37j'1) (37J)
(4.)-1)

FIGURE 7.5: Star {(3,7),(2,7), (2,7 —1),(3,5 —1),(4,5 —1)}.

To color (3, j), consider the star {(3,7),(2,7), (2,4 —1),(3,5 —1),(4,5 — 1)}, see Figure
7.5. Colors in the leaves are compatible, so by Property P.(4,3), we have at least three

colors to color (3, 7). We choose the one which is compatible
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e with the colors of vertex (5,j—1) in the star {(4, 5), (3,4),(3,7—1), (4,5 —1),(5,5—
1)}, see Figure 7.6, and

(37.]'1) (37J)
(47.]'1) (47.])
(S)j_l)

FIGURE 7.6: Star {(4,7),(3,7), (3,7 —1),(4,5 —1),(5,5 — 1)}.

e with the color of vertex (1,7) in the star {(2,j + 1),(1,7),(3,7)}, see Figure 7.7.

(2.J) (2.j+1)

FIGURE 7.7: Star {(2,5 +1),(1,5),(3,7)}.

We continue this way to color vertices (4, j),...,(m,j) and similarly we color the next

columns.

7.2 Strong-grids with two rows

First we show that every orientation 31 of G¥(2,n) is isomorphic to a grid 82 which
has all vertical arc oriented downwards. In order to show this, suppose in 81 we have
an arc ((2,7),(1,7)) for some 1 < ¢ < n, and consider the orientation 82 such that

((1,2),(2,1)) € A(ég) and for every common neighbor z of (1,4) and (2,7)
(z,(1,)) € A(G2) <= (z,(2,i)) € A(C1)

and

(z,(2,1)) € A(G2) <= (z,(1,9)) € A(C1).
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All other arcs in 32 are the same as in 31. It is easy to see that the function f : 81 —
82, where
(2,1) ifu=(1,1),
flu) =19 (1,4) if u=(2,1),

U otherwise

is an isomorphism. Using this observations we can reverse other arcs in 81 one by one.

Proof of Theorem 7.2.

Using nauty [30] we generate a sequence ﬁl, cees ﬁ M, where M = 9733056, of all non-
isomorphic tournaments with ten vertices. By the remarks above, we can consider only
those orientation of G®(2,n) with all vertical arcs of the form ((1,4), (2,1)).

To construct an orientation of a strong-grid that cannot be colored by ten colors we use

the following algorithm:

Algorithm
Output: Strong-grid 8%[ not colorable by any tournament with ten colors.

Go is the grid with V(Go) = {(1,1),(2,1)} and A(Go) = ((1,1),(2,1))
for i ;=1 to M

1
2.
3. 81 = Extend(ai_l, ﬁz)
4

return 8]\4

The function Extend uses a queue (). It starts with an empty ) and computes the set
S = S(ai_l,ﬁi). If the set S is not empty then it is put to the queue Q). Next, the
algorithm takes one by one a set S from the queue @) and for every orientation ﬁ&
of the strong-comb RY, computes the set S’ = NEXT(S, ﬁ'z’.ﬁ) and adds S’ to the
queue, provided it is new. Moreover, the function puts to an additional memory the
triple: the set S, the orientation ﬁg and the set S’. The function stops when the
empty set of colorings is reached. After this the function reconstructs a grid 8i, such
that S(EZ, ﬁz) = () and 81 is an extension of 81-,1. To do this the function uses the

information kept in the additional memory.

Using the algorithm we have found the orientation E’);E of G¥(2,398) that cannot be
colored with ten colors. The orientation 8? is posted on the website https://inf .ug.

edu.pl/grids/. We can obtain a grid of different size, when we change the order of

graphs ﬁl, .. .,ﬁM.


https://inf.ug.edu.pl/grids/
https://inf.ug.edu.pl/grids/
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7.3 Strong-grids with three rows

Proof of Theorem 7.4.
We use an algorithm, similar to the algorithm described in Section 5.1 to show that any
orientation 8® € ggﬁ can be colored by the Paley tournament ?19. We show that the

empty set is not reachable on the last column of any 3@ € Qgg.

Since the Paley tournament ?19 is arc-transitive and self-converse, we can store in
memory only those orientations G of G®(3,n) where ((1,n), (2,n)) € A(a&) and only
those colorings where ¢(1,n) = 0 and ¢(2,n) = 1. Thus, there are only two orientations

of the last column and only nine colorings of the last column.

The algorithm starts with the path P; = Gg(?), 1). For every orientation ? of P3, such
that ((1,1),(2,1)) € ?, it computes the set of reachable colorings S(?,?lg). The
algorithm uses queue to store such sets. Next the algorithm takes from the queue one
by one a set T and, for every orientation ﬁ& of the strong-comb R? , computes the
set 7" = NEXT(T, ﬁ&,?lg). The set 7" is added to the queue if it is new. After
running the algorithm, we found that the empty set of colorings of the last column is not
reachable. O

7.4 Strong-grids with four rows

We use an algorithm similar to algorithm described in Chapter 4 to show that every

orientation of every strong-grid with four rows can be colored by 38 colors.

Definition 7.15. Let 8 be an oriented graph and 8’ be an isomorphic copy of 8 For
every u € V(a) by u' € V(a’) we denote the isomorphic copy of u. The push-graph
?(8) has 2|V(8)| vertices and is defined as follows (see [25]):

e V(B(@) =V(G)uv(a,
3 Vu’vev(Ez% (um)eA(a)(u,v), (', 0", (v,u)), (v, u) € A(?(a)),
see Figure 7.8. The vertices u € V(a) and u' € V(a’ ) are called twin vertices.

Consider an oriented graph ﬁgg = ?(?19) and the set

S ={(c1,c2,¢3,¢4) 1 C1y...,c4 € V(ﬁgg), ¢i # ciy1 and ¢; # ¢, for 1 <i <4 and

¢i # ciyo and ¢; # ¢, for 1 < i < 2},

Using a computer, we have checked that the set S has the following properties
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FIGURE 7.8: Push-graph ?(8)

(a) for every orientation P of path Py = (v1,...,v4), there exists a coloring c : P
ﬁgg such that (c(v1),...,c(vq)) € S,

(b) for every orientation R of the strong-comb RY and every sequence (cy, ..., cq) €

S, there exists a coloring c : ﬁg — ﬁ;gg such that:

(1) (e(1,1),...,¢(4,1)) = (¢1,...,c4) and
(2) (e(1,2),...,¢(4,2)) € S.

Theorem 7.6 follows from the following lemma:

Lemma 7.16. For every orientation ?‘3@ of G®(4,n) there exists a coloring c 8® —

His.



Chapter 8

Signed coloring

In this chapter we consider signed chromatic number of grids. We show that:

Theorem 8.1 (Dybizbarniski, Nenca, Szepietowski (2020) [13]).
5 < xs(9) <6.

The upper bound 6 follows from Theorem 1.16 and the fact that grids are acyclic 3-
colorable. However, we think that our proof of the upper bound is much more direct and

constructive. Moreover, we show that:

Theorem 8.2 (Dybizbanski, Nenca, Szepietowski (2020) [13]).
Every signed grid with at most seven rows can be colored by the Paley graph SPs.

Corollary 8.3. xs(G(m,n)) =5, for 3<m <7 and n > 4.

Furthermore, we show that:

Theorem 8.4 (Dybizbanski, Nenca, Szepietowski (2020) [13]).

(a) xs(G(2,n)) =4 forn >2 and

(b) xs(G(3,3)) = 4.

8.1 Definitions

Consider a grid G(m,n). For each pair z, y, with 0 <z <m —2and 0 <y < n — 2,
let Cy, denote the cycle which consists of the vertices: (z,y), (x,y +1), (z+ 1,y + 1),
(x+1,y). We shall call C, , a square. Suppose that o is a signature of the grid G(m, n).

b2

We say that the square C, is balanced if it has an even number of "—" edges, and

67
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unbalanced otherwise. The type of the signed grid (G(m,n),o) is the array [g;,] with
gz = b if the square C, , is balanced, and g, , = u otherwise, where 0 <z < m — 2,
0<y<n—2.

Lemma 8.5 ([32]). If a graph G has M edges, N vertices, and C components, then there

are 2M=N+C distinct equivalent classes of signed graphs on G.

Lemma 8.6. Two signed grids are equivalent if and only if their types are equal.

Proof. The resigning does not change the type of the grid. Hence, two equivalent grids
are of the same type. On the other hand, there are 2(m=1)(n—1) types and 2(m—1)(n—1)

equivalent classes, hence, grids with the same type are equivalent. O

Corollary 8.7. Two signed grids (G,o) and (G, —0o) are equivalent.

8.2 Signed coloring graphs

2

FIGURE 8.1: Coloring graph SP5. Dotted (solid, respectively) edges have sign ”—"
("4, respectively).

Definition 8.8. The signed graph SP; with the set of vertices {0,1,2,3,4} with

(u) - if v—u=2o0r3 (mod?5),
o(uww) =
+ otherwise.

is called the signed Paley graph SPs.

Lemma 8.9. For each a € {1,4} and b € {0,1,2,3,4}, the function h(z) = a -z +b

(mod 5) is an automorphism in SPs.

Lemma 8.10. For every edge (u,v) € SPs signed by "+, there exists an automor-
phism h such that h(u,v) = (0,1). For every edge (u,v) signed by "—7, there exists an
automorphism h such that h(u,v) = (0,2).

Lemma 8.11. Every two different vertices u,v € V(SPs) can be connected by one bal-
anced and two unbalanced paths of length two. A path of length two is unbalanced if its

edges have different signs, and is balanced otherwise.



Signed coloring 69

8.3 Signed grids with at most seven rows

In this section, we prove the Theorem 8.2. We show that every signed grid [G, o] with
at most seven rows can be colored by the signed Paley graph SPs; see Figure 8.1. The
proof is computer aided. Consider a signed grid [G, o] with m rows. We say that a
vector t = (t1,...,tm) € {0,1,2,3,4}™ is reachable on the signed grid [G, o] if there is a
presentation (G, o) of [G, o] and a coloring of (G, o) by SPs, such that ¢ is the coloring
of the last column of (G, o). The set

Sm([G,0]) ={t € {0,1,2,3,4}"™ : t is reachable on [G, o]}

is called the set (of colorings) reachable on [G, o]. We have designed an algorithm, similar
to the algorithm described in Chapter 5 which for given natural m, 5 < m < 7, generates
all sets reachable on signed grids with m rows. We have found that the empty set of
colorings is not reachable, for m = 5,6, 7.

Let ¢t be a sequence t = (t1,...,tn) € {0,...,4}"™ and (R,0) be a presentation of a
signed comb with R = R,,.

By NEXT(t,(R,0)) we donote the set of reachable colorings of the second column of

the comb (R, o), when the vertices of the first column of (R, o) are colored by t.

By Type(t,(R,0)) € {b,u}™ ! we define the type of signed grid (G(m,2),\), which is
obtained from (R, o) by adding signs to edges {(i,1), (¢ + 1,1)}, in such a way that the
sign of each edge {(7,1),(i+1,1)} in the grid (G(m,2), \) equals to the sign of the edge
{ti,tix1} in SPs.

We give a simple version of an algorithm for m = 5, namely SimpleGenerateSetss.

Algorithm SimpleGenerateSets;
OUTPUT: an information whether there exists a signed grid [G(5,n), o] which is not
colorable by SP;5 or, in other words, whether the set of colorings reachable on the last

column of [G(5,n),c]) is empty

compute S5([SPaths, o))
Q « S5([SPaths, o))
while Q # 0 do
T+ Q
for each type 7 € {b,u}*
T =0

D O W N
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for each signature (R,0) of the comb Rj

8. for each sequence t €T

9. if the Type(t,(R,0)) =T

10. add NEXT(t,(R,0)) to T’
11. if 77 is empty

12. return "found empty set"

13. if 7’ was never in the queue

14. Q<+ T

15. return "not found empty set"

First, in line 2, the algorithm computes the set S5([SPaths,o]) (of colorings reachable
on the first column) and puts it in a queue (). Observe that all signatures of the path

are equivalent, so we have one set of colorings.

Next, it repeats the following steps (lines 3-14):

(1) It takes a set T from the queue @,

(2) It computes the sets of colorings that are reachable from 7' by adding comb on the

last column of grid (on which T' is reachable).

Note, that a signature (R,o0) of Rs can create different types of the squares formed
by two last columns of glued grid, depending on the sequence t. Hence, the algorithm
compute sets of reachable colorings separately for every type 7 (lines 5-14). For every
type 7 the algorithm create a new set T”, and then, for every signature (R, o) of the
comb R and for every sequence t € T', it checks if the T'ype(t, (R, o)) is the same as 7.
If so, the algorithm computes the set NEXT(t,(R,0)) and add it to T". After checking
all signatures and all colorings ¢, the set T stores the set of reachable colorings on the
new last column. If the set is empty, then the algorithm returns an information that an

empty set has been found. Otherwise, it puts the set 7" in queue Q if it is new.

We have also designed another more efficient version of the algorithm, by changing the

order of the loops and by using symmetries in SPs.

8.4 Lower bound

Theorem 8.12 (Dybizbaniski, Nenca, Szepietowski (2020) [13]). There exists a signed
grid [G(3,4), 0], with three rows and four columns which cannot be colored with four

colors.
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Proof. Consider the signed grid [G(3,4), o] presented on Figure 8.2. The middle square

ai a2 as a4
b2 b3
b1 b4
C1 C2 C3 C4

FIGURE 8.2: Signed grid [G(3,4), 0]

in the first row is balanced and all other squares are unbalanced. We shall show that
the signed grid [G(3,4), 0] cannot be colored by any graph H = (K4,), where Ky is
the clique with four vertices. Without loss of generality we may assume that H has at
least three edges signed by "+”. Indeed, if a signed grid (G, o) is colored by a graph
H with less than three "+” edges, then we can flip all signs both in (G, o) and H, and
obtain a coloring of the grid which is equivalent with (G, o), by the graph with more
than three "+” edges. Observe that since [G(3,4), o] has unbalanced squares, H should
have an unbalanced cycle of length four. There are three nonisomorphic such graphs,

namely SH;, SHo, and (Cgo), presented on Figure 8.3, Figure 8.5 and Figure 8.6.

Case 1. Coloring graph SH; — the clique K4 with one edge signed by ”—". Note that in

1 » 4

2 >3

Fi1GURE 8.3: Coloring graph SH;

each unbalanced square colored by SHj: vertices have different colors, exactly one edge

has sign ”—", and this edge is colored with 1, 2.
First, consider the signed grid [G(2,3),\] with two unbalanced squares presented on
Figure 8.4. Suppose that there is a presentation (G(2,3), A1) of [G(2,3),A] which is

X1 X2 Zs3

|

Y1 Y2 Y3

FIGURE 8.4: [G(2,3), \].

colored by SH;. It is easy to observe that if an edge in the first row, say ziz9, has the
sign ”—", then: both edges in the first row have ”—", the vertices x1, x2, x3 have colors in

{1,2}, and the vertices y1, y2, y3 have colors in {3,4}. Similarly, if an edge in the second
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row has the sign ”—", then the vertices y1, y2, y3 have colors in {1,2} and z1, z9, z3 have
colors in {3,4}.

Now, suppose, for a contradiction, that there is a presentation (G(3,4), 01) of [G(3,4), 0]
which is colored by SH;. The square by, b3, c3, co is unbalanced, so one of its edges is

” and has colors 1,2. We have four subcases:

signed with ”—
(1.1) The edge (b2,b3) has ”—". All three squares in the second row are unbalanced.
Hence, by the above observation, all vertices in the second row (by, ba, b3, by) have
colors in {1,2}. Furthermore, all vertices in the first row have colors in {3,4},
because the squares aq, as, b, b1 and as, aq, bs, b3 are unbalanced. Hence, we have

a wrong coloring of the balanced square as, as, b3, bo.

(1.2) The edge (c2,c3) has "—". Similarly as in subcase (1.1), all vertices in the second
row have colors in {3,4}, and all vertices in the first row have colors in {1,2}.

Again, we have a wrong coloring of the square ao, as, b3, b.

(1.3) The edge (b, c2) has "—". Then: vertices in column ag, be, c2 have colors in {1, 2},
vertices in column ay, by, ¢4 have colors in {1,2}, and vertices in column as, bs, c3

have colors in {3,4}. Hence, we have a wrong coloring of the square as, as, b3, ba.

(1.4) The case where the edge (b3, c3) has ”—", is similar to the subcase (1.3).

Case 2. Coloring graph SHy — the clique K4 with two incident edges signed by ”—", see
Figure 8.5. In SH» edges (1,3) and (1,4) have sign "—". Note that in each unbalanced

1 3

4 2

F1GURE 8.5: Coloring graph SHs.

square colored by SHs: vertices have different colors and exactly one edge has sign ”—".
Moreover one of the neighbors of the vertex colored by 1 is colored by 2. Hence, each
unbalanced square has an edge colored by {1,2}. The rest of the proof goes exactly like

in Case 1.

Case 3. Coloring graph (Cy 0)7 the signed graph obtained from SPs; by removing the
vertex 0, see Figure 8.6.

Lemma 8.13. The function f(x) =4 -z (mod 5) is an automorphism in (C5°).

Lemma 8.14. Let (G,0) be a signed grid, 1 be a homomorphism from (G, o) to (C’go),
and (u,v) be an edge in G. Then there is a signed grid (G,d’) equivalent to (G,o) and
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do———e3

FIGURE 8.6: Coloring graph (Cj %)

a homomorphism ¢ : (G,0') — (C5°) such that {¢(u), (v)} = {1,2} or {p(u), p(v)} =
{2,3}.

First, consider the signed grid [G(2,3), \] presented on Figure 8.4. Suppose that there
is a signature A3 and a homomorphism ¢y : (G(2,3),\3) — Hs. It is easy to observe
that: if an edge in the first row has the both colors in {2,3} or in {1,4}, then ¢3(z1) =
¢3(x3). Similarly, if an edge in the second row has the colors in {2,3} or in {1,4}, then

¢3(y1) = ¢3(y3).

Now, suppose, for a contradiction, that there is a presentation (G(3,4), o2) of [G(3,4), 0]
which is colored by SP;. By Lemma 8.14, we may assume that the edge (be, b3) has the
sign ”+” and is colored with 1,2 or 2, 3.

(3.1) If the edge (b2, bs) has colors (1,2), then the edge (c2,c3) has colors (4,3). By the
above observation, as is colored by 4 and as is colored by 3, hence, we have a wrong

coloring of the balanced square a9, as, bs, bo.

(3.2) If the edge (b2,b3) has colors in (2,3), then, all vertices in the second row have
colors in {2,3}. Hence, all vertices in the first row have colors 1 or 4, because
the squares a1, ag, ba, by and as, a4, by, b3 are unbalanced. Hence, we have a wrong

coloring of the balanced square as, as, bs, bo.

8.5 Upper bound

Let (C’5+ 5) denote the signed graph obtained from SPs; by adding the vertex 5 and

connecting it with all other vertices by edges signed with ”—", see Figure 8.7.

Lemma 8.15. For each a € {1,4} and b € {0,1,2,3,4}, let h be the function defined
by:

5 otherwise.

h(x):{a-x—&—b (mod 5) if © # 5,

The function h is an automorphism in (C3°).
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FIGURE 8.7: Signed graph (C3®)

Lemma 8.16. Each edge (u,v) € E(CF?) can be mapped by an automorphism on one
of the following three edges: (0,1), (0,2), (0,5). More precisely:

e if u,v # 5 and (u,v) is signed by "+7, there is an automorphism ¢ such that
¢(u,v) = (0,1);

o if u,v # 5 and (u,v) is signed by "—7, there is an automorphism ¢ such that
¢(u,v) = (0,2);

e if v =5, there is an automorphism ¢ such that ¢(u,v) = (0,5).

Lemma 8.17. Every two different vertices u,v € V(Cg“r’) can be connected, by two

unbalanced paths of length two and by two balanced paths of length two.

Lemma 8.18. Consider a signed path [Ps, o] with vertices x, y, and z, and a coloring
¢: Py — (C’;5). Suppose that the two end-points x and z are already colored by ¢(x)
and ¢(z), with ¢(x) # ¢(z). Then we can color y by two colors. When coloring some

resigning in y may be necessary.

Theorem 8.19 (Dybizbanski, Nenca, Szepietowski (2020) [13|). Every signed grid
[G(m,n),c] can be colored by the graph (C5°).

Proof. We color the first row vertex by vertex without any resigning. We always have
at least two possibilities to color the next vertex. Next, assume that k — 1 rows are
colored and we want to color the kth row. Let us denote by aq,...,a, and by,...,b, the
consecutive vertices of the (k — 1)th and kth rows. First, note that the vertex b; can
be colored in at least two ways (without resigning). We choose for b; the color which is
different from the color in as. By Lemma 8.18, we can color the vertex by by two colors
coly and coly. It is possible that the resigning in bs is necessary. Now, we choose for by
the color which is different from the color in ag. In the same way we color the rest of the

kth row. ]
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8.6 Grids with two, three or four rows

Theorem 8.20 (Dybizbariski, Nenca, Szepietowski (2020) [13|). Every signed grid [G, o]
with two rows can be colored by the graph (C5 ).

Proof. Let us denote by aq,...,a, and by, ..., b, the consecutive vertices of the first and
second rows of [G,c]|. We shall show that G can be colored in such a way that every

column has colors in {1,4} or in {2, 3}.

First, we color a; and by with colors in {1,4}. Assume now, that the vertices a1, ..., a;_1,

b1,...,b;_1 have been colored in the previous steps.

e If the square a;_1,a;,b;,b;—1 is balanced, then we color the edge (a;,b;) with the
same set of colors as we use in the column (a;—1,b;—1).
e If the square a;_1, a;, b;, b;—1 is unbalanced, then we color the edge (a;, b;) with the

set of colors which is disjoint with colors in the column (a;—1,b;—1).

It is easy to see that such coloring is always possible, because we can make resigning in

the vertices a; and b;. O

Theorem 8.21 (Dybizbanski, Nenca, Szepietowski (2020) [13]). Every signed grid
[G(3,3), 0] with three rows and three columns can be colored by the graph (Cy°).

Proof. Let us denote by a1, as,as, by, b, b3 and ¢y, ca, c3 the consecutive vertices of the
first, second and third rows of [G(3,3),0]. We color the grid in the following way: the
vertex by is colored with 2. The vertices as and cy are colored with 1, and the vertices
by and b3 are colored with 3. Now, for every vertex x € {a1,as,c1,cs}, the vertex z is
colored with 2, if the square containing x is balanced, and is colored with 4, if the square

is unbalanced.

It is easy to see that the signature induced by the coloring is equivalent with the original

signature o. O

Theorem 8.22 (Dybizbariski, Nenca, Szepietowski (2020) [13]). Every signed grid [G, o]
with four rows can be colored by the graph SPs.

Proof. The theorem follows from the Theorem 8.2. Here we present a proof which does
not use a computer. Let us denote by ai,...,an, b1,...,bn, c1,...,¢cn, and dy,...,dy,
the consecutive vertices of the first, second, third, and fourth row of [G,o]. We shall

show that [G, o] can be colored column by column. The first column is colored in an
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arbitrary proper way. Now, assume that the columns from 1 to ¢ — 1 have been colored
in the previous steps. Without loos of generality we may assume that ¢(b;—1) = 0 and
¢(ci—1) = 1. In order to color the ith column: first, we color vertices b; and ¢; in such a
way that ¢(b;) # ¢(a;—1) and ¢(¢;) # ¢(di—1). If necessary we make some resigning in
b; or ¢;. Next, we color vertices a; and d;. Again we may make some resigning in a; or

d;. It is easy to see that such coloring is possible. O



Chapter 9

Further Work

In this chapter, we present several problems left for future work.

9.1 Is X(G) > 8?

In Chapter 3, we have shown that there exists an orientation of a grid with seven rows
that cannot be colored with seven colors. We have tried to find traps for all coloring
graphs with 8 vertices. There are 6880 nonisomorphic tournaments on 8 vertices. When
Algorithm FindTrap,, (see Section 3.1) is applied to grids with seven or eight rows, it
often loops and does not obtain the answer. We have found traps with seven rows for all

nonisomorphic tournaments on 8 vertices except 1127. We pose the following conjecture:

Conjecture 9.1. X'(G) > 8.

9.2 Is Y (G) < 107

In Chapter 4, we have shown that any orientation of any grid with six, seven or eight
rows can be colored by the coloring graph with ten vertices ﬁm; see Theorem 4.1. For
grids with eight rows, we have found that the set .S is closed under extension; see Section
4.2. The set S consists of over 90% of all possible sequences. Thus, we pose the following

conjecture:

Conjecture 9.2. ¥ (G) < 10.

7
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9.3 Problems related to the coloring graph ?7

The graph ?7 is obtained from the Paley tournament ?7 by reversing one arc. In
Chapter 3, we have shown that there exists the orientation of a grid G(7,22) (see Figure
3.15) that cannot be colored by ?7.

The graph ?7 is neither self-converse nor arc-transitive. Hence, the families 85((777),
86(?7) and even 84(?7) are very big and cannot be handled with simple algorithms.
We have only generated the family 83(%7) that has 980 elements of 4 - 2'1? possible.
We know that () ¢ 83(?7). Thus, all graphs in Gs can be colored by ?7. Although we
do not know whether ?7 can color all graphs in G,,, for m = 5 or 6, we know that no
other coloring graph with seven vertices can color the whole G5 or Gg. For grids with
four rows, we do not know whether G4 can be colored by ?7, although we know that it
can be colored by ?7; see [53].

Problem 9.3. Is X (Gs) = 77

Problem 9.4. Is X (Gg) = 77

9.4 Signed coloring

In Chapter 8 we have shown that any orientation of any grid with three, four, five, six
or seven rows can be colored by the signed Paley graph SPs; see Theorem 8.2. We have
tried several algorithms to generate a grid which is not colored by SP5; and so far we

have not succeeded. Therefore, we pose the following conjecture:

Conjecture 9.5. Every signed grid [G, o] can be colored by the graph SPs.
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