

University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Anna Gogolińska

Algorithms Inspired by Petri Nets in Modeling
of Complex Biological Systems

PhD dissertation

Supervisor

prof. dr hab. Wiesław Nowak

Faculty of Physics, Astronomy and Informatics
Nicolaus Copernicus University in Toruń

May, 2015

Author's declaration:
aware of legal responsibility I hereby declare that I have written this dissertation
myself and all the contents of the dissertation have been obtained by legal means.

........................... ..
 date Anna Gogolińska

Supervisor's declaration:
the dissertation is ready to be reviewed

........................... ..
 date prof.dr hab. Wiesław Nowak

iii

Algorithms Inspired by Petri Nets in Modeling of Complex Biological Systems

Abstract

In this dissertation new tools for the fields of bioinformatics, data mining and operational

research are developed. New algorithms were inspired by Petri nets. Petri nets (PNs) belong

to mathematical modeling languages and are used in science and technology. The PNs

typically have a form of a bipartite graph with two kinds of nodes: places and transitions, but

they may be represented as matrices as well. The aims of the thesis were to exploit the

properties and to extend the applications of PN in a new area of modeling of complex

biological systems. Apart from the applications of classical, timed and priority-based PNs, a

new type of the PNs – the random priority-based Petri nets - has been proposed for the first

time. In those networks transitions are fired randomly and the probability of firing is

proportional to the priority of the transition. This property is strongly desirable in the

molecular dynamics simulations (MD) considered here. Moreover, the priority-based

networks were tailored to aimed applications.

A new, improved, PN based model of the immune system (IS) has been developed. The t-

invariant analysis of the model has been performed. All t-invariant, t-clusters and MCT sets

were found, and their biological meanings were identified. The model is correct, since it has

the CTI property – every transition is a part of at least one t-invariant. Selected phenomena

and diseases were added to the model, such as fever, ageing, infection of the HIV virus,

Adult-Onset Immunodeficiency Syndrome disease and Autism Spectrum Disorders. The

responses of the IS to such external stimuli were modeled. Particularly pioneering is the study

of the correlation between fever and autism.

A possibility of parallelization in PN studies is discussed. A novel algorithm for parallel Petri

net simulations using the CUDA/GPU technology has been developed and tested. Our

algorithm outperforms classical ones when used for very large PNs.

In order to generate adequate biological data, sets MD computer simulation study of two

complexes were performed: the grass pollen and its antibody and the chemokine MCP-1 and

its antibody. Both classical MD and steered MD trajectories were calculated. Simulations

substantiated the validity of certain experimental techniques based on Atomic Force

Microscopy. Huge sets (>10
6
) of structural data were further classified using our new Petri

networks. MD trajectories are difficult to analyze. Therefore, completely new groups of

methods of an MD trajectory analysis were formulated. Three algorithms were designed:

OPOA (one place one atom/amino acid), OPOC (one place one conformation) and CON

(contact algorithm) and their computational time complexity were analyzed. All three

algorithms can generate classical, timed, priority-based or random priority-based Petri nets. In

the thesis many biological examples of the generated PNs and their interpretations are

presented. Such results have never been proposed before.

Our studies show that PN formalism can be a powerful tool useful in bioinformatics and, in

particular, in MD simulations analysis.

iv

Keywords: Petri nets, computer modeling, algorithms, molecular dynamics analysis, immune

system, concurrent algorithms, GPU, CUDA, data mining, clustering algorithms

ACM classification:

Software and its engineering  Software system models  Petri nets

Theory of computation  Design and analysis of algorithms

Applied computing  Life and medical sciences  Bioinformatics

Applied computing  Life and medical sciences  Computational biology  Molecular

structural biology

v

Algorytmy oparte o formalizm sieci Petriego w modelowaniu złożonych systemów biologicznych

Abstract

W rozprawie wprowadzone i opisane są nowe narzędzia obliczeniowe z dziedziny bioinformatyki,

wydobywania danych oraz badań operacyjnych. Powstałe algorytmy oparto o formalizm sieci

Petriego. Sieci Petriego należą do matematycznych języków modelowania, są używane w nauce i

technice do reprezentowania oraz analizy skomplikowanych układów. Sieci te mają formę grafu

dwudzielnego z dwoma typami wierzchołków: miejscami i tranzycjami, bywają reprezentowane jako

macierze. Celem rozprawy było zbadanie możliwości nowego wykorzystania sieci Petriego w biologii

obliczeniowej czy bioinformatyce strukturalnej oraz poszerzenie ich zastosowań o modelowanie

złożonych systemów biologicznych. Poza sieciami klasycznymi, sieciami z czasem i z priorytetami,

użyty został, sformułowany na potrzeby tych badań, nowy typ sieci Petriego – sieci losowo-

priorytetowe. W sieciach tych prawdopodobieństwo realizacji tranzycji jest wprost proporcjonalne do

jej priorytetu. Taka własność jest konieczna w modelowaniu trajektorii dynamiki molekularnej (MD)

rozważanych w części rozprawy. Ponadto typowe sieci priorytetowe zostały zmodyfikowane pod

kątem zastosowań w modelowaniu MD.

 Przy użyciu sieci Petriego stworzono ulepszony komputerowy model układu

odpornościowego, który został następnie poddany tzw. analizie t-niezmienników. Wszystkie t-

niezmienniki, t-klastry i zbiory MCT zostały w tym modelu zidentyfikowane i określono ich znaczenie

biologiczne. Model ma własność CTI – każda tranzycja wchodzi w skład przynajmniej jednego t-

niezmiennika, co potwierdza jego poprawność. Do modelu dodano modyfikacje kodujące wybrane

zjawiska i choroby: wpływ gorączki, starzenie, infekcja choroby AIDS i Adult-Onset

Immunodeficiency Syndrome (AOIS) oraz autyzm. Poprzez odpowiednie symulacje zbadano wpływ

tych czynników na zachowanie się nowego modelu układu odpornościowego. Szczególnie pionierskie

są przedstawione tu badania związku między gorączką a autyzmem.

 W rozprawie dyskutowany jest problem zrównoleglenia symulacji dynamiki sieci Petriego.

Opracowano i przetestowano nowy algorytm symulacji z wykorzystaniem technologii CUDA/GPU.

Testy pokazały, że dla dużych sieci algorytm ten jest znacznie wydajniejszy niż klasyczny.

 W celu wygenerowania testowych danych przeprowadzono symulacje dynamiki molekularnej

(z ang. molecular dynamics MD) dwóch kompleksów białkowych: pyłku trawy z przeciwciałem

(alergie) oraz chemokiny MCP-1 z przeciwciałem (autyzm). Wykonano zarówno klasyczne symulacje

MD jak i symulacje metodą sterowanej MD. Wyniki potwierdzają potencjalną użyteczność nowych

eksperymentalnych metod diagnostycznych opartych na mikroskopii sił atomowych. Własne zbiory

danych strukturalnych zostały przeanalizowane w ramach nowo zaproponowanego podejścia do

analizy danych opartego o sieci Petriego. Trajektorie MD są na ogół trudne do interpretacji, dlatego

też zaproponowano trzy dedykowane algorytmy generowania sieci Petriego na podstawie trajektorii

MD nazwane: OPOA (jedno miejsce - jeden atom/aminokwas), OPOC (jedno miejsce - jedna

konformacja) oraz CON (algorytm śledzenia kontaktów). Wszystkie trzy algorytmy mogą generować

różne sieci, m.in.: klasyczne sieci Petriego, sieci z czasem, sieci priorytetowe oraz losowo-

priorytetowe. W rozprawie przedstawiono przykłady wygenerowanych sieci wraz z ich analizą i

interpretacją. Taka metoda analizy masywnych danych MD ma szereg zalet, a jak dotąd nigdy nie była

używana.

 Przeprowadzone badania pokazują, że formalizm sieci Petriego może być potężnym

narzędziem w bioinformatyce, a szczególności w analizie wyników symulacji dynamiki molekularnej.

vi

Słowa kluczowe: sieci Petriego, modelowanie komputerowe, algorytmy, analiza

dynamiki molekularnej, układ odpornościowy, algorytmy równoległe, GPU, CUDA, data

mining, algorytmy klasteryzujące

ACM classification:

Oprogramowanie i jego inżynieria  Modele systemów oprogramowania  Sieci

Petriego

Teoria obliczeń  Projektowanie i analiza algorytmów

Informatyka Stosowana Życie i nauki medyczne Bioinformatyka

Informatyka Stosowana Życie i nauki medyczne Biologia obliczeniowa

Molekularna biologia strukturalna

vii

Acknowledgements

My work was financially supported by grants: N202 262038 (Ministry of Science and Higher

Education), N519 578138 (Ministry of Science and Higher Education) and "Krok w

przyszłość V" (kujawsko-pomorskie Voivodeship).

I would like to express gratitude to my parents, who have supported me a lot. Without them

the preparation of this thesis would not be possible.

I would like to thank my supervisor prof. dr hab. Wiesław Nowak and colleagues from the

Faculty of Physics, Astronomy and Informatics: mgr inż. Marcin Dąbrowski, mgr inż. Rafał

Jakubowski, dr Karolina Mikulska, dr Łukasz Pepłowski, mgr inż. Jakub Rydzewski for they

support and advices.

Niniejsza praca praca była wspierana finansowo przez granty: N202 262038 (Ministerstwo

Nauki i Szkolnictwa Wyższego), N519 578138 (Ministerstwo Nauki i Szkolnictwa

Wyższego) oraz "Krok w przyszłość V" (Województwo Kujawsko-Pomorskie).

Chciałabym szczególnie podziękować moim Rodzicom, którzy bardzo mnie wspierali. Bez

nich powstanie tej rozprawy nie byłoby możliwe.

Chciałabym podziękować mojemu promotorowi profesorowi Wiesławowi Nowakowi oraz

kolegom z Wydziału Fizyki, Astronomii i Informatyki Stosowanej: mgr inż. Marcinowi

Dąbrowskiemu, mgr inż. Rafałowi Jakubowskiemu, dr Karolinie Mikulskiej, dr Łukaszoi

Pepłowskiemu, mgr inż Jakubowi Rydzewskiemu za ich wsparcie i rady.

viii

ix

Contents

Introduction ... 11

Chapter 1. Petri nets - a short review ... 14

1.1 Basic definitions ... 14

1.2 Algebraic representation and t-invariants. .. 17

1.3 Simulation of Petri nets .. 20

1.4 Types and extensions of Petri nets ... 23

1.4.1 Stochastic Petri nets .. 23

1.4.2 Hybrid Petri nets .. 24

1.4.3 Colored Petri nets .. 25

1.4.4 Timed Petri nets .. 26

1.4.5 Priority-based Petri nets .. 27

1.4.6 Random priority-based Petri nets .. 30

Chapter 2. The immune system as a model of biological system 32

2.1 Introduction .. 32

2.2 Immune response .. 33

2.3 Phenomena present in immune system ... 34

2.4 The model ... 37

2.5 Simulations of immune system ... 44

2.5.1 Fever and ageing ... 44

2.5.2 AIDS and AOIS .. 47

2.5.3 ASD ... 51

2.6 T-invariants analysis ... 54

2.7 Conclusions .. 58

Chapter 3. Simulations of Petri nets using GPU ... 60

3.1 Introduction .. 60

3.2 The PINGU algorithm for the parallel simulation of the PN 61

3.2.1 Preprocessing .. 62

3.2.2 Simulations .. 66

3.2.3 Concluding remarks .. 69

3.3 The analysis of performance ... 69

3.3.1 Testing protocol ... 69

3.3.2 Results, discussion and conclusions .. 71

Chapter 4. MD and SMD computer simulations of antigen-antibody complexes .. 74

4.1 Introduction .. 74

4.2 Methods .. 74

4.3 Results .. 77

4.3.1 Steered Molecular Dynamics – mechanically enforced dissociation 77

x

4.3.2 B-factors analysis and molecular recognition ... 81

4.3.3 Bioinformatics analysis ... 82

4.4 Conclusions .. 83

Chapter 5. Petri nets and computer molecular dynamics simulations 84

5.1 Introduction .. 84

5.1.1 General overview .. 84

5.1.2 Petri nets types used in MD modeling .. 88

5.2 Algorithms for Petri Nets generation .. 91

5.2.1 One Place One Atom algorithms ... 91

5.2.2 One Place One Conformation algorithm ... 104

5.2.3 Contacts algorithm .. 119

5.3 Simulation of the MD Petri nets ... 124

5.3.1 Generation of the extended types of PNs .. 125

5.3.2 Simulation of generated PN .. 130

5.3.3 Generation of PDB file .. 136

5.3.4 Examples ... 138

5.4 Chapter 5 summary and conclusions .. 144

Conclusions .. 146

Supplementary materials .. 150

Appendix A – CUDA architecture .. 150

Appendix B – My implementation of MD Petri nets algorithms 153

Appendix C – List of publications and conferences .. 156

Index of abbreviations .. 159

List of figures ... 161

References .. 164

11

Introduction

Computer science brings a new quality to life. Our well-being is based not only on

excellent hardware technology, but on progress in algorithms as well. Science in

general, and biology in particular, profit also from the computer revolution.

Complex biological systems are studied using sophisticated computer models. By a

biological system I understand a population, an organism, a physiological system, a

tissue, a cell or even a biomolecule such as a protein or a piece of nucleic acid.

However, many crucial phenomena are still poorly understood and they need

strong efforts in all fields, including computer science. Mathematical models of the

complex systems should grasp their main features from the physical reality and

transfer them into mathematical entities. Efficient manipulations on these objects

require dedicated, advanced algorithms [1]. In particular, graph-based techniques

have attracted the attention of computer scientists in recent years [2-4].

During my undergraduate studies I got interested in concurrent systems and parallel

processing. I have learnt a simple but powerful formalism of Petri nets [5] in 2009.

This mathematical language may be used in science (chemistry, biology,

engineering) and industry [6]. At the same time, I developed my admiration to

biology and physiology. I have found that it is possible to connect those two

“fascinating fields”. There are numerous papers on PN in biology-related problems

[7-9]. However, there were no applications of PN in the important field of

structural bioinformatics or computational biology. In this area, huge structural

data sets are analyzed [10]. Graph-based techniques facilitate an analysis of data

structures and a presentation of results. Dynamical phenomena, such as a time

evolution of a system structure, are routinely modeled using computers, but such an

analysis is rarely based on graphs or nets. What is particularly popular, also in

Poland, are computer simulations of proteins and nucleic acids dynamics [11-12].

Therefore, I decided to explore the utility of PN in this field of science in my PhD

thesis.

The immediate goal of this thesis was to develop new ideas based on the PN

formalism and provide new computer research tools and algorithms for

biological/structural data representation and analysis. That goal has been

achieved. Hopefully, my models and methods will contribute to computer

science, computational biomolecular modeling, bioinformatics and will find

wider application in these areas of research.

To this end I have analyzed several standard, model complex biological systems (a

model of human immune system, an antigen-antibody protein pair, a multi-domain

transport protein), and have developed new PN models of the whole systems and/or

dynamics of biomolecules. I have modeled and studied computationally numerous

aspects of the immune system related to common diseases: autism spectrum

disorder, AIDS, Adult-Onset Immunodeficiency Syndrome (AOIS), etc. I have

12

worked out new algorithms for the construction of PN and have proposed several

diverse ways of modeling dynamical states using the nets based approach. In order

to improve the efficiency of computational methods, I have developed new

algorithms for dynamical studies of PN using parallelism provided by graphical

processing units (GPUs). Those new ways of dynamical studies are an important

and original part of my work.

In the first chapter of the thesis the description of the Petri nets is presented. This

chapter contains basic definitions about the networks and theory of t-invariant

analysis. Extended types of the Petri nets (PNs) are described: stochastic,

continuous, colored, timed, priority-based and random-priority based. To the

priority-based PNs, new definitions and modifications are added. New, random-

priority based PNs invented by myself are introduced for the first time. In those

networks the probability of transition firing is proportional to the priority of that

transition.

In the second chapter the PN model of the immune system (IS) is presented. This

part of the thesis contains inter alia biological description of the immune system

functions and the phenomena added to the existing model: fever, ageing and the

diseases such as AIDS, AOIS and autism spectrum disorder (ASD). For every

phenomenon which was tested using the IS model, the way of mapping it into the

network model is presented. The results obtained from the PN simulations for

every feature added as well as the conclusions are described. In the last part of the

chapter t-invariant analysis of the PN model is performed.

The third chapter contains a description of the parallel algorithm of the simulation

of the PN, tailored for the GPU. The algorithm is implemented using the CUDA

technology. The CUDA architecture is briefly described. The presented algorithm

consists of two parts: a preprocessing and the simulation, are both discussed in

details. The algorithm was tested using different PNs and different graphical cards,

thus the computational efficiency analysis results are presented in this part as well.

In the fourth chapter the descriptions of the molecular dynamics (MD) and steered

MD (SMD) studies of the two antigen-antibody complexes are presented. Those

complexes are: a pollen from timothy grass Phl p2 with its antibody, and

chemokine MCP-1 with its antibody. In the computer simulation study the

complexes were dissociated by adding pulling forces. The effects of different

directions of the external forces were tested. The results of modeling, together with

proper statistical and bioinformatical discussion, are presented in the chapter.

The last chapter opens quite new areas of PN formalism applications. It contains

information about a possible usage of the Petri nets in MD simulations analysis.

After a general overview of the problem the types of the PNs used in my research

are presented. Three, dedicated, newly designed algorithms are described. They are

named: One Place One Atom (OPOA, where one place represents localization of

13

one atom), OPOC, where one place corresponds to one conformation of the

molecule, CON, where one place represents contacts between two amino acids.

The examples of the PN generated using these algorithms and their analysis are

presented. New algorithms can generate PNs of different types. In order to perform

the further analysis the MD/SMD simulations, the algorithm had to be adapted to

simulate different types of the networks and to use data obtained from OPOA,

OPOC or CON algorithms. The method of a generation of a special, so called, PDB

file was based on the PNs generated earlier. The PN simulation algorithm and an

algorithm suitable for the PDB file generation have been developed and they are

also described in the Chapter 5.

The research on ASD was performed within a project NCN N519 578138 lead by

Prof . Włodzisław Duch, Chair of Computer Sciences N. Copernicus Univ. Torun,

Poland, MD simulations of proteins were a part of NCN N N202 262038 project

supervised by Prof. Wiesław Nowak, Institute of Physics, N. Copernicus Univ.

Torun, Poland. The search for an effective ASD genetic test was supported by

kujawsko-pomorskie Voivodeship. The results were presented at 13 international

conferences (i.e. in Great Britain, Germany, Hungary, Poland) and have been

published in 4 papers (see: Appendix C). New papers are in preparation.

In summary, my thesis introduces new types Petri Nets, presents new algorithms

for large biological data representations and analysis. I have developed new tools

for the immune system pathologies analysis and have suggested new net-based

methods of molecular dynamics data scrutiny. I hope that my ideas and computer

codes will enrich a spectrum of computer science tools offered to the society.

The PN model of the IS, the implementation the GPU algorithm of PNs simulation,

the program which allows to perform complete MD analysis using PNs and

examples data are available at http://www-users.mat.umk.pl/~leii/thesis/.

http://www-users.mat.umk.pl/~leii/index.php?dir=thesis/

14

Chapter 1. Petri nets - a short review

1.1 Basic definitions

Petri nets (PN) formalism belongs to the mathematical languages created to

describe the distributed systems. The first concepts of Petri nets [13] were proposed

by Carl Adam Petri in 1939. He proposed the currently common graphic

representation for nets and presented their application in chemical processes. His

famous dissertation “Kommunikation mit Automaten” (Communication with

Automata), published in 1962 [14], is considered as the first introduction of Petri

nets to science. In that work PNs were used to synchronize communicating

automata. This puts the Petri nets among the oldest modeling techniques of the

computer science. Indeed, many modeling methods have been proposed over the

last years, like for example ordinary differential equations (ODEs) [15], process

calculi [16], Boolean networks [17], Bayesian networks [18], stochastic equations

[19], or cellular automata [20]. In contrast to some other techniques, which were

favored for a short time and then forgotten, Petri nets have kept their place as one

of the well-established modeling techniques [21]. Since 1962 the Petri nets theory

has been greatly developed, some theoretical questions have been posed and

solved, and many subclasses of PN have been developed in order to improve

specialist systems' modeling [6]. Due to their simplicity and universality PNs have

been applied in many branches of science. The main field of applications of PNs

modeling is engineering. Here Petri nets-based models are used to solve different-

scales problems like, for example, production scheduling [22-23], deadlock control

of automated manufacturing [24-25] or even traffic jump control [26-27]. They are

also often applied in computer science, for studying the properties of

communication protocols [28-29], multimedia architecture [30-31] or in artificial

intelligence [32-33].

Since the nineties Petri nets have been also applied in modeling of biological

systems. Pioneers in this field were Reddy [34-35] and Hofestädt [36]. Reddy et al.

represented metabolic pathways as Petri nets, and illustrated some properties, for

example, liveness, reachability, and invariant properties. They created a PN model

of fructose metabolism. Hofestädt presented PN describing the isoleucine

biosynthesis in E. coli and illustrated the metabolic process depending on the

expressed genes. He gave examples of modeling biosynthesis, protein biosynthesis,

and cell communication processes. After those first works many diverse PN

applications have been published. Petri nets have been used to model metabolic

systems [4], signal transduction pathways [37] and assembly processes of

complexes [38]. They are applied also in modeling of gene regulations networks

[39-40]. Petri nets are popular and useful tools in modeling in medicine and

chemistry [9]. However, to the best of my knowledge PNs have not been exploited

in the field of biomolecular computer simulations. Thus, the present thesis aims to

fill this gap.

15

Petri nets have a form of the bipartite graph with two kinds of nodes: places and

transitions. Any two places or two transitions cannot be connected by the edge.

Def. 1. A Petri net graph is a 4-tuple (P,T,F,W), where:

 P is a finite set of places.

 T is a finite set of transitions (or actions), such that P ∩ T = Ø

 F is a set of directed arcs, satisfying: F ∩ (P×P) = F ∩ (T×T) = Ø (the

place may be connected with the transition or the transition with the place;

two places or two transitions cannot be connected)

 W:F→{1,2,3...} is a weight function assigned to arcs. The weight of one is

assigned to an arc as a default.

On the plot of the network places are represented by circles, transitions by squares,

arcs by arrows. Weights are represented by numbers placed near to arcs. The

default weight is 1 and it is usually omitted in the plot. The commonly accepted

graphical representations of elements are shown in Table 1.

Table 1. Elements of the Petri net and their graphical symbols.

Element Symbol

Place

Transition

Arc with weight four

Arc with weight one

Token

Places usually correspond to the objects or states, and transitions usually represent

events.

We do not have any actions in PN created according to Def. 1 - it is only a steady

framework. In order to have actions, we need tokens. Tokens may be located in

places. If a place contains a token it is named marked, if the place is empty it is

named unmarked. Places may contain one or more tokens. A distribution of tokens

over the places of a net is called a marking.

Def. 2. A Marking is a mapping M:P→{0, 1, 2, 3, …}.

Def. 3. A Petri net is a quintuple (P, T, F, W, M0) where M0 is initial marking, P, T,

F, W like in Def. 1.

Def. 4. For each element t ∈ T we can define the set of input places

•t = {p ∈ P; (p, t)∈ F} - the set of places from which arcs run to transition t and the

set of output places t• = {p ∈ P; (t, p)∈ F} - the set of places to which arcs run from

transition t.

16

Def. 5. Transition t may fire (it is called firabled
1
 or enabled) in a marking M if the

number of tokens in every input place p of transition t is equal or greater than the

weight W(p) assigned to the arc between the place p and the transition t in the

marking M.

Def. 6. The set of all enabled transitions in a marking M is denoted as enb(M).

Transition t consumes tokens from its input places p and puts them into output

places q – the number of tokens transferred is described by the weights of arcs

involved so firing of a transition changes the marking.

Def. 7. We say that firing of transition t transfer a marking M into a marking M',

when transition t is fired in marking M and it leads to a new marking

M - w•t, t + wt, t•, where w•t, t mark weights of arcs between input places of transition

t and the transition t, and wt, t• mark weights of arcs between the transition t and its

output places. Both w•t, t and wt, t• are represented as vectors of the length |P|. The

new marking is defined as M' = M - w•t, t + wp,t• The transfer of the marking is

denoted: MtM'.

Tokens in a place mean that an object which is represented by the place is present

in the model, and the number of tokens indicates how many copies of the object are

present. Transitions, as it was mentioned above, represent events. Transitions

transfer a token from one place to another. This transfer corresponds to a physical

change of an object into another. Transitions may also represent a change of the

states of some objects.

The number of tokens is not constant, some transitions may put more or fewer

tokens into their output places than they consume. In particular, a transition may

not have any input places and it can fire without any restrictions and produce

tokens. Also, a transition may not have any output places and it can consume

tokens only.

Firing of transitions is a concurrent process, transitions which do not have common

places may fire at the same time. If some transitions have common input places,

they may compete for the tokens, and firing of one transition may cause that

another transition will not be longer enabled.

Def. 8. Two transitions t1 and t2 are in the soft conflict if they have at least one

common input place:

 . (1.1)

Def. 9. Two transitions t1 and t2 are in the conflict if they have at least one common

place (input or output):

 . (1.2)

1
 Word "firabled" is correct and often used in PN publications.

17

The concept of the conflict is very important in some types of Petri nets.

Information about conflicts can be gathered into the conflict matrix.

Def. 10. The conflict matrix is a matrix Conf

= (αij)m×m where m is size of T and:

 . (1.3)

1.2 Algebraic representation and t-invariants.

The Petri net can be represented in an algebraic approach in the form of two

matrices with integer coefficients: an input matrix and an output matrix. The input

matrix represents arcs from transitions to places and its coefficients are equal to the

weights of the arcs. Moreover, the output matrix represents arcs from places to

transitions and its coefficients are also equal to the weights of the arcs. The

algebraic representation is bijection, based on the matrices one can reproduce the

PN and the opposite.

Def. 11. Let PT = (P, T, F, W, M0) be a Petri net, where P, T, F, W like in Def. 1,

M0 like in Def. 3. The input matrix is a matrix C
+
 = (aij)n×m, where:

 ∈

 . (1.4)

The output matrix is a matrix C
-
 = (αij)n×m, where:

 ∈

 . (1.5)

The input and output matrices may be used to calculate the incidence matrix.

Def. 12. Let PT = (P, T, F, W, M0) be a Petri net, where P, T, F, W like in Def. 1,

M0 like in Def. 3, C
+
 and C

-
 like in Def. 11. The incidence matrix is a matrix

C = (aij)n×m, where C = C
+
 - C

-
.

The element αij of the incidence matrix represents the token's change at place pi by

firing of transition aj. The incidence matrix N is necessary to define one of the most

important property of the biological Petri nets: t-invariants.

Def. 13. T-invariant is a vector x ∈ Nl (where l = |T|), satisfying: C∙x=0 [9].

The t-invariant contains transitions of the PN and firing all transitions from one

t-invariant will reproduce a given marking. Sometimes the transitions have to be

fired a few times within the same t-invariant in order to keep the marking

unchanged. Thus firing all transitions from the t-invariant will not change the

marking of the network.

18

T-invariants are usually binary vectors, (x)i is equal to zero if the transition ti is not

included into t-invariant x, or it equals one if the transition ti is included in t-

invariant x. Sometimes other values are used to mark the transition as included into

a t-invariant, for example, the values which describe how many times a transition

should be fired within the t-invariant.

Def. 14. The support of the t-invariant x is given by: supp(x) = {ti ∈ T: x i }.

T-invariants are very important in the network analysis. For example, in biology

one t-invariant should correspond to one biological process or a pathway. All

t-invariants should have a biological meaning, if some t-invariants do not have any

biological sense it suggests the error in the model. In rare cases a t-invariant, which

does not have a corresponding biological process, may indicate a novel property,

like it was discussed in the paper [4]. The analysis of the t-invariants and its

meaning is one of the most important parts of the PN based model examination.

Def. 15. The Petri net is covered by t-invariants (CTI) if all transitions of the

network are contained in an t-invariant.

The CTI is a crucial property of the biological Petri net. The transition, which is not

a part of at least one t-invariant, may be suspected of being a false and unwanted

process. It may also indicate uncontrolled accumulation of the tokens. If PN is not

CTI, it cannot be a correct model. On the other hand, if the Petri net is created with

care and based on knowledge, the CTI property is a strong prerequisite for the

correctness of the model [9].

One transition may be a part of a few t-invariants. According to the Def. 13, it is

not required that the transition which is part of a t-invariant has to be enabled in the

initial marking M0 or by other transitions from the same t-invariant. The calculating

of the t-invariants is an algebraic operation on the incidence matrix C and it does

not require "real" firing of the transitions.

Although the biological meaning of t-invariants is a crucial process for the network

analysis, sometimes the set of t-invariants may contain hundreds of elements and it

will be not possible to determine the biological representation of them. However,

special concepts in Petri nets analysis are available, which may limit the number of

elements that have to be analyzed.

The first are Maximal Common Transition Sets (MCT-sets). The MCT-set is a set

of transitions which occur always together with each other in the considered set of

t-invariants [9]. An example of a table of t-invariants and two MCT-sets are shown

in Table 2.

19

Table 2. Examples of transitions and their participation into t-invariants. Two

MCT-sets are present: {t1, t3} and {t5, t6}.

 Inv1 Inv2 Inv3 Inv4 Inv5

t1 0 1 0 1 0

t2 0 1 0 0 0

t3 0 1 0 1 0

t4 0 1 0 1 1

t5 1 0 1 0 0

t6 1 0 1 0 0

Transitions inside one MCT-set do not have to be connected by places, but may be

situated in different parts of the network. MCT-sets represents a kind of building

blocks of the networks. Their biological meaning should be checked and they may

represent reactions which show a similar behavior [9].

The second concept in Petri nets analysis are t-clusters. The most similar

t-invariants may be connected into t-clusters. “Similar” in this case means that the

t-invariants have many common transitions. To calculate t-clusters the distance

matrix D has to be created.

Def. 16. Let I be the set of all t-invariants of the network, k = |I| and xi, xj ∈ I are
t-invariants. The distance matrix is a matrix D = (dij)k×k, where s(xi, xj) is

Tanimoto coefficient [41]:

 (1.6)

Of course, coefficients other than the Tanimoto coefficient for similarity measuring

may be used, but in the book [9] this method is recommended.

Now, when the distance matrix is calculated, one of the clustering algorithm may

be used to merge the most similar objects, it does not have to be created especially

for the t-clusters. Many such algorithms have been developed, they are compared

in [42] and in [9] authors recommended the UPGMA (Unweighted Pair Group

Method with Arithmetic Mean) algorithm.

The UPGMA algorithm [43] can be used to merge any type of similar clusters and

it uses the distance matrix. In each iteration the most similar objects are merged

and the new distances between a newly created object and other objects are

calculated. In the PN case t-clusters or t-invariants can be merged. The distance

between two objects: Ca and Cb can be calculated by the formula:

20

 ∈ ∈

 (1.7)

The algorithm stops when one object is obtained. In order to get more resulting

clusters, the cut parameter is introduced. The cut parameter is a value expressed in

percent and it denotes the greater distance below which the objects will be merged.

If the smallest distance in the system is greater than the cut-off parameter, the

objects will not be merged and the algorithm will stop. The choice of the cut-off

parameter depends on a Petri network, as for one model one parameter value will

be satisfying, while for another one a different value will be required. The cut-off

parameter also depends on the user's preferences, such as how many results (small

or large dataset) are suitable and therefore acceptable for further analysis.

During the operation, the UPGMA algorithm generates a dendrogram as well. The

dendrogram describes the correlations between the resulting t-clusters. The

t-clusters are leaves, and the objects with the smallest distances are connected. The

dendrogram describes which t-clusters will be connected in the next iterations, if

the cut-off parameter is larger. Using the dendrogram the logical composition of

the model and the relationship between t-clusters and t-invariant can be analyzed.

1.3 Simulation of Petri nets

The simulation of the Petri net is one of the methods of analyzing properties of the

network. If the model correctly represents the features of the modeled system then

during the simulation the dynamical properties of the system may be noticed and

studied. For the simulation we need the network and a number of steps which will

describe the length of the simulations. One step of the simulation is one firing of

transitions.

Algorithm 1. Basic algorithm of the simulation of the Petri net:

Input: The input and output matrices, both n x m matrices, where n is the number of

places and m is the number of transitions. The initial marking presented as a vector

of length n, where i-th element of the vector is a marking of a i-th place. The

number of steps of the simulation: k.

Output: The marking M, presented as vector of length n, obtained after k steps of

the simulation.

Steps:

1. begin

2. currentStep := 0;

3. do

4. begin

5. t := findEnabledTransitions();

21

6. if t <> NULL then

7. begin

8. fire(t);

9. currentStep := currentStep + 1;

10. end

11. end

12. while(currentStep < k) AND (t <> NULL);

13. end

The main part of the Algorithm 1 is a do-while loop (lines 3-12). Before the loop

the currentStep - variable which store the number of the current step is reset. In the

loop the enabled transition t is found (line 5). If the transition t exists (it may

happen that no transition is enabled) it is fired (line 8) and the number of the step is

increased. The loop is finished when k steps are performed or the death marking is

reached (no transition is enabled). Two additional functions are used in the

algorithm. The first is fire(), in this function the marking of input and output places

of the transition t is changed, according to weights of the arcs and definition of

transition's firing. The second is findEnabledTransition() which is more complex.

Here the enabled transition is found – there is no other way to do that as checking

the marking of the every input places of following transition since the enabled one

is found. Transitions may be checked in some order or may be randomly chosen.

The pessimistic time complexity of the Algorithm 1 is the following. The loop

(lines 3-12) will execute at most k times. The firing of a transition requires n steps,

where n is the number of places, because all input and output places of the

transition t have to be found and their marking must be changed. In the algorithm

only the input and output matrices are used, so the whole row of each matrix has to

be checked to found which places are connected to t. However, even when any

other data structure will be used still the pessimistic complexity of the firing will be

the same, because in some networks all transitions may be connected with all

places. During the finding of the enabled transition in the most pessimistic case all

transition have to be checked and the last one will be enabled, so it will require m

operations, where m is the number of transitions. Checking each transition is

similar to the firing and it takes n operations. It should be noticed that this is a very

pessimistic case and typically an enabled transition will be found earlier. The

pessimistic complexity of the algorithm is therefore O(.

 Other algorithms for the same problem can be created. One possible option is:

Algorithm 2. A basic algorithm of the simulation of the Petri net – a version with

the set of enabled transitions.

Input: The input and output matrices, the initial marking and the number of steps k

are the same like in the Algorithm 1. The conflict matrix is like in Def. 10.

Output: The same like in Algorithm 1.

22

Steps:

1. begin

2. currentStep := 0; Enabled := ;

3. do

4. begin

5. Enabled := findEnabledTransitions();

6. if Enabled <> then

7. begin

8. t ∈ Enabled;

9. fire(t);

10. currentStep := currentStep + 1;

11. end

12. end

13.while(currentStep < k) AND (Enabled <>);

14.end

The algorithm is similar to Algorithm 1, the most important difference is the usage

of the set Enabled, which is a set of all enabled transitions in the current marking.

At the beginning the set Enabled is empty, in the do-while loop (lines

3-13), which is also the main part of the algorithm, every enabled transition is

added to the set (line 5). If the set is not empty, the transition t from the set is

chosen and it is fired. The transition may be chosen randomly or in another way.

The loop finishes when the desired number of steps k is reached or no transition is

enabled. The firing of the transition t may be the same like in the previous

algorithm. The function findEnabled() is the most complex part of the algorithm. In

order to find all enabled transitions every transition may be checked and if it is

enabled, it will be added to the set. However, it is not an effective way and it has to

be performed only once during the first step of the simulation. In the next iteration

we have to check only those transitions which have some common places (or a

place) with the previously fired transition. Only those transitions may change their

status, others will be still enabled or not enabled. Information on which transitions

have some common places with the previously fired one can be found in the

conflict matrix. Only for those transitions which are in the conflict with the

previously fired ones the marking of their input places must be checked.

The pessimistic time complexity of the Algorithm 2 is: the do-while loop will

execute k-times. The finding of all enabled transitions during the first iteration

requires m operations to check every transition multiplied by n operations for every

transition to control markings of its input places. During the next iterations,

checking every element from the row of the conflict matrix which describes the

conflicts of the previously fired transition also requires m operations. For those

which are in a conflict, n calculations have to be performed in order to verify if

they are enabled. In a typical situation not all transitions will be in a conflict and

the checking of the marking will be performed not so often, however in the

pessimistic complexity we have to assume the worst-case scenario, where every

transition is in conflict with the rest of transitions and the complexity of

23

findEnabled() function will be still m times n. The firing of the transition can be

performed in n steps. Together the complexity is of O(k m n + k n) = O(k m n) - the

same as in Algorithm 1. However, in Algorithm 2 the conflict matrix is necessary,

which consumes m x m amount of a memory, and the calculation of the conflict

matrix is time consuming (the basic algorithm has a complexity O().

Summarizing, the first algorithm of the simulation is better. Indeed, in classical

Petri nets it is more efficient, but in some extensions it cannot be used. For

example, in timed Petri nets the terms enabled and firebled are not the same, and in

order to fire a transition the set of all enabled transitions has to be found first. Also

in other extensions of the Petri nets the set Enabled has to be calculated to find a

transition to fire. In such cases Algorithm 2 (with some modifications) should be

used.

1.4 Types and extensions of Petri nets

The general concept of the Petri nets is very simple, however in many applications

it is not sufficient. Basing on the canonical definitions (Def. 3 and Def. 5) many

extensions of Petri nets were developed, adjusted to specified applications. In the

next sections a few types of Petri nets are described, but other extensions, not

included here, also exist [44].

1.4.1 Stochastic Petri nets

Stochastic Petri nets (SPNs) are basically similar to classical place/transition PNs.

However, in SPN enabled transitions fire with an exponentially distributed time

delay. They were proposed by researchers active in the field of applied stochastic

modeling. They idea was presented in two doctoral thesis of S. Natkin [45] and M.

K. Molloy [46]. Those works were performed simultaneously and independently

almost in the same time.

The basic definition of the SPN is following [47]:

Def. 17. An SPN is a six-tuple: SPN = (P, T, I, O, M0, Λ), where (P, T, I, O, M0) is

the marked PN (the same like in Def. 3) underlying the SPN, which as usual

comprises:

 a set of places P

 a set of transitions T

 a set of input arcs I ϵ P × T,

 a set of output arcs O ϵ T × P,

 an initial marking M0

and Λ = (λ1, λ2, ..., λn) is an array of (possibly marking dependent) firing rates

associated with transitions.

24

A firing delay is associated with each transition. It specifies the amount of time that

must elapse before the transition can fire. This firing delay is a random variable

with negative exponential probability distribution function [47]. According to [7]

SPN definition may be expanded to the weights (as in Def. 3). The rules of

transitions firing in SPN have to be changed [47]. During the firing process each

enabled transition has to sample an instance of the random firing delay from the

associated probability distribution function. The transition which samples the

minimum firing delay is the one which will fire. The marking is changed according

to standard rules.

1.4.2 Hybrid Petri nets

Hybrid Petri nets contain classical, discrete places and transitions as well as

continuous places and transitions [44], so the definition of the continuous PN must

be introduced.

In the continuous PN places may be real numbers and firing of the transitions is

carried out like a continuous flow. In a continuous PN, one can have a quantity of

firing which is not an integer. In a continuous PN, one can have a quantity of firing

which is not an integer [44]. Such situation is presented in Fig. 1.

Fig. 1. An example of continuous PN (from [44]).

An example continuous PN represents a creation of French dressing from salad oil

and vinegar in the ration of two. For example [44], if the quantity of firing is

x = 0.1, the marking in Fig. 1b is transformed into marking presented in Fig. 1c. In

the hybrid Petri net additional places and transitions may be added to Petri net

presented in Fig. 1 which can be marked, discrete Petri net places or transitions.

Continuous and discrete elements can be connected. For example if transitions T1

from Fig. 1 have additional discrete input place and the weight of the arc between

them is one, then T1 can fire only when this discrete place is not empty and

25

transition T1 will consume one token from this place during firing. The definition

of hybrid Petri nets is presented in [39].

Def. 18. We denote a hybrid PN as Q = (P, T, h, Pre, Post, M0), where P and T are

the sets of places and transitions respectively; } indicates for

every place or transition whether it is a discrete or continuous one. A non-negative

integer called the number of token is always associated with a discrete place and a

non-negative real numbers called the mark is always associated with a continuous

place. Pre(Pi, Tj) (Post(Pi, Tj)) is a function that define arc from a place Pi (a

transition Tj) to a transition Tj (a place Pi), where the arc has a weight of non-

negative integer (non-negative real value) if h(Pi) = D (h(Pi) = C). Pre and Post

functions must meet the following criterion: if Pi and Tj are a place and transition

such that Pi is discrete and Tj is continuous then Pre(Pi, Tj) = Post(Pi, Tj) must be

verified; M0 is a mapping from the set of places to the set of non-negative integers

or the set of non-negative real numbers called the initial marking.

1.4.3 Colored Petri nets

In some modeled systems it may be necessary to distinguish tokens between

themselves. That is the reason why colors were introduced to Petri nets. In colored

Petri nets (CPN) [48] information can be attached to each token as a token-color,

each transition can occur in several ways represented by different occurrence-

colors and the relation between an occurrence-color and the token-colors involved

in the occurrence of the transition is defined by functions attached to the arcs. An

example of such network is presented in Fig. 2 [49].

Fig. 2. Colored Petri net describing the philosopher system (from [49]).

Presented CPN describes the five philosopher problem. One philosopher can think

or eat, but for eating he requires two neighboring forks. The set PH is a set of

colors representing the individual philosopher, F is a set representing the fork.

LEFT and RIGHT are functions which map each philosopher color into the color of

its left and right fork respectively [49]. Those functions provide that firing of "take

26

forks" transition with color c ϵ PH removes two tokens from "free forks" with

colors LEFT(c) ϵ F and RIGHT(c) ϵ F. Similar situation occurs for "put down

forks". Formal definition of CPNs is following [49]:

Def. 19. Let A be a nonempty set and D be or . By [A→D]f we denote the set

of functions g ϵ [A→D], where the support {a ϵ A | g(a) ≠ 0} is finite. For finite A

we have [A→D]f = [A→D].

A colored Petri net is 5-tuple CPN = (P, T, C, W, M0), where:

 P is set of places

 T is set of transitions



 C is the color-function defined from into nonempty sets

 W is the incidence-function defined on such that

W(p, t) ϵ [C(t) → [C(p) → f] for all (p, t) ∈

 M0 is the initial marking, is a function defined on P, such that

M(p) ∈ [C(p) →]f for all ∈

1.4.4 Timed Petri nets

In the classical Petri nets (Def. 3) one of the enabled transitions fires and we do not

try to control which one. However, sometimes it is necessary to add some order to

a Petri net to represent modeled events better and that is why time is added to the

networks. Numerous time extensions of Petri nets were developed [50], in some

approaches time is added to transitions, in other to places [50], but all are called

Timed Petri nets. The most popular are two formalisms: Ranchamdani’s Timed

Petri nets (RTPN) and Merlin Time Petri nets (MTPN) [51]. In MTPN times

intervals are associated with the transitions. However, for my studies the

Ranchamdani’s Timed Petri are much more suitable and their general idea will be

presented, following the paper [51].

Def. 20. A timed Petri net is a six-tuple: (P, T, F, W, M0, f), where P, T, F, W, M0

are like in Def. 3 and f: T → is a firing time function, which assigns a positive

real number, called firing time, to each transition.

Now, when the new element was added to the definition of the Timed Petri net,

also the firing rule have to be changed to adjust to a new concept. Not only does

the firing time have to be added to the network, but also some representation of the

current time state of the system is necessary. The firing time function is something

like canonical, initial time necessary to fire a transition and some type of a clock is

required to measure if this firing time has been reached.

Def. 21. The clock state [51] is a pair (M, V), where M is a marking and V is a

clock valuation function, V: enb(M)→ .

The clock state is defined only for transitions which are enabled and it represents

time necessary to fire the transition. That amount of time will elapse during

27

transition's firing. The initial clock state s0 for each transition is equal to the value

of the firing time function: s0 = (M0, V0), where V0(t) = f(t), for t ∈ enb(M0). After

the initiation of the clock for a newly enabled transition the clock state for this

transition is subject to change, as long as the transition is enabled - this mimics the

passage of time. Because of that now it is necessary to distinguish between newly

enabled transitions and transitions that were enabled in the previous markings, thus

the concept of the new enabled transition is introduced [51].

Def. 22. A transition t ∈ V is a new enabled after firing transition tf at marking M

which leads to marking M' if (i) it was not enabled in M and it is enabled in M' or

(ii) if it is the former fired transition tf and it is still enabled. The set of new enabled

transitions is denoted as new(M').

Now we have to distinguish between the enabled and firabled transitions. In the

previous definitions those terms were used alternatively and had the same meaning.

This was possible because in the classical Petri nets only a basic firing rule (Def. 5)

referring to the marking of the input places is used, and no other rules are present.

Now, when the transition satisfies the basic condition about the marking of its input

places, it will be called an enabled, but it is not enough to fire. To fire the transition

has to satisfy additional conditions and only when they are fulfilled the transition is

called firabled and may fire. Usually many transitions are enabled but among them

only a few transitions are firabled, sometimes only one. The firabled transition in

Timed Petri net is [51]:

Def. 23. The transition tf ∈ V is firabled in marking M when: tf ∈ enb(M) and

 ∈ .

According to Def. 23, a transition is firabled when the value of the clock assigned

to the transition is the smallest in all enabled transitions. This value of the clock is

denoted as τ and it represents the time which elapses while firing a firabled

transition. When this time elapses the clock state of other transitions should be

reduced by this value. So, when the firing of the transition tf at marking M leads to

marking M' then the clock state will be as follows:

 ∈

 ∈
 . (1.8)

When a few transitions are firabled, at a given moment just one has to be chosen

(in any way) to be fired.

1.4.5 Priority-based Petri nets

Adding priorities is another type of Petri nets modification [52]. The priority is

added to transitions and strongly affects a sequence in which the transitions are

fired.

28

Def. 24. The priority-based Petri net is 6-tuple: (P, T, F, W, M0, prio), where P, T,

F, W are the same like in Def. 1 and M0 is like in Def. 3. prio is the function which

assigns a natural number, called “priority” to the transitions: prio: T → .

Now the conditions under which transitions may fire have to be changed. In this

type of Petri nets we have to distinguish between a transition enabled and firabled.

Like before, a transition is enabled if it satisfies conditions for a required number of

tokens in its input places. A transition is firabled if it is enabled and additionally it

fulfills extra features connected to the extension of the PN.

Def. 25. A transition t is firabled in the priority-based Petri net defined in Def. 24

when it is enabled and there are not any enabled transitions with the higher priority

[52]:

 ∈ ∈

 ∈ (1.9)

When the transition fires it transfers tokens like in the classical Petri net. So, in the

priority-based Petri nets only the transition with the highest priority at a time may

fire. It is easy to image the network in which two transitions with a very high

priority create a cycle and one of them is enabled. They will fire alternately and

other transitions, even if they are enabled, will not have an opportunity to fire.

Other parts of the network (apart from those two transitions in the cycle) will not

be even necessary. Other unique characteristic of such a network appears when one

starts simulations of the Petri net several times from the same initial marking. Then

the same sequence of transitions firing will be observed because a value of the

priority function does not change, since it is assigned to the network in the initial

marking. Therefore, the same transition will always have the highest priority and it

will be fired in every simulation.

Petri nets with the firing rule like in Def. 25 may be useful in some cases, however,

in my study Petri nets with a less deterministic sequence of transitions' firing are

required (a more detailed description of suitable PN is presented in Chapter 5).

Here, I propose a modified version of Def. 25.

Def. 26. Let Kj be the set of enabled transitions which are in soft conflict with a

transition tj, including also the transition tj. Kj is called a conflict set of transition tj.

Firing of transition tj in a marking M which leads to a marking M' may cause the

transitions from Kj, which according to the definition were enabled in the marking

M, may be no longer enabled in the marking M'.

Lemma 1. Firing of a transition tj in a marking M which leads to a marking M' will

not change any enabled transition tk Kj in the marking M into transition not

enabled in the marking M'.

Proof. A few relations between input and output places of transitions tj and tk are

possible. The first - they do not have any common places – the firing of the

29

transition tj will not change anything for the transition tk. The second - they have

common output places, so the firing of the transition tj will change a marking of

output places, but the output places do not play any role in classifying the transition

tk as enabled. The next case - some (maybe only just one) input places of the

transition tj are output places of the transition tk. Like before, changing a marking

of the output places does not affect the firing of the transition tk. The last case -

some output places (maybe only one) of the transition tj are input places of the

transition tk. The transition tj will only add tokens to the input places of the

transition tk. Since tk was enabled earlier, all its input places contain enough tokens,

so it will still be enabled. The case when both transitions have common input

places (one common place is enough) is not possible because tk Kj.

□

Now we are ready to define a new rule for firing transitions in the priority-based

Petri net.

Def. 27. A transition tj is firabled in the priority-based Petri net defined in Def. 24

when it is enabled and there are no any transitions with a higher priority in its

conflict set:

 ∈ ∈

 ∈
 . (1.10)

Moreover, if there is a transition with a higher priority in Kj is becomes firabled.

 ∈

 ∈

 .

(1.11)

So, if we want to fire a transition, we should choose the transition tj, which is

enabled, then we should define its conflict set, check priorities and finally choose

the transition with the highest priority from the set. The transition tj may be chosen

in different ways, for example, randomly. A random selection provides more

diverse sequences of transitions' firing during Petri net simulation than implicated

by the definition Def. 25.

We may consider the problem of firing of transitions also in a different way. First,

we choose the conflict set and we fire a transition with the highest priority from the

set. This does not impact other conflict sets, as a consequence of Lemma 1. So, in

every step of the simulation the number of possible fired transition is equal to the

number of conflict sets.

The sequence of firing of transitions based on Def. 27 is obviously different from

the one implicated by Def. 25, however, some similarity is kept.

Lemma 2. A transition tk which in the marking M satisfies the equation (1.11),

according to Def. 27, (a) will be fired in this marking or (b) if other transition has

been fired and this has led to the marking M', then in the marking M' the transition

tk will be still enabled.

30

Proof. If in the marking M tk there is the transition chosen as a candidate to fire or

any other transition from the conflict set Kk is chosen then, since tk is the transition

with the highest priority from all the ones enabled, tk will fire. If the other transition

(i.e. from the other conflict set) has been fired and has led to the marking M' then,

according to Lemma 1, tk is still enabled.

□

One can see that even after firing some other transitions, the transition with the

highest priority will still be enabled and will have a chance to fire. Moreover, this

transition will be eventually fired because, according to Lemma 2, no other

transition may change its ability to fire. In some situations both rules of firing in

the priority-based Petri net Def. 25 and Def. 27 become the same, for example,

when only one place which is an input place for only one transition, is marked, then

the conflict set and a set of all enabled transitions are the same. To avoid such

situation a new type of the Petri nets - random priority-based Petri nets is

developed here.

1.4.6 Random priority-based Petri nets

The random priority-based Petri nets are very similar to the classical priority-based

Petri nets. However, they do not have an unwanted property of full determinism.

This feature means that when we start a simulation from the same initial marking

several times, we will obtain the same sequence of transitions' firing.

Def. 28. The random priority-based Petri net is 7-tuple: (P, T, F, W, M0, prio, X),

where P, T, F, W, M0 and prio are like in Def. 24. X is a random variable with

continuous uniform distribution on the interval <0, 1>.

 Like previously, also here a transition enabled should be distinguished from a

firabled one. A transition is enabled if its input places contain at least so many

tokens as the weights of corresponding arcs, which connect the input places and the

transition. To become firabled the transition has to satisfy an additional condition

imposed by the type of the Petri net. In a random priority-based PN a conflict set

will be used but its definition Def. 26 has to be modified.

Def. 29. The conflict set of transition tj is a set with a linear order Kj, that contains

transitions which are enabled and are in a soft conflict with tj (including tj).

A new concept here is a linear order. Numerous definitions are possible, for

example, an order resulting from the arbitrary numbering of transitions in the

network. Also other linear orders are possible, for example, imposed by a user

within a given conflict set. We need to stress that if one order is accepted it should

be used during the entire operation of finding a firabled transition.

Def. 30. Let Sj,k be the sum of values of priority function of k first elements of the

conflict set Kj according to its linear order. Sj is the sum of values of priority

function of all elements of the conflict set Kj.

31

Def. 31. A firing value f is a value selected from the uniform random variable X in

the random priority-based Petri nets.

Def. 32. The transition tj is firable if it is enabled and it fulfills one of the following

conditions:

 it is not in any soft conflict (|Kj| = 1)

 it is in a soft conflict (|Kj| > 1). Then, the firing value f is selected from the

uniform random variable X. Now, the transition tj may fire if:

 0 ≤ <

 if the transition tj is the first in the Kj (according to

its order).



 if the transition tj is n-th element of the Kj

(according to its order).

If does not belong to the above intervals, then a transition ti exists which is

the x-th element in the set Kj and it satisfies the condition:

 ∈

the transition ti becomes firabled.

In other words, usually when we are looking for a firable transition, we have to

select one enabled transition. This selected transition determines its conflict set. A

single transition from this set will be fired basing on the random firing value f (not

necessary the chosen one!). It will be just that transition whose priority (projected

into the interval <0, 1>) encompasses the drawn firing value f. Therefore, the larger

the projected interval is, the bigger the probability of the firing. Moreover, higher

values of the priority function (of the transition) result in larger intervals. In the

random priority-based Petri net the probability of firing of the transition is

proportional to the value of the priority function, so transitions with high priorities

will fire more often than transitions with smaller priorities. However, every

transition has an opportunity to fire, even the transition with the smallest priority. It

cannot be foreseen which sequence of transitions' firing will occur in this type of

PN. However, the sequence is not fully random, since each sequence has a

predefined probability. Sequences of the transitions with a higher priority will

appear more often in PN simulations. This property is strongly desirable in my

work.

32

Chapter 2. The immune system as a model of

biological system

2.1 Introduction

Humans and other animals live in an unsafe environment, full of microorganisms

like bacteria, viruses, parasites and fungi. They may be very dangerous for higher

organisms like mammals. In order to avoid that threat, during millions of years of

the evolution, several lines of effective biological defense systems have been

developed. The central role in this protection plays the immunological system (IS)

[53-54]. Such a system may be modeled computationally. Developing of new

network-based methods useful for IS study was one of the goal of the present

thesis. Here a short description of IS is presented.

The IS usually works quite well, but sometimes perturbations in its activity create

health problems. Since I have experienced such a situation personally (frequent

infections), I devoted much interest to the IS structure and functioning. Knowing

more about the physiology of IS prompted me to develop novel computer models

of IS. PNs seemed to be a perfect tool for this purpose. I have learnt that some

scientists had already initiated research in this field [55-57]. Good computer model

of IS may facilitate IS research and may lead to new information useful in

medicine and/or biology. In particular, various pathological states of IS may be

computationally studied in an effective and controlled way.

This was the main motivation for the formulation of our new Petri net based model

of IS. The model, more elaborated than the ones published before [55-57], has been

already presented at many international conferences and in two papers [58-59].

Here we add new aspects: the modeling of AIDS, symptoms of the AOIS disease

and the studies of IS ageing. Technical details are described in the paragraph 2.4,

and the main features of IS are described in the next paragraph. One should note

that our model presents mostly an adaptive IS and a part of the innate IS. This

chapter has some “biological” character, however, introducing this information is

crucial for understanding the significance of my PN programming efforts and

computer experiments performed.

The immune system is a complicated set of cells, proteins and interactions between

them, critical for proper functioning of higher living organisms [53]. The immune

response is a complex and multistage process which involves many different

mechanisms. In order to better understand and comprehend such a complicated

system as IS two ways of classifications of IS components were introduced. It

should be noted that those divisions are not strict, as some elements may occur in

many parts or other IS components may be difficult to classify. Nevertheless, the

divisions (classifications) are generally accepted, present in the literature, and they

enable better understanding of the immune response.

33

The first division of the IS distinguishes between two parts: cellular and humoral

response [54]. The cellular response is directed against pathogens living in cells for

example, against viruses which enter cells, modify their DNA and multiply inside

the cells. The cellular immunity involves the activation of macrophages, natural

killer cells (NK), antigen-specific cytotoxic T-lymphocytes (Tc), and the release of

various cytokines in response to an antigen. The humoral response is specialized

against pathogens living in body fluids. The basic elements of the humoral

immunity are antibodies produced in the cells of the B lymphocyte (B cell). In both

the cellular and humoral immunity helper T lymphocytes (Th cells) are involved.

The second division of IS concerns an innate and an adaptive immune system [53-

54]. The innate immune system provides an immediate defense against the

infection in a non-specific way. The elements of this system can recognize the

pathogens as “alien” cells and respond to them in a non-specific way. It is

evolutionary mechanism older and faster than the adaptive immune system. The

innate immune response is necessary for activation the adaptive immune response.

Elements of the innate immune system are mast cells, macrophages, neutrophils,

dendritic cells, basophils, eosinophils, natural killer cells. The adaptive immune

system can recognize a pathogen and can respond in a specific way. It consists of

highly specialized cells, but its reaction is slower. Elements of the adaptive

immune system are helper T cells (Th), cytotoxic T cells (Tc), B cells and

antibodies produced by them [60].

2.2 Immune response

The first step of the adaptive immune response is an antigen presentation. Many

type of cells may present an antigen (B cells, dendritic cells, macrophages, infected

regular body cells), but professional antigen presenting cells (APC) are dendritic

cells (DCs). They have two types of major histocompatibility complex (MHC)

proteins: MHC class I and class II. The DCs migrate to various body tissues and

there they sample the surrounding environment. If DCs are infected by intracellular

antigens, the antigen is preprocessed inside the cell and their fragments are

presented on the surface of the DCs in a complex with the MHC class I. The same

mechanism is present in all infected body cells and it is not specific for DCs. The

MHC class I molecules present the antigen to Tc cells. DCs also phagocyte

exogenous pathogens. The exogenous antigen is preprocessed inside the cell and its

fragments are presented on the surface of the DCs in the complex with the MHC

class II. The MHC class II molecules are recognized by Th cells [61]. When DCs

find the antigen they migrate to lymph nodes and there second step of the immune

response takes place.

DCs via MHC class II present antigens and activate native helper T lymphocytes.

Th cells need two signals - two sets of corresponding receptors to have a proper

activation. One signal is not enough, it may indicate autoimmune response and a

Th cell after only one activation signal becomes inactive. A native Th cell

34

maturates, produces cytokines and differentiate into helper T cells type 1 (Th1) or

type 2 (Th2). The type of Th cell depends on cytokines produced by DCs and a

type of an antigen. Both types of the Th cells produce cytokines, but specific for

the type. Th1 produce cytokines which inhibit the humoral response and promote

the cellular response. They are necessary during the activation of the cytotoxic T

lymphocytes. Th2 produce cytokines which inhibit the cellular response and

promote the humoral response.

The basic elements of the cellular response are the cytotoxic T cell (Tc cells). A Tc

cell is activated by APC via MHC class I and it also requires two signals - two sets

of corresponding receptors for the activation. After the activation the Tc cell kills

APC cells (because they are infected), and stimulated by Th1 cytokines it can

multiply. New, active Tc lymphocytes leave the lymph nodes and migrate to find

infected body cells. The infected body cells present the antigen via MHC class I

and that is why Tc cells can find them. When Tc cell recognizes the infected cell it

induces the apoptosis of the infected cell.

B cells are present in the organism and they poses receptors on their surface which

correspond to antibodies produced by the B cell. The B cell without an activation

may produce IgM and IgD antibodies. If those antibodies recognize the antigen,

receptors of a B cell will also recognize it. The B cell, which recognizes the

antigen, presents it and migrates to lymph nodes. There the B cell presents the

antigen to Th2 cells and if Th2 cells recognize it, Th2 activate the B cell and B

lymphocyte produces IgG, IgE or IgA antibodies. The production of the antibodies

may be additionally stimulated by cytokines produced by the Th2 cells.

The steps described above are mechanisms of the adaptive immune system. The

macrophages are a part of the innate immune system. They circulate through the

body and phagocyte antigens. They also produce a few kinds of cytokines, which

have an impact on different types of the immune response.

2.3 Phenomena present in immune system

Fever is one of the interesting biological phenomena related to IS. According to the

Britannica Encyclopedia fever is abnormally high bodily temperature or a disease

of which an abnormally high temperature is characteristic [62]. A fever may be

caused by substances called pyrogens. One of the most common pyrogens is

lipopolysaccharide (LPS) present in bacteria. The presence of the LPS causes

production of cytokines: IL-1, IL-6 and TNF-α, which induce an increase of the

thermoregulatory set point in the hypothalamus. Some elements of the immune

system are sensitive to temperature increase. The fever does not cause any new

mechanisms in IS, it only stimulates different processes and increases their rates

[63]. During the fever dendritic cells migrate faster to a place of the infection [64].

At a higher temperature Tc lymphocytes are more active [63, 65], their

differentiation, proliferation and persistence are stimulated [63, 66-70]. The fever

35

also facilitates the Th cell activation [69]. The elevated body temperature does not

have any direct impact on B lymphocytes, but through an activation and a

stimulation of Th2 lymphocytes, it stimulates the B cells and increases the

production of the antibodies [63, 65, 71].

Other phenomenon added to our IS model was ageing of the IS. Ageing has an

impact on different elements of the immune systems. The first is reducing the

production of IL-2 and INF-γ by Th lymphocytes. The second effect is decreasing

the amount of native T and B cells. The next feature related to ageing is smaller

expression of CD28 (and TCR) receptors and an increase in a number of "memory"

T cells [72-73]. So, the ageing has mostly adverse impact on the IS. The larger

number of the memory T cells may be beneficial, however, they may hinder the

immune response against unknown infections – together with a smaller number of

the native lymphocytes. Many scientists suggested that having the IS capable

preserving its functions during years, is a good prognostic factor for human

longevity [72].

We were also interested in diseases directly related to IS like AIDS and AOIS.

AIDS means Acquired Immunodeficiency Syndrome and it is caused by the HIV

virus. When the HIV virus infects the organism, it attacks Th cells and multiplies

inside those cells. The number of Th lymphocytes decreases and the immune

response cannot develop property. Without a proper immune response even

normally harmless infections become lethal, for example, a common cold may

transform into dangerous pneumonia. Moreover, AOIS (Adult-Onset

Immunodeficiency Syndrome) is a newly discovered disease [74] which was

reported for the first time in Thailand and Taiwan. Its symptoms are similar to

AIDS: frequent and severe infections which should be harmless during a normal

immune response. Patients with AOIS were tested for the presence of HIV virus,

however they were not infected by the virus. The authors of the paper [74] found

the presence of anti-INF-γ antibodies in 88% of Asian adults with multiple

opportunistic infections. Those antibodies bind to INF-γ - one of the cytokines

necessary to develop a proper immune response. The low level of INF-γ paralyzes

the immune system.

Autism Spectrum Disorder (ASD) is a range of severe medical conditions without a

known cure. It is a very serious disease and its symptoms are: communication

impairments, social deficits, problems with the acceptance of changes, repetitive

behaviors, etc. Reviews tend to estimate a prevalence of 6 per 1000 for autism

spectrum disorders, however the number of autism cases continues to grow during

the last years [75].

The etiology of ASD is not known, and a few risk factors have been identified.

Genes’ mutations are perhaps one of the most probable causes [76]. Many gene

mutations (>100) have been found to be correlated with ASD, and this correlation

is confirmed by the epidemiology. The prevalence of ASD in siblings of autistic

36

children is approximately 15 to 30 times greater than the rate in the control

population [77], and the prevalence in monozygotic twins is even higher (60-94%)

[78-79].

However, some authors suggest that the correlation between the prevalence of ASD

and brotherhood is caused by the same environmental risk factors [80]. One of the

recently postulated possible ASD risk factors is related to the immune system [80-

85]. In papers [83-84] authors suggest that the maternal immune response during a

pregnancy may be a cause of ASD. Indeed, many animal models of ASD have been

achieved by the activation of pregnant females' immune system [83]. Some of the

cytokines from the maternal circulatory system may be transported across the

placenta and induce inflammation in the placenta or the fetus [82-83], which in turn

may cause a distribution in neurodevelopment in the offspring [82, 85]. Another

consequence of the maternal inflammation during the pregnancy may be

deregulation of the immune system in the autistic people [81-83], which is revealed

by altered levels of some cytokines. Table 3 contains the summary of information

about the cytokines, showing which levels are elevated in the ASD hosts.

Table 3. A list of cytokines exhibiting elevated levels in ASD hosts

Cytokine Source Target Stimulation of other

cytokines

Comment

IL-4 Th0, Th2 Th0->Th2, B,

Macrophages

 Anti-inflammatory

IL-5 Th0, Th2 B

IL-13 Th0, Th2 B, Monocytes

IL-2 Th0, Th1 Th0->Th1, Tc

INF-γ Th0, Th1 Tc, NK,

Macrophages

IL-1, IL-6, TNF Antiviral;

cause of fever

TNF-α Macrophages,

Monocytes

Macrophages, T

and B with other

cytokines

IL-2, INF-γ, IL-1,

IL-6 (Macrophages)

Cause of fever;

pro-inflammatory;

triggered by LPS and

INF-γ

IL-1β Macrophages,

Monocytes

T, B IL-2, INF-γ, IL-1,

IL-6 (Macrophages)

Cause of fever;

pro-inflammatory;

triggered by LPS and

INF-γ

IL-6 Macrophages,

Monocytes

B, T->Tc Cause of fever;

triggered by IL-1

(mostly) and INF-γ,

TNF, LPS

MCP-1 Macrophages,

Monocytes

T, B Pro-inflammatory

Another premise for the association between ASD and IS may be observation that

in some autistic cases fever improves the condition of children with ASD [86]. The

children with elevated temperatures were reported to exhibit longer attention spans

and increased social interactions than were typically observed in normal

temperature conditions. The symptoms remission occurred at the onset of fever and

37

persisted for 1 – 3 days following after return of the temperature to the normal

level. The reason of such effect of the fever is not well studied, two hypotheses

were developed. The first hypothesis refers to locus coeruleus-noradrenergic (LC-

NA) system [87]. Other authors suggest that the fever phenomenon is correlated

with fluctuations in levels of many cytokines during fever [83, 88-89]. The

cytokines are very important in the communication between the central nervous

system and the immune system, many of them participate in normal neural

development and function [82]. Therefore in our PN based model of IS we

included major cytokines and studied cytokines levels in normal and elevated

temperature conditions in the context of ASD.

2.4 The model

In 2004 Petri nets were used for the first time to create a simple model of the

immune system by Na et al. [55]. They used fuzzy-continuous PNs formalism to

create three networks describing Th cells proliferation, humoral and cellular

response. However, their model was very general, as it was limited only to main

immune system’s cell types and their interactions. It is also not up-to-date, since in

2004 many immune mechanisms were not known, as well as the role of cytokines

in IS. In 2005 and 2006 the authors added cytokines to the model, however only to

the networks which describe lymphocyte Th1 and Th2 selection step [56-57].

Inspired by that work, we have developed a much more elaborated model of the IS.

This chapter is partially based on the results presented in Gogolinska, A. and W.

Nowak, "Petri Nets Approach to Modeling of Immune System and Autism", in

Artificial Immune Systems, Springer Berlin / Heidelberg, 2012, pp. 86-99.

In 2009 the first version of my model of the IS, inspired by Na et al. was created.

That model was also rather simple and limited solely to the major elements of the

immune system. During next years I have developed and extended the model by

adding new elements, mechanisms and features [58]. Initially it consisted of four

parts (sub-networks), which may be studied separately or as one, large network.

The studies of all networks together are more interesting and bring more results. In

this model I have used the classical Petri network formalism and focused on the

adaptive immune response. The four parts of the model are: (A) reaction of

dendritic cells, (B) Th cells proliferation, (C) cellular response and (D) humoral

response. In 2011 a new part of the immune response was added to the model [59]:

(E) the reaction of the macrophages. The macrophages are classified as the part of

the innate immune response, however, they were necessary to model the immune

system compromised in the people with ASD. The whole model is presented in

Fig. 3 and Fig. 4.

Part (A) describes the reaction of the DC cells. In general, it represents two linear

pathways of the preprocessing of the antigen. Linear here means that if the first

transition from the pathway is activated then the next transitions will fire in the

established order. Choosing the pathway depends on type of the antigen: external

38

or internal. Then through the MHC class I or II the antigen is presented to Tc cells

or Th cells. Part (B) represents the Th cell proliferation. DC cell presents the

antigen, and if two signals of an activation are present a Th cell proliferates into

Th1 or Th2 lymphocytes, and they produce their characteristic cytokines. The next

transitions connect Th1 cells with the cellular response and Th2 cells with the

humoral response. Part (C) shows an activation of the Tc lymphocytes by DC cells

and their development. Tc cells require to maturation cytokines produced by Th1

lymphocytes. Additionally the cytokines produced by macrophages stimulate Tc

lymphocytes for faster development. The mature Tc cells kill body cells infected by

viruses in two ways. The body cell may be infected by a "regular" virus or by the

HIV virus (only Th cells may be infected by that virus). Part (D) describes humoral

response during which B cells produce antibodies. If they recognize and bind to an

external antigen, the B cell may become active. With the participation of Th2 cells,

the B lymphocyte starts the production of the new types of the antibodies. The

production may be stimulated by the presence of cytokines produced by Th2 cells

or macrophages. The description of the whole network is presented in Table 4 and

Table 5. The model file is also available at http://www-

users.mat.umk.pl/~leii/thesis/.

The model was created basing on text books and other papers [53-54, 61]. Because

of the difficulties in collecting the appropriate values of parameters like, for

example, the amount of INF-γ which is produced by Th1 cells, the model is

qualitative. The correct numbers necessary to create a quantitative model are not

measurable experimentally at this moment and are not known, thus it is impossible

to develop such a model. As a result, the PN model of IS cannot give answers to

questions like: how many cells or proteins are present in the system. However, the

model can answer other biologically important questions, for example: whether in

given conditions the amounts of cells or proteins increasing or decreasing, what

changes are expected when the amount of some substances is increasing (or

decreasing), etc. Moreover, the weights in the model are usually default (equal 1)

to avoid adding a quantitative data. Only in a few cases customized weights were

necessary, for example, special weight were used in a transition representing

proliferation of the cell. On rare occasions the weights were added arbitrary to

highlight the stimulation of some processes, and they were usually small integers

like two or five.

http://www-users.mat.umk.pl/~leii/index.php?dir=thesis/
http://www-users.mat.umk.pl/~leii/index.php?dir=thesis/

39

Fig. 3. The first part of the PN model of the IS.

40

Fig. 4. The second part of the PN model of the IS.

41

The model was created using public domain software SNOOPY [90]. One should

note that this program is not appropriate for the analysis of PN networks. Two

types of analysis were performed: the t-invariant analysis and the net simulations.

The network simulations' protocol was as follows: the initial state for the

simulation is an initial marking, from the enabled transitions set just one is

randomly chosen and fired, the marking is changing, then the next enabled

transition is chosen. One firing is one step of the simulation and after a given

number of steps the simulation stops. During the simulation a marking of a chosen

place is monitored and remembered. The same scheme was repeated many times

(i.e. five hundred or one thousand) and from all runs the average marking of the

chosen place was calculated. All those operations were performed by Java software

written by myself. The results of the simulations are shown in the paragraph 2.5. T-

invariant and t-clusters were calculated using public domain software Mona Lisa

[91]. The output files were processed by my own Java software. MCT-sets were

also calculated by the same original software.

A new useful features were added to the model on an advanced stage of this

project: fever, HIV infection, AOIS and ASD. All were described above in the

paragraph 2.3. Unfortunately, in order to test the majority of them the changes in

the network structure are required. However, the changes are rather minute and are

limited only to tuning of some selected weights. Furthermore, a number of features

which should be added to the model depends on the user, who can modify all

relevant transitions or only selected ones.

Table 4. Description of places, which occur in the model.

ID Place description ID Place description

1 Dendritic cell 54 Receptor FasL

2 Fragment of cell 55 Cytokine IL-2

3 Immunosuppressant 56 Cytokine INF-gamma

4 Cytokines 57 Antigen

5 DC in place of inflammation 58 Infected body cell

6 exogenous antigen 59 Body cell

7 Early endosome 60 Perforin

8 Proton pump 61 Granzymes

9 Late endosome 62 Receptor FasL

10 Protease 63 Complex MHC I + antigen

11 Active protease 64 Active Tc

12 Protease 65 New Tc cells

13 Protease 66 pre-B

14 Protease 67 Lymphocyte B with IgM and IgD receptors

15 Antigen after processing 68 Antibody IgM

16 MHC class II 69 Antibody IgD

17 CLIP protein 70 B producing antibodies

18 Complex MHC II + antigen 71 Antigen

19 DC with complex MHC II + antigen on

its surface

72 B presenting antigen

42

21 Endogenous antigen 73 Th2

22 Antigen absorption 74 Receptor TCR

23 Antigen in cytoplasm 75 Molecule C154

24 Ubiquitin 76 B producing other antibodies

25 Protein with ubiquitin 77 Other antibodies: IgG or IgE or IgA

26 Proteasome 78 Connection of antigen and receptor

27 Peptides 79 Antigen that is dividing

28 TAP protein 80 Endogenous antigen

29 Complex antigen + TAP 81 HIV

30 Chaperone proteins 82 Cyclosporine

31 MHC class I 83 Lymphocyte Th, that can't produce

cytokines

32 Complex MHC I + antigen 84 Recognition

33 Lymphocyte Th 85 Infection of HIV

34 Dendritic cell with MHC II complex 86 Infection of other virus

35 Complex MHC II + antigen and

molecules CD80/86 on dendritic cell's

surface

87 Macrophage

36 TCR receptor on Th cell's surface 88 IL-1

37 Molecule CD28 89 IL-6

38 Th in state of anergy 90 TNF-α

39 Lymphocyte Th0 91 Active Th2

40 Cytokine IL-12 92 IL-4

41 Cytokine INF-gamma 93 IL-5

42 Cytokine IL-4 94 IL-13

43 Th1 95 IL-10

44 Dendritic cell 96 Macrophage which produces cytokines

45 Lymphocyte Tc 97 Cellular response

46 Complex MHC I + antigen and

molecules CD80/86 on dendritic cell's

surface

98 Humoral response

47 TCR receptor on Tc cell's surface 99 Virus (HIV or other)

48 Molecule CD28 100 Cell infected by HIV

49 Initially activated Tc 101 Complex MHC I + antigen on HIV infected

cell

50 Activated Tc 102 Perforin

51 Proliferated Tc 103 Granzymes

52 Perforin 104 Receptor FasL

53 Granzymes 105 Active Tc (against HIV infected cell)

Table 5. Description of transitions, which occur in the model.

ID Transition description ID Transition description

1 Receiving signals type 1 of danger 57 Baturation of lymphocyte B

2 Receiving signals type 2 of danger 58 IgM production

3 Endocytosis of endogenous antigen 59 IgD production

4 Endocytosis of exogenous antigen 60 Binding of antigen by antibody

5 Absorption 61 Binding of antigen by antibody

6 pH decreasing 62 Unidentified antigen

7 Processing of protease 63 Identified antigen

8 New antigen 64 Binding of antigen by antibody

43

9 New antigen 65 Th2 doesn't recognize antigen

10 Activation of protease 66 Th2 recognizes antigen

11 Activation of protease 67 Suitable molecules are present on cell's

surface

12 Activation of protease 68 Suitable molecules are present on cell's

surface

13 Disconnection 69 Arrival of antigen

14 Connection of antigen and MHC II 70 Antibodies production

15 Absence of reaction between MHC II

and antigen

71 No activation

16 Transport to cell's surface 72 No activation

17 Infection 73 Virus infection

18 Ubiquitination 74 Action of immunosuppressive drug

19 Proteolysis 75 New Th lymphocyte arrives

20 Complete degradation 76 New Tc lymphocyte arrives

21 Transport of antigen 77 New B lymphocyte arrives

22 Connection of antigen and MHC I 78 Development of HIV

23 Transport to cell's surface 79 Induction of apoptosis

24 Absence of reaction between MHC I

and antigen

80 Induction of apoptosis

25 Division 81 Phagocytosis

26 Suitable molecules are present on cell's

surface

82 Phagocytosis

27 Suitable molecules are present on cell's

surface

83 Production of cytokine

28 Suitable molecules are present on cell's

surface

84 Production of cytokine

29 Connection of receptors without

activation (only 1 signal)

85 Production of cytokine

30 Connection of receptors and activation

(2 signals)

86 Death of macrophage

31 Th cell's stimulation and proliferation 87 Production of cytokines

32 Th cell's stimulation and proliferation 88 Activation of B cell

33 Cytokines production 89 Death of B cell

34 Cytokines production 90 Production of antibodies

35 Suitable molecules are present on cell's

surface

91 Production of antibodies

36 Suitable molecules are present on cell's

surface

92 Production of cytokines

37 Suitable molecules are present on cell's

surface

93 Activation

38 Connection without activation (only 1

signal)

94 Activation

39 Connection and activation (2 signals) 95 Deactivation

40 Continued activation 96 Death of cell

41 Degranulation 97 Cytokine production

42 Receptor activation 98 Death of DC cell

43 Induction of apoptosis 99 Death of DC cell

44 Induction of apoptosis 100 Death of DC cell

45 Cytokines production 101 Presence of HIV virus

46 Proliferation 102 Presence of virus (not HIV)

47 Degranulation 103 Infection of Th cell by HIV

44

48 Receptor activation 104 Infection of Th cell by HIV

49 Antigen presentation 105 Antigen presentation

50 Activation 106 Activation

51 Development of antigen 107 Death of DC cell

52 Infection 108 Death of Th cell

53 New body cell 109 Death of Th cell

54 Induction of apoptosis 110 Antigen is killed

55 Induction of apoptosis 111 Degranulation

56 Death of cell 112 Receptor activation

The new functionalities which were added to the model were used to study some

events and phenomena. The model is very flexible, new elements can be easily

added to check another interactions or impacts of different factors. Those which are

presented in the present work gave very interesting results and each problem

should be treated as a separate study, however, these case studies can also illustrate

the usefulness of the model and the advantages the Petri nets themselves. I want to

stress that the model has a potential to extension.

2.5 Simulations of immune system

2.5.1 Fever and ageing

As it was noted in paragraph 2.3 fever does not cause new interactions in the

immune response, but only stimulates some mechanisms listed above. Those

mechanisms were recognized in the model and the transitions corresponding to

them were identified. The appropriate transitions are shown in Table 5 in red. The

effect of fever on the IS model was also presented in the paper [58].

The most straightforward and adequate way to demonstrate a stimulating effect of

fever on the transitions is changing selected weights. An increase in the weights of

the arcs leading from transitions to places reflects the quantitative effect of the

fever. The mechanism of IS activity remains the same as observed in a normal

body temperature, however greater weights simulate a greater efficiency of the

mechanisms.

One should note that the accurate statistical data on how much the fever affects the

immune response are not known yet, so experimental information how much the

weights should be changed is not available. As a result, the weights in PN IS model

were changed arbitrarily, by the factor of two. Once firm data are available, these

weights may be easily adjusted.

It was crucial to monitor the populations of viruses and Tc cells during the immune

response. A number of simulations of the model were performed, during a viral

infection both without elevated body temperature ("normal" state) and with fever.

In order to simulate the fever the weights of transitions affected by the fever

selected from the part of the model related to the cellular response were increased

45

by the factor of two. These transitions are: t32, t39, t46, t50 - all shown in red in

Table 5. For each of the fever-affected transitions a set of simulations was

performed and one extra simulation with the effect of the fever on all selected

transitions. During the simulations the numbers of viruses (results shown in the

Fig. 5a) and Tc cells (Fig. 5b) were calculated.

Fig. 5. The results of the simulations of the model with and without fever (a model

without "macrophages" part). Different transitions connected with the fever were

used. (a) A time evolution of the virus population during the fever. (b) The effects

of the fever on the number of Tc lymphocytes.

Looking at Fig. 5a one can see that without fever the number of viruses is the

highest. It can be even inferred that the IS cannot stop the infection. However, in

the Fig. 7 the time of simulation is longer and finally the number of viruses is

reduced. The lowest impact on the number of viruses is observed when changing

the weight of the transition t39 – the connection and activation of the Tc

lymphocytes. The middle-level reduction of the number of viruses is seen for

transitions t32 - Th1 cell's stimulation and proliferation as more Th1 cells stimulate

Tc cells better and for t46 - proliferation of Tc cells. As a result it seems obvious

that more Tc lymphocytes will kill more viruses. The transition t50 has the biggest

effect in the model, which denotes a direct, temperature induced, activity of

lymphocytes Tc during killing the viruses. Furthermore, the infection is defeated

the most quickly when all the assumed effects of fever are present. The general

result is that the fever has reduced the number of viruses and helped to stop the

infection.

In Fig. 5b the number of Tc lymphocytes is shown for comparison. The biggest

amount of Tc cell is observed when all effects of the fever are present. It is obvious

because almost all transitions affected by the fever result in an increasing number

of Tc cells. What is interesting is the decreasing amount of Tc lymphocytes.

However, if Fig. 5b is compared with Fig. 5a, it can be postulated that from some

point of time during the simulation the virus is not present in the system anymore,

so the immune response is inhibited and the number of Tc cells should be reduced.

A large impact on the number of Tc lymphocytes is observed for the fever effect of

transition t46 - this transition represents proliferation of Tc cells, so a bigger

number of Tc cells is normal. The number is still quite large even at the end of

(a) (b)

46

simulation, because the infection is still present in the model (Fig. 5a). For the

transitions t32 and t36 the number of Tc cells is only slightly bigger than in the

case without the fever. Those results correspond to the Fig. 5a. What is interesting

is the effect of the fever observed in the number of Tc cells for the transition t50, as

initially the number of Tc cells was similar to the case without the fever. It can be

explained by the fact that the transition t50 does not have any impact on the

number of Tc cells but only on their activity. Later the number of Tc cells

decreases but it corresponds to the results from Fig. 5a - the infection is controlled.

The process of ageing has diverse effects on IS. Thus, the elements affected by age

were added to the model using different methods depending on the type of the

change in the IS. A reduction of the production of IL-2 and INF-γ was introduced

by changing weights between p43, t45 and t92. As a result of those changes two Th

lymphocytes in the "old" IS will produce the same amount of cytokines like the

ones in the "young" IS. The number of native T and B lymphocytes has been

decreased due to additional transitions, which can consume tokens from places p33,

p45 and p66. Those places represent native lymphocytes and are input places for

the newly added transitions. The transitions do not have other input places and any

output place. A similar method was used to reduce the expression of CD28 and

TCR receptors. New, "consuming" transitions were added to the model. Places p47

and p48, p36 and p37, which represent CD28 and TCR receptors, became input

places for those new transitions. The most difficult task was the introduction of

memory Tc cells to the model. The activity of the memory cells is quite a complex

part of the real immune system and its full representation in the model would

require large changes in the PN. In order to avoid such remodeling a simple yet

working mechanism was suggested, namely a new transition which can only add

tokens to the places p65 representing mature Tc cells, has been added. This

mechanism does not strictly represent the nature of ageing processes, it only

provides a desirable effect.

Fig. 6. The number of viruses (a) and pathogens (b) calculated during simulations

of the cellular (a) and humoral (b) response in the model of "young" and "old" IS.

47

Simulations for the cellular and humoral response in the model of "young" and

"old" IS were performed. The results are presented in Fig. 6. The model of the

"young" IS is our standard model with the "macrophages" part added, used in all

simulations presented later on in this chapter. The model of the "old" IS is the

modified model described in this section. One can see that the model of the

"young" IS, in both cellular and humoral responses, can control an infection, which

is manifested by a decreasing the number of pathogens. However, in the model of

the "old" IS the infection cannot be controlled, especially in the humoral response

(Fig. 6b) case. In the cellular response the situation is better, probably due to a

positive effect of the memory Tc cells. However, even this positive effect is not

strong enough to defeat the infection.

2.5.2 AIDS and AOIS

The HIV infection is added to the model by inserting new places and transitions.

They are shown in Fig. 3 on a grey background. This part of the model contains

places and transitions which represent an infection of Th cells by the HIV virus, the

virus replication and possible killing of the HIV virus by the immune system. The

introduction of the HIV infection to the model is done by changing the initial

marking M0. If one wants to add the HIV virus to the model, tokens have to be

added to the place p81, which represents the HIV virus. When the place p81 is

empty the HIV virus is not present in the immune system and other properties can

be studied without the influence of the HIV infection.

Such a method of the introduction of the HIV infection to the model was chosen as

the most reasonable one. The simplest and the most obvious way to add the HIV to

the PN of IS model is adding a new place and a transition, or maybe a few

transitions, which will be connected to places corresponding to the Th lymphocytes

and will consume tokens from them. It was also the base of the HIV infection in the

model. The disadvantage of such an approach is the absence of the reaction of IS.

In the model such reaction has been added.

Let us recall that the AOIS disease is caused by the lack of cytokine INF-γ. The

cytokine is bound by abnormal antibodies. In order to model the disease in PN

probably the simplest method is to add a new place, which represents the abnormal

antibodies and a transition which represents the binding to INF-γ. This mechanism

was tested and the results are presented in Fig. 7 as a cyan line (labeled as "AOIS

new trans"). However, in the paper [74] the results on the amounts of the INF-γ in

healthy and ill subjects were presented and such a simple approach in the model

would not be able to represent those numbers. That is why the other method was

also tasted, namely, the weight from the place p56 (represents the INF-γ) to the

transition t46 was increased from 1 to 4. It means that for four copies of INF-γ one

is active and can induce the reaction. Those numbers are in accordance with the

results from [74]. The results from the simulations are shown in Fig. 7 as a black

line (AOIS w4). The number of viruses increases very fast, but it is not a linear

48

growth, around one thousand of steps an inflection point can be observed and after

the inflection point the growth is slower. However, even this result was not

satisfactory because of fast growth. Thus, two other cases were studied: the weight

between the place p56 and the transition t46 was set to 2 and 3. In the model with

the weight 2 the number of viruses is the smallest from all AOIS studied cases. In

Fig. 7 it is shown as a light blue line (AOIS w2). The inflection point is observed

around the same number of steps, but it is more explicit. For the weight 3 the

number of viruses grows faster than for the model with the weight of 2 and slower

than for the weight 4 and it is presented as red line in Fig. 7 (AOIS w3). An

interesting observation is a non-linear correlation between the weight and the

number of viruses. Changing the weight from 2 to 3 causes large changes in the

amount of viruses. A further change of the weight causes much smaller changes in

the number of viruses.

Fig. 7. Time evolution of the virus population during AIDS and AOIS diseases

modeled by a PN model of the immune system.

Fig. 8. The time evolution of the virus population during AOIS, which was

introduced to the model by (a) new transition, (b) changing of the weight of the arc

between the place p56 to the transition t46 to 4, and during the INF-γ treatment.

Different moments of starting the treatment are presented – the number in the

legend shows the step number of the simulation when the INF-γ started to affect

the model.

(a) (b)

49

In Fig. 7 we can also see the time evolution of the virus population in other

situations. The pink line corresponds only to the presence of the virus (other, not

HIV) and the normal immune response. As one can see, initially the number of

viruses groves, but later it is decreased by the immune response. During the

infection with the HIV virus (dark blue and brown lines) the number of viruses

grows and at the end of the simulation is it significantly larger than during the

normal immune response. It should be underlined that only the number of "normal"

viruses (not HIV) is calculated. In summary, when the IS is healthy it can defeat an

infection, but during the HIV infection (leading to AIDS) or AOIS the system is

not able to control the infection.

Our model was used to check if INF-γ treatment would inhibit the AOIS

symptoms. The following protocol was applied: three types of AOIS introduction

into the model were chosen – (i) a new transition which represents the binding of

abnormal antibodies, (ii) the weight of 4 of the arc from the place p56 to the

transition t46 and (iii) the weight of 2 of the same arc. During the simulation the

cytokine INF-γ was added to the model by changing a marking of the place p56

every one hundred steps of the simulation. Different moments during the

simulations when the INF-γ was for the first time added to the model as well as

different amounts of INF-γ were tested. The results are shown in Fig. 8.

Fig. 9. The amount of a virus during simulations observed for three different ways

of AOIS introduction to the model (see the text) and for different doses of INF-γ.

(a) (b)

(c) (d)

50

In Fig. 8 the amount of the virus monitored during two types of simulation is

presented. In the panel (a) the AOIS was added to the model by a new transition, in

(b) by changing the weight of an arc between the place p56 and the transition t46

(from 1 to 4). Here presented are the data for simulations with the changing time

points when the INF-γ treatment was added. The results show the IS can indeed

control the infection if the additional INF-γ is added to the model. We see that the

amount of viruses is reduced and it goes back close to the level observed during the

normal immune response. Similar results were observed for the changing of the

weight of arc between place p56 and transition t46 from 1 to 2. For all three ways

of AOIS modeling 10.000 steps long simulations were performed for one particular

case, when the INF-γ treatment was stated after 2000 steps. Long simulations

results confirm the observations from the shorter simulations (results not shown). It

should be noted that the model presents only the IS functions, it does not consider

other body systems and it cannot give an answer which amount of viruses may be

lethal. It is possible that the model shows an optimistic state that the IS can still

control the virus infection when the INF-γ treatment was started, but the infection

could already have destroyed other body systems.

Interesting results were seen when varying amounts of INF-γ were added to the

model. Four cases were checked. The default amount of INF-γ added to the model

was ten and results in Fig. 8 are calculated for that dose of INF-γ. Doses five, two

and one were also tested. All three modes of AOIS presence in the model were

checked and the same staring point of the simulated treatment was used. The

results are presented in Fig. 9. The simulations show that for INF-γ amount of 10

and 5 the results are the same - the IS can control the virus infection - Fig. 9a. In

Fig. 9b the data from simulations with dose of INF-γ five and two are compared.

One can see that for the weight four set to the arc between the place p56 and the

transition t46 the dose of two is not sufficient. The same is observed for a dose one

in combination with the weight two of this arc. For the test with the new transition,

which represents the anti-INF-γ antibodies the results show that any dose is

sufficient, but this case was studied more deeply. The number of viruses in the

healthy IS (red line, Fig. 9d) are compared to the results of the IS modeling with

AOIS introduced by the new transition. It was assumed that the INF-γ treatment

had started after two hundred steps of simulation and the INF-γ dose was set to one

(black line, Fig. 9d). One can see that although the IS with AOIS can control the

infection, the level of viruses is higher than in the healthy IS.

The general conclusion from this computational experiments is the following: the

immune system can function well when the INF-γ is applied, even when it is a long

time after the infection onset. However, the correct IS functioning depends on the

dose of INF-γ in the organism.

51

2.5.3 ASD

There are strong evidences of a correlation between Autism Spectrum Disorder

(see paragraph 2.3) and the immune system. The PN IS model was used to test how

levels of cytokines are changing during fever and ASD. I have addressed the basic

question: is it possible that those changes are responsible for transient

improvements of condition of autistic children? Cytokines whose levels were

reported to be elevated in autistic cases are presented in Table 3. Unfortunately,

data from the literature are often inconsistent [81] and so many different

parameters will make outcomes from the simulations unclear. Three cytokines were

chosen to be elevated in the model of ASD: IL-1, IL-6 and TNF-α. This selection is

consistent, all chosen signaling molecules are produced by macrophages, they are

also discussed in the papers [83, 85]. Because the chosen cytokines are produced

by macrophages, the macrophage activity should have been added to the IS model.

Reactions of macrophages are represented in the part (E) of the model (Fig. 4) and

it shows a phagocytosis of the antigen and the production of cytokines by the

macrophages.

Four types of PN IS simulations were preformed: (1) non-autistic, (2) non-autistic

with fever, (3) autistic, (4) autistic and fever, each four thousands steps long.

During the simulations the numbers of the following cytokines were calculated:

INF-γ and IL-1, IL-6, TNF-α - last three were chosen to be elevated in the autistic

case. The results are shown in Fig. 10. Those results were also presented in our

paper [59].

In Fig. 10a an average amount of (probably) the most important cytokine IL-1 is

presented for all the cases studied. In almost every simulation both the cellular and

humoral responses were present, otherwise it is denoted in the text. One can see

that the amount of IL-1 in non-autistic cases with fever and without it is similar and

significantly smaller than the level in the autistic model. Indeed, the amount of IL-1

in the autistic case grows constantly. However, in an autistic subject with fever the

concentration of IL-1 does not grow constantly, but achieves a smaller constant

level than in the case without fever and more similar to the non-autistic cases. IL-1

exhibits pro-inflammatory activity and according to [82, 92] a high level of IL-1 is

not good for the nervous system. In conclusion, for IL-1 the effect of fever is

positive.

However, one can see in Fig. 10a that in the autistic subject the problem of

homeostasis is present. Two new transitions were added to the model, which

represent collectively all remaining mechanisms of degradation/inactivation of

cytokines INF-γ and TNF-α, respectively. Results from the simulations of the

model with those two new transitions were shown in Fig. 10b. Also, the results

presented for other cytokines (Fig c-f) were obtained from the modified model. In

Fig. 10b the general behavior of the levels of IL-1 is the same like in Fig. 10a,

however the concentration in the autistic case without fever is more stable.

52

Fig. 10. Results of ASD simulations: (a) levels of IL-1, bars represent statistical

errors (b) levels of IL-1 with additional transitions, (c) levels of IL-6, (d) levels of

TNF-α, (e) levels of INF-γ, (f) levels of IL-6 but only during the humoral response

(from [59]).

In Fig. 10c the amount of IL-6 is presented. The plots are very similar to the IL-1

simulations, which is clear because the production of IL-6 depends on the level of

IL-1 [61]. IL-6 also may be dangerous for the nervous system and cause the

inflammation state in the Central Nervous System [82, 92]. Therefore, the effect of

fever is beneficial in the model. However, this case was monitored also in much

longer simulations (data not shown) and still the homeostasis did not occur for all

cases studied. Probably our straightforward method of IL-6 destruction is too

simple.

The next cytokine observed during the simulations was TNF-α. In Fig. 10d data

shows that in “autistic” simulations with and without the fever the amount of the

cytokine is significantly bigger than in non-autistic cases. Other observation is a

larger impact of the fever on the autistic mode, in healthy subjects the TNF-α level

increases to a much lower extent, however in both cases the direction of changes

(a) (b)

(c) (d)

(e) (f)

53

are qualitatively the same. According to [82, 92], TNF-α is pro-inflammatory

cytokine and it may be dangerous for the central nervous system, so the results

from the simulations are not beneficial for ASD.

INF-γ was not chosen to be elevated in ASD so in non-autistic and autistic cases

without the fever observed levels of INF-γ are very similar. The fever induces an

increasing amount of INF-γ in both cases, however the impact of fever is bigger in

an autistic subject (Fig. 10e). According to [92] the INF-γ is a neuroprotective

cytokine and it is beneficial for the central nervous system so changes observed in

the simulations are positive.

In Fig. 10f the amount of IL-6 (during the humoral response exclusively) is

presented. Without the fever in the autistic case the level of IL-6 is significantly

higher than in the non-autistic study without the fever. When the effect of fever is

present, the level of IL-6 for a non-autistic subject increases, however for the

autistic case the level of IL-6 decreases and it is almost the same as for healthy

cases. That is a promising result, better than the results from simulations with both

immune responses present. The presence of only the humoral response is possible,

and it occurs during normal infections and depends on type of the antigen.

Observations [86] show that the fever does not always improve the state of autistic

children. Perhaps in some cases only a part of IS responses to the inflammation or

another pirogen, and thus the change in the behavior is seen. The hypothesis is that

the improvement in mental abilities of autistic children is more significant when

only the humoral response is present. Verification of such a statement requires

further studies and more experimental data.

The general findings in the PN IS model are: the fever changes the amount of

cytokines and usually brings it closer to the level observed in healthy children or

the changes are qualitatively the same for the healthy and autistic children (for

TNF-α). However, we still have problems with keeping a homeostasis in the

model.

Towards genetic test for ASD susceptibility

Obviously this chapter is not directly linked to my thesis topics but I decided that it

is worth mentioning. During the preparation of this thesis, and my participation in

NCN founded project (N519 578138) I have learnt that ASD has a strong genetic

component. Together with other colleagues, I have developed a framework for

information search on new ASD related genes. We have initiated a project

(GENIUS) aimed at finding an inexpensive biochemical, PCR based, test checking

selected genes. The project received the approval of the medical bioethics

committee (KB 402/2014). The first mutations have been selected and the first

blood samples were tested. The GENIUS project is carried out in cooperation with

the Pracownia Genetyki Nowotworów w Toruniu lab and the Centre for Modern

54

Interdisciplinary Technologies of Nicolaus Copernicus University in Torun, with

the financial support from the kujawsko-pomorskie voivodeship.

2.6 T-invariants analysis

The analyses of t-invariants of the IS model were performed and our model had a

CTI property. Forty seven t-invariants were found and biological meanings of all

were studied. T-invariants, transitions which are included in the t-invariant and the

biological meaning of each t-invariant are presented in Table 6.

Table 6. Description of t-invariants of the PN model of the immune system.

T-inv Transitions Biological meaning

Inv0 t76, t72, Tc cell arrives and isn't active.

Inv1 t26, t65, t28, t75, t31, t34, t67, t30, Th cell recognizes antigen but B cell

doesn't

Inv2 t75, t71, Th cell arrives and dies

Inv3 t26, t75, t27, t108, t29, Th cell doesn't recognize antigen (only 1

signal) and dies

Inv4 2*t79, 4*t75, 2*t78, 4*t73, 3*t105, t106,

t111,

Tc cell kills HIV virus which kills Th cell.

Inv5 t26, t28, t75, t32, t33, t30, t74, Th cell activates and it is destroyed by

immunosuppressant

Inv6 2*t79, 4*t28, 4*t75, 4*t103, 2*t78, 3*t105,

t106, t111,

Tc cell kills HIV virus which kills Th cell.

Inv7 2*t96, 2*t63, t97, 2*t68, 2*t57, 2*t110,

2*t58, 2*t77, t84, 2*t88, 2*t93, 2*t66, 2*t83,

t85, 2*t89, t25, 2*t60, t69,

B cell recognizes antigen, antigen divides.

B cell activated by macrophage's cytokines

produces antibodies and dies.

Inv8 2*t61, 2*t96, 2*t63, t97, 2*t68, 2*t57,

2*t110, 2*t59, 2*t77, t84, 2*t88, 2*t93,

2*t66, 2*t83, t85, 2*t89, t25, t69,

B cell recognizes antigen, antigen divides.

B cell activated by macrophage's cytokines

produces antibodies and dies.

Inv9 2*t107, t26, 2*t99, t28, t32, 2*t102, t33, t30,

4*t94, t84, 2*t46, t92, 2*t43, 2*t41, 2*t83,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

Virus activates Th and Tc cell stimulated

by cytokines produced by macrophage.

Inv10 t48, 2*t52, 2*t49, t50, t51, 2*t53, t54, Tc cell kills virus.

Inv11 4*t52, t47, 3*t49, t50, 2*t51, 4*t53, 2*t55, Tc cell kills virus.

Inv12 2*t107, 2*t99, t26, t28, t32, 2*t102, t33, t30,

4*t94, t84, t92, 2*t46, 2*t44, 2*t83, 2*t42,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

Virus activates Th and Tc cell stimulated

by cytokines produced by macrophage.

Inv13 4*t64, t87, t90, t25, t69, Active B cell produces antibodies, their

bind to antigen. Antigen divides.

Inv14 4*t82, 4*t86, t25, t69, Antigen (humoral) is killed by macrophage

Inv15 2*t61, 2*t96, 2*t63, 2*t68, 2*t57, 2*t110,

2*t59, 2*t77, 2*t88, 2*t87, 2*t66, 2*t89, t25,

t69,

B cell recognizes antigen, antigen divides.

B cell produces antibodies and dies.

55

Inv16 t81, t102, t95, Macrophage kills virus.

Inv17 t84, 8*t64, t97, 2*t93, 2*t83, t85, 2*t90,

2*t25, 2*t69,

Antigen divides and it is killed by

antibodies. Production of the antibodies

was stimulated by macrophage's cytokines.

Inv18 t80, 2*t75, t78, 2*t73, t112, 2*t105, t106, Tc cell kills HIV virus which kills Th cell.

Inv19 t81, t86, t102, Macrophage kills virus.

Inv20 2*t107, 2*t99, t26, t28, t32, 2*t102, t33, t30,

t84, t92, 2*t46, 2*t93, 2*t44, 2*t83, 2*t42,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

Virus activates Th and Tc cell stimulated

by cytokines produced by macrophage.

Inv21 2*t107, t26, 2*t99, t28, t32, 2*t102, t33, t30,

t84, 2*t46, t92, 2*t43, 2*t93, 2*t41, 2*t83,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

Virus activates Th and Tc cell stimulated

by cytokines produced by macrophage.

Inv22 2*t70, 4*t64, t25, t69, Antigen divides and it is killed by

antibodies

Inv23 t76, t38, t37, t35, Tc cell doesn't recognize antigen.

Inv24 2*t107, t26, 2*t99, t28, t32, t33, 2*t101, t30,

4*t94, t84, 2*t46, t92, 2*t43, 2*t41, 2*t83,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

HIV activates Th and Tc cell stimulated by

cytokines produced by macrophage.

Inv25 t62, t57, t77, New B cell doesn't recognize antigen.

Inv26 t80, 2*t28, 2*t75, 2*t103, t78, t112, 2*t105,

t106,

Tc cell kills HIV virus which kills Th cell.

Inv27 t2, t1, Antigen dies before recognition.

Inv28 4*t82, 4*t95, t25, t69, Antigen divides. Macrophage kills antigen.

Macrophage becomes inactive.

Inv29 4*t26, 2*t79, 4*t75, 4*t27, 2*t78, 4*t29,

4*t104, 3*t105, t106, t111,

Tc cell kills HIV virus which kills Th cell.

Inv30 2*t96, 2*t63, 2*t68, 2*t57, 2*t110, 2*t58,

2*t77, 2*t88, 2*t87, 2*t66, 2*t89, t25, 2*t60,

t69,

B cell recognizes antigen, antigen divides.

B cell produces antibodies and dies.

Inv31 2*t107, 2*t99, t26, t28, t32, 2*t101, t33, t30,

4*t94, t84, t92, 2*t46, 2*t44, 2*t83, 2*t42,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

Virus activates Th and Tc cell stimulated

by cytokines produced by macrophage.

Inv32 4*t4, 4*t107, 4*t5, 4*t1, t25, t69, 4*t100, DC cell finds antigen (humoral), presents it

and dies.

Inv33 2*t96, 2*t63, t97, 2*t68, 2*t57, 2*t110,

2*t58, 4*t94, 2*t77, t84, 2*t88, 2*t66, 2*t83,

t85, 2*t89, t25, 2*t60, t69,

B cell recognizes antigen, antigen divides.

B cell activated by macrophage's cytokines

produces antibodies and dies.

Inv34 2*t61, 2*t96, 2*t63, t97, 2*t68, 2*t57,

2*t110, 2*t59, 4*t94, 2*t77, t84, 2*t88,

2*t66, 2*t83, t85, 2*t89, t25, t69,

B cell recognizes antigen, antigen divides.

B cell activated by macrophage's cytokines

produces antibodies and dies.

Inv35 t84, 8*t64, t97, 2*t83, t85, 2*t90, 4*t94,

2*t25, 2*t69,

Antigen divides and it is killed by

antibodies. Production of the antibodies

was stimulated by macrophage's cytokines.

Inv36 t80, 2*t26, 2*t75, 2*t27, t78, 2*t29, 2*t104, Tc cell kills HIV virus which kills Th cell.

56

t112, 2*t105, t106,

Inv37 t84, 4*t64, 2*t83, 3*t94, t91, t25, t69, Antigen divides and it is killed by

antibodies. Production of the antibodies

was stimulated by macrophage's cytokines.

Inv38 2*t84, 8*t64, 3*t93, 4*t83, 2*t91, 2*t25,

2*t69,

Antigen divides and it is killed by

antibodies. Production of the antibodies

was stimulated by macrophage's cytokines.

Inv39 t81, t101, t95, Macrophage kills virus.

Inv40 t81, t86, t101, Macrophage kills virus.

Inv41 t107, t26, t99, t28, t32, t33, t101, t30, 5*t56,

t3, t46, t75, t76, t44, t42, t40, t39, t35, t36,

t1, t45,

HIV virus activates DC and Th cell, Th cell

activates Tc cell. Tc cell dies.

Inv42 t107, t26, t99, t28, t32, t102, t33, t30, 5*t56,

t3, t46, t75, t76, t44, t42, t40, t39, t35, t36,

t1, t45,

Virus activates Th and Tc cell

Inv43 t107, t26, t99, t28, t32, t33, t101, t30, 5*t56,

t3, t46, t75, t76, t43, t41, t40, t39, t35, t36,

t1, t45,

HIV activates Th and Tc cell

Inv44 t107, t26, t99, t28, t32, t102, t33, t30, 5*t56,

t3, t46, t75, t76, t43, t41, t40, t39, t35, t36,

t1, t45,

Virus activates Th cell and Tc cell.

Inv45 2*t107, t26, 2*t99, t28, t32, t33, 2*t101, t30,

t84, 2*t46, t92, 2*t43, 2*t93, 2*t41, 2*t83,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

HIV activates Th and Tc cell stimulated by

cytokines produced by macrophage.

Inv46 2*t107, 2*t99, t26, t28, t32, 2*t101, t33, t30,

t84, t92, 2*t46, 2*t93, 2*t44, 2*t83, 2*t42,

t85, 2*t40, 2*t39, 2*t35, 2*t36, 10*t56, 2*t3,

t75, 2*t76, 2*t1,

HIV activates Th and Tc cell stimulated by

cytokines produced by macrophage.

All t-invariants have the biological meaning so no new processes were discovered.

It is also strong condition for the validity of the model. T-invariant analysis

allowed to find one mistake in the model. The mistake was connected to the HIV

introduction to the model and it manifested in the presence of the meaningless t-

invariants. The error had been corrected before the simulations were performed.

Many t-invariants are very similar and they differ only in a few transitions, for

example, Inv20 and Inv31 or Inv35, Inv37 and Inv38. That similarity is caused by

equivalent biochemical mechanisms. A good idea was to merge those similar t-

invariants into t-clusters. It will make t-invariants data more clear and easier to

analyze. To create t-clusters the UPGMA algorithm was used with a cut parameter

of 35%. Thirteen t-clusters were generated, see Table 7. All t-clusters have the

precise biological meaning.

Some t-clusters contain multiple t-invariants and they specifically describe the

main processes during the immune response, for example, Cluster7 or Cluster10.

Other t-clusters (i.e. Cluster12 , Cluster11) describe “non-standard” processes

57

occurring during the immune response, such as a presence of an antigen not leading

to the immune response.

Table 7. Description of t-clusters generated from t-invariants of the PN model of

the immune system.

Cluster T-invariants Biological meaning

Cluster1 Inv11, Inv10 Tc cell kills virus.

Cluster2 Inv40, Inv39, Inv19, Inv16 Macrophage kills virus.

Cluster3 Inv32 DC cell finds antigen (humoral), presents it and dies.

Cluster4 Inv28, Inv14 Antigen (humoral) is killed by macrophage

Cluster5 Inv38, Inv37, Inv35, Inv17,

Inv22, Inv13

Antigen divides and it is killed by antibodies.

Cluster6 Inv25 New B cell doesn't recognize antigen.

Cluster7 Inv30, Inv15, Inv34, Inv8,

Inv33, Inv7

The humoral response: B cell recognizes antigen,

antigen divides. B cell, activated or not by

macrophage's cytokines, produces antibodies and

dies.

Cluster8 Inv36, Inv29, Inv26, Inv18,

Inv6, Inv4

Tc cell kills HIV virus which kills Th cell.

Cluster9 Inv3 Th cell doesn't recognize antigen (only 1 signal) and

dies

Cluster10 Inv44, Inv43, Inv42, Inv41,

Inv46, Inv31, Inv20, Inv12,

Inv45, Inv24, Inv21, Inv9

The cellular response.

Cluster11 Inv5, Inv1 Th cell recognizes antigen but immune response isn't

present.

Cluster12 Inv23 Tc cell doesn't recognize antigen.

Cluster13 Inv0 Tc cell arrives and isn't active.

The t-cluster tree is presented in Fig. 11. The tree contains three main branches and

it consists of Cluster1, a middle tree from Cluster2 to Cluster7 and a top tree from

Cluster8 to Cluster13. Cluster1 contains t-invariants represented in the last part of

the cellular response: the killing of the antigen by Tc cell. The middle tree can be

divided into Cluster2, which describes the killing of viruses by macrophages and

into a part which is correlated with a humoral antigen and the humoral response.

The top tree contains the t-invariants which are associated with Th cell activation,

maturation of the Tc cells and other processes present during the cellular response.

The plot shows that the macrophage's response in the model is more similar to the

humoral response than to the cellular response. Other finding is that the cellular

response is divided into two parts: the first connected with Th cells containing an

activation of Th and Tc lymphocytes and the second, which contains only mature

Tc cells killing infected body cells.

58

Fig. 11. The cluster tree describes relations between t-clusters.

MCT-sets of the model were also calculated and they are presented in Table 8.

Table 8. MCT-sets of the Petri net model of the IS.

Set Transitions Set Transitions

MCT0 t36, t39, t40, t46, t56, t99, t3 MCT10 t54, t48

MCT1 t5, t100, t4 MCT11 t50, t51, t52, t53, t49

MCT2 t69, t25 MCT12 t77, t57

MCT3 t29, t27 MCT13 t60, t58

MCT4 t34, t65, t67, t31 MCT14 t61, t59

MCT5 t33, t32 MCT15 t66, t68, t88, t89, t96, t110, t63

MCT6 t38, t37 MCT16 t105, t106, t78

MCT7 t43, t41 MCT17 t111, t79

MCT8 t44, t42 MCT18 t112, t80

MCT9 t55, t47 MCT19 t84, t83

All MCT-sets were analyzed, any new features of the model were not detected. If

the creation of the model is based on the literature, the MCT-sets represents

knowledge which is embedded into the model during its construction and it is not

so interesting.

2.7 Conclusions

The PN model of the immune system was presented in this chapter. This model

confirms that Petri nets are useful and practical tool for modeling complex

biological systems. The models created are intuitive and flexible, new elements can

be easily added. In the IS model a few features and diseases have been added

(effects of fever and ageing, AIDS, AOIS, ASD), and it has been used to study

59

their impact on the immune system itself. In some cases, for example for ASD,

interesting observations have been made correlating fever with cytokines levels.

The t-invariant analysis of the IS model was also performed. This method allows

for the verification of PN models and the IS model passed the verification.

The model may be used in modeling other, even more complex phenomena, for

example, chemical immunosuppression during organ transplants.

60

Chapter 3. Simulations of Petri nets using

GPU

3.1 Introduction

The simulation algorithms presented in the paragraph 1.3 are not very efficient,

especially for large networks. For such Petri nets the number of steps of the

simulation has to be very large because when the number of transitions is high, the

simulation must be very long in order to give all transitions an opportunity to fire at

least a few times. As the complexity of the simulation is O(k n m), then for bigger

networks the simulation is longer.

In many studies quite small Petri nets are sufficient, as for example in the model of

the immune system presented in Chapter 2. However, in Chapter 5 large networks

can be easily generated, especially by the OPOA algorithms (paragraph 5.2.1).

Simulations of such a big system will be very time-consuming, which is why a new

way of the PN simulation was developed.

In this chapter a new algorithm of the simulation of the Petri net, called PINGU

(Petri IN Graphical Unit), is described. It is based on the observation that firing of a

transition can be parallel if the enabled transitions are not in conflict.

Parallelization gives the best effects when the parallel code is executed on many

processors or by many threads at the same time. That is the reason why

programming on the GPUs (Graphical Processing Units) is used - the graphical

cards are quite cheap and provide a great number of cores which can execute

instructions in parallel.

This way of research is relatively new and unexplored. There are only a few

publications about parallel and distributed Petri net simulations. In 1991 Nicol and

Roy [93] analyzed distributed execution of PN in the framework of communicating

discrete event simulations. Thomas and Zahorjan [94] in the same year have shown

that significant performance improvements over sequential simulation may be

achieved by using a selective receive mechanism.

In his paper Ferscha [95] has described the implementation of various adaptations

of classical distributed discrete event simulation strategies to the simulation of time

transition PN models. The first algorithm of parallel simulation of PN on the GPUs

was presented in [96]. The tests performed by the authors show significant

performance for a few types of Petri nets. However, their algorithm is written in Cg

programming language provided by NVIDIA, which today is outdated and not

used.

During the preparation of this algorithm quite a similar work by Chalkidis et al was

found. They designed an algorithm of simulation of Hybrid Functional Petri nets

(HFPNs). Firstly they create lists of independent transitions, after that they are

61

processed in parallel by a CUDA application. GPU accelerated simulations of the

biological HFPNs are observed to run up to 18 times faster than the equivalent

CPU procedures. My algorithm contains a new method of decomposition of the

Petri net, which is simpler than used by Chalkidis and is (in the majority)

implemented on GPU. It is also designed for the classical Petri nets, not HFPNs

and can be easily extended to other types of the Petri networks.

For a short description of the CUDA architecture, please see the Appendix A.

3.2 The PINGU algorithm for the parallel

simulation of the PN

The PINGU algorithm is divided into two parts: the first – the preprocessing, and

the second – the basic simulation. The preprocessing is quite time-consuming, as it

is usually longer than the simulation, however, in order to perform the basic

simulation it is required, and thanks to the time spent on the preprocessing, the

simulation can be performed faster. The first part is prepared only once for the Petri

net, at the beginning of the algorithm, and its results can be saved and used for

many simulations. An important idea in the algorithm is a conflict-free list.

Def. 33. The conflict-free list Li is a list of transitions, which contains a transition ti

(as the first one added to the list) and every transition to be added to the list is not

in the conflict with any other transition from the list.

Fig. 12. Examples of conflict-free lists. This network is part of a bigger IS network.

One possible conflict-free list of transitions with respect to t21 is {t21; t26, t24} or

{t21, t25, t24}, with respect to transition t26: {t26; t19, t24}.

62

The restriction that every pair of transition from one conflict-free list cannot be in

the conflict is very limiting, however, due to that, the transitions from a one

conflict-free list may fire fully independently. When the Petri net is large and does

not contain many connections those conflict-free lists will be quite long. It is a

typical situation, like for example, in the OPOA algorithms (described later). For

one transition many conflict-free lists may exist, with the composition of the list

depending on the order in which transitions are added to the list (Fig. 12).

3.2.1 Preprocessing

The preprocessing is the first part of the PINGU algorithm and consists of a few

stages: the creation of the conflict matrix, the creation of the conflict-free lists and

the calculation of the maximal number of input and output places together for any

transition.

The creation of the conflict matrix is parallelized and implemented on GPU.

 Algorithm 3. The creation of the conflict matrix (parallel).

Input: The input and the output matrices of the Petri net in the global memory. The

number of blocks is max(maxBlocks, m
2
), where maxBlocks is the maximum

number of blocks, depending on the model of the graphical card and m is the

number of transitions. The blocks are organized into a two-dimensional grid. The

number of threads is max(maxThreads, n), where maxThreads is the maximum

number of threads and n is a number of places in the PN. Value conflict which is

kept in the shared memory.

Output: The conflict matrix confMatrix, which is m x m matrix, where m is the

number of transitions.

Steps:

1.begin

2.if (thread.id = 0) then

3. begin

4. confMatrix[block.idX, block.idY] := 0;

5. conflict := 0;

6. end

7.synchronization();

8.if (two of inputMatix[block.idX, thread.id],

inputMatix[block.idY, thread.id],outputMatix[block.idX,

thread.id], outputMatix [block.idY, thread.id] are common places

for transition idX and idY) then

9. conflict := 1;

10.synchronization();

11.if (thread.id = 0) AND (conflict = 1) then

12. confMatrix[block.idX, block.idY] := 1;

13.end

63

Every block of threads will perform the same operations consistent with the

Algorithm 3. The blocks are organized into two-dimensional grid, so each block

has its x and y index, described as block.idX and block.idY. The block with indexes

block.idX and block.idY will check conflicts between transitions number block.idX

and block.idY. If the number of transitions is bigger than the maximum number of

blocks, some blocks will repeat their operations for those remaining (waiting)

transitions. Every thread in the block has its own number, which is the number of

the place for which the thread will check if it is a common place for transitions

block.idX and block.idY. If the number of places is bigger than the maximum

number of threads, some threads will repeat its computations for those remaining

places. At the beginning of the algorithm one thread from every block, with an

index 0, will set the value of the confMatrix and the conflict value to 0 (lines 4-5).

Other blocks will wait for this operation (line 7). Next every thread will check if its

place is the source of the conflict between transitions assigned to the block. It has

to read appropriate values from the input and output matrices and check if two of

them are not equal 0. If the conflict is found, the common for all threads in the

block a flag conflict is changed to 1 (lines 8-9). When every thread finishes its

operation (line 10) the 0th thread will check the conflict flag and according to its

value sets the corresponding element of the conflict matrix (lines 11-12).

The pessimistic time complexity of the Algorithm 3 seems to be constant, however

when the number of transitions is higher than the maximum number of blocks or

the number of places is higher than the maximum number of threads, then the

complexity depends on the n and m. The maximum numbers of blocks and threads

are usually quite big, for example the maximum number of blocks in newer devises

is [97] and the maximum number of threads is 1024 [97], so the

complexity only for very large networks will be not constants. The same algorithm

executed sequentially will have pessimistic complexity , because conflicts

between every pair of the transitions must be checked and every place must be

verified as the source of the conflict. Many contacts with the global memory occur

in the Algorithm 3, but the input and output matrices may be too big to be kept in

the shared memory. Only for small Petri nets will it be possible. In such cases, the

algorithm will lose its versatility. However, the situation is not so bad, as with

appropriate organization of the input and output matrices the succeeding threads

will read succeeding cells of data and such a procedure is optimized in the CUDA

architecture.

When the conflict matrix is created, the conflict-free lists can be obtained. This part

of the preprocessing is not implemented on GPU.

Algorithm 4. The calculation of the conflict-free lists (serial).

Input: The input and output matrices representing the Petri net, both n x m, where n

is the number of places, m is the number of transitions. The conflict matrix which is

m x m matrix.

64

Output: The conflict-free lists, which is represented as m x m matrix. The i-th row

of the matrix contains the numbers of transitions which are not in a conflict with

any other transition from the list and the list is created for a transition i, this

transition is the first added to the list.

Steps:

1.begin

2.for i := 0 to m do

3. begin

4. add(list[i], i);

5. for j := 0 to m do

6. begin

7. conflict := 0;

8. for e in list[i] do

9. if transition j in conflict with e then

10. begin

11. conflict := 1;

12. break;

13. end

14. if conflict = 0 then

15. add(list[i], j);

16. end

17. end

18.end

The algorithm is very simple. For every transition its own conflict-free list is

created. Firstly, the transition itself is added to the list (line 4). After that every

other transition (loop in line 5) is checked if it is in a conflict with any element

from the previously created list (lines 8-13). If it is not in the conflict, the transition

is added to the conflict-free list (lines 14-15). After that, the next transitions are

checked with that elongated list.

The complexity of Algorithm 4 is quite big, two loops with m iterations (loop

stared in line 2 and loop stared in line 5) and one which also in most pessimistic

case will be performed m times (loop in lines 8-13). Thus, the pessimistic

complexity is). However, we resigned from the parallelization of this

algorithm - this step is too hard to parallelize. In my opinion, the most efficient way

of parallelization is an assignment of a transition to the threads - each thread will

calculate the conflict-free list for its "own" transition. The thread will keep the

constructed list in the memory. If the size is not too large, the shared memory or

registers are desirable. The thread will test the remaining transitions whether they

are in a conflict with any of the transitions from the list. For that operation, the

conflict matrix should be used. If no conflict is found, the transition is added to the

list and the list is extended. This is a source of the problem with parallelization: this

part cannot be parallel because the next operations depend on the previous results

and many branches are possible. In other words, the long and complex loop of

calculations for each thread could not be avoided. It is not a good type of

65

computations for light GPU's threads. Moreover, the reading of the conflict matrix

by a thread requires many contacts with the global memory in a random order. This

is a serious obstacle in an efficient parallelization.

In the second part of the PINGU algorithm, apart the conflict-free lists, two values

are also necessary: the length of the longest conflict-free list and the maximum

number of input or output places together for one transition. The first value can be

calculated together with calculation of the conflict-free lists. The second value is

the maximum number of input or output places among all transitions - the result

will be the maximum number of input places if it is bigger than the maximum

number of output places or opposite. The calculation of the maximum number of

input or output places can be performed in parallel.

Algorithm 5. The calculation of the maximum number of input or output places

(parallel).

Input: The input and output matrices of the Petri net. The number of threads

(together across all blocks) should be equal to m, where the m is the number of

transitions. So the number of threads per block should be maximum and the

number of blocks should be sufficient to obtain at least m threads. n is the number

of places.

Output: The maximum numbers of input or output places calculated by each block,

so if the number of blocks is k, the output is an array of k values.

Steps:

1.begin

2.counterInput := 0;

3.counterOutput := 0;

4.for i := 0 to n do

5. begin

6. inpPlace := inputMatrix[threadId, i];

7. outPlace := outputMatrix[threadId, i];

8. if(inpPlace <> 0) then counterInput := counterInput + 1;

9. if(outPlace <> 0) then counterOutput := counterOutput + 1;

10. end

11.if(counterInput > counterOutput) then

12. maxCounter[thread.id] := counterInput;

13.else maxCounter[thread.id] := counterOutput;

14.synchronization();

15.if(thread.id = 0) then

16. findMax(maxCounter);

17.end

In this algorithm each thread finds the maximum number of input or output places

for one transition (that is the reason why the joint number of threads is at least

equal to the number of transitions). The returned value is consistent with the

formula max(|input places of the transition|, |output places of the transition|). After

66

resetting the input and output counters each thread reads information about input

and output places of the corresponding transition from the input and output

matrices – a loop in lines 4-10. Every thread calculates the number of input and

output places, and after the loop it chooses the bigger value (lines 11-13). This

value is written to the array in the shared memory - each thread has a

corresponding cell in the array. When all threads finish its operations (line 14) the

0-th thread will view the whole shared array to find the maximum value from the

block, and it will write it in the global, output array.

Calculations of the maximum number of input and output places require n

operations. It should be noted that if the maximum number of threads (for whole

grid) is smaller than the number of transitions, then some threads will have to

repeat its calculations. In practice, however, the maximum number of threads

which can be calculated by multiplication of maximum number of blocks, which is

 times number of threads per block, which equals 1024, is enormous and it

is hard to imagine such a big network. The 0-th thread also has to iterate across the

shared array, which takes as many instructions as the number of threads per block,

at most 1024. So, we can assume that the pessimistic complexity of the Algorithm

5 is O(1024 * n) = O(n). Operations on the shared memory are fast, but we cannot

avoid reading from the global memory. An appropriate organization of the input

and output matrices will provide the succeeding reading of data by succeeding

threads.

3.2.2 Simulations

The simulation is performed on GPU. In this part of the algorithm the loop iterates

over conflict-free lists. For every conflict-free list a new kernel is launched. If the

number of connections is not big and the number of places and transitions is large,

then the conflict-free lists will be long and the parallelization will give better

effects. In the kernel each grid will correspond to each conflict-free list and each

block will correspond to one transition from the list. Thus, the number of blocks

should be at least equal to the length of the longest conflict-free list which was

calculated during the preprocessing. Every thread in the block will process two

places: one input and one output of the transition assigned to the thread's block, and

the number of threads will be at least the maximum number of input or output

places. Let us assume that this maximum is k and we consider a transition ti with n

input places and m output places, m, n ≤ k. Then min(n, m) of initial threads in the

block assigned to ti serve (correspond to) as input and output places of the

transition ti. The next max(n, m) – min(n, m) threads correspond to a single real

place (input if n is bigger, output if m is bigger) and one phantom place. The rest of

the threads serve two phantom places. The organization of the memory and the grid

is presented in Fig. 13. Every transition from one conflict-free list is fully

independent from the other transitions from the list, so every block can work

independently and firing of its transition depends only on the marking of input

places of the transition assigned to the block.

67

Fig. 13. A scheme of the content of the global memory and blocks’ and threads’

organization in the second part of the PINGU algorithm. The current conflict-free

list and blocks corresponding to its transitions are shown in yellow.

Algorithm 6. The simulation algorithm (parallel).

Input: The conflict free lists, the input and output matrices, the vector of the initial

marking of length n, when n is the number of places. The number of blocks is at

least the length of the longest conflict-free list, and the number of threads is at least

the maximum number of the input or output places. The value trials, which

describes how many times the threads will try to fire transition.

Output: The marking vector of length n, obtained by modification of the initial

marking by firing the transitions.

Steps:

1.begin

2.readData(blockId, threadId);

3.for i := 0 to trials do

4. begin

5. if(threadId = 0) then canFire := 1;

6. synchronization();

7. if(inputWeight > inputMarking) then canFire := 0;

8. synchronization();

9. if(canFire = 1) then fireTranstion();

10. end

11.writeMarking();

12.end

The Algorithm 6 starts with reading data by every thread from the global memory

to its registers. Every thread copies: indexes of the places corresponding to the

thread - one input and one output place or phantom places, their markings and cells

from the input and output matrices corresponding to the served places and the

68

transition ti which is represented by the block in which the thread occurs (line 2).

The next loop (lines 3-10) depends on the number of trials i.e. how many times the

transition will be tested to fire and fired. Firstly, the 0-th thread will set the shared

value canFire to 1 (line 5), which will mean that the transition can fire. After

synchronization every thread will check its condition of firing, if the marking of the

input place designed to the thread is smaller than the weight which connects the

place to the transition served by the block, then the transition cannot fire and a flag

canFire will be changed to 0 (line 7). When all threads finish this operation (line 8)

and the result is that the transition can fire - flag canFire is still 1 (line 9), so that

no thread finds that the firing condition is not satisfied, every thread changes the

markings of the corresponding to its places according to the firing rule (line 9).

Those operations are repeated trial times. At the end of the simulation of the

current transition, every thread will copy a marking of assigned places to the global

memory (line 11). Those values will be copied by the following threads during the

simulation of the next conflict-free list. It is not necessary to copy them earlier,

because the only running blocks are those corresponding to the other transitions

from the same conflict free list. According to the definition of the list, no

transitions have common places (input and output), so other blocks will not need

information about marking changed by the block. This information may be only

necessary for the next conflict-free list.

The pessimistic complexity of the algorithm is O(trials), trials is usually a small

integer. However, a lot of communication with the global memory is required in

the algorithm. Every thread has to copy a lot of data necessary to perform the

simulation in a non-consecutive way. Such feature is not effectively supported by

the CUDA technology. Additional transfers of data are performed when one

conflict-free list is processed for the second and more times. The way of avoiding

that would be keeping all the blocks corresponding to all transitions running.

However, in that case another problem appears, i.e., the system does not know how

to control which blocks should process data and which ones should wait. The

mechanism of block synchronization would be necessary to resolve this issue, but it

is not provided by the CUDA interface. In order to optimize performance of this

GPU based computation the trials parameter was introduced. A better usage of the

once transferred data is possible now. Since all threads will at a certain moment

have all necessary information, they may fire transitions many times. The firings

will be successful as long as marking allows or trials parameter has not been

reached. This activity quickly adds new data for PN simulation, because it does not

require expensive contacts with the global memory. For that reason, the parameter

trials should be large. However, some caution is necessary. Numerous firings of

some transitions performed in this way, for example those t from a conflict-free list

Ki, may in practice prevent firing transitions being in a soft conflict with the

transitions from the list Ki. That is why the value of trials should be well-balanced.

In the tests it was usually set to 10. The correlation of the time of the simulation

and the value of trials is presented in Fig. 15.

69

After the simulation of one conflict-free list the kernel stops and a new simulation

of the next list is started. The conflict-free lists can be simulated in any order, for

example, the order may based on the numbers of the transitions for which the list is

created. In this case, the result of the simulation of the same network will be always

the same. The conflict-free lists can be also chosen randomly, then the results of

such simulations will be usually different (it depends also on the structure of the

network). The implementation of other orderings of the conflict-free lists is simple

in my algorithm.

When all conflict-free lists are preprocessed, the algorithm may stop or the

preprocessing of the list may be repeated. Again, the first conflict-free list will be

simulated, with the input marking obtained from the previous simulations. It is also

possible to repeat the simulations of the all conflict-free lists a few times and this

value is called repetitions. The dependence of the time of the simulation on the

repetitions parameter is presented in Fig. 15. In the tests performed the value of the

repetitions was usually 1, so each conflict-free list was simulated once.

3.2.3 Concluding remarks

This parallel algorithm PINGU has some special features. It warrants that each

transition has an opportunity to fire (it may happen or not!), because it appears on

at least one conflict-free list (its own list). In contrast to previously described

algorithms, here we cannot determine the exact number of simulation steps

performed without additional variables. The numbers of trials and repetitions are

known, thus an approximate number of steps can be determined. In this algorithm a

different philosophy of checking what transitions should fire is used. Previously

(Algorithm 1 and Algorithm 2) enabled transitions were identified first and then

fired, here a transition is fired if it is enabled.

3.3 The analysis of performance

3.3.1 Testing protocol

The algorithm has been implemented in C language and compiled and launched on

two operating systems: Microsoft Windows 7 and Linux Fedora 15. On Windows 7

the Microsoft Visual Studio 2010 was used to compile and run the program. On

Fedora source the code was compiled directly by the nvcc compiler from the

command line. In both cases CUDA 5.0 was used. Created software is available at

http://www-users.mat.umk.pl/~leii/thesis/.

During the tests of GPU the implementation time of execution of the following

kernels was measured: the first part of preprocessing, the calculation of the

maximum number of input or output places of transitions, and the simulation. The

time of preprocessing and the basic simulation were calculated separately. CUDA

events were used to measure the time of kernels execution. In CPU implementation

only the time of execution of the functions corresponding to the kernels was

http://www-users.mat.umk.pl/~leii/index.php?dir=thesis/

70

measured. The sys/timeb.h library was used. Also, the time of preprocessing and

the simulation were measured separately.

The algorithm was tested on two CPU and two GPU, in both cases one device was

quite efficient and the other was weaker. The CPUs were: AMD Phenom 9650

Quad-Core Processor (lower efficiency, benchmark results: 2,533) and Intel Core

i7-2630QM (perhaps not the latest model, but it is a processor from the highest

current (2013) Intel family, benchmark results: 5,687). Tested GPU: nVidia

GeForce GT 540M (not very good graphical card according to the present

standards, 3DMark Ranking: 123) and nVidia GeForce GTX 580 (a powerful

graphical card, 3DMark Ranking: 13, as of year 2013).

During the tests a few parameters which have an impact on the computation time

were checked. Of course, the most important was the size of the network, described

by the number of places and transitions. The other two were the values of trials and

repetitions, and their impact on the simulation time was investigated.

The PINGU algorithm was tested on two types of the networks: artificially

automatically generated Petri network and a Petri net describing molecular

dynamics (MD) simulations (Chapter 5). The scheme of the artificial Petri net is

presented in Fig. 14. It consists of many circular parts (one part is presented in

black box in Fig. 14), which are connected and they create a long chain. The length

of the chain, i.e. the number of parts, which is connected to the number of places

and transition, is given by a parameter to the software which generate the network.

This Petri net was created especially for the tests and is rather meaningless,

however, it can adopted to some studies. For example, one part of PN may

represent one cell and some metabolic pathway inside the cell, many cells are

connected by sharing products and substrates of the pathway. The Petri nets which

refer to MD simulations are described in greater detail in Chapter 5. They are

generated by the algorithm and can be very large - it was the reason for the creation

of the parallel algorithm in the simulation. The size of the MD Petri net depends on

the resolution of the grid representing the Cartesian space in the algorithm and of

course on the type and number of the trajectories.

Fig. 14. A scheme of the Petri network constructed for tests. One part of the

network, which can be multiplied, is selected in a black box.

71

3.3.2 Results, discussion and conclusions

The results of the simulations of the artificial Petri net are presented in Fig. 15. For

all simulations the repetitions value was set to one and the trials value was ten. On

the y axes only the numbers of places are shown, but the number of transitions is

the same in this type of the nets (Fig. 14), so the number of places is directly

proportional to the size of the network. In Fig. 15a the time required for the

preprocessing is presented. One can see that the algorithm works faster while

running on GPUs. For the nVidia GeForce GTX 580 card the time is almost

constant, while for nVidia GeForce GT 540M it grows, but much slower than for

CPUs. For both CPUs clear polynomial growth is visible. Especially the times of

the slower process grow very fast and are extraordinarily long.

Fig. 15. The results of the simulation of the artificially generated Petri nets. (a) and

(b) shows the time of the simulation as the function of the size of the network, in

(c) and (d) the dependences of the time of the simulation from the values of

repetitions and trials are presented.

The timings of the basic part of the PINGU algorithm on the GPUs form a linear

relationship with the size of the network Fig. 15b. For nVidia GeForce GTX 580

the complexity of the calculations is almost constant. For nVidia GeForce GT

540M a growth is observed, but the plot is clearly linear. In both CPUs the time of

the simulations grows polynomial. For AMD Phenom 9650 Quad-Core Processor

the times of the simulations are the longest. For Intel Core i7-2630QM the initial

times of the simulations are lower than the results for weaker graphical card, but

(a) (b)

(c) (d)

72

because of the polynomial growth for networks with 7000 places and bigger the

times of the simulations for Intel Core i7-2630QM are longer than that for nVidia

GeForce GT 540M. For smaller networks the costs of the threads management in

GeForce GT 540M are bigger than the profits obtained from the parallelization.

In Fig. 15c and Fig. 15d the relationships between time of the simulation and the

values of repetitions and trials are presented. One can see that the relation is linear

in both cases, so those parameters should not change general findings. Those

results were measured for networks consisting of 5400 places and 5400 transitions,

but calculations were performed also for the networks of other sizes and the results

were the same.

The results of the preprocessing for Petri nets, which represents MD trajectories

(Fig. 16a) are very similar to those obtained for artificial Petri nets, so for graphical

cards the preprocessing is faster and the time for the CPUs grows much faster. The

second plot Fig. 16b presents the times of the simulation and they are a little bit

different from the previous results. For all devices the growth seems to be linear

which, however, is in contradiction with the calculations of the time complexity

and the results for artificial Petri nets. Probably the characteristics of the networks

cause the polynomial growth to be observed only for bigger Petri nets. However,

the GPUs still work faster than the corresponding CPUs, and the smallest times are

obtained for the nVidia GeForce GTX 580 card.

Fig. 16. Times of the simulations of the Petri nets describing MD: (a) time of the

preprocessing, (b) time of the simulation.

The preprocessing step is always faster for the parallel version of the algorithm.

This is also consistent with my calculations of the computational complexity. For

the simulation step the GPU calculations are faster than the calculations performed

on the corresponding CPUs. The computations acceleration depends on the size of

the network- if the net is bigger, then the time saving is larger. However, the direct

profit depends also on structures of the Petri nets - the most important is the length

(a) (b)

73

of the conflict-free lists. For some networks the costs of the threads creation and

organization may be higher than the profits from the parallelization. Notably, for

other types of the Petri nets the main ideas of the parallel algorithm will be suitable

as well. In such cases only a part of the simulation related to the mechanism of the

firing should be changed.

In summary, presented results shows that for large networks the CUDA simulation

is more efficient than the simulation executed on CPU.

74

Chapter 4. MD and SMD computer

simulations of antigen-antibody complexes

4.1 Introduction

During my research project molecular dynamic studies of two complexes were

performed in order to obtain a better understanding of molecular interactions. This

work was also connected with the immune system, because modeling was focused

on antibody-antigen interactions. Two protein complexes important in biology and

medicine were studied: pollen from timothy grass Phl p2 and chemokine MCP-1 -

both with corresponding antibodies. A series of molecular dynamics simulations

were performed, a standard MD as well as Steered MD (SMD) were applied.

During the SMD simulations complexes were forcedly dissociated by a force in

different directions in order to check the molecular interaction during such

experiments. The impact of the force vector direction on the value of the maximum

forces was also investigated. Moreover, the role of a random factor associated with

the numerical noise in the obtained results was studied. A bioinformatics tool, such

as a sequence alignment, was used to better characterize highly specific antigen-

antibody interactions.

Monocyte chemoattractant protein-1 (MCP-1), also known as chemokine ligand 2

(CCL2), is a member of the chemokine family [98]. The basic function of those

cytokines is to act on chemoattraction in traffic regulation of immune cells. MCP-1

is a chemoattrator to monocytes, memory T cells, and dendritic cells. Its main

function is to recruit those immune cells to the place of infection or injury [99-

100]. However, recent studies have shown that MCP-1 is also present in the central

nervous system and it can modulate the activity of neurons, astrocytes and

microglia [98, 101-103]. Because of that, it may play a role in autism spectrum

disorders, which is presented in [104-106]. Timothy grass is a very popular plant,

so its pollen is very common. Unfortunately, it is a cause of allergic reaction in

many people - an allergic reaction is an overly strong reaction of one’s immune

system for normally harmless factor. This is the reason why the complex of pollen

Phl p2 and antibody was studied.

This chapter is partially based on results presented in Gogolinska, A. and W.

Nowak, "Molecular basis of lateral force spectroscopy nano-diagnostics:

computational unbinding of autism related chemokine MCP-1 from IgG antibody",

Journal of Molecular Modeling.

4.2 Methods

In the studies presented in this chapter, the crucial part were molecular dynamics

(MD) simulations [107]. They are computer calculations of the trajectory of the

motion of every atom from a given input set, in my case the molecules are proteins.

75

The theoretical basis of the MD simulation is straightforward: the localization of

every atom in each time step ti+1 is calculated by solving the Newton equation of

motion using, for example, the Verlet algorithm:

 (4.1)

where is a time step, is the localization of an atom in time t, is the

force in time t and m is the mass of the atom. In order to obtain the position of atom

k in time ti+1 its positions in two previous steps are necessary - during the algorithm

execution they are revoked from the previous steps. The mass of the atom is

assigned to the atom type, a time step is defined in the input and the value of the

force is calculated on the fly based on the positions of all interacting atoms and

predefined potentials V. A set of analytical formulas together with appropriate

parameters is called a force field [108].

The potential energy of the system is calculated as the sum of a few components:

energy of bonds, angels, dihedral angels, electrostatic and van der Waals forces

[108]. The last two are non-bonded terms and their computations require nested

loops over all atoms. In this thesis well established CHARMM27b force field has

been used [109]. The starting atomic positions are obtained from the file with an

experimental protein structure [110].

Advanced software contains some mechanism to reduce a number of loops'

executions, but still MD simulations are very time-consuming. One of the

modifications of standard MD simulations are Steered Molecular Dynamics (SMD)

simulations [111-112]. In such simulations some atoms are fixed in the space and

the harmonic potential is added to the others. The spring constant k and the pulling

velocity are defined as constant. When some relaxation of the system is observed,

for example bonds are broken, the value of the external force decreases. During the

SMD simulations observation of the value of force and displacement is a crucial

part of the computer experiment.

In this study all-atom force field CHARMM was used [113-114] - all-atoms force

fields contain parameters for every atom and they are processed separately. The

simulations were performed in NAMD [115] software and for the analysis the

VMD [116] code and own software were used. The structure of the complexes was

obtained from the Protein Data Bank [117] and they are 2BDN with MCP-1 [99]

and antibody and 2VXQ with Timothy pollen grass and antibody [118]. The

complexes were embedded in an 8 Å thick TIP3P model water shell and after 0.4

ns equilibration at 300 K the 3ns MD simulation of 2BDN and 1ns of 2VXQ were

performed. The structures obtained after those simulations were the staring points

for the SMD simulations. An external force was applied to the antigens (chain A),

which should dissociate the complexes in two perpendicular directions: the

„vertical” force (V, almost parallel to the main axis of the antibody, the direction

„z“ in Fig. 17) and the „lateral” one (L, approximately perpendicular to the main

76

axis of the antibody). During the simulations of stretching all CA atoms of the

antibody (chains L and H) were fixed. Structures were pulled for 2 ns at a constant

speed of 0.025 Å/ps with a spring constant of 278 pN/Å.

Fig. 17. Overview of studied structures: (a) MCP-1 (blue) with antibody (silver and

red) (from [12]), (b) timothy grass pollen Phl p2 (blue) with antibody (silver and

red). Dragging directions are also presented as lines: (a) yellow and two chosen in

orange and green, (b) silver.

For pollen Phl p2 eleven pulling directions were tested: six vertical and five lateral.

In the case of MCP-1 22 pulling directions were tested, 9 vertical and 13 lateral.

Also the importance of the disulfide bridges was checked, in every direction 2

simulations without, and one with disulfide bridges were performed. For checking

impact of the statistical errors in the maximum force determination, two directions

(one V and one L) were chosen and ten 2ns simulations were generated for each

direction. For ten directions (five V and five L) simulations with pulling speed ten

times slower than before i.e. 0.0025 Å/ps were performed to study the dependence

of the calculated forces on the puling speed. All those SMD simulations have

practical aspects. They were prepared to test the possibility of using Friction (or

Lateral) Force spectroscopy (FFS) method which is type of Atomic Force

Microscopy (AFM). In this technique a probe quickly scans the analyzed surface

laterally and the "unbinding" is enforced by the lateral forces. Usually, the AFM tip

is functionalized by the antibody and a protein is immobilized on a surface. During

such an experiment forces are measured but sequence of molecular events cannot

be obtained. Also for MCP-1 one longer standard MD simulation of 10ns was

generated to study the behavior of the structure not subject to external forces.

(a) (b)

77

4.3 Results

4.3.1 Steered Molecular Dynamics – mechanically enforced

dissociation

In SMDs simulations the scenario of events in all studied cases was similar: a steep

rise of the force up to a certain maximum value, a gradual decrease of the

interaction force and a separation phase characterized by a force close to 1 nN

corresponding to the hydrodynamic drag.

Plots of the force curves obtained for timothy grass pollen SMD simulations are

presented in Fig. 18.

Fig. 18. SMD calculated force spectra for unbinding process obtained during

simulations of timothy grass pollen Phl p2. In (a) forces measured during vertical

draggig, in (b) drugin lateral dragging.

Fig. 19. Examples of SMD calculated force spectra for unbinding process. Typical

plots of values of the force in two selected directions: V- vertical, L - lateral for (a)

2ns simulations and (b) 10ns simulations (10x slower pulling speed than in 2ns

simulations).

For MCP-1 in total 69 output files were analyzed and values of the forces

necessary to dissociate the complex were calculated. It is obvious that they all

(a) (b)

(a) (b)

78

cannot be presented in one plot like in Fig. 18. Instead the two examples are shown

in Fig. 19. Other values are presented in Table 9.

In the standard forms (S-S bonds present), for 2 ns simulations, when the vertical

(V) direction of the pulling force vector was applied, the lowest calculated force

value was 1768 pN, while the highest value was 2911 pN. The average value of the

maximum force observed during V direction SMD simulation was 2302 ± 366 pN.

For laterally oriented pulling vectors the forces were lower: the highest value was

2229 pN, the lowest was 1391 pN, the average 1799 ± 301 pN. Respectively, for

the simulations with 10 times slower pulling speed the average for the vertical

forces was 1437 ± 254 pN, and for the lateral force simulations the average was

962 ± 169 pN. Thus, the process of mechanical unbinding requires lower forces if it

proceeds in the direction L parallel to the MCP-1- antibody contact plane.

Table 9. Maximum values of force obtained in each 2ns SMD simulation (in pN)

and 10 simulations with pulling speed 10 time slower (slower10x).

Direction

vector

V

SS

present

First

without

SS

Second

without

SS

L

SS

present

First

without

SS

Second

without

SS

V1 2102 1791 2213 L11 1522 1856 2001

V2 2911 2342 1943 L12 2045 1958 1497

V3 2678 1989 2448 L13 1668 1622 1877

V4 2663 2195 2215 L14 1391 1551 1511

V5 2084 2264 2294 L15 1859 1760 1548

V6 1768 1961 1671 L16 1737 2330 2293

V7 2537 2418 2208 L17 2148 1859 2001

V8 2152 2293 2239 L18 1988 2170 1959

V10 2776 2611 2431 L19 2229 2003 2033

V5v2 2161 2423 2323 L20 1606 1798 1604

V5v3 2214 2061 2294 L21 1472 1608 1556

V5v4 1907 2067 2178 L22 2224 2076 2127

V5v5 1974 2345 2259 L23 1493 1856 2255

Average 2302 2212 2209 Average 1799 1880 1866

Standard

deviation 366 228 204

Standard

deviation 301 227 289

V2

slower10x 1591

L14

slower10x 905

V7

slower10x 1259

L20

slower10x 829

V10

slower10x 1515

L21

slower10x 793

V5

slower10x 1097

L13

slower10x 1159

V8slower10x 1723

L15

slower10x 1124

Average 1437 Average 962

Standard

deviation 254

Standard

deviation 169

79

In order to better study possible correlations between the value of the force

necessary to separate an antibody and MPC-1 and the dragging force direction, we

transformed force vectors into standard spherical coordinates. The forces with

respect to values of the φ angle (only for lateral L cases) and the ϴ angle are shown

in Fig. 20.

Fig. 20. Plots showing the dependence of maximum values of the forces for

simulation of MCP-1 on the pulling force vector orientation - in spherical

coordinates φ (a) and ϴ (b). Only shorter 2 ns trajectories are presented from [12]).

The data presented in Fig. 18 and Fig. 20 clearly showed that in vertical the

dragging forces necessary to force dissociation of complexes are significantly

bigger. However, in some lateral cases (for example, a blue curve in Fig. 18a) the

obtained forces values are also significant and more similar to the vertical

dragging, but such situations are quite rare, which can be easily deduced from data

presented in Table 9 and averages and standard deviations values calculated on the

basis of that data. Probably those high forces observed in the lateral cases are

caused by van der Waals interactions between some side groups of the antigen and

the antibody ("hooking" during the lateral dragging).

Moreover, the values of forces calculated during SMD simulations with 10 times

slower pulling speed are smaller than those observed in simulations with a higher

pulling speed. This observation is in accordance with the AFM experiments, where

the pulling speed is even slower and the forces measured are also smaller.

However, the general finding that vertical dragging requires higher forces is

(a)

(b)

80

preserved, and it seems that this correlation between the pulling direction and the

values of forces does not depend on the pulling speed.

The maxima of forces are correlated with breaking of hydrogen bonds and salt

bridges. Usually the sequence of bonds breaking is almost the same in all

simulations. Only in the lateral dragging some changes in events sequence were

observed, which was related to the direction of pulling, but even in those cases the

general scenario was the same. Also in the vertical pulling usually one big force

maximum correlated with the first bonds breaking was observed, in contrast to the

lateral cases when very often a few, almost identical, force maxima were present,

or the maximum is not well marked.

Impact of numerical noise

In the previous paragraph differences between lateral and vertical pulling scenarios

were presented. The main finding was that the forces required to dissociate the

complexes in the vertical dragging were higher than in the lateral one. However,

the numerical data, presented for example in Table 9, can be affected by a

numerical noise because to compute those data quite complex calculations were

performed. The method of calculations is described in the paragraph 4.1. If the

impact of numerical noise is significant, the obtained results will not be valuable

and difficult to interpret. In order to clarify this issue additional simulations were

preformed: two cases were chosen, one vertical and one lateral. For the vertical

pulling case 10 the same, SMD simulations were performed twice - the input file

and the starting structure were always the same. For the lateral case, similarly, 10

the same SMD simulations were carried out. The maximum values of the forces

obtained in those simulations are presented in Table 10.

Table 10. The maximum force values obtained during repeated simulations of two

cases vertical V5 and lateral L14. For V5 two times ten simulations and for L14 ten

simulation were performed.

V5, first V5, second L14

2423 2323 1464

2061 2294 1425

2067 2178 1441

2345 2259 1537

2220 2895 1782

2154 2264 1720

2251 2259 1504

2703 2044 1315

2398 2383 1353

2358 2361 1570

For the first round of V5 simulations the average was: 2297,9 ± 193 pN, for the

second it was: 2325,9 ± 222 pN, and for the simulations of the L14 the average

was: 1511 ± 148 pN. One can observe that the intervals of two studied cases do not

81

overlap. Also the differences between the results for vertical and lateral dragging

from Table 9 are bigger than the errors (scatter) caused by the numerical noise.

4.3.2 B-factors analysis and molecular recognition

Long 10 ns classical MD trajectory of MCP-1 was analyzed for compatibility

between the results from computer calculations and the data from the PDB

structure file. RMSF (Root Mean Square Fluctuations) fluctuations of amino acids

from the simulation and temperature B-factors were compared. The correlation

between them is very good and plots of it for MCP-1 and heavy chain of the

antibody are presented in Fig. 21.

Fig. 21. A comparison of calculated RMSF fluctuations of MCP-1 (a) and heavy

chain of Fab IgG antibody fragment (b) with experimental temperature B-factors,

from [12]).

The main difference is observed in Fig. 21a for the first ten amino acids. This

region is a flexible loop, so probably in the crystal this part of the molecule is much

more stabilized by packing crystal interactions. Some other regions in the MD

simulation are also more flexible, but probably the mismatch with the X-ray data

has the same origin. For this analysis my own software was developed and used.

During the analysis some amino acids responsible for the interactions between

antigens and antibodies were identified. In the complex with MCP-1 there are 6 the

most important hydrogen bonds and in the complex with Phl p2 there are 10

important hydrogen bonds. The MPC-1 complex is stabilized by strong salt bridges

(in italic) and hydrogen bonds between: Glu39A - Arg98H, Lys56A - Asp52H,

Asp65A - Arg32L, Asp68A - Arg32L, Thr32A - Glu55L, Gln61A - Tyr33H, where

A denotes MCP-1, L - a light chain of IgG Fab fragment and H – the heavy chain

of Fab.

We have used the APBS program [119-121] to calculate a map of the molecular

electrostatic potential (MEP) of MCP-1 and the Fab fragment. Rigid separated

structures extracted from the 2BDN data were used for calculations. Results are

presented in Fig. 22.

(a) (b)

82

There are at least 3 regions (a, b, c, Fig. 22) with higher values of MEP. The

regions in MCP-1 have corresponding counterparts in the Fab system of opposite

charge. Thus electrostatics contribute to the stability of this complex as well. These

calculations help to identify the regions crucial for effective recognition of the

important MCP-1 chemokine.

Fig. 22. Maps of electrostatic potential projected on solvent accessible surfaces of

MCP-1 and Fab fragment of IgG. Positive regions are colored in blue, negative – in

red. Complementary regions a, b and c are schematically indicated. Figures were

prepared with VMD software [116] from [12]).

4.3.3 Bioinformatics analysis

The fragment of MCP-1 specifically recognized by an antibody is called epitope. In

order to check to what extent amino acids present at the interface in the chemokine

are conserved in other proteins, the PSI-BLAST search in standard non-redundant

protein sequences database was performed and the ClustalX2 code [122-123] to

make alignments of 10 most similar sequences was used. The results processed by

Jalview 2.7 program [124-125] are presented in Fig. 23.

Fig. 23. Alignment of MCP-1 sequence with 10 most similar proteins. The

conserved residues are shown. Black rectangles in MCP-1 sequence denote

Lys56(A) and Asp65(A) amino acids from [12]).

For proteins in this set over 80% similarity to MCP-1 is observed. Amino acids

important for strong interactions identified by the SMD simulations were analyzed

83

in greater detail. Two distinct groups of polar epitope amino acids are present in

MCP-1: conserved set (Thr32, Glu39, Gln61, Asp68) and a specific set: Lys56 and

Asp65. In the conserved set the same amino acids are present in nearly all similar

proteins. The residues from the specific set are characteristic only for MCP-1

chemokine. This finding corresponds well with the observed 160-fold decrease of

IgG antibody affinity to a Lys56Asn MCP-1 mutant described in [99]. This

bioinformatics study can show how specific is mechanism of antigen-antibody

recognition. The studied antibody can distinguish MPC-1 from other cytokines,

even when they are very similar.

4.4 Conclusions

The simulations results presented in this chapter show that the dragging of an

antigen from an antibody depends on the direction of the force applied. The force

dissociation in the lateral direction requires 30% lower forces than in the vertical

direction. My studies also show how strong and specific the interactions between

antigens and antibodies are. Those results give a theoretical foundation for Lateral

Force Spectroscopy measurements by the Atomic Force Microscope method.

The MD/SMD data were presented in this chapter just to illustrate what useful

information may be extracted from computer simulations of biomolecular systems.

The detailed discussion of obtained results has been recently published in an

international journal [12]. The data related to molecular foundations of allergy or

the components of the immune system are valuable in medicine and biology. The

methods of research draw heavily on computer science and new ways of MD/SMD

data are desirable. The last and the most comprehensive part of this thesis is

devoted to paving new ways of MD/SMD results analysis, based on the PN

formalism.

84

Chapter 5. Petri nets and computer

molecular dynamics simulations

5.1 Introduction

As it was presented above, MD simulations are very popular in computational

biology, chemistry and physics. They produce enormous amount of data [126]. The

main problem is an effective analysis of this structural and dynamics information.

Various methods are used [116, 127], but there is still huge demand for new and

original ways of data scrutiny and representation (Big DATA problem). In my

opinion, PN has a potential to be used in MD simulations, They were never tried in

this field (weak communication between branches of science). The problem is how

to connect physical simulations with graphs of PN and simulations of PN

dynamics. Numerous ways are possible.

Here new algorithms for MD data analysis are presented, based on our original

ideas.

- OPOA – in this algorithm one place is assigned to a position of one

atom

- OPOC – one place is assigned to a confirmation of a molecule

- CONTACT – one place represents contact between two amino

acids.

The algorithms have been implemented in our lab and used for analysis for real

simulations (my own data MCP1 from Chapter 4) and TTR (data obtained from

mgr inż. Rafał Jakubowski, IF UMK).

Before we go into details, the following definition has to be presented.

Def. 34. The Petri net which is generated from the trajectories from the Molecular

Dynamics simulations will be called MD Petri net.

In our opinion, PNs have good potential to be further used in MD computer

simulations field.

5.1.1 General overview

The general scheme of the molecular dynamics simulations should be recalled.

Using numerical algorithms, programs like CHARMM, NAMD, GROMOS solve

system of thousands of differential equations. The results are spatial structures of

the studied system, which present time evolution of the system. Output files from

the MD simulations contain frames (snapshots) which describe localization of

every atom from the protein studied. Information about physical states of the

system is hidden in those output files. They are called trajectories, because they

represent a motion of the system in the phase space ().

85

The scheme of the whole process and location of PN in MD studies in presented in

Fig. 24. We would like to obtain knowledge of the physical system from the MD

trajectories using PN.

Fig. 24. The diagram which presents a flow of data in the MD studies.

We aim at making some representations of the MD simulation process or MD

results (trajectory files) in the form of a PN. During the process of such PN

representation, the creation of a few selected aspects was considered as important

and was taken into account during the development of our algorithms:

(1) An enhancement of important (or desired) features of MD simulations, for

example, a large change of the conformation, a formation of new contacts.

Those “events” in the trajectories are hard to notice, but often important

during the analysis. Thus, in this aspect the main focus of the Petri net

representation is to facilitate the analysis of the MD simulations results.

(2) Petri nets are dynamical structures and this allows to connect Petri nets

dynamics with the molecular dynamics simulations. We would like that the

MD Petri nets simulations should mimic the MD simulations as well as

possible.

(3) The next aspect in MD data reduction is an exploration of PN for clustering

of molecular structures. Analysis of a small number of clusters is usually

much easier in scientific studies than dwelling with millions of MD frames.

In order to obtain the first goal, i.e. to facilitate an analysis of the MD trajectories,

at this moment 3 different algorithms were designed (OPOA, OPOC, CON). In my

opinion, the character of MD methodology prevents any design of a fully universal

PN algorithm. It is impossible to focus on all possible aspects regarding a MD

simulation in one network. That is why specialized Petri nets have to be formed.

Here several types of networks, exploiting various MD elements, are presented.

In the One Place One Atom algorithms the behavior of every amino acids in the

function of time is monitored. In One Place One Conformation algorithm the time

evolution of a whole molecule is represented. In the Contacts algorithm the

changes of contacts between amino acids is the main focus. More detailed

overviews of the algorithms are presented in the following paragraphs.

86

Before we address the second goal, it is important to highlight that simulations of

the MD Petri net cannot be completely equivalent to the standard MD simulations.

In the MD simulations complicated calculations, i.e. based on an advanced physical

theory, are performed. Typically, they require a lot of CPU time. In contrast, Petri

nets simulations are quite simple, based on simple tokens transfer, and thus they

cannot generate any new “physical information” that was not already hidden in the

underlying standard MD trajectories. So, the main goal in this part of the Thesis is

to make the MD Petri nets simulations as similar as possible to the MD

simulations. One can think that this reproduction is not useful because once we

have a few (or even one) MD trajectories we do not need their repetition anymore.

However, it is not fully true, the strength of PN approach developed here lies in

connecting of a few trajectories into a single MD Petri net. Then the simulation of

such a network will not give any new structural data but may produce completely

new trajectories, which will be called PN trajectories. These will be rational

combinations of the MD underlying trajectories used to generate the PN network.

Def. 35. PN conformation is a representation of the molecule conformation as the

set of marked places.

Def. 36. The PN trajectory is the sequence of the PN conformations of molecule

obtained during simulation of the MD Petri net.

Detailed description of possible representations of molecular conformations as sets

of Petri net places will be given below. It depends on the type of algorithm used to

generate the MD Petri net.

The reproduction of trajectories can be useful when one has only a few MD

trajectories at hand and needs more possible trajectories, or wants to check if any

new events, hidden in a classical MD data, can be observed. Such a case is

presented in Fig. 25. This is a scheme of the content of two MD trajectories Tr1

and Tr2. Up to the point E3 they are the same, but after achieving this

conformation the trajectories differentiate, for example, two different

conformations are obtained in Tr1 an Tr2, respectively. After this a common

conformation for both trajectories are present, and then the next splitting is

observed, after which the trajectories again converge. In the first trajectory, outside

common conformations, conformations E4.1 and E6.1 are unique for this

trajectory, E4.2 and E6.2 are observed only in Tr2. Because E5 is the same in both

trajectories, it can evolve into either E6.1 or E6.2. The same situation is for E3.

Using the PN approach we can easily obtain two more trajectories:

E1E2E3E4.1E5E6.2E7E8 and E1E2E3E4.2E5E6.1E7E8, The advantage is that

only two MD simulations were necessary, and to get those two in a classical way at

least two additional MD simulations would be required. Those calculations would

require much more time than the PN simulations. Of course, in the example

presented in Fig. 25 those new alternative trajectories may be easily found by hand,

87

but in more complex situations of biomolecular systems usually many possibilities

exist.

Fig. 25. The schematic representation of two trajectories Tr1 and Tr2, green

conformations are common for both trajectories, yellow are conformations

observed only in Tr1 and blue ones in Tr2.

Having in mind our purpose, i.e. a good reproduction of main features of standard

molecular dynamics trajectories by MD PN simulations, we need to make

simulations of the MD Petri nets as realistic as possible.

Realistic in this sense means able to mimic some aspects of the MD trajectories. In

order to obtain this goal various types of the Petri nets are proposed. Extensions

selected here provide various rules of firing and can add desirable features to the

PN simulations. A few types of Petri nets were chosen (classical, timed, priority-

based, random priority-based) and were used in the algorithms designed in this

thesis. The motivation for this choice is presented in the following section.

Fig. 26. A scheme of conformational transitions during a MD simulation: a

molecule in the conformation A may transform into conformations B or C, both

transformations are reversible. Blue - the main part of the molecule, green and

yellow – a side chain, which changes its conformation and this is the sole

difference in conformations A, B and C.

Typically, in MD simulations a molecule exhibits continuous small changes in the

conformation, some structural changes occur more often, others quite rarely.

However, even that rare conformation transformations may be the most important,

88

for example, only in that rarely accessible form a molecule is biologically active.

Such a situation is schematically depicted in Fig. 26.

In this figure three conformations of one molecule are shown: A, B and C. They

differ only in a specific arrangement of a side chain (highlighted in Fig. 25). Here

we assume further that transitions between A and C occur very often in the course

of the MD simulation, but transitions between A and B are rare, for example

fq(AB)/fq(AC)=1:9. A model situation from Fig. 26 will be our “test example”

and will be as illustration of different variants of the Petri nets.

5.1.2 Petri nets types used in MD modeling

Marked Petri nets

The basic types of the networks generated by my algorithms are the classical Petri

nets. They are universal, however, they do not provide any control during

transitions firing: one of the enabled transition will fire and the probability of the

firing is the same for every transition enabled. Thus, for MD simulations outlined

in Fig. 26 both conformational changes will occur with the same frequency and this

symmetric statistics will not reproduce the true relationship present in the MD

simulations. For example, having ten conformational transitions from A we must

expect that five transitions will lead to the conformation B and five to the

conformation C (remember please that in our example we have assumed that

fq(AB)/fq(AC)=1:9).

The classical type of PN is also not sufficient for the SMD simulations. Since in

such a PN every enabled transition may fire, an unrealistic situations may happen.

For example, in the SMD stretched protein, one part of the molecule will be fully

expanded, while the other part may remain not affected at all.

Timed Petri nets

The timed Petri were described in paragraph 1.4.4. In those networks the value of

firing time function is associated with transitions and the transition with the

smallest value of the clock will be selected to fire. The firing time function can be

associated with the time registered during the MD simulation. So, in timed PN

some supervision mechanism of transition firing order exists. However, performed

tests showed that this supervision is event too restricted. One can easily design a

PN with a circle created by transitions with small firing times. They would fire

alternately and other transitions would not have any opportunity to fire. This

problem will be discussed in greater detail in the next paragraphs. However, the

idea of some type of time supervisions for SMD simulations is, in my opinion,

useful.

One should note that transitions’ firing order associated with time will not be

suitable in the model situation considered in Fig. 26. A particular conformational

89

transition will occur depending on the particular value of time function (time-step),

but this is not necessary in 1:1 correspondence with the frequency of this

conformational change. However, the timed PNs were introduced in this study

because they can mimic the sequence of events during the SMD simulations. The

firing time associated with every transition will help to avoid a situation described

in the previous paragraph (un-physical partial unfolding). So, we expect that timed

PNs should work fine in SMD trajectories.

Priority-based Petri nets

In priority-based Petri nets (paragraph 1.4.5) the value of the priority function is

associated with every transition and the transition with the highest priority from

enabled transitions will fire. This gives us large control of the transition firing order

and can diametrically change the PN trajectory. If the priority of the transitions is

connected with the frequency the PN simulation can reproduce the situation from

the Fig. 26 quite well. The transition, for example t1, which represents the change

between conformation A and C will have a bigger priority than the transition t2

from A to B, so the transition t1 will fire always when both t1 and t2 are enabled.

Thus, in priority-based Petri nets for ten transformation from the conformation A

we will obtain ten paths into the conformation C and none into B. It is not the

desired perfect 9:1 ratio, but it is a better representation of a “real” situation than

the results expected from a simple marked PN. However, when the real proportions

between the conformations B and C were more balanced, the simulations of the

priority-based PN would generate biased results as well. The bias will have an

opposite nature than that in the marked PN:

Another problem is that the conformation B (with a lower priority) will never be

reached. This might be an even bigger problem than just wrong proportions

between conformations, especially if B represents some unique features of the

system studied.

Priority-based PN are quite useful for nets produced by OPOA algorithms. Namely,

the places related to one amino acid will lead to separated (or quite separated,

depending on the type of the OPOA algorithm) conflict sets. Using the

modification of the firing rule introduced in Def. 27, every amino acid may change

its localization in parallel. It was the main reason why this modification has been

introduced, since it describes correctly the MD trajectory. Within one conflict set

transitions, a transition with the highest priority will fire according to the firing rule

given in Def. 27. In contrast to it, in the classical priority-based PN, a completely

independent transitions will have to wait for firing for a transition with the highest

priority. Usually this transition corresponds to the movement of some another

amino acid and such motion is completely unnatural.

90

For SMD simulations modeling the priority-based Petri nets have the same

disadvantage as the marked PN. The features added here will not help to make PN

simulations be more similar to SMD simulations.

Random priority-based Petri nets

In random priority-based Petri nets transitions fire with some probability and this

probability is proportional to the transition priority (paragraph 1.4.6). The bigger

the priority is, the bigger change to fire a transition has. However, even the

transition with a very small priority may have an opportunity to fire in this type of

PN. The priority may be connected to the frequency showing how many times a

given transition occurs in the MD simulations. This feature is very useful in

representing situations like the one in Fig. 26. In simulations of random priority-

based Petri nets both conformation B and C may occur – this is an advantage with

respect to the priority-based Petri nets. Moreover, the proportion between

conformations observed during the random priority-based PN simulations perhaps

will be the same as in the underlying MD simulations. This is a substantial

advantage of my networks over the marked Petri nets.

Another advantage is clear when the proportion between occurrences of

conformations B and C is balanced. In contrast to a standard PN, within this model

similar frequencies of B and C will be kept in the PN dynamics. Thus, the random

priority-based Petri nets seem to be the best suited for keeping relations between

conformations. It is nothing strange, as those networks were designed especially for

such situations and they can emulate the MD simulations accurately. For the SMD

simulations random priority-based PN behave in the same way as marked or

priority-based Petri nets, so the timed Petri nets will be better choice in that case.

Random priority-based PN should be especially useful for networks generated by

OPOC algorithm. For another class, i.e. OPOA algorithms, simpler priority-based

PN are quite sufficient.

During simulations of such priority-based, generated by the OPOA, PN all amino

acids may change their positions in parallel, like in the MD simulations. However,

in the OPOC generated networks only one token is present and therefore the

simulation of this simple priority-based PN is not correct. The PN trajectory will be

always the same. This PN trajectory will exclusively contain places connected with

transitions having the highest priority.

In a more involved random priority-based PN different PN trajectories will be

accessible. The probability of their occurrence will depend on the frequency

represented in the MD trajectories.

91

5.2 Algorithms for Petri Nets generation

5.2.1 One Place One Atom algorithms

Introduction

In the One Place One Atom (OPOA) algorithm a single place in the Petri net

represents the position of one atom from the system studied by MD simulation. A

transition represents the movement of the atom. This transition connects the

previous localization of the atom (the input place) and the new localization of the

same atom (the output place). Such a representation is very accurate and similar to

the MD simulations. However, one can image that such a PN for even small

proteins will be enormous and it will contain at least Np places: Np = NA x Nr ,where

NA is a number of atoms, and Nr the average number of localizations of the atoms.

Such big networks are extremely hard to analyze, so to reduce the number of places

and transitions two methods were used: a coarse grain representation and a

discretization of the space.

The coarse grain representation is standard and widely used method of reduction

complexity of the model. For example in [128-129] special force fields for the

coarse grain molecular simulations of biomolecules were developed [130]. This

method involves a representation of a group of atoms, usually an amino acid, by a

smaller group of atoms, usually by just one atom. There are different types of such

reduction, the easiest is a representation of an amino acid by its CA atom [131], in

the other a virtual atom is assigned by the calculations. In more complex CG

models two atoms may represent one amino acid: they may be "real" atoms, like

CA and CB, or they could be artificially added. To avoid such additional

calculations, in the OPOA algorithm one amino acid is represented by a single CA

atom. However, this reduction in OPOA complexity is not sufficient, as a number

of points has to be reduced as well.

Discretization of the space

Molecular dynamic simulations generate the trajectories of atoms (objects) in the

three dimensional Cartesian space (see Chapter 4). A numerical representation of

this continuous space is discrete. It is up to the user to choose what the

recommended “granularity” of such a representation is. If one wants to have a very

precise trajectory, the points representing the traces of an atom should be located

very closely. However, in numerous situations a very tight representation is not

required, moreover, there is a physical limit with respect to the shortest distance

(point to point) travelled by an atom in the realistic MD simulations. Therefore,

playing with computer representations of the Cartesian space used in MD or PN

simulations gives a lot of opportunities for substantial savings in computing time.

92

In order to reduce the number of points used to represent atoms’ position, the three

dimensional grid is laid over the space and it divides the space into cubes. The edge

of each cube is equal to the resolution of the grid. Each cube represents a new point

in the new three dimensional discrete space and every atom which sits in the same

cube in the is localized in one point in the new space.

Def. 37. Let be three dimensional Cartesian space in which molecular dynamics

simulations take please. We define a new three dimensional space with Cartesian

coordinates, called
 , where k is a real number, generated by the mapping

function f :
 , which assigns every point (x1, x2, x3) from a point (y1, y2,

y3) in
 by the formula:

 x ∈ }

 ∈ }
 (5.1)

The k is the resolution of the dividing grid and it can be any real number. The

mapping function is a surjection- every point from the is mapped, but an

inverse function does not exist. An opposite projection will assign a cube in the

space and the edge of the cube will be equal to k to every point from the
 space.

The coordinates of the
 points correspond to the number of assigned cube,

counting from the center of the coordinate system . An analogous transformation

can be performed between and
 , with the exception that a point from

will be assigned to a square of points from and the square edge will be equal k.

This situation is presented graphically in Fig. 27. One can see that two points

presented in red, correspond to one
 point (1, 1). Those two in

 will be the

same even if the distance between (1.8, 1.4) and (2.1, 1.4) (in green) is smaller than

the distance between the two red points. The blue point will be mapped into (2, 2)

in
 .

Fig. 27. The discretization of the space. The space is divided by a squared grid

with a resolution equal to 1, the points from one square in correspond to one

point in the
 space. A few points from space are presented, their colors

denote a point in
 , to which they are assigned (the same color, the same point).

Points of
 space are labeled in italic and underlined.

93

According to Def. 37, all points around (0, 0, 0) will be mapped into (0, 0, 0) in

 and the area mapped to (0, 0, 0) in

 will correspond to eight cubes, all

having one common vertex (0, 0, 0). Let us analyze a simpler 2D case shown in

Fig. 27. Here four squares around (0, 0) in will be mapped into one point in
 ,

like two points labeled in black. They are in separate squares, but the mapping

function will assign them to (0, 0) in
 . The same problem occurs also for the

points which are near to one of the coordinate axis and one of their coordinates will

be mapped into 0. This situation is not desirable in the algorithm because

movements of atoms around the coordinate axes will not be recognized if the atom

is close enough to such a coordinate axis. A few solutions of such a problem were

considered, with a modification of the Def. 37 being finally added to the code.

Def. 38. We define a new three dimensional discrete Euclidean space with

Cartesian coordinates, called
 , where k is a real number, generated by the

mapping function f :
 , which assigns every point (x1, x2, x3) from to a

point (y1, y2, y3) in
 by the following formula:

 x ∈ }

 ∈ }

 (5.2)

Def. 38 is superior with respect to Def. 37. According to the Def. 38, a point from

 , will be mapped to a point with i-th coordinate equal to k/2 with the same sign

like the original coordinate in the , while according to Def. 37, it would be

mapped into 0 in
 . When the modification will be applied to the 2D case (see

Fig. 27) the point (-0.8, 0.1) will be mapped into (-0.5, 0.5) and the point (0.1, 0.8)

into (0.5, 0.5).

This mapping will reduce the number of points obtained in the MD simulations by

“gluing” a few points from the into one in the space in which the algorithm is

operating. How many points should by mapped into one can be regulated by the

value of the grid resolution k? Of course, for small systems, or when the user needs

such a model, the mapping can be skipped and the OPOA algorithm can work in

the same space as used in the MD trajectories.

Overview of the algorithm, atom transition set

The general idea in the OPOA algorithm is that one place corresponds to a position

of one CA atom. It is worth mentioning that a place may be created for every atom,

not only of the CA type. In such OPOA based PN the transition represents a

relocation of an amino acid. A conformational change in the molecule is

represented by a transfer of a token from the input place of the transition (i.e. initial

localization of the CA atom) to the output place of the transition (which represents

the destination point of the CA atom). The motion here is in the discrete, simple

space described in the previous section.

94

During the designing of the OPOA algorithm based PN some issues have to be

addressed. In addition to the regular “position dependent” places, other types of

places (“atomic presence”, “starting”) are introduced in OPOA based PNs. Every

“position dependent” place has to annotated by the coordinates of the point in the

 space it is representing. Every transition has to be labeled not only by the initial

and final localizations of the corresponding CA atom, but by the description

(identity) of this CA atom as well. This information is stored in places of a new

type – “atomic presence” places. In the algorithm such places which indicate the

presence (or the absence) of every CA atom from the molecule studied are added to

the growing MD Petri net. Notably, every transition affecting given atom is

connected by the loop with this particular atom’s “atomic presence” place. So, due

to this loop, the transition cannot consume a token from the "atomic presence"

place and at the same time it cannot fire if this place is empty. This mechanism

works as a switch and may be very helpful in PN simulations. This new

modification of PN gives a user a lot of control over the PN model. In such a way

the participation of amino acids in the dynamics can be easily modified.

The concept of “atomic presence” places is not necessary. However, in that case

another mechanism showing which transitions correspond to the movements of

which CA atoms would be necessary. It has been checked that without connections

between transitions and a new type of places the CUDA simulation algorithm

works more efficiently because the conflict-free lists is shorter. The third type of

places present in the OPOA algorithm is called “starting places”. They are solely

input places for transitions and represent arrival movements of the CA atoms from

hypothetical “former” localizations to the initial ones.. So, in the MD Petri net

three types of the places are present: “position dependent” places represent points

in the
 space, places representing CA atoms – “atomic presence” places and

artificial "starting" places.

Def. 39. The set of transitions which are connected by a loop with one specific

atomic presence place and describe the trajectory of this specific CA atom is called

atom transitions set (ATS).

Let us recall that our initial information from MD consists of CA trajectory (DCD

or formatted PDB file) and an initial PDB structure of the molecule studied,

composed of a number of amino acids (N here).

When the PN is created, one token is added to every starting place (One Place One

Atom(=One Amino acid)) and the "atomic presence" place. This marking

represents that the CA atom is present in the model but its localization is not

defined yet. Then, during PN simulations, the token from the "starting" place can

be moved by the transitions to position dependent places represented by points in

the
 space. The sequence of such places describes the PN trajectory of each CA

atom. For every CA atom one token in the "atomic presence" place and one in the

position dependent place are present during the whole PN simulation. Once

95

initiated, the token from the "atomic presence" place cannot be consumed and the

localization of the second token marks the current localization of the CA atom in

the reduced space.

Notably, the OPOA algorithm can read data from few files and may use it to create

just one MD Petri net, so these few trajectories can be connected and analyzed at

the same time. This type of analysis is not possible using standard software, and in

our opinion, it gives a new promising analytic tool to computational biology.

The stealing problem

In the OPOA algorithm the presence of token in some place is very important.

However, the idea described previously has a disadvantage – the “stealing

problem”, which is shown in Fig. 28. Such a situation occurs when a few CA

atoms are allowed to be in the same point in the
 space. It may happen when the

mapping grid constant k is large (large mesh) or when the CA atoms visit the same

point in this reduced space, but not at the same time. The places in the PN

described so far do not contain any information about the time when the CA atom

might enter the place. Such information may be assigned to transitions and in the

timed Petri nets only. In other PN cases, the places represent solely the fact of

presence of a given CA atom – it may happen anytime during the course of the

simulation.

In Fig. 28 a fragment of PN generated by OPOA is presented. Here two CA atoms:

a1 and a2 may happen to be in the same point in the
 space, represented by the

position dependent place p3. Every transition (squares) is connected by a loop

(double arrows) to the place representing the atom affected by this transition (these

atomic presence places labeled atom1 and atom2 are shown in the plot). A1 can be

moved there by the transition t1 from the point p1, and a2 may be moved by t3

from the point p2. When both atoms visit p3 a1 may change its localization to p4

by the transition t2 and a2 may move to the point p5 by firing the transition p4.

This is how it should happen in theory, however, nothing prevents (according to

Def. 5) the transition t4 from firing two times. The transition t4 will consume the

token which represents the localization of the atom a2, but it also will "steal" the

token which represents the localization of the atom a1 and will put two tokens into

p5. This marking would indicate that there are two atoms a2 in the point

represented by p5 and a1 will no longer be present in the model. Thus it looks that

the token for a1 has been stolen. This is obviously not acceptable.

96

Fig. 28. An example of the stealing problem (for explanations see the text).

Def. 40. The stealing problem occurs when a transition which belongs to n-th ATS

consumes tokens from a given place which have been delivered there by a

transition belonging to the m-th ATS ().

Of course, the stealing problem is not desirable. Two solutions of this problem

were developed and they gave rise to two variants of the OPOA algorithm.

One Place One Atom algorithm - 1st variant

In the 1st variant of the OPOA algorithm (OPOAv1) the stealing problem is solved

by creating separate places for every atom, so a “stealing situation” cannot occur.

In this variant, one point from
 is represented by a few places in PN, a separate

one place for every atom which can visit this point of the
 space.

Algorithm 7. One Place One Atom algorithm - 1st variant (OPOAv1)

Input: PDB files, which contain MD trajectories of the same molecule, parameter k

for
 .

Output: MD Petri net described by lists of places, transitions and arcs. Optionally

files with description of places and transitions labels.

Steps:

1. begin

2. for every PDB file:

3. begin

4. frame := readFrame();

5. for every CA atom in frame:

6. if position(CA, frame) <> position(CA, previousFrame) then

7. begin

8. prevPlace := places.get(CA, position(CA, previousFrame));

9. if(NOT places.contains(CA, position(CA, frame)) then

10. begin

11. newPlace := createPlace(CA, position(CA, frame));

12. places.add(newPlace);

13. transition := createTransition(CA);

14. transitions.add(trans);

97

15. createArcs(newPlace, transition, prevPlace, CA);

16. end

17. else

18. begin

19. currentPlace := places.get(CA, position(CA, frame));

20. if(NOT transitions.contains(prevPlace,currentPlace,CA) then

21. begin

22. transition := createTransition(CA);

23. transitons.add(transition);

24. createArcs(currentPlace, transition, prevPlace, CA);

25. end

26. end

27. end

28. end

29. end

In the algorithm consecutive frames are read from successive PDB files (lines 1-4).

The number of files can be any. For every frame each CA atom is processed (line

5). First, the localization of the atom is checked - if it is the same as the localization

of this atom in the previous frame (line 6) - if the atom is still in the same point in

the
 space. If yes, this part of the PN will not be changed, if not, we have to

check whether the current position of the CA atom was previously obtained, so if

there exists a place corresponding to this point in the
 space and the processed

atom CA (line 9). If not, a new place is created and, of course, a new transition is

created as well. Arcs are also created according to the general rule in the OPOA

algorithm i.e. an arc between the previous place and the new transition, between

the new transition and the new place and two links in opposite directions between

the new transition and CA atomic presence place (lines 11-15). If there exists the

place corresponding to the current localization of the CA atom (line 19-24) the

existence of the transition assigned to the CA atom from the previous place and to

the current place has to be checked (line 20). If it does not exist, it will be created

(line 22) and appropriate arcs analogous to those shown in line 15 will be formed

(line 24).

The complexity of the OPOAv1 algorithm depends mostly on the implementation

of the structures places and transitions which keep information about the places

and transitions created so far. The loops execute (a number of files multiplied by a

number of frames multiplied by a number of CA atoms) times, which is required to

read all data on MD trajectories. This number cannot be further reduced, otherwise

some frames or atoms will be skipped. If places and transitions are implemented,

for example, as a hash table, operations like get() or contains() should be

performed in constant time, so the complexity depends only on the size of the input

data.

Petri nets generated by OPOAv1 algorithm consist of separate networks

corresponding to each individual CA atom. This is a natural consequence of the

creation of separate places for every atom. This feature can be considered as a

disadvantage because in the reality a molecular trajectory is governed by

interactions between atoms. However, it can also bring positive effects - created

98

Petri nets are usually very big, thus if divided into smaller parts, they can be easier

analyzed or even displayed.

One Place One Atom algorithm - 2nd variant

The One Place One Atom 2nd variant (OPOAv2) algorithm solves the stealing

problem in a different way. In this algorithm the places correspond to the points in

the
 space, and they are not correlated with the CA atoms like before. To avoid

the problem an additional mechanism is added. It is presented in Fig. 29.

Fig. 29. The illustration showing an additional construction (red boxes) added to

avoid the stealing problem in the OPOAv2 algorithm.

In Fig. 29 one can see the additional construction (red boxes). It involves adding a

new place (p6, p7) for every transition from a considered ATS which can put (or

take) a token from the common place. This new place becomes an output place for

every transition which puts tokens to the common place and an input place for

every transition which consumes tokens from the common place. The weights of

arcs which connect the new place with the rest of PN are set to one. When the

transition puts a token to the common place, like for example the transition t1 in

Fig. 29, it also simultaneously puts one token to the new place p6. After that, when

the transition which consumes tokens from the common place, for example t2,

fires, it consumes at the same time a token from this new place. Thus the transition

can fire only once, because even if the common place still contains tokens, the new

place p6 is empty. Also, if only the transition t1 puts a token into the p3, the

transition t4 cannot consume it because its new input place p7 is empty. So, a

transition from one ATS which takes tokens from the common place can fire as

many times as the transitions that have provided tokens into the common place and

are from the same ATS. Such mechanism will fully prevent OPOA based PN from

the stealing problem. This modification will also make creation of one Petri net for

all CA atoms possible.

99

Algorithm 8. One Place One Atom algorithm - 2nd variant (OPOAv2)

Input: PDB files, which contain MD trajectories of the same molecule, parameter k

for
 .

Output: MD Petri net described by lists of places, transitions and arcs. Optionally

files with descriptions of places and transitions names.

Steps:

1. begin

2. for every PDB file:

3. begin

4. frame := readFrame();

5. for every CA atom in frame:

6. if position(CA, frame) <> position(CA, previousFrame) then

7. begin

8. prevPlace := places.get(position(CA, previousFrame));

9. if(NOT places.contains(position(CA, frame)) then

10. begin

11. newPlace := createPlace(position(CA, frame));

12. places.add(newPlace);

13. transition := createTransition(CA);

14. transitions.add(transition);

15. createArcs(newPlace, transiton, prevPlace, CA);

16. end

17. else

18. begin

19. currentPlace := places.get(position(CA, frame));

20. if(NOT transitions.contains(prevPlace,currentPlace,CA) then

21. begin

22. transition := createTransition(CA);

23. transitons.add(transition);

24. createArcs(currentPlace, transition, prevPlace, CA);

25. end

26. end

27. end

28. end

29. for i := 0 to placesNumber do

30. begin

31. counterT := 0;

32. transitionsAdding.clear();

33. for j := 0 to transitionsNumber do

34. begin

35. if(place[i] ∈ inputPlaces(transitions[j]) then

36. begin

37. counter = counter + 1;

38. transitionsAdding.add(transitions[j]);

39. end

40. end

41. if(counter > 1) then

42. begin

43. for k := 0 to transitionsAdding.size() do

44. begin

45. transition = transitionsAdding.get(k);

46. atom = getAtom(transition);

47. newPlace = createPlace();

100

48. createArc(transition, newPlace);

49. for l := 0 to transitionsAdding.size() do

50. begin

51. otherTransition := transitionsAdding.get(l);

52. if(l <> k) AND (getAtom(otherTransition) = atom) then

53. createArc(otherTransition, newPlace);

54. end

55. for j := 0 to transitionsNumber do

56. begin

57. if(place[i] ∈ outputPlace(transitions[j]) AND

 (getAtom(transitions[j]) = atom) then

58. createArc(newPlace, transitions[j]);

59. end

60. end

61. end

62. end

63. end

OPOAv2 algorithm starts almost in the same way as OPOAv1 (lines 1-26).

Consecutive frames from successive trajectory files are read and a localization of

every CA atom is checked. If this atom has been previously found in this particular

point of the
 space then the place corresponding to it already exists (line 9).

Depending on the results of this check, a new place and a new transition (lines 10-

16) is added or only a new transition (lines 18-24) is inserted to the MD Petri net.

The main difference in this part of the algorithm between the 1st and the 2nd

variant of OPOA is that here, in v2, the place is labeled by the space point only,

and not by the CA atom and space point as it was required in v1. Thus transitions

from many ATSs may be connected to one place. Up to this step the OPOAv2

implements the basic idea of the OPOA algorithm, however, the stealing problem

will still be present in the PN. In order to avoid this, the postprocessing of the

created Petri net is necessary (lines 29-63). At the begging of this additional

process every place is checked if is it an output place for more than one transition

(lines 33-40). Every transition which can put token in the place is added to a list

transitionsAdding. If more than one such transition is found, then the additional

construction presented in Fig. 29 should be added, depending on their ATS origin.

For every transition from the transitionsAdding list an index of appropriate CA

atom is found (line 46) and a new place is created and connected as the output

place to the transition considered (lines 47-48). Other transitions from the

transitionsAdding list are checked if they are in the same ATS, if yes the new place

should be also their output place (lines 49-54). After that, the set of all transitions is

searched for transitions which can consume tokens from the common place and are

connected with the same CA atom (lines 54-57). Every transition found is

connected with the new place. The new place becomes the input place for this

transition (line 58).

The complexity of the first part of the algorithm is the same as for the OPOAv1 - it

equals only to the size of the input data. The postprocessing is computationally

more demanding. Every place and every transition has to be checked, but the

biggest complexity is caused by the loop in lines 55-59, which will be executed n

101

times m times size of the longest transitionsAdding list, where the n is the number

of places and m is the number of transitions. It should be considered whether this

complexity can be reduced and this case requires further studies. Anyway, the

performed tests have shown that my implementation of this algorithm works in

acceptable time for real data (usually few minutes on PC).

Case studies and features of the OPOA algorithm

Both versions of the OPOA algorithm were used to analyze sixteen MD

simulations of a small chemokine MCP-1 (see Chapter 4). Ten of those simulations

were calculated from the same starting frame, and six others were randomly

selected from a reference trajectory. Size k of the grid was 2 so
 was used. The

MD Petri net obtained by OPOAv1 had 62250 transitions and 15441 places and

that generated by OPOAv2 had 62250 transitions and 4048 places which

correspond to positions of all CA atoms from MCP-1 chemokine.

Analyzing an MD Petri net generated by the OPOAv1 algorithm, one may easily

find amino acids which are more flexible than others by a simple checking number

of places in every ATS. Such an analysis has been performed for MCP-1 and its

results are presented in Fig. 30. The selected amino acids with relatively large

number of places in their ATS are highlighted in red. This feature is related to the

bigger flexibility of the region in which those amino acids are located. And indeed,

those amino acids are located at the terminal loops of the protein which are the

most flexible. The amino acids shown in blue have a rather low number of the

places in their ATS. This low value should be correlated with the higher stability.

Those “blue” amino acids are located in the β-sheet, which is known to be the most

stable part of the protein. Interestingly, two amino acids from this group are located

in a long loop and without any additional information they might be expected to be

very flexible. However, closer inspection shows that those amino acids form H-

bonds with some amino acids from the β-sheet, which probably affects their

flexibility. The method is sensitive enough to detect such features.

Fig. 30. MCP-1 with highlighted amino acids with a large number of places in their

ATS (red) and the small number (blue).

102

Petri nets created with OPOA algorithms allow to study dynamical properties of

every amino acid. Useful information comes from a frequency analysis. Positions

which are preferred (or are rarely visited) can be easily detected. Moreover, the

transitions allow to characterize amino acids’ movements. One can check if each

CA atom stays most of the time in one point in the
 space, or if it moves between

a few points. Such frequently visited points/places are easily identified and may be

analyzed. One can easily see if they are connected by transitions and create some

preferred areas in the conformational space.

Such results are presented in Table 11. The most often visited places for two MCP-

1 amino acids, no. 15 and no. 52, are presented. Both CA atoms are from the

"stable" part (marked in blue in Fig. 30), however CA52 is from the β-sheet and

CA15 is from the loop. In the first part of the table the places which are marked in

the same color (except green) are connected to each other via transitions, so the

CA atom can move between them freely. On the other hand, the transfer of a token

is possible between the sets highlighted in different colors, but it has occurred only

via the place p5310 (the green one). In the second part of the Table 11 such sets

cannot be separated and the CA atom can move between each place freely.

Interesting information stems from the difference between the frequencies for CA52

and CA15 atoms. Amino acid 52 is more stable than 15, and it has visited the points

represented by p3882 and p2464 much often than CA15 visited its “most popular”

places.

Table 11. The places visited most often by two CA atoms: 15 and 52 in MD PN

generated by the OPOAv1 algorithm. "Place" describes a number of the place in

the network and "Visited" describes how many times the corresponding place was

visited by the amino acid during the simulation.

Amino acid 15

Place p224 p2169 p6760 p5441 p2174 p5310 p702 p4062 p12354 p7127

Visited 335 261 212 211 193 187 170 164 162 160

Amino acid 52

Place p3882 p2464 p196 p6932 p725 p2606 p5626 p7731 p7994 p6250

Visited 522 437 303 263 254 226 225 222 221 219

A similar study of the most commonly visited places was performed for the

simulations of transthyretin (TTR) wild type (WT) tetramer and two mutants

V30M and L55P. Transthyretin is a tetrameric, 55 kDa, a protein which transports

thyroid hormones and retinol binding protein in blood and the cerebral fluid [132].

Amino acids located at positions 30 and 55 were analyzed and results are presented

in Table 12 and Table 13. OPOAv1 was used with the size of the grid of 1.5 Å.

MD simulations were 50ns long. The first conspicuous observation is that amino

acid 30 stays longer in the most frequently visited places than the amino acid 55. It

103

indicates that CA30 region is more stable than CA55 neighborhood. Indeed, CA30 is

in the middle of the β-sheet structure and CA55 is at the beginning of the loop so

mechanical nature of their localization is reflected in OPOA generated PNs. The

next observation is that for both mutated amino acids there are “leader”

places/points in the
 space i.e. which are more often visited than any other place

of the same amino acid. Distributions of occupancy of those leader places are also

good descriptors of the molecular system studied.

Table 12. The most commonly visited places for amino acid 30 in MD PN

generated by OPOA ver. 1 for simulation of V30M TTR mutant and wild type

TTR.

Amino acid 30 V30M

Place p3327 p409 p3285 p653 p3513 p6192 p5251 p3162 p2182 p1631

Visited 125 110 72 44 44 42 40 39 38 37

Amino acid 30 WT

Place p5290 p6553 p5085 p2489 p3270 p5390 p1922 p2704 p5212 p2041

Visited 108 106 101 70 68 39 38 33 31 29

Table 13. The most commonly visited places for amino acid 55 in MD PN

generated by OPOA ver. 1 for simulation of L55P TTR mutant and wild type TTR.

Amino acid 55 L55P

Place p896 p3312 p4381 p482 p1822 p2199 p5557 p6262 p6553 p3856

Visited 95 74 52 51 49 49 44 40 38 37

Amino acid 55 WT

Place p5392 p2773 p6777 p4890 p5622 p2821 p5655 p2199 p5347 p5792

Visited 76 75 58 57 57 48 46 45 45 41

For example, in WT (see Table 12 and Table 13) the best “leader” places

occupancy (“Visited”) is more or less uniform. In V30M mutant the p3327

dominates and it was visited 53 times more often than the nest to second leader

p3285. Such a difference in the number of visits is only 7 for WT. This means that

the mutation in position 30 of TTR affects substantially the mobility of this part of

the protein. Similar observation has been made for L55P mutant. In our opinion,

such a result is difficult to obtain from a classical fluctuations analysis. Moreover,

the usage of PN allows for a deeper data mining: one can extract all the paths

leading to/from the most frequently visited place. Such a tool is easy to implement

in my code.

104

5.2.2 One Place One Conformation algorithm

General idea

In the One Place One Conformation (OPOC) algorithm one place will represent

one whole conformation of the molecule. In Physics or Chemistry the conformation

of the molecule in space can be represented in different ways: by positions

(x,y,x) of all atoms, positions of atoms from the backbone only (for proteins) or by

positions of CA atoms only. In OPOC algorithm that last representation will be

used.

Def. 41. The conformation of the protein (molecule) having N amino acids is a set

of positions of CA atoms in space.

So in the OPOC algorithm one place in PN corresponds to the collective positions

of every CA. Such a conformation may also be regarded as a single point in the

 space. Transitions represent changes between conformations and a token

marks the current conformation. Because a molecule can be at a given time point in

one conformation only, one token is present in the PN. The network can be

generated from a few trajectories, so usually the Petri net will have a special form:

one place will represent a starting conformation and numerous paths starting from

there and containing transitions and places. These paths will represent particular

trajectories.

MD Petri nets generated by the OPOC algorithm describes “the journey” of the

molecule in conformation space. Obviously, the points in this space

correspond to one conformation each, the same as a place in the PN of OPOC type.

The networks are thus a kind of recording of movements of the molecule in the

conformation space during the MD simulations used to generated the nets. Such a

PN is a generalization of a standard MD trajectory.

Structural alignment

One of the problems in the OPOC algorithm is how to determine if two

conformations are the same or different. Of course, the easiest solution would be to

check if every CA atom is located in the same point in the space for both

conformations. The standard procedure is an introduction of a distance between

conformations and a threshold. If a predefined distance (difference) between the

conformations is smaller than the threshold then the conformations are considered

to be the same. In order to calculate the difference between conformations different

measures (distances) were developed, for example: the root-mean-square deviation

(RMSD) [133], the global distance test (GDT TS) [134] or the template modeling

score (TM-score) [135]. In the OPOC algorithm any measure can be used and it

will not have an impact on the form of the algorithm. However, in my

implementation the RMSD distance is used, which is perhaps the most popular one

in bioinformatics. It expresses the similarity between three-dimensional structures

105

and it is calculated by the average distance between the atoms from two sets

(usually structures) having n atoms each, v and w, given by formula:

 (5.3)

However, the distances between atoms are not sufficient to determine whether two

conformations are the same or not. Any rotations and shifts of a molecule as a

whole (so called rigid body motions) should also be ignored. They are not ignored

in this simple RMSD measure definition. In order to get a fair comparison of

conformations the two structures should be carefully overlaid before RMSD is

calculated. Two structures can be overlaid in many different ways and the goal is to

obtain an overlap with the smallest differences between the structures analyzed.

This whole process is called a structural alignment. It is quite complex and many

algorithms were developed to solve this problem [136-138].

In the OPOC algorithm a conformation from every MD frame has to be aligned

with the conformations which represent the places created so far (see Algorithm

11). It can be done by means of additional software, for example, [116] or [139]. It

should be noted that in the OPOC algorithm the structural alignment problem is

less complex than the general case. In the general scheme the structural alignment

algorithms are often used to align molecules that are similar but not the same.

During our MD Petri nets generation it is always the same molecules that are

compared. They have the same number and type of amino acids, which makes the

alignment easier and faster. Here two straightforward methods were developed and

implemented.

Algorithm 9. Structural alignment algorithm with rotations.

Input: The threshold for the maximum rotation angle, the initial angle and the step

of the rotation, two structures A and B represented by lists of CA atoms positions

in space - the number of CA atoms must be the same, it is assumed that both

structures represent the same protein, but in different conformations.

Output: RMSD calculated between structures A and B.

Steps:

1. begin

2. for every CA atom:

3. begin

4. center(structureA, CA);

5. center(structureB, CA);

6. RMSD := calculateRMSD(structureA, structureB);

7. ang := initial_angle;

106

8. while((calculateRMSD(structureA, structureB) < RMSD) AND

 (ang < threshold))

9. begin

10. rotate(structureB, ang);

11. ang := ang + step;

12. end

13. end

14. end

The main part of Algorithm 9 is a loop which iterates over every CA atom (lines 2-

12). Firstly, both structures are translated in such a way that corresponding CA

atoms from the current loop are moved to the center of the coordinate system (lines

4-5). Then, the first RMSD between the transformed structures is calculated (line

6). The structure B is rotated by a small angle ang (line 10) in the next step. The

rotation is continued until the accumulated rotation angle is larger than the given

threshold or the RMSD calculated after this rotation is bigger than that already

calculated (lines 8-12). It is important that rotate() function represents a rotation

over every coordinates' system axis and their combinations.

The number of atoms in both structures is the same and we can assume that it is n.

So the time complexity of the Algorithm 9 is the following: the main loop (lines 2-

12) will be executed n times, methods center(), calculateRMSD() and rotate() do

some calculations for every CA atom so their complexity is also n, the while loop

(lines 8-12) will be executed maximally (threshold - initial_angle)/step times. So,

the total complexity of the algorithm is equal to n (execution of the main loop)

times (threshold - initial_angle)/step (execution of the while loop) times n

(execution of rotate() and calculateRMSD() functions), together it is O(n
2
 *

(threshold - initial_angle)/step). The value of (threshold - initial_angle)/step may

be small and good results may be obtained. In my implementation this parameter is

equal to 4 or 5, and my tests have shown that a bigger value of the rotation did not

result in a smaller RMSD. So, in the total complexity the main factor is O(n
2
).

Presented Algorithm 9 was the first one used to analyze MD trajectories (see

Cases studied). Later, after doing numerous computer experiments, it has been

improved and Algorithm 10 presented below has been introduced. In this

algorithm “the center of mass” concept was used.

Def. 42. The center of mass of the molecule is the unique point at the center of a

distribution of mass in space given by the formula:

 where k is index

of atoms in the molecule, mk is mass of k-th atom, is position of k-th atom.

Algorithm 10. Structural alignment algorithm with rotations using centers of mass.

Input: Two structures A and B represented by lists of CA atoms positions in

space - the number of CA atoms must be the same, as it is assumed that both

107

structures represents the same protein, but in different conformations. A threshold

for the maximum rotation angle, the initial angle and the step of the rotation.

Output: RMSD calculated between structures A and B.

Steps:

1. begin

2. massCenterA := calculateMassCenter(structureA);

3. massCenterB := calculateMassCenter(structureB);

4. center(structureA, massCenterA);

5. center(structureB, massCenterB);

6. RMSD := calculateRMSD(structureA, structureB);

7. ang := initial_angle;

8. while((calculateRMSD(structureA, structureB) < RMSD) AND (ang <

threshold))

9. begin

10. rotate(structureB, ang);

11. ang := ang + step;

12. end

13. end

The Algorithm 10 is very similar to the Algorithm 9, the main difference is that

calculations are not performed for every CA atom, but only for the center of mass

for every structure. This allows to avoid a long loop in lines 2-13 from the

Algorithm 9. At the begging both centers of masses are calculated for both

structures (lines 2-3), being simply points in space. Then the structures are centered

in such a way that both centers of masses are at the beginning of the coordinate

system. After that, RMSD between the structures is calculated (line 6) and a

rotation by a small angle is performed, similar to the one from the Algorithm 9.

The Algorithm 10 has a smaller time computational complexity than the

Algorithm 9 because the long loop in lines 2-13 is avoided. For calculation of the

center of mass a position of every atom has to be checked. Here only CA atoms are

used, so the complexity of calculateMassCenter() method is n (number of CA

atoms), the same as center() and rotate() methods. The while loop in lines 8-12 will

be executed similarly as before (threshold - initial_angle)/step times. Thus, the

total complexity of the algorithm is equal to (threshold - initial_angle)/step

(execution of the while loop) times n (execution of center(), rotate() and

calculateMassCenter() functions), together it is O(n * (threshold -

initial_angle)/step), where like before (threshold - initial_angle)/step may be small

integer.

The presented algorithms are approximate, however they are quite fast - especially

Algorithm 10. For the same input data tests, the following structural alignment

algorithms were applied: Algorithm 9, Algorithm 10, Combinatorial Extension

Algorithm (CE) [138] and FATCAT algorithm [140]. CE and FATCAT are

implemented in BioJava package [139]. Thirty nine structures of one protein from

108

the consecutive frames were aligned to a structure taken from the first frame. Only

CA atoms in all algorithms were used for the alignment. The time of the execution

and the smallest obtained RMSD between the structures were calculated.

Table 14. Execution times of structural alignment algorithms for the same data, in

ms.

Algorithm 10 Algorithm 9 CA algorithm FATCAT

algorithm

43 433 1613 6059

15 308 1178 5541

5 316 1008 5288

4 372 976 5347

5 309 1084 5346

4 372 965 5399

4 345 991 5370

5 323 1044 5311

2 308 971 5397

2 308 967 5331

1 293 1059 5377

2 292 974 5318

2 293 970 5351

2 299 983 5307

2 293 969 5360

2 306 1248 5319

2 299 1024 5359

2 307 1042 5294

2 305 974 5343

3 307 952 5274

2 289 959 5417

2 295 973 5437

2 302 1045 5411

2 298 1270 5434

1 292 1553 5509

2 293 1504 5347

1 289 1227 5315

2 288 1007 5404

1 283 941 5389

0 290 959 5486

1 290 961 5429

1 293 968 5381

1 287 974 5481

1 294 963 5411

1 276 981 5412

1 280 969 5456

0 289 936 5383

2 300 957 5373

2 317 981 5384

1 313 986 5367

109

Table 15. The smallest RMSD which have been obtained between structures using

different algorithms, in Å - first four columns. Then selected differences in results

between the algorithms. Averages values in the last row.

Algorithm 10 Algorithm

9

CA
algorithm

FATCAT
algorithm

Algorithm

9 -

Algorithm

10

CA -

Algorithm

9

CA -

Algorithm

10

CA -
FATCAT

0.673 0.679 0.666 0.666 0.006 -0.013 -0.007 0.000

0.716 0.719 0.702 0.702 0.003 -0.018 -0.014 0.000

0.793 0.797 0.770 0.770 0.004 -0.027 -0.023 0.000

0.938 0.943 0.898 0.898 0.005 -0.046 -0.041 0.000

0.893 0.895 0.856 0.856 0.002 -0.038 -0.037 0.000

0.966 0.970 0.906 0.906 0.003 -0.064 -0.060 0.000

0.969 0.979 0.920 0.920 0.009 -0.059 -0.050 0.000

1.074 1.078 1.015 1.015 0.004 -0.063 -0.059 0.000

1.040 1.050 1.001 1.001 0.010 -0.050 -0.039 0.000

1.076 1.077 0.984 0.984 0.001 -0.093 -0.092 0.000

1.097 1.107 1.049 1.049 0.010 -0.058 -0.048 0.000

1.219 1.237 1.132 1.132 0.018 -0.105 -0.087 0.000

1.265 1.279 1.151 1.151 0.015 -0.128 -0.114 0.000

1.212 1.215 1.117 1.117 0.003 -0.098 -0.094 0.000

1.181 1.185 1.118 1.118 0.004 -0.066 -0.062 0.000

1.276 1.281 1.177 1.177 0.005 -0.104 -0.099 0.000

1.121 1.126 1.091 1.091 0.005 -0.035 -0.030 0.000

1.105 1.107 1.068 1.068 0.001 -0.039 -0.037 0.000

1.131 1.132 1.082 1.082 0.001 -0.050 -0.049 0.000

1.195 1.205 1.138 1.138 0.010 -0.066 -0.057 0.000

1.183 1.184 1.171 1.171 0.001 -0.013 -0.012 0.000

1.201 1.203 1.143 1.143 0.002 -0.060 -0.058 0.000

1.384 1.389 1.257 1.257 0.005 -0.133 -0.127 0.000

1.377 1.388 1.238 1.238 0.011 -0.150 -0.139 0.000

1.392 1.396 1.265 1.265 0.004 -0.130 -0.126 0.000

1.421 1.426 1.278 1.278 0.005 -0.148 -0.143 0.000

1.389 1.393 1.257 1.257 0.004 -0.135 -0.132 0.000

1.325 1.329 1.243 1.243 0.004 -0.086 -0.082 0.000

1.326 1.331 1.213 1.213 0.005 -0.118 -0.113 0.000

1.427 1.435 1.260 1.260 0.008 -0.176 -0.167 0.000

1.434 1.437 1.230 1.230 0.003 -0.207 -0.204 0.000

1.393 1.398 1.097 1.227 0.005 -0.301 -0.296 0.130

1.344 1.345 1.079 1.195 0.001 -0.265 -0.264 0.116

1.289 1.291 1.056 1.183 0.002 -0.235 -0.232 0.127

1.332 1.335 1.095 1.238 0.003 -0.239 -0.236 0.143

1.462 1.465 1.221 1.360 0.002 -0.244 -0.241 0.139

1.381 1.384 1.130 1.262 0.003 -0.254 -0.251 0.132

1.487 1.496 1.149 1.290 0.009 -0.347 -0.338 0.141

1.376 1.376 1.114 1.247 0.001 -0.262 -0.262 0.133

1.518 1.527 1.209 1.337 0.009 -0.317 -0.309 0.127

Avg: 1.210 1.215 1.089 1.118 0.005 -0.126 -0.121 0.030

110

According to data presented in Table 15, Algorithm 9 and Algorithm 10 give

very similar results, the differences being usually at the level of thousandths of the

Å. Both algorithms are a little bit worse than the CE algorithm, about 0.1-0.4 Å in

the obtained RMSD (here a smaller result is better). At the same time, we see that

for a few last frames the FATCAT algorithm is worse than CA. Those results

suggest that the CA algorithm is the best for the data considered here, however

Algorithm 9 is about 3-4 times faster, and Algorithm 10 is about 500 times faster,

than CA (see Table 15). Because the structural alignment is performed hundreds or

thousands of times during OPOC execution (see Algorithm 11), the shortest

possible calculations time is very important and such small errors in the obtained

RMSD are acceptable. In our case I do not need the best solution of the alignment

problem, but any reasonably good approximation is enough. One should note that

even well establish methods, like CA and FATCAT, may give different results,

(see Table 15).

Algorithm

The general idea of the OPOC algorithm is not very complicated, however some

issues have to be considered during the MD Petri net generation. In particular, we

need to check if the current conformation was previously obtained, or if there exists

a transition between the current and the previous conformation.

Algorithm 11. One Place One Conformation algorithm

Input: PDB files which contains MD trajectories, a parameter threshold, which is

necessary to distinguish two conformations.

Output: MD Petri net described by lists of places, transitions and arcs. Optionally -

files with the description of places and transitions.

Steps:

1. begin

2. for every PDB file:

3. begin

4. frame := readFrame();

5. prevPlace := places.get(previousFrame);

6. if(NOT places.find(frame, threshold)) then

7. begin

8. place := createPlace(frame);

9. places.add(place);

10. transition := createTransition(prevPlace, place);

11. transitions.add(transition);

12. createArcs(prevPlace, transition, place);

13. end

14. else

15. begin

16. place := places.get(frame, threshold);

17. if(NOT transitions.contains(prevPlace, place) then

111

18. begin

19. transition := createTransition(prevPlace, place);

20. transitions.add(transition);

21. createArcs(prevPlace, transition, place);

22. end

23. end

24. end

25. end

The algorithm reads the data from every input file frame by frame (lines 1-4).

When the next frame is read, it is checked if this conformation has been previously

obtained (line 6). Here, to compare the current conformation (from the current

frame) and the previous conformations (i.e. obtained from the previous frames

represented by appropriate and unique places) the RMSD measure and fast

structural alignment Algorithm 9 or Algorithm 10 can be used. The current frame

is aligned to the conformation encoded in every existing place and the smallest

calculated RMSD is examined to check if it smaller than the threshold. If such a

place is not found (lines 6-13), it means that we encountered a new unique

conformation, therefore a new place is created (lines 8-9) in the PN. Of course, if

the place also does not exist, then no transition connected to this place is present in

the PN, and such a transition must be created (lines 10-11). After that, the place

which represents the previous frame is connected as the input place to the newly

created transition and the new place just generated from the current frame is

connected as the output place (line 12). If the current conformation has been

previously obtained (lines 15-23) it must be checked whether there is also a

transition from the previous place/frame to the place which corresponds to the

present frame (lines 17). If it exists, there is nothing to do, if it does not exist (lines

17-22) we need to create a new transition (lines 19-20). Thus, a connection from

the place which corresponds to that previous frame to the new transition and a

connection from the new transition to the place of the current frame are created

(line 21).

The computational complexity seems to depend only on the size of the input data,

however additional calculations are hidden inside the places.find() method, which

compares places created so far with the current conformation. This comparison also

involves an important step: a structural alignment. So, this method will have

complexity equals at least number of places multiplied by complexity of the

structural alignment algorithm.

Cases studied

The MD Petri net obtained from the OPOC algorithm is usually quite small - much

smaller than the net obtained from the OPOA algorithms. It is a natural observation

because OPOC generated network describes the movement of the whole molecule

and in OPOA algorithms it describes the motions of every amino acid or every

atom. The size of the network depends on the value of the threshold parameter, see

112

Fig. 31. In this figure four MD Petri nets are presented, all generated by the OPOC

algorithm with the same structural alignment and for the same trajectory, but for

different threshold parameters. An increasing number of places and transitions can

be observed for the increasing threshold, so the network is more precise. The size

of PN depends also on the length of the simulation, a protein for which the

simulation has been calculated and on a number of the trajectories used to generate

the network.

Fig. 31. An example of MD Petri nets generated by the OPOC algorithm with

Algorithm 10 used as the structural alignment tool for the same trajectory, but with

different thresholds: (a) 1.6Å, (b) 1.5Å, (c) 1.4Å, (d) 1.2Å.

The goal of the OPOC algorithm, like of others presented in this chapter, is to

facilitate the analysis of the MD trajectories. In order to achieve this goal the

generated MD Petri net has to represent the main features and events hidden in the

trajectory used to generate the network. Only then conclusions drawn from PNs

will have a chance to be reliable, especially when those conclusions refer to

features which are difficult to pick up by human inspection of the trajectory. From

a large pool of trajectories and numerous Petri nets generated during this project

here only three MD Petri nets were selected and are presented, just to show the

reliability and utility of the OPOC generated networks. Following “case studies”

were generated using Algorithm 9, however Petri nets created with Algorithm 10

are very similar and reproduce the same features. These results has been submitted

for publication in Rairo-Operations Research journal [141].

Let us analyze at the beginning the MD Petri net generated from one SMD

simulation of transthyretin (TTR, wild type) tetramer dissociation into two dimers.

CA atoms from segments A and B were fixed and the virtual force was added to all

CA atoms from chains C and D (see Fig. 32). The TTR initial structure has been

obtained from the PDB record 1ICT [142]. The analyzed trajectory was 10ns long.

113

Fig. 32. Structure of TTR with marked segments (a, b, c, d).

In a typical SMD simulation protocol the structure of a protein analyzed is

gradually deformed in order to examine its mechanical properties and to observe

possible hydrogen bond breaks. During the simulation the pulled and fixed

segments separate from each other and the RMSD of the whole system obviously

rises. Since adding new places to the PN in the OPOC algorithm depends on RMS

distance between the structures from consecutive frames then a general shape of the

generated network can be easily predicted. Due to these systematic deformations of

the protein, new places are created in PN when the RMSD value between the

current frame and the previously created places is bigger than the set-up threshold.

As system modeled changes and new arising conformations are not usually present

in the already generated part, the created network will be only a straight chain of

places and transitions. Indeed, a MD Petri net generated for this TTR trajectory has

that form. In Fig. 33 the net generated for a threshold of 1.3 Å is presented.

However, networks for different thresholds were also generated and they had the

same general structure.

Fig. 33. A Petri net generated for TTR SMD simulation with the threshold of 1.3Å.

The second case studied is SMD dissociation of the complex chemokine MCP-1

from its antibody (see Chapter 4). The initial structure was obtained from the PDB

data bank (code 2BDN) [99]. MCP-1 was used here because this molecule is very

small and the changes of its conformations can be easily monitored by watching the

trajectory, and then by comparing frames to the OPOC generated MD Petri net. In

the paper [12] and in Chapter 4 SMD studies of this complex were presented and

many pulling directions were tested. For the generation of the MD Petri net a

114

direction was randomly selected (V3 in Table 9). If the protocol of the OPOC

algorithm was the same as in the first example, the MPC-1simulation would have

the same scenario and the resulting Petri net would have the same i.e. trivial form

of a straight graph. However, in this case the MD Petri net was generated for the

MCP-1 fragment only. The antibody, the second partner in the complex, was not

affected.

Fig. 34. (a) Four frames from SMD simulation of MCP-1 (blue) dissociation from

the antibody (black, red). 1 – the starting frame, 2 – the structure when bonds

between the antibody and the antigen are broken, 3 – conformation changes during

dragging, 4 – conformation obtained at the end of the simulation. (b) Petri net

generated by the OPOC algorithm for the same SMD trajectory with threshold of

1.1 Å.

An advantage of the OPOC algorithm is its versatility. The input to the algorithm

may be a list of CA atoms from the whole complex but only a chosen part of a

115

system is also acceptable. In order to analyze if any new information may be

obtained by such methodology, in the second case only MPC-1 atoms were used to

generate the new PN (see Fig. 34). One can see that the form of this new PN is

different than that in Fig. 33.

A visual inspection of the trajectory shows that during the first part of the SMD

simulation the MCP-1 is gradually deformed. Two opposite forces - the pulling

force and the attraction forces between the antigen and the antibody modify the

structure. Finally the bonds are broken and the chemokine dissociates. However,

during this dissociation the structure of MCP-1 is still changing, which is probably

the effect of relaxation (because the antigen is no longer in the complex), and it

may adopt a new conformation - more suitable for the unbound state. During this

part of the simulation the MCP-1 is dragged in the water and the long loop at the

end of the molecule moves closer to the main part of the protein. Also other

changes may be observed (see Fig. 34a). At the end of the simulation the molecule

adopts a more stable structure and large changes in the conformation cannot be

observed anymore. Now, one may try to indicate these conformational transitions

in the more compact MD PN representation.

In Fig. 34b the MD Petri net generated by OPOC algorithm with threshold 1.1 Å is

presented. It is similar to the network presented in Fig. 33, however some

modifications can be observed. One can see that the majority of the PN presents a

sequence of places and transitions which corresponds to conformational changes

typical for the SMD simulations. This feature of MD PN strongly corresponds to

the observations made during the visual analysis of the trajectory. In this part of the

net the protein goes back a few times to a previous conformation or adopts new

ones, and this phenomenon affects the PN chain of places and transitions. That

feature, present in the PN graph, suggests that MCP-1 molecule has some

opportunity to relax and to sample new regions of the conformational space. It may

happen because the structure of MCP-1 is not deformed in a steady way during the

simulation, not like TTR in the previous example. The last part of the network

(places 40-43, transitions 48-55) is different. It shows that MCP-1 has already

finished quick changes of conformations, and at the end of the SMD simulation it

probes the limited region of the conformational space. These easy to obtain

observations are in one to one correspondence to the tedious visual inspection of

the trajectory.

The two cases presented above show that PNs generated by the OPOC algorithm

grasp main events present in the MD trajectories. They provide a simple, compact

and effective tool for massive analysis of SMD data. The last example will show

further advantages of the OPOC in the analysis of several long MD simulations.

The last Petri net presented in this section has been generated from two classical,

MD simulations of TTR mutant L66P, both trajectories were 100 ns long. The

original structure was obtained from PDB data bank (code: 1ICT) [142]. Both

116

trajectory files were split into two files of 50ns. Such long trajectories are very

difficult to analyze, “manual” analysis n by watching whole files is almost

impossible due to the length of the simulations and the size of the protein - if one

does not know when and where to watch, it is not possible to recognize interesting

events or features. Thus a simplified MD PN approach is particularly desirable in

this case. The OPOC threshold was 1.5Å and the resulting PN is presented in

Fig. 35. This network has 22 places and 105 transitions. The PN generated in the

same conditions for a wild type TTR has only 19 places and 57 transitions. The PN

generated for the second TTR mutant V30M has 25 places and 82 transitions.

Physically, all three systems are quite similar, as they have almost the same

structure and numbers of atoms, but a clear disproportion in number of places and

transitions in PN (Fig. 35) is visible. Transitions describe changes of conformation

in the OPOC algorithm so those different numbers suggest that during the

simulation L55P very changes its conformations more often than the other two

systems. More specific conclusions may be drawn from closer inspection of the

network.

In both simulations the first place is p0,which is artificially added starting place and

does not have any real physical meaning. Transitions t29 and t91 are also artificial,

and were added to the PN because of the division of the MD trajectories into two

files. So, the first conformation obtained in both simulations is the one described by

p1. Only four conformations are common in both trajectories (p1, p2, p4, p7) and all

of them are observed in the first part of the simulations. Such a small number of

common conformations observed at the beginning (four for MD PN generated for

WT TTR and only two for TTR mutant V55P) is typical for other MD PN

generated by the OPOC algorithm. The low value of common places number shows

how rich a given conformational space is and indicates that just a few simulations

are not sufficient to scan it all.

The second observation from the MD PN from Fig. 35 refers to the first trajectory.

One can see that in this part of the network (yellow and blue places) a lot of

transitions occur, and some conformations can be transformed into any other, with

backward transitions into initial conformations being also possible. It suggest that

in this simulation the protein cannot find any stable area in the conformational

space, from every conformation can go back to one of the initial conformations and

the L55P is sampling different regions the conformational space all time. Such

observations would be very difficult to make by watching the MD trajectory only.

117

Fig. 35. MD Petri net generated by OPOC algorithm for two 100ns MD

simulations of TTR mutant L55P (1.5Å threshold). Places common in both

simulations are in blue, places observed only in the first simulations are in yellow

and in second only are in red.

The behavior of L55P in the second trajectory is different. From the starting set of

four common conformations the protein transforms into conformations represented

by places: p14, p16, p17 and further on p15, p18. We see from the PN graph (Fig. 35)

that many transitions exist between those conformations. On the other hand, from

the conformation p16 the system can also transform into conformation p19, and even

though there is an inverse transition p19 p16, the L55P protein "prefers to stay" in

this separate part of the PN throughout the rest of the simulation. This separated

“peninsula” is formed by places p19-p22 (see Fig. 35 lower left corner). This suggest

that at the beginning of the simulation the protein also scans the conformational

space to find a more stable conformation and it finally finds some close-by local

minima in the limited conformation space. This observation would be extremely

difficult to make by simply watching the trajectory. The created PN shows that

118

both analyzed simulations were quite different dynamical processes. Thus, in my

opinion, the MD PN graphs developed here are new useful computational tools in

theoretical biology/structural bioinformatics studies.

Features

Our case studies have shown that PNs generated by the OPOC algorithm properly

reflect events and features present in MD trajectories, therefore the proposed

approach can be used in routine studies. In this section some general features of the

new algorithm are discussed.. The OPOC algorithm is one of the clustering

algorithms - places may be treated as clusters, many frames may be assigned to one

place/cluster. The degree of the clustering depends on the threshold parameter.

Such analysis is useful in MD research and may reduce the number of frames

which have to be inspected. However, it is “per se” nothing new, such clustering

algorithms are often used in simulation analysis [127]. The new feature of the

OPOC algorithm is description of the relationship between clusters. Relationships

are coded by transitions. Looking at transitions one can see from which

conformation (or a cluster) the protein can transform into another one and what is

those transformations path. Such a type of the study is also possible using other

methods like, for example, Principal Component Analysis (PCA, [143]), where for

every cluster a list of assigned frames is generated. However, in PCA such an

analysis requires additional computations and in the OPOC algorithm it is a natural

part of the algorithm.

Another advantage of MD PN is that the relationships between conformations and

their changes are generated as a PN graph. Graph-based representations of data

have known merits [144]. The PN graph describes a journey of a protein through

the conformational space and can be easily displayed. One can quickly (after

inspection of a few nets) get practice in analyzing of the MD PN generated by

OPOC algorithm only by looking at the network graph. One can quickly find if in

the analyzed MD trajectory a protein quickly finds any stable conformations or

rather constantly probes new regions of the conformational space. Such inspections

of PN graphs help to decide what the character of the studied dynamical process is.

A similar complex analysis is quite difficult and cannot be performed without

sophisticated algorithms (i.e. on computer graphics only).

My own analysis of MD Petri nets generated by the OPOC algorithm was focused

on the features of the conformational spaces. Almost 2000 ns of simulations of

TTR wild type and its two mutants were examined at 300 K, and graphs were

generated (PN graphs not shown, data from mgr inż. Rafał Jakubowski). I have

found that despite a huge size of 2 microsecond trajectories conformational space

new MD simulations still added new places to my PNs, so the conformational

space was not fully probed in 2 microseconds. I noticed that only a few structures

were reproduced when new 50 ns trajectories were added to the dataset. In another

case studied twenty 2 ns long simulations of MCP-1 were used to generate a single

119

MD Petri net by the OPOC algorithm. One should note that MCP-1 is a very small

protein. The results were similar to the TTR example. Only about 20% of the

places were common for two or more trajectories, the rest of places (representative

conformations) were unique for every simulation. So, the OPOC algorithm gives an

insight into the character of the conformational space, helps to set up a proper

simulation protocol (how long a simulation should be to get converged results) and

facilitates finding the links between separated regions of the conformational space.

5.2.3 Contacts algorithm

Overview

In the contacts algorithm (CON) different approach to the PN generation is used. In

the OPOA and OPOC algorithms the MD Petri net obtained refers to coordinates of

atoms in the space. In both cases the places are linked to points in the

space (NCA is a number of CA atom, OPOC) or the space (OPOA). In contrast

to that, in the CON algorithm places represent contacts between two amino acids.

The analysis of contacts is a very important part of any MD trajectory research

process. Contacts are widely used to study interactions between molecules or even

for protein folding methods [145].

Transitions usually represent some actions or events. In the CON algorithm they

represent the changes between contacts calculated for every MD frame. In order to

organize those changes in some systematic way I assumed that one transition

corresponds to one frame. The input places for the transition are all the contacts

from the previous frame and the output places are the contacts found in the current

frame. In such a representation the PN presents the evolution of contacts over the

MD trajectory. Many tokens are present in the MD Petri net generated by the CON

algorithm. Tokens located in appropriate places mark the existence of contacts in a

given frame. During the MD trajectory number of contacts obviously changes, so

the number of tokens in this PN is not constant. It is equal to the number of pairs of

amino acids which are in contact in the current frame.

The idea of CON algorithm is quite straightforward, however, a calculation of the

contacts is not so simple. Generally, different definitions of contacts between

amino acids have been proposed in the literature [146]. In my work I have used the

following definition contacts between amino acids:

Def. 43. Two amino acids a1 and a2 are in contact if the distance between their CA

atoms is smaller than a given constant c:

 . (5.4)

The constant c is given by the user, however, by default it is 8Å, like in [116].

120

 Calculation of contacts

There are many tools to calculate the contacts between amino acids [116, 147-148].

In my implementation the following algorithm, called Contact Calculating

Algorithm (CCA), was used. In the CCA algorithm contacts are only calculated, in

the CON algorithm they are used to create a PN. In the CCA algorithm, similarly to

the OPOA algorithm, the space is transformed into another three dimensional

discrete space (a grid) like in Def. 38. One of the important features of the mapping

function used is the following: when the coordinates of one point from
 are

given, it is easy to obtain the coordinates of its neighboring points. It is done

simply by adding or subtracting 1 to each coordinate. Any other mapping function

can be here applied as well, however, it should have two properties: it should be a

surjection and not an injection, and the coordinates of the neighboring points

should be obtainable from the coordinates of every point.

 AtomsPositions:

 PossibleNeighbors:

 (0, 1): p5 (0, 1): p1, p3, p4

 (1, 0): p1 (1, 0): p2, p3, p4, p5

 (1, 1): p3, p4 (1, 1): p1, p2, p5

 (2, 0): p2 (2, 0): p1, p3, p4

Fig. 36. An example of AtomsPositions and PossibleNeighbors arrays in the

space. Points in the space are marked by red dots, points in the
 space are

marked by black boxes and their coordinates are given in brackets.

In the CCA algorithm two arrays are used. In both indexes should be
 points

coordinates. During the implementation it will not be comfortable to define such

data structure, so it is better to create arrays indexed by natural numbers and

additional arrays to translate indexes into
 points coordinates. However, in this

chapter such a problem of arrays indexes will not be considered. The first array will

be called AtomsPositions and an element of index p of the array will contain list of

121

atoms which are in the point p in the
 space. The length of this array will be

maximally equal to the number of CA atoms n, the same as the number of elements

in the whole array because only n points can be occupied. The second array is

called PossibleNeighbors and an element of index p of this array contains a list of

atoms which possibly are in contact with an atom in the point p. The length of this

array is at most 26n - the number of CA atoms times the number of the points

neighboring to every point in the
 space. An example of the arrays for two

dimensional case is presented in Fig. 36. The can be mapped into
 in an

analogical way like the space, similarly like in Fig. 27.

Now, the contact calculating algorithm may be introduced. It consists of two loops

– within the first one atoms are added to the arrays, during the second one the

arrays are analyzed and the contacts are found.

Algorithm 12. Contact calculating algorithm (CCA).

Input: A list of n points, between which the contacts have to be calculated. The

value of a threshold c which defines the distance between two atoms being in the

contact. Parameter c is also a resolution of the grid dividing the used to obtain

the
 space, c is an integer from the interval [6, 12] Å.

Output: The list contacts of pairs of points which are in the contact.

Steps:

1. begin

2. AtomsPositions := NULL;

3. PossibleNeighbors := NULL;

4. contacts := NULL;

5. mapping := NULL;

6. for i := 0 to n do

7. begin

8. point := getCoordinates(atom[i]);

9. AtomsPositions[point].add(atom[i]);

10. mapping[i] := point;

11. neighbors := getNeighbors(point);

12. for j = 0 to 26 do

13. PossibleNeighbors[neighbors[j]].add(atom[i]);

14. end

15. for i := 0 to min(n, AtomsPositions.length()) do

16. begin

17. list := AtomsPositions[mapping[i]];

18. for j := 0 to list.length() do

19. begin

20. for k := j + 1 to list.length() do

21. if(j <> k) then contacts.add(list.get(j), list.get(k));

22. listNeighbors := PossibleNeighbors[mapping[i]];

23. for k := 0 to listNeighbors.length() do

24. if(distance(list.get(j),listNeighbors.get(k))<c) then

25. contacts.add(list.get(j), listNeighbors.get(k));

122

26. end

27. end

28. end

The CCA algorithm consists of two loops. During the first one (lines 6-14) every

point P from the input list is processed: coordinates (lP,mP,nP) in the
 space of

the point are returned (line 8), the point is added to the AtomsPositions array to the

list located at the position indexed by (lP,mP,nP) (line 9). The auxiliary mapping

array is necessary to obtain pointers which are indices to freely iterate over the

AtomsPositions array. Then the coordinates of every point neighboring to the

currently processed atom's point are calculated (line 11). Every point in the

has 26 neighboring points so the next for loop iterate 26 times (lines 12-13). In the

loop the currently processed atom's point is added to the every PossibleNeighbors

array to the lists corresponding to every neighbor (line 13). In the second loop

(lines 15-27) every list for the AtomsPositions array is processed (lines 17-18). The

distance between two atoms which are added to the same list is smaller than the c

value, because when two atoms are on the same list in AtomsPositions array it

means that they are in the same point in the
 space, which is equivalent to the

fact that in the space they are located in the same cube with the edge size of c -

1. So, every pair of atoms from AtomsPositions array is added to the final list of

pairs in contact (lines 20-21). For every atomic position i in the PossibleNeighbors

array at position i a list of atoms which can possibly be in contact with the

atom/atoms located at position i is saved. So the distance between the currently

processed atom and every atom from appropriate PossibleNeighbors array element

is calculated. If the distance is smaller than c atoms are in contact and they are

added to the final contacts list (lines 22-26).

The calculation complexity of the first loop is 26n = O(n). The estimation of

complexity of the second loop is rather complicated. The loops from lines 15 and

17 will execute in total n times because during the execution of those loops every

atom will be processed, and it will be processed only once. The total length of all

lists from the AtomsPositions array is equal n. So, the time complexity of the

second loop will be: n * apmax + n * pnmax, where the apmax is the length of the

longest list from the AtomsPositions array and the pnmax is the length of the longest

list from the PossibleNeighbors array. Of course, in general these lists may contain

n elements at most, so then the complexity will be O(n
2
). But the algorithm is

designed to calculate contacts across real molecular structures, and such situations

are not possible. Atoms in real systems are scattered in numerous points in the

reduced space. Furthermore, when the c is between 6 Å and 12 Å large it is not

realistic that all molecule's atoms would be in the same point in the
 space.

Otherwise these atoms would all occupy a cube with the edge smaller than 12 Å in

 space. Such a situation cannot occur in nature. In reality Van der Waals forces

will not allow to have such small distances between atoms. So, the length of the

longest AtomsPositions' and PossibleNeighbors' lists will be equal to a rather small

constant v and the complexity of the second loop will be O(vn).

123

The CON algorithm

Having a method to calculate contacts between amino acids, the CON algorithm

can be introduced. The algorithm follows the general idea presented above in the

Overview. In the CON algorithm PN places represent unique pairs of CA atoms

being in contact. Every place corresponds to some real contact. All contacts are

somehow represented in places, but multiple MD contacts between atoms from the

same pair have only one the same place in the PN net. Dynamics in a real space

results in changes of contacts. These changes are reflected in transitions.

Algorithm 13. The contact algorithm CON

Input: Value c which describes the maximum distance between CA atom to

recognize pair of amino acids as a pair in contact. The set of files with MD

trajectories.

Output: MD Petri net described by lists of places, transitions and arcs. Optionally -

files with descriptions of places and transitions names.

Steps:

1. begin

2. for every PDB file:

3. begin

4. frame := readFrame();

5. if(frame.getNr() = 1) then

6. oldContacts := NULL;

7. else

8. oldContacts := contacts;

9. contacts := findContacts(frame);

10. if(NOT transitions.contains(oldContacts, contacts) then

11. transition := createTransition();

12. else

13. transition := transitions.get(oldContacts, contacts);

14. for i := 0 to contacts.length() do

15. begin

16. pair := contacts.get(i);

17. if(NOT places.contains(pair)) then

18. place := createPlace(pair);

19. else

20. place := places.get(pair);

21. createArc(transition, arc);

22. end

23. createArcs(oldContacts, transition);

24. end

25. end

In the algorithm every frame from every MD trajectory file is read (lines 2-4). At

the beginning of every main loop the set of contacts from the previous frame is

remembered in oldContacts variable (line 8) - of course for the first frame the

previous set of contacts cannot exist and the oldContacts will be NULL (line 6).

124

After that the contacts from the current frames are calculated (line 9). It can be

done by any algorithm, for example by Algorithm 12. It is checked if the transition

corresponding to the current frame already exists. It has to have a set of input

places equal the set of contacts from the oldContacts and a set of output places

equals contacts from the current frame. If it does not exist (line 10) it is created.

Then every pair of CA atoms in contact is processed (loop in lines 14-22). If the

corresponding place does not exist it is created (line 17-18). The place representing

the pair in contact is connected as the output place to the transition corresponding

to the current frame (line 21). At the end every place assigned to the previous

contacts from the oldContacts is connected to the transition as the input places (line

23).

The complexity of the CON algorithm depends on the main loop, which reads input

data. It will be executed for every frame from each MD file. This will be multiplied

by the length of the list of pairs in contact. This length cannot be predicted and it

depends on the molecule. However, one can expect that it will be greater than the

number of CA atoms because every standard amino acid is in a contact with at least

two neighboring amino acids.

The CON algorithm will lead to PN representing the evolution of contacts present

in the molecule during the simulation. It worth noting that many versions of CON

inspired algorithms can be designed to represent better relationships between

amino acids, for example, an algorithm in which only new contacts are presented.

Other possible modification of the algorithm might be based on omission of

neighboring amino acids. Such a simplified CON algorithm can be very useful and

might present the time evolution of contacts in a simpler way, moreover, the main

idea and the scheme would be the same as in Algorithm 13. Sometimes even a

simple changing of the internal procedure which calculates contacts should be

enough to obtain a new, useful variant of the CON algorithm developed here.

5.3 Simulation of the MD Petri nets

The algorithms described above can generate only basic, classical Petri nets. In the

present section the modifications of algorithms required to generate extended types

of PN are described (5.3.1). Appropriate algorithms for simulations of those

extended PN are also presented, as well as a few examples of the simulations. A

simulation means here that the distribution of tokens within PN may be monitored,

and basing on it, new data on real molecular systems represented by PN are

gathered. The marking obtained during such simulations can be used to generate a

PDB file – the algorithm of PDB file creation and a number of examples are also

presented. The extended algorithms have been applied in simulations of real MD

Petri nets. The results, sometimes unexpected, are critically analyzed and possible

improvements and lines of developments are suggested.

125

5.3.1 Generation of the extended types of PNs

Every algorithm described in section 5.2 (OPOAv1, OPOAv2, OPOC, CON) can

be used to generate marked Petri nets. However, to create timed, priority based and

random priority based PN additional information is necessary. In the paragraph

5.1.2 it was required that priorities should be associated with the number of

transitions occurrences. This condition will guarantee correct representation of the

relations between conformations. So, every time when a transition occurs during

the PN generation, its frequency (i.e. total number of occurrences) will be

increased.

In timed Petri nets a representation of time assigned to transitions is required.

Luckily, time is present in the MD trajectories as frame numbers, so a natural

choice is to use those numbers as the time and assign them to transitions. However,

transitions may occur in many frames, especially when a few MD trajectory files

can be used and in different files one transition may be present in different frames.

So, it should be chosen which time will be used. Petri nets with time are introduced

mostly to avoid an unnatural protein unfolding during the SMD simulations. Time

in this case is some kind of a guard which secures roughly the correct order of

events. The exact order of events is less desirable because the MD Petri net

simulation is performed to obtain new features and observe new phenomena during

the simulation. In order to ensure such requirements, the time when transitions

occur for the first time will be associated to them.

Calculation of time and frequency

In simulations the time and the number of occurrences of transitions (frequency,

later designed by NOC) have to be calculated. In both cases the necessary

modifications of the algorithms will be insignificant. They are presented below. For

the OPOA algorithms only the first variant is shown, because exactly the same

operations have to be performed for the second variant. The main difference

between the variants occurs after the basic generation of the PN and it will not be

affected by calculation of times and frequencies. There is only one important

difference. In OPOAv1 places are distinguishable by numbers of CA atoms and

coordinates in the
 space, in OPOAv2 only coordinates differentiate the places.

Therefore, the input and output places of transitions will be different in v1 and v2

but it will not impact directly the issue discussed in this paragraph.

Algorithm 14. OPOAv1 with time and NOC calculation.

Input: PDB files, which contain MD trajectories of the same molecule. Parameter k

for
 , which describes the resolution of the grid dividing the space.

Output: MD Petri net described by lists of places, transitions and arcs. Files with

description of places and transitions names. Information assigned to transitions

about time and frequency.

126

Steps:

1. begin

2. times := NULL;

3. frequencies := NULL;

4. for every PDB file:

5. begin

6. frame := readFrame();

7. for every CA atom in frame:

8. if position(CA, frame) <> position(CA, previousFrame) then

9. begin

10. prevPlace := places.get(CA, position(CA, previousFrame));

11. if(NOT places.contains(CA, position(CA, frame)) then

12. begin

13. newPlace := createPlace(CA, position(CA, frame));

14. places.add(newPlace);

15. transition := createTransition(CA);

16. times[transition] := frame.getNr();

17. frequencies[transition] := 1;

18. transitions.add(transition);

19. createArcs(newPlace, transition, prevPlace, CA);

20. end

21. else

22. begin

23. currentPlace := places.get(CA, position(CA, frame));

24. if(NOT transitions.contains(prevPlace,currentPlace,CA) then

25. begin

26. transition := createTransition(CA);

27. times[transition] := frame.getNr();

28. frequencies[transition] := 1;

29. transitions.add(transition);

30. createArcs(currentPlace, transition, prevPlace, CA);

31. end

32. else

33. begin

34. transition:=transitions.get(currentPlace, prevPlace, CA);

35. time := frame.getNr();

36. if(time < times[transition]) then

37. times[transition] := time;

38. frequencies[transition] := frequencies[transition] + 1;

39. end

40. end

41. end

42. end

43. end

Lines corresponding to time calculation are marked in red, lines of the variant

corresponding to calculations of NOC parameter (i.e. frequency) are presented in

blue. For every new transition the time is set as the number of current frame and

the frequency is set to one. When a transition occurs once again the frequency is

increased. Simultaneously, the number of the current frame is checked. If it is

smaller than the time currently assigned to the transition, then new time is set to

this smaller number. The same modifications are added to other two algorithms:

Algorithm 15 and Algorithm 16.

127

Algorithm 15. One Place One Conformation algorithm with time and NOC

calculation.

Input: PDB files which contain MD trajectories, parameter threshold, which is

necessary to distinguish two conformations.

Output: MD Petri net described by lists of places, transitions and arcs. Files with

descriptions of places and transitions names. Information assigned to transitions

about time and frequency.

Steps:

1. begin

2. times := NULL;

3. frequencies := NULL;

4. for every PDB file:

5. begin

6. frame := readFrame();

7. prevPlace := places.get(previousFrame);

8. if(NOT places.find(frame, threshold)) then

9. begin

10. place := createPlace(frame);

11. places.add(place);

12. transition := createTransition(prevPlace, place);

13. times[transition] := frame.getNr();

14. frequencies[transition] := 1;

15. transitions.add(transition);

16. createArcs(prevPlace, transition, place);

17. end

18. else

19. begin

20. place := places.get(frame, threshold);

21. if(NOT transitions.contains(prevPlace, place) then

22. begin

23. transition := createTransition(prevPlace, place);

24. times[transition] := frame.getNr();

25. frequencies[transition] := 1;

26. transitions.add(transition);

27. createArcs(prevPlace, transition, place);

28. end

29. else

30. begin

31. transition := transitions.get(prevPlace, place);

32. time := frame.getNr();

33. if(time < times[transition]) then

34. times[transition] := time;

35. frequencies[transition] := frequencies[transition] + 1;

36. end

37. end

38. end

39. end

128

Algorithm 16. The CON algorithm with time and NOC calculation.

Input: Value c which describes the maximum distance between CA atoms used to

recognize a pair of the amino acids as a pair in contact. The set of files with MD

trajectory.

Output: MD Petri net described by lists of places, transitions and arcs. Files with

description of places and transitions names. Information assigned to transitions

about time and frequency.

Steps:

1. begin

2. times := NULL;

3. frequencies := NULL;

4. for every PDB file:

5. begin

6. frame := readFrame();

7. if(frame.getNr() = 1) then

8. oldContacts := NULL;

9. else

10. oldContacts := contacts;

11. contacts := findContacts(frame);

12. if(NOT transitions.contains(oldContacts, contacts) then

13. begin

14. transition := createTransition();

15. times[transition] := frame.getNr();

16. frequencies[transition] := 1;

17. end;

18. else

19. begin

20. transition := transitions.get(oldContacts, contacts);

21. time := frame.getNr();

22. if(time < times[transition]) then

23. times[transition] := time;

24. frequencies[transition] := frequencies[transition]+ 1;

25. end;

26. for i := 0 to contacts.length() do

27. begin

28. pair := contacts.get(i);

29. if(NOT places.contains(pair)) then

30. place := createPlace(pair);

31. else

32. place := places.get(pair);

33. createArc(transition, arc);

34. end

35. createArcs(oldContacts, transition);

36. end

37. end

129

Towards MD PN applications

When the time and NOC of every transition is calculated it can be used to generate

extended types of Petri nets. Once they are stored in files they can also be used for

other purposes. In particular, new information of molecular system properties may

be obtained.

In order to generate timed Petri nets, the firing time function f for every transition

is necessary (other elements of the PN are the same as in marked Petri nets, see

Def. 20). The simplest approach is to adopt the value of time calculated during the

PN generation as firing time. The same refers to priority-based and random

priority-based Petri nets - here the value of the priority function prio is necessary

(see Def. 24 and Def. 28.). The frequency NOC calculated for every transition will

be used to define this function.

It is worth noting that calculations of transitions’ times and frequencies are costless

in terms of computational complexity of the modified algorithm. This calculation

might be performed during normal Petri net generation. One may calculate

frequencies for places as well. It will be performed in the same manner like

described previously for transitions. An example of an OPOC algorithm capable of

NOC for places calculations is shown below. Here the new data are obtained

almost without additional costs. The same modifications may be applied to OPOA

algorithms and the CON algorithm.

Algorithm 17. One Place One Conformation algorithm with places frequency

calculation.

Input: PDB files which contain MD trajectories, a parameter threshold necessary to

distinguish two conformations.

Output: MD Petri net described by lists of places, transitions and arcs. Files with

description of places and transitions names. Information about places frequency.

Steps:

1. begin

2. frequenciesP := NULL;

3. for every PDB file:

4. begin

5. frame := readFrame();

6. prevPlace := places.get(previousFrame);

7. if(NOT places.find(frame, threshold)) then

8. begin

9. place := createPlace(frame);

10. frequenciesP[place] := 1;

11. places.add(place);

12. transition := createTransition(prevPlace, place);

13. transitions.add(transition);

14. createArcs(prevPlace, transition, place);

130

15. end

16. else

17. begin

18. place := places.get(frame, threshold);

19. frequenciesP[place] := frequenciesP[place] + 1;

20. if(NOT transitions.contains(prevPlace, place) then

21. begin

22. transition := createTransition(prevPlace, place);

23. transitions.add(transition);

24. createArcs(prevPlace, transition, place);

25. end

26. end

27. end

As mentioned above, the analysis of places and transitions frequencies gives

supplementary information about the MD trajectories and the molecules. Firstly, in

the OPOC algorithm one may get the preferred conformations and conformation

changes “for free”. Specific changes in structures can be easily spotted. Similarly,

in the OPOA algorithm the preferred positions and movements of each amino acids

can be easily found. In the CON algorithm the most persistent contacts can be

identified. NOC values may be collected into vectors and such objects calculated

for separate MD trajectories may be compared. For example, by a simple

subtraction changes between trajectories will be immediately obtained and

registered. This possibility is especially useful when the MD trajectories were

performed in different conditions. The role of those conditions on dynamical

phenomena may be quickly determined.

MD trajectories are usually calculated by using different force fields. For the

algorithms presented here it does not matter. A simple parser will solve this

problem. Interestingly, vectors of NOC (frequencies) for places and/or transitions

for different force fields can be compared and this would give critical information

about specific aspects of force fields applied in a study. I believe that NOC analysis

of places and transitions may have many more applications, here only a few

examples have been mentioned.

5.3.2 Simulation of generated PN

Four algorithms of PN generation were presented, every algorithm can be modified

to create marked PN, timed PN, priority-based PN and random priority-based PN.

It is quite a big number of combinations, however, when the PN is created the basic

simulation algorithm will be the same for all these algorithms. Only a few

additional, depending on the type of an algorithm, operations are necessary, for

example, to determine the number of places and transitions or the number of places

marked in the M0 marking. In this section, algorithms for MD PN simulations are

presented. As an input for a simulation algorithm the network files created during

the PN generation step (see Fig. 42) are used. PN once created may be used for

simulations many times. In my implementation all necessary information is

included in those files, so a user only has to set files directory and does not have to

131

worry about which PN generation algorithm had been used. The output of the

simulation algorithm will be a marking stored in the file.

The MD classical Petri nets, created by any of the generation algorithms, can be

simulated by Algorithm 2. Only a few additional elements are necessary, like the

input and output matrices. The generation of the matrices is very simple, so this

algorithm will be omitted. Also MD marked PN may be directly simulated by

CUDA Algorithm 6. For other types of the Petri nets the CUDA algorithm should

be modified. In particular, the firing rule should be changed but the main idea is the

same.

Simulations of timed PN

The simulation of timed PN requires: (i) basic information about the list of places,

transitions and arcs, (ii) data on transitions times. Information (ii) can be generated

by Algorithm 14, Algorithm 15 or Algorithm 16. In my implementation this

information is stored in dedicated files. The transitions times may be taken from

other sources as well. The data on times will be used to set a firing time assigned

by the f firing time function (Def. 20). In the simulation algorithm it is assumed

that the f function is already defined. The simulation is run following the

description given in Def. 23 and the formula (1.7).

Algorithm 18. The simulation algorithm of timed Petri net.

Input: List of places, transitions and arcs (may be located in files). List of firing

times associated to transitions. Parameter steps describing how many steps of

simulations is to be executed.

Output: The marking M after 'steps' steps of the simulation.

Steps:

1. begin

2. oldEnabled := NULL; enabled := NULL; times := NULL;

3. previousTime := 0; previousNr := -1;

4. for i := 0 to steps do

5. begin

6. enabled := findEnabledTransitions();

7. for j := 0 to enabled.length() do

8. begin

9. nr := enabled.get(j);

10. if((NOT oldEnabled.contains(nr)) OR (previousNr = j)) then

11. times[nr] := firingTimes[nr];

12. else

13. times[nr] := times[nr] - previousTime;

14. end

15. fireNr := findMin(enables, times);

16. previousNr := fireNr;

17. previousTime := times[fireNr];

18. oldEnabled := enabled;

132

19. fire(fireNr);

20. end

21. writeMarking();

22. end

The main part of the algorithm is the loop in lines 4-20. Before the loop variables

are initialized. Enabled is the list of transitions enabled in a current step,

oldEnabled is a saved list of the enabled transitions from the previous loop,

previousNr is the number of previously fired transition and previusTime is the

value of that transition’s clock. Those two last values are not necessary and may be

obtained by using other variables, however, to clarity the algorithm they were

highlighted. The list times contains the clock states for enabled transitions. In fact,

it may also contain “historical” clock states of transitions that are not enabled

currently, however only the values of currently enabled transitions will be used. In

every step a new list of the enabled transitions is found (line 6). For every enabled

transition its clock state has to be determined - for newly enabled or previously

fired it is equal to the value of the firing time function (lines 10-11). For those

which were enabled in the previous step, its value of the clock function is

decreased by the clock state of the previously fired transition (lines 12-13). After

that the transition with the smallest clock state is found (line 15) and fired (line 19).

In the next step, the number of this transition will be the number of transition

previously fired – previousNr, and its time will be previousTime (lines 16-17). The

current list of the enabled transitions is saved in oldEnabled (line 18). At the end,

the marking is written to a file.

The complexity of Algorithm 18 equals to the number of steps multiplied by the

number of transitions multiplied by the number of places. It is hard to reduce this

number. At first glance, it seems that the complexity can be reduced, however, the

list of all enabled transitions may contain every transition. Finding all enabled

transitions may require checking all transitions. When the list of the enabled

transitions is created for the first time, it is necessary to verify every transition. In

the next step only those transitions which have common places with the transition

already fired may change their state, so only those have to be checked. This might

reduce the complexity. However, in some PNs transitions may have many

connections, and eventually every transition must be inspected. During such

checking which transitions are enabled or during the firing, a loop over all places is

necessary. Thus every place has to be processed and the complexity remains high.

The performed tests have shown that timed Petri nets, as described in paragraph

1.4.4, are not suitable in my study for PN generated by the OPOA algorithms –

more details in paragraph 5.2.1. This problem had not been predicted earlier and it

was revealed during the tests. However, as it was said above, the time control of a

transitions firing is necessary in simulations of MD PNs generated from SMD

simulations. Therefore, a new type of PN with time was invented and introduced

here. Those new PNs are called the guard time Petri nets.

133

Def. 44. A guard time Petri net is a seven-tuple: (P, T, F, W, M0, f, V), where P, T,

F, W, M0 are like in Def. 3, f: T → is a firing time function, which assigns a

positive real number, called firing time, to each transition, and ∈ is a clock

state.

In the guard time PNs we are focused on a preservation of the general sequence of

the transitions firings. Transitions with the highest value of the time function

should not be fired before transitions with a small value of the time function. The

clock state is some type of a guard in this type of PN. Transitions with a value of

the time function higher than the current clock state cannot fire. This control is not

as restricted as in timed Petri nets, transitions with values of the time function

smaller than the current clock state can fire freely in random order. The clock state

must be increased during the simulation, however I do not define how and the rate

of the increase may be set arbitrarily, depending on the studied network.

Def. 45. The transition t is firable in a guard time Petri net P = (P, T, F, W, M0, f, V)

if ∈ .

The following definitions Def. 44 and Def. 45 of the simulation algorithm of guard

time PNs will be very similar to one presented for classical, marked PNs

(Algorithm 1, Algorithm 2).

Algorithm 19. The simulation algorithm of guard time Petri nets.

Input: List of places, transitions and arcs (may be located in files). List of firing

times associated to transitions. Parameter steps describing how many steps of

simulations is to be executed.

Output: The marking M after 'steps' steps of the simulation.

Steps:

1. begin
2. clockState := 0;

3. i := 0;

4. while(i < steps)

5. begin

6. t := findEnabledTransitions();

7. if(times[t] < clockState) then

8. begin

9. fire(t);

10. i := i + 1;

11. increase(clockState);

12. end

13. end

14. end

The main part of the Algorithm 19 is a while loop (lines 4-13). In this loop one of

the enabled transitions is found (line 6). Then, if its value of the time function is

smaller than the clock state (line 7), the transition fires (line 9), the number of steps

134

increases (line 10) and the clock state may be also increased (line 11). In my

opinion, it is not recommended that the clock state is the same as the number of a

current step of the simulation. It should be more similar to a number of frames

from an MD trajectory used to generate the PN, so to the real time. Therefore, in

my implementation of Algorithm 19 the clock state increases every N steps of the

simulation, when N is the number of CA atoms in the studied protein. If the value

of the clock function of the selected transition (line 7) is bigger than the current

clock state, a next, enabled transition is found (again line 6).

The time complexity of the algorithm will be the same as Algorithm 1. The main

loop will be executed steps times. Finding the enabled transition with a proper

value of the time function may require checking of every transition, so its

complexity will be n * m, when n is the number of places and m is the number of

transitions.

Using Algorithm 19 simulations of PN generated from SMD simulations can be

performed and proper order of events will be protected.

Simulation of priority-based PN

For a simulation of priority-based PN the information about transitions priorities is

required. It may be obtained, for example, from Algorithm 14, Algorithm 15,

Algorithm 16 or in the other way. Data can be also provided by an external source.

As it was mentioned above, in my implementation priorities are equal to the

numbers showing how many times an event represented by transitions occurs in

MD trajectories. To prevent totally deterministic simulations of the PN, the Def. 27

is used to determine which transition should be fired. The following algorithm is an

exact implementation of this definition.

Algorithm 20. The simulation algorithm of a priority-based Petri net.

Input: List of places, transitions and arcs (may be located in files). List of priorities

associated to transitions. Value steps describing how many steps of simulations

should be executed.

Output: The marking M after 'steps' steps of a simulation.

Steps:

1. begin

2. for i := 0 to steps do

3. begin

4. enabled := findEnabledTransitions();

5. fireNr := enabled.getAny();

6. ConfSet := findConflicts(fireNr);

7. maxNr := findMax(ConfSet, priorities);

8. if(fireNr <> maxNr) then

9. fireNr := maxNr;

135

10. fire(fireNr);

11. end

12. writeMarking();

13. end

The algorithm is very short and rather simple. Additional variables to mark some

objects are not necessary, so the algorithm starts with a loop which will be

executed steps times. In every step, a list of enabled transitions is found and one

transition from the list is chosen (line 5). The method getAny() was used in the

pseudo code to distinguish it from the classical get() method. The getAny() method

may be implemented in any way, for example, it may return one element randomly,

or calculated according to a pre-defined formula. It is not recommended to always

return to the first transition, because the priority-based PN already has a problem

with the deterministic sequence of transitions firings. Our goal is to obtain

simulations as non-deterministic as possible. If now fireNr transition is fired

without any additional operations, a simulation of the marked Petri net will be

obtained. According to Def. 26, the conflict set of fireNr transition is found (line 6)

and the transition with the highest priority from the set is found as well. If this

transition with the highest priority is different from that fireNr transition, fireNr

will be replaced by one with the highest priority (lines 8-9) and it will be fired (line

10).

The complexity of the algorithm is O(steps * m * n), where m is the number of

transitions and n is the number of places. The main loop will be executed steps

times. Inside the loop findEnabledTransitions(), findConflicts() and findMax(),

depending on the situation, may be executed m times. Even when some smart

algorithm may be used to reduce the complexity of the mentioned methods for

some “evil” Petri nets which can be generated, for example, by the CON algorithm,

the complexity will be still at least O(m). The same situation is with places - in

findEnables(), findConflicts() or fire() loops over all places may be unavoidable.

In this way, using Algorithm 20, one can perform simulations of priority-based

PN.

Simulation of random priority-based Petri nets

In random priority-based Petri nets information about priorities is necessary. The

only difference with respect to previously discussed nets is that now an additional

random variable X will be used. The simulation is performed following Def. 32.

Algorithm 21. The simulation algorithm of random priority-based Petri net

Input: List of places, transitions and arcs (may be located in files). List of priorities

associated to transitions. Value steps which describes how many steps of

simulations should be executed.

Output: The marking M after 'steps' steps of simulation.

136

Steps:

1. begin

2. for i := 0 to steps do

3. begin

4. enabled := findEnabledTransitions();

5. fireNr := enabled.getAny();

6. ConfSet := findConflicts(fireNr);

7. firePrio := X.getNumber();

8. fireNr := returnTransitonWithPriority(firePrio, ConfSet);

9. fire(fireNr);

10. end

11. writeMarking();

12. end

The beginning of the algorithm is the same as in Algorithm 20, till line 7. Here the

value returned by the random variable X is obtained and the transition whose

priority matches this value is found (line 8) according to Def. 32. In the simplest

approach, the method returnTransitonWithPriority() can be exact implementation

of this definition, but some modifications to avoid dividing may be added as well.

The transition whose priority was identified by a value returned by X is fired in

every step (line 9). At the end the marking is written.

The complexity of Algorithm 21 is the same as in Algorithm 20. Operations in the

new method returnTransitonWithPriority() will be executed at most NCT times,

where NCT is the largest size of a conflict-set, the NCT number is same as in

findMax() from the previous algorithm, so the complexity of Algorithm 21 will not

be changed with respect to Algorithm 20.

5.3.3 Generation of PDB file

The Protein Data Bank (PDB) file format [149], often used in this thesis, is a text

file format developed by the worldwide famous data base storing structural data on

proteins and nucleic acids [110]. A file in this format contains the information

about coordinates of atoms, bonds, secondary structure, annotations, details about

the data collection and structure solution, and bibliographic citations. However, the

most important is a part related to the description of the structure, where all atoms

are listed with given number, chain, coordinates in space and other data. The

file in the PDB format may contain just one structure or a list of numerous

molecular structures (for example a trajectory). The PDB data format is a type of

the standard, every software designed to work with structures of proteins can

read/write such files. One should note that, from time to time, this PDB standard is

updated.

For biological community it is desirable to have data presented in the PDB format.

Therefore, the last step during Petri nets analysis of a MD trajectory should be a

generation of a PDB file. In this easily readable file molecules’ structures after the

MD Petri net simulation are stored. It can be done for the OPOA and OPOC

137

algorithms because those algorithms operate on coordinates. For the CON

algorithm, due to its very nature, such a format is not available. Having PN results

in PDB format, one may compare a MD trajectory and structures with the

corresponding results obtained from the MD Petri nets simulations. This is of great

importance for practical applications of the methodology developed here.

The PDB file generation is straightforward: we need to find and translate the

information about coordinates associated with marked places into a structure file.

This task is trivial in the OPOC algorithm, since here every place has the data on

the coordinates of every CA atom. The generation of the PDB file from a PN

created by the OPOAv1 algorithm is a little bit more involving. In this case, an

additional operation has to be performed: we need to find the localizations of every

CA atom which is described by a marked place. For every localized atom a new

line can be added to a PDB file, which will contain the number of that CA atom

and its coordinates linked to the place. In the OPOAv1 algorithm the information

about the CA atoms are indeed linked in some way to places, so this operation

should be quite easy.

The situation is different for the OPOAv2 algorithm. A unique feature of this

algorithm is that one place represents only one point in the
 space without

association to any specific CA atom. So, we only have a marking describing which

places are marked, but we cannot determine which particular CA atom is in

concerned place. This problem has to be somehow solved during the OPOAv2

simulation. An additional data structure, for example a list, should be added and

this structure might store information where in PN all CA atoms are located in the

current step. An example of such a modification is presented below for a priority-

based PN and analogous changes can be added to other simulation algorithms

presented so far. Once this information is available, the generation process of the

PDB file is simple. It is only one loop over the marking adding data represented by

every marked place to one row in the PDB file. This file will store in this common

format the results of MD simulation of PN and it may be used for further studies.

Algorithm 22. The simulation algorithm of priority-based Petri net with CA atom

localization memory.

Input: List of places, transitions and arcs (may be located in files). List of priorities

associated to transitions. Value steps which describes how many steps of

simulations should be executed.

Output: The marking M after 'steps' steps of simulation and localization list with

information in which place every CA atom is located.

Steps:

1. begin

2. localization := NULL;

3. for i = 0 to steps do

138

4. begin

5. enabled := findEnabledTransitions();

6. fireNr := enabled.getAny();

7. ConfSet := findConflicts(fireNr);

8. maxNr := findMax(ConfSet, priorities);

9. if(fireNr <> maxNr) then

10. fireNr := maxNr;

11. fire(fireNr);

12. atom := getAtom(fireNr);

13. place := getOutputPlace(fireNr);

14. localization[atom] := place;

15. end

16. writeMarking();

17. end

The algorithm is very close to Algorithm 20, the new lines are marked in blue. The

method getAtom() is the same as in Algorithm 8 - it returns the number of CA

atom of ATS to which a transition fireNr belongs. The method getOutputPlace()

returns the number of a place to which the transition fireNr moves a token. Both

information should be obtained from the description of the transition in a constant

time, so the complexity of this algorithm will be the same as that of the Algorithm

20. When the atom number and the output place are obtained, they are stored in

localization list (line 14). Since during every firing the data in the localization list

are updated, they are up-to-date and when the simulation is done this list contains

the information necessary for the PDB file construction.

There are also minor technical issues. In the procedure described above one

obtains: the number of the CA atom, the type of this atom (of course it is CA) and

its coordinates in the space. Since coarse-grain representation of amino acids is

used, protein residues will be represented by one CA atom only. Thus the number

of the amino acid considered will be the same as the number of its CA atom.

However, in the classical PDB file also other data are usually necessary, for

example, the type of the amino acid or the chain to which an amino acid belongs.

The chain of every atom may be set to identical arbitrary value or imported from

the MD trajectory file. Other information required by the PDB format can be set

freely by a user, such flexibility will not affect significance of MD PN simulations.

This is in particularly true for lines "CONNECT", where the original molecular

topology may be added by a user or not. In the test cases consecutive CA atoms

were connected in the created PDB files.

5.3.4 Examples

I have performed numerous PN simulations (>100). Some of them are presented

here to show utility of those methods. The main feature of the generated MD Petri

nets is that they may gather data from many MD simulations, and the generated PN

trajectories reflect the properties from several different MD simulations combined

into one net.

139

Fig. 37. Places present in a trajectory obtained from the simulation of a random-

priority Petri net generated from two MD simulations of the TTR mutant V30M.

The places common for both simulations are highlighted in blue, the places present

in the first simulation only are in red, and those present in the second one are in

cyan.

In Fig. 37 a sequence of places from a simulation of MD PN is presented. The Petri

net was generated from two MD simulations of TTR mutant V30M using the

OPOC algorithm with the threshold of 1.4 Å. The PN was treated as a random-

priority Petri net. The places common for both MD simulations or observed only in

one of them are denoted by colors (red, cyan, blue). One can see that in the PN

trajectory the molecule changes its conformations between those observed only in

the first or only in the second MD simulation. Clearly, such a trajectory was not

directly obtained from the MD calculations. However, changes between the

conformations revealed in the PN simulation are highly probable because always

when the molecule transforms from a conformation encountered in one MD

simulation to a conformation characteristic in another one, it goes via a

conformation common for both MD simulations. In the case studied those changes

between conformations from different MD simulations were observed exactly

twice in the PN simulation.

140

When the MD Petri net is generated from a bigger set of MD trajectories, during

the simulation changes between conformations derived from distinct MD

simulations may be observed even more often than in the previous example. Such a

situation is presented in Fig. 38. Here the MD Petri net has been generated by

OPOC from 20 MD simulations of MCP-1, all were 2 ns long. The threshold was

1.5 Å. During this simulation the PN was treated as a regular, marked Petri net. The

generated PN trajectory is a mix of conformations from different MD simulations.

However, as I mentioned above, such conformational transformations are possible

via conformations common in a few MD simulations. Those changes were indeed

observed in the performed MD simulations.

The last example is a sequence of places generated from a simulation of MD PN

created by the OPOC algorithm. It refers to SMD simulations. Fourteen SMD

simulations of the forced dissociation of MCP-1 from its antibody, all 2 ns long,

were used to generate this comprehensive MD Petri net. The threshold was 1.3 Å.

The Petri net was simulated as a timed Petri net. The PN trajectory converted to a

PDB file (see next section) looks very similar to individual trajectories generated

by the SMD simulations. In Fig. 39 the obtained sequence of places is shown. It is

a fragment of a longer simulation. In the last part of the Petri net simulation (not

shown) the molecule switched between two places, corresponding to conformations

of the MCP-1 being fully separated from the antibody. Despite the fact that in SMD

simulations conformations typically are not very similar, the token describing a

current conformation has appeared in common places in many simulations.

Simulations of PN generated by OPOAv1 and OPOAv2 were performed as well.

The obtained PN trajectories were, similarly as for the OPOC algorithm case,

combinations of the trajectories collected from MD simulations. Due to a huge

number of places, such PN simulations have to be much longer than those

performed in OPOC, and their graphical presentation as a sequence of

places/transitions is not possible. However, they were analyzed as PBD files

generated using the method described in the paragraph 5.3.3. Several interesting

examples are shown below.

141

Fig. 38. Sequence of places observed in a simulation of PN generated from 20 MD

simulations of MCP-1. The beginning of the sequence is in the first column, then it

is continued in the second column and the end of the sequence is in the third

column. Next to the places are the denotations of the MD simulation files, in which

a conformation described by the place was observed. For example, the place p200

was observed only in the MD simulation s18, whereas the place p34 in simulations

s20, s18 and s19.

142

Fig. 39. The sequence of places obtained from the simulation of MD PN generated

from the 14 SMD trajectories for MCP-1 chemokine.

For two MD simulations of MCP-1, both 2 ns long, an MD Petri net was generated

by the OPOAv1 algorithm. The size of the grid used in discretization was 1. Then,

one thousands steps simulation was performed and from the obtained markings the

PDB file has been generated. The file contains one thousand frames, which

describe movements of the protein in the space. During the simulation transitions

from different MD trajectory files alternately occurred. For example, the first

transitions to be fired in the PN simulations were t14440 and t14431 from the 2nd

MD simulation, the next transition was t46 which occurred in both simulations,

after that t2957 from the first MD simulation, and t14610 from the second

simulation fired. This sequence of events led to a new PN trajectory, which

obviously is a combination of parts based on the underlying MD trajectories. A

selected screen shot from the PN trajectory transformed into the PDB file

compared with a structure from the MD trajectory is presented in Fig. 40.

143

Fig. 40. An example of a structure from the PN (red) and MD (blue) simulations.

The PN structure was generated using OPOAv1 algorithm with size of the grid

points of 1 Å so the structure has coarse grained representation.

Simulations of MD PNs generated from SMD simulations, using OPOAv1 and

OPOAv2, were also performed. Different types of Petri nets were checked, mostly

timed PN, guard time PN and classical, marked PN. Contrary to the expectations,

timed Petri nets are not suitable for the SMD simulations. The generated PN

trajectories show that in the PN simulation the protein stays all the time in a few

starting conformations. The performed analyses of this situation show that this is

caused by some type of transitions starvation. Some of the transitions, which occur

at the beginnings of the SMD simulations, have very small firing times, and they

fire alternately. If they create a cycle, other transitions will not have any

opportunity to fire. Such a situation can be observed in MD PN generated for a

SMD unfolding simulation of MPC-1 using OPOAv1 with the size of the points

grid equal to 2. The simulation of the PN has two thousands of steps. In this

simulation, for example, only transitions t195, t85 and t167 from ATS of amino

acid 51 were firing. The values of the time function of those transitions are smaller

than 5. The same was for other amino acids and other transitions. In the guard time

PNs such transitions starvation is not present. The performed tests have shown that

the guard time Petri nets are the most sufficient for simulations based on SMD

trajectories. Anomalies are smaller than in classical, marked PN, and simulations

progress normally, in contrast to timed PNs.

The performed tests did not show glaring anomalies in PN simulations of classical

Petri nets dynamics if these PNs were generated from the SMD simulations. The

tests were performed for dissociation of a small protein MCP-1 from its antibody,

as well as for artificial unfolding of this chemokine. I have compared the

trajectories from all-atom SMD (“classical” SMD simulations, NAMD code) and

novel, PN generated trajectories (OPOA algorithms, new codes). The general

scenarios of both phenomena were the same in both methods of simulations. Some

irregularities were observed in the PN based trajectory, especially in the initial

phase of the unfolding, but the sequence of structural event was conserved.

144

Fig. 41. A comparison of structures from the all-atom SMD (blue) and PN

simulations (red). Petri net was obtained by OPOAv1 and the simulation was

performed within a classical PN formalism.

The quality of structures from PN based SMD simulations may be estimated basing

on Fig. 41. This, of course, does not mean that all-atom and PN based SMD will

always give such a good agreement, but the examples illustrate the potential of the

PN approach developed here. In our opinion, for more complex biological systems,

timed PN might be the only option for assuring proper unfolding/unbinding SMD

scenarios. Thus, OPOA studies using the classical PN of SMD induced processes

should be performed carefully.

It is worth noting in this concluding section that PN based simulations are much

faster than the usual MD modeling of molecules’ dynamics. Generation of long

MD trajectories (>100 ns) for large systems (>200 000) may take CPU weeks even

on 100 core clusters. Here the generation of any PN is much faster, performed only

once, and the simulations of PN are at least an order of magnitude faster (a few

hours) than standard MD simulations. Interestingly, the standard MD data were

collected from large, multi-core clusters, but PN results came from a single 4-core

notebook. Since there is no one-to one correspondence between physical times of

standard MD simulations and time parameters used in the PN formalism, I did not

try to make any detailed comparisons of the performance of these two

methodologies.

5.4 Chapter 5 summary and conclusions

In this chapter a novel application of Petri nets to representation and analysis of

biological structural data have been presented. In the literature such ideas were

absent so far. I have tried to solve quite a challenging task – how to provide a new,

net based tool for a field of computer simulations of biomolecular dynamics. The

main objects considered in this chapter were protein structures represented by sets

of CA atoms distributed in Cartesian space. The time evolution of these

145

structures explains many biological phenomena and is intensively studied using

advanced computer algorithms and physical methods [108]. The simulations are

time consuming and any new data analysis method is always welcome.

I have proposed new algorithms for generation of PN inspired by MD trajectories

(OPOA OPOC and CON, paragraph 5.2). These nets code the properties of

conformational spaces. The analysis of the shapes provides a new tool of scientific

scrutiny. Once PN nets are generated, the dynamics of such nets may be studied.

New algorithms which help doing such dynamics are presented. The method to

map a PN marking into PDB files was developed. The time complexity of

algorithms is analyzed for each method. There is no single formula for all the

algorithms, but the OPOC algorithm is the most effective. I conclude that PN coded

information is readable, useful and in all cases studied (MCP-1, TTR) PNs reflect

the main features of conformational transition observed in classical computer

models. Hopefully, MD PN based models correspond also to real biological

phenomena, but this is a problem of fidelity of a physical model  and not of

computer science.

The algorithms are effective and the codes are quite fast. I estimate that the MD

based PN simulations are an order of magnitude faster than the classical approach.

Of course, the data from PN are approximate and not so exact, but another

advantage is that in the same network numerous MD trajectories may be mapped at

the same time. I plan that my codes will be in the public domain and will be

provided to scientific community.

146

Conclusions

In modern science computers and algorithms play a fundamental role. There is a

constant demand for new, original and better methods of modeling of real

phenomena and extraction of information. The computer science may contribute a

lot to this end.

The main goal of the present thesis was the development of new application areas

of powerful, graph-based techniques in biological and biophysical studies. Petri

nets have been chosen as the main formalism since they have been already

successfully used in numerous biological disciplines [4, 8-9, 39].

Presented studies gave new results on modeling of the human immune system

and provided new research tools suitable for Petri net graph-based analysis of

massive molecular dynamics data sets. New algorithms have been introduced.

No such results have been previously reported in the literature.

In the first chapter a general overview of the Petri nets and their features were

critically presented. Selected extended types of PNs were introduced, inter alia the

priority-based PN. I have proposed several modifications of these PNs. The

standard features of those known networks were not sufficient for an effective MD

data analysis. Therefore, a new type of the PN was introduced: a random-priority

based PN. In this new sub-type of the network a probability of a transition firing is

proportional to the priority of the given transition. I have found that this property is

very suitable for the simulation of the PN generated from the MD data. The

conclusion is that the simulations performed with a random priority-based PN are

more similar to the real MD simulations than any other type of PN investigated

here.

In the second chapter of the thesis the novel PN model of the immune system was

described. The new model presents a part of the immune response: the adaptive

immune system and the role of the macrophages. The following features were

added to the model and tested: an impact of fever, an effect of ageing, changes in

IS caused by AIDS, AOIS and ASD diseases. Adding such pathological conditions

was not a trivial task. Those elements were introduced to the model in different,

carefully scrutinized ways, depending on the required type of the IS model

modification. The impact of all pathology induced modifications was tested during

the simulations of the Petri nets and compared to the results calculated for a

regular, unperturbed model. Moreover, a t-invariant analysis of the model was

performed. This method allows for the verification of PN models. For the IS model

all t-invariants were found and their biological meanings were recognized. Also t-

clusters were calculated and analyzed, as well as MCT-sets. The model passed the

verification. This part of the study shows a great potential of PN IS model. My

efforts and tests have shown that modeling diverse biological process using this

tool is quite possible.

147

These days the GPU technology is very promising, giving a chance for a good

performance/cost ratio in scientific modeling. In the third chapter the GPU

simulation algorithm of the PN was presented. The new algorithm allows

simulations of Petri nets using the CUDA technology. The simulation process was

important, for example, in studying the IS model. The PINGU algorithm consists of

two parts: the first is preprocessing, the second is the proper simulation. Both were

described in details. The tests of the performance were conducted using different

graphical cards and different Petri nets sizes. The presented results show that for

large networks the CUDA simulation is better and faster than a CPU based one.

Such big Petri nets can be generated, for example, by my OPOA algorithm

described in the fifth chapter. The IS model is too small to observe any GPU

acceleration.

In the fourth chapter the MD and SMD study of the antigen-antibody protein

complexes were presented. Two complexes were studied: pollen from timothy

grass Phl p2 and its antibody, and chemokine MCP-1 with its antibody. Those

studies gave interesting results themselves, published in paper [12], however they

were performed mainly to generate test data sets for analysis done in the last

chapter. The first complex is connected with allergies, in the second one the MCP-

1 chemokine is a protein which perhaps plays a role in autism spectrum disorder.

The SMD method was used to enforce a dissociation of the antigens from the

antibodies. About 70 SMD simulations were performed and different directions of

the unbinding force vector were tested. We have found that the forced dissociation

of the complex in the lateral direction (approximately perpendicular to the main

axis of the antibody) requires forces being about 30% lower than that in the vertical

direction. These results support feasibility of new, faster, AFM based medical

nanodiagnostic procedures.

In the last chapter Petri nets based algorithms were applied to analyze MD data.

The idea of this novel approach is schematically presented in Fig. 42.

Fig. 42. The workflow scheme of the MD simulations analysis using PN

formalism.

At the beginning of the new analysis process the MD input data, i.e. MD trajectory,

is used to generate an appropriate PN. Three new, dedicated algorithms of PN

148

generation were developed and described in the Chapter 5: OPOA (one PN place

corresponds to a position of one atom), OPOC (one place corresponds to one

conformation of the protein) and CON (one place corresponds to a contact between

two amino acids). In every algorithm various aspects of the MD simulations are

highlighted. The PN generated by one of these algorithms contains more than

merely information on places, transitions and arcs. Such a PN represents additional

data which allows to generate extended types of the PN: timed, priority-based and

random priority-based. The features of PN stemming from MD can be analyzed

statically and examples of useful information extraction were described in the

chapter. However, the new PN can be a basis of new types of dynamical

simulations. The protocol for simulation of the extended types of the PN was

designed and presented as the pseudo-code. From this protocol one obtains a PN

trajectory. A PN trajectory is a new and compact representation of selected MD

data, suggested for the first time in this chapter. It is usually simpler and can be

studied in numerous ways. Moreover, this PN trajectory may be used to generate a

PDB format file. In some cases this file is easier to analyze than the original

massive MD data. Examples of PN-generated trajectories and PDB files were

presented in this chapter as well. In conclusion, I have shown in the Chapter 5 a

new way of representation and retrieval of important structural biological data.

Summary

The topics presented is the thesis demonstrate that PNs are useful tools in

biological studies. I have tried to show that they are suitable for investigations of

the immune system. Our newly created model of IS has been successfully used in

analysis of numerous phenomena. Further elements can be added to the model

relatively easily. A simulation of the PN executed on the GPU using the current

CUDA technology is possible and it is demonstrated that for large networks PN

GPU is faster than executed on the CPU. The presented SMD simulations show

that the dragging of an antigen from an antibody depends on the direction of the

force applied: a lateral process requires lower forces than a vertical one. This

simulation result gives theoretical foundation for Lateral Force Spectroscopy

measurements by the AFM method. Perhaps the most innovative aspect of this

thesis is paving a way to applications of the PN formalism in MD simulations.

Such attempts do not exist in the literature. Three algorithms of the PN generation

from the MD trajectories were designed. Using created PN changes of molecular

conformations, changes in locations and time evolution of amino acid – amino acid

contacts can be tracked. It is shown that the PN generated by the OPOC algorithm

can be used for clustering of molecules conformations. An advantage of our PNs

algorithms over other methods of MD data analysis is that PNs represent not only

conformations (or positions) of the elements, but also the connections and relations

of those objects as well.

149

Future prospects

The studies presented in this thesis are the first results in their areas and do not

fully exhaust the topic. Many new ideas may be tested, like for example the utility

of other types of Petri nets in the analysis of MD trajectories. Especially, a new

type or a modification of timed PN is required to accurately present the features of

SMD trajectories during the PN simulation. An idea of new PN generation

algorithm from a MD trajectory has been invented. This new algorithm may be

called OPOV (one place one velocity), and it will describe not the positions of the

amino acids, but their velocities. However, first the results of the CON algorithm

should be better investigated. The CON algorithm is the least studied. It will be

useful for generating PNs using the OPOC algorithm from MD trajectories

calculated in lower temperatures. The existing Petri nets generated algorithms can

be also enriched. I would like to generate some "macro" PN, whose every place

would represent a smaller, more detailed Petri net. New features can be added and

studied in the PN model of the IS, like for example, a better representation of

memory cells.

I hope that my computational studies will help scientists to make new exciting

discoveries in biology and medicine. Networks and graphs based techniques are

powerful tools in science and hopefully my efforts contributed to better

understanding these branches of the computer science.

150

Supplementary materials

Appendix A – CUDA architecture

CUDA is a parallel computing platform and programming model created by

NVIDIA and implemented by the graphics processing units (GPUs) [97, 150]. It

enabled programmers to use GPU computational capacity, which is considerable,

for example nVidia GeForce GTX 580 has 512 cores [151], a standard PC

computer has 4 or 8 cores. However, the GPU and CPU cores are not the same.

Cores on graphical cards are oriented on data processing, not flow controlling or

caching. The NVIDIA GPU architecture is built around a scalable array of

multithreaded Streaming Multiprocessors (SMs) [97]. The SM creates, manages,

schedules, and executes threads in groups of 32 parallel threads called warps.

When a multiprocessor is given some threads to execute, it partitions them into

warps and execute in sequence.

CUDA comes with a software environment that allows developers to use C as a

high-level programming language [97]. The program code, which will be executed

on NVIDIA GPU contains of successive blocks: code executed on CPU and code

executed on GPU. The parts of code which will be executed on a graphical card are

called kernels Fig. 43.

Fig. 43. The structure of the CUDA program execution. On the left blocks of code

are presented, successive serial code and parallel code. On the right the device, on

which the code is executed is shown.

In the CUDA architecture the most important is the logical structure of processes

and access to the memory - both are connected. The basic processes are threads -

the smallest logical individual. They execute code instructions. Each thread has its

151

own part of memory – thread’s registers, but the amount of this memory is small,

measured in kB (it depends on the model of the graphical card and the number of

threads). However, the access to the registers is very fast. Each thread has its

individual number (unique in the block). Threads are organized into blocks as one,

two or three dimensional structures, so they have the numbers, which may contain

one, two, or three coordinates. All blocks execute the same code and every block is

scheduled on one SM. All threads from one block have the access to the same part

of the memory, which is called the shared memory. The shared memory is assigned

to the block. The access to this memory is fast, but the size of the memory is small

- measured in kB (similarly to registers, the amount of the shared memory depends

on the model of the card and the number of blocks per one SM). Blocks are

grouped into a grid and can be organized into one, two or three dimensional

structures, therefore blocks have numbers, which may contain one, two, or three

coordinates. The grid is created when the kernel is executed, usually one grid is

performed at once on the graphic card. All threads from one grid have the access to

the global memory, so the data from this memory is shared for the grid. The

amount of the global memory is usually sufficient (for nVidia GeForce GTX 580 it

is 1536 MB [151]), however the access is slow, roughly 100 times slower than the

access to the shared memory and registers [97, 150]. If it is necessary to use the

global memory, it is good to read entire blocks of data – succeeding threads should

read succeeding pieces of data, because this operation is simultaneous and the loss

of the time for the access to the memory is reduced. The logical organization of the

processes and memory are presented in Fig. 44.

Fig. 44. The logical organization of the processes and the memory in the CUDA

framework.

In the CUDA programming not only the algorithm alone is very important, but also

the adjustment of the number of threads and blocks to the input and output data of

the algorithm, and appropriate distribution of the data to the memory. Of course,

152

the best situation is when all the data are in registers or shared memory, but often it

is not possible. When the global memory is necessary, the succeeding reading

should be used. The best performance is obtained when all SMs are busy, so every

number describing the amount of thread, blocks etc., whenever it is possible,

should be always rounded up to the power of two. It should be assumed even if it is

not mentioned in the description of the algorithm.

153

Appendix B – My implementation of MD Petri nets algorithms

All algorithms presented above were implemented by me in my software Petri

Efficient Analysis (PEAN). It is available at http://www-

users.mat.umk.pl/~leii/thesis/. The Java [152] language was used. PEAN consists

of three tabs - each corresponds to following steps: generation of MD Petri net,

simulation of PN and generation of PDB file based on PN and marking after the

simulation. The first tab in presented in Fig. 45.

Fig. 45. The first tab of MD Petri nets algorithms implementation PEAN program.

By using "Choose" button a user can choose a directory with MD trajectory files

converted to PDB type files. Below the type of the generation algorithm (OPOAv1,

OPOAv2, OPOC, CON) can be chosen. Then, in three text fields, the user can

change parameters of the selected algorithm. When the algorithm is chosen the

corresponding text filed becomes enabled. Additionally for the OPOC algorithm

one can chose type of the structural alignment. Algorithm 10 is described as "Full,

fast", Algorithm 11 corresponds to "Full, slow", "BioJava very slow" is CA

algorithm. After the "Calculate" button is pressed, the algorithm is launched and

MD Petri net's files are created and written to a new directory created in the folder

with PDB trajectory files.

http://www-users.mat.umk.pl/~leii/index.php?dir=thesis/
http://www-users.mat.umk.pl/~leii/index.php?dir=thesis/

154

Fig. 46. The second tab of MD Petri nets algorithms implementation PEAN.

The second tab of the PEAN program is presented in Fig. 46 and it is as intuitive as

the first tab. Starting from the top by using "Choose" button, the user can point a

directory containing MD Petri net's files (created during the previous step).

Because all necessary information is written to those files, the user does not need to

choose a type of an algorithm used to generate the PN. Also data required for

extended types of Petri nets like, for example, times are kept in those files, so the

directory contains all information required to simulate every type of the network.

Next, the user has to choose which type of the PN they want to simulate - marked,

timed, priority-based, random priority-based or guard time. The text field contains

a number of simulation steps. At the end, the user can chose if they want to write

the obtained marking at the end of the simulation (only one marking will be saved

in the file) or after every step of the simulation (the number of markings will be

equal to number of simulation steps). After pressing the "Run" button, the

simulation starts and when it is completed the obtained marking is written to the

PN directory.

The last tab is presented in Fig. 47. Initially, the user can chose if the marking of

the network is inside the directory with the PN files or indicate (fill in) the numbers

of those places which should have a token. If the second option is chosen, only a

place having the indicated number will be marked - it will have one token, and

other places will be empty. This option is useful for the PN generated by the OPOC

algorithm. Next, the tab contains a button for selection of a directory with PN files,

and a text field which contains a path of the selected directory. Only MD Petri nets

generated by algorithms OPOA (both variants) and OPOC can be used because the

networks created by the CON algorithm do not contain information about

coordinates. If the user does not provide the number of marked place, then the

155

directory has to include a marking file, generated during the simulation or created

in other way. After pressing the "Create" button, the PDB file is created and written

to the directory with PN files. In my implementation the PDB file name is

"generated.pdb". If the user has a marking file created with previous step with

option "Write marking after every step", for every marking stored in the file one

protein structure will be generated and saved to a PDB file as a frame so the

created file will be recording of MD PN simulation.

Fig. 47. The third tab of MD Petri nets algorithms implementation PEAN program.

156

Appendix C – List of publications and conferences

Publications:

a) part A of the list published by Ministry of Science and Higher Education:

 Gogolinska, A. and W. Nowak, "Petri Nets Formalism Facilitates Analysis of

Complex Biomolecular Structural Data" RAIRO-OPERATIONS

RESEARCH, 2015. under review

 Gogolinska, A., Nowak, W., “Molecular basis of lateral force

spectroscopy nano-diagnostics: computational unbinding of autism

related chemokine MCP-1 from IgG antibody”, Journal of Molecular

Modeling (Springer), 19(11):4773-80 (2013)

b) other reviewed publications:

 Jakubowski, R., Gogolinska, A., Peplowski, L., Skrzyniarz, P., Nowak,

W., „Computational studies of TTR related amyloidosis: exploration of

conformational space through Petri net-based algorithm”, TASK

Quarterly. 10/2014; 18(3):267.

 Gogolinska, A., Nowak, W. „Petri Nets Approach to Modeling of

Immune System and Autism”, Artificial Immune Systems, Lecture

Notes in Computer Science. In: Coello Coello, C., Greensmith, J.,

Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.), vol. 7597, pp.

86-99. Springer Berlin / Heidelberg (2012)

 Gogolińska A., Ochmański E., Nowak W., „Petri Nets in

Immunological System Modeling”. In: Ochmański, O., Penczek, W.

(eds.) Matematyczne metody modelowania i analizy systemów

współbieżnych MASYW 2010, pp. 35-46 (2012).

c) published and indexed (ISI) conference abstracts:

 Mikulska, K., Jakubowski, R., Peplowski, L., Dabrowski, M.,

Gogolinska, A., Duch, W., Nowak, W., „On applications of virtual

atomic force micro-scope in studies of brain proteins”, European

Biophysics Journal, Volume 42, Issue 1 Supplement (2013)

 Gogolińska, A., Nowak, W. „Molecular recognition at atomic level:

Interaction of autism related protein MCP-1 with an antibody”,

European Biophysics Journal, Volume 40, Supplement 1, p. S106

(2011)

Conferences (22):

 IV 2015 RECOMB 2015, the 19th Annual International Conference

on Research in Computational Molecular Biology, 12-15 April 2015,

Poster: „Petri Nets as a Novel Representation of Biomolecular

Simulations Data”, A. Gogolińska, W. Nowak

BioInformatics in Torun – BIT15, 16-18.06.2015, Toruń. Poster: “On

the possibility of using GPU in Petri nets simulations.”, A. Gogolińska,

W. Nowak

157

 VIII 2014 The 2014 International Conference on Brain Informatics and

Health 11–14 August 2014, Warsaw, Poland, Talk: „Panomics

contributions to understanding Autism Spectrum Disorders”, A.

Gogolińska, W. Nowak

 VI 2014 BioInformatics in Torun – BIT14, 12-14.06.2014, Toruń.

Poster: “HOPE = HOw to keeP Eye on Autism – a new bioinformatics

tool for data mining.”, A. Gogolińska, W. Nowak

IV EURO WG Conference on Operational Research in Computational

Biology, Bioinformatics and Medicine, Poznań - Biedrusko (Poland)

26-28 June, 2014, Talk: „Petri Nets Formalism Facilitates Analysis of

Complex Structural Data”, A. Gogolińska, W. Nowak, (travel grant)

 II 2014 The Immunology of Ageing, Monday, 24 February 2014,

Londyn, Wielka Brytania, Poster: „Petri Nets Computer Model of

Immune System Opens Opportunity to Study Effects of Ageing,

Autisms and Fever”, A. Gogolińska, W. Nowak, (travel grant)

 IX 2013 11th Workshop on Bioinformatics and 6th Symposium of the

Polish Bioinformatics Society, Wrocław, Polska, 27 - 29 September

2013, Talk: „Mathematical networks as a tool in MD computer

simulations data analysis”, A. Gogolińska, W. Nowak

 VI 2013 Bioinformatics 2013 and BioInformatics in Torun – BIT13,

26-29.06.2013, Toruń. Poster: “New ideas on using Petri nets in

molecular dynamics simulations”, A. Gogolińska, W. Nowak

VII Kopernikańskie Seminarium Doktoranckie, 19-21 czerwca 2013,

Toruń. Talk: „Jak rozpoznawanie molekularne wspomagana

diagnostykę medyczną? - aspekty komputerowe”, A. Gogolińska, W.

Nowak

 IV 2013 XXVII Forum Informatyki Teoretycznej, Toruń, Polska,

Talk: „Metody analizy modeli biologicznych stworzonych przy użyciu

sieci Petriego”, A. Gogolińska, W. Nowak

 IX 2012 BioInformatics in Torun – BIT12, 27-29 września 2012,

Toruń, Poster: „Analysis of t-invariants in Immune System Petri Net

Model”, A. Gogolińska, W. Nowak

 VI 2012 VI Kopernikańskie Seminarium Doktoranckie, Toruń,

Polska, Talk: „O możliwościach wykorzystania kart graficznych w

algorytmach sieciowych”, A. Gogolińska, W. Nowak

 III 2012 26
th

 Molecular Modelling Workshop, Erlangen, Niemcy,

Talk: „Interactions of antibodies with selecting antigens – computer

MD modeling”, A. Gogolińska, W. Nowak, (travel grant, IIIrd award

for the best presentation)

 XI 2011 Multi-Pole Approach to Structural Biology, Warszawa,

Polska, Poster: „Direction specific molecular recognition: A

computational study of autism related protein MCP-1 interactions with

an antibody”, A. Gogolińska, W. Nowak

 X 2011 9
th

 Workshop on Bioinformatics and 4th Convention of the

Polish Bioinformatics Society, Kraków, Polska, Talk: „Monocyte

chemoattractant proteins - bioinformatical and SMD studies of

158

molecular recognition in the immune system”, A. Gogolińska, W.

Nowak

 VIII 2011 8
th

 EBSA European Biophysics Congress, Budapeszt,

Węgry, Poster: „Molecular recognition at atomic level: interaction of

autism related protein MCP-1 with an antibody”, A. Gogolińska, W.

Nowak, (travel grant)

 VI 2011 V Kopernikańskie Seminarium Doktoranckie, Toruń, Polska,

Talk: „Genetyczne podstawy autyzmu i możliwości modelowania

procesów chorobowych”, A. Gogolińska, K. Mikulska W. Nowak

BioInformatics in Torun - BIT11, Toruń, Polska, Poster: "Petri nets in

biotechnology, medicine and bioinformatics", A. Gogolińska, W.

Nowak

 X 2010 IIIrd Convention of the Polish Bioinformatics Society in

conjunction with 8
th

 Workshop on Bioinformatics, Ustroń, Polska,

Talk: "Petri Nets in Immune System's Homeostasis Modeling", A.

Gogolińska, W. Nowak

 VII 2010 Mathematical Modeling and Analysis Methods of Concurrent

Systems, MASYW 2010, Tleń, Polska, Talk: „Petri Nets in

Immunological System Modeling”, A. Gogolińska, W. Nowak, E.

Ochmański

 VI 2010 BioInformatics in Torun - BIT10, Toruń, Polska, Poster:

„Molecular Recognition in Major Respiratory Allergen Phl p2 - A

Computational Study”, A. Gogolińska, L. Nowakowska, W. Nowak

 V 2010 Advanced Bioinformatics Tools, Warszawa, Polska, Poster:

„Application of Petri Nets in Immune System's Modeling”, A.

Gogolińska, W. Nowak, E. Ochmański

159

Index of abbreviations

| - | - cardinality of a set

AFM – atomic force microscopy

AIDS – Acquired Immunodeficiency

Syndrome

AOIS – Adult-Onset

Immunodeficiency Syndrome

APC – antigen presenting cell

ASD – autism spectrum disorder

ATS – atom transition set (Chapter 5)

C – incidence matrix

 – n-dimensional Euclidean space

with Cartesian coordinates, obtained

by the mapping of space, using

dividing grid with resolution k.

CA – C alpha, carbon alpha, the first

carbon atom that attaches to a

functional group, in amino acids or

proteins it is the backbone carbon

before the carbonyl carbon.

CB – C beta, carbon beta, the second

carbon atom that attaches to a

functional group

CCA – Contact Calculating

Algorithm

CPN – continuous Petri net

CPU – central processing unit

CTI – converter by t-invariants,

property of a PN

CUDA – Compute Unified Device

Architecture

c – constant which describes if two

amino acids are in contact (paragraph

5.2.3)

DC – dendritic cell

dij – distance between i-th and j-th t-

invariants

F – set of arcs

f – firing time function

GPU – graphical processing unit

HIV – human immunodeficiency

virus

IL – interleukin

IS – immune system

inv – t-invariant

INF-γ – interferon γ

Kj – set of all enabled transitions in

soft conflict with tj (including tj)

k – in Chapter 5 resolution of dividing

grid in
 space

L – lateral direction

Li – conflict-free list generated for

transition ti

LPS – Lipopolysaccharides

M – marking

MCP1, MCP-1 – Monocyte

Chemoattractant Protein-1

MCT – maximal common transition

set

160

MHC – major histocompatibility

complex

MTPN - Merlin Time Petri net

m – usually number of transitions

N – incidence matrix (Chapter 1)

NOC – number of occurrences of

transitions

n – usually number of places

ns – nanosecond

OPOA – one place one atom

algorithm

OPOC – one place one conformation

algorithm

P – set of places

PDB – Protein Data Bank, also format

of the files in this data base

PINGU – Petri IN Graphical Unit –

algortimh of PN simulation on GPU

PN – Petri net

p – place; pi, pi – i-th place

prio – priority function

RMSD – root-mean-square deviation

RMSF – root mean square

fluctuations

RTPN – Ranchamdani’s Timed Petri

nets

Sj – sum of values of priority function

of all transitions from the conflict set

Kj

Sj,k – sum of values of priority

function of k first elements of the

conflict set Kj

S-S, SS – disulfide bond

SMD – steered molecular dynamic

SPN – stochastic Petri net

T – set of transitions

Tc – cytotoxic T lymphocytes

Th – helper T lymphocytes

TTR – Transthyretin

t – transition; ti, ti – i-th transition

W – weight function

WT – wild type, native form (without

mutations) of the protein or gene

w – weight of the arc

V – clock valuation function (0),

vertical direction (Chapter 4)

X – random variable

x – t-invariant

161

List of figures

Fig. 1. An example of continuous PN (from [44]). .. 24

Fig. 2. Colored Petri net describing the philosopher system (from [49]). 25

Fig. 3. The first part of the PN model of the IS. .. 39

Fig. 4. The second part of the PN model of the IS. .. 40

Fig. 5. The results of the simulations of the model with and without fever (a model without

"macrophages" part). Different transitions connected with the fever were used. (a) A time

evolution of the virus population during the fever. (b) The effects of the fever on the

number of Tc lymphocytes. .. 45

Fig. 6. The number of viruses (a) and pathogens (b) calculated during simulations of the

cellular (a) and humoral (b) response in the model of "young" and "old" IS. 46

Fig. 7. Time evolution of the virus population during AIDS and AOIS diseases modeled by

a PN model of the immune system. .. 48

Fig. 8. The time evolution of the virus population during AOIS, which was introduced to

the model by (a) new transition, (b) changing of the weight of the arc between the place p56

to the transition t46 to 4, and during the INF-γ treatment. Different moments of starting the

treatment are presented – the number in the legend shows the step number of the simulation

when the INF-γ started to affect the model. ... 48

Fig. 9. The amount of a virus during simulations observed for three different ways of AOIS

introduction to the model (see the text) and for different doses of INF-γ. 49

Fig. 10. Results of ASD simulations: (a) levels of IL-1, bars represent statistical errors (b)

levels of IL-1 with additional transitions, (c) levels of IL-6, (d) levels of TNF-α, (e) levels

of INF-γ, (f) levels of IL-6 but only during the humoral response (from [59]).................... 52

Fig. 11. The cluster tree describes relations between t-clusters. .. 58

Fig. 12. Examples of conflict-free lists. This network is part of a bigger IS network. One

possible conflict-free list of transitions with respect to t21 is {t21; t26, t24} or {t21, t25,

t24}, with respect to transition t26: {t26; t19, t24}. ... 61

Fig. 13. A scheme of the content of the global memory and blocks’ and threads’

organization in the second part of the PINGU algorithm. The current conflict-free list and

blocks corresponding to its transitions are shown in yellow. ... 67

Fig. 14. A scheme of the Petri network constructed for tests. One part of the network,

which can be multiplied, is selected in a black box. .. 70

Fig. 15. The results of the simulation of the artificially generated Petri nets. (a) and (b)

shows the time of the simulation as the function of the size of the network, in (c) and (d) the

dependences of the time of the simulation from the values of repetitions and trials are

presented. ... 71

Fig. 16. Times of the simulations of the Petri nets describing MD: (a) time of the

preprocessing, (b) time of the simulation. .. 72

Fig. 17. Overview of studied structures: (a) MCP-1 (blue) with antibody (silver and red)

(from [12]), (b) timothy grass pollen Phl p2 (blue) with antibody (silver and red). Dragging

directions are also presented as lines: (a) yellow and two chosen in orange and green, (b)

silver. .. 76

Fig. 18. SMD calculated force spectra for unbinding process obtained during simulations of

timothy grass pollen Phl p2. In (a) forces measured during vertical draggig, in (b) drugin

lateral dragging. .. 77

162

Fig. 19. Examples of SMD calculated force spectra for unbinding process. Typical plots of

values of the force in two selected directions: V- vertical, L - lateral for (a) 2ns simulations

and (b) 10ns simulations (10x slower pulling speed than in 2ns simulations). 77

Fig. 20. Plots showing the dependence of maximum values of the forces for simulation of

MCP-1 on the pulling force vector orientation - in spherical coordinates φ (a) and ϴ (b).

Only shorter 2 ns trajectories are presented from [12]). ... 79

Fig. 21. A comparison of calculated RMSF fluctuations of MCP-1 (a) and heavy chain of

Fab IgG antibody fragment (b) with experimental temperature B-factors, from [12]). 81

Fig. 22. Maps of electrostatic potential projected on solvent accessible surfaces of MCP-1

and Fab fragment of IgG. Positive regions are colored in blue, negative – in red.

Complementary regions a, b and c are schematically indicated. Figures were prepared with

VMD software [116] from [12]). ... 82

Fig. 23. Alignment of MCP-1 sequence with 10 most similar proteins. The conserved

residues are shown. Black rectangles in MCP-1 sequence denote Lys56(A) and Asp65(A)

amino acids from [12]). .. 82

Fig. 24. The diagram which presents a flow of data in the MD studies. 85

Fig. 25. The schematic representation of two trajectories Tr1 and Tr2, green conformations

are common for both trajectories, yellow are conformations observed only in Tr1 and blue

ones in Tr2.. .. 87

Fig. 26. A scheme of conformational transitions during a MD simulation: a molecule in the

conformation A may transform into conformations B or C, both transformations are

reversible. Blue - the main part of the molecule, green and yellow – a side chain, which

changes its conformation and this is the sole difference in conformations A, B and C. 87

Fig. 27. The discretization of the space. The space is divided by a squared grid with a

resolution equal to 1, the points from one square in correspond to one point in the

space. A few points from space are presented, their colors denote a point in , to

which they are assigned (the same color, the same point). Points of space are labeled

in italic and underlined. .. 92

Fig. 28. An example of the stealing problem (for explanations see the text). 96

Fig. 29. The illustration showing an additional construction (red boxes) added to avoid the

stealing problem in the OPOAv2 algorithm. .. 98

Fig. 30. MCP-1 with highlighted amino acids with a large number of places in their ATS

(red) and the small number (blue). ... 101

Fig. 31. An example of MD Petri nets generated by the OPOC algorithm with Algorithm

10 used as the structural alignment tool for the same trajectory, but with different

thresholds: (a) 1.6Å, (b) 1.5Å, (c) 1.4Å, (d) 1.2Å. ... 112

Fig. 32. Structure of TTR with marked segments (a, b, c, d). .. 113

Fig. 33. A Petri net generated for TTR SMD simulation with the threshold of 1.3Å. 113

Fig. 34. (a) Four frames from SMD simulation of MCP-1 (blue) dissociation from the

antibody (black, red). 1 – the starting frame, 2 – the structure when bonds between the

antibody and the antigen are broken, 3 – conformation changes during dragging, 4 –

conformation obtained at the end of the simulation. (b) Petri net generated by the OPOC

algorithm for the same SMD trajectory with threshold of 1.1 Å.. 114

Fig. 35. MD Petri net generated by OPOC algorithm for two 100ns MD simulations of TTR

mutant L55P (1.5Å threshold). Places common in both simulations are in blue, places

observed only in the first simulations are in yellow and in second only are in red. 117

163

Fig. 36. An example of AtomsPositions and PossibleNeighbors arrays in the space.

Points in the space are marked by red dots, points in the space are marked by black

boxes and their coordinates are given in brackets. ... 120

Fig. 37. Places present in a trajectory obtained from the simulation of a random-priority

Petri net generated from two MD simulations of the TTR mutant V30M. The places

common for both simulations are highlighted in blue, the places present in the first

simulation only are in red, and those present in the second one are in cyan. 139

Fig. 38. Sequence of places observed in a simulation of PN generated from 20 MD

simulations of MCP-1. The beginning of the sequence is in the first column, then it is

continued in the second column and the end of the sequence is in the third column. Next to

the places are the denotations of the MD simulation files, in which a conformation

described by the place was observed. For example, the place p200 was observed only in the

MD simulation s18, whereas the place p34 in simulations s20, s18 and s19. 141

Fig. 39. The sequence of places obtained from the simulation of MD PN generated from the

14 SMD trajectories for MCP-1 chemokine. ... 142

Fig. 40. An example of a structure from the PN (red) and MD (blue) simulations. The PN

structure was generated using OPOAv1 algorithm with size of the grid points of 1 Å so the

structure has coarse grained representation. ... 143

Fig. 41. A comparison of structures from the all-atom SMD (blue) and PN simulations

(red). Petri net was obtained by OPOAv1 and the simulation was performed within a

classical PN formalism. .. 144

Fig. 42. The workflow scheme of the MD simulations analysis using PN formalism. 147

Fig. 43. The structure of the CUDA program execution. On the left blocks of code are

presented, successive serial code and parallel code. On the right the device, on which the

code is executed is shown. ... 150

Fig. 44. The logical organization of the processes and the memory in the CUDA

framework. ... 151

Fig. 45. The first tab of MD Petri nets algorithms implementation PEAN program. 153

Fig. 46. The second tab of MD Petri nets algorithms implementation PEAN. 154

Fig. 47. The third tab of MD Petri nets algorithms implementation PEAN program. 155

164

References

1. Kursa, M.B., A. Jankowski, and W.R. Rudnicki, Boruta–a system for feature

selection. Fundamenta Informaticae, 2010. 101(4): p. 271-285.

2. Dojer, N., et al., Applying dynamic Bayesian networks to perturbed gene

expression data. Bmc Bioinformatics, 2006. 7(1): p. 249.

3. Gambin, A., S. Lasota, and M. Rutkowski, Analyzing stationary states of gene

regulatory network using Petri nets. In silico biology, 2006. 6(1): p. 93-109.

4. Sackmann, A., et al., An analysis of the Petri net based model of the human body

iron homeostasis process. Computational Biology and Chemistry, 2007. 31(1): p.

1-10.

5. Reisig, W., Petri nets: an introduction. 1985: Springer-Verlag New York, Inc. 161.

6. Diaz, M., Petri nets: fundamental models, verification and applications. 2013: John

Wiley & Sons.

7. Goss, P.J. and J. Peccoud, Quantitative modeling of stochastic systems in molecular

biology by using stochastic Petri nets. Proceedings of the National Academy of

Sciences, 1998. 95(12): p. 6750-6755.

8. Chaouiya, C., Petri net modelling of biological networks. Briefings in

Bioinformatics, 2007. 8(4): p. 210-219.

9. Koch, I., W. Reisig, and F. Schreiber, Modeling in systems biology the petri net

approach. 2011, London: Springer.

10. Waterman, M.S., Introduction to computational biology: maps, sequences and

genomes. 1995: CRC Press.

11. Sarzynska, J., L. Nilsson, and T. Kulinski, Effects of base substitutions in an RNA

hairpin from molecular dynamics and free energy simulations. Biophysical journal,

2003. 85(6): p. 3445-3459.

12. Gogolinska, A. and W. Nowak, Molecular basis of lateral force spectroscopy

nano-diagnostics: computational unbinding of autism related chemokine MCP-1

from IgG antibody. Journal of Molecular Modeling, 2013. 19(11): p. 4773-4780.

13. Murata, T., Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 1989. 77(4): p. 541-580.

14. Petri, C.A., Kommunikation mit automaten. 1962.

15. May, R.M., Simple mathematical models with very complicated dynamics. Nature,

1976. 261(5560): p. 459-467.

16. Sangiorgi, D., Bisimulation for higher-order process calculi. Information and

Computation, 1996. 131(2): p. 141-178.

17. Shmulevich, I., et al., Probabilistic Boolean networks: a rule-based uncertainty

model for gene regulatory networks. Bioinformatics, 2002. 18(2): p. 261-274.

18. Jensen, F.V., An introduction to Bayesian networks. Vol. 210. 1996: UCL press

London.

19. Arnold, L., Stochastic differential equations: theory and applications. New York,

1974.

20. Wolfram, S., Cellular automata as models of complexity. Nature, 1984. 311(5985):

p. 419-424.

21. Reisig, W., Understanding Petri Nets. 2013: Springer.

22. Tuncel, G. and G.M. Bayhan, Applications of Petri nets in production scheduling:

a review. The International Journal of Advanced Manufacturing Technology, 2007.

34(7-8): p. 762-773.

23. Lee, D.Y. and F. DiCesare, Scheduling flexible manufacturing systems using Petri

nets and heuristic search. Robotics and Automation, IEEE Transactions on, 1994.

10(2): p. 123-132.

24. Viswanadham, N. and Y. Narahari, Performance modeling of automated

manufacturing systems. 1992: Prentice Hall Englewood Cliffs, NJ.

165

25. Lopez-Grao, J.-P., J.-M. Colom, and F. Tricas. The deadlock problem in the control

of Flexible Manufacturing Systems: An overview of the Petri net approach. in

Emerging Technology and Factory Automation (ETFA), 2014 IEEE. 2014: IEEE.

26. Di Febbraro, A., D. Giglio, and N. Sacco, Urban traffic control structure based on

hybrid Petri nets. Intelligent Transportation Systems, IEEE Transactions on, 2004.

5(4): p. 224-237.

27. DiCesare, F., et al., The application of Petri nets to the modeling, analysis and

control of intelligent urban traffic networks, in Application and Theory of Petri

Nets 1994. 1994, Springer. p. 2-15.

28. Pura, M.L. and D. Buchs. Model checking ARAN ad hoc secure routing protocol

with algebraic Petri nets. in Communications (COMM), 2014 10th International

Conference on. 2014: IEEE.

29. Heindl, A. and R. German, Performance modeling of IEEE 802.11 wireless LANs

with stochastic Petri nets. Performance Evaluation, 2001. 44(1): p. 139-164.

30. Little, T.D.C. and A. Ghafoor, Synchronization and storage models for multimedia

objects. Selected Areas in Communications, IEEE Journal on, 1990. 8(3): p. 413-

427.

31. Bo, C., C. Junliang, and D. Min, Petri net based formal analysis for multimedia

conferencing services orchestration. Expert Systems with Applications, 2012.

39(1): p. 696-705.

32. Zouaghi, L., et al., Mission-based online generation of probabilistic monitoring

models for mobile robot navigation using Petri nets. Robotics and Autonomous

Systems, 2014. 62(1): p. 61-67.

33. Gao, M., M. Zhou, and Y. Tang, Intelligent decision making in disassembly

process based on fuzzy reasoning Petri nets. Systems, Man, and Cybernetics, Part

B: Cybernetics, IEEE Transactions on, 2004. 34(5): p. 2029-2034.

34. Reddy, V.N., M.L. Mavrovouniotis, and M.N. Liebman. Petri net representations

in metabolic pathways. in ISMB. 1993.

35. Reddy, V.N., Modeling biological pathways: a discrete event systems approach.

1994.

36. Hofestädt, R., A Petri net application to model metabolic processes. Systems

Analysis Modelling Simulation, 1994. 16(2): p. 113-122.

37. Heiner, M., I. Koch, and J. Will, Model validation of biological pathways using

Petri nets—demonstrated for apoptosis. Biosystems, 2004. 75(1): p. 15-28.

38. Kielbassa, J., et al., Modeling of the U1 snRNP assembly pathway in alternative

splicing in human cells using Petri nets. Computational Biology and Chemistry,

2009. 33(1): p. 46-61.

39. Matsuno, H., et al. Hybrid Petri net representation of gene regulatory network. in

Pacific Symposium on Biocomputing. 2000: World Scientific Press Singapore.

40. Yang, J., et al. Modeling the genetic information transmission based on Colored

Petri Nets. in Information and Automation (ICIA), 2014 IEEE International

Conference on. 2014: IEEE.

41. Rogers, D.J. and T.T. Tanimoto, A computer program for classifying plants.

Science, 1960. 132(3434): p. 1115-1118.

42. Xu, R. and D. Wunsch, Survey of clustering algorithms. Neural Networks, IEEE

Transactions on, 2005. 16(3): p. 645-678.

43. Gronau, I. and S. Moran, Optimal implementations of UPGMA and other common

clustering algorithms. Information Processing Letters, 2007. 104(6): p. 205-210.

44. David, R. and H. Alla, Petri nets for modeling of dynamic systems: A survey.

Automatica, 1994. 30(2): p. 175-202.

45. Natkin, S.O., Les reseaux de Petri stochastiques et leur application a l'evaluation

des systemes informatiques. 1980: Conservatoire National des Arts et Metiers.

46. Molloy, M.K., On the integration of delay and throughput measures in distributed

processing models. 1981.

166

47. Marsan, M.A., Stochastic Petri nets: an elementary introduction, in Advances in

Petri Nets 1989. 1990, Springer. p. 1-29.

48. Jensen, K., Coloured petri nets, in Petri nets: central models and their properties.

1987, Springer. p. 248-299.

49. Jensen, K., Coloured Petri nets and the invariant-method. Theoretical Computer

Science, 1981. 14(3): p. 317-336.

50. Popova-Zeugmann, L., Time Petri Nets. 2013: Springer.

51. Silva, J.R. and P.M. del Foyo, Timed Petri Nets. 2012.

52. Fortier, P.J. and H.E. Michel, Computer systems performance evaluation and

prediction. 2003: Access Online via Elsevier.

53. Parkin, J. and B. Cohen, An overview of the immune system. The Lancet, 2001.

357(9270): p. 1777-1789.

54. Male, D., Immunology: an illustrated outline. 2004: Mosby.

55. Na, D., et al., Integration of Immune Models Using Petri Nets, in Artificial Immune

Systems, G. Nicosia, et al., Editors. 2004, Springer Berlin / Heidelberg. p. 205-216.

56. Park, I., et al., Fuzzy Continuous Petri Net-Based Approach for Modeling Helper T

Cell Differentiation, in Artificial Immune Systems, C. Jacob, et al., Editors. 2005,

Springer Berlin / Heidelberg. p. 331-338.

57. Park, I., et al., Fuzzy Continuous Petri Net-Based Approach for Modeling Immune

Systems, in Neural Nets, B. Apolloni, et al., Editors. 2006, Springer Berlin /

Heidelberg. p. 278-285.

58. Gogolinska, A., E. Ochmanski, and W. Nowak, Petri Nets in Immunological

System Modeling, in Matematyczne metody modelowania i analizy systemow

wspolbieznych MASYW 2010, O. Ochmanski and W. Penczek, Editors. 2012. p. 35-

46.

59. Gogolinska, A. and W. Nowak, Petri Nets Approach to Modeling of Immune

System and Autism, in Artificial Immune Systems, C. Coello Coello, et al., Editors.

2012, Springer Berlin / Heidelberg. p. 86-99.

60. Iwasaki, A. and R. Medzhitov, Regulation of Adaptive Immunity by the Innate

Immune System. Science, 2010. 327(5963): p. 291-295.

61. Gołąb Jakub, et al., Immunologia. 2008: Wydawnictwo Naukowe PWN.

62. Britannica, E. http://www.britannica.com/EBchecked/topic/205674/fever. 2012.

63. Hasday, J.D., K.D. Fairchild, and C. Shanholtz, The role of fever in the infected

host. Microbes Infect, 2000. 2(15): p. 1891-904.

64. Ostberg, J.R., et al., Regulatory potential of fever-range whole body hyperthermia

on Langerhans cells and lymphocytes in an antigen-dependent cellular immune

response. J Immunol, 2001. 167(5): p. 2666-70.

65. Jampel, H.D., et al., Fever and immunoregulation. III. Hyperthermia augments the

primary in vitro humoral immune response. J Exp Med, 1983. 157(4): p. 1229-38.

66. Mullbacher, A., Hyperthermia and the generation and activity of murine influenza-

immune cytotoxic T cells in vitro. J Virol, 1984. 52(3): p. 928-31.

67. Duff, G.W. and S.K. Durum, Fever and immunoregulation: hyperthermia,

interleukins 1 and 2, and T-cell proliferation. Yale J Biol Med, 1982. 55(5-6): p.

437-42.

68. Kluger, M.J., Is fever beneficial? Yale J Biol Med, 1986. 59(2): p. 89-95.

69. Meinander, A., et al., Fever-like hyperthermia controls T Lymphocyte persistence

by inducing degradation of cellular FLIPshort. J Immunol, 2007. 178(6): p. 3944-

53.

70. Evans, S.S., et al., Fever-range hyperthermia dynamically regulates lymphocyte

delivery to high endothelial venules. Blood, 2001. 97(9): p. 2727-33.

71. Huang, Y.H., A. Haegerstrand, and J. Frostegard, Effects of in vitro hyperthermia

on proliferative responses and lymphocyte activity. Clinical & Experimental

Immunology, 1996. 103(1): p. 61-66.

72. Larbi, A., et al., Aging of the immune system as a prognostic factor for human

longevity. Physiology, 2008. 23(2): p. 64-74.

167

73. Weiskopf, D., B. Weinberger, and B. Grubeck‐Loebenstein, The aging of the

immune system. Transplant international, 2009. 22(11): p. 1041-1050.

74. Browne, S.K., et al., Adult-Onset Immunodeficiency in Thailand and Taiwan. New

England Journal of Medicine, 2012. 367(8): p. 725-734.

75. Newschaffer, C.J., et al., The epidemiology of autism spectrum disorders*. Annu.

Rev. Public Health, 2007. 28: p. 235-258.

76. Freitag, C.M., The genetics of autistic disorders and its clinical relevance: a review

of the literature. Molecular Psychiatry, 2006. 12(1): p. 2-22.

77. Szatmari, P., Heterogeneity and the genetics of autism. Journal of Psychiatry and

Neuroscience, 1999. 24(2): p. 159.

78. Cook Jr, E.H., Genetics of autism. Mental Retardation and Developmental

Disabilities Research Reviews, 1998. 4(2): p. 113-120.

79. Ozonoff, S., et al., Recurrence risk for autism spectrum disorders: a Baby Siblings

Research Consortium study. Pediatrics, 2011. 128(3): p. e488-e495.

80. Ashwood, P., et al., In Search of Cellular Immunophenotypes in the Blood of

Children with Autism. PloS one, 2011. 6(5): p. e19299.

81. Ashwood, P., S. Wills, and J. Van de Water, The immune response in autism: a

new frontier for autism research. Journal of leukocyte biology, 2006. 80(1): p. 1.

82. Goines, P.E. and P. Ashwood, Cytokine dysregulation in autism spectrum disorders

(ASD): Possible role of the environment. Neurotoxicology and Teratology, 2012.

83. Depino, A.M., Peripheral and central inflammation in autism spectrum disorders.

Molecular and Cellular Neuroscience, 2012.

84. Patterson, P.H., Maternal infection and immune involvement in autism. Trends in

molecular medicine, 2011.

85. Onore, C., M. Careaga, and P. Ashwood, The role of immune dysfunction in the

pathophysiology of autism. Brain, behavior, and immunity, 2012. 26(3): p. 383-

392.

86. Curran, L.K., et al., Behaviors associated with fever in children with autism

spectrum disorders. Pediatrics, 2007. 120(6): p. e1386.

87. Mehler, M.F. and D.P. Purpura, Autism, fever, epigenetics and the locus coeruleus.

Brain research reviews, 2009. 59(2): p. 388-392.

88. Szelényi, J., Cytokines and the central nervous system. Brain research bulletin,

2001. 54(4): p. 329-338.

89. Quan, N. and W.A. Banks, Brain-immune communication pathways. Brain,

behavior, and immunity, 2007. 21(6): p. 727-735.

90. Rohr, C., W. Marwan, and M. Heiner, Snoopy - a unifying Petri net framework to

investigate biomolecular networks. Bioinformatics, 2010. 26(7): p. 974.

91. Einloft, J., et al., MonaLisa—visualization and analysis of functional modules in

biochemical networks. Bioinformatics, 2013: p. btt165.

92. McAfoose, J. and B. Baune, Evidence for a cytokine model of cognitive function.

Neuroscience & Biobehavioral Reviews, 2009. 33(3): p. 355-366.

93. Nicol, D.M. and S. Roy. Parallel simulation of timed Petri-nets. in Proceedings of

the 23rd conference on Winter simulation. 1991: IEEE Computer Society.

94. Thomas, G.S. and J. Zahorjan. Parallel simulation of performance Petri nets:

extending the domain of parallel simulation. in Simulation Conference, 1991.

Proceedings., Winter. 1991: IEEE.

95. Ferscha, A. Concurrent execution of timed Petri nets. in Simulation Conference

Proceedings, 1994. Winter. 1994: IEEE.

96. Geist, R., et al. Parallel simulation of Petri nets on desktop PC hardware. in

Simulation Conference, 2005 Proceedings of the Winter. 2005.

97. Nvidia, C., Programming guide. 2013.

98. Comerford, I. and S.R. McColl, Mini-review series: focus on chemokines.

Immunology and Cell Biology, 2011. 89(2): p. 183-184.

168

99. Reid, C., et al., Structure activity relationships of monocyte chemoattractant

proteins in complex with a blocking antibody. Protein Engineering Design and

Selection, 2006. 19(7): p. 317-324.

100. Carr, M.W., et al., Monocyte chemoattractant protein 1 acts as a T-lymphocyte

chemoattractant. Proceedings of the National Academy of Sciences, 1994. 91(9): p.

3652-3656.

101. Garay, P.A. and A.K. McAllister, Novel roles for immune molecules in neural

development: implications for neurodevelopmental disorders. Frontiers in synaptic

neuroscience, 2010. 2.

102. De Haas, A., et al., Neuronal chemokines: versatile messengers in central nervous

system cell interaction. Molecular neurobiology, 2007. 36(2): p. 137-151.

103. Banisadr, G., et al., Highly regionalized neuronal expression of monocyte

chemoattractant protein‐1 (MCP‐1/CCL2) in rat brain: Evidence for its

colocalization with neurotransmitters and neuropeptides. Journal of Comparative

Neurology, 2005. 489(3): p. 275-292.

104. Vargas, D., et al., Neuroglial activation and neuroinflammation in the brain of

patients with autism. Annals of Neurology, 2005. 57(1): p. 67-81.

105. Ashwood, P., et al., Associations of impaired behaviors with elevated plasma

chemokines in autism spectrum disorders. Journal of neuroimmunology, 2011.

232(1): p. 196-199.

106. Bauman, M.L. and T.L. Kemper, The neurobiology of autism. 2005: JHU Press.

107. Berendsen, H.J.C., et al., Molecular dynamics with coupling to an external bath.

The Journal of Chemical Physics, 1984. 81(8): p. 3684-3690.

108. Nowak, W., Applications of computational methods to simulations of proteins

dynamics, in Handbook of Computational Chemistry. 2012, Springer. p. 1127-

1153.

109. Foloppe, N. and A.D. MacKerell Jr, All‐atom empirical force field for nucleic

acids: I. Parameter optimization based on small molecule and condensed phase

macromolecular target data. Journal of computational chemistry, 2000. 21(2): p.

86-104.

110. Berman, H.M., et al., The protein data bank. Nucleic acids research, 2000. 28(1): p.

235-242.

111. Grubmüller, H., B. Heymann, and P. Tavan, Ligand Binding: Molecular Mechanics

Calculation of the Streptavidin-Biotin Rupture Force. Science, 1996. 271(5251): p.

997-999.

112. Marszalek, P.E., et al., Mechanical unfolding intermediates in titin modules.

Nature, 1999. 402(6757): p. 100-103.

113. Brooks, B.R., et al., CHARMM: A program for macromolecular energy,

minimization, and dynamics calculations. Journal of computational chemistry,

1983. 4(2): p. 187-217.

114. Brooks, B.R., et al., CHARMM: the biomolecular simulation program. Journal of

computational chemistry, 2009. 30(10): p. 1545-1614.

115. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of

computational chemistry, 2005. 26(16): p. 1781-1802.

116. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics.

Journal of molecular graphics, 1996. 14(1): p. 33-38.

117. Bernstein, F.C., et al., The Protein Data Bank: a computer-based archival file for

macromolecular structures. Journal of Molecular Biology, 1977. 112(3): p. 535-

542.

118. Padavattan, S., et al., High-affinity IgE recognition of a conformational epitope of

the major respiratory allergen Phl p 2 as revealed by X-ray crystallography. The

Journal of Immunology, 2009. 182(4): p. 2141-2151.

119. Baker, N.A., et al., Electrostatics of nanosystems: application to microtubules and

the ribosome. Proceedings of the National Academy of Sciences, 2001. 98(18): p.

10037–10041.

169

120. Dolinsky, T.J., et al., PDB2PQR: expanding and upgrading automated preparation

of biomolecular structures for molecular simulations. Nucleic acids research, 2007.

35(suppl 2): p. W522-W525.

121. Dolinsky, T.J., et al., PDB2PQR: an automated pipeline for the setup of Poisson–

Boltzmann electrostatics calculations. Nucleic acids research, 2004. 32(suppl 2): p.

W665-W667.

122. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic acids research, 1997. 25(17): p. 3389-3402.

123. Larkin, M., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007.

23(21): p. 2947-2948.

124. Waterhouse, A.M., et al., Jalview Version 2—a multiple sequence alignment editor

and analysis workbench. Bioinformatics, 2009. 25(9): p. 1189-1191.

125. Clamp, M., et al., The jalview java alignment editor. Bioinformatics, 2004. 20(3):

p. 426-427.

126. Mayor, U., et al., The complete folding pathway of a protein from nanoseconds to

microseconds. Nature, 2003. 421(6925): p. 863-867.

127. Shao, J., et al., Clustering molecular dynamics trajectories: 1. Characterizing the

performance of different clustering algorithms. Journal of Chemical Theory and

Computation, 2007. 3(6): p. 2312-2334.

128. Shelley, J.C., et al., A coarse grain model for phospholipid simulations. The

Journal of Physical Chemistry B, 2001. 105(19): p. 4464-4470.

129. Srinivas*, G. and M.L. Klein, Coarse-grain molecular dynamics simulations of

diblock copolymer surfactants interacting with a lipid bilayer. Molecular Physics,

2004. 102(9-10): p. 883-889.

130. Marrink, S.J., et al., The MARTINI force field: coarse grained model for

biomolecular simulations. The Journal of Physical Chemistry B, 2007. 111(27): p.

7812-7824.

131. Tozzini, V., Coarse-grained models for proteins. Current opinion in structural

biology, 2005. 15(2): p. 144-150.

132. Jakubowski, R., et al., Computational Studies of TTR Related Amyloidosis:

Exploration of Conformational Space through a Petri Net-Based Algorithm. TASK

Quarterly, 2014(10/2014): p. 18(3):267.

133. Cohen, F.E. and M.J. Sternberg, On the prediction of protein structure: the

significance of the root-mean-square deviation. Journal of Molecular Biology,

1980. 138(2): p. 321-333.

134. Zemla, A., et al., Processing and analysis of CASP3 protein structure predictions.

Proteins: Structure, Function, and Bioinformatics, 1999. 37(S3): p. 22-29.

135. Zhang, Y. and J. Skolnick, Scoring function for automated assessment of protein

structure template quality. Proteins: Structure, Function, and Bioinformatics, 2004.

57(4): p. 702-710.

136. Godzik, A., The structural alignment between two proteins: Is there a unique

answer? Protein science, 1996. 5(7): p. 1325-1338.

137. Holm, L. and C. Sander, Protein structure comparison by alignment of distance

matrices. Journal of Molecular Biology, 1993. 233(1): p. 123-138.

138. Shindyalov, I.N. and P.E. Bourne, Protein structure alignment by incremental

combinatorial extension (CE) of the optimal path. Protein engineering, 1998. 11(9):

p. 739-747.

139. Holland, R.C., et al., BioJava: an open-source framework for bioinformatics.

Bioinformatics, 2008. 24(18): p. 2096-2097.

140. Ye, Y. and A. Godzik, Flexible structure alignment by chaining aligned fragment

pairs allowing twists. Bioinformatics, 2003. 19(suppl 2): p. ii246-ii255.

141. Gogolinska, A. and W. Nowak, Petri Nets Formalism Facilitates Analysis of

Complex Biomolecular Structural Data. RAIRO-OPERATIONS RESEARCH,

2015. under review.

170

142. Wojtczak, A., P. Neumann, and V. Cody, Structure of a new polymorphic

monoclinic form of human transthyretin at 3 A resolution reveals a mixed complex

between unliganded and T4-bound tetramers of TTR. Acta Crystallographica

Section D: Biological Crystallography, 2001. 57(7): p. 957-967.

143. Jolliffe, I., Principal component analysis. 2005: Wiley Online Library.

144. Angles, R. A comparison of current graph database models. in Data Engineering

Workshops (ICDEW), 2012 IEEE 28th International Conference on. 2012: IEEE.

145. Vendruscolo, M. and E. Domany, Protein folding using contact maps. Vitamins &

Hormones, 2000. 58: p. 171-212.

146. Faure, G., A. Bornot, and A.G. de Brevern, Protein contacts, inter-residue

interactions and side-chain modelling. Biochimie, 2008. 90(4): p. 626-639.

147. Cock, P.J., et al., Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 2009. 25(11): p. 1422-1423.

148. Vehlow, C., et al., CMView: interactive contact map visualization and analysis.

Bioinformatics, 2011. 27(11): p. 1573-1574.

149. Henrick, K., et al., Remediation of the protein data bank archive. Nucleic acids

research, 2008. 36(suppl 1): p. D426-D433.

150. Nvidia, C., CUDA C Best Practices Guide. 2013.

151. NVIDIA. http://www.nvidia.pl/object/product-geforce-gtx-580-pl.html.

152. Gosling, J., et al., Java (TM) Language Specification, The (Java (Addison-

Wesley)). 2005: Addison-Wesley Professional.

