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Abstract

In this dissertation, we study bisimulations and bisimulation-based comparisons in
a uniform way for a large class of description logics that extend ALCreg (a variant of
propositional dynamic logic) with an arbitrary set of features among I (inverse roles),
O (nominals), Q (qualified number restrictions), U (the universal role), Self (local
reflexivity of a role) as well as role axioms.

We give results on invariance of concepts, TBoxes and ABoxes, preservation of
RBoxes and knowledge bases, the Hennessy-Milner property w.r.t. bisimulations, the
largest auto-bisimulations and quotient interpretations w.r.t. such equivalence relations.
By adapting Hopcroft’s automaton minimization algorithm and the Paige-Tarjan al-
gorithm, we give efficient algorithms for computing the partition corresponding to the
largest auto-bisimulation of a finite interpretation.

We provide results on preservation of semi-positive concepts, the Hennessy-Milner
property w.r.t. bisimulation-based comparisons, characterizing bisimulation for tidy in-
terpretations by semi-positive concepts, and minimization of interpretations that pre-
serves semi-positive concepts.

We separate the expressiveness of the description logics that extend L, where
ALC ≤ L ≤ ALCreg, with any combination of the features I, O, Q, U , Self. Our
separation results are w.r.t. concepts, positive concepts, TBoxes and ABoxes.

We prove that any concept in any description logic that extends ALC with some
features amongst I, Self, Qk (qualified number restrictions with numbers bounded
by a constant k) can be learned if the training information system (specified as an
interpretation) is good enough.

Keywords: description logics, bisimulation, minimization,
expressiveness, concept learning, learnability.

ACM Classification: description logics,
modeling and simulation,
machine learning.
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Chapter 1

Introduction

Description logics (DLs) are variants of modal logic. They are of particular importance
in providing a logical formalism for ontologies and the Semantic Web. DLs represent the
domain of interest in terms of concepts, individuals, and roles. A concept is interpreted
as a set of individuals, while a role is interpreted as a binary relation among individuals.
A DL is characterized by a set of concept constructors, a set of role constructors, and a
set of allowed forms of role axioms and individual assertions. A knowledge base in a DL
usually has three parts: an RBox consisting of axioms about roles, a TBox consisting
of terminology axioms, and an ABox consisting of assertions about individuals. The
basic DL ALC allows basic concept constructors listed in Table 1.1, but does not allow
role constructors nor role axioms. The most common additional features for extending
ALC are also listed in Table 1.1.

Given two individuals in an interpretation, sometimes we are interested in the ques-
tion whether they are “similar” or not, i.e., whether they are indiscernible w.r.t. the con-
sidered description language. Indiscernibility is used, for example, in machine learning.
In DLs, it is formally characterized by bisimulation. Roughly speaking, two individuals
are indiscernible iff they are bisimilar.

Bisimulations arose in modal logic [60, 61, 62] and state transition systems [50,
27]. They were introduced by van Benthem under the name p-relation in [60, 61] and
the name zigzag relation in [62]. Bisimulations reflect, in a particularly simple and
direct way, the locality of the modal satisfaction definition. The famous Van Benthem
Characterization Theorem states that modal logic is the bisimulation invariant fragment
of first-order logic. Bisimulations have been used to analyze the expressivity of a wide
range of extended modal logics (see, e.g., [6] for details). In state transition systems,
bisimulation is viewed as a binary relation associating systems which behave in the same
way in the sense that one system simulates the other and vice versa. Kripke models
in modal logic are a special case of labeled state transition systems. Hennessy and
Milner [27] showed that weak modal languages could be used to classify various notions
of process invariance. In general, bisimulations are a natural notion of equivalence for
both mathematical and computational investigations.1

Bisimilarity between two states is usually defined by three conditions (the states

1This paragraph is based on [6].
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Concept constructors of ALC
Constructor Syntax Example

complement ¬C ¬Male

intersection C uD Human uMale

union C tD Doctor t Lawyer

existential restriction ∃r.C ∃hasChild .Male

universal restriction ∀r.C ∀hasChild .Female

Some additional constructors/features of other DLs

Constructor/Feature Syntax Example

inverse roles (I) r− hasChild− (i.e., hasParent)

qualified number ≥nR.C ≥3 hasChild .Male

restrictions (Q) ≤nR.C ≤2 hasParent .>
nominals (O) {a} {John}
hierarchies of roles (H) R v S hasChild v hasDesc.

transitive roles (S) R ◦R v R hasDesc. ◦ hasDesc. v hasDesc.

Table 1.1: Concept constructors for ALC and some additional constructors/features of
other DLs.

have the same label, each transition from one of the states can be simulated by a
similar transition from the other, and vice versa). As shown in [6], the four program
constructors of PDL (propositional dynamic logic) are “safe” for these three conditions.
That is, we need to specify the mentioned conditions only for atomic programs, and
as a consequence, they hold also for complex programs. For bisimulation between
two pointed-models, the initial states of the models are also required to be bisimilar.
When converse is allowed (the case of CPDL), two additional conditions are required
for bisimulation [6]. Bisimulation conditions for dealing with graded modalities were
studied in [13, 12, 34]. In the field of hybrid logic, the bisimulation condition for dealing
with nominals is well known (see, e.g., [3]).

In modal logic, bisimulation invariance has the form: if two states are bisimilar
then they satisfy the same set of formulas (i.e., all modal formulas are invariant w.r.t.
bisimulation). For the converse, the Hennessy-Milner property states that, in modally-
saturated Kripke models, two states are bisimilar iff they satisfy the same set of for-
mulas.

Simulation is a notion with weaker conditions than bisimulation. It is only “one
way”, while bisimulation is “two way”. In the most common understanding, the “ways”
are related with the “transitions” but not w.r.t. comparison between the sets of atomic
formulas satisfied at the considered states. Such simulation preserves positive existential
formulas (see, e.g., [6]).

In [36], Kurtonina and de Rijke introduced directed (modal) simulation, which pre-
serves negation-free formulas. Such directed simulation uses the conditions of bisimula-
tion for “transitions” and compares the sets of atomic formulas satisfied at the consid-
ered states. They first formulated directed simulation for a monomodal logic (denoted
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by L¬3,2, which is the monomodal logic K without negation) and then, as examples,
they extended it to the DL FLEUC−, temporal logic, feature logics and languages with
non-Boolean negation. They used directed simulation to obtain preservation, safety
and definability results. They also proved the corresponding Hennessy-Milner property
for the considered monomodal logic.

Being not aware of the work [36] by Kurtonina and de Rijke, in [18] we used the
term “bisimulation-based comparison” instead of “directed simulation”. We still prefer
the term “bisimulation-based comparison”. The reader can treat it as a synonym of
“directed simulation” [36].

Bisimulation-based comparison between Kripke models is worth studying, because
it can be used for minimizing a Kripke model w.r.t. the set of logical consequences
being positive formulas. For example, after constructing a least Kripke model of a
positive modal logic program in a serial modal logic [42, 44, 20], one can minimize
it w.r.t. positive formulas to obtain a minimal Kripke model that characterizes the
program w.r.t. positive consequences. Such minimization is also applicable to (non-
serial) DLs [43, 46].

In this dissertation we study bisimulations and bisimulation-based comparisons be-
tween interpretations in DLs. The simplest among the considered logics is ALCreg, a
variant of PDL (propositional dynamic logic). The others extend that logic with inverse
roles, nominals, qualified number restrictions, the universal role, and/or the concept
constructor ∃r.Self for expressing the local reflexivity of a role. Inverse roles are like
converse modal operators, qualified number restrictions are like graded modalities, and
nominals are as in hybrid logic. The considered logics also allow role axioms.

The topic is worth studying due to the following reasons:

1. Despite that bisimulation conditions are known for PDL and for some features
like converse modal operators, graded modal operators and nominals, we are
not aware of previous work on bisimulation conditions for the universal role and
the concept constructor ∃r.Self. More importantly, without proofs one cannot
be sure that all the conditions can be combined together to guarantee standard
properties like invariance and the Hennessy-Milner property.

There are many papers on bisimulations, but just a few on bisimulations in DLs:

• In [37] Kurtonina and de Rijke studied expressiveness of concept expressions
in some DLs by using bisimulations. They considered a family of DLs that
are sublogics of the DL ALCNR, which extend ALC with (unqualified)
number restrictions and role conjunction. They did not consider individuals,
nominals, qualified number restrictions, the concept constructor ∃r.Self,
the universal role, and the role constructors like the program constructors
of PDL.

• In [40] Lutz et al. characterized the expressiveness of TBoxes in the DL
ALCQIO and its sublogics, including the lightweight DLs such as DL-Lite
and EL. They also studied invariance of TBoxes and the problem of TBox
rewritability. The logic ALCQIO lacks the role constructors of PDL, the
concept constructor ∃r.Self and the universal role.
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• The papers [16, 15, 18, 14, 19] are our works that form the contents of this
dissertation.

• Bisimulation-based concept learning in DLs was studied in [48, 57, 26, 56, 58].
All of these works are based on the notion of bisimulation and its properties
investigated in our papers [16, 19].

The family of DLs studied in this work is large and contains useful DLs. Not
only concept constructors and role constructors are allowed, but role axioms are
also allowed. In particular, the DL SROIQ, which is the logical base of the Web
Ontology Language OWL 2, belongs to this class.

2. DLs differ from other logics like modal logics and hybrid logics in the domain
of applications and the settings. In DLs, there are special notions like named
individual, RBox, TBox, ABox. Also, recall that a knowledge base in a DL
usually consists of an RBox, a TBox and an ABox. Invariance of ABoxes and
preservation of RBoxes and knowledge bases in DLs were not studied before. On
the other hand, invariance of TBoxes was recently studied in the independent
work [40] for the DL ALCQIO and its sublogics. Note that the first version [41]
of [40] appeared to the public a few days later than our manuscript [17]. The
works [40, 41] use the notion of global bisimulation to characterize invariance of
TBoxes, whose condition is the same as the bisimulation conditions introduced
in [17] for the universal role.

3. Bisimulation is a useful notion for DLs. The applications are analyzing expres-
siveness of DLs, minimizing interpretations and concept learning in DLs.

• A DL L is more expressive than a DL L′ w.r.t. concepts if every concept in
L′ has an equivalent concept in L, but not vice versa. Similarly, DLs can be
compared w.r.t. positive concepts, TBoxes and ABoxes.

• Roughly speaking, two objects that are bisimilar to each other can be
merged. This is the basis for minimizing interpretations. In automated
reasoning in DLs, sometimes we want to return a model of a knowledge base
(e.g., as a counter example for a subsumption problem or an instance check-
ing problem). It is expected that the returned model is simple and as small
as possible. One can just find some model and minimize it. As another ex-
ample, given an information system specified by an acyclic knowledge base
with a large ABox and a small TBox, one can compute that information
system and minimize it to save space and increase efficiency of reasoning
tasks.

• Concept learning in DLs is similar to binary classification in traditional ma-
chine learning. The difference is that in DLs objects are described not only
by attributes but also by relationship between the objects. As bisimulation
is the notion for characterizing indiscernibility of objects in DLs, it is useful
for concept learning in DLs [48, 57, 26, 15].
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The Structure of the Rest of This Dissertation

Chapter 2: We present notation and semantics of DLs.

Chapter 3: We formulate bisimulations for the mentioned class of DLs. We give
results about invariance of concepts, TBoxes and ABoxes, preservation of RBoxes
and knowledge bases, and the Hennessy-Milner property w.r.t. bisimulations in
the considered DLs. We also provide results on the largest auto-bisimulations
and quotient interpretations w.r.t. such equivalence relations. Such results are
useful for minimizing interpretations and concept learning in DLs. To deal with
minimizing interpretations for the case when the considered logic allows qualified
number restrictions and/or the constructor for the local reflexivity of a role, we
introduce a new notion called QS-interpretation, which is needed for obtaining
expected results. By adapting Hopcroft’s automaton minimization algorithm [28]
and the Paige-Tarjan algorithm [49], we give efficient algorithms for computing the
partition corresponding to the largest auto-bisimulation of a finite interpretation.

Chapter 4: We study comparisons between interpretations in DLs with respect to
logical consequences of the form of semi-positive concepts. Such comparisons are
characterized by conditions similar to the ones of bisimulations. The studied prob-
lems are: preservation of semi-positive concepts with respect to comparisons, the
Hennessy-Milner property for comparisons, characterizing bisimulation for tidy
interpretations by semi-positive concepts, and minimization of interpretations
that preserves semi-positive concepts.

Chapter 5: We compare the expressiveness of the considered DLs w.r.t. concepts,
positive concepts, TBoxes and ABoxes. Our results about separating the expres-
siveness of description logics are based on bisimulations and bisimulation-based
comparisons. They are naturally extended to the case when instead of ALCreg
we have any sublogic of ALCreg that extends ALC.

Chapter 6: This chapter concerns concept learning in DLs. In Section 6.1, we present
a survey on bisimulation-based concept learning in DLs. In Section 6.2, we prove
that any concept in any description logic that extends ALC with some features
amongst I (inverse), Qk (qualified number restrictions with numbers bounded
by a constant k), Self (local reflexivity of a role) can be learned if the training
information system (specified as an interpretation) is good enough. That is, there
exists a learning algorithm such that, for every concept C of those logics, there
exists a training information system consistent with C such that applying the
learning algorithm to the system results in a concept equivalent to C. In Sec-
tion 6.3, we generalize common types of queries for description logics, introduce
interpretation queries and present some consequences.

Chapter 7: This chapter concludes our dissertation.

The bibliography, acknowledgements and an index of symbols and terms are provided
at the end of this dissertation.
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Chapter 2

Preliminaries

2.1 Notation of Description Logics

Our languages use a countable set ΣC of concept names (atomic concepts), a countable
set ΣR of role names (atomic roles), and a countable set ΣI of individual names. Let
Σ = ΣC ∪ ΣR ∪ ΣI . We denote concept names by letters like A and B, denote role
names by letters like r and s, and denote individual names by letters like a and b.

We consider some (additional) DL-features denoted by I (inverse), O (nominal), Q
(qualified number restriction), U (universal role), Self. A set of DL-features is a set
consisting of some or zero of these names. We sometimes abbreviate sets of DL-features,
writing e.g., IOQ instead of {I,O,Q}.

Definition 2.1 (Syntax of Roles and Concepts).
Let Φ be any set of DL-features and let L stand for ALCreg, which is the name of the
DL corresponding to propositional dynamic logic (PDL). The DL language LΦ allows
roles and concepts defined inductively as follows:

• if r ∈ ΣR then r is a role of LΦ

• if A ∈ ΣC then A is a concept of LΦ

• if R and S are roles of LΦ and C is a concept of LΦ then

– ε, R ◦ S , R t S, R∗ and C? are roles of LΦ

– >, ⊥, ¬C, C uD, C tD, ∀R.C and ∃R.C are concepts of LΦ

– if I ∈ Φ then R− is a role of LΦ

– if O ∈ Φ and a ∈ ΣI then {a} is a concept of LΦ

– if Q ∈ Φ, r ∈ ΣR and n is a natural number
then ≥ n r.C and ≤ n r.C are concepts of LΦ

– if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number
then ≥ n r−.C and ≤ n r−.C are concepts of LΦ

– if U ∈ Φ then U is a role of LΦ (we assume U /∈ ΣR)

– if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of LΦ. �
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We use letters like R and S to denote arbitrary roles, and use letters like C and
D to denote arbitrary concepts. A role stands for a binary relation, while a concept
stands for a unary relation.

The intended meaning of the role constructors is the following:

• ε stands for the empty binary relation,

• R ◦ S stands for the sequential composition of R and S,

• R t S stands for the set-theoretical union of R and S,

• R∗ stands for the reflexive and transitive closure of R,

• C? stands for the test operator (as of PDL),

• R− stands for the inverse of R,

• U stands for the full binary relation (on the domain).

The symbols > and ⊥ stand for truth and falsity, respectively. The constructors ¬,
u and t stand for complement, intersection and union, respectively. A concept {a},
called a nominal, stands for a singleton set. The constructors ∀R.C and ∃R.C are
called universal restriction and existential restriction, respectively. They correspond to
the modal operators 〈R〉C and [R]C of PDL, respectively. The concept constructors
≥ nR.C and ≤ nR.C are called qualified number restrictions. They correspond to
graded modal operators. The constructor ∃r.Self stands for local reflexivity of r.

We refer to elements of ΣR also as atomic roles. Let Σ±R = ΣR ∪ {r− | r ∈ ΣR}.
From now on, by basic roles we refer to elements of Σ±R if the considered language allows
inverse roles, and refer to elements of ΣR otherwise. In general, the language decides
whether inverse roles are allowed in the considered context.

We say that a role R is in the converse normal form (CNF) if the inverse constructor
is applied in R only to role names and the role U is not under the scope of any other
role constructor. Since every role can be translated to an equivalent role in CNF,1 in
this dissertation we assume that roles are presented in the CNF.

Definition 2.2 (RBox – Box of Role Axioms).
A role (inclusion) axiom in LΦ is an expression of the form ε v r or R1 ◦ . . . ◦Rk v r,
where k ≥ 1 and R1, . . . , Rk are basic roles of LΦ.2 An RBox in LΦ is a finite set of
role axioms in LΦ. �

Definition 2.3 (TBox – Box of Terminological Axioms).
A terminological axiom in LΦ, also called a general concept inclusion (GCI) in LΦ, is
an expression of the form C v D, where C and D are concepts in LΦ. A TBox in LΦ

is a finite set of terminological axioms in LΦ. �

1For example, ((r t s−) ◦ r∗)− = (r−)∗ ◦ (r− t s).
2This definition depends only on whether LΦ allows inverse roles, i.e., whether I ∈ Φ.
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Definition 2.4 (ABox – Box of Individual Assertions).
An individual assertion in LΦ is an expression of one of the forms C(a) (concept as-
sertion), R(a, b) (positive role assertion), ¬R(a, b) (negative role assertion), a

.
= b, and

a 6 .= b, where C is a concept and R is a role in LΦ. An ABox in LΦ is a finite set of
individual assertions in LΦ. �

Definition 2.5 (Knowledge Base).
A knowledge base in LΦ is a triple 〈R, T ,A〉, where R (resp. T , A) is an RBox (resp.
a TBox, an ABox) in LΦ. �

2.2 Semantics of Description Logics

As usual, the semantics of a logic is specified by interpretations and the satisfaction
relation.

Definition 2.6 (Interpretation).
An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , called the domain of
I, and a function ·I , called the interpretation function of I, which maps every concept
name A to a subset AI of ∆I , maps every role name r to a binary relation rI on ∆I ,
and maps every individual name a to an element aI of ∆I . We say that I is a finite
interpretation if ∆I and Σ are finite. The interpretation function ·I is extended to
complex roles and complex concepts as shown in Figure 2.1, where #Γ stands for the
cardinality of the set Γ, CI(x) denotes x ∈ CI , and RI(x, y) denotes 〈x, y〉 ∈ RI . �

For a finite set Γ = {C1, . . . , Cn} of concepts, by
d

Γ we denote the concept C1 u
. . . u Cn, which is > when n = 0. For a set Γ of concepts, by ΓI we denote the set⋂
{CI | C ∈ Γ}. If x ∈ ΓI then we say that x satisfies Γ, I satisfies Γ (at x) and Γ is

satisfied (at x) in I.

If RI(x, y) holds then we call y an R-successor of x.

Definition 2.7 (The Satisfaction Relation).
Given an interpretation I, define that:

I |= C v D if CI ⊆ DI

I |= R1 ◦ . . . ◦Rk v r if RI1 ◦ . . . ◦RIk ⊆ rI

I |= ε v r if εI ⊆ rI

I |= a
.
= b if aI = bI

I |= a 6 .= b if aI 6= bI

I |= C(a) if CI(aI) holds

I |= R(a, b) if RI(aI , bI) holds

I |= ¬R(a, b) if RI(aI , bI) does not hold,

where the operator ◦ stands for the composition of binary relations. We say that I
validates an axiom (resp. satisfies an assertion) ϕ if I |= ϕ. In that case, we also say
that ϕ is validated by (resp. satisfied in) I. �
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(R ◦ S)I = RI ◦ SI

(R t S)I = RI ∪ SI

(R∗)I = (RI)∗

(C?)I = {〈x, x〉 | CI(x)}
εI = {〈x, x〉 | x ∈ ∆I}
UI = ∆I ×∆I

(R−)I = (RI)−1

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

{a}I = {aI}
(∃r.Self)I = {x ∈ ∆I | rI(x, x)}

(∀R.C)I = {x ∈ ∆I | ∀y [RI(x, y) implies CI(y)]}
(∃R.C)I = {x ∈ ∆I | ∃y [RI(x, y) and CI(y)]

(≥ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≤ n}

Figure 2.1: Interpretation of complex roles and complex concepts.

Note that reflexiveness and transitiveness of atomic roles are expressible by role
axioms. When I ∈ Φ, symmetry of an atomic role can also be expressed by a role
axiom.

Definition 2.8 (Semantics).
An interpretation I is a model of a “box” (RBox, TBox or ABox) if it validates all the
axioms/assertions of that “box”. It is a model of a knowledge base 〈R, T ,A〉 if it is a
model of R, T and A. A knowledge base is satisfiable if it has a model. An individual
a is said to be an instance of a concept C w.r.t. a knowledge base KB , denoted by
KB |= C(a), if, for every model I of KB , aI ∈ CI . �

Example 2.9. Let

• ΣI = {Alice,Bob,Claudia,Dave,Eva,Frank ,George,Helen},

• ΣC = {Male,Female,Father ,Mother}, and

• ΣR = {hasChild , hasParent}.

Consider the interpretation I specified by:

• ∆I = {a, b, c, d, e, f, g, h, u, v},

• AliceI = a, BobI = b, . . . , HelenI = h (u and v are unnamed individuals),

• hasChildI consists of elements illustrated by edges in the following graph:
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(in this graph, the letter M denotes Male, and F denotes Female),

• hasParentI = (hasChild−1)I = (hasChildI)−1,

• MaleI = {b, d, f, g, u}, FemaleI = ∆I \MaleI = {a, c, e, h, v}‘,

• FatherI = (Male u ∃hasChild .>)I = {b, d, u},

• MotherI = (Female u ∃hasChild .>)I = {a, c, e}.

As examples, we have that:

• (∃hasChild .Self)I = ∅,

• (≥3 hasChild .>)I = {c, d},

• (≥2 hasChild .Male)I = {c, d},

• (Female u <2 hasChild .>)I = {e, h, v}. �

Example 2.10. Let ΣI = {a, b, c}, ΣC = {F,M} and ΣR = {r}. One can think of
these names as Alice (a), Bob (b), Claudia (c), female (F ), male (M), and has child (r).
In Figure 2.2 we give three interpretations I1, I2 and I3.

The edges are instances of r. We have, for example, ∆I1 = {aI1 , bI1 , cI1 , u1, u2, u3},
where these six elements are pairwise different, F I1 = {aI1 , cI1 , u2}, and MI1 =
{bI1 , u1, u3}.3 All of these interpretations are models of the following ABox in LIOQ,
where r− can be read as has parent:

{ F (a), M(b), F (c), (∃r.(∃r−.{b} u ≥2 r.∃r−.{c}))(a) }

Assuming that r means has child, then the last assertion of the above ABox means “a
and b have a child which in turn has at least two children with c”.

All the interpretations I1, I2 and I3 validate the terminological axioms ¬F v M
and {a} v ∀r∗.({a} t ≥2 r−.>) of LIOQ. �

3The elements ui, vj , wk are unnamed objects. (The elements of ΣI can be called named individuals,
while the elements ui, vj , wk can be called unnamed individuals.)
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(I1)

a : F

$$J
JJ

JJ
JJ

JJ
b : M

��
c : F

�� $$I
II

II
II

II
u1 : M

zzuuu
uu
uu
uu

��
u2 : F u3 : M

(I2) (I3)

a : F

$$I
II

II
II

II
b : M

��
c : F

�� $$I
II

II
II

II

**TTT
TTTT

TTTT
TTTT

TTT v1 : M

zzuuu
uu
uu
uu

�� $$I
II

II
II

II

v2 : F v3 : M v4 : F

a : F

%%JJ
JJJ

JJJ
JJ

b : M

��
c : F

�� $$JJ
JJJ

JJJ
JJ

w1 : M

zzttt
tt
tt
tt

�� $$JJ
JJ

JJ
JJ

J w5 : F

��
w2 : F w3 : M w4 : F

Figure 2.2: Interpretations used in Examples 2.10 and 3.4.
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Chapter 3

Bisimulations for Description
Logics

In this chapter we present conditions for bisimulation in a uniform way for the whole
considered family of DLs. A special point of our approach is that named individuals are
treated as initial states, which requires an appropriate condition for bisimulation. As far
as we know, bisimulation conditions for the universal role and the concept constructor
∃r.Self are first given by us. We prove the standard invariance property (Theorem 3.4)
and the Hennessy-Milner property (Theorem 3.12) and address the following problems:

• When is a TBox invariant for bisimulation? (Corollary 3.5 and Theorem 3.6)

• When is an ABox invariant for bisimulation? (Theorem 3.7)

• What can be said about preservation of RBoxes w.r.t. bisimulation? (Theo-
rem 3.8)

• What can be said about invariance or preservation of knowledge bases w.r.t. bisim-
ulation? (Theorems 3.9 and 3.10)

Furthermore, we give results (Theorems 3.15, 3.16, 3.17, 3.19 and 3.20) on the
largest auto-bisimulation of an interpretation in a DL, the quotient interpretation
w.r.t. that equivalence relation, and minimality of such a quotient interpretation. To
deal with minimizing interpretations for the case when the considered logic allows qual-
ified number restrictions and/or the concept constructor ∃r.Self, we introduce a new
notion called QS-interpretation, which is needed for obtaining expected results.

Computing the largest auto-bisimulations in modal logics and state transition sys-
tems is standard like Hopcroft’s automaton minimization algorithm [28] and the Paige-
Tarjan algorithm [49]. By adapting these algorithms, we give efficient algorithms for
computing the partition corresponding to the largest auto-bisimulation of a finite in-
terpretation in any DL of the considered family. The adaptation involves the allowed
constructors of the considered DLs.

This chapter is structured as follows. In Section 3.1 we define bisimulations in those
DLs and give our results on invariance and preservation w.r.t. such bisimulations. In
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Section 3.2 we give our results on the Hennessy-Milner property of the considered DLs.
Section 3.3 is devoted to auto-bisimulation and minimization. Section 3.4 is devoted
to computing the partition corresponding to the largest auto-bisimulation of a finite
interpretation. Section 3.5 discusses applications of minimizing interpretations.

3.1 Bisimulations and Invariance Results

Definition 3.1 (Bisimulation).
Let I and I ′ be interpretations. A non-empty binary relation Z ⊆ ∆I ×∆I

′
is called

an LΦ-bisimulation between I and I ′ if the following conditions hold for every a ∈ ΣI ,
A ∈ ΣC , r ∈ ΣR, x, y ∈ ∆I , x′, y′ ∈ ∆I

′
:

Z(aI , aI
′
) (3.1)

Z(x, x′)⇒ [AI(x)⇔ AI
′
(x′)] (3.2)

[Z(x, x′) ∧ rI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI′(x′, y′)] (3.3)

[Z(x, x′) ∧ rI′(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(x, y)], (3.4)

if I ∈ Φ then

[Z(x, x′) ∧ rI(y, x)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI′(y′, x′)] (3.5)

[Z(x, x′) ∧ rI′(y′, x′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(y, x)], (3.6)

if O ∈ Φ then

Z(x, x′)⇒ [x = aI ⇔ x′ = aI
′
], (3.7)

if Q ∈ Φ then

if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements
of ∆I such that rI(x, yi) holds for every 1 ≤ i ≤ n then there exist
pairwise different elements y′1, . . . , y

′
n of ∆I

′
such that rI

′
(x′, y′i) and

Z(yi, y
′
i) hold for every 1 ≤ i ≤ n

(3.8)

if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise different elements of

∆I
′

such that rI
′
(x′, y′i) holds for every 1 ≤ i ≤ n then there exist pair-

wise different elements y1, . . . , yn of ∆I such that rI(x, yi) and Z(yi, y
′
i)

hold for every 1 ≤ i ≤ n,

(3.9)

if {Q, I} ⊆ Φ then (additionally)

if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements
of ∆I such that rI(yi, x) holds for every 1 ≤ i ≤ n then there exist
pairwise different elements y′1, . . . , y

′
n of ∆I

′
such that rI

′
(y′i, x

′) and
Z(yi, y

′
i) hold for every 1 ≤ i ≤ n

(3.10)

if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise different elements of

∆I
′

such that rI
′
(y′i, x

′) holds for every 1 ≤ i ≤ n then there exist pair-
wise different elements y1, . . . , yn of ∆I such that rI(yi, x) and Z(yi, y

′
i)

hold for every 1 ≤ i ≤ n,

(3.11)
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if U ∈ Φ then

∀x ∈ ∆I ∃x′ ∈ ∆I
′
Z(x, x′) (3.12)

∀x′ ∈ ∆I
′ ∃x ∈ ∆I Z(x, x′), (3.13)

if Self ∈ Φ then

Z(x, x′)⇒ [rI(x, x)⇔ rI
′
(x′, x′)]. (3.14)

For example, if Φ = {I,Q} then only the conditions (3.1)-(3.6) and (3.8)-(3.11) (and
all of them) are essential. �

Notice that our bisimulation conditions (3.8)-(3.11) for qualified number restrictions
are relatively simpler than the ones given for graded modalities in [13, 12].

Definition 3.2 (Finitely Branching Interpretation).
An interpretation I is finitely branching (or image-finite) w.r.t. LΦ if, for every x ∈ ∆I

and every basic role R of LΦ, the set {y ∈ ∆I | RI(x, y)} is finite. �

Observe that, if I and I ′ are finitely branching interpretations, then:

• the combination of the conditions (3.8) and (3.9) is equivalent to:

if Z(x, x′) holds then there exists a bijection h : {y | rI(x, y)} → {y′ | rI′(x′, y′)}
such that h ⊆ Z,

• the combination of the conditions (3.10) and (3.11) is equivalent to:

if Z(x, x′) holds then there exists a bijection h : {y | rI(y, x)} → {y′ | rI′(y′, x′)}
such that h ⊆ Z.

Lemma 3.1.

1. The relation {〈x, x〉 | x ∈ ∆I} is an LΦ-bisimulation between I and I.

2. If Z is an LΦ-bisimulation between I and I ′ then Z−1 is an LΦ-bisimulation
between I ′ and I.

3. If Z1 is an LΦ-bisimulation between I0 and I1, and Z2 is an LΦ-bisimulation
between I1 and I2, then Z1 ◦ Z2 is an LΦ-bisimulation between I0 and I2.

4. If Z is a set of LΦ-bisimulations between I and I ′ then
⋃
Z is also an LΦ-

bisimulation between I and I ′.

The proof of this lemma is straightforward.

Definition 3.3 (LΦ-Bisimilarity).
An interpretation I is LΦ-bisimilar to I ′ if there exists an LΦ-bisimulation between
them. We say that x ∈ ∆I is LΦ-bisimilar to x′ ∈ ∆I

′
if there exists an LΦ-bisimulation

Z between I and I ′ such that Z(x, x′) holds. �
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Algorithm 1: checking LΦ-bisimilarity of two finite interpretations

input : a set Φ of DL-features and finite interpretations I, I ′
output: an LΦ-bisimulation between I and I ′ if they are LΦ-bisimilar, or false

otherwise.

1 Z := ∆I ×∆I
′
;

2 repeat

3 foreach x ∈ ∆I and x′ ∈ ∆I
′
do

4 if some condition among (3.2)-(3.11), (3.14) is related to Φ but not
satisfied for some A, r, y, y′, a then delete the pair 〈x, x′〉 from Z

5 until Z was not modified during the last iteration;

6 if the condition (3.1) is not satisfied for some a ∈ ΣI then return false;
7 if U ∈ Φ and the condition (3.12) or (3.13) is not satisfied then return false;

8 return Z;

By Lemma 3.1, the former LΦ-bisimilarity relation is an equivalence relation be-
tween interpretations. The latter LΦ-bisimilarity relation is also an equivalence relation
(between elements of interpretations’ domains).

To check whether two finite interpretations I and I ′ are LΦ-bisimilar to each other,
one can use Algorithm 1 (on page 20). It is straightforward to prove the following
proposition.

Proposition 3.2. Algorithm 1 is correct. Furthermore, if it returns Z (but not “false”)
then Z is a maximal LΦ-bisimulation between I and I ′.

Example 3.4. Consider the interpretations I1, I2 and I3 given in Figure 2.2 (on
page 16) and described in Example 2.10.

• By using Algorithm 1, it can be checked that all the interpretations I1, I2 and
I3 are L-bisimilar. For example, running Algorithm 1 for I1 and I2 with Φ = ∅
results in Z = {〈aI1 , aI2〉, 〈bI1 , bI2〉, 〈cI1 , cI2〉, 〈u1, v1〉, 〈u2, v2〉, 〈u2, v4〉, 〈u3, v3〉}.
By Proposition 3.2, this is a maximal L-bisimulation between I1 and I2.

• Let us construct a minimal L-bisimulation between I1 and I2. We try to con-
struct a minimal relation Z ⊆ ∆I1 ×∆I2 that satisfies the conditions (3.1)-(3.4).
Recall that ∆I1 = {aI1 , bI1 , cI1 , u1, u2, u3} and ∆I2 = {aI2 , bI2 , cI2 , v1, v2, v3, v4}.
To satisfy the condition (3.1), Z(xI1 , xI2) must hold for x ∈ {a, b, c}. To satisfy
the condition (3.3) for the case when x = aI1 , x′ = aI2 and y = u1, Z(u1, v1) must
hold. Observe that, due to the condition (3.2) with A = M , none of the pairs
〈u2, v3〉, 〈u3, v2〉, 〈u3, v4〉 belongs to Z. Since Z(u1, v1) holds, to satisfy the condi-
tion (3.3) for the case when x = u1, x′ = v1 and y = u3, Z(u3, v3) must hold. Sim-
ilarly, to satisfy the condition (3.4) for the case when x = u1, x′ = v1 and y′ = v2

(resp. y′ = v4), we must have that 〈u2, v2〉 ∈ Z (resp. 〈u2, v4〉 ∈ Z). Summing up,
we must have {〈aI1 , aI2〉, 〈bI1 , bI2〉, 〈cI1 , cI2〉, 〈u1, v1〉, 〈u2, v2〉, 〈u2, v4〉, 〈u3, v3〉} ⊆
Z. Let Z be the set in the left hand side of this inclusion. It is easy to check that
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Z satisfies all the conditions (3.1)-(3.4). Hence, Z is a minimal L-bisimulation
between I1 and I2. Together with the above item, it follows that this is the
unique L-bisimulation between I1 and I2.

• Running Algorithm 1 for I1 and I2 with Φ = {I,O} results in the same set
Z = {〈aI1 , aI2〉, 〈bI1 , bI2〉, 〈cI1 , cI2〉, 〈u1, v1〉, 〈u2, v2〉, 〈u2, v4〉, 〈u3, v3〉} as in the
case Φ = ∅. By Proposition 3.2, Z is a maximal LIO-bisimulation between I1 and
I2. It follows that the elements u2 (of I1) and v2, v4 (of I2) are LIO-bisimilar.

• Running Algorithm 1 for I1 and I2 with Φ = {Q} results in false. Hence, I1 and
I2 are not LQ-bisimilar. Similarly, the interpretation I3 is not LI -bisimilar to I1

nor I2. �

Lemma 3.3. Let I and I ′ be interpretations and Z be an LΦ-bisimulation between I
and I ′. Then the following properties hold for every concept C in LΦ, every role R in
LΦ, every x, y ∈ ∆I , every x′, y′ ∈ ∆I

′
, and every a ∈ ΣI :

Z(x, x′)⇒ [CI(x)⇔ CI
′
(x′)] (3.15)

[Z(x, x′) ∧RI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧RI′(x′, y′)] (3.16)

[Z(x, x′) ∧RI′(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧RI(x, y)] (3.17)

if O ∈ Φ then:

Z(x, x′)⇒ [RI(x, aI)⇔ RI
′
(x′, aI

′
)]. (3.18)

Proof. We prove this lemma by induction on the structures of C and R.

Consider the assertion (3.16). Suppose Z(x, x′) and RI(x, y) hold. By induction on
the structure of R we prove that there exists y′ ∈ ∆I

′
such that Z(y, y′) and RI

′
(x′, y′)

hold. The base case occurs when R is a role name and the assertion for it follows
from (3.3). The induction steps are given below.

• Case R = S1 ◦ S2 : We have that (S1 ◦ S2)I(x, y) holds. Hence, there exists
z ∈ ∆I such that SI1 (x, z) and SI2 (z, y) hold. Since Z(x, x′) and SI1 (x, z) hold, by
the inductive assumption of (3.16), there exists z′ ∈ ∆I

′
such that Z(z, z′) and

SI
′

1 (x′, z′) hold. Since Z(z, z′) and SI2 (z, y) hold, by the inductive assumption
of (3.16), there exists y′ ∈ ∆I

′
such that Z(y, y′) and SI

′
2 (z′, y′) hold. Since

SI
′

1 (x′, z′) and SI
′

2 (z′, y′) hold, we have that (S1◦S2)I
′
(x′, y′) holds, i.e. RI

′
(x′, y′)

holds.

• Case R = S1 t S2 is trivial.

• Case R = S∗ : Since RI(x, y) holds, there exist x0, . . . , xk ∈ ∆I with k ≥ 0 such
that x0 = x, xk = y and, for 1 ≤ i ≤ k, SI(xi−1, xi) holds. Let x′0 = x′. For each
1 ≤ i ≤ k, since Z(xi−1, x

′
i−1) and SI(xi−1, xi) hold, by the inductive assumption

of (3.16), there exists x′i ∈ ∆I
′

such that Z(xi, x
′
i) and SI

′
(x′i−1, x

′
i) hold. Hence,

Z(xk, x
′
k) and (S∗)I

′
(x′0, x

′
k) hold. Let y′ = x′k. Thus, Z(y, y′) and RI

′
(x′, y′)

hold.
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• Case R = (D?) : Since RI(x, y) holds, we have that DI(x) holds and x = y.
Since Z(x, x′) and DI(x) hold, by the inductive assumption of (3.15), DI

′
(x′)

also holds, and hence RI
′
(x′, x′) holds. By choosing y′ = x′, both Z(y, y′) and

RI
′
(x′, y′) hold.

• Case I ∈ Φ and R = r− : The assertion for this case follows from (3.5).

By Lemma 3.1(2), the assertion (3.17) follows from the assertion (3.16).
Consider the assertion (3.18) and suppose O ∈ Φ. By Lemma 3.1(2), it suffices to

show that if Z(x, x′) and RI(x, aI) hold then RI
′
(x′, aI

′
) also holds. We prove this by

using similar argumentation as for (3.16). Suppose Z(x, x′) and RI(x, aI) hold. We
prove that RI

′
(x′, aI

′
) also holds by induction on the structure of R. The base case

occurs when R is a role name and the assertion for it follows from (3.3) and (3.7). The
induction steps are given below.

• Case R = S1 ◦ S2 : We have that (S1 ◦ S2)I(x, aI) holds. Hence, there exists
y ∈ ∆I such that SI1 (x, y) and SI2 (y, aI) hold. Since Z(x, x′) and SI1 (x, y) hold,
by the inductive assumption of (3.16), there exists y′ ∈ ∆I

′
such that Z(y, y′) and

SI
′

1 (x′, y′) hold. Since Z(y, y′) and SI2 (y, aI) hold, by the inductive assumption
of (3.18), SI

′
2 (y′, aI

′
) holds. Since SI

′
1 (x′, y′) and SI

′
2 (y′, aI

′
) hold, we have that

(S1 ◦ S2)I
′
(x′, aI

′
) holds, i.e. RI

′
(x′, aI

′
) holds.

• Case R = S1 t S2 is trivial.

• Case R = S∗ : Since RI(x, aI) holds, there exist x0, . . . , xk ∈ ∆I with k ≥ 0 such
that x0 = x, xk = aI and, for 1 ≤ i ≤ k, SI(xi−1, xi) holds.

– Case k = 0 : We have that x = aI . Since Z(x, x′) holds, by (3.7), it follows
that x′ = aI

′
. Hence RI

′
(x′, aI

′
) holds.

– Case k > 0 : Let x′0 = x′. For each 1 ≤ i < k, since Z(xi−1, x
′
i−1) and

SI(xi−1, xi) hold, by the inductive assumption of (3.16), there exists x′i ∈
∆I
′

such that Z(xi, x
′
i) and SI

′
(x′i−1, x

′
i) hold. Hence, Z(xk−1, x

′
k−1) and

(S∗)I
′
(x′0, x

′
k−1) hold. Since Z(xk−1, x

′
k−1) and SI(xk−1, a

I) hold, by the

inductive assumption of (3.18), we have that SI
′
(x′k−1, a

I′) holds. Since

(S∗)I
′
(x′0, x

′
k−1) holds, it follows that RI

′
(x′, aI

′
) holds.

• Case R = (D?) : Since RI(x, aI) holds, we have that x = aI and DI(aI) holds.
Since Z(x, x′) holds, by (3.7), it follows that x′ = aI

′
. Since Z(aI , aI

′
) and

DI(aI) hold, by the inductive assumption of (3.15), DI
′
(aI

′
) also holds. Since

x′ = aI
′
, it follows that RI

′
(x′, aI

′
) holds.

• Case I ∈ Φ and R = r− : The assertion for this case follows from (3.5) and (3.7).

Consider the assertion (3.15). By Lemma 3.1(2), it suffices to show that if Z(x, x′)
and CI(x) hold then CI

′
(x′) also holds. Suppose Z(x, x′) and CI(x) hold. The cases

when C is of the form >, ⊥, A, ¬D, D tD′ or D uD′ are trivial.

• Case C = ∃R.D : Since CI(x) holds, there exists y ∈ ∆I such that RI(x, y)
and DI(y) hold. Since Z(x, x′) and RI(x, y) hold, by the assertion (3.16) (proved
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earlier), there exists y′ ∈ ∆I
′
such that Z(y, y′) and RI

′
(x′, y′) hold. Since Z(y, y′)

and DI(y) hold, by the inductive assumption of (3.15), it follows that DI
′
(y′)

holds. Therefore, CI
′
(x′) holds.

• Case C = ∀R.D is reduced to the above case, treating ∀R.D as ¬∃R.¬D.

• Case O ∈ Φ and C = {a} : Since CI(x) holds, we have that x = aI . Since
Z(x, x′) holds, by (3.7), it follows that x′ = aI

′
. Hence CI

′
(x′) holds.

• Case Q ∈ Φ and C = (≥nR.D), where R is a basic role: Since CI(x) holds, there
exist pairwise different y1, . . . , yn ∈ ∆I such that RI(x, yi) and DI(yi) hold for
all 1 ≤ i ≤ n. Since Z(x, x′) holds, by the conditions (3.8) and (3.10), there exist
pairwise different y′1, . . . , y′n ∈ ∆I

′
such that RI

′
(x′, y′i) and Z(yi, y

′
i) hold for all

1 ≤ i ≤ n. Since Z(yi, y
′
i) and DI(yi) hold, by the inductive assumption of (3.15),

it follows that DI
′
(y′i) holds. Since RI

′
(x′, y′i) and DI

′
(y′i) hold for all 1 ≤ i ≤ n,

it follows that CI
′
(x′) holds.

• Case Q ∈ Φ and C = (≤nR.D), where R is a basic role: This case is reduced to
the above case, treating ≤ nR.D as ¬(≥ (n+ 1)R.D).

• Case Self ∈ Φ and C = ∃r.Self : Since CI(x) holds, we have that rI(x, x) holds.
By (3.14), it follows that rI

′
(x′, x′) holds. Hence CI

′
(x′) holds. �

Definition 3.5 (Invariance of a Concept).
A concept C in LΦ is said to be invariant for LΦ-bisimulation if, for any interpretations
I, I ′ and any LΦ-bisimulation Z between I and I ′, if Z(x, x′) holds then x ∈ CI iff
x′ ∈ CI′ . �

Theorem 3.4. All concepts in LΦ are invariant for LΦ-bisimulation.

This theorem follows immediately from the assertion (3.15) of Lemma 3.3.

Definition 3.6 (Invariance of a TBox, an ABox or a Knowledge Base).
A TBox T in LΦ is said to be invariant for LΦ-bisimulation if, for every interpretations
I and I ′, if there exists an LΦ-bisimulation between I and I ′ then I is a model of T
iff I ′ is a model of T . The notions of whether an ABox or a knowledge base in LΦ is
invariant for LΦ-bisimulation are defined similarly. �

Corollary 3.5. If U ∈ Φ then all TBoxes in LΦ are invariant for LΦ-bisimulation.

Proof. Suppose U ∈ Φ and let T be a TBox in LΦ and I, I ′ be interpretations. Suppose
that I is a model of T , and Z is an LΦ-bisimulation between I and I ′. We show that
I ′ is a model of T . Let C v D be an axiom from T and let x′ ∈ ∆I

′
. We need to show

that x′ ∈ (¬C tD)I
′
. By (3.13), there exists x ∈ ∆I such that Z(x, x′) holds. Since

I is a model of T , we have that x ∈ (¬C tD)I , which, by Theorem 3.4, implies that
x′ ∈ (¬C tD)I

′
. �

Definition 3.7 (Unreachable-Objects-Free Interpretation).
An interpretation I is said to be unreachable-objects-free (w.r.t. the considered lan-
guage) if every element of ∆I is reachable from some aI , where a ∈ ΣI , via a path
consisting of edges being instances of basic roles. �
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It is clear that, if U /∈ Φ, C is a concept of LΦ and a ∈ ΣI , then I |= C(a) iff
I ′ |= C(a), where I ′ is the unreachable-objects-free interpretation obtained from I
by deleting from the domain unreachable objects. That is, when U /∈ Φ, unreach-
able objects are redundant for the instance checking problem. Therefore, it is worth
considering the class of unreachable-objects-free interpretations.

Like Corollary 3.5, the following theorem concerns invariance of TBoxes w.r.t. LΦ-
bisimulation.

Theorem 3.6. Let T be a TBox in LΦ and I, I ′ be unreachable-objects-free interpre-
tations (w.r.t. LΦ) such that there exists an LΦ-bisimulation between I and I ′. Then
I is a model of T iff I ′ is a model of T .

Proof. Let Z be an LΦ-bisimulation between I and I ′. By Lemma 3.1(2), it suffices to
show that if I is a model of T then I ′ is also a model of T . Suppose I is a model of
T . Let C v D be an axiom from T . We need to show that CI

′ ⊆ DI
′
. Let x′ ∈ CI′ .

We show that x′ ∈ DI′ .
Since I ′ is an unreachable-objects-free interpretation, there exist elements x′0, . . . ,

x′k of ∆I
′

and basic roles R1, . . . , Rk with k ≥ 0 such that x′0 = aI
′

for some a ∈ ΣI ,
x′k = x′ and, for 1 ≤ i ≤ k, RI

′
i (x′i−1, x

′
i) holds.

By (3.1), Z(aI , aI
′
) holds. Let x0 = aI . For each 1 ≤ i ≤ k, since Z(xi−1, x

′
i−1) and

RI
′

i (x′i−1, x
′
i) hold, by (3.17), there exists xi ∈ ∆I such that Z(xi, x

′
i) and RIi (xi−1, xi)

hold. Let x = xk. Thus, Z(x, x′) holds. Since x′ ∈ CI′ , by Theorem 3.4, we have that
x ∈ CI . Since I is a model of T , it follows that x ∈ DI . By Theorem 3.4, we derive
that x′ ∈ DI′ , which completes the proof. �

To justify that Corollary 3.5 and Theorem 3.6 are as strong as possible, we present
here a simple example with U /∈ Φ and one of I, I ′ being not unreachable-objects-free
such that I and I ′ are LΦ-bisimilar but there exists a TBox T such that I |= T and
I ′ 2 T :

Example 3.8. Assume that U /∈ Φ and let ΣC = {A}, ΣR = ∅, ΣI = {a} (i.e., the
signature consists of only concept name A and individual name a). Let I and I ′ be the
interpretations specified by: ∆I = {a}, ∆I

′
= {a, u}, aI = aI

′
= a, AI = AI

′
= {a}.

It is easy to see that Z = {〈a, a〉} is an LΦ-bisimulation between I and I ′ (it satisfies all
of the conditions (3.1)-(3.11) and (3.14)). However, I is a model of the TBox {> v A},
while I ′ is not. �

As mentioned in the introduction, in the independent work [40] Lutz et al. use the
notion of global bisimulation to characterize invariance of TBoxes, whose condition is
the same as our bisimulation conditions (3.12) and (3.13) for the universal role. Their
result on invariance of TBoxes is not stronger than our Corollary 3.5: one can just
add U to Φ, and the considered TBox, which may not use U , is invariant w.r.t. the
corresponding bisimulation satisfying the conditions (3.12) and (3.13). Furthermore,
the family of DLs considered in this dissertation contains other logics than the DL
ALCQIO considered in [40]. On the matter of originality of our Corollary 3.5 and
Theorem 3.6, note that they appeared to the public early in [17].
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The following theorem concerns invariance of ABoxes w.r.t. LΦ-bisimulation.

Theorem 3.7. Let A be an ABox in LΦ. If O ∈ Φ or A contains only assertions of
the form C(a) then A is invariant for LΦ-bisimulation.

Proof. Suppose that O ∈ Φ or A contains only assertions of the form C(a). Let I
and I ′ be interpretations and let Z be an LΦ-bisimulation between I and I ′. By
Lemma 3.1(2), it suffices to show that if I is a model of A then I ′ is also a model of
A. Suppose I is an model of A. Let ϕ be an assertion from A. We need to show that
I ′ |= ϕ.

• Case ϕ = (a
.
= b) : Since I |= ϕ, we have that aI = bI . By (3.1), Z(aI , aI

′
) and

Z(bI , bI
′
) hold. Since aI = bI , by (3.7), it follows that aI

′
= bI

′
. Hence I ′ |= ϕ.

• Case ϕ = (a 6 .= b) is reduced to the above case, by using Lemma 3.1(2).

• Case ϕ = C(a) : By (3.1), Z(aI , aI
′
) holds. Since I |= ϕ, CI(aI) holds. By (3.15),

it follows that CI
′
(aI

′
) holds. Thus I ′ |= ϕ.

• Case ϕ = R(a, b) : By (3.1), Z(aI , aI
′
) holds. Since I |= ϕ, RI(aI , bI) holds.

By (3.16), there exists y′ ∈ ∆I
′
such that Z(bI , y′) and RI

′
(aI

′
, y′) hold. Consider

C = {b} (the assumption O ∈ Φ is used here). Since Z(bI , y′) and CI(bI) hold,
by (3.15), CI

′
(y′) holds, which means y′ = bI

′
. Thus RI

′
(aI

′
, bI

′
) holds, i.e.,

I ′ |= ϕ.

• Case ϕ = ¬R(a, b) is reduced to the above case, by using Lemma 3.1(2). �

Clearly, the condition “O ∈ Φ or A contains only assertions of the form C(a)” of
the above theorem covers many useful cases. The following example justifies that this
theorem is as strong as possible.

Example 3.9. We show that if O /∈ Φ then none of the ABoxes A1 = {a .
= b},

A2 = {a 6 .= b}, A3 = {r(a, b)}, A4 = {¬r(a, b)} is invariant for LΦ-bisimulation.
Assume that O /∈ Φ and let ΣC = ∅, ΣI = {a, b}, ΣR = {r}. Let I and I ′ be the
interpretations specified by:

∆I = ∆I
′

= {u, v} with u 6= v, aI = bI = aI
′

= u, bI
′

= v, and rI = rI
′

=
{〈u, u〉, 〈v, v〉}. It can be checked that Z = ∆I ×∆I

′
is an LΦ-bisimulation between I

and I ′. However:

• I is a model of A1, while I ′ is not
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• I ′ is a model of A2, while I is not

• I is a model of A3, while I ′ is not

• I ′ is a model of A4, while I is not. �

In general, RBoxes are not invariant for LΦ-bisimulations. (The Van Benthem
Characterization Theorem states that a first-order formula is invariant for bisimulations
iff it is equivalent to the translation of a modal formula (see, e.g., [6]).) We give below
a simple example about this:

Example 3.10. Let ΣC = ∅, ΣR = {r}, ΣI = {a} (i.e., the signature consists of only
role name r and individual name a) and Φ = ∅. Let I and I ′ be the interpretations
specified by:

∆I = ∆I
′

= {a, u, v}, aI = aI
′

= a, rI = {〈a, u〉, 〈u, v〉, 〈v, v〉} and rI
′

= rI ∪ {〈a, v〉}.
It can be checked that Z = ∆I×∆I

′
is an LΦ-bisimulation between I and I ′. However,

I ′ is a model of the RBox {r ◦ r v r}, while I is not. �

Definition 3.11 (Least R-Extension of an Interpretation).
An interpretation I ′ is an r-extension of an interpretation I if ∆I

′
= ∆I , ·I′ differs

from ·I only in interpreting role names, and for all r ∈ ΣR, rI
′ ⊇ rI .

Given an interpretation I and an RBox R, the least r-extension of I validating R
is the r-extension I ′ of I such that I ′ is a model of R and, for every r-extension I ′′ of
I, if I ′′ is a model of R then rI

′ ⊆ rI′′ for all r ∈ ΣR. �

The least r-extension exists and is unique because the axioms of R correspond to
non-negative Horn clauses of first-order logic. Namely, a role axiom ε v r corresponds
to the following Horn clause

∀x r(x, x),

and a role axiom R1 ◦ . . . ◦Rk v r corresponds to the following Horn clause

∀x0 . . . ∀xk [R1(x0, x1) ∧ . . . ∧Rk(xk−1, xk)→ r(x0, xk)],

where s−(x, y) stands for s(y, x). It is clear that one can extend the relations standing
for the roles in a minimal way to satisfy all of the Horn clauses corresponding to the
axioms of R.

Theorem 3.8. Suppose Φ ⊆ {I,O, U} and let R be an RBox in LΦ. Let I0 be a model
of R, Z be an LΦ-bisimulation between I0 and an interpretation I1, and I ′1 be the least
r-extension of I1 validating R. Then Z is an LΦ-bisimulation between I0 and I ′1.
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This theorem states that, even in the case when interpretations I0 and I1 are LΦ-
bisimilar but I0 |= R while I1 2 R, we can modify I1 slightly by adding some edges
(i.e. instances of roles) to obtain a model I ′1 of R that is LΦ-bisimilar with I0 (and
hence also with I1). This theorem is thus natural.

Proof. We only need to prove that, for every r ∈ ΣR, x ∈ ∆I0 , x′, y′ ∈ ∆I
′
1 :

1. [Z(x, x′) ∧ rI′1(x′, y′)]⇒ ∃y ∈ ∆I0 [Z(y, y′) ∧ rI0(x, y)]

2. if I ∈ Φ then [Z(x, x′) ∧ rI′1(y′, x′)]⇒ ∃y ∈ ∆I0 [Z(y, y′) ∧ rI0(y, x)].

We prove these assertions by induction on the timestamps of the steps that extend
relations rI1 to rI

′
1 , for r ∈ ΣR.

Consider the first assertion. Suppose Z(x, x′) and rI
′
1(x′, y′) hold. We need to show

there exists y ∈ ∆I0 such that Z(y, y′) and rI0(x, y) hold. There are the following three
cases:

• Case rI
′
1(x′, y′) holds because rI1(x′, y′) holds: The assertion holds because Z is

an LΦ-bisimulation between I0 and I1.

• Case rI
′
1(x′, y′) holds because (ε v r) ∈ R and y′ = x′ : Take y = x. Thus,

Z(y, y′) holds. Since I0 is a model of R, it validates ε v r, and hence rI0(x, y)
also holds.

• Case rI
′
1(x′, y′) holds because R1 ◦ . . . ◦Rk v r is an axiom of R and there exist

x′0 = x, x′1, . . . , x
′
k−1, x

′
k = y′ such that R

I′1
i (x′i−1, x

′
i) holds for all 1 ≤ i ≤ k :

Let x0 = x. For each 1 ≤ i ≤ k, since Z(xi−1, x
′
i−1) and R

I′1
i (x′i−1, x

′
i) hold, by

the inductive assumptions of both the assertions, there exists xi ∈ ∆I0 such that
Z(xi, x

′
i) and RI0i (xi−1, xi) hold. Thus, Z(xk, x

′
k) holds. Since I0 validates the

axiom R1 ◦ . . . ◦ Rk v r of R, we also have that rI0(x0, xk) holds. We choose
y = xk and finish with the proof of the first assertion.

The proof of the second assertion is similar to the proof of the first one. �

Example 3.12. To justify that the form of the above theorem is as strong as possible,
we show that allowing either Q or Self in Φ can make the theorem wrong. In the
following: ui 6= uj if i 6= j; vi 6= vj if i 6= j; and ui 6= vj for all i, j. Here are examples:

1. Assume that Self ∈ Φ and Φ ⊆ {Self, O, U}. Let ΣC = ∅, ΣI = {a} and
ΣR = {r}. Let I0 and I1 be the interpretations specified by:

27



• ∆I0 = {ui | i ≥ 0}, aI0 = u0, rI0 = {〈ui, uj〉 | i < j}
• ∆I1 = {v0, v1, v2}, aI1 = v0, rI1 = {〈v0, v1〉, 〈v1, v2〉, 〈v2, v1〉, 〈v0, v2〉}.

Let Z = {〈u0, v0〉} ∪ {〈ui, vj〉 | i ≥ 1 and (j = 1 or j = 2)}. It is easy to check
that Z is an LΦ-bisimulation between I0 and I1, I0 is a model of the RBox
R = {r ◦ r v r}, but I1 is not. Let I ′1 be the least r-extension of I1 validating R.
We have that {〈v1, v1〉, 〈v2, v2〉} ⊆ rI

′
1 , while 〈ui, ui〉 /∈ rI0 for all i ≥ 0. Hence

{v1, v2} ⊆ (∃Self.r)I′1 , while ui /∈ (∃Self.r)I0 for all i ≥ 0, Thus, it is easy to
check that Z is not an LΦ-bisimulation between I0 and I ′1.

2. Assume that Q ∈ Φ and Self /∈ Φ. Let ΣC = ∅, ΣI = {a} and ΣR = {r}. Let I0

and I1 be the interpretations specified by:

• ∆I0 = {u0, u1, u2}, aI0 = u0,
rI0 = {〈u0, u0〉, 〈u0, u1〉, 〈u0, u2〉, 〈u1, u1〉, 〈u2, u2〉}
• ∆I1 = {v0, v1, v2}, aI1 = v0,
rI1 = {〈v0, v0〉, 〈v0, v1〉, 〈v0, v2〉, 〈v1, v2〉, 〈v2, v1〉}.

Let Z = {〈u0, v0〉} ∪ ({u1, u2} × {v1, v2}). It is easy to check that Z is an LΦ-
bisimulation between I0 and I1, I0 is a model of the RBox R = {ε v r}, but
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I1 is not. Let I ′1 be the least r-extension of I1 validating R. We have that
{〈v1, v1〉, 〈v2, v2〉} ⊆ rI

′
1 . Hence {v1, v2} ⊆ (≥ 2 r.>)I

′
1 , while ui /∈ (≥ 2 r.>)I0

for both i ∈ {1, 2}. Thus, it is easy to check that Z is not an LΦ-bisimulation
between I0 and I ′1.

3. Assume that Q ∈ Φ. Let ΣC = ∅, ΣI = {a}, ΣR = {r, s} and let I0, I1 be the
interpretations specified by:

• ∆I0 = {u0, . . . , u4}, aI0 = u0, rI0 = {〈u0, u1〉, 〈u0, u2〉},
sI0 = {〈ui, uj〉 | {i, j} ⊆ {1, 3} or {i, j} ⊆ {2, 4}}
• ∆I1 = {v0, . . . , v4}, aI1 = v0, rI1 = {〈v0, v1〉, 〈v0, v2〉},
sI1 = {〈vi, vi〉 | 1 ≤ i ≤ 4} ∪ {〈v1, v3〉, 〈v3, v2〉, 〈v2, v4〉, 〈v4, v1〉}.

Let Z = {〈u0, v0〉} ∪ ({u1, u2} × {v1, v2}) ∪ ({u3, u4} × {v3, v4}). It is easy to
check that Z is an LΦ-bisimulation between I0 and I1, I0 is a model of the RBox
R = {s ◦ s v s}, but I1 is not. Let I ′1 be the least r-extension of I1 validating
R. We have that {〈v3, v4〉, 〈v3, v1〉} ⊆ sI

′
1 . Hence v3 ∈ (≥ 4 s.>)I

′
1 , while ui /∈

(≥ 4 s.>)I0 for all 0 ≤ i ≤ 4. Thus, it is easy to check that Z is not an LΦ-
bisimulation between I0 and I ′1. �

The following theorem concerns invariance of knowledge bases w.r.t. LΦ-
bisimulation. As stated before, in general, RBoxes are not invariant for LΦ-
bisimulations. Thus, it is natural to consider the case when the considered RBox
is empty. Restricting to this case, generality of the below theorem follows from the
generality of Theorems 3.6 and 3.7. The case when the considered RBox is not empty
is addressed in Theorem 3.10.

Theorem 3.9. Let 〈R, T ,A〉 be a knowledge base in LΦ such that R = ∅ and either
O ∈ Φ or A contains only assertions of the form C(a). Let I and I ′ be unreachable-
objects-free interpretations (w.r.t. LΦ) such that there exists an LΦ-bisimulation between
I and I ′. Then I is a model of 〈R, T ,A〉 iff I ′ is a model of 〈R, T ,A〉.

This theorem follows immediately from Theorems 3.6 and 3.7.
The following theorem concerns preservation of knowledge bases under LΦ-

bisimulation. Its generality follows from the generality of Theorems 3.6, 3.7 and 3.8.
Clearly, it covers many useful cases.
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Theorem 3.10. Suppose Φ ⊆ {I,O, U} and let 〈R, T ,A〉 be a knowledge base in LΦ

such that if O /∈ Φ then A contains only assertions of the form C(a). Let I0 and I1 be
interpretations such that: I0 is a model of R, there is an LΦ-bisimulation Z between
I0 and I1, and if U /∈ Φ then I0 and I1 are unreachable-objects-free (w.r.t. LΦ). Let
I ′1 be the least r-extension of I1 validating R. Then:

1. Z is an LΦ-bisimulation between I0 and I ′1,

2. I ′1 is a model of 〈R, T ,A〉 iff I0 is a model of 〈R, T ,A〉.

This theorem follows immediately from Corollary 3.5 and Theorems 3.6, 3.7, 3.8.

3.2 The Hennessy-Milner Property

Definition 3.13 (Modally Saturated Interpretation).
An interpretation I is said to be modally saturated w.r.t. LΦ if the following conditions
hold:

• for every x ∈ ∆I , every basic role R of LΦ and every infinite set Γ of concepts
in LΦ, if for every finite subset Λ of Γ there exists an R-successor of x that satisfies
Λ, then there exists an R-successor of x that satisfies Γ;

• if Q ∈ Φ then, for every x ∈ ∆I , every basic role R of LΦ, every infinite set Γ
of concepts in LΦ and every natural number n, if for every finite subset Λ of Γ
there exist n pairwise different R-successors of x that satisfy Λ, then there exist
n pairwise different R-successors of x that satisfy Γ;

• if U ∈ Φ and I is not unreachable-objects-free then, for every infinite set Γ of
concepts in LΦ, if every finite subset Λ of Γ is satisfied in I (i.e. ΛI 6= ∅) then Γ
is also satisfied in I (i.e. ΓI 6= ∅). �

Observe that ω-saturated interpretations (defined, e.g., as in [13]) are modally saturated.

Proposition 3.11. Every finite interpretation is modally saturated. Every finitely
branching and unreachable-objects-free interpretation is modally saturated. If U /∈ Φ
then every finitely branching interpretation is modally saturated.

The proof of this proposition is straightforward.

Definition 3.14 (LΦ-Equivalence).
Let I and I ′ be interpretations, and let x ∈ ∆I and x′ ∈ ∆I

′
. We say that x is

LΦ-equivalent to x′ if, for every concept C in LΦ, x ∈ CI iff x′ ∈ CI′ . �

Theorem 3.12 (The Hennessy-Milner Property). Let I and I ′ be modally saturated
interpretations (w.r.t. LΦ) such that, for every a ∈ ΣI , aI is LΦ-equivalent to aI

′
.

Suppose that if U ∈ Φ then either both I and I ′ are unreachable-objects-free or both
of them are not unreachable-objects-free. Then x ∈ ∆I is LΦ-equivalent to x′ ∈ ∆I

′

iff there exists an LΦ-bisimulation Z between I and I ′ such that Z(x, x′) holds. In
particular, the relation {〈x, x′〉 ∈ ∆I × ∆I

′ | x is LΦ-equivalent to x′} is an LΦ-
bisimulation between I and I ′ when it is not empty.
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Proof. Consider the “⇐” direction. Suppose Z is an LΦ-bisimulation between I and I ′
such that Z(x, x′) holds. By (3.15), for every concept C in LΦ, CI(x) holds iff CI

′
(x′)

holds. Therefore, x is LΦ-equivalent to x′.
Now consider the “⇒” direction. Define Z = {〈x, x′〉 ∈ ∆I×∆I

′ | x is LΦ-equivalent
to x′} and assume that Z is not empty. We show that Z is an LΦ-bisimulation between
I and I ′.

• The assertion (3.1) follows from the assumption of the theorem.

• Consider the assertion (3.2) and suppose Z(x, x′) holds. By the definitions of Z
and LΦ-equivalence, it follows that, for every concept name A, AI(x) holds iff
AI
′
(x′) holds.

• Consider the assertion (3.3) and suppose that Z(x, x′) and rI(x, y) hold. Let
S = {y′ | rI′(x′, y′)}. We want to show there exists y′ ∈ S such that Z(y, y′)
holds. For the sake of contradiction, suppose that, for every y′ ∈ S, Z(y, y′) does
not hold, which means y is not LΦ-equivalent to y′. Thus, for every y′ ∈ S, there
exists a concept Cy′ such that y ∈ CIy′ but y′ /∈ CI

′
y′ . Let Γ = {Cy′ | y′ ∈ S}.

Thus, no y′ ∈ S satisfies Γ (i.e. S ∩ ΓI
′

= ∅). Since I ′ is modally saturated, it
follows that there exists a finite set Λ of Γ such that, for every y′ ∈ S, y′ /∈ ΛI

′
.

Let C = ∃r.
d

Λ, where
d
{C1, . . . , Cn} = C1 u . . . u Cn and

d
∅ = >. Thus,

x ∈ CI but x′ /∈ CI′ , which contradicts the fact that x is LΦ-equivalent to x′.
Therefore, there exists y′ ∈ S such that Z(y, y′) holds.

• The assertion (3.4) can be proved analogously as for (3.3).

• Consider the assertions (3.5) and (3.6) and the case I ∈ Φ. Observe that the
argumentation used for proving (3.3) are still applicable when replacing r by r−.
Hence the assertion (3.5) holds. Similarly, the assertion (3.6) also holds.

• Consider the assertion (3.7) and the case O ∈ Φ. Suppose Z(x, x′) holds. Take
C = {a}. Since x is LΦ-equivalent to x′, x ∈ CI iff x′ ∈ CI′ . Hence, x = aI iff
x′ = aI

′
.

• Consider the assertion (3.8) and the case Q ∈ Φ. Suppose Z(x, x′) holds. Let
S = {y ∈ ∆I | rI(x, y)} and S′ = {y′ ∈ ∆I

′ | rI′(x′, y′)}. Let y1, . . . , yn
be pairwise different elements of S. We need to show that there exist pairwise
different y′1, . . . , y

′
n ∈ S′ such that y′i is LΦ-equivalent to yi for every 1 ≤ i ≤ n.

Without loss of generality, assume that y1, . . . , yn are LΦ-equivalent to each other.
Let S′′ = {y′ ∈ S′ | y′ is not LΦ-equivalent to y1}. Thus, for every y′ ∈ S′′, there
exists a concept Cy′ such that y1 ∈ CIy′ but y′ /∈ CI′y′ . Let Γ = {Cy′ | y′ ∈ S′′}.
Note that every element of ΓI

′
is LΦ-equivalent to y1. For every finite subset Λ

of Γ, since y1, . . . , yn ∈ ΛI , we have x ∈ (≥n r.
d

Λ)I , and since Z(x, x′) holds,
we also have that x′ ∈ (≥n r.

d
Λ)I

′
, which means there are at least n pairwise

different y′1, . . . , y
′
n ∈ S′ that belong to ΛI

′
. Since I ′ is modally saturated, it

follows that there are at least n pairwise different y′1, . . . , y
′
n ∈ S′ that belong to

ΓI
′

and are thus LΦ-equivalent to y1 and any yi with 2 ≤ i ≤ n.
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• The assertion (3.9) for the case Q ∈ Φ and the assertions (3.10) and (3.11) for
the case {Q, I} ⊆ Φ can be proved analogously as for (3.8).

• Consider the assertion (3.12) and the case U ∈ Φ. If I is unreachable-objects-free
then the assertion (3.12) follows from the assertions (3.1), (3.3) and (3.5). So,
assume that I is not unreachable-objects-free. Thus, I ′ is also not unreachable-
objects-free. Since Z is not empty, there exists 〈y, y′〉 ∈ Z. Let x ∈ ∆I . For the
sake of contradiction suppose that no x′ ∈ ∆I

′
is LΦ-equivalent to x. Thus, for

every x′ ∈ ∆I
′
, there exists a concept Cx′ such that x ∈ CIx′ but x′ /∈ CI′x′ . Let

Γ = {Cx′ | x′ ∈ ∆I
′}. For any finite subset Λ of Γ, since x ∈ ΛI , we have that

y ∈ (∃U.
d

Λ)I , which implies that y′ ∈ (∃U.
d

Λ)I
′
, which means Λ is satisfied

in I ′. Since I ′ is modally saturated and not unreachable-objects-free, it follows
that Γ is satisfied in I ′, which is a contradiction.

• The assertion (3.13) can be proved analogously as for (3.12).

• Consider the assertion (3.14) and the case Self ∈ Φ. Suppose Z(x, x′) holds.
Thus, x ∈ (∃r.Self)I iff x′ ∈ (∃r.Self)I

′
. Hence, rI(x, x) holds iff rI

′
(x′, x′)

holds. �

3.3 Auto-Bisimulation and Minimization

Definition 3.15 (LΦ-Auto-Bisimulation).
An LΦ-bisimulation between I and itself is called an LΦ-auto-bisimulation of I. An
LΦ-auto-bisimulation of I is said to be the largest if it is larger than or equal to (⊇)
any other LΦ-auto-bisimulation of I. �

Proposition 3.13. For every interpretation I, the largest LΦ-auto-bisimulation of I
exists and is an equivalence relation.

This proposition follows from Lemma 3.1.

Definition 3.16. Given an interpretation I, by ∼Φ,I we denote the largest LΦ-auto-
bisimulation of I, and by ≡Φ,I we denote the binary relation on ∆I with the property
that x ≡Φ,I x

′ iff x is LΦ-equivalent to x′. �

Proposition 3.14. For every modally saturated interpretation I, ≡Φ,I is the largest
LΦ-auto-bisimulation of I (i.e. the relations ≡Φ,I and ∼Φ,I coincide).

Proof. By Theorem 3.12, ≡Φ,I is an LΦ-auto-bisimulation of I. We now show that it
is the largest one. Suppose Z is another LΦ-auto-bisimulation of I. If Z(x, x′) holds
then, by (3.15), for every concept C of LΦ, CI(x) holds iff CI(x′) holds, and hence
x ≡Φ,I x

′. Therefore, Z ⊆ ≡Φ,I . �
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3.3.1 The Case without Q and Self

Definition 3.17 (Quotient Interpretation).
Given an interpretation I, the quotient interpretation I/∼ of I w.r.t. an equivalence
relation ∼ ⊆ ∆I ×∆I is defined as usual:

• ∆I/∼ = {[x]∼ | x ∈ ∆I}, where [x]∼ is the equivalence class of x w.r.t. ∼,

• aI/∼ = [aI ]∼, for a ∈ ΣI ,

• AI/∼ = {[x]∼ | x ∈ AI}, for A ∈ ΣC ,

• rI/∼ = {〈[x]∼, [y]∼〉 | 〈x, y〉 ∈ rI}, for r ∈ ΣR. �

Theorem 3.15. If Φ ⊆ {I,O, U} then, for every interpretation I, the relation Z =
{〈x, [x]∼Φ,I 〉 | x ∈ ∆I} is an LΦ-bisimulation between I and I/∼Φ,I .

Proof. Suppose Φ ⊆ {I,O, U}. We have to consider the assertions (3.1)-(3.7), (3.12),
(3.13) for I ′ = I/∼Φ,I . By the definition of I/∼Φ,I , the assertions (3.1) and (3.2)
clearly hold. Similarly, the assertion (3.7) for the case O ∈ Φ and the assertions (3.12),
(3.13) for the case U ∈ Φ also hold.

Consider the assertion (3.3). Suppose Z(x, x′) and rI(x, y) hold. We need to show

there exists y′ ∈ ∆I/∼Φ,I such that Z(y, y′) and rI/∼Φ,I (x′, y′) hold. We must have
that x′ = [x]∼Φ,I . Take y′ = [y]∼Φ,I . Clearly, the goals are satisfied.

For a similar reason, the assertion (3.5) for the case I ∈ Φ holds.

Consider the assertion (3.4). Suppose Z(x, x′) and rI/∼Φ,I (x′, y′) hold. We need
to show there exists y ∈ ∆I such that Z(y, y′) and rI(x, y) hold. We must have that

x′ = [x]∼Φ,I . Since rI/∼Φ,I (x′, y′) holds, there exists y ∈ y′ such that rI(x, y) holds.
Clearly, y′ = [y]∼Φ,I and Z(y, y′) holds.

For a similar reason, the assertion (3.6) for the case I ∈ Φ holds. �

The following theorem concerns invariance of terminological axioms and concept
assertions, as well as preservation of role axioms and other individual assertion un-
der the transformation of an interpretation to its quotient using the largest LΦ-auto-
bisimulation.

Theorem 3.16. Suppose Φ ⊆ {I,O, U} and let I be an interpretation. Then:

1. For every expression ϕ which is either a terminological axiom in LΦ or a concept
assertion (of the form C(a)) in LΦ, I |= ϕ iff I/∼Φ,I |= ϕ.

2. For every expression ϕ which is either a role inclusion axiom or an individual
assertion of the form R(a, b) or a

.
= b, if I |= ϕ then I/∼Φ,I |= ϕ.

Proof. The first assertion follows from Theorems 3.15, 3.4 and the definition of I/∼Φ,I .
Consider the second assertion. This assertion for the cases when ϕ is of the form
ε v r, R(a, b) or a

.
= b follows immediately from the definition of I/∼Φ,I . Let ϕ =

(R1 ◦ . . . ◦ Rk v r) and suppose I |= ϕ. We show that I/∼Φ,I |= ϕ. Let v0, . . . , vk be
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elements of ∆I/∼Φ,I such that, for 1 ≤ i ≤ k, R
I/∼Φ,I
i (vi−1, vi) holds. We need to show

that rI/∼Φ,I (v0, vk) holds.

For 1 ≤ i ≤ k, since R
I/∼Φ,I
i (vi−1, vi) holds, there exist yi−1 ∈ vi−1 and zi ∈ vi

such that RIi (yi−1, zi) holds. Let x0 = y0. For 1 ≤ i ≤ k, since xi−1∼Φ,I yi−1 and
RIi (yi−1, zi) hold, by (3.16), there exists xi such that xi∼Φ,I zi and RIi (xi−1, xi) hold,
which implies xi ∈ vi and xi∼Φ,I yi (when i < k). Since I |= (R1 ◦ . . . ◦ Rk v r), it

follows that rI(x0, xk) holds. Therefore, by definition, rI/∼Φ,I (v0, vk) holds. �

An interpretation I is said to be minimal among a class of interpretations if I
belongs to that class and, for every other interpretation I ′ of that class, #∆I ≤ #∆I

′

(the cardinality of ∆I is less than or equal to the cardinality of ∆I
′
). The following

theorem concerns minimality of quotient interpretations generated by using the largest
LΦ-auto-bisimulations.

Theorem 3.17. Suppose Φ ⊆ {I,O, U} and let I be an interpretation.

1. If I is unreachable-objects-free or U ∈ Φ then I/∼Φ,I is a minimal interpretation
LΦ-bisimilar to I.

2. If I/∼Φ,I is finite then it is a minimal interpretation that validates the same set
of terminological axioms in LΦ as I.

3. If I/∼Φ,I is unreachable-objects-free and finitely branching then it is a minimal
interpretation that satisfies the same set of concept assertions in LΦ as I.

Proof. By Theorems 3.15 and 3.16, I/∼Φ,I is LΦ-bisimilar to I, validates the same set
of terminological axioms in LΦ as I, and satisfies the same set of concept assertions in
LΦ as I.

Since ∼Φ,I is the largest LΦ-auto-bisimulation of I, by Lemma 3.1(4), for u, v ∈
∆I/∼Φ,I , if u 6= v then u is not LΦ-bisimilar to v. Let Z = {〈[x]∼Φ,I , x〉 | x ∈ ∆I}. By
Theorem 3.15 and Lemma 3.1(2), Z is an LΦ-bisimulation between I/∼Φ,I and I.

Consider the first assertion and suppose that either I is unreachable-objects-free
or U ∈ Φ. Let I ′ be any interpretation LΦ-bisimilar to I. We show that #∆I/∼Φ,I ≤
#∆I

′
. Let Z ′ be an LΦ-bisimulation between I and I ′, and let Z ′′ = Z ◦ Z ′. By

Lemma 3.1(3), Z ′′ is an LΦ-bisimulation between I/∼Φ,I and I ′. If I is unreachable-
objects-free, then I/∼Φ,I is also unreachable-objects-free, and by (3.1), (3.3) and (3.5),

for every u ∈ ∆I/∼Φ,I , there exists xu ∈ ∆I
′

such that Z ′′(u, xu) holds. If U ∈ Φ then,

by (3.12), we also have that, for every u ∈ ∆I/∼Φ,I , there exists xu ∈ ∆I
′

such that

Z ′′(u, xu) holds. Let u, v ∈ ∆I/∼Φ,I and u 6= v. If xu = xv then, since u is LΦ-bisimilar
to xu and xv is LΦ-bisimilar to v, we would have that u is LΦ-bisimilar to v, which is
a contradiction. Therefore xu 6= xv and we conclude that #∆I/∼Φ,I ≤ #∆I

′
.

Consider the second assertion and suppose I/∼Φ,I is finite. Let ∆I/∼Φ,I =
{v1, . . . , vn}. Since ∼Φ,I is the largest LΦ-auto-bisimulation of I, by Theorem 3.12
and Lemma 3.1, if 1 ≤ i < j ≤ n then vi is not LΦ-equivalent to vj . For 1 ≤ i, j ≤ n

with i 6= j, let Ci,j be a concept in LΦ such that vi ∈ C
I/∼Φ,I
i,j and vj /∈ C

I/∼Φ,I
i,j .

For 1 ≤ i ≤ n, let Ci = (Ci,1 u . . . u Ci,i−1 u Ci,i+1 u . . . u Ci,n). We have that
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vi ∈ C
I/∼Φ,I
i and vj /∈ C

I/∼Φ,I
i if j 6= i. Let C = (C1 t . . .tCn) and, for 1 ≤ i ≤ n, let

Di = (C1 t . . . t Ci−1 t Ci+1 t . . . t Cn). Thus, I/∼Φ,I validates > v C but does not
validate any > v Di for 1 ≤ i ≤ n. Any other interpretation with such properties must
have at least n elements in the domain. That is, I/∼Φ,I is a minimal interpretation
that validates the same set of terminological axioms in LΦ as I.

Consider the third assertion and suppose I/∼Φ,I is unreachable-objects-free and
finitely branching. Let I ′ be any interpretation that satisfies the same set of concept
assertions in LΦ as I. We show that #∆I/∼Φ,I ≤ #∆I

′
. By Theorem 3.16, I/∼Φ,I

satisfies the same set of concept assertions in LΦ as I and I ′. Thus, for every in-
dividual name a, aI/∼Φ,I is LΦ-equivalent to aI

′
. Since ΣI is countable and I/∼Φ,I

is unreachable-objects-free and finitely branching, ∆I/∼Φ,I is countable. If I ′ is not
finitely branching then it is infinite and the assertion clearly holds. So, assume that
I ′ is finitely branching. Let Z = {〈x, x′〉 ∈ ∆I/∼Φ,I ×∆I

′ | x is LΦ-equivalent to x′}.
Like the proof of Theorem 3.12, the conditions (3.1), (3.3) and (3.5) hold, and since
I/∼Φ,I is unreachable-objects-free, the condition (3.12) also holds. Analogously to the

proof of the first assertion, it follows that #∆I/∼Φ,I ≤ #∆I
′
. �

3.3.2 The Case with Q and/or Self

The following two examples show that we cannot make Theorems 3.15 and 3.16 stronger
by allowing Self ∈ Φ or Q ∈ Φ.

Example 3.18. Let ΣC = ∅, ΣI = {a1, a2} and ΣR = {r}, where a1 6= a2. Consider
the interpretation I specified by:

∆I = {a1, a2}, aI1 = a1, aI2 = a2 and rI = {〈a1, a2〉, 〈a2, a1〉}. For any Φ, we have
that a1∼Φ,I a2. Denote a = [a1]∼Φ,I (= {a1, a2}). The quotient interpretation I/∼Φ,I

is thus specified by: ∆I/∼Φ,I = {a}, a
I/∼Φ,I
1 = a

I/∼Φ,I
2 = a and rI/∼Φ,I = {〈a, a〉}.

Observe that if Self ∈ Φ then:

• I/∼Φ,I is not LΦ-bisimilar to I,

• for ϕ being any of the axioms/assertions > v ∃r.Self, ε v r, (∃r.Self)(a1),
a1 = a2, r(a1, a1), we have that I/∼Φ,I |= ϕ, but I 6|= ϕ. �

Example 3.19. Let ΣC = ∅, ΣI = {a, b1, b2} and ΣR = {r}, where a, b1, b2 are pairwise
disjoint. Assume that Q ∈ Φ and consider the interpretation I specified by:
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∆I = {a, b1, b2}, aI = a, bI1 = b1, bI2 = b2 and rI = {〈a, a〉, 〈a, b1〉, 〈a, b2〉, 〈b1, b2〉,
〈b2, b1〉}. Note that b1 is LΦ-bisimilar to b2 and is not LΦ-bisimilar to a. Denote
a′ = [a]∼Φ,I and b′ = [b1]∼Φ,I (= {b1, b2}). The quotient interpretation I/∼Φ,I is thus

specified by: ∆I/∼Φ,I = {a′, b′}, aI/∼Φ,I = a′, b
I/∼Φ,I
1 = b

I/∼Φ,I
2 = b′ and rI/∼Φ,I =

{〈a′, a′〉, 〈a′, b′〉, 〈b′, b′〉}. Observe that:

• I/∼Φ,I is not LΦ-bisimilar to I,

• for ϕ being any of the axioms/assertions ≥ 2 r.> v ≥ 3 r.>, ε v r, (≥ 3 r.>)(a),
b1 = b2, r(b1, b1), we have that I |= ϕ iff I/∼Φ,I 6|= ϕ. �

For the case when Q ∈ Φ or Self ∈ Φ, in order to obtain results similar to Theo-
rems 3.16 and 3.17, we introduce QS-interpretations as follows.

Definition 3.20 (QS-Interpretation).
A QS-interpretation is a tuple I = 〈∆I , ·I , QI , SI〉, where

• 〈∆I , ·I〉 is an interpretation,

• QI is a function that maps every basic role to a function ∆I ×∆I → N such that
QI(R)(x, y) > 0 iff 〈x, y〉 ∈ RI , where N is the set of natural numbers,

• SI is a function that maps every role name to a subset of ∆I .

If I is a QS-interpretation then we redefine

(∃r.Self)I = {x ∈ ∆I | x ∈ SI(r)}
(≥ nR.C)I = {x ∈ ∆I | Σ{QI(R)(x, y) | CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | Σ{QI(R)(x, y) | CI(y)} ≤ n},

where the sum of a set of natural numbers is assumed to be +∞ if it is not finitely
bounded, and +∞ is greater than any natural number . Other notions for interpreta-
tions remain unchanged for QS-interpretations. �

Definition 3.21 (Quotient QS-Interpretation).
Given a finitely branching interpretation I, the quotient QS-interpretation of I w.r.t.
an equivalence relation ∼ ⊆ ∆I × ∆I , denoted by I/QS

∼ , is the QS-interpretation
I ′ = 〈∆I′ , ·I′ , QI′ , SI′〉 such that:

• 〈∆I′ , ·I′〉 is the quotient interpretation of I w.r.t. ∼,
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• for every basic role R and every x, y ∈ ∆I ,

QI
′
(R)([x]∼, [y]∼) = min

x′∈[x]∼
#{y′ ∈ [y]∼ | 〈x′, y′〉 ∈ RI},

• for every role name r,

SI
′
(r) = {[x]∼ | 〈x, x〉 ∈ rI}.

�

Note that, in the case when Q ∈ Φ, we have

QI
′
(R)([x]∼Φ,I , [y]∼Φ,I ) = #{y′ ∈ [y]∼Φ,I | 〈x, y

′〉 ∈ RI}.

Lemma 3.18. Let I be a finitely branching interpretation and let I ′ = I/QS
∼Φ,I . Then

Z = {〈x, [x]∼Φ,I 〉 ∈ ∆I × ∆I
′} satisfies all the properties (3.1)-(3.7), (3.12), (3.13),

(3.15)-(3.18). In particular, the assertion (3.15) states that, for every concept C in LΦ

and every x ∈ ∆I , x ∈ CI iff [x]∼Φ,I ∈ CI
′
.

Proof. The properties (3.1)-(3.7), (3.12) and (3.13) can be shown as in the proof of
Theorem 3.15. The properties (3.15)-(3.18) can be shown as in Lemma 3.3 except that
the case when Q ∈ Φ and C = (≥nR.D) and the case when Self ∈ Φ and C = ∃r.Self
in the proof of the assertion (3.15) are changed to the following:

• Case Q ∈ Φ and C = (≥ nR.D), where R is a basic role: Since Z(x, x′) holds, we
have that x′ = [x]∼Φ,I . Since CI(x) holds, there exist pairwise different y1, . . . ,
yn ∈ ∆I such that RI(x, yi) and DI(yi) hold for all 1 ≤ i ≤ n. Let the partition of
{y1, . . . , yn} that corresponds to the equivalence relation ∼Φ,I consist of pairwise
different blocks Yi1 , . . . , Yik , where {i1, . . . , ik} ⊆ {1, . . . , n} and yij ∈ Yij for all

1 ≤ j ≤ k. By the inductive assumption, DI
′
([yij ]∼Φ,I ) holds for all 1 ≤ j ≤ k.

By the definition of I ′, QI′(R)([x]∼Φ,I , [yij ]∼Φ,I ) ≥ #Yij for all 1 ≤ j ≤ k. Hence

CI
′
([x]∼Φ,I ) holds, which means CI

′
(x′) holds.

• Case Self ∈ Φ and C = ∃r.Self : Since Z(x, x′) holds, we have that x′ = [x]∼Φ,I .

Since CI(x) holds, we have that rI(x, x) holds. Hence [x]∼Φ,I ∈ SI
′
(r) and

consequently [x]∼Φ,I ∈ (∃r.Self)I
′
, which means CI

′
(x′) holds. �

The following theorem is a counterpart of Theorem 3.16, with no restrictions on Φ.

Theorem 3.19. Let I be a finitely branching interpretation. Then:

1. For every expression ϕ which is either a terminological axiom in LΦ or a concept
assertion (of the form C(a)) in LΦ, I |= ϕ iff I/QS

∼Φ,I |= ϕ.

2. For every expression ϕ which is either a role inclusion axiom or an individual
assertion of the form R(a, b) or a

.
= b, if I |= ϕ then I/QS

∼Φ,I |= ϕ.
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Proof. Denote I ′ = I/QS
∼Φ,I and let Z = {〈x, [x]∼Φ,I 〉 ∈ ∆I×∆I

′}. By Lemma 3.18, for

every concept C in LΦ, x ∈ CI iff [x]∼Φ,I ∈ CI
′
. The first assertion follows immediately

from this property. The second assertion can be proved as for Theorem 3.16. �

The following theorem is a counterpart of Theorem 3.17, with no restrictions on Φ.

Theorem 3.20. Let I be a finitely branching interpretation.

1. If I/QS
∼Φ,I is finite then it is a minimal QS-interpretation that validates the same

set of terminological axioms in LΦ as I.

2. If I/QS
∼Φ,I is unreachable-objects-free then it is a minimal QS-interpretation that

satisfies the same set of concept assertions in LΦ as I.

Proof. By Lemma 3.18, every x ∈ ∆I is LΦ-equivalent to [x]∼Φ,I . Since ≡Φ,I and
∼Φ,I coincide, if [x]∼Φ,I 6= [x′]∼Φ,I then [x]∼Φ,I and [x′]∼Φ,I are not LΦ-equivalent to
each other. Denote I ′ = I/QS

∼Φ,I .

Consider the first assertion and suppose I ′ is finite. Let ∆I
′

= {v1, . . . , vn}, where
v1, . . . , vn are pairwise different and each vi is some [xi]∼Φ,I . For 1 ≤ i, j ≤ n with

i 6= j, let Ci,j be a concept in LΦ such that vi ∈ CI
′

i,j and vj /∈ CI
′

i,j . For 1 ≤ i ≤ n, let

Ci = (Ci,1u . . .uCi,i−1uCi,i+1u . . .uCi,n). We have that vi ∈ CI
′

i and vj /∈ CI
′

i if j 6= i.
Let C = (C1 t . . .tCn) and, for 1 ≤ i ≤ n, let Di = (C1 t . . .tCi−1 tCi+1 t . . .tCn).
Thus, I ′ validates > v C but does not validate any > v Di for 1 ≤ i ≤ n. Any other
QS-interpretation with such properties must have at least n elements in the domain.
That is, I ′ is a minimal QS-interpretation that validates the same set of terminological
axioms in LΦ as I.

Consider the second assertion and suppose I ′ is unreachable-objects-free. Since I
is finitely branching, I ′ is also finitely branching. Let I ′′ be any QS-interpretation that
satisfies the same set of concept assertions in LΦ as I. We show that #∆I

′ ≤ #∆I
′′
.

Since ΣI is countable and I ′ is unreachable-objects-free and finitely branching, ∆I
′

is
countable. If I ′′ is not finitely branching then it is infinite and the assertion clearly
holds. So, assume that I ′′ is finitely branching. Since I ′ is unreachable-objects-free
and I ′′ is a finitely branching QS-interpretation that satisfies the same set of concept
assertions in LΦ as I and I ′, it can be shown that, for every x′ ∈ ∆I

′
, there exists

x′′ ∈ ∆I
′′

that is LΦ-equivalent to x′. Recall that if x′1 and x′2 are different elements of
∆I
′

then they are not LΦ-equivalent to each other. This implies that #∆I
′ ≤ #∆I

′′
.
�

3.4 Minimizing Interpretations

In this section, we adapt Hopcroft’s automaton minimization algorithm [28] and the
Paige-Tarjan algorithm [49] to obtain efficient algorithms for computing the partition
corresponding to the equivalence relation ∼Φ,I for the case when I is finite. The
partition is used to minimize I to obtain I/∼Φ,I for the case {Q, Self} ∩ Φ = ∅, or
I/QS
∼Φ,I for the other case. We do not require any restrictions on Φ.
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For x ∈ ∆I , Y ⊆ ∆I and a basic role R of LΦ, define

degR(x, Y ) = #{y ∈ Y | 〈x, y〉 ∈ RI} and degR(x) = degR(x,∆I).

The similarity between minimizing automata and minimizing interpretations relies
on that equivalence between two states in a finite deterministic automaton is similar to
LΦ-equivalence between two objects (i.e. elements of the domain) of an interpretation.
The alphabet Σ of an automaton corresponds to ΣR in the case I /∈ Φ, and Σ±R in the
other case. Note that the end conditions for equivalence are different; in the case of
automata, it is required that the two considered states are either both accepting states
or both unaccepting states; in the case of interpretations, it is required that the two
considered objects x and x′ satisfy the conjunction of the following conditions:

• for every A ∈ ΣC , x ∈ AI iff x′ ∈ AI ,

• if Q /∈ Φ then, for every basic role R of LΦ, degR(x) = 0 iff degR(x′) = 0,

• if Q ∈ Φ then, for every basic role R of LΦ, degR(x) = degR(x′),

• if O ∈ Φ then, for every a ∈ ΣI , x = aI iff x′ = aI ,

• if Self ∈ Φ then, for every r ∈ ΣR, 〈x, x〉 ∈ rI iff 〈x′, x′〉 ∈ rI .

Denote the conjunction of the above conditions by ECond Φ(x, x′).

Interpretations are like nondeterministic automata, while Hopcroft’s algorithm [28]
works only for deterministic automata. The Paige-Tarjan algorithm [49] for the re-
lational coarsest partition problem works on a graph and exploits the idea “process
the smaller half” of Hopcroft’s algorithm. We adapt it for computing the partition
corresponding to ∼Φ,I for the case Q /∈ Φ. We directly adapt Hopcroft’s algorithm for
the case Q ∈ Φ. The idea for a similar problem related with number restrictions was
formulated for graphs in [49] and efficient algorithms for other similar problems were
proposed even earlier (see [49]).

3.4.1 The Case Q ∈ Φ

Algorithm 2 (given on page 40) computes the partition corresponding to ∼Φ,I for
the case when Q ∈ Φ and I is finite. It starts by splitting ∆I into blocks using the
equivalence relation ECond Φ and after that follows the idea of Hopcroft’s algorithm [28]
to refine that partition. Like Hopcroft’s algorithm, Algorithm 2 keeps the current
partition P and a collection L of pairs 〈Y,R〉 for refining the partition, where Y ∈ P
and R is a basic role. Splitting a block X ∈ P by a pair 〈Y,R〉 is done so that x, x′ ∈ X
are separated when degR(x, Y ) 6= degR(x′, Y ), and may result in more than two blocks.
Technically, it is done as follows: for each y ∈ Y and for each edge coming to y via R
from some x (i.e. for each 〈x, y〉 ∈ RI), do

1. if it is the first time x is considered for this task then set count(x) := 1, remove
x from its current block X and put x into the block Xcount=1,
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Algorithm 2: computing the partition corresponding to ∼Φ,I for the case Q ∈ Φ

input : a set Φ of DL-features with Q ∈ Φ and a finite interpretation I
output: the partition P corresponding to the largest LΦ-auto-bisimulation of I

1 if I /∈ Φ then let Σ†R = ΣR else let Σ†R = Σ±R;

2 set P to the partition corresponding to the equivalence relation ECond Φ;
3 set Z to a maximal block of P;

4 set L to the empty collection;

5 foreach X ∈ P \ {Z} and R ∈ Σ†R do
6 add 〈X,R〉 to L;

7 while L 6= ∅ do
8 extract a pair 〈Y,R〉 from L;
9 foreach X ∈ P split by 〈Y,R〉 do

10 split X by 〈Y,R〉 into a set X of blocks;
11 replace X in P by all the blocks of X;
12 set Z to a maximal block of X;

13 foreach S ∈ Σ†R do
14 if 〈X,S〉 ∈ L then
15 replace 〈X,S〉 in L by all the pairs 〈X ′, S〉 with X ′ ∈ X;
16 else
17 add all the pairs 〈X ′, S〉 with X ′ ∈ X \ {Z} to L;

2. else if count(x) = k then increase count(x) by 1, remove x from its current block
Xcount=k and put it into the block Xcount=k+1.

The non-empty blocks created from X together with the modified block X, if not empty,
form the set X mentioned in the algorithm.

Lemma 3.21. Consider an execution of Algorithm 2. The resulting partition P corre-
sponds to an LΦ-auto-bisimulation of I.

Proof. Let Z be the equivalence relation corresponding to the partition P. Consider the
conditions (3.1)–(3.14) with I ′ = I. Clearly, (3.1), (3.2), (3.7), (3.12), (3.13), (3.14)
hold. As (3.3)–(3.6) are instances of (3.8)–(3.11), respectively, we need to prove only
(3.8)–(3.11). It is sufficient to show that, for every x, x′ ∈ ∆I , every basic role R
of LΦ and every block Y ∈ P, if degR(x, Y ) 6= degR(x′, Y ) then x and x′ belong to
different blocks of P. This is clear for the case degR(x) 6= degR(x′). So, assume that
degR(x) = degR(x′). Let Y ′ be the smallest block appeared during the execution of the
algorithm such that Y ′ is a superset of Y and degR(x, Y ′) = degR(x′, Y ′) (the biggest
one is ∆I). Let Y1, . . . , Yk be the blocks obtained from the splitting of Y ′. There exist
1 ≤ i, j ≤ k such that i 6= j, degR(x, Yi) 6= degR(x′, Yi) and degR(x, Yj) 6= degR(x′, Yj).
Hence, 〈Yi, R〉 or 〈Yj , R〉 is inserted into L when Y ′ is split. It follows that, at some
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step, a pair 〈Y ′′, R〉 such that degR(x, Y ′′) 6= degR(x′, Y ′′) is extracted from L (Y ′′ is
some subset of Yi or Yj). This pair separates x and x′. �

Lemma 3.22. Consider an execution of Algorithm 2. If x, x′ ∈ ∆I are separated (i.e.,
belong to different blocks of the partition P) then x 6≡Φ,I x

′.

Proof. Assume that x, x′ ∈ ∆I are separated. We prove that x 6≡Φ,I x
′ by induction

on the iteration k of the main loop at which x and x′ are separated.

Consider the base case k = 0 when x and x′ belong to different equivalence classes
of the equivalence relation ECond Φ. There are the following subcases:

• there exists A ∈ ΣC such that x ∈ AI and x′ /∈ AI or vice versa (i.e., x /∈ AI and
x′ ∈ AI);

• there exists a basic role R of LΦ such that degR(x) 6= degR(x′); without loss of
generality, assume that degR(x) = l > degR(x′);

• O ∈ Φ and there exists a ∈ ΣI such that x = aI and x′ 6= aI or vice versa (i.e.,
x 6= aI and x′ = aI);

• Self ∈ Φ and there exists r ∈ ΣR such that 〈x, x〉 ∈ rI and 〈x′, x′〉 /∈ rI or vice
versa (i.e., 〈x, x〉 /∈ rI and 〈x′, x′〉 ∈ rI).

The concept A, ≥ l R.>, {a} or ∃r.Self of LΦ, respectively for these subcases, distin-
guishes x and x′. Hence x 6≡Φ,I x

′.

Now consider the induction step and assume that x and x′ are separated by a pair
〈Y,R〉 at the iteration k+1 of the main loop. Thus, degR(x, Y ) 6= degR(x′, Y ). Without
loss of generality, assume that degR(x, Y ) > degR(x′, Y ) and let h = degR(x, Y ). Let
the partition P before the iteration k + 1 be {Y0, . . . , Ys} with Y0 = Y and let Yi =
{yi,1, . . . , yi,ti} for 0 ≤ i ≤ s. By the induction assumption, for each 1 ≤ i ≤ s,
1 ≤ j ≤ t0 and 1 ≤ j′ ≤ ti, there exists a concept Ci,j,j′ such that y0,j ∈ CIi,j,j′ and

yi,j′ /∈ CIi,j,j′ . For 1 ≤ i ≤ s and 1 ≤ j ≤ t0, let Ci,j = Ci,j,1u . . .uCi,j,ti , then y0,j ∈ CIi,j
and yi,j′ /∈ CIi,j for all 1 ≤ j′ ≤ ti. For 1 ≤ i ≤ s, let Ci = Ci,1t. . .tCi,t0 , then y0,j ∈ CIi
for all 1 ≤ j ≤ t0, and yi,j′ /∈ CIi for all 1 ≤ j′ ≤ ti. Let C = C1 u . . . u Cs. Thus,
Y0 ⊆ CI and Yi ∩ CI = ∅ for all 1 ≤ i ≤ s, which means that Y0 = CI . Therefore,
x ∈ (≥hR.C)I and x′ /∈ (≥hR.C)I , which implies x 6≡Φ,I x

′. �

Proposition 3.23. Algorithm 2 is correct and can be implemented to have time com-
plexity O(|Σ|(m+ n) log n), where m =

∑
r∈ΣR

|rI | and n = |∆I |. A tighter bound for
the complexity is O(|ΣI |+ |ΣC |n+ |ΣR|(m+ n) log n).

Proof. (Sketch) The contrapositive of Lemma 3.22 states that if x ≡Φ,I x
′ then x and x′

are not separated. That is, ≡Φ,I is a subset of the equivalence relation corresponding to
the partition P. As ≡Φ,I and ∼Φ,I coincide (by Proposition 3.14), it follows that ∼Φ,I
is a subset of the equivalence relation corresponding to the partition P. By Lemma 3.21,
the latter is also an LΦ-auto-bisimulation of I, hence it is the same as ∼Φ,I (the largest
LΦ-auto-bisimulation of I). That is, Algorithm 2 is correct.
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To estimate complexity, notice that the steps 4-17 of Algorithm 2 are essentially
the same as the skeleton of Hopcroft’s automaton minimization algorithm [28, 51] used
for refining the partition. The only difference is the way of splitting X by a pair
〈Y,R〉. The technique for this has been mentioned earlier. The complexity analysis
of [51] can be applied to the steps 4-17 of Algorithm 2. The first change is that
instead of the occurrences of |{p ∈ Q : δ(p, a) ∈ Y }| we have |{〈x, y〉 ∈ RI : y ∈ Y }|.
The second change is that, as Hopcroft’s automaton minimization algorithm is for
deterministic automata but here we have nondeterminism (i.e., for each R ∈ Σ†R, RI

is a binary relation but not a function), the last two lines of [51] are modified so that
O(n) is replaced by O(m) and O(|Σ|n log n) is replaced by O(|ΣR|m log n). Thus,
we can conclude that the steps 4-17 can be implemented to have time complexity
O(|Σ†R|(m+ n) log n), which is the same as O(|ΣR|(m+ n) log n).

Consider complexity of the step 2 of Algorithm 2. To compute equivalence classes
of the equivalence relation ECond Φ, we start from the partition {∆I} and then:

1. Refine the current partition by using the condition that, when O ∈ Φ, x and x′

should be in the same block only if, for every a ∈ ΣI , x = aI iff x′ = aI . This
can be done in O(|ΣI |) steps.

2. Refine the current partition by using the condition that x and x′ should be in the
same block only if, for every A ∈ ΣC , x ∈ AI iff x′ ∈ AI . This can be done in
O(|ΣC |n) steps.

3. Refine the current partition by using the condition that, when Self ∈ Φ, x and x′

should be in the same block only if, for every r ∈ ΣR, 〈x, x〉 ∈ rI iff 〈x′, x′〉 ∈ rI .
This can be done in O(|ΣR|n) steps.

4. Refine the current partition by using the condition that x and x′ should be in the
same block only when degR(x) = degR(x′) (since when Q ∈ Φ). This can be done
in O(|ΣR|n) steps.

Summing up, the time complexity of the step 2 of Algorithm 2 is of rank O(|ΣI | +
|ΣC |n+ |ΣR|n). Therefore, Algorithm 2 can be implemented to have time complexity
O(|ΣI |+ |ΣC |n+ |ΣR|(m+ n) log n). �

3.4.2 The Case Q /∈ Φ

Computing the partition corresponding to ∼Φ,I for the case Q /∈ Φ differs from the
relational coarsest partition problem studied in [49], among others, in that the “edges”
are labeled by basic roles of LΦ. Algorithm 3 (on page 44) is our adaptation of the
Paige-Tarjan algorithm [49] for computing the partition corresponding to ∼Φ,I for
the case Q /∈ Φ.1 It is formulated in a way to reflect the traditional presentation of
Hopcroft’s automaton minimization algorithm.

Roughly speaking, the main problem is that the relation RI for a basic role R of
LΦ need not to be a function. Elements x and x′ of a block X should be separated by
a pair 〈V,R〉, where V is a block, not only when degR(x, V ) > 0 and degR(x′, V ) = 0

1It is a correction for [19].
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or vice versa (i.e., degR(x, V ) = 0 and degR(x′, V ) > 0), but also when degR(x, V ′) > 0
and degR(x′, V ′) = 0 or vice versa (i.e., degR(x, V ′) = 0 and degR(x′, V ′) > 0), where
V ′ is the complement of V w.r.t. an appropriate block Y containing V . Such a Y is the
union of some blocks of the current partition P. In [49], it is called a compound block.

Suppose that a block X cannot be split by a pair 〈Y,R〉 (in the sense that for every
x, x′ ∈ X, degR(x, Y ) > 0 iff degR(x′, Y ) > 0). Let V ⊂ Y and V ′ = Y \ V . Then
splitting X by a tuple 〈V, V ′, R〉 is done as follows:

• Split X by 〈V,R〉 to obtain X1 = {x ∈ X | degR(x, V ) > 0} and X2 = X \X1.

• Split X1 by 〈V ′, R〉 to obtain X1,1 = {x ∈ X1 | degR(x, V ′) > 0} and
X1,2 = X1 \X1,1.

• Then return the set {X1,1, X1,2, X2} after deleting empty sets.

If the result contains more than one block then we say that X is split by 〈V, V ′, R〉.
Note that X2 cannot be split by 〈V ′, R〉. Denote R−1(U) = {x ∈ ∆I | degR(x, U) > 0}.
Then, also observe that:

• X1 = X ∩R−1(V ) and X2 = X \X1,

• X1,2 = X1 ∩ (R−1(V ) \R−1(V ′)) and X1,1 = X1 \X1,2.

This gives a good way for computing the split of X via R−1(V ) and R−1(V )\R−1(V ′),
as the computation can “start” from V and “look back” via R. This is a crucial
observation of [49].

Regarding the idea “process the smaller half”, observe that if Y is the union of at
least two blocks from the current partition P and V is a minimal block of P such that
V ⊂ Y then #V ≤ #Y/2.

Lemma 3.24. Consider an execution of Algorithm 3. The resulting partition P corre-
sponds to an LΦ-auto-bisimulation of I.

Proof. Let Z be the equivalence relation corresponding to the partition P. Consider
the conditions (3.1)–(3.7) and (3.12)–(3.14) with I ′ = I. Clearly, (3.1), (3.2), (3.7),
(3.12)–(3.14) hold. We need to prove only (3.3)–(3.6). It is sufficient to show that, for
every x, x′ ∈ ∆I , every basic role R of LΦ and every block V ∈ P, if (degR(x, V ) > 0
and degR(x′, V ) = 0) or (degR(x, V ) = 0 and degR(x′, V ) > 0) then x and x′ belong to
different blocks of P. This is clear for the case when (degR(x) > 0 and degR(x′) = 0) or
(degR(x) = 0 and degR(x′) > 0). So, assume that either (degR(x) > 0 and degR(x′) >
0) or (degR(x) = 0 and degR(x′) = 0). Let Y be the smallest block such that V ⊂ Y ,
〈Y,R〉 appeared in L at some step and either (degR(x, Y ) > 0 and degR(x′, Y ) > 0) or
(degR(x, Y ) = 0 and degR(x′, Y ) = 0). Such a set exists due to the candidate ∆I .

Consider the moment when 〈Y,R〉 is extracted from L. We have Y = V1 ∪ . . .∪ Vk,
where k ≥ 2 and V1, . . . , Vk are blocks of P. Let V1 be the minimal block among
V1, . . . , Vk that is taken for processing 〈Y,R〉 and let V ′1 = Y \ V1. If x and x′ are
still in the same block of P and they are not separated when splitting that block using
〈V1, V

′
1 , R〉 then the following conditions hold:

• (degR(x, V1) > 0 and degR(x′, V1) > 0) or (degR(x, V1) = 0 and degR(x′, V1) = 0),
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Algorithm 3: computing the partition corresponding to ∼Φ,I for the case Q /∈ Φ

input : a set Φ of DL-features without Q, and a finite interpretation I
output: the partition P corresponding to the largest LΦ-auto-bisimulation of I

1 if I /∈ Φ then let Σ†R = ΣR else let Σ†R = Σ±R;

2 set P to the partition corresponding to the equivalence relation ECond Φ;

3 L := {〈∆I , R〉 | R ∈ Σ†R};
4 while L 6= ∅ do
5 extract a pair 〈Y,R〉 from L;
6 let V be a minimal block of P such that V ⊂ Y ;
7 V ′ := Y \ V ;
8 if more than one block of P is a subset of V ′ then
9 add 〈V ′, R〉 to L

10 foreach X ∈ P split by 〈V, V ′, R〉 do
11 split X by 〈V, V ′, R〉 into a set X of blocks;
12 replace X in P by all the blocks of X;

13 foreach S ∈ Σ†R do
14 if L does not contain any pair 〈U, S〉 such that X ⊂ U then
15 add 〈X,S〉 to L

• (degR(x, V ′1) > 0 and degR(x′, V ′1) > 0) or (degR(x, V ′1) = 0 and degR(x′, V ′1) = 0),

• k = 2 and either V ⊂ V1 or V ⊂ V ′1 .

This implies that V1 or V ′1 is split at some step and that operation adds 〈V1, R〉 or
〈V ′1 , R〉 to L. This contradicts the minimality of Y . Therefore, x are x′ must be
separated by using 〈V1, V

′
1 , R〉. �

Lemma 3.25. Consider an execution of Algorithm 3. If x, x′ ∈ ∆I are separated (i.e.,
belong to different blocks of the partition P) then x 6≡Φ,I x

′.

Proof. Assume that x, x′ ∈ ∆I are separated. We prove that x 6≡Φ,I x
′ by induction

on the iteration k of the main loop at which x and x′ are separated.

Consider the base case k = 0 when x and x′ belong to different equivalence classes
of the equivalence relation ECond Φ. There are the following subcases:

• there exists A ∈ ΣC such that x ∈ AI and x′ /∈ AI or vice versa (i.e., x /∈ AI and
x′ ∈ AI);

• there exists a basic role R of LΦ such that either degR(x) > 0 and degR(x′) = 0
or degR(x) = 0 and degR(x′) > 0;

• O ∈ Φ and there exists a ∈ ΣI such that x = aI and x′ 6= aI or vice versa (i.e.,
x 6= aI and x′ = aI);
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• Self ∈ Φ and there exists r ∈ ΣR such that 〈x, x〉 ∈ rI and 〈x′, x′〉 /∈ rI or vice
versa (i.e., 〈x, x〉 /∈ rI and 〈x′, x′〉 ∈ rI).

The concept A, ∃R.>, {a} or ∃r.Self of LΦ, respectively for these subcases, distin-
guishes x and x′. Hence x 6≡Φ,I x

′.
Now consider the induction step and assume that x and x′ are separated by a tuple

〈V, V ′, R〉 at the iteration k + 1 of the main loop. There are the following cases:

1. degR(x, V ) > 0 and degR(x′, V ) = 0;

2. degR(x, V ) = 0 and degR(x′, V ) > 0;

3. degR(x, V ) > 0, degR(x′, V ) > 0, degR(x, V ′) > 0 and degR(x′, V ′) = 0;

4. degR(x, V ) > 0, degR(x′, V ) > 0, degR(x, V ′) = 0 and degR(x′, V ′) > 0.

Using the induction assumption, in a similar way as in the proof of Lemma 3.22, it can
be shown that there exist concepts C and C ′ such that V = CI and V ′ = C ′I . It can
be seen that either ∃R.C or ∃R.C ′ distinguishes x and x′. �

Proposition 3.26. Algorithm 3 is correct and can be implemented to have time com-
plexity O(|Σ|(m+ n) log n), where m =

∑
r∈ΣR

|rI | and n = |∆I |. A tighter bound for
the complexity is O(|ΣI |+ |ΣC |n+ |ΣR|(m+ n) log n).

Proof. (Sketch) The contrapositive of Lemma 3.25 states that if x ≡Φ,I x
′ then x and x′

are not separated. That is, ≡Φ,I is a subset of the equivalence relation corresponding to
the partition P. As ≡Φ,I and ∼Φ,I coincide (by Proposition 3.14), it follows that ∼Φ,I
is a subset of the equivalence relation corresponding to the partition P. By Lemma 3.24,
the latter is also an LΦ-auto-bisimulation of I, hence it is the same as ∼Φ,I (the largest
LΦ-auto-bisimulation of I). That is, Algorithm 3 is correct. This algorithm can be
implemented in a similar way as the Paige-Tarjan algorithm for the relational coarsest
partition problem [49] and its complexity can be estimated analogously. �

3.5 Minimizing Interpretations: Applications

Minimizing an interpretation in a DL is not the same as minimizing an ontology in
that DL. From the logical point of view, an ontology is specified by a knowledge base,
which may have zero or infinitely many models. It is possible that minimizing interpre-
tations may have some effects or may form a starting point for the study on ontology
minimization. However, this is a challenging topic of automated reasoning in DLs and
is beyond the scope of this dissertation. In this section we only discuss applications of
minimizing interpretations, which is useful when one is dealing with a specific interpre-
tation, e.g., with the unique intended model of a rule-based knowledge base in a DL or
with a counterexample of an instance checking problem in a DL.

Note that if a knowledge base KB has the unique intended model I then a problem
of checking KB |= ϕ, where ϕ is a terminological axiom, a role inclusion axiom or
an individual assertion of the form C(a), R(a, b) or a

.
= b, is usually defined to be

equivalent to the problem of checking whether I |= ϕ. In this case, it makes sense
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to reduce I to I ′ = I/∼Φ,I when Φ ⊆ {I,O, U}, and to I ′ = I/QS
∼Φ,I in the other

case. According to Theorems 3.17 and 3.20, I ′ is a minimal version of I w.r.t. essential
aspects. Furthermore, by Theorems 3.16 and 3.19, when ϕ is a query of one of the
mentioned forms, I |= ϕ iff I ′ |= ϕ, and hence KB |= ϕ iff I ′ |= ϕ. Clearly, the
reduction is useful as it can be used for answering many queries.

We present below exemplary types of rule-based knowledge bases in DLs that have
the unique intended model:

• Acyclic knowledge bases: The notion of acyclic knowledge bases in DLs is
widely used (see, e.g., [48] for a definition). Under the unique name assumption
and the closed world assumption, an acyclic knowledge base KB has the standard
model (see [48] for details). The unique intended model of such a KB can be
defined to be its standard model. We refer the reader to [48] for an example.

• OWL 2 RL+: OWL 2 RL is a profile of OWL 2 Full recommended by W3C. It
hase PTime data complexity. Knowledge bases in OWL 2 RL may be unsat-
isfiable (i.e., inconsistent), since their translations into Datalog may also need
negative clauses as constraints. In [9] Cao et al. introduced OWL 2 RL0 as the
logical formalism of OWL 2 RL that ignores the predefined data types. They then
introduced OWL 2 RL+ as a maximal fragment of OWL 2 RL0 with the property
that every knowledge base KB expressed in OWL 2 RL+ can be translated to an
equivalent Datalog program P without negative clauses. The unique intended
model of such a KB is the least Herbrand model of that Datalog program P .

• WORL and SWORL: In [10] Cao et at. introduced a Web ontology rule language
called WORL, which combines a variant of OWL 2 RL with eDatalog¬. Similarly
to the work on OWL 2 RL+ [9], they disallowed those features of OWL 2 RL that
play the role of constraints2, allowed unary external checkable predicates, addi-
tional features like negation and the constructor ≥nR.C to occur at the left hand
side of v in concept inclusion axioms. They adopted some restrictions for the
additional features to guarantee a translation of WORL programs into eDatalog¬.
They also defined the rule language SWORL (stratified WORL) and developed
the well-founded semantics for WORL and the standard semantics for SWORL
via translation into eDatalog¬. Both WORL with respect to the well-founded
semantics and SWORL with respect to the standard semantics have PTime data
complexity. The unique intended model of a WORL knowledge base KB can be
defined to be the well-founded model of KB , and the unique intended model of a
SWORL knowledge base KB can be defined to be the standard model of KB .

2I.e., the ones that are translated to negative clauses of the form ϕ→ ⊥.
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Chapter 4

Bisimulation-Based Comparisons
for Interpretations

In this chapter, we study bisimulation-based comparisons between interpretations in
the DLs introduced in Chapter 2. The studied problems are: preservation of semi-
positive concepts with respect to comparisons, the Hennessy-Milner property for com-
parisons, characterizing bisimulation for tidy interpretations by semi-positive concepts,
and minimization of interpretations that preserves semi-positive concepts. The class of
semi-positive concepts differs from the class of positive concepts in that, in the recursive
definition, it also allows ⊥. This involves non-seriality.

As mentioned in the introduction, “bisimulation-based comparison” is a synonym
of “directed simulation”. This latter term was introduced by Kurtonina and de Ri-
jke in [36]. In that work, they first formulated directed simulation for a monomodal
logic (denoted by L¬3,2, which is the monomodal logic K without negation) and then,
as examples, they extended it to the DL FLEUC−, temporal logic, feature logics and
languages with non-Boolean negation. They used directed simulation to obtain preser-
vation (of negation-free formulas), safety and definability results. They also proved the
corresponding Hennessy-Milner property for the considered monomodal logic.

In [42, 44], Nguyen studied the problem of constructing a least Kripke model for a
positive modal logic progam in serial modal logics. He compared Kripke models w.r.t.
positive consequences using relations that are in fact bisimulation-based comparisons.
Other works by Nguyen on Horn fragments of modal and description logics also use
bisimulation-based comparisons.

In [25], bisimulation-based comparisons are studied at an abstract level for coalge-
braic modal logics under the name Λ-simulation, and the term “positive formula” is
used instead of “semi-positive formula”. As mentioned before, the term “simulation”
traditionally has another meaning, and in our opinion ⊥ should not be referred to as
“positive”. At an abstract level, the work [25] does not have a result like a Hennessy-
Milner property.

In this chapter, to guarantee a Hennessy-Milner property, roles in semi-positive
concepts have a specific syntax due to the presence of the test operator. The definition
of semi-positive concepts itself in this chapter is not trivial (e.g., we have that if C is
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a semi-positive concept then ≤n r.¬C is also a semi-positive concept).
Our results on preservation of semi-positive concepts and the Hennessy-Milner prop-

erty w.r.t. comparisons may overlap to a certain degree with the known ones.1 However,
our results on “characterizing bisimulation for tidy interpretations by semi-positive con-
cepts” and “minimization that preserves semi-positive concepts” are novel.

This chapter is structured as follows. In Section 4.1 we introduce positive and
semi-positive concepts. In Section 4.2 we define bisimulation-based comparisons for
interpretations and present results on preservation of semi-positive concepts. In Sec-
tion 4.3 we present results on the Hennessy-Milner property with respect to semi-
positive concepts. In Section 4.4 we characterize bisimulation for tidy interpretations
by semi-positive concepts. Section 4.5 is devoted to minimization of interpretations
that preserves semi-positive concepts.

4.1 Positive and Semi-Positive Concepts

Definition 4.1 (Positive Concept).
Let LposΦ be the smallest set of concepts and LposΦ,∃, L

pos
Φ,∀ be the smallest sets of roles

defined recursively as follows:

• if r ∈ ΣR then r is a role of LposΦ,∃ and LposΦ,∀,

• if I ∈ Φ and r ∈ ΣR then r− is a role of LposΦ,∃ and LposΦ,∀,

• if R and S are roles of LposΦ,∃ and C is a concept of LposΦ

then ε, R ◦ S , R t S, R∗ and C? are roles of LposΦ,∃,

• if R and S are roles of LposΦ,∀ and C is a concept of LposΦ

then ε, R ◦ S , R t S, R∗ and (¬C)? are roles of LposΦ,∀,

• if A ∈ ΣC then A is a concept of LposΦ ,

• if O ∈ Φ and a ∈ ΣI then {a} is a concept of LposΦ ,

• if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of LposΦ ,

• if C is a concept of LposΦ , R is a role of LposΦ,∃ and S is a role of LposΦ,∀ then

– >, C tD, C uD, ∃R.C and ∀S.C are concepts of LposΦ ,

– if Q ∈ Φ, r ∈ ΣR and n is a natural number
then ≥ n r.C and ≤ n r.(¬C) are concepts of LposΦ ,

– if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number
then ≥ n r−.C and ≤ n r−.(¬C) are concepts of LposΦ ,

– if U ∈ Φ then ∀U.C and ∃U.C are concepts of LposΦ .

A concept of LposΦ is called a positive concept of LΦ. �

1We are aware of only the mentioned papers [36, 25] as closely related works of other authors.
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We introduce both LposΦ,∀ and LposΦ,∃ due to the test constructor of roles.

Example 4.2. The concepts ∃(A?).B and ∀((¬A)?).B are positive concepts. They are
equivalent to A u B and A t B, respectively. That the concept ≤nR.(¬A) is positive
should not be a surprise, as ∀R.A is equivalent to ≤0R.(¬A). �

Definition 4.3 (Semi-Positive Concept).
Let LspΦ be the smallest set of concepts and LspΦ,∃, L

sp
Φ,∀ be the smallest sets of roles

defined analogously to the case of LposΦ , LposΦ,∃, L
pos
Φ,∀ except that ⊥ is also allowed as a

concept of LspΦ . We call concepts of LspΦ semi-positive concepts of LΦ. �

4.2 Bisimulation-Based Comparisons

The following definition of LΦ-comparison differs from the definition of LΦ-bisimulation
only in that, in the conditions (4.2), (4.7) and (4.14), the second implication (⇒) is
used instead of equivalence (⇔). Technically, the conditions (4.1)–(4.14) differ from
the conditions (3.1)–(3.14) only in that the three occurrences of ⇔ in the latter are
replaced by ⇒.

Definition 4.4 (LΦ-Comparison).
Let I and I ′ be interpretations. A non-empty binary relation Z ⊆ ∆I ×∆I

′
is called

an LΦ-comparison between I and I ′ if the following conditions hold for every a ∈ ΣI ,
A ∈ ΣC , r ∈ ΣR, x, y ∈ ∆I , x′, y′ ∈ ∆I

′
:

Z(aI , aI
′
) (4.1)

Z(x, x′)⇒ [AI(x)⇒ AI
′
(x′)] (4.2)

[Z(x, x′) ∧ rI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI′(x′, y′)] (4.3)

[Z(x, x′) ∧ rI′(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(x, y)], (4.4)

if I ∈ Φ then

[Z(x, x′) ∧ rI(y, x)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI′(y′, x′)] (4.5)

[Z(x, x′) ∧ rI′(y′, x′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(y, x)], (4.6)

if O ∈ Φ then

Z(x, x′)⇒ [x = aI ⇒ x′ = aI
′
], (4.7)

if Q ∈ Φ then

if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements
of ∆I such that rI(x, yi) holds for every 1 ≤ i ≤ n then there exist
pairwise different elements y′1, . . . , y

′
n of ∆I

′
such that rI

′
(x′, y′i) and

Z(yi, y
′
i) hold for every 1 ≤ i ≤ n

(4.8)

if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise different elements of

∆I
′

such that rI
′
(x′, y′i) holds for every 1 ≤ i ≤ n then there exist pair-

wise different elements y1, . . . , yn of ∆I such that rI(x, yi) and Z(yi, y
′
i)

hold for every 1 ≤ i ≤ n,

(4.9)
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if {Q, I} ⊆ Φ then (additionally)

if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements
of ∆I such that rI(yi, x) holds for every 1 ≤ i ≤ n then there exist
pairwise different elements y′1, . . . , y

′
n of ∆I

′
such that rI

′
(y′i, x

′) and
Z(yi, y

′
i) hold for every 1 ≤ i ≤ n

(4.10)

if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise different elements of

∆I
′

such that rI
′
(y′i, x

′) holds for every 1 ≤ i ≤ n then there exist pair-
wise different elements y1, . . . , yn of ∆I such that rI(yi, x) and Z(yi, y

′
i)

hold for every 1 ≤ i ≤ n,

(4.11)

if U ∈ Φ then

∀x ∈ ∆I ∃x′ ∈ ∆I
′
Z(x, x′) (4.12)

∀x′ ∈ ∆I
′ ∃x ∈ ∆I Z(x, x′), (4.13)

if Self ∈ Φ then

Z(x, x′)⇒ [rI(x, x)⇒ rI
′
(x′, x′)]. (4.14)

For example, if Φ = {I,Q} then only the conditions (4.1)-(4.6) and (4.8)-(4.11) are
essential. �

The following lemma is similar to Lemma 3.1 and can easily be proved.

Lemma 4.1.

1. The relation {〈x, x〉 | x ∈ ∆I} is an LΦ-comparison between I and I.

2. If Z1 is an LΦ-comparison between I0 and I1, and Z2 is an LΦ-comparison be-
tween I1 and I2, then Z1 ◦ Z2 is an LΦ-comparison between I0 and I2.

3. If Z is a set of LΦ-comparison between I and I ′ then
⋃
Z is also an LΦ-

comparison between I and I ′.

Definition 4.5. We write I .Φ I ′ to denote that there exists an LΦ-comparison
between I and I ′. For x ∈ ∆I and x′ ∈ ∆I

′
, we write x .Φ x′ to denote that there

exists an LΦ-comparison Z between I and I ′ such that Z(x, x′) holds. �

By Lemma 4.1, the relation .Φ between interpretations (resp. between elements of
interpretations’ domains) is a preorder.

To check whether there exists an LΦ-comparison between I and I ′, one can use
Algorithm 4 (on page 51), which is very similar to Algorithm 1. It is straightforward
to prove the following proposition.

Proposition 4.2. Algorithm 4 is correct. Furthermore, if it returns Z (but not “false”)
then Z is a maximal (w.r.t. ⊆) LΦ-comparison between I and I ′.
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Algorithm 4: computing an LΦ-comparison between two finite interpretations

input : a set Φ of DL-features and finite interpretations I, I ′
output: an LΦ-comparison between I and I ′ if it exists, or false otherwise.

1 Z := ∆I ×∆I
′
;

2 repeat

3 foreach x ∈ ∆I and x′ ∈ ∆I
′
do

4 if some condition among (4.2)-(4.11), (4.14) is related to Φ but not
satisfied for some A, r, y, y′, a then delete the pair 〈x, x′〉 from Z;

5 until Z was not modified during the last iteration;

6 if the condition (4.1) is not satisfied for some a ∈ ΣI then return false;
7 if U ∈ Φ and the condition (4.12) or (4.13) is not satisfied then return false;

8 return Z;
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Figure 4.1: Interpretations used in Example 4.6.

Example 4.6. Let ΣI = {a, b, c}, ΣC = {F,M,A} and ΣR = {r}. The symbols have
the meanings as in Example 3.4, except that A stands for Adult . In Figure 4.1 we
present three interpretations I1, I2 and I3 in a similar way as for Example 3.4. These
interpretations are not L-bisimilar to each other, but we have that:

• I1 .Φ I2 for any Φ,

• I1 .Φ I3 and I2 .Φ I3 (only) when Φ ⊆ {O, Self}.
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We do not have I2 .Φ I1 nor I3 .Φ I2 nor I3 .Φ I1 for any Φ. These assertions can
be checked by using Algorithm 4. �

Lemma 4.3. Let I and I ′ be interpretations and Z be an LΦ-comparison between I
and I ′. Then the following properties hold for every concept C of LspΦ , every role R of
LspΦ,∃, every role S of LspΦ,∀, every x, y ∈ ∆I , every x′, y′ ∈ ∆I

′
, and every a ∈ ΣI :

Z(x, x′)⇒ [CI(x)⇒ CI
′
(x′)] (4.15)

[Z(x, x′) ∧RI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧RI′(x′, y′)] (4.16)

[Z(x, x′) ∧ SI′(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ SI(x, y)]. (4.17)

Proof. We prove this lemma by induction on the structures of C, R and S.
Consider the assertion (4.16). Suppose Z(x, x′) and RI(x, y) hold. By induction on

the structure of R we prove that there exists y′ ∈ ∆I
′

such that Z(y, y′) and RI
′
(x′, y′)

hold. The base case occurs when R is a role name and the assertion for it follows
from (4.3). The induction steps are given below.

• Case R = ε is trivial.

• Case R = R1◦R2, where R1 and R2 are roles of LspΦ,∃: We have that (R1◦R2)I(x, y)

holds. Hence, there exists z ∈ ∆I such that RI1 (x, z) and RI2 (z, y) hold. By
the inductive assumption of (4.16), there exists z′ ∈ ∆I

′
such that Z(z, z′) and

RI
′

1 (x′, z′) hold, and there exists y′ ∈ ∆I
′

such that Z(y, y′) and RI
′

2 (z′, y′) hold.
Since RI

′
1 (x′, z′) and RI

′
2 (z′, y′) hold, we have that (R1 ◦R2)I

′
(x′, y′) holds, i.e.

RI
′
(x′, y′) holds.

• Case R = R1 tR2, where R1 and R2 are roles of LspΦ,∃, is trivial.

• Case R = R∗1, where R1 is a role of LspΦ,∃: Since RI(x, y) holds, there exists

x0, . . . , xk ∈ ∆I such that x0 = x, xk = y and, for 1 ≤ i ≤ k, RI1 (xi−1, xi) holds.
Let x′0 = x′. For each 1 ≤ i ≤ k, since Z(xi−1, x

′
i−1) and RI1 (xi−1, xi) hold, by

the inductive assumption of (4.16), there exists x′i ∈ ∆I such that Z(xi, x
′
i) and

RI
′

1 (x′i−1, x
′
i) hold. Hence, Z(xk, x

′
k) and (R∗1)I

′
(x′0, x

′
k) hold. Let y′ = x′k. Thus,

Z(y, y′) and RI
′
(x′, y′) hold.

• Case R = (D?), where D is a concept of LspΦ : By the definition of (D?)I , we
have that DI(x) holds and x = y. By the inductive assumption of (4.15), DI

′
(x′)

holds, and therefore RI
′
(x′, x′) holds. By choosing y′ = x′, we have that Z(y, y′)

and RI
′
(x′, y′) hold.

• Case I ∈ Φ and R = r−: The assertion for this case follows from (4.5).

The assertion (4.17) can be proved analogously as for (4.16) except for the case
S = (¬C)?, where C is a concept of LspΦ . The proof for this case is as follows. Suppose
Z(x, x′) and SI

′
(x′, y′) hold. Thus, (¬C)I

′
(x′) holds and x′ = y′. By the contrapositive

of the inductive assumption of (4.15), it follows that (¬C)I(x) holds. By choosing y = x,
Z(y, y′) and SI(x, y) hold.
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Consider the assertion (4.15). Suppose Z(x, x′) and CI(x) hold, where C is a
concept of LspΦ . We show that CI

′
(x′) holds. The cases when C is of the form >, ⊥,

A, D tD′ or D uD′ are trivial.

• Case C = ∃R.D, where R is a role of LspΦ,∃ and D is a concept of LspΦ : Since

(∃R.D)I(x) holds, there exists y ∈ ∆I such that RI(x, y) and DI(y) hold. By
the inductive assumption of (4.16) (proved earlier), there exists y′ ∈ ∆I

′
such

that Z(y, y′) and RI
′
(x′, y′) hold. By the inductive assumption of (4.15), DI

′
(y′)

holds. Therefore, CI
′
(x′) holds.

• Case C = ∀S.D, where S is a role of LspΦ,∀ and D is a concept of LspΦ : Let y′ be an

arbitrary element of ∆I
′

such that SI
′
(x′, y′) holds. We show that DI

′
(y′) holds.

By the inductive assumption of (4.17) (proved earlier), there exists y ∈ ∆I such
that Z(y, y′) and SI(x, y) hold. Since (∀S.D)I(y) holds, it follows that DI(y)
holds. Therefore, by the inductive assumption of (4.15), it follows that DI

′
(y′)

holds.

• Case O ∈ Φ and C = {a}: Since {a}I(x) holds, we have that x = aI . By the
condition (4.7), it follows that x′ = aI

′
. Hence CI

′
(x′) holds.

• Case Self ∈ Φ and C = ∃r.Self: Since (∃r.Self)I(x) holds, we have that
rI(x, x) holds. By the condition (4.14), it follows that rI

′
(x′, x′) holds. Hence

CI
′
(x′) holds.

• Case Q ∈ Φ and C = (≥n r.D), where D is a concept of LspΦ : Since CI(x) holds,
there exist pairwise different y1, . . . , yn ∈ ∆I such that rI(x, yi) and DI(yi) hold
for all 1 ≤ i ≤ n. Since Z(x, x′) holds, by the condition (4.8), there exist pairwise
different y′1, . . . , y′n ∈ ∆I

′
such that rI

′
(x′, y′i) and Z(yi, y

′
i) hold for all 1 ≤ i ≤ n.

Since Z(yi, y
′
i) and DI(yi) hold, by the inductive assumption of (4.15), it follows

that DI
′
(y′i) holds. Since rI

′
(x′, y′i) and DI

′
(y′i) hold for all 1 ≤ i ≤ n, it follows

that CI
′
(x′) holds.

• Case {Q, I} ⊆ Φ and C = (≥ n r−1.D), where D is a concept of LspΦ , can be
proved analogously to the above case.

• Case Q ∈ Φ and C = (≤ n r.(¬D)), where D is a concept of LspΦ : For the sake
of contradiction, suppose CI

′
(x′) does not hold. Thus, (¬C)I

′
(x′) holds, which

means (≥ (n + 1) r.(¬D))I
′
(x′) holds. Hence, there exist pairwise different y′1,

. . . , y′n+1 ∈ ∆I
′

such that rI
′
(x′, y′i) and (¬D)I

′
(y′i) hold for all 1 ≤ i ≤ n + 1.

By the condition (4.9), there exist pairwise different y1, . . . , yn+1 ∈ ∆I such that
rI(x, yi) and Z(yi, y

′
i) hold for all 1 ≤ i ≤ n + 1. For each 1 ≤ i ≤ n + 1, since

Z(yi, y
′
i) holds and DI

′
(y′i) does not hold, by the inductive assumption of (4.15),

DI(yi) does not hold, which means (¬D)I(yi) holds. It follows that (¬C)I(x)
holds, which contradicts the assumption that CI(x) holds.

• Case {Q, I} ⊆ Φ and C = (≤n r−1.(¬D)), where D is a concept of LspΦ , can be
proved analogously to the above case.
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• Case U ∈ Φ and C = ∀U.D, where D is a concept of LspΦ : Let y′ ∈ ∆I
′
. By the

condition (4.13), there exists y ∈ ∆I such that Z(y, y′) holds. Since CI(x) holds,
it follows that DI(y) holds. By the inductive assumption of (4.15), it follows that
DI
′
(y′) holds. Hence CI

′
(x′) holds.

• Case U ∈ Φ and C = ∃U.D, where D is a concept of LspΦ : Since CI(x) holds,
there exists y ∈ ∆I such that DI(y) holds. By the condition (4.12), there exists
y′ ∈ ∆I

′
such that Z(y, y′) holds. By the inductive assumption of (4.15), it follows

that DI
′
(y′) holds. Hence CI

′
(x′) holds. �

Definition 4.7 (Preservation by LΦ-Comparisons).
A concept C of LΦ is said to be preserved by LΦ-comparisons if, for any interpretations
I, I ′ and any LΦ-comparison Z between I and I ′, if Z(x, x′) holds and x ∈ CI then
x′ ∈ CI′ . �

The following theorem follows immediately from the assertion (4.15) of Lemma 4.3.

Theorem 4.4. All concepts of LspΦ are preserved by LΦ-comparisons.

Corollary 4.5. All concepts of LposΦ are preserved by LΦ-comparisons.

4.3 The Hennessy-Milner Property with Respect to Semi-
Positive Concepts

In this section, we present theorems similar to the Hennessy-Milner property that are
related to LΦ-comparisons and semi-positive/positive concepts.

Definition 4.8. Let I and I ′ be interpretations, x ∈ ∆I and x′ ∈ ∆I
′
. Define that:

• x is equivalent to x′ w.r.t. (concepts of) LΦ, denoted by x ≡Φ x′, if, for every
concept C of LΦ, x ∈ CI iff x′ ∈ CI′ ;

• x is less than or equal to x′ w.r.t. concepts of LspΦ (resp. LposΦ ), denoted by x ≤sp
Φ x′

(resp. x ≤pos
Φ x′), if, for every concept C of LspΦ (resp. LposΦ ), x ∈ CI implies

x′ ∈ CI′ ;

• x is equivalent to x′ w.r.t. concepts of LspΦ , denoted by x ≡sp
Φ x′, if x ≤sp

Φ x′ and
x′ ≤sp

Φ x. �

We need the following lemma, which allows us to check the conditions (4.8)-(4.11)
in another way.

Lemma 4.6. Let Z ⊆ S× S′ be a binary relation such that, for any natural number n
and any pairwise different x1, . . . , xn ∈ S, there exist pairwise different x′1, . . . , x

′
n ∈ S′

with the property that, for any 1 ≤ j ≤ n, there exists 1 ≤ i ≤ n such that 〈xi, x′j〉 ∈ Z.
Then, for any natural number n and any pairwise different x1, . . . , xn ∈ S, there exist
pairwise different x′1, . . . , x

′
n ∈ S′ such that 〈xi, x′i〉 ∈ Z for all 1 ≤ i ≤ n.
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Proof. We prove this lemma by induction on n. The base case n = 0 is trivial. Assuming
that the induction hypothesis holds for some n, we show that it also holds for n + 1
(in the place of n). Suppose X ∪ {x0} ⊆ S, #X = n and x0 /∈ X. We prove that there
exists an injection g : X ∪ {x0} → S′ such that, for every x ∈ X ∪ {x0}, 〈x, g(x)〉 ∈ Z.

By the inductive assumption, there exists a bijection f : X → X ′ such that X ′ ⊆ S′

and, for every x ∈ X, 〈x, f(x)〉 ∈ Z. Consider the following procedure:

1 i := 0, X0 := ∅, X ′0 := ∅;
2 while true do
3 i := i+ 1;
4 set X ′i to be any subset of S′ with cardinality i such that, for any x′ ∈ X ′i,

there exists x ∈ Xi−1 ∪ {x0} such that 〈x, x′〉 ∈ Z;
5 set x′i to an arbitrary element from X ′i \ f(Xi−1);
6 if x′i ∈ X ′ then
7 xi := f−1(x′i);
8 Xi := Xi−1 ∪ {xi};
9 else break;

Note that, at any step of the execution of the above procedure, #Xi−1 = i − 1,
Xi−1 ⊆ X and #X ′i = i. Hence, at the step 5, x′i can be set properly. Observe that the
loop terminates after some iteration with i ≤ n + 1. The reason is that: if i = n + 1
then f(Xi−1) = f(X) = X ′ and x′i /∈ X ′, which terminates the loop. Let k be the final
value of i (when the loop terminates).

We prove by an inner induction on j from 1 to k that there exists a bijection
gj : Xj−1 ∪ {x0} → f(Xj−1)∪ {x′j} such that 〈x, gj(x)〉 ∈ Z for every x ∈ Xj−1 ∪ {x0}.
The base case j = 1 is trivial. Assuming that the hypothesis of the inner induction
holds for some j < k and any natural number less than j, we show that it also holds
for j + 1 (in the place of j).

Let gj+1 : Xj ∪ {x0} → f(Xj) ∪ {x′j+1} be specified as follows:

• if 〈xj , x′j+1〉 ∈ Z then gj+1(xj) = x′j+1 and gj+1(x) = gj(x) for x ∈ Xj−1 ∪ {x0},

• else let j′ be a natural number such that 0 ≤ j′ < j and 〈xj′ , x′j+1〉 ∈ Z (such j′

exists due to the definition of x′j+1) and define

– gj+1(xh) = gj′(xh) for 0 ≤ h < j′,

– gj+1(xj′) = x′j+1,

– gj+1(xh) = f(xh) for j′ < h ≤ j.

By the inductive assumption of the inner induction for j and j′, it is easy to see that
gj+1 satisfies the induction hypothesis for j + 1.

We define the intended injection g : X ∪ {x0} → S′ as follows:

• g(xi) = gk(xi) for 0 ≤ i < k,

• g(x) = f(x) for x ∈ X \ (Xk−1 ∪ {x0}).
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Since f and gk are bijections, gk(Xk−1 ∪ {x0}) = f(Xk−1) ∪ {x′k} and x′k /∈ X ′, it is
easy to see that g is an injection. Due to the properties of f and gk, we also have that
〈x, g(x)〉 ∈ Z for all x ∈ X ∪ {x0}. �

Theorem 4.7. Let I and I ′ be modally saturated interpretations (w.r.t. LΦ) such that,
for every a ∈ ΣI , aI ≤sp

Φ aI
′
. Suppose that if U ∈ Φ then: either both I and I ′ are

unreachable-objects-free, or both of them are not unreachable-objects-free, or both of
them are finite. Then, for every x ∈ ∆I and x′ ∈ ∆I

′
, x ≤sp

Φ x′ iff x .Φ x′. In
particular, the relation {〈x, x′〉 ∈ ∆I ×∆I

′ | x ≤sp
Φ x′} is an LΦ-comparison between I

and I ′ when it is not empty.

Proof. First, suppose Z is an LΦ-comparison between I and I ′ such that Z(x, x′) holds.
We show that x ≤sp

Φ x′. Let C be an arbitrary concept of LspΦ such that CI(x) holds.
Thus, by the assertion (4.15) of Lemma 4.3, CI

′
(x′) holds. Therefore, x ≤sp

Φ x′.
Conversely, let Z = {〈x, x′〉 ∈ ∆I×∆I

′ | x ≤sp
Φ x′} and assume that Z is not empty.

We show that Z is an LΦ-comparison between I and I ′.

• The condition (4.1) immediately follows from the assumption of the theorem.

• Consider the condition (4.2). If Z(x, x′) and AI(x) hold, then by the definition
of Z, AI

′
(x′) holds.

• Consider the condition (4.3). Suppose Z(x, x′) and rI(x, y) hold. Let S = {y′ ∈
∆I
′ | rI′(x′, y′)}. We show that there exists y′ ∈ S such that Z(y, y′) holds. For

the sake of contradiction, suppose that, for every y′ ∈ S, Z(y, y′) does not hold,
which means that y 6≤sp

Φ y′. Thus, for every y′ ∈ S, there exists a concept Cy′ of
LspΦ such that y ∈ CIy′ but y′ /∈ CI′y′ . Let Γ = {Cy′ | y′ ∈ S}. Thus, no y′ ∈ S

satisfies Γ (i.e. S ∩ ΓI
′

= ∅). Since I ′ is modally saturated, it follows that there
exists a finite subset Λ of Γ such that, for every y′ ∈ S, y′ /∈ ΛI

′
. Consider the

concept C = ∃r.
d

Λ of LspΦ . CI(x) holds, but CI
′
(x′) does not. This contradicts

x ≤sp
Φ x′.

• Consider the condition (4.4). Suppose Z(x, x′) and rI
′
(x′, y′) hold. Let S = {y ∈

∆I | rI(x, y)}. We show that there exists y ∈ S such that Z(y, y′) holds. For the
sake of contradiction, suppose that, for every y ∈ S, Z(y, y′) does not hold, i.e.
y 6≤sp

Φ y′. Thus, for every y ∈ S, there exists a concept Cy of LspΦ such that y ∈ CIy
but y′ /∈ CI′y . Let Γ = {¬Cy | y ∈ S}. Thus, no y ∈ S satisfies Γ (i.e. S∩ΓI = ∅).
Since I is modally saturated, it follows that there exists a finite subset Λ of Γ such
that, for every y ∈ S, y /∈ ΛI . Thus, x ∈ (∀r.¬

d
Λ)I . Let Λ = {¬Cy1 , . . . ,¬Cyn}

and C = ∀r.(Cy1 t . . . t Cyn) (we have C = ∀r.⊥ when n = 0). The concept C
belongs to LspΦ and is equivalent to ∀r.¬

d
Λ. Hence, CI(x) holds, but CI

′
(x′)

does not. This contradicts x ≤sp
Φ x′.

• The conditions (4.5) and (4.6) can be proved analogously as for the condi-
tions (4.3) and (4.4), respectively.

• Consider the condition (4.7) and the case O ∈ Φ. Suppose Z(x, x′) holds and x =
aI . Since {a}I(x) holds and x ≤sp

Φ x′, it follows that {a}I′(x′) holds. Therefore,
x′ = aI

′
.
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• Consider the condition (4.8) and the case Q ∈ Φ. Suppose Z(x, x′) holds, i.e.,
x ≤sp

Φ x′. Let S = {y ∈ ∆I | rI(x, y)} and S′ = {y′ ∈ ∆I
′ | rI′(x′, y′)}. Let

y1, . . . , yn be pairwise different elements of S. Let S′′ = {y′ ∈ S′ | there exists
1 ≤ i ≤ n such that yi ≤sp

Φ y′}. To prove the condition (4.8), by Lemma 4.6, it
is sufficient to prove that #S′′ ≥ n. For each y′ ∈ S′ \ S′′, there exist concepts
Dy′,1, . . . , Dy′,n of LspΦ such that yi ∈ DIy′,i and y′ /∈ DI′y′,i for every 1 ≤ i ≤ n. For

each y′ ∈ S′ \ S′′, let Cy′ = Dy′,1 t . . . tDy′,n, then we have that yi ∈ CIy′ for all

1 ≤ i ≤ n, but y′ /∈ CI′y′ . Let Γ = {Cy′ | y′ ∈ S′\S′′}. Note that ΓI
′∩(S′\S′′) = ∅.

For every finite subset Λ of Γ, since y1, . . . , yn ∈ ΛI , we have x ∈ (≥n r.
d

Λ)I ,
and since x ≤sp

Φ x′, we also have that x′ ∈ (≥n r.
d

Λ)I
′
, which means there are at

least n pairwise different y′1, . . . , y
′
n ∈ S′ that belong to ΛI

′
. Since I ′ is modally

saturated, it follows that there are at least n pairwise different y′1, . . . , y
′
n ∈ S′

that belong to ΓI
′
. Since ΓI

′ ∩ (S′ \ S′′) = ∅, it follows that #S′′ ≥ n.

• Consider the condition (4.9) and the case Q ∈ Φ. Suppose Z(x, x′) holds, i.e.,
x ≤sp

Φ x′. Let S = {y ∈ ∆I | rI(x, y)} and S′ = {y′ ∈ ∆I
′ | rI′(x′, y′)}. Let

y′1, . . . , y
′
n be pairwise different elements of S′. Let S′′ = {y ∈ S | there exists

1 ≤ i ≤ n such that y ≤sp
Φ y′i}. To prove the condition (4.9), by Lemma 4.6, it

is sufficient to prove that #S′′ ≥ n. For each y ∈ S \ S′′, there exist concepts
Dy,1, . . . , Dy,n of LspΦ such that y ∈ DIy,i and y′i /∈ DI

′
y,i for every 1 ≤ i ≤ n. For

each y ∈ S\S′′, let Cy = Dy,1u . . .uDy,n, then we have that y ∈ CIy , but y′i /∈ CI
′

y

for all 1 ≤ i ≤ n. Let Γ = {¬Cy | y ∈ S \ S′′}. Note that ΓI ∩ (S \ S′′) = ∅.
Consider any finite subset Λ of Γ and let C = ≥n r.

d
Λ. Since y′1, . . . , y

′
n ∈ ΛI ,

we have that x′ ∈ CI′ . Since ¬C is equivalent to a concept of LspΦ , x ≤sp
Φ x′ and

x′ /∈ (¬C)I
′
, we must have that x /∈ (¬C)I , which means x ∈ CI . Hence, there are

at least n pairwise different y1, . . . , yn ∈ S that belong to ΛI . Since I is modally
saturated, it follows that there are at least n pairwise different y1, . . . , yn ∈ S that
belong to ΓI . Since ΓI ∩ (S \ S′′) = ∅, it follows that #S′′ ≥ n.

• The conditions (4.10) and (4.11) can be proved analogously as for the condi-
tions (4.8) and (4.9).

• Consider the assertion (4.12) and the case U ∈ Φ. If I is unreachable-objects-free
then the assertion (4.12) follows from the assertions (4.1), (4.3) and (4.5).

Consider the case when I is not unreachable-objects-free. Thus, I ′ is also not
unreachable-objects-free. Since Z is not empty, there exists 〈y, y′〉 ∈ Z. We have
y ≤sp

Φ y′. Let x ∈ ∆I . For the sake of contradiction, suppose there is no x′ ∈ ∆I
′

such that x ≤sp
Φ x′. Thus, for every x′ ∈ ∆I

′
, there exists a concept Cx′ of LspΦ

such that x ∈ CIx′ but x′ /∈ CI
′

x′ . Let Γ = {Cx′ | x′ ∈ ∆I
′}. For any finite

subset Λ of Γ, since x ∈ ΛI , we have that y ∈ (∃U.
d

Λ)I , which implies that
y′ ∈ (∃U.

d
Λ)I

′
(since y ≤sp

Φ y′), which means Λ is satisfied in I ′. Since I ′ is
modally saturated and not unreachable-objects-free, it follows that Γ is satisfied
in I ′, which is a contradiction.

The case when I is finite can be proved analogously as for the above case.
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• Consider the assertion (4.13) and the case U ∈ Φ. If I ′ is unreachable-objects-free
then the assertion (4.13) follows from the assertions (4.1), (4.4) and (4.6).

Consider the case when I ′ is not unreachable-objects-free. Thus, I is also not
unreachable-objects-free. Since Z is not empty, there exists 〈y, y′〉 ∈ Z. We have
y ≤sp

Φ y′. Let x′ ∈ ∆I
′
. For the sake of contradiction, suppose there is no x ∈ ∆I

such that x ≤sp
Φ x′. Thus, for every x ∈ ∆I , there exists a concept Cx of LspΦ such

that x ∈ CIx but x′ /∈ CI′x . Let Γ = {¬Cx | x ∈ ∆I}. Consider any finite subset
Λ of Γ and let C = ∃U.

d
Λ. Since x′ ∈ ΛI

′
, we have that y′ ∈ CI′ , and hence

y′ /∈ (¬C)I
′
. Since ¬C is equivalent to a concept of LspΦ and y ≤sp

Φ y′, it follows
that y /∈ (¬C)I , and hence y ∈ CI . This means Λ is satisfied in I. Since I is
modally saturated and not unreachable-objects-free, it follows that Γ is satisfied
in I, which is a contradiction.

The case when I ′ is finite can be proved analogously as for the above case.

• Consider the condition (4.14) and the case Self ∈ Φ. Suppose Z(x, x′)
and rI(x, x) hold. Since (∃r.Self)I(x) holds and x ≤sp

Φ x′, it follows that
(∃r.Self)I

′
(x′) holds. Hence, rI

′
(x′, x′) holds. �

Let us analyze where ⊥ is really used in the proof of Theorem 4.7. Observe that the
notion of being modally saturated remains the same if in its definition only non-empty
finite subsets of Γ are considered. We can modify the proof of Theorem 4.7 by changing
every phrase “finite subset Λ” to “non-empty finite subset Λ” if the set S in the proof
of the assertion (4.4) is not empty. If I is a serial interpretation then that S is always
non-empty. It can be seen that ⊥ is only used to guarantee that the set S in the proof
of the assertion (4.4) can be empty. Therefore, we also have the following theorem.

Theorem 4.8. Let I and I ′ be modally saturated interpretations (w.r.t. LΦ) such that
I is serial and, for every a ∈ ΣI , aI ≤pos

Φ aI
′
. Suppose that if U ∈ Φ then: either both

I and I ′ are unreachable-objects-free, or both of them are not unreachable-objects-free,
or both of them are finite. Then, for every x ∈ ∆I and x′ ∈ ∆I

′
, x ≤pos

Φ x′ iff x .Φ x′.
In particular, the relation {〈x, x′〉 ∈ ∆I×∆I

′ | x ≤pos
Φ x′} is an LΦ-comparison between

I and I ′ when it is not empty.

4.4 Characterizing Bisimulation for Tidy Interpretations
by Semi-Positive Concepts

Before introducing tidy interpretations, let us consider the following example.

Example 4.9. Let Φ = ∅, ΣI = {a}, ΣC = {A,B}, ΣR = {r} and let I, I ′ be the
interpretations specified and illustrated as follows:

• ∆I = {u, v0, v1, v2}, aI = u, rI = {〈u, v0〉, 〈u, v1〉, 〈u, v2〉},
AI = {v1, v2}, BI = {v2},

• ∆I
′

= {u, v0, v2}, aI
′

= u, rI
′

= {〈u, v0〉, 〈u, v2〉} and AI
′

= BI
′

= {v2}.
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(I)

u = aI
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(I ′)

u = aI
′
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v0 v2 : A,B

Notice that I ′ is obtained from I by deleting v1. Observe that there are LΦ-comparisons
between I and I ′ as well as between I ′ and I, but there is no LΦ-bisimulations between
I and I ′. In particular, aI ≡sp

Φ aI
′
, but aI 6≡Φ aI

′
. Also observe that, for C =

∀r.((A u B) t (¬A u ¬B)), we have I ′ |= C(a), but I 6|= C(a). This implies that the
concept C cannot be expressed in LspΦ . �

The point of the above example is that, when Q /∈ Φ, if v0, v1, v2 are pairwise
different r-successors of u, v0 ≤sp

Φ v1 and v1 ≤sp
Φ v2 then the edge 〈u, v1〉 ∈ rI is not

essential for the semantics of semi-positive concepts at u. Also note that, when Q /∈ Φ,
if v and v′ are different r-successors of u such that v ≡sp

Φ v′ then the edge 〈u, v′〉 ∈ rI
is not essential for the semantics of semi-positive concepts at u.

Definition 4.10 (LspΦ -Tidiness – for the Case Q /∈ Φ).
Suppose Q /∈ Φ. We say that an interpretation I is LspΦ -tidy if it is unreachable-objects-
free when U ∈ Φ, and for every x, y, y′, y′′ ∈ ∆I and every basic role R of LΦ,

• if {〈x, y〉, 〈x, y′〉} ⊆ RI and y ≡sp
Φ y′ then y = y′,

• if {〈x, y〉, 〈x, y′〉, 〈x, y′′〉} ⊆ RI , y ≤sp
Φ y′ and y′ ≤sp

Φ y′′ then y = y′ or y′ = y′′ or
(Self ∈ Φ and y′ = x). �

Example 4.11. Reconsider Example 4.9. Observe that I ′ is LspΦ -tidy, but I is not. �

Theorem 4.9. Suppose Q /∈ Φ. Let I and I ′ be modally saturated and LspΦ -tidy in-
terpretations such that, for every a ∈ ΣI , aI ≡sp

Φ aI
′
. Then, for every x ∈ ∆I and

x′ ∈ ∆I
′
, x ≡sp

Φ x′ iff x ∼Φ x′. In particular, the relation {〈x, x′〉 ∈ ∆I×∆I
′ | x ≡sp

Φ x′}
is an LΦ-bisimulation between I and I ′ when it is not empty.

Proof. If Z is an LΦ-bisimulation between I and I ′ such that Z(x, x′) holds then, by
Theorem 3.12, x ≡Φ x′, and hence x ≡sp

Φ x′. For the remaining assertions of the current
theorem, let Z = {〈x, x′〉 ∈ ∆I ×∆I

′ | x ≡sp
Φ x′} and assume that it is not empty. We

show that it is an LΦ-bisimulation between I and I ′.

• The condition (3.1) immediately follows from the assumption of the theorem.

• Consider the condition (3.2). Suppose Z(x, x′) holds. By the definition of Z,
AI(x) holds iff AI

′
(x′) holds.

• Consider the condition (3.3). Suppose Z(x, x′) ∧ rI(x, y) holds. We show that
there exists y′ such that Z(y, y′) ∧ rI′(x′, y′) holds. For the case when Self ∈ Φ
and y = x we can just take y′ = x′. So, suppose Self /∈ Φ or y 6= x. Analogously
to the proof of Theorem 4.7, it can be shown that there exists y′2 ∈ ∆I

′
such that
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rI
′
(x′, y′2) holds and y ≤sp

Φ y′2. Dually, there exists y′1 ∈ ∆I
′

such that rI
′
(x′, y′1)

holds and y′1 ≤
sp
Φ y. Similarly, there exist y1, y2 ∈ ∆I such that rI(x, y1) and

rI(x, y2) hold, y1 ≤sp
Φ y′1 and y′2 ≤

sp
Φ y2. Hence y1 ≤sp

Φ y ≤sp
Φ y2. Since I is

LspΦ -tidy, either y = y1 or y = y2. Since y1 ≤sp
Φ y′1 ≤

sp
Φ y and y ≤sp

Φ y′2 ≤
sp
Φ y2, it

follows that y ≡sp
Φ y′1 or y ≡sp

Φ y′2. If y ≡sp
Φ y′1 then choose y′ = y′1, else choose

y′ = y′2. Thus, Z(y, y′) ∧ rI′(x′, y′) holds.

• The condition (3.4) as well as the conditions (3.5) and (3.6) for the case I ∈ Φ
can be proved analogously.

• Consider the condition (3.7) and the case O ∈ Φ. Suppose Z(x, x′) holds. Thus,
{a}I(x) holds iff {a}I′(x′) holds. That is, x = aI iff x′ = aI

′
.

• Consider the conditions (3.12) and (3.13) and the case U ∈ Φ. By assumption,
both I and I ′ are unreachable-objects-free. The condition (3.12) follows from the
conditions (3.1), (3.3) and (3.4). Analogously, the condition (3.13) also holds.

• Consider the condition (3.14) and the case Self ∈ Φ. Suppose Z(x, x′) holds.
Thus, (∃r.Self)I(x) holds iff (∃r.Self)I

′
(x′) holds. That is, rI(x, x) holds iff

rI
′
(x′, x′) holds. �

Definition 4.12 (LspΦ -Tidiness – for the Case Q ∈ Φ).
Suppose Q ∈ Φ. We say that an interpretation I is LspΦ -tidy if it is unreachable-objects-
free when U ∈ Φ, and for every x ∈ ∆I , every basic role R of LΦ and every R-successor
y of x, the set {y′ ∈ ∆I | 〈x, y′〉 ∈ RI ∧ y ≤sp

Φ y′} is finite. �

Clearly, if Q ∈ Φ and U /∈ Φ then every finitely branching interpretation is LspΦ -tidy.

Theorem 4.10. Suppose Q ∈ Φ. Let I and I ′ be modally saturated and LspΦ -tidy
interpretations such that, for every a ∈ ΣI , aI ≡sp

Φ aI
′
. Then, for every x ∈ ∆I and

x′ ∈ ∆I
′
, x ≡sp

Φ x′ iff x ∼Φ x′. In particular, the relation {〈x, x′〉 ∈ ∆I×∆I
′ | x ≡sp

Φ x′}
is an LΦ-bisimulation between I and I ′ when it is not empty.

Proof. Let Z = {〈x, x′〉 ∈ ∆I × ∆I
′ | x ≡sp

Φ x′} and assume that it is not empty.
Analyzing the proof of Theorem 4.9, it can be seen that we only need to prove the
conditions (3.3)-(3.6) and (3.8)-(3.11).

Suppose Z(x, x′) holds. Let R be a basic role of LspΦ and y0 be an arbitrary R-
successor of x. Let S = {y ∈ ∆I | 〈x, y〉 ∈ RI ∧ y0 ≤sp

Φ y} and S′ = {y′ ∈ ∆I
′ |

〈x′, y′〉 ∈ RI
′ ∧ y0 ≤sp

Φ y′}. Since I is LspΦ -tidy, S is finite. By Theorem 4.7, ≤sp
Φ is

an LΦ-comparison between I and I ′ as well as between I ′ and I. Since x ≤sp
Φ x′ and

S is finite, by (4.8) and (4.10) for ≤sp
Φ (i.e., with Z replaced by ≤sp

Φ ), there exists an
injection g : S → S′ such that y ≤sp

Φ g(y) for every y ∈ S. Since x′ ≤sp
Φ x and S′ is

finite, by (4.8) and (4.10) for ≤sp
Φ (i.e., with Z replaced by ≤sp

Φ ), there exists an injection
g′ : S′ → S such that y′ ≤sp

Φ g′(y′) for every y′ ∈ S′. Therefore, there exists a bijection
f : S→ S′ such that y ≡sp

Φ f(y) for every y ∈ S. Observe that this property implies the
condition (3.8). The condition (3.9) as well as the conditions (3.10) and (3.11) can be
proved analogously. The conditions (3.3)-(3.6) follow from the conditions (3.8)-(3.11),
respectively. �
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Corollary 4.11. Let I and I ′ be finitely branching interpretations (w.r.t. LΦ) such
that, for every a ∈ ΣI , aI ≡sp

Φ aI
′
. Suppose Q ∈ Φ and if U ∈ Φ then both I and I ′ are

unreachable-objects-free. Then, for every x ∈ ∆I and x′ ∈ ∆I
′
, x ≡sp

Φ x′ iff x ≡Φ x′.

This corollary follows from Theorems 4.10, 3.12 and the definition of LspΦ -tidiness.
As a consequence of this corollary, if Q ∈ Φ then LΦ-bisimulation between interpreta-
tions that are finitely branching and unreachable-objects-free can be characterized by
semi-positive concepts.

4.5 Minimization That Preserves Semi-Positive Concepts

In this section, we study the problem of minimizing an interpretation I w.r.t. the
cardinality of the domain so that the resulting interpretation satisfies the same set of
concept assertions in LspΦ as I. When possible, we also consider infinite interpretations,
however, the main objective is to develop methods that work for any finite interpretation
and cover all the cases of Φ.

Definition 4.13 (LΦ-Auto-Comparison).
An LΦ-comparison between I and itself is called an LΦ-auto-comparison of I. An LΦ-
auto-comparison of I is said to be the largest if it is larger than or equal to (⊇) any
other LΦ-auto-comparison of I. �

Proposition 4.12. The largest LΦ-auto-comparison of an interpretation I always ex-
ists and is a preorder.

This proposition follows from Lemma 4.1. By Proposition 4.2, the largest LΦ-auto-
comparison of an interpretation I can be computed by applying Algorithm 4 to the
interpretations I and I ′ = I.

Definition 4.14. Given an interpretation I, by .Φ,I we denote the largest LΦ-auto-
comparison of I. We define 'Φ,I to be .Φ,I ∩ (.Φ,I)

−1. �

Definition 4.15. Let I be an interpretation or a QS-interpretation. By ≤sp
Φ,I we denote

the binary relation on ∆I such that x ≤sp
Φ,I y iff, for every concept C of LspΦ , if x ∈ CI

then y ∈ CI . By ≡sp
Φ,I we denote the binary relation on ∆I such that x ≡sp

Φ,I y iff, for

every concept C of LspΦ , x ∈ CI iff y ∈ CI . �

Proposition 4.13. For every modally saturated interpretation I, the relations ≤sp
Φ,I

and .Φ,I coincide (i.e. ≤sp
Φ,I is the largest LΦ-auto-comparison of I) and, as a conse-

quence, the relation 'Φ,I coincides with the equivalence relation ≡sp
Φ,I .

This proposition follows from Theorem 4.7.

Lemma 4.14. Let I be a finitely branching interpretation such that it is finite when
U ∈ Φ, and let I ′ = I/'Φ,I when {Q, Self}∩Φ = ∅, and I ′ = I/QS

'Φ,I otherwise. Then:

1. for every x ∈ ∆I and every concept C of LspΦ , x ∈ CI iff [x]'Φ,I ∈ CI
′
;

consequently, I ′ satisfies the same set of concept assertions in LspΦ as I;
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2. for every x′1, x
′
2 ∈ ∆I

′
, if x′1 6= x′2 then x′1 6≡

sp
Φ,I′ x

′
2;

3. for every x1, x2 ∈ ∆I , x1 .Φ,I x2 iff [x1]'Φ,I ≤
sp
Φ,I′ [x2]'Φ,I .

Proof. Consider the first assertion for the case {Q, Self} ∩ Φ = ∅. It is straight-
forward to check that Z = {〈x, [x′]'Φ,I 〉 | x .Φ,I x

′} satisfies the conditions (4.1)-
(4.7), (4.12), (4.13) and is thus an LΦ-comparison between I and I ′. Analogously,
Z ′ = {〈[x′]'Φ,I , x〉 | x′ .Φ,I x} is an LΦ-comparison between I ′ and I. By Theo-
rem 4.4, it follows that, for every x ∈ ∆I and every concept C of LspΦ , x ∈ CI iff
[x]'Φ,I ∈ CI

′
.

Consider the first assertion for the case {Q, Self} ∩Φ 6= ∅. It is straightforward to
check that Z = {〈x, [x′]'Φ,I 〉 | x .Φ,I x

′} satisfies the properties (4.1)-(4.7), (4.12),
(4.13). Additionally, the properties (4.15)-(4.17) can be proved analogously as in
Lemma 4.3 except that the cases when (Q ∈ Φ and C = ≥ nR.D) or (Q ∈ Φ and
C = ≤nR.¬D) or (Self ∈ Φ and C = ∃r.Self) in the proof of the assertion (4.15) are
changed to the following:

• Case Q ∈ Φ and C = (≥ nR.D), where R is a basic role and D is a concept
of LspΦ : Since CI(x) holds, there exist pairwise different y1, . . . , yn ∈ ∆I such
that RI(x, yi) and DI(yi) hold for all 1 ≤ i ≤ n. Since x .Φ,I x′, by the
conditions (4.8) and (4.10), there exist pairwise different y′1, . . . , y

′
n ∈ ∆I such that

RI(x′, y′i) and yi .Φ,I y
′
i for all 1 ≤ i ≤ n. Let the partition of {y′1, . . . , y′n} that

corresponds to the equivalence relation 'Φ,I consist of pairwise different blocks
Yi1 , . . . , Yik , where {i1, . . . , ik} ⊆ {1, . . . , n} and y′ij ∈ Yij for all 1 ≤ j ≤ k. For

every 1 ≤ j ≤ k, since DI(yij ) and yij .Φ,I y
′
ij

hold, by the inductive assumption

of (4.15), DI
′
([y′ij ]'Φ,I ) holds. By the definition of I ′, QI′(R)([x′]'Φ,I , [y

′
ij

]'Φ,I ) ≥
#Yij for all 1 ≤ j ≤ k. Hence CI

′
([x′]'Φ,I ) holds.

• Case Q ∈ Φ and C = (≤ nR.(¬D)), where R is a basic role and D is
a concept of LspΦ : For the sake of contradiction, suppose [x′]'Φ,I /∈ CI

′
.

Thus, [x′]'Φ,I ∈ (¬C)I
′
, which means [x′]'Φ,I ∈ (≥ (n + 1)R.(¬D))I

′
.

Hence, there exist pairwise different [y′1]'Φ,I , . . . , [y′k]'Φ,I ∈ (¬D)I
′

such that

Σ1≤i≤kQ
I′(R)([x′]'Φ,I , [y

′
i]'Φ,I ) ≥ n + 1. For each 1 ≤ i ≤ k, let y′i,1, . . . , y

′
i,ji

be all pairwise different elements of [y′i]'Φ,I such that RI
′
(x′, y′i,j) holds for all

1 ≤ j ≤ ji. We have that j1 + . . .+jk ≥ n+1. For 1 ≤ i ≤ k and 1 ≤ j ≤ ji, since
[y′i]'Φ,I /∈ DI

′
and y′i,j .Φ,I y

′
i, by the contrapositive of the inductive assumption

of (4.15), y′i,j /∈ DI
′
. Therefore, x′ ∈ (≥ (n+ 1)R.(¬D))I , which means x′ /∈ CI .

Since x .Φ,I x
′, it follows that x /∈ CI , which contradicts the assumption that

CI(x) holds.

• Case Self ∈ Φ and C = ∃r.Self: Since (∃r.Self)I(x) holds, we have that rI(x, x)
holds. Since x .Φ,I x

′, by (4.14), it follows that rI
′
(x′, x′) holds. Hence CI

′
(x′)

holds.

Dually, it can be proved that the properties (4.1)-(4.7), (4.12), (4.13) and (4.15)-
(4.17) are satisfied for Z ′ = {〈[x]'Φ,I , x

′〉 | x .Φ,I x
′} in the place of Z. By the
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property (4.15) for Z and Z ′, for every x ∈ ∆I and every concept C of LspΦ , x ∈ CI iff
[x]'Φ,I ∈ CI

′
.

The second assertion follows from Proposition 4.13 and the definition of I/'Φ,I .
Consider the third assertion. By Proposition 4.13, x1 .Φ,I x2 iff x1 ≤sp

Φ,I x2. By the

first assertion of this lemma, x1 ≤sp
Φ,I x2 iff [x1]'Φ,I ≤

sp
Φ,I′ [x2]'Φ,I . Hence, x1 .Φ,I x2

iff [x1]'Φ,I ≤
sp
Φ,I′ [x2]'Φ,I . �

Definition 4.16 (LspΦ -Extremal Individual).
Let I be an interpretation or a QS-interpretation. We say that x ∈ ∆I is an LspΦ -
maximal individual if, for every x′ ∈ ∆I , if x ≤sp

Φ,I x
′ then x ≡sp

Φ,I x
′. The notion

of LspΦ -minimal individual is defined dually. An LspΦ -extremal individual is either an
LspΦ -maximal individual or an LspΦ -minimal individual. �

Definition 4.17 (LspΦ -Extremal R-Successor).
Let I be an interpretation or a QS-interpretation, R be a basic role of LΦ and let
x ∈ ∆I . We say that y ∈ ∆I is an LspΦ -maximal R-successor of x if y is an R-successor
of x and, for every R-successor y′ of x, if y ≤sp

Φ,I y
′ then y ≡sp

Φ,I y
′. The notion of

LspΦ -minimal R-successor is defined dually. An LspΦ -extremal R-successor of x is either
an LspΦ -maximal R-successor or an LspΦ -minimal R-successor of x. �

Definition 4.18 (LspΦ -Essential Individual).
Let I be an interpretation or a QS-interpretation. The set of LspΦ -essential individuals
of I is defined to be the smallest subset of ∆I such that:

1. for every a ∈ ΣI , aI is LspΦ -essential,

2. if U ∈ Φ and x ∈ ∆I is an LspΦ -extremal individual then x is LspΦ -essential.

3. if Q /∈ Φ, x ∈ ∆I is LspΦ -essential, R is a basic role of LΦ and y is an LspΦ -extremal
R-successor of x, then y is LspΦ -essential,

4. if Q ∈ Φ, x ∈ ∆I is LspΦ -essential and R is a basic role of LΦ, then every R-
successor of x is LspΦ -essential, �

If I is a finitely branching interpretation/QS-interpretation then a property can be
proved for LspΦ -essential individuals of I by induction on the timestamp at which an
individual is marked as LspΦ -essential, assuming that individuals are marked as LspΦ -
essential by the items 1 and 2 of Definition 4.18 at the timestamp 0.

Theorem 4.15. Suppose ΣI 6= ∅, {Q, Self} ∩ Φ = ∅ and I is a finitely branching in-
terpretation such that it is finite when U ∈ Φ. Then the interpretation I ′′ obtained from
I ′ = I/'Φ,I by deleting from the domain all non-LspΦ -essential individuals and modify-
ing the interpretation function accordingly is a minimal interpretation that satisfies the
same set of concept assertions in LspΦ as I.

Proof. By Lemma 4.14, I ′ satisfies the same set of concept assertions in LspΦ as I. It
is easy to check that the restriction to ∆I

′ × ∆I
′′

of the largest LΦ-auto-comparison
of I ′ is an LspΦ -comparison between I ′ and I ′′. Similarly, the restriction to ∆I

′′ ×∆I
′
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of the largest LΦ-auto-comparison of I ′ is an LspΦ -comparison between I ′′ and I ′. By
Theorem 4.4, I ′′ satisfies the same set of concept assertions in LspΦ as I ′ and hence also
as I. Also observe that, for every x ∈ ∆I

′′
and every concept C of LspΦ , x ∈ CI′ iff

x ∈ CI′′ . Due to this reason, when considering only concepts of LspΦ , it does not matter
whether an element x ∈ ∆I

′′
is considered in the context I ′′ or I ′.

Let I2 be any interpretation that satisfies the same set of concept assertions in
LspΦ as I and I ′′. We need to show that #∆I

′′ ≤ #∆I2 . Observe that the domain
of I ′′ is countable. Thus, we assume that I2 is finitely branching. If U ∈ Φ then, by
assumption, I is finite, and hence I ′′ is also finite. So, for the case U ∈ Φ we assume
that I2 is finite. By Theorem 4.7, there exist LspΦ -comparisons between I ′′ and I2 and
between I2 and I ′′.

By Lemma 4.14, for every x1, x2 ∈ ∆I
′′
, if x1 6= x2 then x1 6≡sp

Φ x2. Hence, it is
sufficient to prove that, for every x ∈ ∆I

′′
, there exists x′ ∈ ∆I2 such that x ≡sp

Φ x′.
We prove this by induction on the timestamp at which an element x ∈ ∆I

′′
is marked

as an LspΦ -essential individual of I ′. There are the following base cases:

• Case x = aI
′

for some a ∈ ΣI : Take x′ = aI2 . Since I ′′ and I2 satisfy the same
set of concept assertions in LspΦ as I, we have that x ≡sp

Φ x′.

• Case U ∈ Φ and x is an LspΦ -maximal individual of I ′: Because there are LspΦ -
comparisons between I ′′ and I2 and between I2 and I ′′, by (4.12) and Theo-
rem 4.4, there exist x′ ∈ ∆I2 and x′′ ∈ ∆I

′′
such that x ≤sp

Φ x′ ≤sp
Φ x′′. As x is

an LspΦ -maximal individual of I ′, it follows that x ≡sp
Φ x′ ≡sp

Φ x′′.

• The case when U ∈ Φ and x is an LspΦ -minimal individual of I ′ is similar to the
above case.

For the induction step, assume that x is an LspΦ -extremal R-successor of x0, where
R is a basic role of LΦ and x0 was marked as LspΦ -essential earlier than x. By the
inductive assumption, there exists x′0 ∈ ∆I2 such that x0 ≡sp

Φ x′0. Analogously to the
base case with U ∈ Φ, it can be seen that there exists an R-successor x′ of x′0 such that
x ≡sp

Φ x′. �

Theorem 4.16. Suppose ΣI 6= ∅, {Q, Self} ∩ Φ 6= ∅ and I is a finitely branching in-
terpretation such that it is finite when U ∈ Φ. Then the QS-interpretation I ′′ obtained
from I ′ = I/QS

'Φ,I by deleting from the domain all non-LspΦ -essential individuals and
modifying the interpretation function accordingly satisfies the same set of concept as-
sertions in LspΦ as I and the cardinality of its domain is not bigger than the cardinality
of the domain of any interpretation that satisfies the same set of concept assertions in
LspΦ as I.

Proof. By Lemma 4.14, I ′ satisfies the same set of concept assertions in LspΦ as I. By
induction on the structure of C, it can be proved that, if C is a concept of LspΦ then,
for every x ∈ ∆I

′′
, x ∈ CI

′′
iff x ∈ CI

′
. Due to this reason, when considering only

concepts of LspΦ , it does not matter whether an element x ∈ ∆I
′′

is considered in the
context I ′′ or I ′. Also note that, as a consequence, I ′′ satisfies the same set of concept
assertions in LspΦ as I ′ and hence also as I.
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Let I2 be any interpretation that satisfies the same set of concept assertions in LspΦ
as I. We need to show that #∆I

′′ ≤ #∆I2 . Observe that the domain of I ′′ is countable.
Thus, we assume that I2 is finitely branching. If U ∈ Φ then, by assumption, I is finite
and hence I ′′ is also finite. So, for the case U ∈ Φ we assume that I2 is finite. By
Theorem 4.7, there exist LspΦ -comparisons between I and I2 and between I2 and I.

By Lemma 4.14, for every x1, x2 ∈ ∆I
′′
, if x1 6= x2 then x1 6≡sp

Φ,I′′ x2. Hence, it is

sufficient to prove that, for every x ∈ ∆I
′′
, there exists x′ ∈ ∆I2 such that x ≡sp

Φ x′.
We prove this by induction on the timestamp at which an element x ∈ ∆I

′′
is marked

as an LspΦ -essential individual of I ′. There are the following base cases:

• Case x = aI
′

for some a ∈ ΣI : Take x′ = aI2 . Since I ′′ and I2 satisfy the same
set of concept assertions in LspΦ as I, we have that x ≡sp

Φ x′.

• Case U ∈ Φ and x is an LspΦ -maximal individual of I ′: Let x0 be any element of
∆I such that x = [x0]'Φ,I . By Lemma 4.14, x ≡sp

Φ x0. Because there are LspΦ -
comparisons between I and I2 and between I2 and I, by (4.12) and Theorem 4.4,
there exist x′ ∈ ∆I2 and x′′ ∈ ∆I such that x0 ≤sp

Φ x′ ≤sp
Φ x′′. By Lemma 4.14,

x′′ ≡sp
Φ [x′′]∼Φ,I . It follows that x ≤sp

Φ x′ ≤sp
Φ [x′′]∼Φ,I . As x is an LspΦ -maximal

individual of I ′, it follows that x ≡sp
Φ x′ ≡sp

Φ [x′′]∼Φ,I .

• The case when U ∈ Φ and x is an LspΦ -minimal individual of I ′ is similar to the
above case.

For the induction step, assume that x is an LspΦ -extremal R-successor of u, where R
is a basic role of LΦ and u was marked as LspΦ -essential earlier than x. By the inductive
assumption, there exists u′ ∈ ∆I2 such that u ≡sp

Φ u′. Analogously to the base case
with U ∈ Φ, it can be seen that there exists an R-successor x′ of u′ such that x ≡sp

Φ x′.
�

Corollary 4.17. Suppose ΣI 6= ∅, Φ ⊆ {I,O} and I is a finitely branching inter-
pretation without unreachable objects. Then I/QS

'Φ,I satisfies the same set of concept
assertions in LspΦ as I and the cardinality of its domain is not bigger than the cardinal-
ity of the domain of any interpretation that satisfies the same set of concept assertions
in LspΦ as I.

By using Algorithm 4 to compute the relation .Φ,I and then the relation 'Φ,I , the
“minimal” interpretation/QS-interpretation I ′′ mentioned in Theorems 4.15 and 4.16
can be constructed in polynomial time in the size of I, provided that I is finite. How
to construct that interpretation/QS-interpretation efficiently in the spirit of Hopcroft’s
automaton minimization algorithm [28] and the Paige-Tarjan algorithm [49] remains,
however, as an open problem.
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Chapter 5

Comparing the Expressiveness of
Description Logics

Expressiveness (expressive power) is a topic studied in the fields of formal languages,
databases and logics. The Chomsky hierarchy provides fundamental results on the
expressiveness of formal languages. In the field of databases, the works by Fagin [21,
22], Immerman [31, 32], Abiteboul and Vianu [1] provide important results on the
expressiveness of query languages. Many results on the expressiveness of logics have
also been obtained, e.g. in [24, 31, 61, 33, 54, 35, 55].

The expressiveness of description logics (DLs) has been studied in a number of
works [4, 7, 8, 37, 40]. In [4] Baader proposed a formal definition of the expressive
power of DLs. His definition is liberal in that it allows the compared logics to have
different vocabularies. His work provides separation results for some early DLs. In [7]
Borgida showed that certain DLs have the same expressiveness as the two or three
variable fragment of first-order logic. The class of DLs considered in [7] is large, but
the results only concern DLs without the reflexive and transitive closure of roles. In [8]
Cadoli et al. considered the expressiveness of hybrid knowledge bases that combine
a DL knowledge base with Horn rules. The used DL is ALCNR. The work [37] by
Kurtonina and de Rijke is a comprehensive work on the expressiveness of DLs that
are sublogics of ALCNR. It is based on bisimulation and provides many interesting
results. In [40] Lutz et al. characterized the expressiveness and rewritability of DL
TBoxes for the DLs that are sublogics of ALCQIO. They used semantic notions such
as bisimulation, equisimulation, disjoint union and direct product.

This chapter studies the expressiveness of the DLs introduced in Chapter 2. We
compare the expressiveness of these DLs w.r.t. concepts, positive concepts, TBoxes
and ABoxes. Our results about separating the expressiveness of DLs are based on
bisimulations and bisimulation-based comparisons. They are naturally extended to the
case when instead of ALCreg we have any sublogic of ALCreg that extends ALC.

Our study differs significantly from all of [4, 7, 8, 37, 40], as the class of considered
DLs is much larger than the ones considered in those works (we allow PDL-like role
constructors as well as the universal role and the concept constructor ∃r.Self) and our
results about separating the expressiveness of DLs are obtained not only w.r.t. concepts
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and TBoxes but also w.r.t. positive concepts and ABoxes.

Definition 5.1 (Equivalence between Concepts, TBoxes or ABoxes).
Two concepts C and D are equivalent if, for every interpretation I, CI = DI . Two
TBoxes T1 and T2 are equivalent if, for every interpretation I, I is a model of T1 iff I
is a model of T2. Two ABoxes A1 and A2 are equivalent if, for every interpretation I,
I is a model of A1 iff I is a model of A2. �

Definition 5.2 (Comparing Description Logics).
We say that a logic L1 is at most as expressive as a logic L2 w.r.t. concepts (resp. pos-
itive concepts, TBoxes, ABoxes), denoted by L1 ≤C L2 (resp. L1 ≤PC L2, L1 ≤T L2,
L1 ≤A L2), if every concept (resp. positive concept, TBox, ABox) in L1 has an equiv-
alent concept (resp. positive concept, TBox, ABox) in L2.

We say that a logic L2 is more expressive than a logic L1 (or L1 is less expressive than
L2) w.r.t. concepts (resp. positive concepts, TBoxes, ABoxes), denoted by L1 <C L2

(resp. L1 <PC L2, L1 <T L2, L1 <A L2), if L1 ≤C L2 (resp. L1 ≤PC L2, L1 ≤T L2,
L1 ≤A L2) and L2 6≤C L1 (resp. L2 6≤PC L1, L2 6≤T L1, L2 6≤A L1). �

The following proposition clearly holds.

Proposition 5.1. If a logic L1 is at most as expressive as a logic L2 w.r.t. concepts
(resp. positive concepts, TBoxes, ABoxes) and a logic L2 is at most as expressive as
L3 w.r.t. concepts (resp. positive concepts, TBoxes, ABoxes) then L1 is at most as
expressive as L3 w.r.t. concepts (resp. positive concepts, TBoxes, ABoxes).

Lemma 5.2. Let Φ1 and Φ2 be sets of DL-features such that Φ1 ⊆ Φ2. Denote L1 =
LΦ1 and L2 = LΦ2. Let I, I ′ be interpretations and Z an L1-bisimulation between I
and I ′.

1. If L1 ≤C L2, x ∈ ∆I , x′ ∈ ∆I
′
, Z(x, x′) holds, and there exists a concept C of L2

such that x ∈ CI but x′ 6∈ CI′, then L1 <C L2.

2. Suppose that U ∈ Φ1 or both I and I ′ are unreachable-objects-free. If L1 ≤T L2

and there exists a TBox T in L2 such that I is a model of T but I ′ is not, then
L1 <T L2.

3. Suppose O ∈ Φ1. If L1 ≤A L2 and there exists an ABox A in L2 such that I is
a model of A but I ′ is not, then L1 <A L2.

Proof. Consider the first assertion. Suppose L1 ≤C L2, x ∈ ∆I , x′ ∈ ∆I
′
, Z(x, x′)

holds and there exists a concept C of L2 such that x ∈ CI but x′ 6∈ CI′ . We prove
that L2 6≤C L1. For the sake of contradiction, suppose L2 ≤C L1. It follows that there
exists a concept C ′ of L1 that is equivalent to C. Thus, x ∈ C ′I but x′ 6∈ C ′I′ . Hence,
C ′ is not invariant for Z, which contradicts Theorem 3.4. Therefore, L1 <C L2.

Consider the second assertion. Suppose L1 ≤T L2 and there exists a TBox T in L2

such that I is a model of T but I ′ is not. We prove that L2 6≤T L1. For the sake of
contradiction, suppose L2 ≤T L1. It follows that there exists a TBox T ′ in L1 that is
equivalent to T . Thus, I is a model of T ′ but I ′ is not, which contradicts Corollary 3.5
or Theorem 3.6. Therefore, L1 <T L2.
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Consider the third assertion. Suppose L1 ≤A L2 and there exists an ABox A in L2

such that I is a model of A but I ′ is not. We prove that L2 6≤A L1. For the sake of
contradiction, suppose L2 ≤A L1. It follows that there exists an ABox A′ in L1 that is
equivalent to A. Thus, I is a model of A′ but I ′ is not, which contradicts Theorem 3.7.
Therefore, L1 <A L2. �

Lemma 5.3. Let Φ1 and Φ2 be sets of DL-features such that Φ1 ⊆ Φ2. Denote L1 =
LΦ1 and L2 = LΦ2. Let I, I ′ be interpretations and Z an L1-comparison between I
and I ′. If L1 ≤PC L2, x ∈ ∆I , x′ ∈ ∆I

′
, Z(x, x′) holds, and there exists a positive

concept C of L2 such that x ∈ CI but x′ 6∈ CI′, then L1 <PC L2.

Proof. Suppose L1 ≤PC L2, x ∈ ∆I , x′ ∈ ∆I
′
, Z(x, x′) holds and there exists a positive

concept C of L2 such that x ∈ CI but x′ 6∈ CI′ . We prove that L2 6≤PC L1. For the sake
of contradiction, suppose L2 ≤PC L1. It follows that there exists a positive concept C ′

of L1 that is equivalent to C. Thus, x ∈ C ′I but x′ 6∈ C ′I′ . It follows that C ′ is not
preserved by Z, which contradicts Corollary 4.5. Hence, L1 <PC L2. �

From now on, we assume that ΣC and ΣR are not empty and ΣI contains at least
two individual names. Let {a, b} ⊆ ΣI , A ∈ ΣC and r ∈ ΣR.

Lemma 5.4.

1. For any pair 〈L1,L2〉 among 〈LI ,LOQUSelf〉, 〈LQ,LIOUSelf〉, 〈LSelf,LIOQU 〉, we
have that: L1 6≤C L2, L1 6≤PC L2, L1 6≤T L2, L1 6≤A L2.

2. LO 6≤C LIQUSelf, LO 6≤PC LIQUSelf, LO 6≤T LIQUSelf.

3. LU 6≤C LIOQSelf, LU 6≤PC LIOQSelf, LU 6≤A LIOQSelf.

Proof. Let us compare LI with LOQUSelf. Consider the interpretations I, I ′ and the
relation Z shown in the first part of Figure 5.1 (on page 70). The arrows denote the
instances of r in I and I ′. The instances of A in I and I ′ are explicitly indicated in
the figure. Let BI = BI

′
= ∅ for all B ∈ ΣC \ {A}, sI = sI

′
= ∅ for all s ∈ ΣR \ {r},

and cI = aI , cI
′

= aI
′

for all c ∈ ΣI \ {a, b}. The dotted lines in the figure indicate the
instances of a binary relation Z ⊆ ∆I ×∆I

′
. It can be checked that Z is an LOQUSelf-

bisimulation between I and I ′. Consider the positive concept C = ∀r∀r−1.A of LI .
Clearly, aI ∈ CI but aI

′ 6∈ CI
′
. By Theorem 3.4, C does not have any equivalent

concept in LOQUSelf. Hence, LI 6≤C LOQUSelf. As Z is also an LOQUSelf-comparison
between I and I ′, by Corollary 4.5, C does not have any equivalent positive concept
in LOQUSelf either. Hence, LI 6≤PC LOQUSelf. Consider the TBox T = {A v C}.
Since I |= T but I ′ 6|= T , by Theorem 3.6, T does not have any equivalent TBox in
LOQUSelf. Hence LI 6≤T LOQUSelf. Consider the ABox A = {C(a)}. Since I |= A but
I ′ 6|= A, by Theorem 3.7, A does not have any equivalent ABox in LOQUSelf. Hence
LI 6≤A LOQUSelf.

The proofs for the other pairs of logics can be done similarly, using I, I ′, C specified
in the next parts of Figure 5.1 (on page 70). For the parts without the presence of b,
let bI = aI and bI

′
= aI

′
. �
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Figure 5.1: An illustration for the proof of Lemma 5.4.
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Theorem 5.5. Let Φ and Φ′ be subsets of {I,O,Q,U, Self}.

1. If Φ ⊂ Φ′ then LΦ <C LΦ′ and LΦ <PC LΦ′.

2. If Φ 6⊆ Φ′ then LΦ 6≤C LΦ′ and LΦ 6≤PC LΦ′.

3. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {U} then LΦ <T LΦ′.

4. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U} then LΦ 6≤T LΦ′.

5. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {O} then LΦ <A LΦ′.

6. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O} then LΦ 6≤A LΦ′.

Proof. Consider the first assertion and suppose Φ ⊂ Φ′. Since every concept (resp.
positive concept) of LΦ is also a concept (resp. positive concept) of LΦ′ , we have that
LΦ ≤C LΦ′ (resp. LΦ ≤PC LΦ′). Since Φ′ \ Φ 6= ∅, at least one feature among I,
O, Q, U , Self belongs to Φ′ \ Φ. Consider the case I ∈ Φ′ \ Φ. The cases of other
features are similar and omitted. For the sake of contradiction, suppose LΦ′ ≤C LΦ

(resp. LΦ′ ≤PC LΦ). Since LI ≤C LΦ′ (resp. LI ≤PC LΦ′) and LΦ ≤C LOQUSelf (resp.
LΦ ≤PC LOQUSelf), it follows that LI ≤C LOQUSelf (resp. LI ≤PC LOQUSelf), which
contradicts Lemma 5.4. Therefore, LΦ <C LΦ′ (resp. LΦ <PC LΦ′).

Consider the second assertion and suppose Φ 6⊆ Φ′. Since Φ \ Φ′ 6= ∅, at least one
feature among I, O, Q, U , Self belongs to Φ\Φ′. Consider the case I ∈ Φ\Φ′. The cases
of other features are similar and omitted. For the sake of contradiction, suppose LΦ ≤C

LΦ′ (resp. LΦ ≤PC LΦ′). Since LI ≤C LΦ (resp. LI ≤PC LΦ) and LΦ′ ≤C LOQUSelf

(resp. LΦ′ ≤PC LOQUSelf), it follows that LI ≤C LOQUSelf (resp. LI ≤PC LOQUSelf),
which contradicts Lemma 5.4. Therefore, LΦ 6≤C LΦ′ (resp. LΦ 6≤PC LΦ′).

Consider the third assertion and suppose Φ ⊂ Φ′ and Φ′ \ Φ 6= {U}. At least one
feature among I, O, Q, Self belongs to Φ′ \Φ. Consider the case I ∈ Φ′ \Φ. The cases
of other features are similar and omitted. Since Φ ⊂ Φ′, LΦ ≤T LΦ′ . For the sake of
contradiction, suppose LΦ′ ≤T LΦ. Since LI ≤T LΦ′ and LΦ ≤T LOQUSelf, it follows
that LI ≤T LOQUSelf, which contradicts Lemma 5.4. Therefore, LΦ <T LΦ′ .

Consider the fourth assertion and suppose Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U}. At least one
feature among I, O, Q, Self belongs to Φ \ Φ′. Consider the case I ∈ Φ \ Φ′. The
cases of other features are similar and omitted. For the sake of contradiction, suppose
LΦ ≤T LΦ′ . Since LI ≤T LΦ and LΦ′ ≤T LOQUSelf, it follows that LI ≤T LOQUSelf,
which contradicts Lemma 5.4. Therefore, LΦ 6≤T LΦ′ .

Consider the fifth assertion and suppose Φ ⊂ Φ′ and Φ′ \ Φ 6= {O}. At least one
feature among I, Q, U , Self belongs to Φ′ \Φ. Consider the case I ∈ Φ′ \Φ. The cases
of other features are similar and omitted. Since Φ ⊂ Φ′, LΦ ≤A LΦ′ . For the sake of
contradiction, suppose LΦ′ ≤A LΦ. Since LI ≤A LΦ′ and LΦ ≤A LOQUSelf, it follows
that LI ≤A LOQUSelf, which contradicts Lemma 5.4. Therefore, LΦ <A LΦ′ .

Consider the last assertion and suppose Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O}. At least one
feature among I, Q, U , Self belongs to Φ \ Φ′. Consider the case I ∈ Φ \ Φ′. The
cases of other features are similar and omitted. For the sake of contradiction, suppose
LΦ ≤A LΦ′ . Since LI ≤A LΦ and LΦ′ ≤A LOQUSelf, it follows that LI ≤A LOQUSelf,
which contradicts Lemma 5.4. Therefore, LΦ 6≤A LΦ′ . �
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LIOQ LIOU LIOSelf LIQU LIQSelf LIUSelf LOQU LOQSelfLOUSelfLQUSelf

LIOUSelfLIOQSelfLIOQU LIQUSelf LOQUSelf

LIOQUSelf

Figure 5.2: Comparing the expressiveness of description logics, where ALC ≤ L ≤
ALCreg. If there is a path from a logic L2 down to a logic L1 that contains either a
normal edge or at least two edges then L2 is more expressive than L1 w.r.t. concepts,
positive concepts, TBoxes and ABoxes. If the path is a dotted edge then L2 is more
expressive than L1 w.r.t. concepts, positive concepts and TBoxes. If the path is a
dashed edge then L2 is more expressive than L1 w.r.t. concepts, positive concepts and
ABoxes.

Definition 5.3. We define ALC to be the sublogic of ALCreg such that the role con-
structors ε, R ◦ S, R t S, R∗ and C? are disallowed. We say that L is a sublogic of
ALCreg that extends ALC, denoted ALC ≤ L ≤ ALCreg, if it extends ALC with some
of those role constructors. For Φ ⊆ {I,O,Q,U, Self} and ALC ≤ L ≤ ALCreg, let LΦ

and LposΦ be defined as usual in the spirit of Definitions 2.1 and 4.1. �

Corollary 5.6. Let L be any sublogic of ALCreg that extends ALC and let Φ and Φ′

be subsets of {I,O,Q,U, Self}.

1. If Φ ⊂ Φ′ then LΦ <C LΦ′ and LΦ <PC LΦ′.

2. If Φ 6⊆ Φ′ then LΦ 6≤C LΦ′ and LΦ 6≤PC LΦ′.

3. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {U} then LΦ <T LΦ′.
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4. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U} then LΦ 6≤T LΦ′.

5. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {O} then LΦ <A LΦ′.

6. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O} then LΦ 6≤A LΦ′.

Proof. Just observe that the concepts C listed in Figure 5.1 (on page 70) do not use
any of the role constructors ε, R ◦ S, R t S, R∗, C?. All the lemmas and theorems
given in this chapter hold for the case when L is a sublogic of ALCreg that extends
ALC. Their proofs do not require any change. �

Figure 5.2 (on page 72) illustrates the relationship between the expressiveness of all
the DLs that extend L, where ALC ≤ L ≤ ALCreg, with any non-empty combination
of the features I, O, Q, U , Self. Note that the problems whether LΦ <T LΦ′ when
Φ′ \ Φ = {U} and whether LΦ <A LΦ′ when Φ′ \ Φ = {O} remain open.
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Chapter 6

Concept Learning in Description
Logics

Concept learning in DLs is useful for making decision rules as in traditional binary
classification. It is also useful in ontology engineering, e.g., for suggesting definitions
of important concepts. The major settings of concept learning in DLs are as follows:

Setting 1. Given a knowledge base KB and sets E+, E− of named individuals, learn
a concept C in a DL L such that: (a) KB |= C(a) for all a ∈ E+, and (b) KB |=
¬C(a) for all a ∈ E−. The set E+ (resp. E−) contains positive (resp. negative)
examples of C.

Setting 2. This setting differs from Setting 1 only in that the condition (b) is replaced
by the weaker one: KB 6|= C(a) for all a ∈ E−.

Setting 3. Given an interpretation I and sets E+, E− of named individuals, learn a
concept C in L such that: (a) I |= C(a) for all a ∈ E+, and (b) I |= ¬C(a) for
all a ∈ E−. Note that I 6|= C(a) is the same as I |= ¬C(a).

In [11] Cohen and Hirsh studied PAC-learnability of an early DL formalism called
CLASSIC. They proposed a concept learning algorithm based on “least common sub-
sumers”. In [38] Lambrix and Larocchia proposed a simple concept learning algorithm
based on concept normalization. Badea and Nienhuys-Cheng [5], Iannone et al. [30],
Fanizzi et al. [23], Lehmann and Hitzler [39] studied concept learning in DLs by using
refinement operators as in inductive logic programming. The works [5, 30] use Setting 1,
while the works [23, 39] use Setting 2.

Bisimulations in DLs have been used for concept learning in DLs in a number
of papers [48, 57, 26, 56, 58]. In Section 6.1 we present a survey on these works.
In Section 6.2 we present our results on possibility of correct learning in DLs using
Setting 3. In Section 6.3 we also generalize common types of queries for DLs, introduce
interpretation queries and present some consequences.
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6.1 Bisimulation-Based Concept Learning

6.1.1 Using Setting 3

In [48] Nguyen and Sza las generalized our notion of bisimulations in DLs and some of
our results [16] to model indiscernibility of objects. Their work is pioneering in using
bisimulation for concept learning in DLs. It also concerns concept approximation by
using bisimulation and Pawlak’s rough set theory [52, 53]. The generalization deals
with the following: the main language is LΦ using the signature Σ, but the concept to
be learned may be restricted to a language LΦ† with a signature Σ†, where Φ† ⊆ Φ and
Σ† ⊆ Σ. For that they introduced the language LΣ,Φ and LΣ†,Φ†-bisimulation between
two interpretations I and I ′ (see [48] for details).

An LΣ†,Φ†-bisimulation between I and itself is called an LΣ†,Φ†-auto-bisimulation
of I. An LΣ†,Φ†-auto-bisimulation of I is said to be the largest if it is larger than or
equal to (⊇) any other LΣ†,Φ†-auto-bisimulation of I.

An information system in LΣ,Φ is a finite interpretation in LΣ,Φ. It can be given
explicitly or specified somehow, e.g., by a knowledge base in the Web ontology rule
language OWL 2 RL+ [9] (using the standard semantics) or WORL [10] (using the
well-founded semantics) or SWORL [10] (using the stratified semantics).

Given an interpretation I in LΣ,Φ, by ∼Σ†,Φ†,I we denote the largest LΣ†,Φ†-auto-

bisimulation of I, and by ≡Σ†,Φ†,I we denote the binary relation on ∆I with the prop-
erty that x ≡Σ†,Φ†,I x

′ iff x is LΣ†,Φ†-equivalent to x′.

The following theorem correspond to Propositions 3.13 and 3.14.

Theorem 6.1. [48, Theorem 19.3] Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ,
Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, and I be an interpretation in LΣ,Φ.
Then:

• the largest LΣ†,Φ†-auto-bisimulation of I exists and is an equivalence relation,

• if I is finitely branching w.r.t. LΣ†,Φ† then the relation ≡Σ†,Φ†,I is the largest
LΣ†,Φ†-auto-bisimulation of I (i.e. the relations ≡Σ†,Φ†,I and ∼Σ†,Φ†,I coincide).

Definition 6.1. We say that a set Y is split by a set X if Y \X 6= ∅ and Y ∩X 6= ∅.
Thus, Y is not split by X if either Y ⊆ X or Y ∩X = ∅. A partition P = {Y1, . . . , Yn}
is consistent with a set X if, for every 1 ≤ i ≤ n, Yi is not split by X. �

Theorem 6.2. [48, Theorem 19.4] Let I be an interpretation in LΣ,Φ, and let X ⊆ ∆I ,
Σ† ⊆ Σ and Φ† ⊆ Φ. Then:

1. if there exists a concept C of LΣ†,Φ† such that X = CI then the partition of ∆I

by ∼Σ†,Φ†,I is consistent with X,

2. if the partition of ∆I by ∼Σ†,Φ†,I is consistent with X then there exists a concept

C of LΣ†,Φ† such that CI = X.

Let I be an information system in LΣ,Φ and let Ad ∈ ΣC be a concept name
standing for the “decision attribute”. Suppose that Ad can be expressed by a concept
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C in LΣ†,Φ† , for some specific Σ† ⊆ Σ \ {Ad} and Φ† ⊆ Φ. How can we learn that
concept C on the basis of I? That is, how can we learn a definition of Ad in LΣ†,Φ† on
the basis of I?

The idea of [48] for this task is based on the following observation:

if Ad is definable in LΣ†,Φ† then, by the first assertion of Theorem 6.2,

AId must be the union of some equivalence classes of ∆I w.r.t. ∼Σ†,Φ†,I .

Nguyen and Sza las [48] proposed the following method:

1. Starting from the partition {∆I}, make subsequent granulations to reach the
partition corresponding to ∼Σ†,Φ†,I .

• The granulation process can be stopped as soon as the current partition is
consistent with AId (or when some criteria are met).

• In the granulation process, we denote the blocks created so far in all steps
by Y1, . . . , Yn, where the current partition {Yi1 , . . . , Yik} may consist of only
some of them. We do not use the same subscript to denote blocks of different
contents (i.e., we always use new subscripts obtained by increasing n for new
blocks). We take care that, for each 1 ≤ i ≤ n:

– Yi is characterized by an appropriate concept Ci (such that Yi = CIi ),

– we keep information about whether Yi is split by AId ,

– if Yi ⊆ AId then LargestContainer [i] := j, where 1 ≤ j ≤ n is the
subscript of the largest block Yj such that Yi ⊆ Yj ⊆ AId .

2. At the end, let j1, . . . , jh be all the indices from {i1, . . . , ik} such that Yjt ⊆ AId
for 1 ≤ t ≤ h, and let {l1, . . . , lp} = {LargestContainer [jt] | 1 ≤ t ≤ h}. Let C be
a simplified form of Cl1 t . . . t Clp . Return C as the result.

In [57] Tran et al. generalized and extended the concept learning method of [48] for
DL-based information systems. They took attributes as basic elements of the language.
Each attribute may be discrete or numeric. A Boolean attribute is treated as a concept
name. They also allowed data roles and the features F (functionality) and N (unquali-
fied number restriction). If σ is a data role and d belongs to the range of σ then ∃σ.{d}
is a concept. Concepts ≥ nR and ≤ nR, where R is a basic role, mean ≥ nR.> and
≤ nR.>, respectively, and can be used when the feature N is allowed. The concept
≤ 1 r (resp. ≤ 1 r−) is used to express functionality (resp. inverse functionality) of r.
The Hennessy-Milner property (Theorem 3.12) is reformulated in a straightforward way
for the extended language LΣ,Φ [57].

Reconsider the process of granulating {∆I} for computing the partition corre-
sponding to ∼Σ†,Φ†,I . The works [48, 57] use the concepts listed in Figure 6.1 (on

page 78) as basic selectors for the granulation process. Let the current partition of ∆I

be {Yi1 , . . . , Yik}. If a block Yij (1 ≤ j ≤ k) is split by DI , where D is a selector, then
splitting Yij by D is done as follows:

• s := n+ 1, t := n+ 2, n := n+ 2,
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• A, where A ∈ Σ†C

• A = d, where A ∈ Σ†A \ Σ†C and d ∈ range(A)

• A ≤ d and A < d, where A ∈ Σ†nA, d ∈ range(A) and d is not a minimal element
of range(A)

• A ≥ d and A > d, where A ∈ Σ†nA, d ∈ range(A) and d is not a maximal element
of range(A)

• ∃σ.{d}, where σ ∈ Σ†dR and d ∈ range(σ)

• ∃r.Ci, ∃r.> and ∀r.Ci, where r ∈ Σ†oR and 1 ≤ i ≤ n

• ∃r−.Ci, ∃r−.> and ∀r−.Ci, if I ∈ Φ†, r ∈ Σ†oR and 1 ≤ i ≤ n

• {a}, if O ∈ Φ† and a ∈ Σ†I

• ≤1 r, if F ∈ Φ† and r ∈ Σ†oR

• ≤1 r−, if {F, I} ⊆ Φ† and r ∈ Σ†oR

• ≥ l r and ≤mr, if N ∈ Φ†, r ∈ Σ†oR, 0 < l ≤ ]∆I and 0 ≤ m < ]∆I

• ≥ l r− and ≤mr−, if {N, I} ⊆ Φ†, r ∈ Σ†oR, 0 < l ≤ ]∆I and 0 ≤ m < ]∆I

• ≥ l r.Ci and ≤ mr.Ci, if Q ∈ Φ†, r ∈ Σ†oR, 1 ≤ i ≤ n, 0 < l ≤ ]Ci and
0 ≤ m < ]Ci

• ≥ l r−.Ci and ≤mr−.Ci, if {Q, I} ⊆Φ†, r ∈Σ†oR, 1 ≤ i ≤ n, 0 < l ≤ ]Ci and
0 ≤ m < ]Ci

• ∃r.Self, if Self ∈ Φ† and r ∈ Σ†oR

Figure 6.1: Basic selectors. Here, Σ†A denotes the set of attributes of Σ†, range(A)

denotes the range of the attribute A, Σ†nA denotes the set of numeric attributes of Σ†,

Σ†dR denotes the set of data roles of Σ†, range(σ) denotes the range of the data role σ,

Σ†oR denotes the set of (object) role names of Σ†, n is the number of blocks created so
far when granulating ∆I , and Ci is the concept characterizing the block Yi.

• Ys := Yij ∩DI , Cs := Cij uD,

• Yt := Yij ∩ (¬D)I , Ct := Cij u ¬D,

• the new partition of ∆I becomes {Yi1 , . . . , Yik} \ {Yij} ∪ {Ys, Yt}.

It was proved in [57] that using the basic selectors listed in Figure 6.1 is sufficient to
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granulate ∆I to obtain the partition corresponding to ∼Σ†,Φ†,I . In practice, we prefer
as simple as possible definitions for the learned concept. Therefore, it is worth using
also other selectors [48, 57, 58] (despite that they are expressible by the basic selectors
over I).

In [58] Tran et al. implemented the bisimulation-based concept learning method
of [48, 57] (for most of the DLs considered in [48, 57]). They presented a domain
partitioning method that use information gain and both basic selectors and extended
selectors. The evaluation results of [58] show that the concept learning method of [48,
57] (for Setting 3) is valuable and extended selectors support it significantly.

We refer the reader to [48, 57, 58] for examples that illustrate concept learning for
DL-based information systems.

6.1.2 Using Settings 1 and 2

In [26] Ha et al. developed bisimulation-based methods, called BBCL and dual-BBCL,
for concept learning in DLs using Setting 1. Their method uses models of KB and
bisimulations in those models to guide the search for the concept to be learned.

In [56] Tran et al. developed a bisimulation-based method, called BBCL2, for
concept learning in DLs using Setting 2. Their method is based on the dual-
BBCL method [26]. They made appropriate changes for dealing with the condition
“KB 6|= C(a) for all a ∈ E−” instead of “KB |= ¬C(a) for all a ∈ E−”.

The concept learning methods BBCL, dual-BBCL and BBCL2 are formulated for
the DLs LΦ with L = ALC, Φ ⊆ {F, I,N,O,Q,U, Self}, (discrete and numeric) at-
tributes and data roles. These DLs disallow the PDL-like role constructors, but it still
covers a large class of DLs and well-known DLs like ALC, SHIQ, SHOIQ, SROIQ.
We refer the reader to [26, 56] for illustrative examples about BBCL, dual-BBCL and
BBCL2.

6.2 C-Learnability in Description Logics

In this section, we prove that any concept in any description logic that extends the basic
DL ALC with some features amongst I (inverse), Qk (qualified number restrictions with
numbers bounded by a constant k), Self (local reflexivity of a role) can be learned if
the training information system (specified as an interpretation) is good enough. That
is, there exists a learning algorithm such that, for every concept C of those logics, there
exists a training information system consistent with C such that applying the learning
algorithm to the system results in a concept equivalent to C. We call this property
C-learnability (possibility of correct learning). Our work uses Setting 3.

Our investigation uses bounded bisimulation in DLs and a new version of the algo-
rithms proposed in the works [48, 57] that minimizes modal depths of resulting concepts.
It shows a good property of the bisimulation-based concept learning methods proposed
in [48, 57, 26, 56].

In this section, we only consider the DL-features I, Qk and Self.

Definition 6.2 (The LΣ,Φ Language).
Let Σ be a DL-signature and Φ be a set of DL-features. Let L stand for ALC, which
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is the name of a basic DL. The DL language LΣ,Φ allows roles and concepts defined
recursively as follows:

• if r ∈ ΣR then r is role of LΣ,Φ

• if I ∈ Φ then r− is a role of LΣ,Φ

• if A ∈ ΣC then A is concept of LΣ,Φ

• if C and D are concepts of LΣ,Φ, R is a role of LΣ,Φ, r ∈ ΣR, and h, k are natural
numbers then

– >, ⊥, ¬C, C uD, C tD, ∀R.C and ∃R.C are concepts of LΣ,Φ

– if Qk ∈ Φ and h ≤ k then ≥hR.C and <hR.C are concepts of LΣ,Φ

(we use <hR.C instead of ≤hR.C because it is more “dual” to ≥hR.C)

– if Self ∈ Φ then ∃r.Self is a concept of LΣ,Φ. �

Definition 6.3. An information system over Σ is defined to be a finite interpretation
over Σ. �

Definition 6.4 (Modal Depth).
The modal depth of a concept C, denoted by mdepth(C), is defined to be:

• 0 if C is of the form >, ⊥, A or ∃r.Self,

• mdepth(D) if C is of the form ¬D,

• max(mdepth(D),mdepth(D′)) if C is of the form D uD′ or D tD′,

• mdepth(D) + 1 if C is of the form ∀R.D, ∃R.D, ≥hR.C or <hR.C. �

For example, mdepth(∃r.(∀s−.(A t ∃r.Self) u ∃s.(¬A))) = 2.

Definition 6.5 (The LΣ,Φ,d Language).
Let d denote a natural number. By LΣ,Φ,d we denote the sublanguage of LΣ,Φ that
consists of concepts with modal depth not greater than d. �

6.2.1 Concept Normalization

There are different normal forms for formulas or concepts (see, e.g., [45]). We provide
below such a form. The aim is to introduce the notion of universal interpretation and
a lemma about its existence. Our normal form uses the following normalization rules:

• Replace ∀R.C by ¬∃R.¬C. Replace <hR.C by ¬ ≥hR.C.

• Replace ≥0R.C by > and replace ≥1R.C by ∃R.C.

• Push ¬ in depth through >, ⊥, ¬, u, t according to De Morgan’s laws.

• Represent C1u. . .uCn as an “and”-set u{C1, . . . , Cn} to make the order inessential
and eliminate duplicates. Use a dual rule for t and “or”-sets.
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• Flatten an “and”-set u{u{C1, . . . , Ci}, Ci+1, . . . , Cn} to u{C1, . . . , Cn}. Re-
place u{C} by C. Replace u{>, C1, . . . , Cn} by u{C1, . . . , Cn}. Replace
u{⊥, C1, . . . , Cn} by ⊥. Use dual rules for “or”-sets.

• Replace ∃R. t {C1, . . . , Cn} by t{∃R.C1, . . . ,∃R.Cn}.

• Replace ≥hR. t {C1, . . . , Cn} by the disjunction (using t) of all concepts of the
form u{≥ h1R.C1, . . . ,≥ hnR.Cn}, where h1, . . . , hn are natural numbers such
that h1 + · · ·+ hn = h.

• Distribute u over t.

Definition 6.6 (DEG Normal Form).
A concept is said to be in the DEG normal form (in short, DEGNF)1 if it cannot be
changed by any one of the above rules. �

The following two lemmas can easily be proved.

Lemma 6.3. Every concept can be translated to the DEG normal form. If C ′ is the
DEG normal form of C then they are equivalent. A concept in the DEG normal form
may contain t only at the most outer level (i.e., either it does not contain t or it must
be of the form t{C1, . . . , Cn}, where C1, . . . , Cn do not contain t).

Lemma 6.4. LΣ,Φ,d has only finitely many concepts in the DEG normal form. All of
them can effectively be constructed.

In the case Φ = {I,Qk, Self}, |ΣC | = m and |ΣR| = n, an upper bound T (d) for
the number of concepts in the DEG normal form of LΣ,Φ,d can be estimated as follows:

T ′(0) = 22m+2n+2

T ′(l + 1) = 24k.n.T ′(l)+2m+2n+2 for l ≥ 0

T (d) = 2T
′(d),

where T ′(l) is an upper bound for the number of concepts in the DEG normal form of
LΣ,Φ,d that do not use t and have a modal depth not greater than l.

Definition 6.7 (Universal Interpretation).
We say that an interpretation I over Σ is universal w.r.t. a sublanguage of LΣ,Φ if, for
every satisfiable concept C of that sublanguage, CI 6= ∅. �

Lemma 6.5. There exists a finite universal interpretation w.r.t. LΣ,Φ,d , which can
effectively be constructed.

Proof. Let C1, . . . , Cn be all the satisfiable concepts in the DEG normal form of LΣ,Φ,d .
(By Lemma 6.4, the number of such concepts is finite.) For each 1 ≤ i ≤ n, let
Ii be a finite model satisfying Ci, which can effectively be constructed using some
tableau algorithm (e.g., [29, 47]).2 Without loss of generality we assume that these

1DEGNF stands for disjunctive-existential-greater-or-equal normal form.
2As RBoxes and TBoxes are not considered, LΣ,Φ,d has the finite model property.
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interpretations have pairwise disjoint domains. Let I be any interpretation such that:
∆I = ∆I1 ∪ . . .∪∆In ; for A ∈ ΣC , AI = AI1 ∪ . . .∪AIn ; for r ∈ ΣR, rI = rI1 ∪ . . .∪rIn
(individual names can be interpreted arbitrarily). It is easy to see that I is finite and
universal w.r.t. LΣ,Φ,d . �

6.2.2 Bounded Bisimulation for Description Logics

Let d be a natural number and let

• Σ and Σ† be DL-signatures such that Σ† ⊆ Σ

• Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ

• I and I ′ be interpretations over Σ.

Definition 6.8 (Bounded Bisimulation).
A binary relation Zd ⊆ ∆I ×∆I

′
is called an LΣ†,Φ†,d -bisimulation between I and I ′

if there exists a sequence of binary relations Zd ⊆ · · · ⊆ Z0 ⊆ ∆I ×∆I
′

such that the
following conditions hold for every 0 ≤ i ≤ d, 0 ≤ j < d, a ∈ Σ†I , A ∈ Σ†C , x, y ∈ ∆I ,
x′, y′ ∈ ∆I

′
and every role R of LΣ†,Φ† :

Zi(a
I , aI

′
) (6.1)

Z0(x, x′)⇒ [AI(x)⇔ AI
′
(x′)] (6.2)

[Zj+1(x, x′) ∧RI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Zj(y, y

′) ∧RI′(x′, y′)] (6.3)

[Zj+1(x, x′) ∧RI′(x′, y′)]⇒ ∃y ∈ ∆I [Zj(y, y
′) ∧RI(x, y)], (6.4)

if Qk ∈ Φ† and 1 ≤ h ≤ k then

if Zj+1(x, x′) holds and y1, . . . , yh are pairwise different elements of ∆I

such that RI(x, yl) holds for every 1 ≤ l ≤ h then there exist pairwise
different elements y′1, . . . , y

′
h of ∆I

′
such that RI

′
(x′, y′l) and Zj(yl, y

′
l)

hold for every 1 ≤ l ≤ h

(6.5)

if Zj+1(x, x′) holds and y′1, . . . , y
′
h are pairwise different elements of ∆I

′

such that RI
′
(x′, y′l) holds for every 1 ≤ l ≤ h then there exist pairwise

different elements y1, . . . , yh of ∆I such that RI(x, yl) and Zj(yl, y
′
l) hold

for every 1 ≤ l ≤ h,

(6.6)

if Self ∈ Φ† then

Z0(x, x′)⇒ [rI(x, x)⇔ rI
′
(x′, x′)]. (6.7)

�

Lemma 6.6. Let I, I ′ and I ′′ be interpretations.

1. The relation {〈x, x〉 | x ∈ ∆I} is an LΣ†,Φ†,d -bisimulation between I and I.
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Figure 6.2: An illustration for Example 6.9.

2. If Z is an LΣ†,Φ†,d -bisimulation between I and I ′ then Z−1 is an LΣ†,Φ†,d -
bisimulation between I ′ and I.

3. If Z1 is an LΣ†,Φ†,d -bisimulation between I and I ′, and Z2 is an LΣ†,Φ†,d -
bisimulation between I ′ and I ′′, then Z1 ◦Z2 is an LΣ†,Φ†,d -bisimulation between
I and I ′′.

4. If Z is a set of LΣ†,Φ†,d -bisimulations between I and I ′ then
⋃
Z is also an

LΣ†,Φ†,d -bisimulation between I and I ′.

The proof of this lemma is straightforward.

An interpretation I is LΣ†,Φ†,d -bisimilar to I ′ if there exists an LΣ†,Φ†,d -bisimulation
between them. By Lemma 6.6, this LΣ†,Φ†,d -bisimilarity relation is an equivalence

relation between interpretations. We say that x ∈ ∆I is LΣ†,Φ†,d -bisimilar to x′ ∈
∆I
′

if there exists an LΣ†,Φ†,d -bisimulation Zd between I and I ′ such that Zd(x, x′)
holds. This latter LΣ†,Φ†,d -bisimilarity relation is also an equivalence relation (between
elements of interpretations’ domains).

Example 6.9. Let Σ be the signature and I be the interpretation specified in Exam-
ple 2.9. This interpretation is illustrated in Figure 6.2 together with its modification
I ′, which differs from I in that: hasChildI

′
consists of only the elements illustrated

by the edges shown at the right hand side of Figure 6.2 and hasParentI
′
, MotherI

′
,

FatherI
′

are defined accordingly.

Let Φ = {I,Q2, Q3, Self} (we add Q2 to Φ just for convenience), Σ†I = ΣI , Σ†C =

{Male} and Σ†R = {hasChild}. Consider the following cases.

• The interpretations I and I ′ are LΣ†,Φ†,0 -bisimilar (w.r.t. any Φ† ⊆ Φ).

• Case Φ† ⊆ {Q2, Self}: I and I ′ are LΣ†,Φ†,d -bisimilar (w.r.t. any d).

• Case Φ† ⊇ {I} and d ≥ 1: I and I ′ are not LΣ†,Φ†,d -bisimilar because HelenI (h

in I) is not LΣ†,Φ†,d -bisimilar to HelenI
′

(h in I ′).
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• Case Φ† ⊇ {Q3} and d ≥ 1: I and I ′ are not LΣ†,Φ†,d -bisimilar because ClaudiaI

(c in I) is not LΣ†,Φ†,d -bisimilar to ClaudiaI
′

(c in I ′).

If Σ†I = {Alice,Bob} and Φ† ⊆ Φ then I and I ′ are LΣ†,Φ†,1 -bisimilar. �

Lemma 6.7. Let Zd be an LΣ†,Φ†,d -bisimulation between interpretations I and I ′.
Then, for every x ∈ ∆I , every x′ ∈ ∆I

′
and every concept C of LΣ†,Φ†,d , it holds that

Zd(x, x′)⇒ [CI(x)⇔ CI
′
(x′)].

Proof. We prove this lemma by induction on the structure of C. Let x ∈ ∆I , x′ ∈ ∆I
′
,

C be a concept of LΣ†,Φ†,d and suppose Zd(x, x′) and CI(x) hold. We show that CI
′
(x′)

also holds.

• The cases when C is of the form >, ⊥, A, ¬D, D tD′ or D uD′ are trivial.

• Case C = ∃R.D, where R is a role of LΣ†,Φ† and D is a concept of LΣ†,Φ†,d−1 :

Since CI(x) holds, there exists y ∈ ∆I such that RI(x, y) and DI(y) hold. By the
assertion (6.3), there exists y′ ∈ ∆I

′
such that Zd−1(y, y′) and RI

′
(x′, y′) hold.

By the induction assumption, it follows that DI
′
(y′) holds. Since RI

′
(x′, y′) and

DI
′
(y′) hold, it follows that CI

′
(x′) holds.

• Case C = ∀R.D, where R is a role of LΣ†,Φ† and D is a concept of LΣ†,Φ†,d−1 , is
reduced to the above case, treating ∀R.D as ¬∃R.¬D.

• Case Qk ∈ Φ† and C = (≥hR.D), where 0 ≤ h ≤ k, R is a role of LΣ†,Φ† and D is

a concept of LΣ†,Φ†,d−1 : Since CI(x) holds, there exist pairwise different y1, . . . ,

yh ∈ ∆I such that RI(x, yi) and DI(yi) hold for all 1 ≤ i ≤ h. Since Zd(x, x′)
holds, by the assertion (6.5), there exist pairwise different y′1, . . . , y′h ∈ ∆I

′
such

that RI
′
(x′, y′i) and Zd−1(yi, y

′
i) hold for all 1 ≤ i ≤ h. Since Zd−1(yi, y

′
i) and

DI(yi) hold for every 1 ≤ i ≤ h, by the induction assumption, it follows that
DI
′
(y′i) holds for every 1 ≤ i ≤ h. Therefore, CI

′
(x′) holds.

• Case Qk ∈ Φ and C = (<hR.D), where 0 ≤ h ≤ k, R is a role of LΣ†,Φ† and D is
a concept of LΣ†,Φ†,d−1 : This case is reduced to the above case, treating <hR.D
as ¬(≥hR.D).

• Case Self ∈ Φ† and C = ∃r.Self: Since CI(x) holds, we have that rI(x, x)
holds. Since Zd(x, x′) holds and Zd ⊆ Z0, it follows that Z0(x, x′) holds. By the
assertion (6.7), we have that rI

′
(x′, x′) holds. Hence CI

′
(x′) holds. �

Definition 6.10. An interpretation I over Σ is finitely branching (or image-finite)
w.r.t. LΣ†,Φ† and LΣ†,Φ†,d if, for every x ∈ ∆I and every role R of LΣ†,Φ† , the set

{y ∈ ∆I | RI(x, y)} is finite. �

Definition 6.11. Let x ∈ ∆I and x′ ∈ ∆I
′
. We say that x is LΣ†,Φ†,d -equivalent to x′

if, for every concept C of LΣ†,Φ†,d , x ∈ CI iff x′ ∈ CI′ . �
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Theorem 6.8 (The Hennessy-Milner Property). Let d be a natural number, Σ and Σ†

be DL-signatures such that Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ.
Let I and I ′ be interpretations in LΣ,Φ, finitely branching w.r.t. LΣ†,Φ† and such that,

for every a ∈ Σ†I , aI is LΣ†,Φ†,d -equivalent to aI
′
. Then x ∈ ∆I is LΣ†,Φ†,d -equivalent

to x′ ∈ ∆I
′

iff there exists an LΣ†,Φ†,d -bisimulation Zd between I and I ′ such that

Zd(x, x′) holds. In particular, the relation {〈x, x′〉 ∈ ∆I×∆I
′ | x is LΣ†,Φ†,d -equivalent

to x′} is an LΣ†,Φ†,d -bisimulation between I and I ′.

Proof. Consider the “⇐” direction. Suppose Zd is an LΣ†,Φ†,d -bisimulation between
I and I ′ such that Zd(x, x′) holds. By Lemma 6.7, for every concept C in LΣ†,Φ†,d ,

CI(x) holds iff CI
′
(x′) holds. Therefore, x is LΣ†,Φ†,d -equivalent to x′.

Now, consider the “⇒” direction. Define Zj = {〈x, x′〉 ∈ ∆I ×∆I
′ | x is LΣ†,Φ†,j -

equivalent to x′} for every 1 ≤ j ≤ d. We show that Zd is an LΣ†,Φ†,d -bisimulation
between I and I ′.

• The condition (6.1) follows from the assumption of the theorem.

• Consider the condition (6.2) and suppose Z0(x, x′) holds. By the definition of
Z0, it follows that x is LΣ†,Φ†,0 -equivalent to x′. Therefore, for every concept

name A, AI(x) holds iff AI
′
(x′) holds.

• Consider the condition (6.3) and suppose Zj+1(x, x′) and RI(x, y) hold. Thus,
x is LΣ†,Φ†,j+1 -equivalent to x′. Let S = {y′ ∈ ∆I

′ | RI′(x′, y′)}. We show

that there exists y′ ∈ S such that Zj(y, y
′) holds. Since x ∈ (∃R.>)I and x is

LΣ†,Φ†,j+1 -equivalent to x′, we have that x′ ∈ (∃R.>)I
′
. Hence S 6= ∅. Since I ′ is

finitely branching, S must be finite. Let the elements of S be y′1, . . . , y′n. For the
sake of contradiction, suppose that, for every 1 ≤ i ≤ n, Zj(y, y

′
i) does not hold,

which means that y is not LΣ†,Φ†,j -equivalent to y′i. Thus, for every 1 ≤ i ≤ n,

there exists a concept Ci in LΣ†,Φ†,j such that CIi (y) holds, but CI
′

i (y′i) does not.

Let C = ∃R.(C1 u . . .uCn). Thus, C is a concept of LΣ†,Φ†,j+1 and CI(x) holds,

but CI
′
(x′) does not, which contradicts the fact that x is LΣ†,Φ†,j+1 -equivalent

to x′. Therefore, there exists y′i ∈ S such that Zj(y, y
′
i) holds.

• The condition (6.4) can be proved analogously as for the condition (6.3).

• Consider the case Qk ∈ Φ† and the conditions (6.5) and (6.6). Suppose Zj+1(x, x′)
holds. Thus, x is LΣ†,Φ†,j+1 -equivalent to x′. Let S = {y ∈ ∆I | RI(x, y)} and

S′ = {y′ ∈ ∆I
′ | RI′(x′, y′)}. Since I and I ′ are finitely branching, both S

and S′ are finite. Consider an arbitrary y′′ ∈ S ∪ S′ and let y1, . . . , yn ∈ S and
y′1, . . . , y

′
n′ ∈ S′ be all the pairwise different elements that are LΣ†,Φ†,j -equivalent

to y′′. To prove (6.5) and (6.6) it suffices to show that either n = n′ or (n ≥ k
and n′ ≥ k). For the sake of contrary, assume that n 6= n′ and (n < k or n′ < k).
Without loss of generality, also assume that n < n′. Thus, n < k and n+ 1 ≤ k.
Let {t1, . . . , tm} = S \ {y1, . . . , yn} and {t′1, . . . , t′m′} = S′ \ {y′1, . . . , y′n′}. Let
I ′′ = I if y′′ ∈ S, and let I ′′ = I ′ otherwise. For each 1 ≤ i ≤ m, there exists
a concept Di of LΣ†,Φ†,j such that y′′ ∈ DI

′′
i but ti /∈ DIi . Similarly, for each
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1 ≤ i ≤ m′, there exists a concept D′i of LΣ†,Φ†,j such that y′′ ∈ (D′i)
I′′ but t′i /∈

(D′i)
I′ . Let D = (D1u . . .uDmuD′1u . . .uD′m′). We have that {y1, . . . , yn} ⊆ DI

(since y′′ ∈ DI′′) and {t1, . . . , tm} ∩DI = ∅. Similarly, {y′1, . . . , y′n′} ⊆ DI
′

and
{t′1, . . . , t′m′} ∩ DI

′
= ∅. Observe that C = (≥ (n + 1)R.D) is a concept of

LΣ†,Φ†,j+1 , CI
′
(x′) holds, but CI(x) does not. This contradicts the fact that x

is LΣ†,Φ†,j+1 -equivalent to x′.

• Consider the case Self ∈ Φ† and the assertion (6.7). Suppose Z0(x, x′) holds.
Thus, x is LΣ†,Φ†,0 -equivalent to x′. Let C = ∃r.Self. Since mdepth(C) = 0,

it follows that CI(x) holds iff CI
′
(x′) holds, which means x ∈ (∃r.Self)I iff

x′ ∈ (∃r.Self)I
′
. Therefore, rI(x, x) holds iff rI

′
(x′, x′) holds. �

Definition 6.12. An LΣ†,Φ†,d -bisimulation between I and itself is called an LΣ†,Φ†,d -
auto-bisimulation of I. An LΣ†,Φ†,d -auto-bisimulation of I is said to be the largest if
it is larger than or equal to (⊇) any other LΣ†,Φ†,d -auto-bisimulation of I. �

Definition 6.13. Given an interpretation I over Σ, by ∼Σ†,Φ†,d,I we denote the largest

LΣ†,Φ†,d -auto-bisimulation of I, and by ≡Σ†,Φ†,d,I we denote the binary relation on ∆I

with the property that x ≡Σ†,Φ†,d,I x
′ iff x is LΣ†,Φ†,d -equivalent to x′. �

Theorem 6.9. Let d be a natural number, Σ and Σ† be DL-signatures such that Σ† ⊆ Σ,
Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, and I be an interpretation over Σ.
Then the largest LΣ†,Φ†,d -auto-bisimulation of I exists and is an equivalence relation.
Furthermore, if I is finitely branching w.r.t. LΣ†,Φ† then the relation ≡Σ†,Φ†,d,I is
the largest LΣ†,Φ†,d -auto-bisimulation of I (i.e. the relations ≡Σ†,Φ†,d,I and ∼Σ†,Φ†,d,I
coincide).

Proof. It follows from Lemma 6.6 that the largest LΣ†,Φ†,d -auto-bisimulation of I exists
and is an equivalence relation. Assume that I is finitely branching w.r.t. LΣ†,Φ† . By
Theorem 6.8, the relation ≡Σ†,Φ†,d,I is an LΣ†,Φ†,d -auto-bisimulation of I. It remains
to show that this LΣ†,Φ†,d -auto-bisimulation is the largest one. Suppose Zd is another
LΣ†,Φ†,d -auto-bisimulation of I. If Zd(x, x′) holds then, by Lemma 6.7, for every con-

cept C of LΣ†,Φ†,d , CI(x) holds iff CI
′
(x′) holds, and hence x ≡Σ†,Φ†,d,I x

′. Therefore,
Zd ⊆ ≡Σ†,Φ†,d,I . �

The following theorem differs from the ones given in [48, 57, 26] in that the consid-
ered languages are different.

Theorem 6.10. Let d be a natural number, Σ and Σ† be DL-signatures such that
Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, I be a finitely branching
interpretation w.r.t. LΣ†,Φ†, and let X ⊆ ∆I . Then:

1. if there exists a concept C of LΣ†,Φ†,d such that X = CI then the partition of ∆I

by ∼Σ†,Φ†,d,I is consistent with X

2. if the partition of ∆I by ∼Σ†,Φ†,d,I is consistent with X then there exists a concept

C of LΣ†,Φ†,d such that CI = X.
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Proof. By Theorem 6.9, ∼Σ†,Φ†,d,I coincides with ≡Σ†,Φ†,d,I .

Consider the first assertion and assume that X = CI for some concept C of LΣ†,Φ†,d .

Let Y be any element of the partition of ∆I by ∼Σ†,Φ†,d,I such that X ∩ Y 6= ∅. It
suffices to show that Y ⊆ X. Let x be an arbitrary element of Y . Since X ∩ Y 6= ∅,
there exists x′ ∈ X ∩ Y . Since both x and x′ belong to Y , x′ ∼Σ†,Φ†,d,I x. Since
∼Σ†,Φ†,d,I coincides with ≡Σ†,Φ†,d,I , we also have that x′ ≡Σ†,Φ†,d,I x. Since x′ ∈ X and

X = CI , CI(x′) holds, which together with x′ ≡Σ†,Φ†,d,I x implies that CI(x) holds.
Thus, x ∈ X and we can conclude that Y ⊆ X.

Consider the second assertion and assume that the partition of ∆I by ∼Σ†,Φ†,d,I is
consistent with X. Let that partition be {Y1, ..., Ym, Y

′
1 , ..., Y

′
n}, where Yi ⊆ X for all

1 ≤ i ≤ m and Y ′j ∩X = ∅ for all 1 ≤ j ≤ n. We have that X = Y1 ∪ . . .∪Ym. For each
1 ≤ i ≤ m and 1 ≤ j ≤ n, since Yi and Y ′j are different equivalence classes of ≡Σ†,Φ†,d,I
(the same as ∼Σ†,Φ†,d,I), there exists a concept Ci,j of LΣ†,Φ†,d such that Yi ⊆ CIi,j and

Y ′j ∩ CIi,j = ∅. For each 1 ≤ i ≤ m, let Ci = Ci,1 u . . . u Ci,n. Thus, Yi ⊆ CIi and

Y ′j ∩CIi = ∅ for all 1 ≤ j ≤ n. Let C = C1 t . . .tCm. Thus, Yi ⊆ CI for all 1 ≤ i ≤ m
and Y ′j ∩ CI = ∅ for all 1 ≤ j ≤ n. Therefore CI = X. �

6.2.3 A Concept Learning Algorithm

Let A0 ∈ ΣC be a concept name standing for the “decision attribute” and suppose that
A0 can be expressed by a concept C in LΣ†,Φ† , where Σ† ⊆ Σ \ {A0} and Φ† ⊆ Φ.
Let I be a training information system over Σ. How can we learn that concept C
on the basis of I ? Nguyen and Sza las [48] gave a bisimulation-based method for this
learning problem. In this section, by adopting a specific strategy we present a modified
version of that method, called the MiMoD (minimizing-modal-depth) concept learning
algorithm. This algorithm is used for analyzing C-learnability in the next section.

Our MiMoD algorithm is as follows:

1. Starting from the partition {∆I}, make subsequent granulations to reach a parti-
tion consistent with AI0 . In the granulation process, we denote the blocks created
so far in all steps by Y1, . . . , Yn, where the current partition may consist of only
some of them. We do not use the same subscript to denote blocks of different con-
tents (i.e. we always use new subscripts obtained by increasing n for new blocks).
We take care that, for each 1 ≤ i ≤ n, Yi is characterized by a concept Ci such
that Yi = CIi .

2. We use the following concepts as selectors for the granulation process, where
1 ≤ i ≤ n:

(a) A, where A ∈ Σ†C

(b) ∃r.Self, if Self ∈ Φ† and r ∈ Σ†R

(c) ∃r.Ci, where r ∈ Σ†R

(d) ∃r−.Ci, if I ∈ Φ† and r ∈ Σ†R

(e) ≥h r.Ci, if Qk ∈ Φ†, r ∈ Σ†R and 1 ≤ h ≤ k
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(f) ≥h r−.Ci, if {Qk, I} ⊆ Φ†, r ∈ Σ†R and 1 ≤ h ≤ k.

A selector D has a higher priority than D′ if mdepth(D) < mdepth(D′).

3. During the granulation process, if

• a block Yi of the current partition is split by DI , where D is a selector,

• and there do not exist a block Yj of the current partition and a selector D′

with a higher priority than D such that Yj is split by D′

then split Yi by D as follows:

• s := n+ 1, t := n+ 2, n := n+ 2

• Ys := Yi ∩DI , Cs := Ci uD

• Yt := Yi ∩ (¬D)I , Ct := Ci u ¬D

• replace Yi in the current partition by Ys and Yt.

4. When the current partition becomes consistent with AI0 , return Ci1 t . . . t Cij ,
where i1, . . . , ij are indices such that Yi1 , . . . , Yij are all the blocks of the current
partition that are subsets of AI0 .

Observe that the above algorithm always terminates.

Example 6.14. Consider the information system I given in Example 2.9. Let Σ† =
{Male, hasChild} and Φ† = ∅. We want to apply the MiMoD algorithm to learn a
concept of LΣ†,Φ† that describes the concept Father . Recall that FatherI = {b, d, u}.
One of possible runs of the algorithm is as follows:

1. Y1 := ∆I , C1 = >, partition := {Y1},

2. splitting Y1 by Male:

• Y2 := {b, d, f, g, u}, C2 := Male,

• Y3 := {a, c, e, h, v}, C3 := ¬Male,

• partition := {Y2, Y3},

3. splitting Y2 by ∃hasChild .>:

• Y4 := {b, d, u}, C4 := C2 u ∃hasChild .>,

• Y5 := {f, g}, C5 := C2 u ¬∃hasChild .>,

• partition := {Y3, Y4, Y5}.

The obtained partition is consistent with FatherI , having Y4 = FatherI and Y3, Y5

disjoint with FatherI . The returned concept is C4 = Male u ∃hasChild .>. �
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Example 6.15. Consider once again the information system I given in Example 2.9.
Now let Σ† = {Male, hasChild}, Φ† = {Q3} and let A0 be a new concept name inter-
preted in I as AI0 = {c, d}. We want to apply the MiMoD algorithm to learn a concept
of LΣ†,Φ† that describes A0. One of possible runs of the algorithm has first two steps
as in Example 6.14 and then continues as follows:

3. splitting Y2 by ≥3 hasChild .>:

• Y4 := {d}, C4 := C2 u (≥3 hasChild .>),

• Y5 := {b, f, g, u}, C5 := C2 u ¬(≥3 hasChild .>),

• partition := {Y3, Y4, Y5}.

4. splitting Y3 by ≥3 hasChild .>:

• Y6 := {c}, C6 := C3 u (≥3 hasChild .>),

• Y7 := {a, e, h, v}, C7 := C3 u ¬(≥3 hasChild .>),

• partition := {Y4, Y5, Y6, Y7}.

The obtained partition is consistent with AI0 , having Y4 ⊂ AI0 , Y6 ⊂ AI0 , and Y5, Y7

disjoint with AI0 . The returned concept is

C4 t C6 = [Male u (≥3 hasChild .>)] t [¬Male u (≥3 hasChild .>)]

which is equivalent to ≥3 hasChild .>. �

Lemma 6.11. Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, Φ and Φ† be sets
of DL-features such that Φ† ⊆ Φ, and I be a finite interpretation over Σ. Suppose
A0 ∈ ΣC \ Σ†C and C is a concept of LΣ†,Φ† such that AI0 = CI . Let C ′ be a concept
returned by the MiMoD algorithm for I. Then C ′ is a concept of LΣ†,Φ† such that

C ′I = CI and mdepth(C ′) ≤ mdepth(C).

Proof. Clearly, C ′I = AI0 = CI . Consider the execution of the MiMoD algorithm
on I that results in C ′. By Pd we denote the partition of ∆I at the moment in that
execution when max{mdepth(Ci) | Yi ∈ Pd} = d and Pd cannot be granulated any more
without using some selector with modal depth d + 1. Let dmax be the maximal value
of such an index d (of some Pd). Let Zd be the equivalence relation corresponding to
the partition Pd, i.e. Zd = {〈x, x′〉 | x, x′ ∈ Yi for some Yi ∈ Pd}. It is straightforward
to prove by induction on d that Zd is an LΣ†,Φ†,d -auto-bisimulation of I. Hence,
Zd ⊆ ∼Σ†,Φ†,d,I . Since each block of Pd is characterized by a concept of LΣ†,Φ†,d , Zd

is a superset of ≡Σ†,Φ†,d,I . Since ≡Σ†,Φ†,d,I and ∼Σ†,Φ†,d,I coincide (Theorem 6.9), we
have that Zd = ≡Σ†,Φ†,d,I .

Since the algorithm terminates as soon as the current partition is consistent with
CI , it follows that dmax ≤ mdepth(C). Furthermore, if dmax < mdepth(C ′) then
we also have dmax < mdepth(C). Since mdepth(C ′) ≤ dmax + 1, we conclude that
mdepth(C ′) ≤ mdepth(C). �
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6.2.4 C-Learnability in Description Logics

Theorem 6.12. Let d be a natural number, Σ and Σ† be DL-signatures such that
Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, and I be a finite universal
interpretation w.r.t. LΣ†,Φ†,d . Suppose A0 ∈ ΣC \ Σ†C and C is a concept of LΣ†,Φ†,d

such that AI0 = CI . Then any concept returned by the MiMoD algorithm for I is
equivalent to C.

Proof. Let C ′ be a concept returned by the MiMoD algorithm for I. By Lemma 6.11,
C ′I = CI and mdepth(C ′) ≤ mdepth(C). For the sake of contradiction, suppose C ′

is not equivalent to C. Thus, either C u ¬C ′ or C ′ u ¬C is satisfiable. Both of them
belong to LΣ†,Φ†,d . Since I is universal w.r.t. LΣ†,Φ†,d , it follows that either (Cu¬C ′)I

or (C ′ u ¬C)I is not empty, which contradicts the fact that C ′I = CI . �

Theorem 6.13. Any concept C in any description logic that extends ALC with some
features amongst I, Qk, Self can be learned if the training information system is good
enough.

Proof. Let the considered logic be LΣ†,Φ† and let d = mdepth(C), Φ = Φ† and Σ =

Σ†∪{A0}, where A0 /∈ Σ†C . By Lemma 6.5, there exists a finite universal interpretation
I ′ w.r.t. LΣ†,Φ†,d . Let I be the interpretation over Σ different from I ′ only in that

AI0 is defined to be CI
′
. Clearly, I is universal w.r.t. LΣ†,Φ†,d and AI0 = CI . By

Theorem 6.12, any concept returned by the MiMoD algorithm for I is equivalent to C.
�

Assuming that the language LΣ†,Φ† is fixed, the MiMoD algorithm in the above two
theorems for learning a concept C does not depend on C (nor the modal depth of C).
Furthermore, the training information system I used for learning C depends on C only
via its modal depth.

6.3 On Concept Learning Using Queries

Angluin [2] assumed that the learner has access to a fixed set of oracles that will
answer specific kinds of queries about the concept to be learned. As mentioned earlier,
she studied exact and probably exact learnability using different types of queries like
membership, equivalence, subset, superset, disjointness and exhaustiveness. In this
section, we generalize these types of queries for DLs, introduce interpretation queries
and present some consequences. This mainly serves as a starting point for future work.

A type of queries is specified by a form of inputs and outputs for oracles. Let C
denote the concept to be learned, which belongs to a language LΣ†,Φ†,d . It is known

to the oracles, but unknown to the learner. We assume that the learner knows Σ†

and whether Φ† contains I or Self, but it may not know d nor the (maximal) number
k with Qk ∈ Φ†. Generalization of the types of queries studied by Angluin [2] is as
follows.

Membership. The input is a pair of an interpretation I and an element x ∈ ∆I , and
the output is yes if x ∈ CI and no otherwise.
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Equivalence. The input is a concept D and the output is yes if D ≡ C and no
otherwise. If the answer is no, the oracle returns an interpretation I and an
element x ∈ DI 	 CI , where 	 denotes “symmetric difference”.

Subset. The input is a concept D and the output is yes if D v C (i.e., DI ⊆ CI for
every interpretation I) and no otherwise. If the answer is no, the oracle returns
an interpretation I and an element x ∈ DI − CI .

Superset. The input is a concept D and the output is yes if C v D and no otherwise.
If the answer is no, the oracle returns an interpretation I and an element x ∈
CI −DI .

Disjointness. The input is a concept D and the output is yes if DuC is unsatisfiable
and no otherwise. If the answer is no, the oracle returns an interpretation I and
an element x ∈ DI ∩ CI .

Disjointness. The input is a concept D and the output is yes if D t C ≡ > (i.e.,
DI ∪CI = ∆I for every interpretation I) and no otherwise. If the answer is no,
the oracle returns an interpretation I and an element x /∈ DI ∪ CI .

The input concept D is usually assumed to belong to the same language as C.
In the restricted version, the above oracles return only yes or no without providing a
counterexample x.

Valiant [59] studied concept learnability by using membership queries and oracles
that generate positive examples. One can also consider oracles that generate negative
examples. These oracles do not receive inputs, but only return examples. They are
generalized for DLs as follows.

Positive Example. The output is a pair of an interpretation I and an element
x ∈ CI .

Negative Example. The output is a pair of an interpretation I and an element
x ∈ ∆I − CI .

Our new type of queries is as follows, which generalizes membership queries.

Interpretation. The input is an interpretation I and the output is the set CI .

As a consequence of Theorem 6.12, we have the following corollary:

Corollary 6.14. If LΣ†,Φ†,d is known then each of its concepts can be learned using
one interpretation query.

We say that a concept C of LΣ†,Φ†,d is in the h-DEG normal form (in short, h-
DEGNF) if it is in the DEG-normal form and

• every conjunction occurring in C has no more than h conjuncts,

• if C is a disjunction then it has no more than h disjuncts.
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In the case Φ† = {I,Qk, Self}, |Σ†C | = m and |Σ†R| = n, an upper bound S(d) for
the number of concepts in the h-DEG normal form of LΣ†,Φ†,d can be estimated as
follows:

S′(0) = (2m+ 2n+ 2)h

S′(l + 1) = (4k.n.S′(l) + 2m+ 2n+ 2)h for l ≥ 0

S(d) = (S′(d))h,

where S′(l) is an upper bound for the number of concepts in the h-DEG normal form
of LΣ†,Φ†,d that do not use t and have a modal depth not greater than l.

Thus, S(d) = (O(k.n.(m + n)h))h
d+1

. In the case h and d are constants, S(d) is
a polynomial (in k, m and n). We arrive at the following consequence, which is related
to the learnability of bounded CNF boolean formulas in classical propositional calculus
studied in [59, 2].

Proposition 6.15. When h and d are fixed natural numbers, every concept C in the h-
DEG normal form of LΣ†,Φ†,d can be learned using a polynomial number of equivalence
queries.
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Chapter 7

Conclusions

We have studied bisimulations and bisimulation-based comparisons in a uniform way
for a large class of DLs that extend ALCreg with an arbitrary set of features among
inverse roles, nominals, qualified number restrictions, the universal role, the concept
constructor ∃r.Self as well as role axioms. This class contains useful DLs like SROIQ,
which is the logical base of the Web Ontology Language OWL 2. In comparison with
the related works [37, 40], this class additionally allows the role constructors of PDL,
the concept constructor ∃r.Self and the universal role as well as role axioms.

Our main contributions are the following:

Chapter 3:

• We proposed to treat named individuals as initial states and gave an appro-
priate condition for bisimulation. We introduced bisimulation conditions for
the universal role and the concept constructor ∃r.Self.

• We proved that all of the bisimulation conditions (3.1)-(3.14) can be com-
bined together to guarantee invariance of concepts and the Hennessy-Milner
property for the whole class of studied DLs.

• We addressed and gave results on invariance or preservation of ABoxes,
RBoxes and knowledge bases in DLs. Independently with [40] we gave re-
sults on invariance of TBoxes. By examples, we showed that our results on
invariance or preservation of TBoxes, ABoxes, RBoxes and knowledge bases
in DLs are strong and cannot be extended in a straightforward way.

• We introduced a new notion called QS-interpretation, which is needed for
dealing with minimizing interpretations in DLs with qualified number re-
strictions and/or the concept constructor ∃r.Self.

• We formulated and proved results on minimality of quotient interpretations
w.r.t. the largest auto-bisimulations.

• We adapted Hopcroft’s automaton minimization algorithm [28] and the
Paige-Tarjan algorithm [49] to give efficient algorithms for computing the
partition corresponding to the largest auto-bisimulation of a finite interpre-
tation in any DL of the considered family. The adaptation requires special
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treatments for dealing with nondeterminism and the allowed constructors of
the considered DLs.

Chapter 4:

• We proved that all of the conditions (4.1)-(4.14) can be combined together
to guarantee preservation of semi-positive concepts and the Hennessy-Milner
property w.r.t. semi-positive concepts for the whole class of studied DLs.

• We provided results on characterizing bisimulation for tidy interpretations
by semi-positive concepts.

• We provided results on minimization of interpretations that preserves semi-
positive concepts.

Chapter 5:

• We provided results about separating the expressiveness of the DLs that
extend L, whereALC ≤ L ≤ ALCreg, with any combination of the features I,
O, Q, U , Self. Our separation results are w.r.t. concepts, positive concepts,
TBoxes and ABoxes. Our work differs significantly from all of [4, 7, 8, 37,
40], as the class of considered DLs is much larger than the ones considered
in those works and our results about separating the expressiveness of DLs
are obtained not only w.r.t. concepts and TBoxes but also w.r.t. positive
concepts and ABoxes.

Chapter 6:

• We proved that any concept in any description logic that extends ALC with
some features amongst I, Qk, Self can be learned if the training information
system (specified as an interpretation) is good enough.

• For the above mentioned purpose, we introduced universal interpretations
and bounded bisimulation in DLs and developed the MiMoD algorithm.

We also gave a survey on bisimulation-based concept learning in DLs and discussed
applications of interpretation minimization as well as concept learning using queries.

This dissertation is a comprehensive work on bisimulations for DLs. Our results
about separating expressiveness of DLs and C-learnability in DLs are interesting the-
oretical results. Our results on the largest auto-bisimulations found the logical basis
for concept learning in DLs [48, 57, 26, 15, 56, 58]. That is, our results are useful for
machine learning in the context of DLs.
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