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Abstract

Inference of Credible Associations between Genes and Genomes

Hypothesis of the course of gene and species evolution can be represented as a

phylogenetic tree, which illustrates the ancestor–descendant relationships. Events

such as gene duplications, losses and horizontal gene transfers (HGT) can lead to

the incongruence of the gene and its species tree. To locate such events, one can

use tree reconciliation. However, this method is prone to topology errors, therefore,

assessing the credibility of evolutionary events and reliable inference of reticulate

evolution are important issues in phylogenetics.

In this dissertation we propose a novel approach to assess credibility of gene

duplications and speciations. We developed a linear time algorithm, based on un-

rooted reconciliation and non-parametric bootstrap, which calculates support val-

ues for evolutionary events. We also show the application of our method to the

rooting and supertree problems.

To address the needs of metagenomic and microbial studies, we investigated

the problem of the inference of well-supported HGT events. We propose a new

measure based on non-parametric bootstrap, called transfer support. Then, we use

it to design a new, efficient heuristic algorithm that iteratively infers acyclic and

well-supported transfer scenarios. Our method, based on a novel square time HGT-

reconciliation algorithm, postulates the most probable locations based on the ex-

tended tree reconciliation and credibility of inferred HGTs.

Another challenge in metagenomic studies is the gene-species assignment prob-

lem, i.e., the problem of mapping of genes of unknown origin to a particular species

after shotgun sequencing. To address the problem, we propose the first HGT-reconci-

liation based approach to infer such mappings with two tractable HGT-models: time

consistent (tcDTL) and general (DTL). The algorithm for the DTL model runs in

square time, while for the tcDTL model, we describe a cubic time solution with

several improvements and generalizations.

Finally, we propose a novel network-based approach to datasets containing se-

quences whose high similarity prevents a credible phylogenetic tree inference. We

apply the methods to BCR receptor sequences from B-cells of follicular lymphoma

patients, which allowed us to model tumor evolution and observe subclonal selec-

tion driven by BCR mutations.



Rekonstrukcja Wiarygodnych Relacji Między Genami a Genomami

Hipotezę dotyczącą przebiegu ewolucji genów i gatunków można przedstawić w

postaci drzew filogenetycznych, które ilustrują relacje przodek–potomek. Zdarzenia

duplikacji, strat oraz horyzontalnego transferu genów (HGT) mogą prowadzić do

niezgodności pomiędzy topologiami drzew genów i gatunków. Metoda uzgadnia-

nia drzew pozwala na zlokalizowanie takich zdarzeń, jednak jej ograniczenia oraz

duża wrażliwość na błędy w topologiach drzew sprawia, że wiarygodność zdarzeń

ewolucyjnych oraz opracowanie wiarygodnych metod rekonstruowania zdarzeń re-

tykulacyjnych, wciąż stanowią otwarty problem w dziedzinie filogenetyki.

W niniejszej rozprawie zaproponowaliśmy nowe podejście do oceny wiarygod-

ności duplikacji i specjacji. Zdefiniowaliśmy miarę wsparcia dla tych zdarzeń i

opracowaliśmy liniowy algorytm, oparty na nieukorzenionym uzgadnianiu drzew i

nieparametrycznym bootstrapie, do jej obliczania. Pokazaliśmy również zastosowa-

nie naszej metody do problemów ukorzeniania drzew i budowy superdrzew.

Aby odpowiedzieć na potrzeby badań metagenomicznych i mikrobiologicznych,

podjęliśmy temat lokalizowania wiarygodnych zdarzeń HGT. Zaproponowaliśmy

nową miarę opartą na nieparametrycznym bootstrapie, zwaną wsparciem transferu,

i wykorzystaliśmy ją do stworzenia nowego i wydajnego algorytmu heurystycznego,

który iteracyjnie znajduje acykliczne i dobrze wspierane transfery genów. Nasza

metoda, oparta na kwadratowym algorytmie uzgadniania, postuluje najbardziej praw-

dopodobne miejsca transferów na podstawie ich wiarygodności.

Innym wyzwaniem, które pojawia się w badaniach metagenomicznych, jest prob-

lem przyporządkowania genów do gatunków po wykorzystaniu metody sekwencjo-

nowania typu shotgun, w której te przyporządkowania mogą zostać utracone. Do

rekonstrukcji relacji gen–gatunek zaproponowaliśmy pierwsze tego rodzaju podejś-

cie, oparte na uzgadnianiu z transferami, umożliwiające zastosowanie dwóch mod-

eli: spójnego czasowo (tcDTL) i ogólnego (DTL). Algorytm dla modelu DTL działa w

czasie kwadratowym, natomiast dla modelu tcDTL opisujemy rozwiązanie w czasie

sześciennym z kilkoma ulepszeniami i uogólnieniami.

Na końcu, skupiliśmy się na przypadku, gdy drzewa filogenetyczne są niewystar-

czające do przedstawienia złożonych relacji ewolucyjnych. Nasze podejście oparte

na sieciach zastosowaliśmy do zbiorów danych zawierających sekwencje, których

duże podobieństwo uniemożliwia zbudowanie wiarygodnych drzew filogenetycznych.

Sieci otrzymane dla sekwencji receptora BCR, pochodzących z limfocytów B po-

branych od pacjentów z chłoniakiem pęcherzykowym, pozwalają modelować ewolucję

nowotworu i obserwować selekcję subklonalną indukowaną przez mutacje BCR.
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1
Introduction

P
hylogenetics by the most general definition is the study of the evolu-

tionary history and relationships between individuals, groups of organ-

isms or genes and genomes. The term phylogeny from the German Phy-

logenie was introduced by German biologist Ernst Heinrich Haeckel in

Generelle Morphologie der Organismen in the 19th century and it originates from the

Greek φυλή/φῦλον (phylé/phylon) tribe, race, and γενετικός (genetikós) origin, source,

birth.

The word was coined in the 19th century, but classifying the natural world into

meaningful and useful categories dates back at least to ancient Greece. For cen-

turies the notion of a Great Chain of Being or Latin Scala Naturae was the prevailing

theory throughout the Western world. This concept was derived from Plato and

Aristotle’s Historia Animalium in which the philosopher ranked animals over plants

due to their ability to move and their senses. Animals were graded by their repro-

ductive mode, laying eggs being lower in the chain than live birth, and possession

of blood, warm-blooded mammals and birds again being higher than "bloodless"

invertebrates. This non-religious concept of higher and lower organisms was fur-

ther developed by natural philosophers and became the basis of the Scala Naturae.

Scala ordered beings from God to angels, humans, animals and plants to minerals.

In medieval times, the great chain was seen as decreed by God and unchangeable.

More modern classification in which physical components of the world were di-
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vided into the three kingdoms of animals, plants and minerals was introduced by

Carl Linnaeus in 18th century. This Swedish botanist, zoologist and physician is

usually regarded as the founder of modern taxonomy. In his books he laid the foun-

dations for biological nomenclature, developed principles for assigning names to

plants and animals using binomial nomenclature, and introduced the standard hi-

erarchy of class, order, genus, and species. Although Linnaeus’s classification was

a step toward more scientific approach, it was still based on Aristotle’s idea of the

essential features of living organisms and on general physical similarity. The revo-

lution came with Charles Darwin’s publication of the theory of evolution in his work

On the Origin of Species by Means of Natural Selection. Since then, phylogenetics and

the search of evolutionary relationships began to be based on archaeological, and

historical studies, and after further discoveries, also on genetic and molecular data.

Molecular era

Great many fields of science and medicine have emerged after the discoveries of the

existence of proteins and genes. Among the most important scientific disciplines

are genetics, which focuses on genes, genetic variation and heredity in organisms,

and molecular biology. The latter lies between genetics and biochemistry covering

issues concerning molecular basis of biological processes and interactions inside of

cells and between them.

The term molecular biology was introduced in 1938 by Warren Weaver, how-

ever, the field itself was already established in 1930 [Alberts et al. (2003); Morange

(2000)]. At that time it already had a solid foundation. Existence of certain discrete

inheritance units was suggested by Gregor Mendel, who studied edible pea plants

and discovered inheritance patterns by observing visual characteristics of the cross-

bred plants. His research allowed him to describe dominant and recessive traits,

the concept of homozygote and heterozygote, and the phenomenon of discontinu-

ous inheritance. Mendel’s work was published in 1866 but it was not until the the

end of 19th century that his findings were recognized and confirmed by other re-

searchers [Henig (2000)]. Shortly thereafter, at the beginning of the 20th century

terms gene and genetics were introduced by Wilhelm Johannsen and William Bate-

son [Johannsen (1909); Bateson et al. (1906)].

DNA helix and the genetic code

Another milestone in advancing molecular biology and genetics was the discov-

ery of the deoxyribonucleic acid (DNA) and its helix structure. DNA is a polymer

consisting of two polynucleotide chains forming a double helix. Nucleotides are
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composed of a deoxyribose sugar molecule, a phosphate group, and one of four ni-

trogenous bases: a purine (adenine (A) or guanine (G)) or a pyrimidine (cytosine

(C) or thymine (T)). A single DNA strand is connected by covalent bonds, while two

strands are joined in a helix by hydrogen bonds [Alberts et al. (2003)].

DNA was isolated from the cell nucleus for the first time in 1869 and it took

over 70 years to discover its structure and role in genetic inheritance. In the early

20th century, the chemical structure was identified [Cohen and Portugal (1974)] and

later in 1953 James D. Watson and Francis Crick [Watson and Crick (1953)] pub-

lished their model of the DNA as a double stranded helix. The first DNA sequence

was read in early 1970s and since then teh sequencing methods were developed

and improved. Today’s methods allow to sequence much longer sequences and in

much shorter time, however, the problem of read errors has not yet been completely

solved.

In the course of DNA research, a second nucleic acid was also discovered. Ri-

bonucleic acid (RNA) structure is very similar to DNA with a few differences. In-

stead of the deoxyribose, the RNA molecule contains ribose and the thymine is

replaced by uracil. Although RNA can form double-stranded molecules, unlike

DNA it is usually single-stranded. There are many types of RNA molecules, such as

mRNA, tRNA, rRNA and some of their functions and related processes have only

been discovered in modern times [Berg et al. (2007)].

DNA is organized into long structures called chromosomes, which in eukaryotic

cells are located in the nucleus, whereas in prokaryotic cells chromosomes are cir-

cular and stored in cytoplasm. The role of DNA in all organisms and many viruses

is to code genetic information responsible for the development, function and repro-

duction of the organism. The complete set of genetic information in an organism

is called genome. Genetic code is based on three-letter, non-overlapping fragments

called codons, which are translated into the amino acids in the process of gene ex-

pression. Amino acids form long chains, i.e. proteins, which are an essential part

of all living organisms, being structural component and playing an important role

in many processes as enzymes or elements of the immune system. Gene expres-

sion consists of two major steps. The first one, called transcription, is the process of

copying genetic information contained in the genes from DNA into mRNA. Next,

during translation the coding fragments from mRNA are used as a template for pro-

tein synthesis. The principle stating that information can only be transferred from

nucleic acid to nucleic acid and from nucleic acid to protein was established as the

central dogma of molecular biology by Francis Crick in 1958 [Watson and Crick

(1958)]. The simplified version that says that DNA is transcribed to RNA and RNA
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is translated to proteins is incorrect due to the existence of processes such as reverse

transcription, which transcribes information from RNA to DNA.

The genetic information in DNA is contained in genes, the nucleotide sequences

encoding a specific protein or RNA. They are the basic unit of heredity and the

information they contain determines the phenotype, i.e., a set of observable char-

acteristics or traits of an organism. Genes therefore influence traits such as hair

color or blood type, but also the structural correctness of proteins, which ensures

the correctness of biochemical processes occurring in the organism.

In addition to the protein coding part, the gene structure also includes regula-

tory sequences that are essential for their expression. To initiate the transcription

process, the promoter sequence is required. It is the binding site for RNA polymer-

aze, which synthesizes RNA from a DNA template. The stop codon is located on the

opposite side from the promoter. Stop codons cause the polymeraze to disassociate

and terminate transcription. There are three universal stop codons in the standard

genetic code. Additional regulatory sequences such as enhancers and silencers that

increase and decrease gene expression levels, respectively. These regulatory regions

can be locates within the gene sequence or in a very distant DNA region [Maston

et al. (2006)].

In order for the genetic information to be passed on, it has to be replicated. It is

one of the most essential processes during cell division, which in turn is the basis

for the development of all organisms. DNA replication is catalyzed by the enzyme

called DNA polymerase. During this process, DNA helix is unwound and hydrogen

bonds are temporarily broken, enabling polymerase to bind to the DNA and syn-

thesizes a new nucleotide chain using a single DNA strand as a template [Alberts

et al. (2003)]. As a result of replication, two new double-stranded DNA molecules

are created.

Mutations and errors

Despite the remarkable precision of DNA replication and the ability of the DNA

polymerase to perform proof-reading and error correction, some errors do occur

during the process. The error rate varies by species and is much higher in viruses

than in eukaryotic cells [Drake et al. (1998)]. Errors in the genetic material can occur

also during cell divisions, namely mitosis and meiosis, or due to damage caused,

for example, by radiation or chemicals. Changes in DNA can be also a result of

the mobile genetic elements movements, which can cause insertions or deletions.

Alterations in the DNA sequence are called mutations.

The effect of a mutation on the organism depends on the size of the change, its
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type and location. Errors that occur in a non-coding and non-regulatory parts of

DNA are neutral for the organism. Small mutations, involving change of a single or

several bases within gene coding sequence, can be silent if a codon changes to other

codon that encodes the same amino acid. In such case the substitution is synony-

mous. A nonsynonymous substitution results in a codon encoding a different amino

acid (missense mutation) or a stop codon (nonsense mutation). The first one changes

the protein sequence, hence it influences the structure and possibly function of the

protein. A nonsense mutation, in turn, causes the termination of the protein devel-

opment. In both cases the resulting proteins are usually nonfunctional. Less often,

we can talk about gain-of-function mutations, which changes the function of the

protein. Aside from the nucleotide substitution, a mutation can be also caused by

an insertion or deletion. Such an event changes the reading frame, i.e., the grouping

of codons. The earlier in the sequence the mutation occur, the more the resulting

protein is altered. The occurrence of a mutation within the regulatory part of the

gene may affect the level of gene expression [Alberts et al. (2003)].

Another type of mutations are large-scale mutations, which include deletions

and duplications of one or more genes, duplications of entire sets of chromosomes,

and chromosomal rearrangement, i.e., large-scale changes in chromosome struc-

ture [Hastings et al. (2009)].

The rate of mutation varies for different mutations, genome regions and organ-

isms. Regions characterized with very low mutation rate are called conserved.

Molecular evolution

Mutations as a consequence of errors and DNA damages may seem like just an im-

perfection in the DNA machinery. Indeed, mutations can cause protein alterations,

which may lead to a loss of function and consequently stop biologically important

processes. Such alterations may cause various types of diseases or even be lethal.

Results of other mutations may not be immediately noticeable, however, the accu-

mulation of certain types of mutations can cause malignant transformation from

normal cell to cancer cell [Alberts et al. (2003)]. However, aside from the the neg-

ative impact, mutations are the source of all genetic variation and together with

natural selection are the main driving force of evolution. Some mutations can be

advantageous by increasing gene expression or positively affecting the function of

protein. The main source of new genes is gene duplication, which creates a re-

dundant gene copy. Duplicated genes (paralogs) are no longer under the selection

pressure and may evolve by changing sequence and acquiring new function [Alberts

et al. (2003)].
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Mutations may or may not be inherited by offspring, depending on the type of

organism and the cell in which the mutation occurred. In simple single-cell organ-

isms mutations are present in all progeny cells. In multicellular organisms, on the

other hand, we distinguish somatic mutations, which occur in somatic cells and are

not passed on, and germline mutations, that are located in reproductive cells and

consequently are observable in all cells of the offspring.

Homology and similarity of sequences

The inheritance of genetic sequences along with the mutations allows to trace back

the evolution by comparing DNA sequences. The more similar the sequences of two

genes are, the more likely they are evolutionarily related. A group of genes that

share a common sequence ancestor form a gene family and we say that their se-

quences are homologous. Genes from the gene family located within one genome or

in genomes of different species are called paralogs and orthologs, respectively [De-

muth et al. (2006)].

To determine similarity and potential evolutionary relationships, the sequences

must be compared in some way. The comparison can be made by matching two

sequences of nucleotides in a way that gaps are inserted between the nucleotides

or amino acids so the identical characters are aligned in successive columns. Such

a comparison is called alignment. Characters that do not match can also be paired

if it will result in a better score. The score function for DNA and RNA sequences

simply adds a set value for a match, and subtracts for a mismatch or a gap. In

case of protein alignments the substitution matrix is often used to assign scores to

amino-acid matches or mismatches. We distinguish two types of alignments – global

and local. Global methods search for the optimal alignment for entire sequences.

In turn, local alignments matches only the most similar fragments. Extension of

the classical alignment method, called multiple sequence alignment (MSA), allows

to align more than two sequences at a time. Such an alignment identifies similar

regions in a set of sequences and helps in the analysis of evolutionary relationships.

[Gollery (2005); Needleman and Wunsch (1970); Smith et al. (1981)].

Phylogenetic trees: concepts and methodologies

Phylogenetic tree is a diagram showing evolutionary relations between species, genes

or proteins. The relationships can be determined by physical or genetic similarities.

In a phylogenetic tree, all nodes represent species or sequences of genes or proteins,

although usually the internal nodes are unknown and the tree contains only data

from the present day represented by tree leaves [Felsenstein and Felenstein (2004)].
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In a species tree each branching corresponds to a speciation, i.e., the formation of

new distinct species. Branching in the gene tree usually represents speciation or

duplication of a gene. Trees can be either binary or multifurcated. Multifurcations

occur mainly when a few sequences are too similar to correctly determine their evo-

lutionary relationship. Tree can be also rooted or unrooted. A more natural way to

represent evolutionary relationships is a rooted tree, where the root corresponds to

the common ancestor of all of the nodes in the tree and the direction of evolution

is clear. An unrooted tree shows relations, however, for certain nodes the ancestor–

descendant relationship may be impossible to determine. There are several methods

for rooting unrooted trees, such as outgroup rooting or midpoint rooting, but the

rooting location determined by these methods is not always correct [Boykin et al.

(2010)].

There exist several methods for phylogenetic tree inference. The first category is

distance-matrix methods, which includes methods such as UPGMA and neighbour-

joining (NJ). Distance-matrix methods are based explicitly on the evolutionary dis-

tance between sequences, calculated with MSA. UPGMA is a agglomerative, hier-

archical clustering method, which returns rooted trees. At each step the algorithm

connects two closest groups of nodes and iterates until the tree is completely re-

solved. Neighbour-joining is similar with two main differences: it does not assume

the same evolution rate for all branches and it returns and unrooted tree. The ad-

vantage of the NJ is its speed comparing to other methods [Saitou and Nei (1987)].

Maximum parsimony method minimizes the number of character-state changes

observed along the branches [Fitch (1971)]. It is very intuitive method, however,

existing algorithms are very slow, which makes its application to large data sets

impossible. Another disadvantage of this method is the fact that inferred trees of-

ten underestimate the actual number of mutations that has occurred [Felsenstein

(1978)].

The next method, unlike the previous ones, is a probability-based method. Max-

imum likelihood methods aim to find the most likely tree given the available data.

For this method a substitution model is required to calculate the probability of par-

ticular mutations. Maximum likelihood seeks a similar tree as a maximum par-

simony method, but it assume different evolution rates on branches. Due to its

complexity heuristic solutions are used for the tree inference.

Non-tree evolution and phylogenetic tree extensions

Although many evolutionary relationships can be represented by phylogenetic trees,

not all phenomena can be visualized in a tree-like structure. Reticulation events
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cause the appearance of new, non-tree branches and introduce the need to define

phylogenetic networks [Linder et al. (2004)]. The processes driving the reticulate

evolution include symbiosis and symbiogenesis, which are forms of coexistence

between two distinct species that benefit both or one of them. A special case of

symbiosis in which one species resides in the second one is called symbiogenesis.

The evolutionary theory of symbiogenesis explains the origin of eukaryotic cells

and organelles such as mitochondria and chloroplasts, with cells formerly living in

endosymbiosis. Such close interaction of two organisms may lead to evolutionary

changes in both species.

Another example of a reticular event is horizontal gene transfer (HGT). In the

HGT event, the genetic material is transferred between two separate organisms in

a horizontal manner rather than vertically from parent to offspring. HGT mech-

anisms include bacterial conjugation between two bacterial cells, bacterial gene

transfer agents, transformation due to the uptake of foreign DNA from the environ-

ment, and transduction whereby DNA is transmitted between bacteria by viruses.

Event of HGT are though to be the main mechanism for the spread of antibiotic

resistance in bacteria and play important role in their evolution. A gene found in a

different species as a result of HGT is called xenolog.

While horizontal gene transfers refers to the transmission of the DNA fragments

at the cellular level, the hybridization phenomenon concerns the cross-breeding

of two parental organisms from subspecies or two distinct species to produce off-

spring. Hybrid offspring may be infertile, however, they are fertile in most cases

and able to breed with both parental line [Gontier (2015)].

Genes, genomes and evolutionary events

As mentioned before, genome is a repository of an organism’s genetic information,

containing genes and the regulatory regions that control the gene expression. Both

the evolution of species and the evolution of the gene families encoded in their

genomes can be represented by phylogenetic trees. However, the presence of evo-

lutionary events, such as duplications and losses, may cause the topologies of the

gene and species tree to be incongruent. Therefore, the question remains, how to

represent the joint evolution of genes and species.

A method linking two topologies and explaining the deferences between them

is the tree reconciliation. Informally, reconciliation approach infers the evolution-

ary scenario for given gene and species trees, by embedding the gene tree into the

species tree [Goodman et al. (1979); Page (1994)]. The algorithm minimizes the cost

of the embedding, so a model defining allowed evolutionary events and their costs
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must be specified. The most commonly used model is the duplication-loss model.

The embedding shows duplications and losses needed to fit the gene tree into the

species tree, indicating in the gene tree the nodes where these events likely occurred.

Credibility of evolutionary relationships

Phylogenetic trees inferred based on the DNA sequence similarity may be incorrect

for a variety of reasons. Among the most common are DNA sequencing errors, high

similarity of the studied sequences, and limitations of the tree inference methods.

Incorrect tree topologies can also be caused by the presence of reticulation events,

such as horizontal gene transfer (HGT) or hybridization, which introduce disrup-

tions to the sequences.

Incorrect topologies can cause further problems in data analysis. The correct-

ness of evolutionary events inferred by the topology-based reconciliation method

depends tremendously on the correctness of the reconciled trees. The high error

sensitivity and limitations of the reconciliation method make the credibility of evo-

lutionary events, and the development of reliable methods for the inference of retic-

ulation events, still a significant problem in the field of phylogenetics.
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2
Basic definitions

T
he Chapter Basic definitions introduces several basic concepts from the

field of phylogenetics. We start with the formal definitions of the gene

and species tree structures. Further, we explain the concept of the tree

reconciliation and reconciliation cost, at first only for rooted trees and

a set of evolutionary events limited to gene duplications and losses. Then, we show

how to extend this model to the unrooted trees. Finally, we raise the issue concern-

ing the credibility of inferred phylogenetic trees and present a method to address

this problem.

2.1. Phylogenetic trees

Gene and species trees

A species tree we define as a rooted tree whose leaves are identified with species. For

a tree T by LT we denote the set of all leaves/species, and by IT the set of all internal

nodes present in T . A rooted gene tree G over a species tree S is a triple 〈VG,EG,ΛG〉
and 〈VG,EG〉 is a rooted tree in which an internal node has at least two children,

and ΛG : LG→LS is the leaf labelling function expressing the relationship between

leaves from G representing genes and species from the species tree S, called simply

labelling. For vertices a,b ∈ VG, we use the binary order relation a � b if b is a vertex
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on the path between a inclusively, and the root of G. We write that a and b are

comparable if a � b or a � b. If a � b and a , b, we use the notation a ≺ b. By

par(a) we denote the parent of a non-root node a. A node is binary if it has exactly

two children; it is non-binary otherwise. We call a tree binary if all of its nodes

are binary. A child a of a binary node v is a sibling of b, denoted a = sib(b), if

par(a) = par(b) = v. The set of all children of a node a is denoted by â. If a is a leaf

then â = ∅. By ||a,b|| we denote the number of edges on the shortest path connecting

a and b. A cluster for v is the set of all leaves present in the subtree of T rooted at v.

In this work, gene and species trees are usually denoted by G and S, respectively.

We denote trees by using the standard nested parenthesis notation with the exten-

sion that allows to encode labelling. For instance, in Figure 2.1, G = ((a,a), (b, (b,c)))

is a five-leaf gene tree over a species tree ((a,b), c) such that two leaves of the gene

tree labelled with a are assigned to species a.

For convenience, we also assume that a species tree is leaf labelled, where the

labellig is given by the identity function, i.e., each leaf/species in S is labelled. This

convention is used in Chapters 3 and 4.

Unrooted gene tree

An unrooted gene treeG over a species tree S is a triple 〈VG,EG,ΛG〉 such that 〈VG,EG〉
is an undirected acyclic connected graph in which the degree of each internal node

is 3, all leaves has degree 1, and ΛG : LG→LS is a leaf labelling function, where LT
is the set of all leaves in an unrooted tree T . A split A|B is a partition of X, i.e., A

and B are two disjoint non-empty sets such that A∪B = X. We say that a split A|B is

present in an unrooted tree if there is an edge e in G, such that removing e from G

induces two subtrees of G having A and B as the set of its leaves, respectively. Splits

are the unrooted equivalent of clusters.

2.2. Tree reconciliation under the duplication-loss model

Events such as gene duplications and losses can lead to the incongruence of the

gene and its species tree topologies. To locate such events, one can use tree reconcil-

iation. Below we introduce the tree reconciliations method, and show its extension

to unrooted trees.
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2.2.1. Tree reconciliation

Tree reconciliation is a method linking two tree topologies. By embedding the gene

tree into the species tree, this method infers the evolutionary scenario that explains

the incongruences between given trees, by postulating duplication and loss events.

For the definition of the tree reconciliation, we need the notion of the lca-mapping.

Let LT be the set of all leaf labels from a tree T . Let G = 〈VG,EG〉 be a rooted gene

tree, such that LG ⊆ LS , where S = 〈VS ,ES〉 is the rooted species tree. The least

common ancestor mapping, or lca-mapping is a function M : VG→ VS , such that:

M(g) =

s if g is a leaf,

M(g ′)⊕M(g ′′) otherwise,

where g ′ and g ′′ are children of the internal node g and v ⊕u is the lowest common

ancestor of v and u. The internal node g ∈ VG is called a duplication (D) if M(g) =

M(g ′) for some child g ′ of the node g. Remaining nodes are called speciation nodes.

An example of tree reconciliation is depicted in Figure 2.1. Lca-mapping is shown

in Figure 2.1 on the left and the corresponding embedding of the gene tree G into

the species tree S representing evolutionary scenario is on the right side.

a

b c

a a b

b c

a

b c
Species treeGene tree

gene 
duplication gene loss

Embedding of the gene tree 
into the species tree

Figure 2.1: An example of lca-mapping and evolutionary scenario. Left: The lca-mapping between the

gene tree G and the species tree S (leaves mappings are omitted). Right: The embedding represent-

ing evolutionary scenario that corresponds to the lca-mapping. Here, for reconciling G and S two

duplications and one gene loss were needed.

2.2.2. Duplication-loss cost

For the tree reconciliation method, a cost function determining the allowed types of

evolutionary events and their costs, must be specified. In the duplication-loss model

(DL model), as the name suggests, there are two types of events: duplications and

losses. Gene duplications are the main mechanism by which new genetic material is

created in the process of molecular evolution [Taylor and Raes (2004)]. Gene losses,

on the other hand, results in the loss of some genetic information. The effect of
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these two phenomena on DNA makes a model based on them appear to be a good

approximation of evolution.

For a given tree T and S, the duplication cost, denoted by D(T ,S), is the total

number of duplications required to reconcile T and S [Page (1997)]. The total num-

ber of gene losses in T can be defined by:

L(T ,S) = 2D(T ,S) +
∑

g is internal
a,b children of g

(‖M(a),M(b)‖ − 2),

where ‖a,b‖ is the number of edges on the path connecting a and b in S [Ma et al.

(2000a)]. Finally, we can define the duplication-loss cost (DL cost):

DL(T ,S) = D(T ,S) + L(T ,S).

2.2.3. Unrooted tree reconciliation

In Section 2.2.1 we presented the notion of tree reconciliation. Although the classi-

cal model applies only to rooted trees, it can be extended to reconcile an unrooted

gene tree with a rooted species tree by seeking a rooting of the unrooted gene tree

that invokes the minimal duplication-loss cost [Górecki and Tiuryn (2007a); Yu et al.

(2011)].

For an unrooted gene tree G and an edge e ∈ EG, by Ge, we denote the root-

ing, i.e., a rooted gene tree, obtained from G by placing the root on e. By Me we

denote the lca-mapping between Ge and S. For a species tree S, such a rooting

induces the duplication-loss cost DL(Ge,S). The set of all edges with the minimal

duplication-loss cost, or optimal edges, is called plateau. Rootings of optimal edges

are also called optimal. We now introduce types of edges and stars in unrooted gene

trees. Both notions are crucial in comparing gene and species trees in unrooted

framework [Górecki et al. (2013)].

Without loss of generality we assume that every root of a gene tree is mapped

into the root of S, denoted by >, and both trees are non-trivial. An edge e = {v,w}
of G is empty if the root of Ge is a speciation. We call e double if Me(v) = > = Me(w).

Otherwise, e is called single. A single edge e is called v-incoming or w-outgoing if

Me(v) , > = Me(w). An edge is called symmetric if it is either empty or double. Let v

be an internal node of G. Then a star with a center v consists of three edges sharing

a common node v incident to nodes a, b and c, respectively (see Figure 2.2). There

are five types of possible star topologies:

1. the S1 star has one v-incoming edge and two v-outgoing edges,
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2. the S2 star has exactly two v-outgoing edges and one empty edge,

3. the S3 star has two v-outgoing edges and one double edge,

4. the S4 star all 3 edges are double,

5. and the S5 star has one v-outgoing edge and two double edges. An example

of the S5 is shown in Figure 2.3.

v
a

bc

S1 S2 S3 S4 S5
empty

single

double

Ta

TbTc

Figure 2.2: Stars in unrooted reconciliation. A star in a gene tree and possible types of edges and

stars topologies. Subtrees Ta, Tb and Tc are rooted at nodes a, b and c, respectively.

The main result on unrooted reconciliation is presented below.

Theorem 1 (Adopted from Górecki and Tiuryn (2007a)). For a given unrooted gene

tree G, we have: (1) either G has exactly one empty edge or G has at least one double

edge, (2) if the plateau of G consists of exactly one edge then this edge is symmetric, and

all other edges are single, or (3) if the plateau of G has more than one edge then it is

composed only of all edges present in stars S4 and S5, and all other edges are single.

It follows from this theorem and the properties of stars that the the graph in-

duced by the plateau is an unrooted binary tree. See also [Górecki et al. (2013);

Górecki and Tiuryn (2007a)] for more details. An example of the unrooted recon-

ciliation is depicted in Figure 2.3.

2.3. Felsenstein’s phylogenetic bootstrap

Phylogenetic trees are often inferred from partial and noisy data due to the charac-

ter of the sequencing methods. Moreover, results obtained by tree inference meth-

ods for the same data set often vary, and the correctness of the resulting trees is not

guaranteed. Thus, a necessary step in phylogenetic research is to assess the credibil-

ity of the inferred trees. A commonly used method is a non-parametric bootstrap,

proposed by Felsenstein [[Felsenstein (1985)]], which allows determining whether

the given phylogenetic tree is a good approximation of the evolution of given se-

quences.The method is divided into three steps. The first one consists of creating

new alignments by drawing with replacements columns from the original align-

ment. Obtained alignments are used to infer sample trees, which are compared with
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duplication speciation plateau internal plateau

hat

bodya
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a
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Figure 2.3: Top: An example of unrooted gene tree G, reconciled with S, with three optimal rootings.

Each edge is decorated with the duplication-loss cost of the corresponding rooting (optimal cost is 9).

G has three non-leaf speciation clusters (marked by green circles) and two duplication clusters (one

marked by purple square + the cluster of the root). Every plateau edge, colored in red, has a label

E1, E2 or E3, which relates to one of the embeddings visible below. Bottom: Three embeddings of all

optimal rootings of G into S. Corresponding edges in embeddings are color coded. Every embedding

has 2 duplications and 7 gene losses.

26



the original tree in the third and final step. The results can be interpreted as an in-

dication of the influence of arbitrary changes that do not resemble the evolutionary

pattern, such as sequencing errors, on the topology of the phylogenetic tree. Sup-

port values can be computed for both branches or clusters present in the tree and

they are calculated as a percentage of sample trees in which an identical branch or

cluster was found. The visualization of the bootstrap method and the calculation of

the support values are presented in Figure 2.4.
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Figure 2.4: Schema showing the three steps of calculating support values for phylogenetic trees using

the bootstrap method.
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3
Credibility of Duplication and

Speciation Events

D
uplication and loss events in the evolutionary history of a gene fam-

ily can be located using the tree reconciliation method. However,

while the classical reconciliation model applies only to rooted trees,

most standard tree inference methods return trees that are unrooted.

One solution to this problem is to root the tree. There are several rooting methods,

but the problem of identifying a credible rooting placement is not trivial [Górecki

and Eulenstein (2012a)]. The outgroup rooting can result in incorrect rootings if

there is heterogeneity in a gene tree. Another approach is to root gene trees under

the molecular clock assumption, or similarly by using midpoint method. In both

cases the results may be incorrect if there is a molecular rate variation throughout

the tree [Holland et al. (2003); Huelsenbeck et al. (2002)]. In [[Chaudhary et al.

(2012); Durand et al. (2006)]] the proposed solution was to use tree edit opera-

tions to correct trees before reconciliation. For example, in [Chaudhary et al. (2012);

Górecki and Eulenstein (2012a)] a gene tree is considered to have an error if there

is a tree with improved reconciliation cost in the local neighborhood of the given

gene tree. Another method proposed in [Beretta and Dondi (2014); Swenson et al.

(2012); Dondi et al. (2014)] consisted in preprocessing a set of gene trees by remov-

ing nodes that cause inconsistencies. A more statistical approach was presented in
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[Wu et al. (2012)]. Certain refinement methods can be also applied to trees with

polytomies [Lafond et al. (2014); Noutahi et al. (2016)].

An approach to the problem from a different angle is to extend tree reconcilia-

tion to reconcile an unrooted gene tree with a rooted species tree. Such solutions

were presented in [[Górecki and Tiuryn (2007a); Yu et al. (2011)]], where the recon-

ciliation method seeks a rooting of the unrooted gene tree that invokes the minimal

duplication-loss cost. However, this is not a complete solution to the problem. In

addition to the incorrect root location, there may be other errors in the gene tree

topology due to sequencing errors or limitations of the tree inference methods. For

this reason, the credibility of tree reconciliation results remains an vital issue in

phylogenetic studies.

A commonly used method to address the issue of the credibility of inferred phy-

logenetic trees, in non-parametric bootstrap [[Felsenstein (1985)]]. So far, bootstrap

methods in tree reconciliation were mainly focused on rooted trees. For example,

in [[Park et al. (2010)]], the authors proposed to estimate the support of inferred

horizontal gene transfers. An early approach to integrate reconciliation and boot-

strapping for unrooted trees [Zmasek and Eddy (2002)] relied on rooting unrooted

trees by choosing the midpoint rooting with the minimal duplication-loss cost. By

aggregating gene duplication locations from all rooted sample trees, the authors

were able to compute support values for every duplication from the input gene tree.

However, in such a method, information can be lost as the selected midpoint rooting

may be incorrect.

In this Chapter, we present our approach to the issue of credibility of tree rec-

onciliation results. We propose a solution combining methods of unrooted recon-

ciliation and non-parametric bootstrap. We show the properties of optimal rootings

and we define the main notion of support values for duplication and speciation

events. Based on the theoretical properties we propose an algorithm for the compu-

tation of the support values. Next, we present a comparative study of tree rooting

methods and evaluation of their performance using both simulated data and real

yeast genomes. Finally, we examined how the inclusion of support values for boot-

strapped trees affects the results of supertree inference.

3.1. Theoretical results

In this Section we present theoretical results related to reconciliation with boot-

strapping. First, we introduce support values for branching events, i.e., duplica-

tions and speciations in a gene tree. Next, we show our linear time algorithm for the
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computation of bootstrap values, and finally, we explain the correspondence of our

approach with the classical non-parametric bootstrapping.

3.1.1. Properties of optimal rootings

We start by introducing some important notions and theorems concerning unrooted

gene trees and the plateau property. Please recall, that the plateau is the set of all

edges with the minimal duplication-loss cost.

Lemma 1. If e and e′ are elements of the plateau of an unrooted gene treeG, then Me(w) =

Me′ (w) for any w ∈ VG.

Proof. Without loss of generality we assume that e and e′ are two elements of a star

with center v. It is clear that for any node w from Ta, Tb and Tc (see notation from

Figure 2.2), we have Me(w) = Me′ (w). It remains to show that lca-mappings of v are

the same in both rootings. Both e and e′ are in the plateau, thus at least one edge, say

e, is double and the second edge is either v-outgoing or double. Now, from the types

of edges we have Me(v) => and the same holds for the other rooting. This completes

the proof for incident edges. The rest of the proof follows easily by induction. �

Note that the root of any rooting of the unrooted gene tree is mapped to the

same node in S. Despite the formal complication with the root (which is formally a

new node in a rooting of unrooted tree), we conclude that lca-mappings of optimal

rootings are identical. The next result follows from Lemma 1.

Theorem 2 (Homology in unrooted trees). For a node of an unrooted gene tree G, its

type is the same in every optimal rooting of G.

Proof. It follows from Lemma 1. �

Clusters in an unrooted gene tree G are inherited from its rootings as follows:

A ⊆ LG is a cluster in G if there is a rooting T of G and a node in T such that A is the

cluster of this node.

Lemma 2. Let G be an unrooted gene tree and A ( LG be a cluster of G. Then, if there

are rootings T and T ′ of a node from G and nodes v ∈ T and v′ ∈ T ′ such that the clusters

of v and v′ are equal then v = v′.

Proof. Any v is element of VG by the definition of rooting. Assume that two rootings

T and T ′ of G have cluster A and v , v′. Hence, there is a non-empty path in G

connecting these two nodes. Next, by rooting G somewhere on this path, we obtain

a rooting that has two nodes with the same cluster A. This is a contradiction with

the definition of cluster as a set of leaves (not labels). �
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The above result shows a correspondence between every proper cluster A from

G and a node in G, denoted by G ↓ A. For completeness, the cluster consisting of all

leaves will be called root-cluster and it is not associated with any node. Examples of

clusters are presented in Figure 3.1.

Now we introduce a notion of type of cluster in unrooted trees. A proper cluster

A of G is called a duplication if G ↓ A is a duplication in an optimal rooting of G

(or, by Theorem 2, equivalently in all optimal rootings). Similarly, we call the root-

cluster a duplication if the root of any rooting is a duplication. Analogically, we

define a speciation cluster in G. Note, that there may exists clusters without type,

e.g., {a1, a2, c,d} in the example from Figure 2.3.

Lemma 3. There are four disjoint kinds of speciation and duplication clusters in unrooted

gene trees: (1) clusters of internal nodes of the plateau, (2) clusters of leaves of the plateau,

(3) clusters of nodes disjoint with the plateau, and (4) the root-cluster composed of all

leaves. The last three kinds are present in every optimal rooting.

Proof. It follows from the properties of optimal rootings, Theorem 2 and Lemma 2.

�

Now we summarize the properties of unrooted reconciliation. Optimal evolu-

tionary scenarios can be represented by embeddings of an optimal rooting into the

species tree [Górecki and Tiuryn (2006)]. From Lemma 1 and Theorem 3, we con-

clude that these scenarios differ only in their rooting edges (hat) while the remaining

parts of all the trees (body) are identical as indicated in Figure 2.3 (see also [Górecki

and Tiuryn (2007a)]).

3.1.2. Support values for evolutionary events

Our method is partially based on the classical non-parametric bootstrap proposed

by Felsenstein. We are given a set X of n gene sequences and a multiple sequence

alignment A (of dimension n rows and k columns) of sequences from X. First, N

bootstrap alignments are constructed, where each bootstrap alignment is formed by

randomly selecting k columns from A with replacement. Next, for each bootstrap

alignment, an unrooted gene tree, called sample tree, is inferred by using some stan-

dard tree-building tool, e.g. PhyML [Guindon et al. (2009)]. Finally, a gene tree G is

inferred from the alignment A. The frequency of clusters/splits present in sample

trees indicates the support for the corresponding clusters/splits in G.

Based on the non-parametric bootstrapping we provide the main notion of du-

plication and speciation (D/S) support values.
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Definition 1 (D/S support values). Given: a rooted species tree S and a collection of

unrooted sample trees U such that all trees from U have the same set of leaves X (a set of

genes) and the same labelling1 Λ : X → LS . Then, for a cluster A ⊆ X, the duplication

support for A is defined as bDup(A,U ) = 1
|U | |{T ∈ U : A is a duplication cluster in T }|, and

the speciation support as bSpec(A,U ) = 1
|U | |{T ∈ U : A is a speciation cluster in T }|.

Similarly to the standard non-parametric bootstrapping of phylogenetic trees we

analyze the support values for the clusters of the gene tree inferred from the input

alignment. An example is depicted in Figure 3.1.

Problem 1. Given: a rooted species tree S, an unrooted gene treeG over S and a collection

of unrooted sample trees U such that all trees from U ∪ {G} have the same set of leaves X

and the same labelling Λ : X → LS . For each duplication and speciation cluster A in G

compute:

σG(A,U ) =

b
Dup(A,U ) if A is a duplication cluster in G,

bSpec(A,U ) if A is a speciation cluster in G.

For a set of edges EG in G, let ÊG = {〈v,w〉, 〈w,v〉 : {v,w} ∈ EG} and for a directed

edge 〈v,w〉 ∈ ÊG, by c(v,w,G) we denote the cluster of v in the rooting G〈v,w〉2. There

is one-to-one correspondence between clusters and directed edges, therefore, due to

computational efficiency in our algorithm we assign support values to the directed

edges only.

3.1.3. Algorithm

Algorithm 1 calculates the D/S support values. It relies on recognizing the type

of a cluster determined by a directed edge on the basis of lca mapping adopted to

unrooted trees. Let S be a rooted tree, G an unrooted tree over S and 〈v,w〉 ∈ ÊG.

We start with two auxiliary functions defined in Algorithm 1 in the line 1. The

function m represents lca-mappings in G while τ will be used to assign clusters

types to nodes of rootings of G. In the first four lemmas we show several properties

of these functions.

Lemma 4. For a rooted tree S, an unrooted tree G over S and 〈v,w〉 ∈ ÊG we have

m(v,w,G,S) = M{v,w}(v), where M{v,w} is the lca mapping between G{v,w} and S.

Proof. The proof is by induction on the structure of G. If v is a leaf then the equality

is straightforward. Otherwise if v is an internal node, then:

m(v,w,G,S) =m(x,v,G,S)⊕m(y,v,G,S) = M{x,v}(x)⊕M{y,v}(y) = M{v,w}(v).

1Note that in this definition all trees in U are over S.
2Recall that G〈v,w〉 denotes the rootings of G on the edge 〈v,w〉.
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This completes the proof.

�

Recall that an edge is symmetric if it is double or empty.

Lemma 5. The cluster c(v,w,G) is present in an optimal rooting of G if and only if for

e = {v,w} one of the following cases holds:

(a) e is v-incoming,

(b) v is an internal node of the plateau,

(c) or e is symmetric.

Proof. (⇐) Assume that (a)-(c) hold. We show that c(v,w,G) is present in an optimal

rooting of G:

(a) If e is a v-incoming edge, then we have two cases (see Theorem 1). Ifw is a center

of star S5 then e is optimal. Otherwise, e is not an element of the plateau,

hence w is located on the path connecting v and the root of every optimal

rooting. Thus, cluster is always present in plateau rootings. We conclude that

in both cases c(v,w,G) is present in some optimal rooting.

(b)-(c) In both cases e belongs to the plateau (Theorem 1) thus, c(v,w,G) is present

in an optimal rooting of Ge.

This completes the first part of the proof.

(⇒) For the next part let us assume that c(v,w,G) is present in an optimal rooting.

Then e is either within the plateau or outside it. If e is in the plateau then either e is

symmetric (condition (c)), or e is single. If e is single then either v is internal node of

the plateau (condition (b)) or it is located on the border; in this case e is v-incoming

(condition (a)).

If e is not in the plateau then by Theorem 1 e is single. In addition, the subtree

of Ge rooted at w contains all nodes from the plateau of G. Therefore,M〈v,w〉(w) =>.

We conclude that M〈v,w〉(v) ≺ >. Hence, e is a v-incoming edge (condition (a)). �

Lemma 6. We have the following properties of the predicates from the line 1 of Alg. 1.

(a) incoming(v,w) is satisfied iff 〈v,w〉 is an v-incomming edge.

(b) symmetric(v,w) is satisfied iff 〈v,w〉 is a symmetric edge.

(c) insideplateau(v) is satisfied iff v is an internal node of the plateau (i.e., it is not

a plateau leaf).
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(d) inoptrooting(v,w,P ,Q) is satisfied iff the cluster c(v,w,P ) is present in some

optimal rooting of P when reconciling with the species tree Q.

Proof. Both (a) and (b) follow easily from the definition of incomming/symmetric

edges and Lemma 4. By Theorem 1, a node is internal in the plateau if and only if

it a center of star S4 or S5. Only such stars contain at least two symmetric edges.

Hence, v has two neighbours x and y such that 〈v,x〉 and 〈v,y〉 are symmetric if and

only if v is a center of a star S4 or S5. This completes the proof of (c). The last

property (d), follows from Lemma 5. �

Cluster types are represented in Alg. 1 by τ :

Lemma 7. For a rooted tree S, an unrooted tree G over S and 〈v,w〉 ∈ ÊG value of

τ(v,w,G,S) is:

• Dup iff c(v,w,G) is a duplication cluster,

• Spec iff c(v,w,G) is a speciation cluster,

• or None iff c(v,w,G) is not present in an optimal rooting of G.

Proof. It follows from Lemma 5 and Lemma 6 that τ(v,w,G,S) = None if and only if

c(v,w,G) is not present in an optimal rooting of G. Now, for the rest of the proof we

assume that c(v,w,G) is in an optimal rooting of G.

Observe that v = G ↓ c(v,w,G) (see Section 3.1.1). Thus, v is a duplication in

G{v,w} if and only if M{v,w}(v) = lcaQ(M{v,w}(x),M{y,v}(y)) = M{v,w}(y). By Lemma 4 this

is exactly the condition from the definition of τ . This completes the proof of first

case.

Analogously it can be proven that τ(v,w,G,S) = Spec if and only if c(v,w,G) is a

speciation cluster. �

Lemma 8. Given two unrooted treesG and T with set of leaves X and two adjacent nodes

v and w from T . Test if c(v,w,T ) is a cluster present in G can be done in constant time

after linear time preprocessing.

Proof. Let us fix one leaf, say ω, in G. Let R be a rooted tree obtained from G by

placing the root on the edge incident to ω. To verify whether c(v,w,T ) is present

in G we use efficient lca-queries [Bender and Farach-Colton (2000)] between a gene

tree T ′ = 〈VT ,ET , idX〉 over a species tree R = (ω,R′) (i.e. T ′ is obtained from T by

introducing identity labelling). For simplicity we denote c(v,w,T ) by A.

We have two cases depending on whether ω is present in A. If ω is not present

in A then A is a cluster in R′ and M{v,w}(v) is also a node from R′ , where M{v,w}
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Algorithm 1 Computing D/S Support Values
1: Auxiliary definitions. For a rooted tree Q, an unrooted gene tree P such that L ⊆ LQ

and 〈v,w〉 in ÊP :

m(v,w,P ,Q) :=

ΛP (v) v is a leaf in P ,

m(x,v,P ,Q)⊕m(y,v,P ,Q) v is internal and {x,y} = ch(v,w),

τ(v,w,P ,Q) :=


None not inoptrooting(v,w,P ,Q),

Dup inoptrooting(v,w,P ,Q), {x,y} = ch(v,w) and

m(v,w,P ,Q) =m(x,v,P ,Q) or m(v,w,P ,Q) =m(y,v,P ,Q),

Spec otherwise,
where for an internal node v ∈ VP

• ch(v,w) = {x,y} such that {x,y,w} is the set of all neighbours of v;

• here > is the lowest node in Q whose cluster contains ΛP (LQ);

• incoming(v,w) :=m(v,w,P ,Q) ,> =m(w,v,P ,Q) =>;

• symmetric(v,w) := m(v,w,P ,Q) = > = m(w,v,P ,Q) = > OR m(v,w,P ,Q) , > ,
m(w,v,P ,Q);

• insideplateau(v) := ∃ siblings x and y of v such that: x , y AND symmetric(v,x)
AND symmetric(v,y)

• and inoptrooting(v,w,P ,Q) := incoming(v,w) OR insideplateau(v) OR symmetric(v,w).

2: Input/output: See Problem 1. Let U = {T1,T2, . . . ,TN }.
3: Fix ω ∈ X. Let R := Ge, where e is the edge incident to ω. For a node g ∈ VG, let π(g) denote

the parent of g in R if it is not the root of R, otherwise π(g) is the sibling of g. Note that
π(g) is an element of VG and {g,π(g)} ∈ EG. For each i, let T ′i be the unrooted gene tree over
R obtained from Ti by replacing the labelling with the identity function on X.

4: Init lca-structures for S and R. For 〈v,w〉 ∈ ÊG, #(v,w) := 0 // reset cluster counters
5: For each i ∈ 1,2, . . . ,N
6: For each 〈v,w〉 ∈ ÊTi such that τ(v,w,Ti ,S) ,None
7: If ω < c(v,w,Ti) Then
8: g :=m(v,w,T ′i ,R)
9: If |c(v,w,Ti)| = |c(g,π(g),G)| AND τ(v,w,Ti ,S) = τ(g,π(g),G,S)

10: Then #(v,w) + +
11: Else
12: g :=m(w,v,T ′i ,R)
13: If |c(w,v,Ti)| = |c(g,π(g),G)| AND τ(v,w,Ti ,S) = τ(g,π(g),G,S)
14: Then #(v,w) + +
15: Return #(v,w)/ |U | for each 〈v,w〉 ∈ ÊG such that τ(v,w,G,S) ∈ {Dup,Spec}.
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is the lca-mapping between T ′{v,w} and R. If the cluster of M{v,w}(v) has the same

number of elements as A then both clusters are equal. For the second case, we use

the observation that if A is present inG and T then X\A is also present in both trees.

Therefore if ω is present in A it is equivalent to test the cluster c(w,v,T ) = X \ A
analogously to the first case by using M{v,w}(w).

The size of clusters in both trees can be computed once in linear time. Lca-

mappings stored in m(v,w,T ′,R) require O(|R|) preprocessing. Having these data

structures, the test can be completed in O(1) time. �

Theorem 3. Algorithm 1 computes D/S support values in linear time.

Proof. Correctness. In the main part of the algorithm (lines 5-8) we increase the

counter of events #(v,w) when the cluster c(v,w,G) is present in one of the sample

trees (Ti) and has the same type. The test if c(v,w,Ti) is present in G is composed of

two cases according to the cases from Lemma 8. To check types of clusters we use τ .

See Lemma 7 for the correctness of τ . Lemma 4 describes calculating of mapping

values. For every cluster present in an optimal rooting the algorithm returns the

number of sample trees in which it occurs with the same type divided by the number

of bootstrap trees. This is exactly the D/S support value for this cluster as defined

in Definition 1.

Time complexity. The main loop of the algorithm iterates over all directed edges

of all bootstrap trees Ti . For each edge we check the type of the cluster defined by

this edge in Ti which can be done in constant time. Afterwards, the existence of that

particular cluster in the tree G is tested. According to Lemma 8 this can be done

in a constant time with linear preprocessing. Next, the type of the cluster in G is

checked again in constant time. Thus the total algorithm cost is linear.

�

3.1.4. Correspondence to classical bootstrap

Now we present the correspondence between D/S support values and the support

values from Felsenstein’s bootstrapping. We use the notation from Section 3.1.2

and Definition 1. For a split A|B the support for A|B in U is defined by su(A|B,U ) =
1
|U | |{T ∈ U : A|B is a split in T }|.

Theorem 4. For a collection of unrooted gene trees U and a split A|B, su(A|B,U ) ≥
bDup(A,U ) + bSpec(A,U ).3

3Observe that B is not present in the right side of the inequality.
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Proof. It is sufficient to show that the inequality holds when U consists of a single

gene tree T . If A|B is present in T , then su(A|B,U ) = 1. If A is present in an op-

timal rooting of T , then it is either a speciation or a duplication and both sides of

the inequality are equal. Otherwise, the support for duplication/speciation is zero.

Finally, if A|B is not present in T then su(A|B,U ) = 0 and A cannot be a cluster in any

rooting of T . In such a case both supports are 0. �

Similarly, we define the support for a cluster A in a collection of rooted trees R:

sr(A,R) = 1
|R| |{T ∈ R : A is a cluster in T }|. The D/S support values can be naturally

extended to collections of rooted gene trees by replacing the term ”cluster” with

”node” in Definition 1. We omit the straightforward definitions.

Theorem 5. For a collection of rooted gene trees R over the same set of leaves, and a

cluster A, we have sr(A,R) = bDup(A,R) + bSpec(A,R).

Proof. As in the proof of the previous theorem, it is sufficient to show the equality

for a singleton collection of trees. Let R = {T }. We have two cases depending on the

value of sr(A,R). If sr(A,R) = 1 then A is a cluster in T and it is either a duplication

or a speciation. In such a case the equality holds trivially. Similarly, we have the

equality when sr(A,R) = 0. �

3.2. Experiments

We performed two computational experiments with bootstrapping and tree recon-

ciliation on simulated and empirical data. In the first one, we show a comparative

study of several rooting methods, conducted using our method to evaluate the cor-

rectness of each of the rootings. We also propose to solve the problem of rooting of

an unrooted gene tree. The purpose of the second experiment is to test the quality

of supertree inference from collections of well-supported gene trees.

3.2.1. A comparative study of rooting methods

Here we present how to use bootstrapping to evaluate the rooting problem, i.e., find

the best possible rooting location for a given unrooted tree.

Simulated data preparation. In the first step, model species trees were generated

using Mesquite [Maddison and Maddison (2015)], with topology generation per-

formed according to the Yule-Harding distribution. The procedure is similar to this

proposed in [Chaudhary et al. (2014)] with tree height set to 115 Myr, and the num-

ber of leaves equal 16.

38



Simulated gene trees were created from model species trees using a continuous

time birth-death process [Arvestad et al. (2004)] with the gene duplication and gene

loss events. On each lineage, an occurrence of gene duplication (bifurcation) or loss

(termination) was drawn with a probability defined by a constant rate. As duplica-

tion should not change the height of a tree, a duplication node was added precisely

at the point of the model tree edge in which a duplication event was postulated.

In [Rasmussen and Kellis (2012)], three different values of rates of duplication and

losses were proposed: 0.002, 0.004 and 0.008 events/gene per Myr. For greater di-

versity of gene trees, in our experiment, we additionally tested the rate of 0.012. For

each simulated model tree, 1000 simulated gene trees were generated. For each of

them, we simulated a nucleotide sequence alignment of length 100 under the GTR

+ Gamma + I model using Seq-Gen [Rambaut and Grassly (1997)]. Next, for each

parameter rate λ ∈ {0.002,0.004,0.008,0.012}, we obtained a set Simλ consisting of

1000 unrooted gene family trees inferred by PhyML program [Guindon and Gascuel

(2003)] from the corresponding alignments. Finally, for each from each Simλ, we

inferred a species tree Sλ by using the program fasturec [Górecki and Eulenstein

(2012b)].

Empirical data preparation. We downloaded the set of 9 yeast genomes con-

sisting of 4617 protein families from [The Génolevures Consortium (2009)]. After

removing families with only two genes, we inferred 4141 gene trees by using PhyML

with the standard parameter setting. Plateau sizes for all datasets are depicted in

Figure 3.2.

Bootstrap processing. Further steps were performed for all datasets. For each

alignment we created 100 bootstrap alignments by Seqboot from PHYLIP package [Felsen-

stein]. Finally, for each bootstrap alignment we inferred a sample tree by PhyML.
Experiment. In our study we compared five rooting methods by using the rooting

score based on the D/S support values as follows. Given an optimal edge e from a
gene tree G and a set of sample trees U , a rooting score for e is the average support
value of all non trivial (non leaf/root) clusters A from Ge. Formally,

r(e,U ) =
1

n− 2

∑
A is a non-leaf/root

cluster in Ge

σG(A,U ).

We claim that the edges of the plateau having the maximal rooting score are the

best candidates for rooting. We need two additional definitions. The edge distance

between two nodes is the number of edges on the shortest path connecting these

nodes. In the case when the gene tree has branch lengths, the branch length dis-

tance between two nodes is the total branch length of all edges on the shortest path

connecting these nodes. We have three types of standard rooting methods. Two of
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them take into consideration all tree edges [Farris (1972)] while the last one uses

only edges included in the plateau [Zmasek and Eddy (2002)].

• Midpoint edge rooting: the root is placed in a half-way between two the most

edge distant leaves.

• BL-Midpoint rooting: the root is placed in a half-way between two the most

branch length distant leaves.

• Midpoint plateau rooting: the root is placed in a half-way between two the

most distant nodes from the plateau.

Note that in our model of binary trees, the midpoint rootings may be non unique.

For instance, if an unrooted tree has three leaves a, b and c, then the midpoint edge

rooting can be (a, (b,c)), (b, (a,c)) or (c, (b,a)). The same property holds for the BL-

midpoint rootings. Additionally, for a control, we tested two random rootings.

• Random edge rooting: the root is placed on the edge uniformly chosen from

the set of all edges of a gene tree.

• Random plateau rooting: the root is placed on the edge uniformly chosen

from the set of all edges of the plateau.

Results. The summary of results is depicted in Table 3.1. Our results suggest that

the midpoint edge and BL-midpoint rooting methods indicate generally poorly sup-

ported rootings for the simulated datasets. Even the random edge rooting method

performs better than these two methods. This observation partially holds for the

yeast dataset with the difference that BL-midpoint rootings are generally better sup-

ported (1282 well supported rootings).

For the plateau based methods, the number of well supported rootings is usually

high due to a large number of singleton plateaux present in our datasets. For ex-

ample, in the dataset X0.002, 843 out of 1000 trees have a unique rooting candidate

in the plateau. Therefore, to compare these methods we analyzed non-singleton

plateaux (see columns C). In the first simulated dataset, the ratio of optimal boot-

strap rootings is 58% for the midpoint plateau rootings. This property can be ex-

plained by the fact that relatively large portion of trees has the plateau of size 3 (see

Figure 3.2). In consequence, in such a case the midpoint plateau rooting method

gives all three possible rootings which include the rooting maximal score. Next, the

first dataset performed better than the other simulated datasets, which is due to usu-

ally more complex plateaux as indicated in Figure 3.2. In the empirical dataset, the

midpoint plateau method inferred 46% rootings with the maximal score. However,
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a better ratio for the non-singleton plateau trees was obtained for the BL-midpoint

method. On the other hand, the latter method performed poorly for the trees with

singleton plateaux.

In summary, the midpoint edge method is generally the worst, even the random

edge method seems to be a better choice. Based on the simulation data, the same

conclusion can be stated for the BL-midpoint method, however, we observed a better

performance for the empirical dataset.
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Figure 3.1: An artificial bootstrapping example (see Figure 2.3). Top left: a gene treeG with D/S support

values shown for non-leaf clusters present in optimal rootings (e.g., {a1, a2, c,d} has no support). Top
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3.2.2. Supertree inference from well supported gene trees

In biological datasets, many of the gene family trees have topology different than

their species tree because of the presence of evolutionary events. However, some-

times their incongruence is a result of errors in the gene tree inference process. Such

trees may be not reliable and affect the supertree inference. The supertree problem

under the duplication-loss cost is defined as follows [Ma et al. (2000b); Górecki and

Tiuryn (2007a); Page (1997)]:

Problem 2. Given a collection of unrooted gene trees U , find a species tree S, called

optimal species tree, that minimizes the total duplication-loss cost
∑
G∈U uDL(G,S),

where uDL(G,S) = mine∈EG DL(Ge,S).

The supertree problem for the duplication cost is defined similarly.

In this experiment, our goal is to check whether bootstrapping can improve su-

pertree inference results. Since trees with incorrect topology should have lower

support values than correct ones, we propose to filter the gene tree dataset accord-

ing to their support values. We expect that a supertree inferred from more reliable

trees better represent species evolutionary history.

Data preparation. From species present in TreeFam [Ruan et al. (2008)] dataset,

we selected 14 out of 109 species from different taxa: Arabidopsis thaliana (artha),

Saccharomyces cerevisiae (sacer), Amphimedon queenslandica (amque), Nematostella

vectensis (nevec), Daphnia pulex (dapul), Drosophila melanogaster (drmel), Helobdella

robusta (herob), Lottia gigantea (logig), Pelodiscus sinensis (pesin), Bos taurus (botau),

Macaca mulatta (mamul), Homo sapiens (hosap), Mus musculus (mumus) and Danio

rerio (darer). Then we downloaded a collection of 15321 gene family sequences

from TreeFam v9.0. Each family was contracted to the set of selected species. We

also removed families containing more than 40 genes and families with less than 4

genes or species. We obtained 9443 gene families. Then we aligned them using the

T-coffee program and we inferred gene trees by using PhyML program with standard

parameters setting. Finally, we applied the bootstrap procedure from Section 5.7.

In order to compute bootstrap values, we need a species tree, called here a model

tree. In experiments we have 5 model trees:

• S∗ – the TreeFam tree have based on NCBI taxonomy,

• S1, S2 – trees highly similar to S∗,

• Sf – inferred from all 9443 input gene trees by fasturec under DL cost,
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• Sf r – inferred similarly to Sf with the difference that the root is fixed, i.e.,

Sf r is the optimal species tree among trees having the leaf labelled A. thaliana

(artha) as one of the children of the root.

The model trees and all trees inferred in our experiments are depicted in Fig-

ure 3.6.

In our experiment, we introduce two positive real parameters α and β. Let G

be a gene tree and S be a model species tree such that U is the set of bootstrap

trees for G. We call a duplication or a speciation cluster A of a gene tree G, weak if

bDup(A,U ) < α or bSpec(A,U ) < α, respectively. We say that G is well supported if it

contains less than β weak clusters. For a given model tree S ∈ {S∗,S1,S2,Sf ,Sf r}, α ∈
{0.1,0.15, . . . ,0.9} and β ∈ {1,2, . . . ,6} by U (α,β,S) we denote the set of well supported

gene trees induced by α and β in the context of S. In total we generated 17 · 6 · 5 =

510 sets of well supported gene trees by using bootstrap filtering. Next, for each

U (α,β,S) we inferred supertrees for costs D and DL and for fixed and non-fixed

root by using fasturec program.

For each model tree we depict 8 diagrams depending on the cost and fixed root.

Additionally we show aggregated results for optimal and close to optimal trees

whose scores differ by less than 100 for D and 400 for DL from the best score.

Discussion. Observe that in our diagrams the left-upper corner denote the most

restrictive parameter setting (i.e., low α and high β), while the right-lower corner

contains results for almost whole set of gene trees (around 9000). Note, that the

datasets for the restrictive parameters represent the most credible gene trees.

Results of experiments are depicted in Figures 3.3-3.10. In Figures 3.3-3.5, rep-

resenting results for the model tree S∗, the most credible datasets induce S∗ as the

optimal tree. Only for S∗/DL the optimal tree is different but still close to the S∗.

Sf and Sf r are optimal for a large range of parameters for DL and DL/root, respec-

tively, under all model trees. In DL and DL/root experiments under all model trees

the Sr and Sf r , respectively, are inferred for the large range of parameters. The

results for S1 and S2 are very similar to results for S∗ (see Figures 3.7-3.8). In Fig-

ure 3.9 with the model tree Sf , there is no S∗ present in results, however, we have

only one case when Sf is the optimal tree for well supported dataset (see Sf /D in

Figure 3.9). The results for Sf r in Figure 3.10 are mostly compatible with the re-

sults for Sf . Topology Sh is frequently present as optimal under all model trees,

however, for the restrictive datasets it is optimal only two times for Sf /DL/root and

Sf r/DL/root.

Under the assumption that S∗ is a biologically correct species tree, we observe

that model trees highly similar to S∗ support S∗ for the most credible datasets.

45



In unrooted reconciliation, the plateau depends only on the top split of the

species tree, i.e., the clusters of the children of the root. Therefore, if our method

is biased towards the model tree, then, for model trees with different top splits, the

results would be significantly different and support independently the correspond-

ing model tree more often. However, the results for the model trees Sf and Sf r

having different top splits are similar. This suggests that the correct species tree can

be inferred from well supported gene trees even if the model tree is inferred in an

approximate way.

Runtime. Experiments were performed on a server with 256GB RAM and 8 AMD

Opteron processors. The total runtime for calculating bootstrap alignments and

trees was about two weeks. Following data processing including tree reconciliation

using URec [Górecki and Tiuryn (2007b)], computing support values and inferring

supertrees took about 5 hours.
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Figure 3.3: Summary of supertree inference experiments for the model S∗ with the supertrees having

the best score inferred from U (α,β,S∗) by fasturec program. Note that in some cases more than one

optimal supertree exists. Trees corresponding to used marks are shown in Figure 3.6. The heatmap

on the right shows the size of U (α,β,S∗). From the left: S∗/D - supertrees for the D cost, S∗/DL

- supertrees for the DL cost, S∗/D/root - supertrees for the D cost with fixed root, S∗/DL/root -

supertrees for the DL cost with fixed root.

S∗/D/100 S∗/D/root/100

Figure 3.4: Diagrams continued from Figure 3.3. From the left: S∗/DL/400 - supertrees for the DL

cost whose scores differ by less than 400 form the best score, S∗/DL/root/400 - supertrees for the DL

cost with fixed root whose scores differ by less than 400 form the best score.

S∗/DL/400 S∗/DL/root/400

Figure 3.5: Diagrams analogous to those from Figure 3.4 for DL cost and cutoff set to 400.
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Figure 3.6: Supertrees inferred in four supertree experiments. S∗ denotes the species tree from

TreeFam database. Trees S1 and S2 are among the most similar to S∗. Sf r and Sf are supertrees in-

ferred under the DL cost from the whole set of gene trees with fixed and non-fixed root, respectively.

Sh is a frequently observed topology in presented experiments. For each species tree S shown here,

the number denotes similarity of S to S∗ measured as symmetrical DL cost: DL(S,S∗) + DL(S∗,S).
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3.3. Conclusions and Future Work

In this Chapter, we introduced a novel approach to assess credibility of gene du-

plication and speciation events in rooted and unrooted gene trees. We proposed a

concept of the support values for evolutionary events based on the extended tree

reconciliation and non-parametric bootstrap. While this approach can be used to

annotate orthology and paralogy in unrooted trees, we also showed how it could be

used to verify the reliability of tree reconciliation with applications to the rooting

and supertree problem. We provided several theoretical and algorithmic results,

in particular, we showed the correspondence between our method and the classi-

cal non-parametric bootstrapping. We also showed that species trees inferred from

gene trees having highly supported events are more biologically consistent.

In future, we plan to extend this approach to the case when the support is eval-

uated for subtrees rather than clusters. Such modification would allow to capture

more detailed relationships between the gene trees, although the bootstrap values

modified this way would be lower than the bootstrap values of the corresponding

clusters.
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4
Inference of Credible and

Time-consistent Horizontal Gene

Transfer Events

A
lmost all places on Earth are inhabited by microorganisms, which are

an important element of the Earth’s ecosystem. Reactions carried out

by bacteria affect the chemical composition and pH of the environ-

ment, while the products of these reactions are often used by other

organisms. In animal and human organisms, bacteria support many metabolic pro-

cesses such, as digestion, vitamin synthesis and degradation of toxins. In addition,

they strengthen immunity, and perform many other functions necessary for life.

Apart from environmental, bacteria are also of great industrial importance. They

are used to produce of antibiotics, fertilizers, food that require fermentation, and to

remove pollutants from industrial wastewater. Despite the widespread prevalence

in nature and their importance to the environment our knowledge of bacteria is

limited. So far, research has been limited to bacteria that can be grown in laborato-

ries. That was until the emergence of DNA sequencing methods, which enabled new

approaches to biological experiments. With these modern methods, the increasing

number of genes and whole genomes can be characterized.
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The evolution of a single gene family or a group of species can usually be rep-

resented in the form of a phylogenetic tree. To address microbiological studies, the

model had to be extended by horizontal gene transfer (HGT). However, models ex-

tended by HGT are more complex and computationally demanding [Nguyen et al.

(2013); Scornavacca et al. (2014); Sjöstrand et al. (2014); Szöllősi et al. (2013a); Tofigh

et al. (2011)].

Several strategies have been proposed to overcome these limitations. For exam-

ple, allowing transfers to form cycles results in reducing the time complexity of the

problem to a polynomial. It can be done by dynamic programming [Bansal et al.

(2012); Mykowiecka et al. (2017); Tofigh et al. (2011)], though, there is no guarantee

that the inferred scenario is biologically valid. Another approach is to assign a diver-

gence time to some or all of the nodes of the species tree, which creates an additional

requirement of temporal ordering in the scenario [Ranwez et al. (2015)]. With such

constraint, the problem has a polynomial time solution [Bansal et al. (2012); Doyon

et al. (2010)]. However, such dated species trees are rarely available, especially for

bacterial species where horizontal gene transfers are frequent. A different way to

address the problem is to insert candidate transfer edges directly to the species tree.

As a result, we obtain a directed graph, called a species graph, representing the evo-

lution of species with a set of horizontal edges that can be used by gene lineages as

horizontal transfers. If the candidate transfers do not form cycles, such a model has

a polynomial time complexity [Górecki (2004a); Scornavacca et al. (2017)].

In this Chapter we present a new efficient iterative method for the inference of

well-supported and time-consistent horizontal gene transfer events. We introduce

the concept of transfer support values and evolutionary scenarios with HGT events

along with the problem of finding scenarios with the minimal cost. Having this,

we propose a general algorithmic framework for iterative insertion of horizontal

transfers based on the reconciliation cost gene duplication, losses, horizontal trans-

fer events and transfer support values. Our method starts from an initial species

tree, i.e., a species graph without transfers, and at each step ensures that the in-

ferred transfer scenarios are acyclic and well-supported by transfer support val-

ues. Last sections are devoted to the description of three experiments conducted

with our algorithm. On two empirical examples from the literature [Druzhinina

et al. (2018); Eme et al. (2017)], we show that our method can be used to support

known transfer hypotheses between distantly and more closely related species. In

the last experiment using simulated data sets, we demonstrate high accuracy of

our method by presenting a high percentage of correctly inferred transfer scenarios

reached by the algorithm.
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4.1. Structure definitions

In the following section, we introduce the key notions of a species graph, and an

extended species tree. Please refer to Section 2.1 on basic definitions of species

and related terms. In this chapter, we assume that gene trees are rooted and each

non-leaf node of a species tree has out-degree two (for modeling classical vertical

evolution) or one (nodes of HGTs).

4.1.1. Species graph definition

A species graph is a structure that models a species tree with additional horizontal

edges that form a time-consistant (acyclic) graph. Now, we recall several definitions

from [Górecki (2004a); Górecki (2010); Górecki and Tiuryn (2012)]. A species graph

S is an ordered triple S = 〈V ,E,H〉, such that B = 〈V ,E〉 is a species tree andH ⊆ V ×
V is a set of all transfer edges present in S which satisfies the following conditions:

• for every γ ∈H , nodes of γ are not on a path in B,

• for every γ ∈H , both nodes of γ have out-degree 1 in B,

• no two edges in H have a node in common,

• every node of V with out-degree 1 is contained in an edge from H ,

• and the relation {〈γ1,γ2〉 : γ1,γ2 ∈ H and there exists a path in B from a node

of γ1 to a node of γ2} is a partial order on H .

It follows from the last condition that every species graph is a directed acyclic graph.

Every node in S of out-degree one will be called a transfer node. By
−→
H we denote the

set of transfer start nodes, i.e.,
−→
H = {v : 〈v,w〉 ∈H}.

The node in B, whose out-degree is two, we call a speciation. The set of all speci-

ation nodes in S we denote by Σ.

4.1.2. Extended species tree

Below, we introduce a concept of an extended species tree. Please recall, that by LT
we denote the set of all leaves in a tree T , by LT the set of all leaf labels in T and by v̂

the set of all children of v The labelling of a species tree is the identity function. For

a species graph S, the extended species tree, denoted S ′, is the tree obtained from S by

a sequence of unfolding HGT operations defined as follows: For the lowest transfer

〈v,w〉 replace 〈v,w〉with the edge, called transfer edge, connecting v with a new copy

of the subtree whose root is the only child of w, and contract w, i.e., replace edges
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a1 b a2 c

G

a b c

S

a b' c' b c'' c

S'

Figure 4.1: An example of a gene tree G, a species graph S and the extended species tree S ′ with

four gene sequences from three species a, b and c. Note that genes a1 and a2 sampled from the same

species a. The decoration in S and S ′ indicates the mapping m : S ′ → S (omitted for the leaves). G

has 3 non-singleton clusters: {a1,b}, {a2,c} and {a1,a2,b,c}.

〈par(w),w〉 and 〈w,c〉 with 〈par(w), c〉, where c is the child of w. In this construction,

every node s′ ∈ VS ′ uniquely corresponds to its source node in S. Such a mapping

we denote by m. An example is depicted in Figure 4.1.

The correctness and uniqueness of the definition follow from the fact that trans-

fers do not form cycles. The labeling of leaves in S ′ is inherited from S. Similarly

to H and
−→
H in S, we define H ′ in S ′ as the set of all transfer edges in S ′ and

−−→
H ′ as

the set of transfer start nodes in S ′. We say that v is a speciation in S ′ if m(v) is a

speciation in S.

4.2. HGT-Scenario

Here we introduce the concept of evolutionary scenarios with horizontal gene trans-

fer events1. Given a gene tree G and a species graph S, a HGT-scenario2 ξ : LG→LS ′
is a function that preserves the leaf labeling, i.e., for every leaf g ∈ G, species (la-

bels) of g and ξ(g) are equal. For a non-leaf node g, by g ′ and g ′′ we denote the

children of g. By Mξ we denote the lca-mapping between G and S ′ that extends ξ

such that Mξ(g) = Mξ(g ′)⊕Mξ(g ′′). See an example in Figure 4.2. A cluster of a node

v in a gene tree is the set of leaves (gene sequences) reachable from v. We say that

a transfer h ∈ S transfers the cluster of v in a HGT-scenario ξ if the shortest path con-

taining nodes m(p1), . . . ,m(pk) in S contains h, where p is the path connecting Mξ(v)

and Mξ(par(v)) in S ′.

1In Chapter 5, we introduce the notion of DTL-scenarios, which also use transfer events. For a

discussion on the differences between the two models, please refer to Section 5.1.
2In our article [Mykowiecka et al. (2018)], where we introduced HGT-scenarios, we simply used

the notion scenario, but here we have changed the name due to a notation conflict with Chapter 5

and for better readability.
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4.3. DTL cost

Below we define duplication, loss and horizontal gene transfer costs along with the

formulas for their calculation. Let g be an internal node of G. It is said that g is a

duplication for a HGT-scenario ξ, if Mξ(g) = Mξ(g ′) or Mξ(g) = Mξ(g ′′). We say, that

the total number of duplications dupξ(G,S) in G defines the duplication cost for a

scenario ξ.

The number of horizontal gene transfers for the HGT-scenario ξ is given by

hgtξ(G,S) =
∑
g∈G

hgt′(Mξ(g),Mξ(par(g))),

where hgt′(v,w) =| {(x,y) ∈ HS ′ : v � x � y � w} | is the number of transfer edges on

the path connecting v and w in S ′. Let spec′(v,w) be the number of speciation nodes

on the path form v to w in S ′ excluding w, i.e., spec′(v,w) =| {x : v � x � w and x is a

speciation } | and let loss′(v,w) = hgt′(v,w) + spec′(v,w).

Finally, the number of gene losses for a HGT-scenario ξ is

lossξ(G,S) =
∑
g∈G

lossξ,g ,

where

(L1) lossξ,g = loss′(Mξ(g ′),Mξ(g)) if g is an internal node and Mξ(g ′) ≺ Mξ(g) =

Mξ(g ′′),

(L2) lossξ,g = loss′(Mξ(g ′),v) + loss′(Mξ(g ′′),w), where g is an internal node of G, v

and w are the children of Mξ(g) such that Mξ(g ′) � v ≺Mξ(g) � w �Mξ(g ′′),

(L3) and lossξ,g = 0, otherwise.

Let c(G,S ′,ξ) be a reconciliation cost for the HGT-scenario ξ. The DTL cost is a

weighted sum of the number of evolutionary events and it is equal

c(G,S,ξ) =DUP ·dupξ(G,S) + LOSS · lossξ(G,S) + HGT ·hgtξ(G,S),

where DUP, LOSS and HGT are non-negative event weights for duplication, loss

and horizontal gene transfer events, respectively.

Problem 3. Given a gene tree G and a species graph S ′. Find the minimal cost c(G,S ′,ξ)

in the set of all HGT-scenarios ξ between G and S.

The minimal cost we denote by cHGT(G,S) and the set of all HGT-scenarios that yield

the minimal cost we denote by ΞHGT(G,S). See an example in Figure 4.3.
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κ

S'

a1 b a2 c

G

a b' c' b c'' c

γ
κ

Figure 4.2: An example mapping Mξ : VG → V ′S for the trees from Figure 4.1 and for the HGT-

scenario ξ in which ξ(a1) = ξ(a2), ξ(b) = b and ξ(c) = c′ . The HGT-scenario induces one loss, one

duplication, and one transfer. The HGT-scenario corresponds to the embedding D1L1T1 from Fig-

ure 4.3. Note that the transfer κ in this HGT-scenario transfers the cluster {c}.

a b c

D1L2
Cost=3

a b c

D1L3T1
Cost=5

a b c

D1L2T2
Cost=5

a b c

D1L1T3
Cost=5

a b c

D1L1T1
Cost=3

a b c

D1L2T2
Cost=5

Figure 4.3: All HGT-scenarios for G and S from Figure 4.1 visualized in the form of embed-

dings [Górecki and Tiuryn (2006)]. DLT costs are computed for the following weights DUP = HGT =

LOSS = 1. Here, the minimal cost is 3 and it is reached by two HGT-scenarios (see also the HGT-

scenario ξ from Figure 4.2).
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4.4. Minimal cost and HGT-scenario inference

Below, we show our solution of the problem of finding the minimal cost in the set of

all HGT-scenarios ξ between G and S and proofs of deduced mathematical formu-

las.

Problem 3 can be solved by a dynamic programming algorithm in polynomial

time [Górecki (2004a); Scornavacca et al. (2017)]. In this section, we describe a re-

vised O(|G||S |) time solution based on [Scornavacca et al. (2017)] that we used in our

approach to infer optimal acyclic HGT-scenarios.

In the formalization below, we simplify the edge relation in S, by identifying each

HGT-transfer termination node with its first non transfer end descendant. Formally

if s ∈ VS then s∗B c∗ if s is a transfer end node with the child c, and s∗B s otherwise.

Note that for every s ∈ VS , s∗ is a leaf or s∗ has two children.

By G|g we denote the subtree of G rooted at g. The dynamic programming for-

mula has two components δ and δ↑ that denote the minimal cost of HGT-scenarios

for G|g and S where for g ∈ VG and s ∈ VS we have additional conditions:

H1 δ(g,s) is the minimal cost in the set of all HGT-scenarios ξ for G|g and S ′ such

that Mξ(g) ∈m−1(s).

H2 δ↑(g,s) is the minimal cost in the set of all HGT-scenarios ξ for G|g and S such

that there exists a node v ∈m−1(s∗) ∈ S ′ and Mξ(g) � v including the cost of the

path π connecting v and Mξ(g). Formally the cost of the path is calculated as:

1. the cost of the HGT-scenario ξ,

2. plus the cost of HGT events counted as the weighted number of HGT

edges on the path π connecting v with Mξ(g), i.e., hgt′(Mξ(g),v) ·HGT,

3. plus the cost of gene losses on π counted as the number of HGT events

on the path π and the number of speciation nodes on π excluding the last

node, i.e., loss′(Mξ(g),v) ·LOSS.

For δ we have the following formulas:

δ(g,s) =


0 if g and s are leaves and g is labelled by s, (1)

min{α,β} if s and g are not leaves, (2)

β if s is a leaf and g is not a leaf, (3)

+∞ otherwise, (4)

where, s′ and s′′ denote the children of s, and
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α = HGT ·1[s ∈ −→H ] + min
c∈ĝ

δ↑(c, s′) + δ↑(sib(c), s′′)

β = DUP + min
c∈ĝ

(δ(c, s) + δ↑(sib(c), s))

Here, α represents either speciation or transfer event, while β is a duplication.

The correctness of the above formula follows from the fact that optimal solutions

are generated by some lca-scenarios [Górecki (2010); Górecki and Tiuryn (2012)].

The formula for δ↑ can be expressed as:

δ↑(g,s) =



δ↑(g,s∗) if s , s∗, (5)

δ(g,s) if s is a leaf, (6)

min
(
δ(g,s),minx∈̂s{δ↑(g,x)+

+HGT ·1[〈s,x〉 ∈H]+

+LOSS ·1[s ∈ Σ ∨ 〈s,x〉 ∈H]}
)

otherwise. (7)

Note that if s , s∗ then δ(g,s) = +∞ and δ↑(g,s) = δ↑(g,s∗).

Theorem 6 (Solution to Problem 1). For a binary gene tree G and a species tree S we

have

cHGT(G,S) = min
s∈S

δ(root(G), s).

Proof. The proof is by induction on the structure of G and S. In the induction step,

it is sufficient to show that the properties H1-H2 hold for δ and δ↑.

Base step of induction:

If s is a leaf labelled x, then m−1(s) contains all leaves labelled x in S ′. Thus, the

set of HGT-scenarios from condition H1 is not empty if all leaves in G|g are labelled

by x. In such a case the cost equals (|G|g | − 1) ·DUP which is jointly modelled by

cases (1) and (3) with β. If the set of HGT-scenarios is empty then the cost is +∞
(see case (4)) and β if |G|g | > 1. This completes the base step for H1. Note that if s is

a leaf H2 becomes H1 which is expressed in (6).

Main step of induction:

Assume that s is an internal node and g is a gene tree node. Assume that H1 and

H2 hold for every pair of nodes (v,w) , (g,s) such that there are directed paths from

s to w in S and from q to v in G.

We show that H1 and H2 hold for g and s. We may assume that g is internal,

otherwise there is no HGT-scenario where a leaf is mapped to an internal node (4).

We start with the proof for H1 in which there are three cases for HGT-scenarios:
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H1-I (Duplication)

If g is a duplication in a HGT-scenario ξ then for one child of g, say c, we have

Mξ(c) = v and Mξ(sib(c)) � v.

Based on the inductive assumption, it follows that the cost of such a HGT-

scenario is modelled by β.

Now we show correctness of the cost calculation in δ(g,s). We will show that

δ(g,s) is the cost of a HGT-scenario, in this case, by showing that all events

are correctly identified. Here we have one duplication event at s and the re-

maining duplications are present in the subtrees of g ′ and g ′′, where g ′ and g ′′

are the children of g. Clearly, all such duplication events are identified by the

inductive assumption. For gene losses, we consider two cases: Mξ(g ′′) = v and

Mξ(g ′′) ≺ v. If Mξ(g ′′) = v then δ↑(g ′′, s) = δ(g ′′, s) and no losses are present on

the path π defined in H2 for δ↑(g ′′, s). Thus, by the inductive assumption, we

obtained (L3) for Mξ(g ′) = Mξ(g ′′) = v.

In the second case, there are loss′(Mξ(g ′),v) losses by the inductive assumption

for H2. Since v = Mξ(g), the number of losses is loss′(Mξ(g ′),Mξ(g)) which

corresponds to (L1). Similarly, we obtain the number of HGT events. We omit

the details.

H1-II (Speciation)

Assume that g is not a duplication and s is not a transfer start, i.e., s is a spe-

ciation. Then both children of g maps to or below distinct children of s. Thus

the formula for the cost is

min{δ↑(g ′, s′) + δ↑(g ′′, s′′),δ↑(g ′, s′′) + δ↑(g ′′, s′)},

where s′ and s′′ are the children of s. See (α), where there is no HGT contribu-

tion.

The correctness of the cost computation follows similarly to the previous case.

Here, we show only the case of gene losses. Other cases are similar.

Now, we have that Mξ(g ′) ≺ v and Mξ(g ′′) ≺ v. This, the number of losses for g ′

equals loss′(Mξ(g ′),v), where v ∈m−1(s∗′) by the inductive assumption for H2

plus loss′(Mξ(g ′′),w), where w ∈m−1(s∗′′) by the inductive assumption for H2.

Since v �Mξ(g ′) and w �Mξ(g ′′), we conclude that v and w are the children of

Mξ(g) in S ′. Thus, we obtained the cost of losses matching the case (L3).
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H1-III (HGT)

The case is similar to the previous one. The only difference is the HGT cost.

This completes the proof of H1 for g and s.

Now, we prove H2. Under the notation from condition H2, we have two cases:

A If Mξ(g ′) = v for some HGT-scenario satisfying H2 then its cost is δ(g,s), since no

additional cost of HGT and LOSS is needed.

B If Mξ(g) ≺ v, then we have several cases. Let s ∈ Σ.

B1 one gene loss is needed, since the path from Mξ(g) to v visits a node from

m−1(s′) or m−1(s′′). Thus, the minimal cost is achieved by min(δ(g,s),

LOSS + δ↑(g,s′)).

B2 If s is a transfer start node, then the path connecting Mξ(g) with v goes

either by the transfer edge (s,x) ∈ H which start is s (v ∈ S ′) or its sib-

ling non-transfer edge. In the first case we have one HGT and one LOSS,

while in the second one no events are present. This leads to the following

formula for the minimal cost of a HGT-scenario in this case: min(δ(g,s),HGT+

LOSS + δ↑(g,x),δ↑(g,sib(x))).

All the above cases are incorporated in (6).

This completes the proof for property H2.

Now to complete the proof of H2, we need to show that the number of losses on

the pathπ is loss′(Mξ(g),v) and the number of HGT events is hgt′(Mξ(g),v) in a HGT-

scenario ξ satisfy condition for H2. Computation of the cost follows by a sequence

of δ↑ calls, say δ↑(g,s0),δ↑(g,s1), · · · ,δ↑(g,sk−1) in (5) and (6) that terminates with the

call of δ(g,sk) either in (6) or (5), where k ≥ 0 and s0 = s. Now, the path π = π0, · · · ,πm
in S ′ with π0 = v and πm = Mξ(s) corresponds to the path p = sj1 , sj2 , · · · , sjm in S where

0 ≤ j1 < · · · < jm = k such that p is obtained from s0, · · · , sk by removing all transfer

end nodes, and, for each i, πi ∈ m−1(sji). Note that there could be more paths π

that satisfy the property, however, all subtrees of S ′ rooted at nodes from m−1(s) are

isomorphic (see the unfolding operation). Therefore, the obtained cost calculation

is independent of v. In other words we showed that the computation is composed

of:

1. the cost of HGT-scenario ξ for G|g and S where g is mapped to πm ∈ m−1(sk),

i.e., δ(g,sk) from the inductive assumption,
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2. the cost of path π calculated in the sequence of δ↑ calls from which we have to

show that the number of loss and HGT events equal loss′(π0,πk) = loss′(v,Mξ(g))

and hgt′(v,Mξ(g)), respectively.

The case of transfer follows directly from the fact that we count HGT events

only when the whole transfer edge is present in π (see (6)). Similarly, loss events

are counted when π contains a transfer edge, i.e., hgt′(Mξ(g),v) times, and when a

specification is present in π, i.e., spec′(Mξ(g),v) times. This completes the proof

�

This algorithm can be naturally extended to infer optimal HGT-scenarios, i.e., the

HGT-scenarios with the minimal cost, by using standard backtracking method.

Theorem 7 (Time Complexity). For a binary gene tree G and a species tree S the mini-

mal cost can be computed in O(|G||S |) time and space.

Proof. It follows immediately from the fact, that each δ and δ↑ computing requires

a constant number of steps and two arrays of size |G| · |S | are required to store values

of δ and δ↑. �

4.5. Transfer support values

In the following Section we introduce the notion of transfer support by merging the

concepts of non-parametric bootstrap described in Section 2.3 and optimal evolu-

tionary scenarios. Our approach is based on the bootstrap method, and therefore

the preparation phase is required to infer sample trees. Starting from the multiple

alignment of gene sequences, we create a set of bootstrap alignments. Each boot-

strap alignments is created based on random sampling by drawing with replace-

ment columns of the original alignment. Then, from each bootstrap alignment, we

infer a sample tree by some standard tree-building tool, e.g., PhyML [Guindon et al.

(2009)]. Finally, each sample tree has to be rooted by using out-group, median or

other rooting methods, e.g., Urec [Górecki and Tiuryn (2007b)].

Before defining our transfer support value, we need one more notion. We say

that a transfer h ∈ H is used by a HGT-scenario ξ : LG → LS ′ (when reconciling G

and S), if there is at least one cluster transferred by h in ξ. For instance, the HGT-

scenario from Figure 4.2 uses only transfer δ. Now, we can define the notion of

transfer support value.

Definition 2 (Transfer Support). Given a species graph S with a transfer h ∈H and the

set of sample trees U obtained from the same input alignment. The support of a transfer
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h is defined as follows:

support(h,S,U ) =
1
|U |

∑
G∈U

|{ξ ∈ ΞHGT(G,S) : h is used by ξ}|
|ΞHGT(G,S)|

.

Note that transfer support is a value representing the ratio of transfer usage in

the set of sample trees. For example, it is zero if no optimal HGT-scenario (when

reconciling sample trees with the species graph) uses a given transfer h and it is one

if all optimal HGT-scenarios use h.

4.6. Algorithm

In this Section, we present the details of our algorithmic solution to infer low scoring

species graphs with well-supported transfers.

Algorithm 2 is an iterative method, which in each step of the main loop inserts

a new transfer into candidate species graphs. First, we formalize this operation.

Given a species graph S, and a pair of non-transfer edges 〈e,e′〉 from S, we can

create a new graph, denoted Se,e′ by inserting new nodes v and v′ in the middle of e

and e′, respectively, and by inserting a new transfer edge from v to v′. Note that if

such a graph is acyclic, it is a species graph. A pair of edges 〈e,e′〉, such that Se,e′ is

a species graph, will be called valid for S.

In Figure 4.4, we show an artificial example of Algorithm 2 execution.

From a computational point of view, Algorithm 2 is a heuristic whose complex-

ity depends on the applied stopping conditions (given here in a general way), pa-

rameters (e.g., how many iterations), the input trees, and the number of optimal

HGT-scenarios inferred by the DP algorithm in each step of the main loop. In prac-

tice, our tests indicated that Algorithm 2 performs well on empirical data (see the

next section). Also, we observed that in the majority of cases, the set of optimal

HGT-scenarios was small and usually consisted of one HGT-scenario.

4.7. Experiments

We conducted three experiments on biological and simulated data sets. In the first

experiment, we re-analyzed data from inter-kingdom transfers to Pezizomycotina

fungi [Druzhinina et al. (2018)]. In the second analysis, we re-analyzed results

from a recently published Blastocystis spp. genome annotation which revealed the

presence of diverse laterally transferred genes from distant taxa [Eme et al. (2017)].

Simulated gene and species trees were used in the third experiment in which we

examined the accuracy of the algorithm.

66



9 other graphs

with transfer

support < .8

5 other graphs

with 

DLT cost > 4

a b c

.3

a b c

.95

a b c

.4

a b c

.35

a b c

.6

a b c a b c

.2

a b c

.7

a b c

.85

.3

a b c

.4

.5

a b c

.85

.9

Iteration I

Iteration II

a b c

S

cost:7 cost:6 cost:5 cost:5 cost:8 cost:5 cost:5 cost:11

cost:4 cost:5 cost:4

min cost: 5

min cost: 4

Initial species tree

All 12 species graphs rejected

DLT cost > 4

.9

Iteration III
min cost: 3

cost:4 cost:3 cost:4

a b c a b c a b c

.8

.35 .7

.7
.6

.45

.7
.45

.4

Figure 4.4: Example of execution of Algorithm 2. From the top: the initial species tree (a, (b,c)) and

three iterations of the main loop with candidate species graphs. For each species graph, DLT cost

and transfer support values are indicated on the right side of the rooting edge and the transfer edges,

respectively. Here, a species graph has well-supported transfers if the support of each transfer is

greater than .8. Rejected graphs are marked by red crosses. Under these criteria our algorithm

returns the green-marked graph having cost 4 from the 2-nd iteration.
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Algorithm 2 Inferring low scoring species graphs with well-supported transfers
1: Input T - a binary species tree, A - an alignment of sequences sampled from the

species present in T .

2: Infer a rooted gene tree G from A.

3: Infer a set of sample trees U from A.

4: R := {T } # Initialize the set of low scoring species graphs with well-supported trans-

fers

5: Repeat lines 6-11 until stopping condition is met # Main loop:

6: Let X := {Se,e′ : S ∈ R and 〈e,e′〉 is valid for S}.
7: Y := argminS∈X cHGT(S,G)

8: For each S ∈ Y compute support(h,S,U ) for each transfer h ∈ S.

9: Remove species graphs from Y with low transfer support.

10: If Y is empty ReturnR.

11: R := Y

12: Additional stopping conditions: Return R if

• a sufficient number of transfers is inserted

• new transfers are not used by HGT-scenarios (equivalently, the cost is not

changing)

• or the average support is below some threshold.
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4.7.1. Analysis of inter-kingdom horizontal gene transfers
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Figure 4.5: Experiment I: The results of the analysis of inter-kingdom horizontal gene transfers in

the CaZy GH6 family of gene sequences from 29 fungus species [Druzhinina et al. (2018)]. Left: A

species tree (S13) with transfers A0, A1 and A2 inferred after three iterations of our algorithm and

the gene family tree (G). Right: Embedding of the gene tree into the species graph.

In this study, we wanted to check whether our algorithm will be able to find

transfers within a group of relatively closely related organisms. We used an example

of transfers detected between plant-associated filamentous fungi and members of

genus Pezizomycotina [Druzhinina et al. (2018)].

Data preparation: First we inferred a binary species tree based on the NCBI taxon-

omy by using phyloT web-service. After downloading the gene sequences [Druzhin-

ina et al. (2018)] from the NCBI database, we aligned them with MUSCLE [Edgar

(2004)], and then we inferred a gene tree with PhyML program [Guindon et al.

(2009)]. Next, we created a set of 100 bootstrap alignments from the original align-

ment with seqboot from PHYLIP package [Felsenstein]. Finally, we inferred sample

gene trees from sample alignments by PhyML. In this experiment, all trees were

rooted by Urec program [Górecki and Tiuryn (2007b)].

Experimental setting: For our study, we chose a gene tree of CaZy GH6 family

groups cellobiohydrolases present in several plant-related fungi. In [Druzhinina

et al. (2018)] authors claim that one transfer occurred in the evolution of this fam-

ily. Our goal is to verify whether our algorithm can infer HGT-scenarios congruous
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with the transfers proposed in [Druzhinina et al. (2018)]. We conducted several rep-

etitions of the experiment with different sets of events weights 〈DUP,HGT,LOSS〉:
〈1,2,1〉, 〈1,3,1〉, 〈3,3,1〉, 〈2,3,1〉, and 〈1,2,0〉. Our algorithm was set to perform

three iterations. The total runtime for a single set of weights was approximately 4

hours with the DP algorithm executed about 35000 times on a standard PC work-

station with Linux operating system.

Results: After performing tests we observed that the results for our choice of

event weights are similar. Therefore, in Table 4.1 we present the summary of only

one experiment for the weights 〈2,3,1〉. At each step 5 species graphs were inferred

reaching the lowest score of 37 for the graphs with 3 horizontal gene transfers. Al-

most every species graphs had exactly one optimal HGT-scenario.

It
er

at
io

n

Sp
.g

ra
p

h

A0 A1 A2 A3 A4 A5 A6 A7 A8

D
LT

C
os

t

S1 .52 47

S2 .5 47

S3 .5 47

S4 .53 47

1

S5 .68 47

S6 .72 .72 41

S7 .71 .71 41

S8 .74 .74 41

S9 .71 .71 41

2

S10 .73 .73 41

S11 .65 .45 .55 37

S12 .67 .57 .47 37

S13 .7 .49 .58 37

S14 .67 .57 .48 37

3

S15 .66 .46 .58 37

Table 4.1: Experiment I: Support values of HGTs and DLT costs calculated in three iterations of the

iterative algorithm for the CaZy GH6 family of gene sequences from 29 fungus species. The transfer

A0, that is highly supported in the third iteration, was proposed in [Druzhinina et al. (2018)]. The

transfers A0, A1 and A2 are depicted in Figure 4.5, while the remaining HGTs are as follows - A3: T.

reesei→((T. citrinoviride, T. atroviride), T. parateesei), A4: T. reesei→T. longibrachiatum, A5: T. reesei→T.

longibrachiatum, A6: (T. reesei, T. guizhouense)→((T. citrinoviride, T. atroviride), T. parateesei), A7: T.

virens→((T. citrinoviride, T. atroviride), T. parateesei), A8: ((T. virens, T. reesei), T. guizhouense)→((T.

citrinoviride, T. atroviride).

Discussion: Obtained results for a cellobiohydrolase are congruous with results

from [Druzhinina et al. (2018)] showing that there was a transfer from the pathogen

of Ficus carica and tea endophyte Pestalotiopsis fici (order Amphisphaeriales) to the

mycoparasitic Trichoderma clade (order Hypocreales). They also show that subse-

quent transfers of the locus within the Trichoderma clade are probable.
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4.7.2. Analysis of horizontal transfers gene between distantly re-

lated species

In the second experiment, we tested our algorithm with a data set containing dis-

tantly related species separated in the species tree.

Data preparation: The dataset for this experiment was processed analogously to

the dataset from the previous study except for the rooting step. Since in this case,

we have a group of Blastocystis species that is outside of the main species group,

our rooting method based on reconciliation will force the gene tree to have the root

placed between the main group and the outgroup. As a result, the topology of the

gene tree would not reflect the real evolutionary history. This is because it is more

likely that the outgroup evolution is explained in a parsimonious way using vertical

evolution without HGTs after the initial speciation event placed in the root of the

gene tree. To avoid this problem, we decided to root the gene tree and bootstrap

trees after removing the outgroup species and restoring them after the rooting is

located. In that way, genes originated from Blastocystis were placed in the proper

place in the gene family tree near their homologs and not extracted as an outgroup.

Experiment: In this study, we analyzed the family tree of Choline/sodium solute

transporter genes from Blastocystis sp. ATCC 50177/Nand II and their closest ho-

mologs in Metazoa. The goal was to test whether we will be able to detect the same

HGT that was identified in [Eme et al. (2017)]. We used the same sets of events

weights as in the previous experiment. Having a similar experimental setting, the

total runtime for the test with a single set of weights was approx. 25 minutes, as

each iteration yielded only one species graph. In total, the DP algorithm was exe-

cuted approx. 4000 times.

Results: In Figure 4.6 we depict the results of the first iteration, which appeared

to be sufficient to infer the horizontal gene transfer, suggested in [Eme et al. (2017)],

leading to the Blastocystis clade with the very high support of 91%. The next itera-

tions also highly supported the transfer.

Discussion: Our algorithm shows that choline/sodium solute transporter which

is a membrane protein was transferred from the springtail (Folsomia candida) lineage

to a clade formed by several Stramenopile sequences. The Stramenopiles group

unicellular or multicellular algae and other flagellated eukaryotic microorganisms

among others parasitic Blastocystis.
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Figure 4.6: Experiment II: Results of the analysis of horizontal transfers gene between distantly re-

lated species. Left: Species tree (S1) of Blastocystis spp. and selected Metazoa species with one

horizontal gene transfer best supported in the first iteration of the algorithm and the gene tree of

choline/sodium solute transporter genes (G). Right: Embedding of the gene tree G1 into the species

tree S1 representing the HGT-scenario with one well-supported HGT. * B.sp. ATCC 50177/NandII

72



4.7.3. Inference of the simulated transfers

In this experiment, we checked whether Algorithm 2 is able to infer known trans-

fers. To perform this test, we simulated artificial data sets consisting of trees with

known number and positions of HGTs.

Data preparation: For the simulation of gene and species trees, we used tools from

JPrIME-GenPhyloData program [Sjöstrand et al. (2013)]. First, we simulated a set of

species trees with HostTreeGen tool. The trees were generated over 80 time units

with birth and death rate set to 0.03 and 0.0006, respectively. We accepted only

trees with 10 leaves and with branches not shorter than 3. Then, for the simulation

of gene trees, we used GuestTreeGen tool. The rates for duplications, losses and

HGTs were 0, 0, and 0.006, respectively. The minimal and maximal number of

leaves were set to 6 and 15. In summary, we created 100 species trees and for each

species tree we simulated two gene trees – one with only one transfer (1-HGT) and

the other with two transfers (2-HGT).

Next, we simulated a set of DNA sequences for each gene tree by using Seq-

Gen [Rambaut and Grass (1997)]. To obtain different levels of the similarity of

simulated sequences, we performed simulations with branch scaling parameter s ∈
{0.001,0.004,0.01,0.05,0.5}. Identity levels and the alignment evaluation score TCS [Chang

et al. (2014)] of the simulated alignments are given in Table 4.2. Then, for the infer-

ence of the bootstrap trees, we used the PhyML program. Inferred trees were rooted

with Urec [Górecki and Tiuryn (2007b)] using the original gene tree instead of the

species tree to preserve the possible HGT signal in the bootstrap trees. The statistics

concerning simulated sequences and inferred trees are presented in Table 4.2.

1-HGT 2-HGT

s TCS AIC ACD TCS AIC ACD

0.001 99.04 71% 22.36 99.04 69% 49.43

0.004 97.31 26% 21.74 97.29 23% 48.68

0.01 53.27 4.3% 23.43 53.45 3.6% 51.01

0.05 7.55 0.21% 71.04 6.86 0.14% 104.04

0.5 6.08 0.12% 84.41 5.54 0.06% 119.24

Table 4.2: The results of the simulation of the trees with transfers depending on the scaling pa-

rameter s and the number of simulated transfers (one and two). TCS and AIC columns present the

alignment evaluation score [Chang et al. (2014)] and the average percentage of identical columns in

the simulated alignments. ACD is the average cophenetic distance between the simulated gene tree

and its sample trees.

Experiment: In the first step of the experiment, we checked how well simulated
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transfers are supported. To conduct this test, we added transfers from the simulated

gene trees to their proper occurrence locations in the species trees. For each species

tree, we inferred two species graphs – one for the gene tree with a single transfer

and another one for the gene tree with two transfers. Then, using simulated sets of

the sample trees, we calculated the transfer support values for each species graph

as we described in Section 4.5. The results are shown in the diagrams in Fig 4.7.
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Figure 4.7: The results of the simulation of the trees with transfers. The diagrams show support

values for the simulated transfers P for trees with single transfer (1-HGT) and P 0, P 1 for trees with

two transfers (2-HGT), depending on the average cophenetic distance between the simulated gene

tree and its sample trees.
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1- HGT 2- HGT

s CIS avg. P supp. CIS avg. P 0 supp. avg. P 1 supp.

0.001 91% 0.99 79% (53%) 0.95 0.94

0.004 91% 0.99 79% (53%) 0.96 0.94

0.01 91% 0.98 79% (53%) 0.94 0.93

0.05 85% 0.47 73% (52%) 0.46 0.39

0.5 79% 0.35 73% (54%) 0.33 0.29

Table 4.3: The results of the inference of simulated HGTs depending on the scaling parameter s and

the number of simulated transfers (1-HGT, 2-HGT). CIS columns show the percentage of accepted

inferred HGT-scenarios. For 1-HGT trees the results for basic and more restrictive conditions were

the same, and for 2-HGT the results for the restrictive conditions are presented in brackets. The

table also presents the average transfer support values for inferred transfers.

In the second step, we tried to infer simulated transfers using Algorithm 2 and

the simulated gene and species trees. For each species tree, we run four iterations of

the algorithm for the gene tree with one and two HGTs. Then, we checked whether

the inferred transfers are the same as the simulated ones and if the HGT-scenario

with a proper number of the transfers was optimal. If the algorithm found the

simulated HGT-scenario and if it had the lowest cost, we counted a success. We

also evaluated the results using more restrictive conditions. We accepted the HGT-

scenario only if it satisfied the above conditions and if the cost of the HGT-scenario

was lower than the cost from the previous iteration. The results are summarized

in Table. 4.3, where we also present the average support values calculated for the

inferred transfers P and P 0, P 1 for 1-HGT and 2-HGT, respectively.

Discussion: The results depicted in Table 4.3 show that the greater branch scal-

ing parameter s was, the more variable was the alignment and the greater average

cophenetic distance [Sokal and Rohlf (1962)] between the gene tree and its sample

trees. Support values for the transfers decrease for less similar sample trees which

is caused by more diversified topology. For branch scaling factors s ≤ 0.01, support

values were high for almost every set of the simulated trees and for s ≥ 0.05 they

gradually decreased. The significant difference between the results for s = 0.01 and

s = 0.05 is due to the fact that for s = 0.05 the alignments are much more diverse

and the average cophenetic distance is two times higher than for s = 0.01.

4.8. Discussion

In this chapter, we investigated the problem of the inference of well-supported hor-

izontal gene transfers from multiple sequence alignments. To address the issue,
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based on non-parametric bootstrap for phylogenetic trees we proposed a new mea-

sure, called transfer support, to verify the credibility of inferred transfers. We ap-

plied this approach to design a new iterative algorithm for inferring acyclic well-

supported HGT-scenarios.

We tested the performance of our solution on two empirical datasets containing

relatively closely and distantly related species groups. The results of both experi-

ments showed that the method can be used to support known transfer hypotheses.

However, it must be used with awareness considering the rooting problem. To ex-

amine the accuracy of the algorithm, we conducted experiments on simulated data.

The results show that Algorithm 2 reached a high percentage of correctly inferred

transfers both for trees with one and two HGTs. In particular, for alignments with

good quality scores our proposed method can infer the correct HGT-scenario with

high accuracy.

In the future, we plan to extend the definition of transfer support by incorporat-

ing alternative scoring schemas, e.g., based on cluster/clade contents rather than on

the usage of transfers.
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5
Inference of gene-species relationships

T
he complexity of microbial physiology and biochemistry makes it of-

ten impossible to create a clear picture of a microbial community one

species at a time [Handelsman et al. (1998)]. Most frequently a shot-

gun metagenomic approach is used instead, where all microorganisms

are sequenced together. As a result, the community is seen through the lens of

its functional capabilities, not through the lens of the species that co-exist in this

particular environment, as the latter picture is blurry due to limitations of species

assignments. An approach used in parallel to shotgun metagenomics, where ampli-

cons of marker genes are being sequenced, provides more accurate depiction of bio-

diversity [Weisburg et al. (1991)]. However, only handful of genes have a phylogeny

similar to a species tree, such as ribosomal gene 16S or protein gene RecA [Thomp-

son et al. (2004)]. Others are rarely used as species markers as neither LCA nor

phylogeny based methods can be relied on, when no highly similar sequence to our

query is available in reference database [Mande et al. (2012)].

In the classical reconciliation model, any incongruence between gene and species

trees is explained as biologically consistent scenario having the minimal number

of gene duplication and losses, called duplication-loss cost [Bonizzoni et al. (2005);

Górecki and Tiuryn (2006)]. One of the most important extensions of the duplication-

loss model [Bansal et al. (2015); Charleston (1998); Górecki (2004b); Górecki (2010);

Hallet and Lagergren (2001); Lafond et al. (2012); Stolzer et al. (2012); Tofigh et al.
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(2011); Szöllősi et al. (2013b)] is horizontal gene transfer, or HGT. Then the problem

of reconciling two trees is defined as follows: given a gene tree and a species tree, find a

reconciliation scenario that minimizes the total number of gene duplication, gene loss and

horizontal gene transfer events. However, by postulating gene transfers reconciliation

becomes usually computationally complex. For instance, reconstructing transfer

scenarios under biologically consistent models, i.e., assuming that transfers cannot

form cycles, is NP-complete [Tofigh et al. (2011)]. There are several approaches to

deal with the complexity. By ignoring the acyclicity condition the problem becomes

solvable in polynomial time by dynamic programming [Tofigh et al. (2011); Bansal

et al. (2012)], however, there is no guarantee that the inferred scenario is biologi-

cally valid. Another approach is to assign a divergence time for the nodes of the

species tree. With an additional requirement that a scenario respects the temporal

ordering induced by the speciation times [Ranwez et al. (2015)] the problem of a

scenario reconstruction has a polynomial time solution [Doyon et al. (2010); Bansal

et al. (2012)].

In this Chapter we study recent applications [Betkier et al. (2015); Zhang and

Cui (2010)] of reconciliation to the problem of gene-species assignment, that can be

generally formulated as follows: given a gene tree with partial leaf labelling and a

species tree, resolve all missing labels in a gene tree such that the total reconciliation

score is minimized. An example is illustrated in Figure 5.3. According to our knowl-

edge the gene-species assignment problem has been never studied before under the

HGT extension. The first heuristic algorithm for a similar problem without trans-

fers, defined for the deep coalescence [Maddison (1997)] cost and a special case of

binary gene trees with bijective leaf labellings, was proposed in [O’Meara (2010)].

In [Zhang and Cui (2010)] O(n3) time algorithm was developed for the deep co-

alescence and gene duplication-loss cost functions and the analogous reconstruc-

tion problem under general leaf labellings. In different biological context O(n2)

time algorithm was developed for the simplest duplication cost [Bafna et al. (2000)].

The optimal unified algorithm for all non-transfer reconciliation costs, that runs in

O(n2) time, was recently developed by Betkier et al. [Betkier et al. (2015)].

We propose the first reconciliation-based formulation of the gene-species assign-

ment problem for a model of evolutionary scenario with gene duplication, gene loss

and horizontal gene transfer events for the case of a gene tree G and a species trees

S with possible multifurcations and two tractable models with transfer events: time

consistent (tcDTL) and general scenarios (DTL).
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First, we present the definition of a DTL-scenario1 and formulas for scenarios

cost calculation with proofs. We follow by explaining the reconstruction of gene-

species assignments and showing our algorithm for the assignment inference. We

developed an algorithm for the DTL model that runs in O(|G||S |) time if both trees

are binary, and in O(|G||S |∆S) time, where ∆S is the maximal out-degree of nodes

from S and the gene tree is binary. For the time consistent model, we describe

an O(|G||S |2) time algorithm and propose improvement that runs in O(|G||S | log |S |)
based on data structures from [Bansal et al. (2012)]. We also propose a Monte-Carlo

approach to approximate the distribution of gene-species mappings by sampling

the space of optimal reconstructions. Having this, we provide a comparative study

of reconstructions for empirical and simulated datasets using a prototype imple-

mentation of our algorithms.

5.1. General model of DTL-scenarios

The following definition of a DTL-scenario is adopted from [Bansal et al. (2012);

Tofigh et al. (2011)], except here we focus more on event-based conditions.

Important note on HGT and DTL-scenarios: It is essential to distinguish the DTL

model presented here from the HGT model described in Chapter 4. In HGT-scenarios,

transfer events were inserted arbitrarily using specific rules. These rules ensured

that the species graphs considered in the algorithm satisfied the acyclicity condi-

tion. In the DTL model, only a species tree is given, and transfer events are inferred

by the algorithm based on the gene tree topology.

Recall that two nodes v and w from a rooted tree are incomparable if neither

v � w nor w � v holds.

Definition 3 (DTL-scenario). A DTL-scenario for a binary tree G, and a tree S and a

labelling Λ : cLG→ cLS is a tuple 〈M,Σ,∆,Θ,ξ〉 such that Λ is the leaf labelling function,

M : VG → VS is a mapping that extends Λ, {Σ,∆,Θ} is a partition of IG into speciation,

duplication and transfer nodes, respectively, and ξ : Θ→ VG determines the termination

node of a transfer in G, subject the following conditions. For any internal node g ∈ G
such that c1 and c2 are the children of g let s = M(c1)⊕M(c2), then

• We have g ∈ Σ if and only if the mappings of the children of g are incomparable,

and s = M(g).

• If g ∈ ∆ then s �M(g).

1In our work [Mykowiecka et al. (2017)], the DTL-scenario notion is simply called scenario. Here

the name has been changed for better readability and due to a notation conflict.
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• If g ∈ Θ then ξ(g) is a child of g, M(sib(ξ(g))) � M(g), and M(g) and M(ξ(g)) are

incomparable. The edge 〈g,ξ(g)〉 ∈ EG is called a transfer edge.

The three conditions denote the cases of speciation, duplication and horizontal

gene transfers events, respectively. In DTL-scenarios, vertical, i.e. tree-like, transfer

is modelled by the condition that the mapping of a child is below or equal to the

mapping of its parent. The condition holds for the children of speciation and du-

plication nodes, that are modeled in the classical vertical way [Górecki and Tiuryn

(2006)]. For the transfer node g, its horizontal destination is defined by ξ(g), there-

fore we require that both the mapping of g and the mapping of ξ(g) are incompa-

rable. On the other hand, the sibling of ξ(g) is transfered vertically (see the last

condition).

While it is clear how to interpret gene duplication and loss events in binary trees,

it is generally difficult to model these events when multifurcations are present in

input trees [Chang and Eulenstein (2006); Maddison (1989); Vernot et al. (2008);

Zheng and Zhang (2014)]. Here we propose a computationally tractable solution in

which a multifurcation in a species tree is a “true” speciation, where missing gene

lineages are counted as gene loss events. In such models, however, a species tree

with many multifurcations might induce optimal DTL-scenarios that prefer HGTs

rather than gene losses as indicated in Figure 5.1 (see also discussion on the gene

loss model in the second experiment with multifurcated species tree in Section 5.4).

In practice, we suggest to set appropriate event weights DUP, LOSS and HGT de-

pending on the biological context. Note that setting HGT = +∞ yields a solution for

the duplication-loss model similar to the algorithm from [Betkier et al. (2015)], how-

ever, in the latter article the number of losses is underestimated due to a different

model applied in the loss formula.

Gene tree G Embeddings of G into S

a b c d a b c da b

c

Figure 5.1: Two evolutionary scenarios for the non-binary species tree (a,b,c,d). Left: a gene tree

G. Middle: scenario without HGTs having 1 gene duplication and 5 gene losses. Right: optimal

DTL-scenario with 2 HGTs.

Since the species tree is multifurcated, the number of gene losses must incorpo-

rate degrees of the nodes. If a gene lineage passes through a speciation node in S
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without branching, then |̂s|−1 gene losses are generated, i.e., one loss per each omit-

ted child of s. See example in Figure 5.1. Such losses we call intermediate losses

at S. Let loss(v,w) be the total number of intermediate losses at node s for each

v ≺ s ≺ w. Similarly we define loss(v,w) for nodes satisfying v ≺ s � w. Formally,

loss(v,w) =
∑
v≺s≺w

(|̂s| − 1),

loss(v,w) = |ŵ| − 1 + loss(v,w) =
∑
v≺s�w

(|̂s| − 1).

Then the number of losses assigned to g is denoted by L(g) and defined as fol-

lows:

L1 If g is a speciation, then there are:

• |M(ĝ)| − |̂g | losses at M(g),

• loss(M(c),M(g)) intermediate losses for each child c of g.

L2 If g is a duplication, then there are loss(M(c),M(g)) intermediate losses for each

child c of g.

L3 If g is a transfer node, then there are loss(M(c),M(g)) intermediate losses for each

child c of g such that c , ξ(g).

L4 Finally, there are no losses at g if g is a leaf.

This yield the following formula for L(g):

(L1) If g ∈ Σ, then L(g) = |�M(g)| − |̂g |+
∑
c∈ĝ loss(M(c),M(g)),

(L2) If g ∈ ∆, then L(g) =
∑
c∈ĝ loss(M(c),M(g)),

(L3) If g ∈Θ, then L(g) =
∑
ξ(g),c∈ĝ loss(M(c),M(g)),

(L4) L(g) = 0 if g is a leaf.

Examples showing cases L1, L2 and L3 are depicted in Figure 5.2. Note that the

formula becomes ||M(g),M(par(g))|| −1[g ∈ Σ]2 when the trees are binary.

Let DUP, LOSS and HGT be non-negative event weights for duplication, loss

and transfer events, respectively. The weighted cost of a DTL-scenario ε, denoted

by |ε| is defined as the weighted total number of gene duplication, transfer and loss

events present in ε. Formally, |ε| = HGT · |Θ|+ DUP · |∆|+ LOSS ·
∑
g L(g). For given

2Here 1 is the indicator function, that is, 1[p] is 1 if p is satisfied and 0 otherwise.
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Figure 5.2: Examples of the tree reconciliation showing losses assigned to v in cases L1, L2 and L3.

The numbers of losses L(v) for cases L1, L2 and L3 are 7, 8 and 8, respectively.

trees G, S and a labelling Λ a DTL-scenario is optimal if its cost is minimal in the set

of all DTL-scenarios for G, S and Λ.

DTL-scenarios may be biologically incorrect in the sense that the transfers may

form cycles. To capture only valid DTL-scenarios, [Tofigh et al. (2011)] introduced

the notion of an acyclic DTL-scenario, called tcDTL-scenario, by using dated species

trees. In the case of general DTL-scenarios, the minimal cost for a given gene tree

and a species tree can be computed in O(|G||S |) time [Tofigh et al. (2011); Bansal

et al. (2012)], while the problem for acyclic DTL-scenarios is NP-hard [Tofigh et al.

(2011)]. If there are no transfers in the scenario, the DTL model is equivalent to the

DL model.

5.1.1. Inferring Gene-Species Assignments

We present two main problems for the reconstruction of gene-species mappings.

For modeling undefined labels in gene trees we use partial functions. We express

the problem of reconstruction of gene-species assignment in terms of converting a
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partial function into a total one. For example, if (a, (⊥,⊥)) is a gene tree with two

undefined labels denoted by ⊥ and (a, (b,c)) is a species tree, then the problem is to

replace all occurrences of ⊥ by a, b or c such that the total cost is minimized (in this

case the minimal cost would be 0). Another example of an inferred gene-species

assignment is shown in Figure 5.3.

a

a

b a b

ba

a

a

a a b a

a

b a b

a b a b

a

b

a a

0

0.5

1

0

G

S

Heat map of inferred distribution
of mappings for leaves from G

Figure 5.3: Gene-species assignment inferred for the example gene treeG and species tree S. Left: Heatmap

showing inferred distributions of leaf mappings, i.e., the frequency of mapping of a given gene to

each species. Trees S and G are placed on the sides of the heatmap. Missing leaf assignment in

the gene tree G is denoted by “⊥”. Right: Optimal evolutionary scenarios. Under the assumption

that HGT event has cost 2 times that of duplications and losses, there are three optimal evolutionary

scenarios.There are two duplications in the first scenario, one duplication and one loss in the second

scenario, and HGT in the third scenario. If every optimal scenario is equally probable, the probability

that ⊥ is a is 1
3 , while for b it is 2

3 .

Let G and S be trees. Any partial function φ : LG → LS will be called a partial

(leaf) labelling from G into S. We write φ(x) = ⊥ if φ is undefined for x. Now, we

present the problem of the reconstruction of leaf labellings, i.e., total functions,

from partial labellings.

Problem 4. Given trees G, S and a partial labeling φ between G and S. Find a DTL-

scenario ε for G, S and Λ such that (1) Λ (a total function) extends φ, and (2) |ε| is
minimal in the set of DTL-scenarios for G, S and Λ′ such that Λ′ extends φ. Such a

DTL-scenario is called optimal.

For given trees G, S and a partial labeling φ we denote the minimal cost intro-

duced in Problem 4 by cDTL(G,S,φ).

5.1.2. Dynamic programming formula for optimal DTL-scenarios

In this section we propose a polynomial time algorithm for the computation of min-

imal costs. The algorithm is an extension of Algorithm 1 from [Betkier et al. (2015)].

Given a gene tree G, a species tree S and φ : LG → LS a partial labeling we

show how to compute cDTL(G,S,φ). By G|g we denote the subtree of G rooted at g.
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The dynamic programming formula has several components δ, δ4, δ↑ and δ→ that

denote the minimal cost of DTL-scenarios for G|g, S and Λ where for g ∈ VG and

s ∈ VS we have additional conditions:

D1 δ(g,s) is the minimal cost in the set of all DTL-scenarios for G|g, S and Λ such

that Λ extends φ (in the set LG|g) and g is mapped into s.

D2 δ4(g,s) is the minimal cost for DTL-scenarios for G|g, S and Λ such that Λ ex-

tends φ and g is mapped into node form S |s.

D3 δ↑(g,s) as above but the cost has additional gene loss events on the path between

M(g) and s. Formally, the cost is the minimal value defined as:

• the cost of a DTL-scenario for G|g, S and Λ such that Λ extends φ and g

is mapped to a node v from S |s, i.e., δ(g,s),

• plus the cost of intermediate gene losses for each node on the path from

s to v excluding v, i.e., loss(s,v) ·LOSS.

D4 δ→(g,s) is the minimal cost in the set of all DTL-scenarios for G|g, S |s′ and Λ

such that Λ extends φ, s and s′ are incomparable, and g is mapped into s′.

For δ we have the following formulas:

δ(g,s) =


0 if g and s are leaves and φ(g) ∈ {s,⊥}, (1)

min{α,β,γ} if g is not a leaf, (2)

+∞ otherwise, (3)

where,

α = (|ŝ| − |ĝ |) ·LOSS + min
p : ĝ→ŝ

p is a ”one-to-one” function

∑
c∈ĝ

δ↑(c,p(c)),

β = DUP + min
p : ĝ→ŝ∪{s}

p(x)=s for some x

∑
c∈ĝ

δ(c, s) if p(c) = s, (4)

δ↑(c,p(c)) + (|ŝ| − 1) ·LOSS if p(c) ∈ ŝ, (5)

γ = HGT + min
c∈ĝ

δ→(c, s) + δ↑(sib(c), s).

Functions p in above definitions denote all valid mapping assignments for the

children of g. In particular, α represents the case when g is a speciation node [Górecki

and Tiuryn (2006)], i.e., all children of g are mapped below s, β represents the case

when g is a duplication node, i.e., at least on child of g is mapped to s. Finally, γ is

the case of transfer, where the child c of g is transfered.

The formulas for δ↑ and δ→ can be expressed as:

84



δ↑(g,s) =

 δ(g,s) if s is a leaf, (6)

min{δ(g,s), (|ŝ| − 1) ·LOSS + minx∈̂s δ↑(g,x)} otherwise, (7)

δ→(g,s) =

 +∞ if s is the root of S, (8)

min{δ→(g,par(s)),minq is sibling of s(δ4(g,q)}) otherwise, (9)

where

δ4(g,s) = min{δ(g,s),min
c∈̂s

δ4(g,c)}.

Theorem 8 (Correctness). For a binary gene tree G, a species tree S, a partial labeling

φ we have cDTL(G,S,φ) = δ4(rootG,rootS).

Proof. The proof is by induction on the structure of G and S. In the induction step

it is sufficient to show that the properties (I)-(IV) hold for δ functions.

The base step is when g is a leaf. Then, DTL-scenario:

• For D1 exists only when g has label s or ⊥ which yields cost 0 (case (1)). Oth-

erwise, the cost is +∞ (case (3)).

• For D2, we have δ4(g,s) = 0 if and only if φ(g) ∈ L(S |s) or φ(g) =⊥. Otherwise,

δ4(g,s) = +∞

• For D3, δ↑(g,s) = loss(s, s∗) if and only if s∗ is a leaf in S |s sich that either φ(g) =

s∗ or φ(g) =⊥ and s∗ has the minimum edge distance to s in S |s. Otherwise the

value of δ↑(g,s) is +∞.

• For D4 observe that if π(g) < L(S |s), then δ→(g,s) = 0 and δ→(g,s) = +∞, other-

wise.

We omit easy verification of cases D2, D3 and D4.

Inductive assumption: For a non leaf g ∈ VG and s ∈ VS cases D1, D2, D3 and D4 hold

for every node c ≺ g and every node from VS .

D1 If g is mapped to s in a DTL-scenario, then we have three cases depending on

the type of event:

Speciation If g is a speciation, then its all children map below M(g). There-

fore, the cost of such scenarios has |̂s| − |̂g | losses assigned to g at S. Next,

each child c of g must map to or below a unique child s′ of s. The cost

contribution of a child c is, by the inductive assumption for D3, δ↑(c, s′),

which is LOSS · loss(M(c), s′) + δ(c,M(c)) = LOSS · loss(M(c), s)) + δ(c,M(c)).

Based on L1 we see that all gene losses at g are included in (α), where p is

the "one-to-one" function that assigns children of g to the children of s.
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Duplication In this case at least one child has to map to s. Then, each child of

g contributes to the cost with loss(s,M(c)) losses (from (L2)) plus the cost

δ(c,M(c)).

Now, let p : ĝ → ŝ ∪ {s} be the funtion assigning p(c) = s if c maps to s

(at least one c satisfies the property) and p(c) = s′, otherwise, where s′ is

the child of s such that M(c) � s′. Note that p does not have to be one-to-

one. Then, if p(c) = s′, for s′ ∈ ŝ, then loss(c, s′) = |̂s| − 1 + loss(c, s′). By

incorporating one duplication at g, we obtain the formula (β).

HGT If g is a transfer node such that c = ξ(g), then c must be mapped to

a node s′ that is not comparable with s. Next, the sibling of c requires

loss(M(g), s) intermediate losses (L3). Thus, the cost of such a HGT-scenario

is HGT+δ→(c, s)+δ↑(sib(c), s). Minimizing over all choices of transfer node

yields (γ).

This completes the proof of D1.

D2 The proof follows easily from δ4(g,s) = mins′�s δ(g,s′) = min(δ(g,s),minc∈̂s δ
4(g,c)).

D3 If the mapping of g is s in the optimal scenario, then the cost is δ(g,s) by the

already proved condition D1. Otherwise, there is a child s′ of s such that

M(g) � s′. Now, by inductive assumption for D3, we have that δ↑(g,s′) = LOSS ·
loss(M(g), s′)+δ(g,M(g)). Since at swe have |̂s|−1 intermediate losses, we obtain

δ↑(g,s′) + LOSS · (|̂s| − 1) = loss(M(g), s) ·LOSS + δ(g,M(g)), and the above value

equals δ↑(g,s) if the minimal cost is obtained for a HGT-scenario with M(g,s) �
s′.

D4 If s is the root of S, then there is no node incomparable with s. Thus, δ→(g,s) =

+∞ in such a case. Otherwise, let p1,p2, · · · ,pk be the path connecting s and

the root of S. Then a node v ∈ S is incomparable with s if and only if there is

i ∈ {1, . . . , k} and a sibling q of pi such that v � q.

Easy proof of the above property follows from the fact that q is a child of the

least common ancestor of s and v. Now,

δ→(g,s) = min
i∈{1,...,k}

q is a sibling of pi ,
and v�q

δ(g,v) = min
i∈{1,...,k}

q is a sibling of pi

δ4(g,s) =

= min(δ→(g,par(s)), min
q is a sibling of s

δ4(g,q)).

This completes the proof of D4.
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Now the main formula from Theorem 8 follows easily from D2. This completes the

proof. �

This algorithm can be naturally extended to infer an optimal DTL-scenario by

using standard backtracking method.

Theorem 9 (Complexity of multifurcated variant). For a binary gene tree G and a

species tree S. The minimal cost can computed in O(|G||S |∆S) time, where ∆S is the

maximal out-degree of nodes from S.

Proof. It is sufficient to show that all δ’s can be computed in O(∆S) time. Note

that only α and β are more difficult to compute. For α, we have to find a “one-to-

one” function p having the minimal value δ↑(c,p(c)) + δ↑(c′,p(c′)), where ĝ = {c,c′}.
This can be done in O(∆S) time by finding the two mappings with the minimal and

the second minimal value of δ↑ for both children and choosing the optimal pair

among four possibilities. For the second case, β is the minimal value of δ↑(c, s) +

mins′∈ŝ(δ↑(c, s′) + LOSS,δ(c, s)) for c ∈ ĝ, which can be computed in O(∆S) time. �

5.2. Time consistent DTL-scenarios

The most standard way of modelling tractable acyclic scenarios, is by introduc-

ing a time stamp for the nodes of a species tree and defining consistency condi-

tions [Górecki (2004b)] or by introducing an ordering based on transfers mappings.

Probably the simplest acyclicity condition is given in [Tofigh et al. (2011)]. A sce-

nario is acyclic if there is a total order ≺ on VS such that:

1. (1) if (x,y) ∈ ES then x ≺ y,

2. (2) if u,v ∈ Θ and ξ(u) � ξ(v) then par(M(u)) ≺ M(ξ(u)) (see [Tofigh et al.

(2011)]).

Our model of HGT-reconciliation is based on dated species trees in which each node

has a divergence time defined as a function τ : VS → R+ such that τ(s) � τ(s′) if

s ≺ s′. We say that two distinct species represented by nodes s and r coexisted if

the time intervals (τ(par(s)), τ(s)) and (τ(par(r)), τ(r)) have a non-empty intersection.

We write that s is transferable to r, if s and r or an ancestor of r coexisted. Note

that transferability implies incomparability. For genes in a DTL-scenario with dated

trees, the notion is expressed in terms of mappings as follows.

Definition 4. A time consistent DTL-scenario, or tcDTL-scenario, for a gene tree G, a

dated species tree S, and a labelling Λ : LG→LS is a DTL-scenario for G, S and Λ such

that for every g ∈Θ, the node M(g) is transferable to M(ξ(g)).
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[Tofigh et al. (2011)] proved that tcDTL-scenarios are acyclic. While the defi-

nition of a DTL-scenario cost (ε) can be rewritten from DTL-scenarios, for proper

computation of gene losses we need to modify the definition of L(g) given in the

previous section. For the case when g is a transfer node, there are additional inter-

mediate gene loss nodes on the path connecting M(ξ(g)) and s, including the losses

at M(ξ(g)), where s is the lowest ancestor of ancestor of M(ξ(g)) that coexisted with

M(g). Thus, the formula L3 becomes:

(L3)

L(g) = loss(M(ξ(g)), s′) +
∑
c∈ĝ
c,ξ(g)

loss(M(c),M(g))

Cases L1, L2 and L4 remain unchanged. Example showing case L3 is depicted in

Figure 5.4. Similarly, the definition of the tcDTL-scenario cost is analogous to the

definition of the cost for the DTL-scenario. We omit straightforward details. Then,

the minimal cost for a given gene tree, i.e., when all labells are defined in G, and

a dated species tree can be computed by O(|G||S | log |S |) time [Tofigh et al. (2011);

Bansal et al. (2012)].
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Figure 5.4: Examples of the tree reconciliation showing losses assigned to v in case L3. The number

of losses L(v) is 11.

5.2.1. Inference of gene-species association under the tcDTL model

We show a polynomial time algorithm for the problem of gene-species assignment

under the time consistent model of tcDTL-scenarios. To avoid repetitions we skip

straightforward definitions and problem formulation. The algorithm is defined sim-

ilarly: we take the definitions and the formulas from the previous Section and mod-

ify the definition of δ→ as follows. Now, δ→(g,s) is the minimal cost in the set of all

tcDTL-scenarios for G|g, S |s and Λ such that Λ extends φ|LG(g))
, s is transferable to s′,

and g is mapped into s′ or its descendant. Formally,

δ→(g,s) = min
s coexists with s′

δ↑(g,s′).
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Due to the above change, computing a single value of δ→ requires traversal of

O(|S |) nodes in S. Hence, the time complexity of computing the minimal cost of

under time consistent model for a given binary gene tree and a dated species tree

S is O(|G||S |2∆S). This complexity can by further improved to O(|G||S |∆S log |S |) by

applying data structures proposed in [Bansal et al. (2012)].

5.3. Extensions

Inferring gene-species assignments in unrooted gene trees can be formulated by

searching for the rooting that minimizes the optimal (rooted) cost [Górecki et al.

(2013)]. In such a case the algorithm consists of an additional loop that iterates

over all possible edges of the input gene tree. In each step, a formula similar to δ4

is evaluated for the artificial root with children being the end nodes of the current

edge. We omit easy details for brevity. The complexity of this algorithm is the same

as for the rooted case.

Another extension is to extend the problem to non-binary gene trees. Assuming

the simplest tractable model of non-binary reconciliation it can be shown that the

time complexity of computing minimal cost under the DTL model isO(|G||S |max(∆G,∆S)3).
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Figure 5.5: Mean quality score for the reconstructions of gene species mappings under DTL cost

function. The quality score on the Y axis represents the correctness of gene-species assignment, e.g.,

the quality score equal 1 means, that every unknown label was correctly assigned. The parameter k

denotes what percentage of labels were set to be unknown in the input labeling of a gene tree. From

the left side the diagrams depict results for the following weights: D1 L1 T1, D1 L1 T2 and D3 L1

T3.

5.4. Experimental Results

We conducted two computational experiments by using our prototype implementa-

tion of the algorithm described in the previous sections with additional procedures
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Figure 5.6: (Continued from Figure 5.5) Mean quality score for the reconstructions of gene species

mappings under the tcDTL cost

for optimal scenarios and leaf mappings inference. In the first experiment, we inves-

tigated the quality of the inferred gene-species assignments using simulated data.

In the second one, we studied the dataset consisting of 100 proteins from Methano-

brevibacter ruminantium.

In the experiments, the triplets notation, such as D10 L1 T10, denotes the set of

event weights. In this example we the weight of gene duplication (D) and transfer

(T) equals 10 while for the gene loss (L) it is 1.

5.4.1. Reconstruction quality

First, we performed a set of tests on simulated binary trees to check the quality of

the inferred reconstructions. We performed computational experiments for both,

the DTL and tcDTL models.

Data preparation: We used a simulated dataset which consists of 350 pairs of

gene and species trees having 100 bijectively labelled leaves simulated by using

the procedure form [Betkier et al. (2015)] according to the Yule-Harding model.

For the time consistent model we also simulated branch lengths – for every species

tree there where 100 repeats of branch lengths drawings from uniform distribution.

Gene and species trees were generated in a way, that the dissimilarity measure based

on the deep coalescence score [Maddison (1997)] (DC) in our dataset is uniformly

distributed over the interval [0,700], where the score 0 indicates identity of trees,

while the score close to 700 indicates high level of topological incongruence.

To validate if unknown genes are assigned to proper species, we removed k ∈
{10%,25%,40%,55%,70%} leaf labels from each input gene tree. The procedure of

leaf removal was repeated 10 times for each k.

Evaluation: For all pairs of trees, we reconciled a gene tree with its species tree.

Since more than one reconstruction can have the minimal DTL cost, we drew 1000

optimal scenarios by using Monte-Carlo method and inferred the distribution of
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gene-species assignments. Then, we checked the probability that leaves with un-

known labels are assigned to proper species. The inferred quality score is the ratio

of proper gene-species assignments divided by number of leaves with unknown

labels. In the time consistent model, the score for 10 variants of tree dating was

calculated as an average from all sampled trees. Diagrams with species assignment

quality for the DTL model are presented in Figure 5.5 and results for the tcDTL

model are depicted in Fig 5.6. For both models we present results for three sets of

events weights. To make diagrams more smooth and readable, tree pairs are binned

into groups of the size 50 having the dissimilarity score in interval 0-49, 50-99, and

so on.

Discussion: Results for the DTL model, depicted in Figure 5.5, show that for

trees with low DC score, the mean quality of gene-species assignment is relatively

high. In the diagram we can see, that the best quality is obtained when reconciled

trees have similar topology and the parameter k is low, although the differences

between the lowest and the highest k value are relatively small. The quality of

reconstructions obtained for the tcDTL model (see Figure 5.6) are similar to the DTL

model, which is slightly surprising, given more constrained model of scenarios and

random model of speciation time generation.

5.4.2. Real dataset evaluation: multifurcated species tree vs. bi-

nary gene tree

In the following experiment, we studied the performance of our algorithm on the

dataset containing phylogenetic trees inferred from real sequences.

Data preparation: Our algorithm for the DTL model was tested with the dataset

from [Betkier et al. (2015)], representing a typical scenario of amplicon analysis.

The dataset consists of 100 proteins from Methanobrevibacter ruminantium similar to

mcrA gene that has been proposed as a marker gene in the phylogenetic analysis of

archeal methanogen populations [Luton et al. (2002)]. The list contained genes from

uncultured archeons. The unrooted gene tree was built using program proml from

the phylip package. Original species tree containing over 1400 known Euryarchaeota

species from SILVA database [Quast et al. (2013)] was contracted to the set of species

reconstructed in [Betkier et al. (2015)]. We have attempted to resolve mappings of 9

unknown sequences out of 100.
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Evaluation: For the mcrA dataset we carried out six rounds with different sets of

weights DUP, LOSS and HGT. Our algorithm requires a rooted input, therefore we

first rooted the unrooted gene tree depicted in Figure 5.7, by choosing one rooting

that minimizes the weighed cost for every set of weights. Next, as the number of

optimal DTL-scenarios may be large, we conducted 1000 draws by using Monte-

Carlo method. DTL-scenarios are drawn according to the uniform distribution, i.e.,

each path is selected proportionally to the number of optimal solutions which are

represented by the subtree it points to. Having a sample of 1000 random optimal

DTL-scenarios for a single set of weights, we inferred the distribution of gene leaf

mappings in these scenarios. Summary of results is depicted in Figure 5.8.

Discussion: The first analysis of the resulting distribution of gene-species map-

pings indicated that in many cases the missing assignments were uniquely recon-

structed despite the results from [Betkier et al. (2015)] for the DL cost. A closer

analysis of the corresponding DTL-scenarios especially in the first two columns

representing cases of similar weights, showed that some assignments, e.g. M1, are

unique, however, is is not difficult to find a possible better assignment based on the

known mappings of some neighboring genes. Moreover, given high level of mul-

tifurcation in the species tree one could expect more uniform distribution of map-

pings to species whose parent represent a speciation spanning many species (see

for example the unique reconstruction for M2 in D1 L1 T1). This phenomenon can

be partially explained by the model of gene loss events (see also Figure 5.1) that is

probably overestimating the number gene losses when reconciling in a non-transfer

way in the presence of a multifurcation in the species tree. In other words, when

searching for the optimal DTL-scenario, it is “cheaper” to embed a binary part of a

gene tree into a binary part of a species tree and then transfer gene lineages to its

proper location, rather than forcing expensive embedding with a large multifurca-

tion that usually requires many gene losses. This observation can be also confirmed

by the highly ambiguous distributions for D1 L0 T1, where gene losses are ignored,

and partially in D10 L1 T10, where gene losses are significantly cheaper than du-

plications and transfers.

5.5. Conclusions

In this Chapter we proposed the first HGT reconciliation-based approach for in-

ferring gene-species mappings. We developed efficient algorithms for optimal cost

computation and inference of gene-species assignment under weighted cost func-

tions with gene duplication, gene loss and HGT events. Our prototype implemen-
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tation of the algorithm indicated that this approach is capable of enhancing the

taxonomic assignment of metagenomic sequences.

In future we plan to test in more detail the impact of event weights and rec-

onciliation models with possible multifurcations on the reconstruction quality. We

also plan to further evaluate the method on large empirical and simulated datasets.

Further extensions include methods for the analysis of whole metagenomic samples

that may contain sequences from many gene families.
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Figure 5.8: Inferrence of gene-species assignment for mcrA dataset. Left: A part of the SILVA species tree

with species present in the reconstructed gene-species distributions. Right: Six heat maps of inferred

distributions of mappings for leaves M1-M9 from the gene tree. Each heat map corresponds to one

parameter set. Weights of gene duplication (D), loss (L) and HGT (T) events are depicted at the top of

the figure. Minimal costs for the six experiments were 194, 220, 240, 325, 59 and 249, respectively.

95





6
Beyond Phylogenetic Trees:

Network-based Methods

T
ree structure seems to be the most natural way to show the evolution-

ary history of species. However, while they are sufficient in many cases,

evolutionary relationships cannot always be represented by a tree-like

structure. In case of reticulation events such as recombination and hy-

bridization or horizontal gene transfers, additional branching and new types of

nodes are needed to show new and more complex relationships. These needs are

met by phylogenetic networks, which are increasingly being used in phylogenetic

studies. Another advantage of phylogenetic networks lies in the ability of showing

many possible evolutionary paths. When examining very closely related sequences

originating from microorganisms, single cells or animal breeds, the bootstrap sup-

port values for inferred trees are typically very low due to the difficulty in determin-

ing which sequences are most closely related. Therefore, there are many equally

probable topologies representing their evolution and there is no method to select

the correct one. All possible paths, however, can be seen in the network, which

makes the analysis of the data more complete and insightful.

A phylogenetic network is a graph, which like phylogenetic tree, represents evo-

lutionary relationships between genes, proteins, genomes or species, but with the

addition of hybrid nodes, i.e, nodes with two parents. We can divide networks into
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rooted and unrooted and distinguish several types, such as median, consensus, re-

combination or hybridization networks. There are also other types of networks be-

sides the well-defined types, and we can call a phylogenetic network any graph that

represents evolutionary relationships [Huson et al. (2010); Gusfield (2014); Linder

et al. (2004)].

In this Chapter, we show the application of phylogenetic networks to visualiza-

tion and analysis of the evolution of B-cells in follicular lymphoma patients. We

describe the issue, and present problems and challenges arising from the nature of

the data under study. Finally, we show examples and results obtained so far on the

data collected from patients. Datasets and biological knowledge in this project were

provided by members of Professor H. Veelken’s team at Leiden University Medical

Center. Our project is still in progress and early results were published in [van

Bergen et al. (2019)].

6.1. Key concepts

In the following section, we provide some background information on B cells and

their role in the human immune system, describing their structure and the processes

involved in their maturation and function. We also describe characteristic of the

follicular lymphoma, a tumor that affects B-cells and their functions.

6.1.1. The role and characteristics of B-cells

B-cells, also known as B-lymphocytes, are an important part of human immune

system. They are a type of white blood cells that produce antibodies, i.e., antigen-

specific immunoglobulins (Ig) directed against invasive pathogens. This role makes

B-cells a part of the adaptive humoral immune system [Murphy and Weaver (2016)].

B-cells originate in the bone marrow and differentiate into plasma cells and mem-

ory cells in the peripheral lymphoid organs during the course of the immune re-

sponse. An essential element for B-lymphocyte function is the B-lymphocyte recep-

tor (BCR). During the B-cell development, the BCR genetic sequence undergoes the

V(D)J recombination process in which variable (V), joining (J), and in some cases,

diversity (D) gene segments are randomly rearranged resulting in the highly diverse

receptor sequences [Tonegawa (1983)]. This process guarantees the creation of B-

cells with receptors capable of recognizing antigens that the cell has never encoun-

tered before, including nearly all pathogens like bacteria, viruses, parasites, worms

or even cancer cells. To avoid the risk of the body’s own cells being recognized as

antigens, B lymphocytes undergo very strict selection during the maturation pro-
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cess [LeBien and Tedder (2008); Pelanda and Torres (2012)]. The BCR receptor con-

sist of a signal transduction moiety and an antigen-binding subunit called mem-

brane immunoglobulin, build from two B-cell membrane-bound immunoglobulin

heavy chains and two light chains. Activation of B-cells occurs when their BCR

binds to an encountered antigen. After the activation, cells proliferate and begin to

secrete antibodies, which can neutralize foreign object or mark it for attack by other

cells of the immune system.

6.1.2. Follicural lymphoma

Follicular lymphoma (FL) is a cancer that involves indolent B-cells and is charac-

terized by a follicular growth pattern of clonal B-cells that accumulate in germinal

centers, i.e., transient structures located in lymph nodes, ileal Peyer’s patches, and

spleen, where mature B cells can be activated, proliferate, and mutate their anti-

body genes [Natkunam (2007); Xerri et al. (2016)]. Follicular lymphoma has many

morphological variants and a broad spectrum of symptoms. Among the most com-

mon are swelling of lymph nodes in the neck, armpits, and groin. Spleen and bone

marrow can also be affected which leads to low certain blood cells levels. The cancer

is usually characterized by a slow progression but is essentially incurable. The exact

underlying causes of FL are not yet fully understood but it appears to be related to

the accumulation of genetic mutations in B-cell precursors [Fischer et al. (2018)].

Recent studies allowed to introduce new treatments that have improved overall sur-

vival time for patients. Better understanding of the causes of the disease may lead

to further improvements in treating protocols.

6.2. WILLOW protocol

Below, we explain our motivations for using phylogenetic networks and present our

approach to model the subclone evolution of follicular lymphoma cells.

6.2.1. First steps and motivations

Our first attempt to observe the evolution of sampled B-cells was to infer a phyloge-

netic tree. It seemed that since the sample contains cells from a certain time interval,

i.e., those closer evolutionarily to the common ancestor of all BCR sequences, and

those more divergent from it, the tree-like evolution should be observable. How-

ever, since the inferred trees had very low support values, we incorporated in our

visualizations edges between nodes representing sequences that differed by only
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one position. The results made it readily apparent that the sequences are too simi-

lar and the tree structure will show only one of the similarly probable evolutionary

paths. To see the complex relationships between studied B-cells, we decided to use

networks.

6.2.2. Network inference

In the preprocessing all identical BCR sequences are aggregated into distinct sub-

clones and the primordial sequence (PO) inference is conducted. The PO sequence

simulates an ancestor of all sequences in the sample and is inferred as a combina-

tion of non-mutated VDJ segments from CDR sequence libraries with the highest

homology to the studied sequences.

Each node of the network represents a subclone and is labelled by unique id and

the sequence counter, i.e, number of identical sequences found in the sample. The

structure of the network is based on the neighborhood of subclones that differ by

only one position, which we call neighbours, and on the distance of each subclone

from the PO, measured as the number of sequence differences. All neighbours are

connected by the edges and all nodes are placed at levels corresponding to their

distance from the PO. Depending on whether the mutation was non-synonymous

or silent the edges are black or gray, respectively. Additionally, connected groups of

subclones are visually grouped into subgraphs to help distinguish groups that split

early in evolution.

The color and the size of each node depend on whether the node has children

(green) or not (red) and the sequence count, respectively. For each subclone, the

predicted protein sequence is checked for the presence of acquired N-linked gly-

cosylation motifs (aNGM), which are protein modifications frequently acquired by

mutations of the BCR genes in the FL cells [Koning et al. (2019)]. The aNGMs are

defined as Asn-X-Ser or Asn-X-Thr where X can be any amino acid except proline.

Since some PCR errors may occur during sequencing, singleton nodes with small

counters are removed from the network and nodes with no children and only one

parent are removed and their sequence count is added to their parent. Due to the

sizes of the networks we decided to limit the number of input sequences to 1000

randomly picked sequences. For better readability, nodes are arranged in the levels

using a heuristic algorithm to minimize the number of intersecting edges between

levels. Resulting networks are shown in Figures 6.3-6.8.

Inferred networks can be compared by the complexity level. Networks for healthy

donor samples are expected to be less complex and more tree-like than FL networks.

To asses that, we used a diversity score defined as:
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D = 2(
e+ 1
n
− 1),

where e is the number of edges and n is the number of nodes in the network. The

more tree-like the network, the closer the value of D is to 0. In addition, we calcu-

late the intraclonal accumulation of mutations as the difference between the most

mutated node relative to the PO and the least mutated one.

6.2.3. Further development of WILLOW

During research we added more information to our networks. Initially, networks

were inferred exclusively for light or heavy chain sequences. New networks contain

combined sequences and the color of the edge between neighbours informs whether

the mutation was detected in the heavy (blue) or the light (orange) chain. The thick-

ness of the edge depends on the size of the node, so edges between bigger and possi-

bly more important nodes are thicker than others. Edges between small nodes were

removed. In addition to the existing color coding, the nodes also contain pie charts

with additional information about the distribution of gene expression. Examples of

the new network are presented in Figures 6.1 and 6.2.
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Figure 6.1: One of the subgraphs from the exemplary new WILLOW network. Subclone sequences

are the combined heavy and light chains of the BCR variable region. The network shows relations

between subclones that differ at only one position in the sequence. The color of the edge depend on

whether the mutation was detected in the heavy (blue) or the light (orange) chain. Edges between

bigger and more relevant nodes are thicker than other and edges between small nodes are removed.

Coloured borders of the nodes indicate that the node is a leaf (red) or an internal node (green). Each

node contains a pie chart showing the distribution of gene expression for a given subclone.

102



A.48/22
A.538/1

A.1792/1

A.10/140

A.45/25

A.105/8

A.345/2

A.347/3

A.342/2

A.63/14

A.47/22

A.540/2

A.517/1

A.546/1

A.545/1

A.65/13

A.43/25

A.340/2

A.1751/1

A.334/5

A.898/1

A.39/28

A.936/1

A.935/1

A.862/1

A.124/6

A.23/47

A.969/1

A.284/2

A.714/1

A.983/1

A.971/1

A.653/1

A.37/29

A.123/6

A.702/1

A.5/424

A.122/6

A.497/2

A.313/2

A.705/1

A.706/1

A.98/9

A.35/30

A.97/8

A.661/1

A.85/11

A.917/1

A.900/1

A.902/1

A.901/1

A.628/1

A.907/1

A.637/1

A.349/2

A.118/6

A.1809/1

A.926/1

A.344/3

A.283/3

A.83/10

A.919/1

A.346/2

A.143/5

A.341/2

A.142/6

A.343/2

A.925/1

A.918/1

A.1750/1

A.1752/1

A.508/2

A.338/3

A.336/2

A.339/2

A.651/1

A.335/2

A.106/7

A.908/1

A.70/12

A.842/1

A.993/1

A.941/1

A.730/1

A.180/4

A.169/4

A.735/1

A.635/1

A.207/4

A.163/4

A.167/4

A.777/1

A.632/1

A.292/2

A.771/1

A.582/1

A.581/1

A.767/1

A.314/2

A.761/1

A.759/1

A.609/1

A.608/1

A.604/2

A.2/1878

A.606/1

A.602/1

A.18/51

A.623/1

A.650/1

A.139/6

A.866/1

A.948/1

A.938/1

A.946/1

A.62/14

A.944/1

A.213/3

A.943/1

A.942/1

A.682/1

A.679/1

A.940/1

A.212/3

A.899/1

A.891/1

A.890/1

A.895/1

A.894/1

A.655/1

A.627/1

A.58/16

A.643/1

A.170/4

A.675/1

A.30/35

A.758/1

A.757/1

A.33/34 A.656/1

A.634/1

A.626/1

A.295/2

A.652/1

A.633/1

A.294/2

A.305/2

A.282/2

A.636/1

A.306/2

A.644/1

A.138/5

A.216/3

A.733/1

A.88/10

A.696/1

A.949/1

A.348/2

A.82/11

A.532/1

A.162/4

A.281/3

A.922/1

A.296/3

A.174/5

A.84/10

A.297/3

A.915/1

A.916/1

A.913/1

A.857/1

A.672/1

A.357/2

A.354/3

A.140/5

A.985/1

A.591/1

A.355/2

A.720/1

A.352/2

A.920/1

A.353/3

A.222/3

A.223/3

A.224/3

A.300/2

A.176/4

A.168/5

A.177/5

A.178/4

A.175/5

A.663/1

A.537/1

A.543/2

A.544/1

A.526/1

A.351/2

A.299/2

A.590/1

A.772/1

A.776/1

A.778/1

A.107/7

A.573/1

A.572/1

A.676/1

A.610/1

A.289/2

A.22/45

A.301/2

A.756/1

A.958/1

A.707/2

A.531/1

A.819/1

A.1764/1

A.952/1

A.954/1

A.686/1

A.924/1

A.318/2

A.1686/1

A.962/2

A.285/2

A.937/1

A.327/2

A.325/2

A.350/2

A.203/5

A.311/3

A.16/69

A.165/4

A.166/4

A.288/2

A.607/1

A.219/3

A.215/3

A.214/3

A.211/3

A.210/3

A.57/17

A.117/6

A.715/1

A.719/1

A.303/2

A.302/2

A.304/3

A.307/2

A.308/2

A.765/1

A.293/2

A.298/2

A.612/1

A.171/4

A.26/49

A.982/2

A.119/6

A.972/1

A.978/1

A.333/2

A.713/1

A.977/1

A.963/1

A.841/1

A.613/1

A.716/1

A.712/1

A.932/1

A.629/1

A.739/2

A.337/2

A.328/2

A.504/3

A.1699/1

A.753/1

A.754/1

A.755/1

A.179/4

A.120/7

A.989/1 A.723/2

A.217/3

A.725/2

A.991/1

A.990/1

A.992/1

A.130/7

A.148/5

A.131/7

A.1664/1

A.323/2

A.1163/1

A.236/3

A.524/1

A.523/1

A.1173/1

A.27/41

A.184/5

A.100/12

A.109/9

A.392/2

A.156/5

A.91/11 A.322/2

S.90/10

B.1393/1

B.1392/1

B.31/37

B.114/8

B.1543/1

B.115/9

B.34/36

B.271/4

B.1623/1

B.1539/2

B.1537/1

B.69/13

B.4/490

B.32/38

B.198/4

B.1576/1

B.1518/1

B.61/17

B.200/4

B.1562/1

B.478/2

B.1540/1

B.1541/1

B.261/3

B.481/2

B.480/2

B.479/2

B.482/2

B.94/9

B.199/4

B.849/2

B.1565/2

B.264/3

B.1568/2

B.263/3

B.155/5

B.449/2

55 56 57 58 59 60 61 62 63 64 65 66 67

Fi
gu

re
6.

2:
L

ar
ge

r
p

ar
t

of
th

e
ne

tw
or

k
p

re
se

nt
ed

in
Fi

gu
re

6.
1

sh
ow

in
g

fo
u

r
su

bg
ra

p
hs

,i
.e

.,
d

is
jo

in
te

d
p

ar
ts

of
th

e
ne

tw
or

k.

103



6.3. Experiment

Here we present the results of applying the WILLOW protocol to a dataset contain-

ing samples obtained from 13 patients by our colleagues from the Leiden University

Medical Center. Yielded results were compared with analogous data from healthy

donors (HD).

Dataset

Studied samples consisted of 23 biopsies from from diagnostic lymph nodes and

bone marrow of 13 patients, with some patients having biopsies taken more than

once. Two of the examined biopsies showed transformation to aggressive lym-

phoma. Complete heavy and light chain BCR variable regions were sequenced by

Sanger method or PacBio full-length deep sequencing. The sequencing yielded a

median library size of 744 sequences (range: 63-12782) per sample. Within each

library, identical sequences were compiled into unique subclones resulting in a me-

dian of 200 unique subclones per BCR chain type and case (range: 15-3301). To

assess the extent of subclonal diversification in FL, Shannon’s diversity index was

calculated. As expected, larger sequencing library sizes generally yielded higher

Shannon scores. From 2000 sequences per network and upwards, score remained

stable, suggesting near-complete sequencing of these networks.

Results

As expected, we observed the presence of aNGM in a very high percentage (> 77%)

of the subclones in the majority of samples. We also found no instances of losses

of aNGM, which is consistent with the theory, that aNGM are important for FL

survival. The sequences were also checked for the presence of stop codons, whose

appearance was found in a very small percentage of cells. Networks inferred for FL

data were more complex than HD networks resulting in higher D scores of average

1.8 and 0.5, respectively.

In case of the samples from different time points, the networks showed progres-

sively higher number of mutations with time, indicating continuing recombination

process. An additional observation is the fact, that samples from bone marrow had

lower diversity than the samples from the lymph node and there was no significant

progression. This may indicate a higher frequency of mutations occurring in B-cells

located in lymph nodes. Selected networks inferred for bone marrow and lymph

node B-cells are presented in Figures 6.3-6.8.
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Discussion

The results showed that FL networks have a more complex and branching struc-

ture in contrast to HD networks which are more tree-like. This may imply the

influence of factors other than under normal conditions on the evolution of FL

cells. The absence or very low percentage of stop codons in subclone sequences

indicates the need for the FL cell to maintain a fully functioning BCR. Networks

topologies show, that some BCR mutations are advantageous over others, as some

of the subclones has significantly higher sequence counts. They tend appear in con-

nected groups/subgraphs of closely related subclones apparently containing some

mutations essential for the survival, while other subclones appear in much smaller

groups.

Overall results confirm an important role of the BCR mutations in follicural lym-

phoma, however, further studies are needed to investigate the factors that may in-

fluence mutations.

6.4. Conclusions

Although phylogenetic trees are sufficient for many studies of species or gene evo-

lution, they cannot always be used to represent complex evolutionary relationships.

Despite possible extensions like HGT edges, the tree-like structure may be too sim-

ple or too strict for datasets consisting of closely related genes or proteins and con-

sequently very similar sequences. In such cases, it is impossible to infer a credi-

ble phylogenetic tree as it will only represent one of many convergent evolutionary

paths, with no way to determine whether it is the correct one. To show such complex

or challenging to interpret relations, we can use phylogenetic networks.

In this Chapter, we showed the application of the phylogenetic networks to can-

cer data. We analyzed the datasets containing BCR receptor sequences from B-cells,

which are a core part of the humoral immune system, and compared networks in-

ferred for healthy donors and follicular lymphoma patients. Our novel approach

allows to model tumor evolution and observe subclonal selection driven by BCR

mutations. We believe that better understanding of the process will influence treat-

ment methods for FL patients. In future we plan to incorporate information about

mutations from outside of the BCR region, to get a more complete picture of the

impact of BCR mutations on FL progression.
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Figure 6.3: Network for heavy chain BCR variable region sequences obtained from bone marrow
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Figure 6.5: Continued from Figure 6.3. Network for heavy chain BCR variable region sequences

obtained from lymph node B-cells of follicular lymphoma patients (January 2015).
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Figure 6.6: Network corresponding to the network depicted in Figure 6.3, inferred for light chain of

the BCR variable region. All markings are the same. Due to the size of the sample, we present only

their most relevant parts of the networks omitting PO sequence and other subgraphs.
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Figure 6.7: Network corresponding to the network depicted in Figure 6.4, inferred for light chain of

the BCR variable region.
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Figure 6.8: Network corresponding to the network depicted in Figure 6.5, inferred for light chain of

the BCR variable region.
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7
Conclusions

P
resented work addresses issues in phylogenetics and graph theory with

particular emphasis on finding the most credible evolutionary events in

gene trees. We present both theoretical and experimental results includ-

ing new theorems, lemmas and algorithms along with proofs of correct-

ness, properties of the presented structures, and results showing on real and simu-

lated data the potential use and the performance of our methods and algorithms.

We introduced basic notions from the field of phylogenetics such as concepts of a

gene and species tree and the tree reconciliation method based on the lca-mapping

and the duplication-loss cost. Then, we showed extensions including unrooted gene

trees and models that incorporate horizontal gene transfer events in addition to du-

plications and losses. Presented tools served as an apparatus for creating structures

and methods for finding the most reliable evolutionary events in gene trees.

In Chapter 3, we presented results from our work [Mykowiecka and Górecki

(2018)] in which, we proposed a new approach to assess credibility of gene duplica-

tion and speciation events in rooted and unrooted gene trees. Our method is based

on the unrooted tree reconciliation and non-parametric bootstrap. The concept of

the support values for gene duplications and speciations, that we introduced, al-

lows to verify the reliability of tree reconciliation with applications to the rooting

and supertree problem. While there are several commonly used rooting methods,

our results show, that the majority of them may return incorrectly rooted trees. An-
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other possible application of the evolutionary events support values is a supertree

problem. By removing gene trees with poorly supported events, the quality of the

inferred supertree can be improved. Our approach can also, in very straightforward

way, be used to annotate orthology and paralogy in unrooted trees.

We provided several theoretical and algorithmic results, in particular, we showed

the correspondence between our method and the classical non-parametric boot-

strapping. We also showed that by using gene trees having highly supported events

we can infer species trees that are more biologically consistent.

Our approach can be extended to the case when the support is evaluated for

subtrees rather than clusters, i.e, not only the presence of the leaves is taken into

account, but also their topological arrangement. This modification will allow us

to capture more detailed relationships between gene trees, although the bootstrap

values modified in this way will be lower than the bootstrap values of the corre-

sponding clusters.

In the next Chapter, we continue to focus on the credibility of evolutionary

events in phylogenetic trees, however, we introduce another type of the event. Hor-

izontal gene transfers are a significant factor introducing genetic variability espe-

cially in microorganisms. Here, we investigated the problem of the inference of

well-supported horizontal gene transfers from multiple sequence alignments. To

verify the credibility of inferred transfers, we proposed a new measure based on

non-parametric bootstrap, called transfer support. We used this measure to design

a new iterative algorithm for inferring acyclic well-supported transfer scenarios.

To test the performance of our method, we conducted experiments on two em-

pirical datasets containing relatively closely and distantly related species groups.

Both experiments showed that this approach can be used to support known transfer

hypotheses, although, it must be used with awareness of the rooting problem. The

accuracy of the algorithm was verified in experiments using simulated data. The

results show that Algorithm 2 reached a high percentage of correctly inferred trans-

fers both for trees with one and two HGTs. In particular, for alignments with good

quality scores our proposed method can infer the correct HGT scenario with high

accuracy.

As in the previous Chapter, the definition of transfer support can be extended. In

future we plan to incorporate alternative scoring schemas, e.g., based on the leaves

present in clusters rather than on the usage of transfers.

In Chapter 5 we further address the topic of HGT, but we approached the subject

from a different angle. We focused on the problem of the gene-species assignment

in metagenomic studies, i.e, the situation in which we know the origin of only part
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of the genes in the gene tree. The problem was defined as follows: given a gene tree

with partial leaf labelling and a species tree, resolve all missing labels in a gene tree such

that the total reconciliation score is minimized.

To address this problem, we proposed the first HGT-reconciliation based ap-

proach to infer gene-species mappings. We proposed efficient algorithms for the

optimal cost computation and gene-species assignment inference under weighted

cost functions with gene duplication, gene loss and HGT events. Conducted exper-

iments indicated that this approach is able to strengthen the taxonomic assignment

of metagenomic sequences. We plan to investigate the influence of event weights

and models of reconciliation with possible multifurcations on the quality of inferred

assignments. We also plan to apply our method to larger empirical and simulated

datasets. Possible extensions worth exploring include methods for analyzing whole

metagenomic samples that may contain sequences from multiple gene families.

In previous Chapters, we showed the need to extend phylogenetic trees to in-

clude processes such as HGT that occur in nature but do not fit into a simple tree

structure. More complex structures are also required when recombination or hy-

bridization events are believed to be involved. Moreover, in case of studying closely

related sequences, their high similarity makes it impossible to infer a credible phy-

logenetic tree. To represent less evident and more complex relationships, we can

use a phylogenetic network.

In Chapter 6, we proposed the network-based approach for the cancer data anal-

ysis. Studied data contained BCR receptor sequences from B-cells, a part of the

humoral immune system, obtained from follicular lymphoma patients. Inferred

networks allow to model tumor evolution and observe subclonal selection driven

by BCR mutations. Better understanding and knowledge about processes involved

in follicular lymphoma progression should improve treatment methods and help

discover the causes of the cancer. We plan to further develop our method and ex-

tend it by sequences from outside of the BCR region. Additional information may

shed new light on FL development and its potential causes.
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