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Abstract

This dissertation consists of two parts, both studying geometric properties of measures occur-
ing in finite-dimensional dynamical systems, mainly from the point of view of the dimension
theory.

The first part concerns probabilistic aspects of the Takens embedding theorem, dealing
with the problem of reconstructing a dynamical system from a sequence of measurements
performed via a one-dimensional observable. Classical results of that type state that for a
typical observable, every initial state of the system is uniquely determined by a sequence of
measurements as long as the number of measurements is greater than twice the dimension of
the phase space. The main result of this part of the dissertation states that in the probabilistic
setting the number of measurements can be reduced by half, i.e. almost every initial state of
the system can be uniquely determined provided that the number of measurements is greater
than the Hausdorff dimension of the phase space. This result partially proves a conjecture
of Shroer, Sauer, Ott and Yorke from 1998. We provide also a non-dynamical probabilistic
embedding theorem and several examples.

In the second part of the dissertation we consider a family of stationary probability mea-
sures for certain random dynamical systems on the unit interval and study their geometric
properties. The measures we are interested in can be seen as stationary measures for Markov
processes on the unit interval, which arise from random iterations of two piecewise-affine
homeomorphisms of the interval. We call such random systems Alsedà–Misiurewicz systems
(or AM-systems), as they were introduced and studied by Alsedà and Misiurewicz, who con-
jectured in 2014 that typically measures of that type should be singular with respect to the
Lebesgue measure. We work towards characterization of parameters exhibiting this prop-
erty. Our main result is establishing singularity of the corresponding stationary measures for
certain sets of parameters, hence confirming the conjecture on these sets. We present two dif-
ferent approaches to proving singularity - one based on constructing invariant minimal Cantor
sets and one based on estimating the expected return time to a suitably chosen interval. In
the first case we calculate the Hausdorff dimension of the measure for certain parameters.
We present also several auxiliary results concerning AM -systems.

Keywords: Takens delay embedding theorem, probabilistic embedding, Hausdorff dimension,
box-counting dimension, random system, stationary measure, semigroup of interval homeo-
morphisms, minimal set

AMS Subject Classification: 37C45, 28A78, 28A80, 37E05, 37H10



Streszczenie

Poniższa rozprawa składa się z dwóch części. Obie z nich badają geometryczne własności
miar występujących w skończenie wymiarowych układach dynamicznych, głównie z punktu
widzenia teorii wymiaru.

Część pierwsza dotyczy probabilistycznych aspektów twierdzenia Takensa o zanurzaniu,
zajmującego się zagadnieniem rekonstrukcji układu dynamicznego z ciągu pomiarów wyko-
nanych za pomocą jednowymiarowej obserwabli. Klasycznego wyniki z tej dziedziny orzekają,
że dla typowej obserwabli, dowolny stan początkowy układu jest jednoznacznie wyznaczony
przez ciąg pomiarów, o ile ich ilość przekracza dwukrotnie wymiar przestrzeni fazowej. Główny
wynik tej części rozprawy stwierdza, że w kontekście probabilistycznym liczba pomiarów może
być dwukrotnie zmniejszona, tzn. prawie każdy stan początkowy układu jest wyznaczony
jednoznacznie, o ile ilość pomiarów jest większa od wymiaru Hausdorffa przestrzeni fazowej.
Powyższy wynik dowodzi częściowo hipotezy Shroera, Sauera, Otta oraz Yorka z 1998 roku.
Przedstawiamy także niedynamiczną wersję probabilistycznego twierdzenia o zanurzaniu oraz
szereg przykładów.

W drugiej części rozprawy rozważamy rodzinę stacjonarnych miar probabilistycznych dla
pewnych losowych układów dynamicznych na odcinku jednostkowym oraz badamy ich własno-
ści geometryczne. Rozważane miary mogą być traktowane jako miary stacjonarne dla procesu
Markowa na odcinku, otrzymanego przez losowe iterowanie dwóch kawałkami afinicznych ho-
meomorfizmów odcinka. Układy tej postaci nazywamy układami Alsedy–Misiurewicza (albo
AM -układami), gdyż badania nad nimi rozpoczęli Alsedà oraz Misiurewicz, którzy postawili
w 2014 roku hipotezę, że typowe miary stacjonarne dla takich układów są singularne wzglę-
dem miary Lebesgue’a. Głównym celem naszej pracy jest scharakteryzowanie parametrów
posiadających tę własność. Naszym głównym wynikiem jest znalezienie pewnych zbiorów pa-
rametrów dla których odpowiednie miary są singularne, co dowodzi powyższą hipotezę dla
tych zbiorów. Przedstawiamy dwa różne podejścia do dowodzenia singularności - jedno oparte
na znajdowaniu minimalnych niezmienniczych zbiorów Cantora oraz drugie, wykorzystujące
szacowanie oczekiwanego czasu powrotu do odpowiednio dobranego przedziału. W pierw-
szym przypadku wyliczamy wymiar Hausdorffa miary stacjonarnej dla pewnych parametrów.
Przedstawiamy również kilka dodatkowych wyników dotyczących AM -układów.

Słowa kluczowe: twierdzenie Takensa o zanurzaniu, zanurzenie probabilistyczne, wymiar
Hausdorffa, wymiar pudełkowy, układ losowy, miara stacjonarna, półgrupa homeomorfizmów
odcinka, zbiór minimalny
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Chapter 1

Introduction

This dissertation consists of two parts, both studying geometric properties of measures in
occuring in finite-dimensional dynamical systems, mainly from the point of view of the di-
mension theory. Let us begin by describing briefly the main topics of both parts, with more
detailed description of problems and results given in subsequent sections.

The first part, contained in Chapter 3, concerns probabilistic aspects of the Takens em-
bedding theorem, dealing with the problem of reconstructing a dynamical system from a
sequence of measurements performed via a one-dimensional observable. More precisely, let
T : X → X be a transformation on a phase space X. Fix k ∈ N and consider an observ-
able h : X → R together with the corresponding delay-coordinate map X 3 x 7→ φTh (x) =
(h(x), . . . , h(T k−1x)) ∈ Rk. Takens-type theorems, which originate from the original work of
Takens [94] and were obtained in several categories (see Section 1.1 for more on their history),
state that φTh is an embedding (i.e. it is injective) for a typical (in a suitable sense) observable
h provided k ∈ N is large enough. Such theorems serve as a justification of the validity of
procedures actually used by experimentalists and have been proved in several categories. A
striking common feature of these results is that the number k of measurements sufficient for
the lossless reconstruction of the system is k ≈ 2 dimX, where dimX is the dimension of the
set X. Moreover, this threshold is known to be optimal and goes in line with results on non-
dynamical embeddings (e.g. Whitney and Menger–Nöbeling theorems). The main result of
this part of the dissertation is a probabilistic version of the Takens theorem. It corresponds
to a scenario in which the accessible initial states of the system are coming from a given
probability distribution µ on X and one is interested in reconstructing the system almost
surely subject to µ, i.e. we want the map φTh to be injective on a set of full measure µ. The
key conclusion is that in such a setting, it suffices to take k ≈ dimH(µ) measurements, hence
their number can be reduced by half compared to the non-probabilistic case (here dimH is the
Hausdorff dimension). The possibility of reducing by half the number of required measure-
ments in the probabilistic setting was conjectured in a physical literature by Shroer, Sauer,
Ott and Yorke [85]. As a corollary of our results, we prove their [85, Conjecture 1] for ergodic
measures. As a by-product of our work, we prove also a non-dynamical probabilistic embed-
ding theorem for linear embeddings in terms of the Hausdorff dimension, which strengthens
previously obtained results in this direction. We also present several examples. All the results
are based on a joint work with Krzysztof Barański and Yonatan Gutman. The contents of
Chapter 3, except for the Theorem 1.3 and Section 3.4, can be found in a joint preprint [8].
Theorem 1.3 and Section 3.4, dealing with the conjectures of Shroer, Sauer, Ott and Yorke
[85], are part of a work in progress with K. Barański and Y. Gutman.

The second part of the dissertation, contained in Chapter 4, is of a different flavour. We
consider a specific family of probability measures on the unit interval and study their geomet-
ric properties. The measures we are interested in are stationary measures for Markov processes
on the unit interval, which arise from random iterations of two piecewise-affine homeomor-
phisms of the unit interval. We call such random systems Alsedà–Misiurewicz systems (or
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AM-systems), as they were introduced and studied by Alsedà and Misiurewicz in [2]. In the
symmetric case, this gives a family of systems (and corresponding measures) parametrized
by two real parameters. It is well known that such stationary measures are always either
singular or absolutely continuous with respect to the Lebesgue measure. Alsedà and Misi-
urewicz conjectured in [2] that typically measures of that type should be singular. We work
towards characterization of parameters exhibiting this property. Let us emphasize that this
kind of questions are being asked for various types of random dynamical systems (iterated
function systems) and even the case of contractive similarities on the unit interval (so called
Bernoulli convolutions) is an active area of research, with full characterization of singular
parameters still being unknown (see Section 1.2 for more details). Our main result is finding
sets of parameters for which the corresponding measure is singular. We take two different
approaches to obtain that goal. The first one enables us to give a detailed description of the
stationary measure for parameters satisfying certain algebraic hypotheses, while the second
one (based on bounding the Lyapunov exponent of the corresponding measure) allows us to
find an open set of parameters, for which the corresponding measure is singular. Moreover,
in certain cases we are able to calculate, or at least bound, the Hausdorff dimension of the
stationary measure. All the results of Chapter 4, except for Section 4.8, can be found in a
publication [9], joint with Krzysztof Barański. Section 4.8 is a part of a work in progress with
K. Barański.

1.1 A probabilistic Takens theorem

Consider an experimentalist observing a physical system modeled by a discrete time dynamical
system (X,T ), where T : X → X is the evolution rule during time unit and the phase space X
is a subset of the Euclidean space RN . It often happens that, for a given point x ∈ X, instead
of an actual sequence of k states x, Tx, . . . , T k−1x, the observer’s access is limited to the
values of k measurements h(x), h(Tx), . . . , h(T k−1x), for a real-valued observable h : X → R.
Therefore, it is natural to ask, to what extent the original system can be reconstructed from
such sequences of measurements and what is the minimal number k, referred to as the number
of delay-coordinates, required for a reliable reconstruction. These questions have emerged in
the physical literature (see e.g. [74, 85]) and inspired a number of mathematical results, known
as Takens-type delay embedding theorems, stating that the reconstruction of (X,T ) is possible
for certain observables h, as long as the measurements h(x), h(Tx), . . . , h(T k−1x) are known
for all x ∈ X and large enough k. Mathematically, this means that the delay-coordinate map
X 3 x 7→ (h(x), h(Tx), . . . , h(T k−1x)) ∈ Rk is injective.

Takens-type theorems are considered as theoretical results which justify the validity of
actual procedures used by experimentalists (see e.g. [46, 57, 79, 91]). Note that one cannot
expect a reliable reconstruction of the system based on the measurements of an a priori given
observable h, as it may fail to distinguish the states of the system (e.g. if h is a constant
function). It is therefore necessary (and rather realistic) to assume that the experimentalists
are able to perturb the given observable. The first result obtained in this area is the celebrated
Takens delay embedding theorem for smooth systems on manifolds [93, Theorem 1]. It states
that for given finite-dimensional C2 manifold M and a generic pair of C2-diffeomorphism
T : M → M and C2-function h : M → R, the corresponding delay-coordinate map φ :
M → Rk, φ(x) = (h(x), h(Tx), . . . , h(T k−1x)) is a C2-embedding (an injective immersion) as
long as k > 2 dimM . Due to its strong connections with actually performed reconstruction
procedures, Takens theorem has been met with interest among mathematical physicists (see
e.g. [42, 84, 85, 96]). Let us recall its extension due to Sauer, Yorke and Casdagli [84]. In this
setting, the number k of the delay-coordinates should be two times larger than the upper
box-counting dimension of the phase space X (denoted by dimBX; see Section 2.1 for the
definition), and the perturbation is a polynomial of degree 2k. The formulation of the result
follows [81].
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Theorem 1.1 ([81, Theorem 14.5]). Let X ⊂ RN be a compact set and let T : X → X
be Lipschitz, injective and aperiodic (i.e. without periodic points). Let k ∈ N be such that
k > 2dimBX. Let h : RN → R be a Lipschitz function and h1, . . . , hm : RN → R a basis of
the space of real polynomials of N -variables of degree at most 2k. For α = (α1, . . . , αm) ∈ Rm
denote by hα : RN → R the map

hα(x) = h(x) +
m∑
j=1

αjhj(x).

Then for Lebesgue almost every α = (α1, . . . , αm) ∈ Rm, the transformation

φTα : X → Rk, φTα(x) = (hα(x), hα(Tx), . . . , hα(T k−1x))

is injective on X.

Note that Theorem 1.1 applies to any compact set X ⊂ RN , not necessarily a manifold.
This is a useful feature, as it allows to consider sets with a complicated geometrical structure,
such as fractal sets arising as attractors in chaotic dynamical systems, see e.g. [24]. Moreover,
the upper box-counting dimension of X can be smaller than the dimension of any smooth
manifold containing X, so Theorem 1.1 may require fewer delay-coordinates than its smooth
counterpart in [93]. These results were extended later by Robinson to finite-dimensional
subsets of infinite-dimensional Banach spaces [80] (see also [81, Section 14.3]). Refer to [68]
for a version of Takens’ theorem with a fixed observable and perturbation performed on the
dynamics. Takens’ theorem involving Lebesgue covering dimension on compact metric spaces
and a continuous observable was given in [40] (see [41] for a detailed proof). See also [17, 90]
for Takens theorem for deterministically driven smooth systems and [88, 89] for stochastically
driven smooth systems.

Usually, an experimentalist may perform only a finite number of observations
h(xj), . . . , h(T k−1xj) for some points xj ∈ X, j = 1, . . . , l. We believe it is realistic to assume
that there is an (explicit or implicit) random process determining which initial states xj are
accessible to the experimentalist. In this work we are interested in the question of reconstruc-
tion of the system in a presence of such process, subject to it. Mathematically speaking, this
corresponds to fixing a probability measure µ on X and asking whether the delay-coordinate
map φTα is injective almost surely with respect to µ (i.e. whether there exists a subset of X
with full measure µ, such that φTα is injective after restricting to this subset). Since in this
setting we are allowed to neglect sets of probability zero, it is reasonable to ask whether the
minimal number of delay-coordinates sufficient for the reconstruction of the system can be
smaller than 2 dimX. Our main result states that this is indeed the case, and the number of
delay-coordinates can be reduced by half for any (Borel) probability measure. The following
theorem is a simplified version of our main result. See Section 2.2 for the definition of the
Hausdorff dimension of a measure. See Theorem 3.15 for the full version and Section 3.3 for
its proof.

Theorem 1.2 (Probabilistic Takens delay embedding theorem). Let X ⊂ RN be a
Borel set, µ a Borel probability measure on X and T : X → X an injective, Lipschitz and
aperiodic map. Take k ∈ N such that k > dimH(µ). Let h : RN → R be a locally Lipschitz
function and h1, . . . , hm : RN → R a basis of the space of real polynomials of N variables of
degree at most 2k − 1. For α = (α1, . . . , αm) ∈ Rm denote by hα : RN → R the map

hα(x) = h(x) +
m∑
j=1

αjhj(x).

Then for Lebesgue almost every α = (α1, . . . , αm) ∈ Rm, there exists a Borel set Xα ⊂ X of
full measure µ, such that the delay-coordinate map

φTα : X → Rk, φTα(x) = (hα(x), hα(Tx), . . . , hα(T k−1x))

3



is injective on Xα. If µ is additionally T -invariant, then the sets Xα can be taken to be
T -invariant, i.e. satisfy T (Xα) ⊂ Xα.

Recall that for any Borel set X and a Borel probability measure µ on X one has

dimH(µ) ¬ dimH X ¬ dimBX ¬ dimBX (1.1)

(see (2.1) and the definition of dimH(µ)). Since the inequalities in (1.1) may be strict, using
the Hausdorff dimension instead of the box-counting one(s) may reduce further the required
number of delay-coordinates. In particular there are compact sets X ⊂ RN with dimH X =
0 and dimBX = N , hence Theorem 1.2 can reduce significantly the number of required
delay-coordinates compared to Theorem 1.1 (in a probabilistic setting), as the box-counting
dimension cannot be replaced by Hausdorff dimension in Theorem 1.1 (see Remark 3.10 for
a detailed discussion).

Let us comment on consequences of T -invariance of Xα in the case when µ is T -invariant.
Having injectivity of φTα in Theorem 1.2, it is natural to consider a model of the dynamical
system (X,T ) embedded in Rk, i.e. the dynamical system with phase space φTα(Xα) and
dynamics φTα ◦ T ◦ (φTα)−1 on it. However, to have φTα ◦ T ◦ (φTα)−1 well-defined, the set Xα

should be T -invariant. This does not have to be the case in general, yet it holds if the measure
µ is T -invariant.

An extended version of Theorem 1.2 is presented and proved in Section 3.3 as Theo-
rem 3.15. It shows that the assumption k > dim(µ) can be slightly weakened to µ ⊥ Hk (here
Hk denotes the k-dimensional Hausdorff measure), and in addition to Lipschitz observables
h, one can consider functions which are β-Hölder on bounded sets for suitable β ∈ (0, 1].
Moreover, the theorem holds for any Borel σ-finite measure µ on X. The assumption of ape-
riodicity of T is not essential in Theorems 1.1 and 1.2 - it is enough to assume that sets of
periodic points have dimension small enough. For details, see Theorem 3.15.

The problem of determining the minimal number of delay-coordinates required for re-
construction has been considered in the physical literature. In [74], the authors analyzed an
algorithm which may by interpreted as an attempt to determine this number in a probabilistic
setting. Our work provides rigorous results in this direction. Furthermore, the possibility of
reducing twice the number of required measurements in the probabilistic scenario was conjec-
tured by Shroer, Sauer, Ott and Yorke in [85] (together with a conjecture on the decay rate
of the error probability). These conjectures are being invoked as justifications for reducing
the number of measurements required for a reliable reconstruction of the system (see e.g.
[58, 66, 71]), including applications (see e.g. [79] studying neural activity for epileptic pa-
tients). However in the same spirit, our main result (Theorem 1.2 and its extension Theorem
3.15) formally does not settle these conjectures, as [85] considers a different setting. In Section
3.4 we use our results, together with the theory of topological conditional measures (see [87]),
to prove [85, Conjecture 1] for ergodic invariant measures. Let us postpone formulating pre-
cisely conjectures of [85] to Section 3.4 (see Conjectures 3.20 and 3.21). Instead, we present
here a strengthening of Theorem 1.2, which asserts additional properties of the almost surely
defined inverse (φTh )−1 and allows us to prove [85, Conjecture 1] for ergodic measures. See
Theorem 3.24 for the full version and Section 3.4 for the proof.

Theorem 1.3. Assume that X, µ, T : X → X, h : X → R and k ∈ N satisfy assumptions
of Theorem 1.2. Assume additionally that X is compact. Then for Lebesgue almost every
α ∈ Rm there exists a set Xα ⊂ X of full measure µ such that φ = φTα is injective on Xα and
for every x ∈ Xα, the sequence of conditional measures

1
µ
(
φ−1(B(φ(x), ε))

) µ � φ−1(B(φ(x), ε))

(on sets φ−1(B(φ(x), ε) = {y ∈ X : ‖φ(x)−φ(y)‖ < ε}) converges to δx in the weak∗ topology
as ε↘ 0. As a consequence, [85, Conjecture 1] holds for ergodic invariant measures.
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Takens-type delay embedding theorems can be seen as dynamical versions of embedding
theorems, which specify when a finite-dimensional set can be embedded (i.e. mapped injec-
tively) into a Euclidean space. Indeed, under the assumptions of Theorem 1.1, the delay-
coordinate map φTα is an embedding of X into Rk for typical α. Embedding theorems in
various categories have been extensively studied in a number of papers (see Section 3.2 for
a more detailed discussion). Recently, Alberti, Bölcskei, De Lellis, Koliander and Riegler [1]
proved a probabilistic embedding theorem involving the modified lower box-counting dimen-
sion of the measure (see Theorem 3.8). We are able to improve this result by considering
the Hausdorff dimension. Below we present a simplified version of our theorem, which can be
seen as a non-dynamical counterpart of Theorem 1.2 and a probabilistic version of Mañé’s
linear embedding theorem [59]. Its extended version is formulated and proved in Section 3.2
as Theorem 3.5.

Theorem 1.4 (Probabilistic embedding theorem). Let X ⊂ RN be a Borel set and let µ
be a Borel probability measure on X. Take k ∈ N such that k > dimH(µ) and let φ : RN → Rk
be a Lipschitz function. Then for Lebesgue almost every linear transformation L : RN → Rk
there exists a Borel set XL ⊂ X of full measure µ, such that φL = φ+ L is injective on XL.

We obtain also the following geometric corollary (see Section 3.2 for details).

Corollary 1.5 (Probabilistic injective projection theorem). Let X ⊂ RN be a Borel
set and let µ be a Borel probability measure on X. Then for every k > dimH(µ) and almost
every k-dimensional linear subspace S ⊂ RN , the orthogonal projection of X into S is injective
on a µ-full measure subset of X.

This accompanies the classical Marstrand–Mattila projection theorem (see [61, 62]), stat-
ing that if X ⊂ RN is Borel and k ­ dimH X, then for almost all k-dimensional linear
subspaces S ⊂ RN , the Hausdorff dimension of the image of X under the orthogonal projec-
tion into S has Hausdorff dimension equal to dimH X.

We also provide several examples. Section 3.5 provides a probability measure with
dimH µ < dimMB µ, showing that Theorem 1.4 strengthens a previous result from [1]. Exam-
ple 3.32 shows that in general the condition k > dimH(µ) in Theorem 1.4 cannot be replaced
by k ­ dimH(µ). Example 3.34 shows that linear perturbations of the observable are not
sufficient for Takens theorem. Kan’s example from the Appendix to [84], shows that condi-
tion k > 2 dimH X is not sufficient for existence of a linear transformation into Rk which is
injective on X, hence the Hausdorff dimension is not well suited for the deterministic em-
bedding theorem. As in the probabilistic setting one can work with the Hausdorff dimension,
we consider a set X ⊂ R2 similar to the one provided by Kan, which cannot be embedded
linearly into R, but when endowed with a natural probability measure, almost every linear
transformation L : R2 → R is injective on a set of full measure. We find these transformations
and sets of injectivity explicitly.

1.2 Singular stationary measures for random piecewise affine
interval homeomorphisms

In the second part of the disseration, we study a family of random dynamical systems consist-
ing of pairs of piecewise affine interval homeomorphisms, which we call Alsedà–Misiurewicz
systems, or AM-systems, as systems of this type were introduced and studied in [2] by Alsedà
and Misiurewicz. An AM-system is the system {f−, f+} of increasing homeomorphisms of
the interval [0, 1] of the form

f−(x) =

{
a−x for x ∈ [0, x−]

1− b−(1− x) for x ∈ (x−, 1]
, f+(x) =

{
b+x for x ∈ [0, x+]

1− a+(1− x) for x ∈ (x+, 1]
,
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where 0 < a− < 1 < b−, 0 < a+ < 1 < b+ and

x− =
b− − 1
b− − a−

, x+ =
1− a+

b+ − a+
.

See Figure 1.1 below.

f−

f+

x+ x−

b−

a−

a+

b+

Figure 1.1: An example of an AM -system.

We consider {f−, f+} as a random system with given probabilities p−, p+, where p± > 0
and p− + p+ = 1. Formally, it means that {f−, f+} defines a step skew product

F+ : Σ+
2 × [0, 1]→ Σ+

2 × [0, 1], F+(i, x) = (σ(i), fi1(x)),

where i = (in)n∈N and σ is shift on the space Σ+
2 of infinite one-sided sequences of two symbols

{−,+}, with the Bernoulli probability distribution given by (p−, p+) (see Section 4.2). How-
ever, we are mainly interested in the behaviour of the system in the phase space [0, 1], studying
distribution of trajectories of points x ∈ [0, 1] under {f−, f+}, i.e. {fin ◦ · · · ◦ fi1(x)}∞n=0 for
i1, i2, . . . ∈ {−,+}.

Note that on the intervals (0,min(x−, x+)) and (max(x−, x+), 1) the system {f−, f+} is
equivalent (after a logarithmic change of coordinates), respectively, to two (typically different
and non-symmetric) one-dimensional random walks, which are glued in a continuous way. This
makes such systems interesting from a probabilistic point of view and we believe that they
can serve as models for many stochastic phenomena which appear in random one-dimensional
dynamics.

The behaviour of an AM -system depends on the values of the endpoint Lyapunov expo-
nents, i.e.

Λ(0) = p− ln f ′−(0) + p+ ln f ′+(0), Λ(1) = p− ln f ′−(1) + p+ ln f ′+(1).

For instance, if Λ(0), Λ(1) are negative, then the endpoints of the interval are attracting
in average, so a typical trajectory converges to one of them, which can give rise to two
intermingled basins for the step skew product F+ (see e.g. [15, 35, 52]). In this work we
assume that the Lyapunov exponents Λ(0),Λ(1) are positive. Then for almost all paths i =
(in)n ∈ Σ+

2 , any two trajectories defined by i converge to each other, i.e. |fin ◦· · ·◦fi1(x)−fin ◦
· · · ◦ fi1(y)| → 0 as n → ∞ for x, y ∈ (0, 1). This phenomenon is called synchronization (see
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e.g. [3, 11, 56, 78]). The main object of our study are stationary measures for such systems,
i.e. Borel probability measures ϑ on [0, 1] satisfying

ϑ(A) = p−ϑ(f−1
− (A)) + p+ϑ(f−1

+ (A)) for every Borel set A ⊂ [0, 1]

(see also Definition 2.9 and Section 2.3). In probabilistic language, these are stationary dis-
tributions for the Markov process on the unit interval, arising from iterating f− and f+

randomly according to a probability vector (p−, p+) in an i.i.d fahsion. Clearly, atomic mea-
sures δ0 and δ1 at the common fixed points 0 and 1 are stationary measures. It turns out, that
if Λ(0) and Λ(1) are both strictly positive, then there exists a unique stationary measure µ
on [0, 1] such that µ({0, 1}) = 0 (see Theorem 4.22). In the remainder of this section, as well
as in Chapter 4, µ will always denote this unique stationary measure without atoms at the
endpoints (note that we suppress in the notation the dependence of µ on the parameters). In
this work we study the properties of the measure µ, which we call the stationary measure for
the AM -system. Measure µ has to be either singular or absolutely continuous with respect to
the Lebesgue measure (Proposition 4.26) and our main goal is to understand which possibility
occurs depending on the parameters a−, a+, b−, b+, p−, p+.

In [2], Alsedà and Misiurewicz were using properties of the measure µ to study the corre-
sponding step skew product. In the course of their work, they showed that for some parame-
ters, the stationary measure µ of an AM -system is equal to the Lebesgue measure and conjec-
tured that µ should be singular for typical parameters. We provide a precise condition under
which the stationary measure is equal to the Lebesgue measure (Theorem 4.4). Our main re-
sult is verifying the conjecture on singularity for some sets of parameters. We focus on the sym-
metric case, i.e. a− = a+ and b− = b+. We use two different approaches to prove singularity.
First one, which is the main content of the article [9] joint with Krzysztof Barański, concen-
trates on systems exhibiting a resonance, i.e. with ln f ′+(0)/ ln f ′−(0) = ln f ′+(1)/ ln f ′−(1) ∈ Q.
We prove that for some resonant parameters, the measure µ is indeed singular and supported
on an exceptional minimal set, which is a Cantor set of dimension smaller than 1. More
precisely, we prove the following result.

Theorem 1.6. Let {f−, f+} be an AM -system. Assume that

1. Λ(0) > 0 and Λ(1) > 0,

2. {f−, f+} is symmetric, i.e. a− = a+ = a ∈ (0, 1) and b− = b+ = b ∈ (1,∞),

3. {f−, f+} exhibits a (k : l)-resonance for some relatively prime k, l ∈ N, k > l, i.e.

ln f ′+(0)/ ln f ′−(0) = ln f ′+(1)/ ln f ′−(1) = −k
l
,

4. Inequality ρ < η holds, where

ρ = (f ′−(0))1/l = (f ′+(0))−1/k = (f ′+(1))1/l = (f ′−(1))−1/k

and η ∈ (1/2, 1) is the unique solution of the equation ηk+l − 2ηk+1 + 2η − 1 = 0.

Then the unique stationary measure µ (without atoms at 0, 1) is singular with

dimH(suppµ) =
log η
log ρ

< 1,

where suppµ denotes the topological support of µ. Moreover, suppµ is a nowhere dense perfect
set.
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We give also a dynamical characterization of the set supp(µ) and describe its geometrical
structure as a countable union of disjoint self-similar sets (see Theorem 4.10 for more detailed
version of Theorem 1.6). It turns out that there are two cases to be considered separately,
depending of the resonance parameter ln f ′+(0)/ ln f ′−(0). In the case ln f ′+(0)/ ln f ′−(0) ∈ Z
(i.e. l = 1 in Theorem 1.6), the self-similar sets forming supp(µ) are attractors of finite iterated
function systems, while in the case ln f ′+(0)/ ln f ′−(0) /∈ Z (i.e. l > 1), these self-similar sets
are attractors of infinite iterated function systems and the dynamics on supp(µ) is much more
complicated. In both cases, the proof is based on constructing explicitly minimal sets for the
dynamics and studying their combinatorics. In the case ln f ′+(0)/ ln f ′−(0) ∈ Z we are able
to determine the value of the Hausdorff dimension of µ (see Theorem 4.12). Furthermore,
we present an interesting example of an AM -system exhibiting a resonance, with a singular
stationary measure of full support [0, 1] (Theorem 4.16). Finally, we show that the considered
systems with the same resonance are topologically conjugate (Theorem 4.15). See Section 4.1
for a detailed discussion of these results and Sections 4.2 - 4.7 for proofs.

The second approach allows us to consider also non-resonant parameters. The result
presented below is a part of a work in progress with Krzysztof Barański. See Theorem 4.64
for more detailed version and Section 4.8 for the proof.

Theorem 1.7. There exists a non-empty and open set of parameters (a, b) ∈ (0, 1)× (1,∞)
such that the stationary measure µ for the symmetric AM -system with a− = a+ = a and
b− = b+ = b with probability vector (p−, p+) = (1

2 ,
1
2) is singular with dimH(µ) < 1.

The proof is based on inequality (see [51, Theorem 1])

dimH(µ) ¬ −H((p−, p+))
χ(µ)

,

where
H((p−, p+)) := −p− log p− − p+ log p+

is the entropy of the probability vector (p−, p+) and

χ(µ) :=
∫

[0,1]

(p− log f ′−(x) + p+ log f ′+(x))dµ(x)

is the Lyapunov exponent of the stationary measure µ. In order to prove −H((p−,p+))
χ(µ) < 1, we

bound the Lyapunov exponent χ(µ) by estimating the expected return time to the interval
[x−, x+] and applying Kac’s Lemma (see e.g. [77, Theorem 4.6]). Let us emphasize that the
approach used to prove Theorem 1.6 cannot be used to produce singular stationary measure
in the non-resonant case, as in such case supp(µ) = [0, 1] (see Corollary 4.33).

In order to put our research in a wider perspective, let us give now a brief historical
account on the study of stationary measures for random dynamical systems. For the last
forty years there has been an intensive interest in the study of non-autonomous real one-
dimensional dynamical systems, especially in the context of the theory of groups of smooth
diffeomorphisms acting on the unit circle (see e.g. [36, 69] and the references therein). In a
probabilistic approach, such a system equipped with an appropriate probability distribution
generates in a natural way a Markov process on the circle (see e.g. [5, 22, 26, 54] as general
references on random dynamical systems and iterated function systems). Recently, a contin-
uously growing interest in random dynamics has led to an intensive study of random systems
given by groups or semigroups of one-dimensional non-smooth maps, for instance interval or
circle homeomorphisms (see e.g. [2, 18, 33, 34, 35, 60, 92]).

Let f1, . . . , fm, m ­ 2, be homeomorphisms of a 1-dimensional compact manifold X (the
closed interval or the unit circle). Such a system of maps generates a semigroup consisting
of iterates fin ◦ · · · ◦ fi1 for i1, . . . , in ∈ {1, . . . ,m}, n ∈ {0, 1, 2, . . .}. Let (p1, . . . , pm) be
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a probability vector. The Krylov–Bogolyubov Theorem shows that a stationary probability
measure (according to Definition 2.9) always exists (but is non-necessarily unique). However,
in most cases little is known about its properties. Assuming some regularity of the system
(e.g. forward and backward non-singularity of the transformations) and the uniqueness of the
stationary measure, which occur for a wide class of systems (see e.g. [19]), we know that the
stationary measure is either absolutely continuous or singular with respect to the Lebesgue
measure - this is the case also for AM -systems with positive endpoint Lyapunov exponents
(if we consider only measures without atoms at the endpoints - see Proposition 4.32). Deter-
mining which of the two possibilities occur is a well-known problem, especially in the context
of groups of smooth diffeomorphisms acting on the circle (see e.g. [70, Question 18]). Up
to now, an answer has been given only in some particular cases. For instance, a conjecture
by Y. Guivarc’h, V. Kaimanovich and F. Ledrappier (see [20, Conjecture 1.21] states that
for a finitely generated subgroup of PSL(2,R) acting smoothly on the circle, the stationary
measure is singular. The conjecture was proved by Y. Guivarc’h and Y. Le Jan in [39] for
non-cocompact subgroups and by B. Deroin, V. Kleptsyn and A. Navas in [20] for some min-
imal actions of the Thompson group and subgroups of PSL(2,R) by C2-diffeomorphisms. On
the other hand, the absolute continuity of the stationary measure was proved to hold for a
number of random systems of non-homeomorphic maps of the interval (usually expanding at
least at average), see e.g. [4, 16, 75].

Let us note that the question of determining singularity or absolute continuity of the
stationary measure is non-trivial even in the apparently simple case of two contracting simi-
larities f1, f2 of the unit interval [0, 1], given by f1(x) = λx, f2(x) = λx+ 1−λ for λ ∈ (0, 1).
Then the unique stationary measure νλ for the probability vector (1/2, 1/2) is called the
symmetric Bernoulli convolution and is always either singular or absolutely continuous. It is
known (see [86]) that the set of parameters λ > 1/2 for which νλ is singular has Hausdorff
dimension zero, and the only known values of “singular” parameters are the reciprocals of
the Pisot numbers, as proved in [28]. It is a long-standing open question whether these are
the only examples of singular Bernoulli convolutions. Despite many results in this direction,
a complete answer is still unknown and stimulates an active research. See e.g. [76, 95] for
comprehensive surveys on the subject.

Another approach to proving typical singularity of stationary measures for systems on the
interval with positive endpoint Lyapunov exponents was taken recently in [18]. The authors
consider much more general family of systems, namely all the systems {f1, . . . , fm} (together
with probability vectors (p1, . . . , pm)) consisting of orientation preserving homeomorphisms of
the unit interval which are C1 in the neighbourhoods of the endpoints, satisfying Λ(0), Λ(1) >
0 and such that for every x ∈ (0, 1) there exist i, j ∈ {1, . . . ,m} such that fi(x) < x <
fj(x). They prove that for a topologically generic system in such a family, the corresponding
stationary measure is singular. This however does not imply generic singularity of the stationy
measure for AM -systems, as they form a meager subset of this family.

To our knowledge, Theorems 1.6 and 1.7 are the first explicit examples of non-atomic
singular stationary measures for non-expanding random systems generated by semigroups of
piecewise affine homeomorphisms of the circle of that type (note that an AM -system can be
considered as a pair of homeomorphisms of the circle with a unique common fixed point).
The fact that the maps are piecewise affine is especially interesting, since such systems are
studied intensively and often serve as models for smooth systems (see e.g. [70, Questions 12
and 16]).

Notice that in the resonant case mentioned above, the stationary measure is supported on
an exceptional minimal set (i.e. invariant Cantor sets where the systems is minimal), while in
the non-resonant one, its support is equal to the entire interval [0, 1] (see Proposition 4.6). It
should be noted that the properties of exceptional minimal sets are a well-known subject of
interest, especially in the context of the groups of diffeomorphisms. For instance, a conjecture
of Ghys and Sullivan says that exceptional minimal sets for groups of C2-diffeomorphisms have
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Lebesgue measure zero. The hypothesis has been recently verified by B. Deroin, V. Kleptsyn
and A. Navas [21] for real-analytic diffeomorphisms, while the question remains open in the
smooth case. Our work contributes to the study of such sets for piecewise affine systems.

1.3 Organization of the dissertation

The dissertation is organized as follows.
Chapter 2 contains preliminary material on the dimension theory of sets and measures

together with basic facts on invariant and stationary measures.
Chapter 3 contains results on probabilistic embedding theorems (Section 3.2), probabilis-

tic Takens theorem (Section 3.3) and conjectures of Schroer, Sauer, Ott and Yorke (Section
3.4). It also contains several examples (Sections 3.5 and 3.6).

Chapter 4 contains results on singular stationary measures for AM -systems. The proof of
Theorem 1.6 is divided into two parts: Section 4.4 (case l = 1) and Section 4.5 (case l > 1).
Proof of Theorem 1.7 can be found in Section 4.8.
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Chapter 2

Preliminaries

In this chapter we present basic notions which will be used throughout the dissertation. We
focus on the dimension theory of sets and measures, as well as the notions of invariant and
stationary measures. It will be sufficient for us to consider only subsets of the Euclidean
space RN , however some parts of the presented theory extend to the more general setting of
metric spaces. We fill concentrate on notions and properties which will be used throughout
this dissertation. For more information on dimension theory in Euclidean spaces see e.g.
[30, 63, 81].

Let us begin by fixing some notation. Consider the Euclidean space RN for N ∈ N, with
the standard inner product 〈·, ·〉 and the corresponding norm ‖ · ‖. The open δ-ball around
a point x ∈ RN is denoted by BN (x, δ). We will often denote it by B(x, δ), if the dimension
is clear from the context. By |X| we denote the diameter of a set X ⊂ RN . By X we will
denote the closure of a set X and by Int(X) its interior. A measurable space is a pair (X,A)
consisting of a set X and a σ-algebra A of subsets of X. Elements of A are called measurable
sets. By a measure on a measurable space (X,A) we will understand a σ-additive function
µ : A → [0,∞] satisfying µ(∅) = 0. We say that a measurable set Y ⊂ X is of full measure µ, if
µ(X \ Y ) = 0. A measure µ on a measurable space (X,A) is called probabilistic if µ(X) = 1,
finite if µ(X) < ∞, and σ-finite if there exists a countable collection of measurable sets

An, n ∈ N such that µ(An) < ∞ for each n ∈ N and
∞⋃
n=1

An = X. For a measurable set

A, we denote by µ|A or µ � A the restriction of µ to the set A. Measures µ and ν on a
measurable space (X,A) are called (mutually) singular if there exists a measurable set A
such that µ(A) = ν(X \ A) = 0. We denote this fact by µ ⊥ ν. The Euclidean space RN
will be by default considered with the Borel σ-algebra (i.e. the σ-algebra generated by open
sets). A Borel measure is a measure µ defined on the σ-algebra of Borel sets. The support of
a Borel measure µ on RN is the closed set supp(µ) = {x ∈ RN : ∀

δ>0
µ(B(x, δ)) > 0}. For a

measure µ on a measurable space (X,A) and a measurable function f : X → R, the essential
supremum and essential infimum of f with respect to µ are defined as

ess sup
x∼µ

f(x) := inf
{

sup
x∈A

f(x) : A ∈ A and µ(X \A) = 0
}

and

ess inf
x∼µ

f(x) := sup
{

inf
x∈A

f(x) : A ∈ A and µ(X \A) = 0
}

respectively. By Leb we will denote the Lebesgue measure. We take all the logarithms in the
base 2. Note however that most of the considered notions (in particular: dimensions) do not
depend on the choice of the base of the logarithms.

11



2.1 Dimensions of sets

For a bounded set X ⊂ RN and δ > 0, let N(X, δ) denote the minimal number of balls
of diameter at most δ required to cover X. The lower and upper box-counting (Minkowski)
dimensions of X are defined as

dimBX = lim inf
δ→0

logN(X, δ)
− log δ

and dimBX = lim sup
δ→0

logN(X, δ)
− log δ

.

If dimBX = dimBX, then we denote their common value as dimBX and call it the box-
counting (Minowski) dimension of X. The lower (resp. upper) box-counting dimension of an
unbounded set is defined as the supremum of the lower (resp. upper) box-counting dimensions
of its bounded subsets. The lower and upper modified box-counting (Minkowski) dimensions
of X ⊂ RN are defined as

dimMBX = inf
{

sup
i∈N

dimBKi : X ⊂
∞⋃
i=1

Ki, Ki compact
}
,

dimMBX = inf
{

sup
i∈N

dimBKi : X ⊂
∞⋃
i=1

Ki, Ki compact
}
.

If dimMBX = dimMBX, then we denote their common value by dimMB X and call it the
modified box-counting (Minowski) dimension of X. For s > 0, the s-dimensional (outer)
Hausdorff measure of a set X ⊂ RN is defined as

Hs(X) = lim
δ→0

inf
{ ∞∑
i=1

|Ui|s : X ⊂
∞⋃
i=1

Ui, |Ui| ¬ δ
}

The outer measure Hs becomes a measure after restricting to Borel sets. The Hausdorff
dimension of X is given as

dimH X = inf{s > 0 : Hs(X) = 0}

or, equivalently, as
dimH X = sup{s > 0 : Hs(X) =∞}.

See [30, Chapter 3] for more details. With this notation, the following inequalities hold for
X ⊂ RN :

dimH X ¬ dimMBX ¬ dimMBX ¬ dimBX ¬ N,
dimH X ¬ dimMBX ¬ dimBX ¬ dimBX ¬ N.

(2.1)

The following proposition states basic properties of dimensions, which will be used
throughout this work.

Proposition 2.1. For any sets X,X1, X2, . . . ⊂ RN the following holds

(1) if X1 ⊂ X2, then dimX1 ¬ dimX2 for any notion of the dimension defined above,

(2) dimBX = dimBX and dimBX = dimBX,

(3) dimB (X1 ∪X2) = max{dimBX1, dimBX2},

(4) dimB (X1 ×X2) ¬ dimB (X1) + dimB (X2)

(5) dim(
∞⋃
j=1

Xj) = sup{dimXj : j = 1, 2, . . .}, where dim can denote any of dimH ,dimMB

and dimMB ,

12



(6) let f : X → Rk be a Lipschitz map. Then dim(f(X)) ¬ dim(X) for any notion of the
dimension defined above.

For the proof see [30, Chapters 2 and 3].
In some cases, it will be convenient for us to consider covers by dyadic cubes rather than

Euclidean balls. It turns out, that it gives rise to equivalent notions of dimension. Let us
confine ourselves to subsets of [0, 1]N . For n ∈ N and x1, . . . , xn ∈ {0, 1}, let [x1, . . . , xn]
denote the dyadic interval of length 2−n corresponding to the sequence (x1, . . . , xn), i.e.

[x1, . . . , xn] =


[ n∑
j=1

xj
2j ,

n∑
j=1

xj
2j + 1

2n

)
if

n∑
j=1

xj
2j + 1

2n < 1[
1− 1

2n , 1
]

otherwise.

A dyadic cube of sidelength 2−n in [0, 1]N is an N -fold product of dyadic intervals of length
2−n. For n ∈ N and x ∈ [0, 1]N let Dn(x) be the unique dyadic cube of sidelength 2−n

containing x. Let N ′(X, 2−n) be the number of dyadic cubes of sidelength 2−n intersecting
X. Then (see e.g. [30, Section 2.1])

dimBX = lim inf
n→∞

logN ′(X, 2−n)
n log 2

and dimBX = lim sup
n→∞

logN ′(X, 2−n)
n log 2

. (2.2)

2.2 Dimensions of measures

We define the Hausdorff dimension of a σ-finite Borel measure µ on RN as

dimH(µ) = inf{dimH X : X ⊂ RN is a Borel set of full measure µ}

and the upper and lower modified box-counting dimensions of µ as

dimMB (µ) = inf{dimMBX : X ⊂ RN is a Borel set of full measure µ},

dimMB (µ) = inf{dimMBX : X ⊂ RN is a Borel set of full measure µ}.
Note that a similar definition for the box-counting dimensions would give simply the di-
mension of the topological support supp(µ) of the measure µ, as box counting dimensions
are stable under taking closure (Prop. 2.1.(2)). We will consider also the lower Hausdorff
dimension of a σ-finite Borel measure µ on RN defined as

dimH(µ) = inf{dimH X : X ⊂ RN is a Borel set of positive measure µ}.

The inequalities (2.1) give

dimH(µ) ¬ dimH(µ) ¬ dimMB (µ) ¬ dimMB (µ). (2.3)

For a Borel probability measure µ on RN with compact support define lower and upper
information dimensions of µ as

ID(µ) = lim inf
r→0

∫
supp(µ)

logµ(B(x, r))
log r

dµ(x) and ID(µ) = lim sup
r→0

∫
supp(µ)

logµ(B(x, r))
log r

dµ(x).

If ID(µ) = ID(µ), then we denote their common value as ID(µ) and call it the information
dimension of µ.

Remark 2.2 Information dimensions are often defined as

ID(µ) = lim inf
ε→0

1
log ε

∑
C∈Cε

µ(C) logµ(C) and ID(µ) = lim sup
ε→0

1
log ε

∑
C∈Cε

µ(C) logµ(C) (2.4)

where Cε is the partition of RN into cubes with side length ε and vertices on the lattice (εZ)N .
These definitions are equivalent with the previous ones (see e.g. [98, Appendix I]).

13



Definition 2.3 Let µ be a finite Borel measure on RN . The lower and upper local dimensions
of a point x ∈ RN are defined as

d(µ, x) = lim inf
r→0

logµ(B(x, r))
log r

and d(µ, x) = lim sup
r→0

logµ(B(x, r))
log r

(we set d(µ, x) = d(µ, x) for x /∈ supp(µ)). We say that µ is lower (resp. upper) exact-
dimensional if d(µ, x) = const µ-almost surely (resp. d(µ, x) = const µ-almost surely). We
say that µ is exact-dimensional if d(µ, x) = d(µ, x) = const µ-almost surely.

Proposition 2.4. Let µ be a Borel probability measure on RN with compact support. Then

(1) dimH(µ) = ess sup
x∼µ

d(µ, x),

(2) dimH(µ) = ess inf
x∼µ

d(µ, x),

(3) dimMB (µ) = ess sup
x∼µ

d(µ, x)

(4) dimH(µ) ¬ ID(µ),

(5) if µ is lower exact-dimensional, then dimH(µ) = dimH(µ) ¬ ID(µ),

(6) if µ is exact-dimensional, then dimH(µ) = dimH(µ) = ID(µ) = dimMB (µ) = dimMB (µ),

Proof. For (1) - (3) see [29, Propositions 10.2 and 10.3] together with [30, Proposition 3.9].
For (4) see [31, Thm 1.3] (see also [10, Thm. 2.1]). The statement (5) follows from (1), (2)
and (4), while (6) follows from the previous points and [31, Thm 1.3].

It turns out that the Hausdorff dimension and the information dimension behave differ-
ently under taking convex combinations of measures.

Proposition 2.5. (1) Let µ1, µ2, . . . be Borel probability measures on RN and let (p1, p2, . . .)
be a probability vector with positive entries. Then

dimH(
∞∑
j=1

pjµj) = sup{dimH(µj) : j = 1, 2, . . .}.

(2) Let µ and ν be Borel probability measures with compact support on RN and let p ∈ (0, 1).
Then

ID(pµ+ (1− p)ν) ¬ pID(µ) + (1− p)ID(ν)

and
ID(pµ+ (1− p)ν) ­ pID(µ) + (1− p)ID(ν).

Consequently
ID(pµ+ (1− p)ν) = pID(µ) + (1− p)ID(ν),

provided that ID(µ) and ID(ν) exist.

Proof. For (1) see [44, Cor. 3.18], while (2) follows by applying [38, Lemma 3.4] to (2.4).
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Similarly as for sets, one can equivalently define Hausdorff dimensions of measures in
terms of local dimensions corresponding to dyadic cubes. More precisely, for a finite Borel
measure µ on RN and x ∈ RN define the lower and upper dyadic local dimension of µ at x as

d′(µ, x) = lim inf
n→∞

− logµ(Dn(x))
n log 2

, d
′
(µ, x) = lim sup

n→∞

− logµ(Dn(x))
n log 2

.

It turns out that switching from Euclidean balls to dyadic cubes can alter the local dimensions
only on a set of measure zero:

Proposition 2.6 ([44, Proposition 3.20]). Let µ be a finite Borel measure on RN . Then

d′(µ, x) = d(µ, x) and d′(µ, x) = d(µ, x) for µ-a.e. x ∈ RN .

Consequently, we can replace d(µ, x) with d′(µ, x) and d(µ, x) with d′(µ, x) in Proposition 2.4.

Note that the above result is proved in [44] only for the lower local dimensions. The upper
case is analogous.

In this dissertation we will focus mainly on dimH , as our embedding theorems of Chapter
3 will be formulated in its terms. The stationary measures from Chapter 4 will turn out to
be exact dimensional, hence all the above notions of dimension will coincide for them. The
modified box-counting dimensions of a measure will appear only in Sections 3.2 and 3.5, where
we will compare probabilistic embedding theorem for dimH with results obtained previously
in [1] and give an explicit example of a measure µ with dimH(µ) < dimMB (µ). Information
dimension will play a role in Section 3.4, as the conjectures of Shroer, Sauer, Ott and Yorke
[85] are stated in its terms. We will however observe that neither the information dimension
nor the lower Hausdorff dimension are well suited for almost sure embedding problems for
arbitrary finite measures (see Example 3.33).

2.3 Invariant and stationary measures

Let us now introduce the notions of an invariant measure (for a deterministic dynamical
system) and a stationary measure (for a random dynamical system).

Definition 2.7 Let (X,A) be a measurable space and let T : X → X be a measurable map.
For a measure µ on (X,A), we denote by T∗µ the transport of µ by T , i.e. the measure defined
as

T∗µ(A) = µ(T−1A) for A ∈ A.

Measure µ is called T -invariant if T∗µ = µ. Measure µ is called ergodic if any T -invariant
set is either of full or zero measure, i.e. for any A ∈ A, the condition A = T−1(A) implies
µ(A) = 0 or µ(X \A) = 0.

Ergodic measures for Lipschitz transformations are always lower (and upper) exact di-
mensional:

Proposition 2.8 ([29, Prop 10.6]). Let X ⊂ RN be closed, let T : X → X be a Lipschitz
map and let µ be a T -invariant and ergodic Borel probability measure. Then µ is lower (and
upper) exact-dimensional and consequently dimH(µ) = dimH(µ) ¬ ID(µ).

Let us now consider the case of random dynamics arising from iterated function systems.

Definition 2.9 Let f1, f2, . . . , fm : X → X be a collection of measurable maps on a mea-
surable space (X,A) and let (p1, . . . , pm) be a probabilistic vector. A measure µ on (X,A) is
called stationary if

µ =
m∑
j=1

pj(fj)∗µ.
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Let M denote the set of probability measures on (X,A). The Markov operator T : M→M
is defined as

T µ =
m∑
j=1

pj(fj)∗µ.

Note that the set of stationary probability measures coincide with the set of fixed points
of the Markov operator T .

Consider now X = [0, 1] equipped with the Borel σ-algebra and assume that all
f1, f2, . . . , fm are piecewise differentiable homeomorphisms with f ′j > 0 (this will be the
case in Chapter 4).

Definition 2.10 The Perron-Frobenius (or transfer) operator T : L1([0, 1],Leb) →
L1([0, 1],Leb) is defined as

Tg =
m∑
j=1

pj (f−1
j )′ g ◦ f−1

j .

Note that the Perron-Frobenius operator transforms a density (Radon-Nikodym deriva-
tive) of a probability measure to the density of its image under the Markov operator (i.e.
dPµ
dLeb = T ( dµ

dLeb)).
Similarly as for the Markov operator, the stationary densities (densities of stationary

measures with respect to the Lebesgue measure) are the fixed points of the Perron-Frobenius
operator T .

One of the basic cases of calculation of the dimension of sets and stationary measures
are the self-similar sets and measures. Let us begin by the classical result guaranteeing the
existence of these objects.

Proposition 2.11 ([30, Thm 9.1] and [26, Prop. 3.3.15]). Let fj : R → R, j = 1, . . . ,m be
strictly contracting, i.e. there exists λ ∈ (0, 1) such that |fj(x) − fj(y)| ¬ λ|x − y| for every
x, y ∈ R and j ∈ {1, . . . ,m}. Then, there exists a unique non-empty compact set X ⊂ R,
called the attractor of the system {f1, . . . , fm}, satisfying

X =
m⋃
j=1

fj(X).

Moreover, for any non-empty compact set A ⊂ R, the following equality holds

X =
∞⋂
n=1

m⋃
i1,...,in=1

fi1 ◦ . . . ◦ fin(A).

Similarly, let (p1, . . . , pm) be a probability vector. There exists a unique stationary Borel
probability measure µ on R for the system {f1, . . . , fm} with probabilities (p1, . . . , pm).

Definition 2.12 Let fj : R → R, j = 1, . . . ,m be as in Proposition 2.11. The system
{f1, . . . , fm} satisfies the Strong Separation Condition if fi(X) ∩ fj(X) = ∅ for i 6= j, where
X is the attractor of the system.

The attractor of a contracting iterated function system, as well as its stationary measure,
can be described in terms of the natural projection from the symbolic space. We will make
use of this description in Chapter 4.

Proposition 2.13. Let fj : R→ R, j = 1, . . . ,m be as in Proposition 2.11. Fix x ∈ R. Then
the natural projection π : {1, . . . ,m}N → R given by

π(i1, i2, . . .) = lim
n→∞

fi1 ◦ fi2 ◦ . . . ◦ fin(x)
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is well defined and does not depend on x. Moreover, the attractor X of the system {f1, . . . , fm}
satisfies X = π({1, . . . ,m}N). Similarly, for a fixed probability vector (p1, . . . , pm), the cor-
responding stationary probability measure µ satisfies equality µ = π∗

(
(p1, . . . , pm)⊗N

)
, where

(p1, . . . , pm)⊗N is the Bernoulli measure corresponding to the probability vector (p1, . . . , pm).
If the system {f1, . . . , fm} satisfies the Strong Separation Condition, then π is injective (hence
it is a homeomorphism between {1, . . . ,m}N and X).

See [49] for details.

Definition 2.14 Let fj : R → R, j = 1, . . . ,m be contracting similarities, i.e. maps of the
form fj(x) = λjx + tj for some λj , tj ∈ R satisfying 0 < |λj | < 1. Then the attractor of the
system {f1, . . . , fm} is called a self-similar set and any stationary measure for this system is
called a self-similar measure.

It turns out that it is easy to calculate dimension of self-similar sets and measures for
systems satisfying the Strong Separation Condition. We will apply this formulas in Chap-
ter 4, where the stationary measures for AM -systems will turn out to be infinite convex
combinations of self-similar measures.

Theorem 2.15 ([30, Thm 9.3] and [26, Thm 5.2.5]). Let fj : R → R, j = 1, . . . ,m be
of the form fj(x) = λjx + tj, where λj , tj ∈ R and 0 < |λj | < 1 for each j = 1, . . . ,m.
Assume additionally that fi(X)∩ fj(X) = ∅ for i 6= j, where X is the attractor of the system
{f1, . . . , fm}. Then the box-counting dimension of X exists and dimH X = dimBX = d,
where d is the unique number d ∈ [0, 1] satisfying

m∑
j=1

|λj |d = 1.

Let (p1, . . . , pm) be a probability vector. Then the corresponding self-similar measure is exact
dimensional and

dimH µ =

m∑
j=1

pj log pj

m∑
j=1

pj log |λj |
.

Moreover, if all pj are strictly positive, then supp(µ) = X.

Remark 2.16 It is enough to assume weaker separation condition than fi(X) ∩ fj(X) = ∅
for i 6= j. Namely, it is enough to assume the Open Set Condition, i.e. the existence of an

open bounded non-empty set U ⊂ R such that
m⋃
j=1

fj(U) ⊂ U with the sum being disjoint.

However, the natural projection π does not have to be injective in that case.

The formula for the dimension of a self-similar measure is given in terms of the entropy H(p)
of the probability vector p = (p1, . . . , pm), defined as

H(p) = −
m∑
j=1

pj log pj ,

and the Lyapunov exponent χ(p) of the system, defined as

χ(p) =
m∑
j=1

pj log |λj |.

In this notation, the above formula yields dimH µ = H(p)
−χ(p) . In the overlapping case the equality

might no longer be valid, yet the inequality dimH µ ¬ H(p)
−χ(p) still holds. Actually, this type of

inequality holds in much greater generality (see [51]) and we will use it in Section 4.8.
In Chapter 4 we will also make use of an extension of Theorem 2.15 to infinite collections

of similarities on the interval (following [64]; see the proof of Proposition 4.62 for the details).
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Chapter 3

A probabilistic Takens theorem

In this chapter we prove probabilistic Takens theorem and several accompanying results. The
main results of this chapter are: Probabilistic embedding theorem 3.5, Probabilistic Takens
theorem 3.15) and its extension 3.24. The latter allows us to prove [85, Conjecture 1] for
ergodic measures (see Theorem 3.22). These are full versions of results formulated in Section
1.1. We also give an example of a measure with Hausdorff dimension strictly smaller than
lower modified box dimension (see Theorem 3.29) and several further examples. All the results
of this chapter, except for Section 3.4 (including Theorems 3.22 and 3.24), are taken from [8].

The chapter is organized as follows. In Section 3.1 we introduce notation, definitions and
preliminary results used in the proofs of main theorems. Section 3.2 contains the formulation
and proof of the extended version of the probabilistic embedding theorem (Theorem 3.5),
while Section 3.3 is devoted to the proof of the extended version of the probabilistic Takens
delay embedding theorem (Theorem 3.15). Both of these sections contain also historical re-
marks. In Section 3.4 we prove conjecture of Sauer, Shroer, Ott and Yorke [85] for ergodic
invariant measures. Section 3.5 contains an example of a measure with Hausdorff dimension
smaller than lower modified box dimension. In Section 3.6 we present several further exam-
ples. Apart from results and their proofs, Sections 3.2 and 3.3 contain historical remarks on
embedding and Takens theorems.

3.1 Preliminaries

We say that function φ : X → Rk, X ⊂ RN is locally β-Hölder for β > 0 if for every x ∈ X
there exists an open set U ⊂ RN containing x such that φ is β-Hölder on U ∩X, i.e.

∃
C>0

∀
x,y∈U∩X

‖φ(x)− φ(y)‖ ¬ C‖x− y‖β. (3.1)

Similarly, we say the φ is β-Hölder on bounded sets if for every bounded set U ⊂ RN , φ is
β-Hölder on U ∩ X (i.e. (3.1) holds). We say that φ is Lipschitz (locally/on bounded sets)
if it is 1-Hölder (locally/on bounded sets). Note that if φ : X → Rk is β-Hölder on bounded
sets then it is also locally β-Hölder. The converse holds if X is closed (but not for arbitrary
X ⊂ RN ). For k ¬ N we write Gr(k,N) for the (k,N)-Grassmannian, i.e. the space of all
k-dimensional linear subspaces of RN , equipped with the standard rotation-invariant (Haar)
measure (see [63, Section 3.9]) . By ηN we denote the normalized Lebesgue measure on the
unit ball BN (0, 1), i.e.

ηN =
1
κN

Leb |BN (0,1),

where Leb is the Lebesgue measure on RN and κN = Leb(BN (0, 1)).
For N, k ∈ N let Lin(RN ;Rk) be the space of all linear transformations L : RN → Rk.

Such transformations are given by

Lx =
(
〈l1, x〉, . . . , 〈lk, x〉

)
, (3.2)
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where l1, . . . , lk ∈ RN . Thus, the space Lin(RN ;Rk) can be identified with (RN )k, and the

Lebesgue measure on Lin(RN ;Rk) is understood as
k⊗
j=1

Leb, where Leb is the Lebesgue mea-

sure in RN . Within the space Lin(RN ;Rk) we consider the space ENk consisting of all linear
transformations L : RN → Rk of the form (3.2), for which l1, . . . , lk ∈ BN (0, 1). Note that by
the Cauchy-Schwarz inequality,

‖Lx‖ ¬
√
N ‖x‖ (3.3)

for every L ∈ ENk and x ∈ RN .
By ηN,k we denote the normalized Lebesgue measure on ENk , i.e. the probability measure

on ENk given by

ηN,k =
k⊗
j=1

1
κN

Leb |BN (0,1),

where κN = Leb(BN (0, 1)). The following geometrical inequality is the key ingredient of the
proof of Theorem 3.5.

Lemma 3.1 ([81, Lemma 4.1]). Let L : RN → Rk be a linear transformation. Then for
every x ∈ RN \ {0}, z ∈ Rk and ε > 0,

ηN,k({L ∈ ENk : ‖Lx+ z‖ ¬ ε}) ¬ CNk/2 εk

‖x‖k
,

where C > 0 is an absolute constant.

For L ∈ Lin(Rm;Rk), where m, k ∈ N, denote by σp(L), p ∈ {1, . . . , k}, the p-th largest
singular value of the matrix L, i.e. the p-th largest square root of an eigenvalue of the matrix
L∗L. In the proof of Theorem 3.15, instead of Lemma 3.1 we will use the following lemma.

Lemma 3.2 ([81, Lemma 14.3]). Let L : Rm → Rk be a linear transformation. Assume that
σp(L) > 0 for some p ∈ {1, . . . , k}. Then for every z ∈ Rk and ρ, ε > 0,

Leb({α ∈ Bm(0, ρ) : ‖Lα+ z‖ ¬ ε})
Leb(Bm(0, ρ))

¬ Cm,k
( ε

σp(L) ρ

)p
,

where Cm,k > 0 is a constant depending only on m, k and Leb is the Lebesgue measure on
Rm.

To verify the measurability of the sets occurring in subsequent proofs, we will use the two
following elementary lemmas. Recall that a σ-compact set is a countable union of compact
sets.

Lemma 3.3. Let X ⊂ RN be a Borel set and let µ be a Borel σ-finite measure on X. Then
there exists a σ-compact set K ⊂ X of full measure µ.

Proof. The proof follows from the fact that a finite Borel measure in a Euclidean space is
regular (see e.g. [14, Theorem 1.1]). More precisely, as µ is σ-finite, there exists a sequence

Kn, n ∈ N of Borel sets such that X =
∞⋃
n=1

Kn and µ(Kn) < ∞. By regularity of a finite

Borel measure on RN , there exist compact sets Fn,k, n, k ∈ N such that Fn,k ⊂ Kn and
µ(Kn \ Fn,k) ¬ 1

k for all n, k ∈ N. The desired σ-compact subset of X of full measure is
K =

⋃
n,k∈N

Fn,k.

Lemma 3.4. Let X ,Z be metric spaces. Then the following hold.
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(a) If K ⊂ X ×Z is σ-compact, then so is πX (K), where πX : X ×Z → X is the projection
given by πX (x, z) = x. In particular, πX (K) is Borel.

(b) If X ,Z are σ-compact, F : X ×Z → Rk, k ∈ N, is continuous and K ⊂ X is σ-compact,
then the set

{(x, z) ∈ X × Z : F (x, z) = F (y, z) for some y ∈ K \ {x}}

is σ-compact and hence Borel.

Proof. The statement (a) follows from the fact that πX is continuous, and a continuous
image of a compact set is also compact. To check (b), let πX×Z : X ×K × Z → X × Z be
the projection πX×Z(x, y, z) = (x, z). Then

{(x, z) ∈ X × Z : F (x, z) = F (y, z) for some y ∈ K \ {x}}
= πX×Z

(
{(x, y, z) ∈ X ×K ×Z : F (x, z) = F (y, z), d(x, y) 6= 0}

)
=
∞⋃
n=1

πX×Z
(
{(x, y, z) ∈ X ×K ×Z : F (x, z) = F (y, z), d(x, y) ­ 1

n
}
)
,

where d is the metric in X . Since d and F are continuous, the set
(
{(x, y, z) ∈ X ×K × Z :

F (x, z) = F (y, z), d(x, y) ­ 1
n}
)

is closed and consequently σ-compact, since X is σ-compact.
Applying (a) ends the proof.

3.2 Probabilistic embedding theorem

In this section we prove an extended version of the Probabilistic embedding theorem, formu-
lated below. Recall that Hs denotes the s-dimensional Hausdorff measure.

Theorem 3.5 (Probabilistic embedding theorem – extended version). Let X ⊂ RN
be a Borel set and µ be a Borel σ-finite measure on X. Fix k ∈ N and β ∈ (0, 1] such that
µ ⊥ Hβk and let φ : X → Rk be β-Hölder on bounded sets. Then for Lebesgue almost every
linear transformation L : RN → Rk there exists a Borel set XL ⊂ X of full measure µ, such
that the map φL = φ+ L is injective on XL.

Remark 3.6 Note that the assumption µ ⊥ Hβk is fulfilled if dimH(µ) < βk, so Theorem 3.5
is indeed an embedding theorem for the Hausdorff dimension. Moreover, it may happen that
µ ⊥ Hβk and dimH X = βk, hence the assumption µ ⊥ Hβk is weaker than dimH(µ) < βk.
Note also that φ : X → Rk is β-Hölder on bounded sets provided that φ extends to a locally
β-Hölder map on the closure X. In particular, this assumption is fulfilled if φ is defined on
RN and locally β-Hölder. Consequently, Theorem 1.4 follows from Theorem 3.5. It is also
straightforward to notice that if dimH X = 0, then φ can be taken to be an arbitrary Hölder
map.

Proof of Theorem 3.5. Note first that it sufficient to prove that the set XL exists for ηN,k-
almost every L ∈ ENk . Indeed, if this is shown, then for a given β-Hölder map φ : RN → Rk
we can take sets Lj ⊂ ENk , j ∈ N, such that ηN,k(Lj) = 1 and for every L̃ ∈ Lj the map

(φ/j)L̃ = φ/j + L̃ is injective on a Borel set X(j)
L̃
⊂ X of full measure µ. Then the set

L =
⋃
j∈N{jL̃ : L̃ ∈ Lj} ⊂ Lin(RN ;Rk) has full Lebesgue measure and for every L ∈ L there

exists j such that L/j ∈ Lj , so (φ/j)L/j = (φ + L)/j is injective on XL =
⋂
j∈NX

(j)
L/j (and

hence so is φL), which has full measure µ.
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By the assumption µ ⊥ Hβk, there exists a Borel subset X̃ of X of full measure µ and zero
measure Hβk. By Lemma 3.3, we can assume that X̃ is σ-compact. Take k ∈ N, β ∈ (0, 1]
with Hβk(X̃) = 0 and a β-Hölder map φ : RN → Rk. Set

A = {(x, L) ∈ X̃ × ENk : φL(x) = φL(y) for some y ∈ X̃ \ {x}}.

By Lemma 3.4, A is Borel. For x ∈ X̃ and L ∈ ENk , denote by Ax and AL, respectively, the
sections

Ax = {L ∈ ENk : (x, L) ∈ A}, AL = {x ∈ X̃ : (x, L) ∈ A}.

The sets Ax and AL are Borel as sections of a Borel set. Observe first, that in order to prove
the theorem it is enough to show ηN,k(Ax) = 0 for every x ∈ X̃, since then by Fubini’s
theorem ([83, Thm. 8.8]), (ηN,k ⊗ µ)(A) = 0 and, consequently, µ(AL) = 0 for ηN,k-almost
every L ∈ ENk . Since φL is injective on X̃ \AL, the assertion of the theorem is true.

Take a point x ∈ X̃. To show ηN,k(Ax) = 0, it suffices to prove ηN,k(Ax,n) = 0 for every
n ∈ N, where

Ax,n = {L ∈ ENk : φL(x) = φL(y) for some y ∈ Kn}

and

Kn =
{
y ∈ X̃ :

1
n
¬ ‖x− y‖ ¬ n

}
.

Take n ∈ N and fix a small ε > 0. Since Hβk(Kn) ¬ Hβk(X̃) = 0, there exists a collection of
balls BN (yi, εi), i ∈ N, for some yi ∈ Kn, εi > 0, such that

Kn ⊂
⋃
i∈N

BN (yi, εi) and
∑
i∈N

εβki ¬ ε. (3.4)

Take L ∈ Ax,n and y ∈ Kn such that φL(x) = φL(y). Then y ∈ BN (yi, εi) for some i ∈ N and

‖L(yi − x) + φ(yi)− φ(x)‖ = ‖φL(yi)− φL(x)‖
= ‖φL(yi)− φL(y)‖
¬ ‖φ(yi)− φ(y)‖+ ‖L(yi − y)‖

¬ M̃n‖yi − y‖β +
√
N‖yi − y‖

¬Mnε
β
i

for some M̃n,Mn > 0, by (3.3) and the fact that y, yi ∈ BN (x, n + ε) and φ is β-Hölder on
bounded sets. This shows that

Ax,n ⊂
⋃
i∈N
{L ∈ ENk : ‖L(yi − x) + φ(yi)− φ(x)‖ ¬Mnε

β
i }.

By Lemma 3.1 and (3.4) we have

ηN,k(Ax,n) ¬
∑
i∈N

ηN,k({L ∈ ENk : ‖L(yi − x) + φ(yi)− φ(x)‖ ¬Mnε
β
i })

¬ CNk/2Mk
n

1/nk
∑
i∈N

εβki ¬ CN
k/2Mk

nn
kε.

Since ε > 0 was arbitrary, we obtain ηN,k(Ax,n) = 0, which ends the proof.

As a simple consequence of Theorem 3.5, we obtain the following corollary, formulated in
a slightly simplified version in Chapter 1 as Corollary 1.5.
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Corollary 3.7 (Probabilistic injective projection theorem – extended version).
Let X ⊂ RN be a Borel set and let µ be a Borel σ-finite measure on X. Then for every
k ∈ N, k ¬ N such that µ ⊥ Hk and almost every k-dimensional linear subspace S ⊂ RN ,
the orthogonal projection of X into S is injective on a µ-full measure subset of X (depending
on S).

Proof of Corollary 3.7. Apply Theorem 3.5 for the map φ ≡ 0. Then we know that a
linear map L ∈ Lin(RN ;Rk) of the form (3.2) is injective on a set XL ⊂ X of full measure
µ for Lebesgue almost every (l1, . . . , lk) ∈ (RN )k. We can assume that l1, . . . , lk are linearly
independent for all such L, which also implies that the same holds for Ll1, . . . , Llk. Setting

SL = Span(l1, . . . , lk)

and taking VL ∈ Lin(Rk;RN ) defined by VL(Llj) = lj for j = 1, . . . , k, we have

VL ◦ L = ΠSL ,

where ΠSL is the orthogonal projection from RN onto SL and VL is injective. It follows that
ΠSL is injective on XL for almost every (l1, . . . , lk), so ΠS is injective on a µ-full measure
subset of X for almost every k-dimensional linear subspace S ⊂ RN .

Let us note that in general, the requirement µ ⊥ Hβk in Theorem 3.5 cannot be replaced
by a weaker condition dimH(µ) ¬ βk - see Example 3.32.

Theorem 3.5 strengthens the following embedding theorem, proved recently by Alberti,
Bölcskei, De Lellis, Koliander and Riegler in [1].

Theorem 3.8 ([1, Theorem II.1]). Let µ be a Borel probability measure in RN and let
k ∈ N be such that k > dimMB µ. Then for Lebesgue almost every linear transformation
L : RN → Rk there exists a Borel set XL ⊂ RN such that µ(XL) = 1 and L is injective on
XL.

In fact, in [1] the authors introduced the notion of dimMB µ, denoting it by K(µ) and call-
ing it the description complexity of the measure. In particular, Theorem 3.8 holds for measures
µ supported on a Borel set X ⊂ RN with dimBX < k. By (2.1), we have dimH µ ¬ dimMB µ,
and in Section 3.5 we present an example (Theorem 3.29) showing that the inequality may
be strict. Therefore, Theorem 3.5 actually strengthens Theorem 3.8.

Non-probabilistic embedding theorems were first obtained in topological and smooth cat-
egories. The well-known Menger–Nöbeling embedding theorem (see e.g. [48, Theorem V.2])
states that for a compact metric space X with Lebesgue covering dimension at most k, a
generic continuous transformation φ : X → R2k+1 is injective (and hence defines a homeo-
morphism between X and φ(X)). Genericity means here that the set of injective transfor-
mations φ : X → R2k+1 is a dense Gδ subset of C(X;R2k+1) endowed with the supremum
metric. The dimension 2k + 1 is known to be optimal. The corresponding result in the cat-
egory of smooth manifolds is the Whitney embedding theorem (see [97]). It states that for
a given k-dimensional Cr-manifold M , a generic Cr-transformation from M to R2k+1 is a
Cr-embedding (i.e. an injective immersion of class Cr).

Let us now compare Theorem 3.5 to non-probabilistic embedding theorems involving box-
counting dimension. One of the first results in this area was a theorem by Mañé [59, Lemma
1.1]. We present its formulation following [84, Theorem 4.6] and [81, Theorem 6.2] (originally,
Mañé proved that topologically generic linear transformation is injective on X).

Theorem 3.9. Let X ⊂ RN be a compact set. Let k ∈ N be such that k > 2dimBX or
k > dimH(X − X). Then Lebesgue almost every linear transformation L : RN → Rk is
injective on X.
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Remark 3.10 As noticed by Mañé and communicated in [24, p. 627], his original statement
in [59] is incorrect. Namely, he assumed k > 2 dimH X + 1 instead of k > dimH(X − X).
However, this is known to be insufficient for the existence of a linear embedding of X into Rk.
In fact, in [84, Appendix A], Kan presented an example of a set X ⊂ Rm with dimH X = 0,
such that any linear transformation L : Rm → Rm−1 fails to be injective on X. This proves
that the assumption k > 2 dimH X is insufficient, while k > 2dimBX is sufficient. This stems
from the fact that the proof of Theorem 3.9 actually requires the property k > dimH(X−X),
and applying (2.1), Proposition 2.1.6 and Proposition 2.1.4, we obtain

dimH(X −X) ¬ dimH(X ×X) ¬ dimB (X ×X) ¬ 2dimBX,

hence k > 2dimBX implies k > dimH(X−X). On the other hand, (??) does not hold for the
Hausdorff dimension (nor for the lower box-counting dimension), so dimH X does not control
dimH(X − X). The fact that in Theorem 3.5 we can work with the Hausdorff dimension
comes from the application of Fubini’s theorem, which enables us to consider covers of the
set X itself, instead of X − X. In Section 3.6 we analyze Kan’s example from the point of
view of Theorem 3.5.

Theorem 3.9 is also true for subsets of an arbitrary Banach space B for a prevalent set of
linear transformations L : B→ Rk (see [81, Chapter 6] for details).

Note that the linear embedding from Theorem 3.5 need not preserve the dimension of X.
Indeed, the Hausdorff and box-counting dimensions are invariants for bi-Lipschitz transfor-
mations, yet inverse of a linear map on a compact set does not have to be Lipschitz. Therefore,
we only know that dimφL(X) ¬ dimX (see [81, Proposition 2.8.iv and Lemma 3.3.iv]) and
the inequality can be strict. For example, let φ ≡ 0 and X = {(x, f(x)) : x ∈ [0, 1]} be a
graph of a (Hölder continuous) function f : [0, 1]→ R with dimH X > 1, e.g. the Weierstrass
non-differentiable function. Then the linear projection L : R2 → R given by L(x, y) = x
satisfies 1 = dimL(X) < dimH X. The following theorem shows that in the non-probabilistic
setting, one can obtain β-Hölder continuity of the inverse map for small enough β ∈ (0, 1)
(see [12, 25, 47] and [81, Chapter 4]).

Theorem 3.11. Let X ⊂ RN be a compact set. Let k ∈ N be such that k > 2dimBX and
let β be such that 0 < β < 1−2dimBX/k. Then Lebesgue almost every linear transformation
L : RN → Rk is injective on X with β-Hölder continuous inverse.

However, this is not true in the case of Theorem 3.5.

Remark 3.12 In general, we cannot claim that the injective map φL|XL from Theorem 3.5
has a Hölder continuous inverse. Indeed, it is well-known that for n ∈ N there are examples
of compact sets X ⊂ RN of Hausdorff and topological dimension equal to n, which do not
embed topologically into Rk for k ¬ 2n (showing the optimality of the bounds in the Menger–
Nöbeling embedding theorem, see [48, Example V.3]). Consider a probability measure µ on
X with suppµ = X. Such measure exists for any compact set. If the map φL|XL from
Theorem 3.5 for k = n+ 1 had a Hölder continuous inverse f = φ−1

L , then we could extend f
from φL(XL) to Rn+1 preserving the Hölder continuity ([7, Theorem IV.7.5], see also [67]).
Then Y = {x ∈ X : f ◦ φL(x) = x} would be a closed subset of X with µ(Y ) = 1, hence
Y = X, so φL would be a homeomorphism between X and φL(X) ⊂ Rn+1, which would give
a contradiction.

3.3 Probabilistic Takens delay embedding theorem

In this section we present the proof of the extended probabilistic Takens delay embedding
theorem. It turns out that linear perturbations are insufficient for Takens-type theorems,
see Example 3.34. As observed in [84], it is enough to take perturbations from the space of
polynomials of degree 2k. This can be easily extended to more general families of functions.
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Definition 3.13 Let X be a subset of RN . A family of transformations h1, . . . , hm : X → R is
called a k-interpolating family on set X, if for every collection of distinct points x1, . . . , xk ∈ X
and every ξ = (ξ1, . . . , ξk) ∈ Rk there exists (α1, . . . , αm) ∈ Rm such that

m∑
j=1

αjhj(xi) = ξi

for each i = 1, . . . , k. In other words, the matrixh1(x1) . . . hm(x1)
...

. . .
...

h1(xk) . . . hm(xk)


has full row rank as a transformation from Rm to Rk. Note that the same is true for any
collection of l distinct points with l ¬ k.

Example 3.14 It is known that any linear basis h1, . . . , hm of the space of real polynomials
of N variables of degree at most k − 1 is a k-interpolating family (see e.g. [32, Sec. 1.2, eq.
(1.9)]).

For a transformation T : X → X and p ∈ N denote by Perp(T ) the set of periodic points
of minimal period p, i.e.

Perp(T ) = {x ∈ X : T px = x and T jx 6= x for j = 1, . . . , p− 1}.

Theorem 3.15 (Probabilistic Takens delay embedding theorem – extended ver-
sion). Let X ⊂ RN be a Borel set, µ be a Borel σ-finite measure on X and T : X → X an
injective map, which is Lipschitz on bounded sets. Fix k ∈ N and β ∈ (0, 1] such that µ ⊥ Hβk
and assume µ|Perp(T ) ⊥ Hβp for every p = 1, . . . , k−1. Let h : X → R be β-Hölder on bounded
sets and h1, . . . , hm : X → R a 2k-interpolating family on X consisting of transformations
which are β-Hölder on bounded sets. For α = (α1, . . . , αm) ∈ Rm denote by hα : X → R the
transformation

hα(x) = h(x) +
m∑
j=1

αjhj(x).

Then for Lebesgue almost every α = (α1, . . . , αm) ∈ Rm, there exists a Borel set Xα ⊂ X of
full measure µ, such that the delay-coordinate map

φTα : X → Rk, φTα(x) = (hα(x), hα(Tx), . . . , hα(T k−1x))

is injective on Xα. If µ is additionally T -invariant, then the sets Xα can be taken to be
T -invariant, i.e. satisfy T (Xα) ⊂ Xα.

Remark 3.16 By Example 3.14 and observations of Remark 3.6, Theorem 1.2 follows from
Theorem 3.15.

Under the notation of Theorem 3.15, we first show a preliminary lemma. For x ∈ X define
its full orbit Orb(x) as

Orb(x) = {Tnx : n ­ 0} ∪ {y ∈ X : Tny = x for some n ∈ N} =
⋃
n∈Z

Tn({x}).

Note that since T is injective, all full orbits are at most countable, and any two full orbits
Orb(x) and Orb(y) are either equal or disjoint. For x, y ∈ X let Dx,y be the k ×m matrix
defined by

Dx,y =


h1(x)− h1(y) . . . hm(x)− hm(y)

h1(Tx)− h1(Ty) . . . hm(Tx)− hm(Ty)
...

. . .
...

h1(T k−1x)− h1(T k−1y) . . . hm(T k−1x)− hm(T k−1y)

 .
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Lemma 3.17. For x, y ∈ X, the following statements hold.

(i) If y 6= x, then rankDx,y ­ 1.

(ii) If y /∈ Orb(x) and y ∈ Perp(T ) for some p ∈ {1, . . . , k − 1}, then rankDx,y ­ p.

(iii) If y /∈ Orb(x) and y /∈
k−1⋃
p=1

Perp(T ), then rankDx,y = k.

Proof. For (i), it suffices to observe that the first row of Dx,y is non-zero as long as x 6= y and
therefore rank(Dx,y) ­ 1. Indeed, otherwise we would have hj(x) = hj(y) for j = 1, . . . ,m
which contradicts the fact that h1, . . . , hm is an interpolating family.

Assume now y /∈ Orb(x), which implies Orb(y)∩Orb(x) = ∅. Let q (resp. r) be a maximal
number from {1, . . . , k} such that the points x, Tx, . . . , T q−1x (resp. y, Ty, . . . , T r−1y) are
distinct. Notice that if y ∈ Perp(T ) for some p ∈ {1, . . . , k − 1}, then r = p, and if y /∈
k−1⋃
p=1

Perp(T ), then r = k. Thus, the assertions (ii)–(iii) of the lemma can be written simply as

one condition
rankDx,y ­ r. (3.5)

To show that (3.5) holds, denote the points x, Tx, . . . , T q−1x, y, Ty, . . . , T r−1y, preserving the
order, by z1, . . . , zl, for l = q+ r. By the definition of q, r, we have 1 ¬ l ¬ 2k and the points
z1, . . . , zl are distinct. Thus, the matrix Dx,y can be written as the product

Dx,y = Jx,yVx,y,

where

Vx,y =

h1(z1) . . . hm(z1)
...

. . .
...

h1(zl) . . . hm(zl)


and Jx,y is a k × l matrix with entries in {−1, 0, 1} and block structure of the form

Jx,y =

[
∗ − Idr×r
∗ ∗

]
,

where Idr×r is the r×r identity matrix. It follows that rankJx,y ­ r. Moreover, since z1, . . . , zl
are distinct and h1, . . . , hm is a 2k-interpolating family, the matrix Vx,y is of full rank, hence
rankDx,y = rankJx,y ­ r, which ends the proof.

Proof of Theorem 3.15. We proceed similarly as in the proof of Theorem 3.5, using
Lemma 3.2 instead of Lemma 3.1, together with the suitable rank estimates coming from
Lemma 3.17. In the same way as in the proof of Theorem 3.5, we show that it is enough to
check that the suitable set Xα exists for ηm-almost every α ∈ Bm(0, 1).

Applying Lemma 3.3 to the sets Perp(T ), p = 1, . . . , k − 1 and (possibly zero) measures
µ|Perp(T ), we find (possibly empty) disjoint σ-compact sets X1, . . . , Xk−1 ⊂ X such that

Xp ⊂ Perp(T ), µ(Xp) = µ(Perp(T )), Hβp(Xp) = 0 for p = 1, . . . , k − 1.

Similarly, there exists a σ-compact set Xk ⊂ X \
k−1⋃
p=1

Perp(T ) such that

µ(Xk) = µ
(
X \

k−1⋃
p=1

Perp(T )
)

and Hβk(Xk) = 0.
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Note that Xk contains both aperiodic and periodic points (with period at least k). Let

X̃ =
k⋃
p=1

Xp.

Then X̃ ⊂ X is a σ-compact set of full measure µ. Define

A = {(x, α) ∈ X̃ ×Bm(0, 1) : φTα(x) = φTα(y) for some y ∈ X̃ \ {x}}.

The set A is Borel by Lemma 3.4. For x ∈ X̃ and α ∈ Bm(0, 1), denote, respectively, by Ax
and Aα, the Borel sections

Ax = {α ∈ Bm(0, 1) : (x, α) ∈ A}, Aα = {x ∈ X̃ : (x, α) ∈ A}.

Observe that it is enough to prove ηm(Ax) = 0 for every x ∈ X̃, since then by Fubini’s
theorem ([83, Thm. 8.8]), (ηm⊗µ)(A) = 0 and, consequently, µ(Aα) = 0 for ηm-almost every
α ∈ Bm(0, 1). As φTα is injective on X̃ \Aα and X̃ has full measure µ, the proof of the theorem
is finished.

Fix x ∈ X̃. To show ηm(Ax) = 0, note that for y ∈ X̃,

φTα(x)− φTα(y) = Dx,yα+ wx,y (3.6)

for

wx,y =


h(x)− h(y)

h(Tx)− h(Ty)
...

h(T k−1x)− h(T k−1y)

 .
Write Ax as

Ax = Aorb
x ∪

k⋃
p=1

Apx,

where

Aorb
x = {α ∈ Bm(0, 1) : φTα(x) = φTα(y) for some y ∈ X̃ ∩Orb(x) \ {x}},
Apx = {α ∈ Bm(0, 1) : φTα(x) = φTα(y) for some y ∈ Xp \ {x}}, p = 1, . . . , k.

The set Aorb
x is Borel as a countable union of closed sets of the form

{α ∈ Bm(0, 1) : φTα(x) = φTα(y)}, y ∈ X̃ ∩Orb(x) \ {x}, (3.7)

while each set Apx is Borel as a section of the set

{(x, α) ∈ X̃ ×Bm(0, 1) : φTα(x) = φTα(y) for some y ∈ Xp \ {x}},

which is Borel by Lemma 3.4. To end the proof, it is enough to show that the sets Aorb
x and

Apx, p = 1, . . . , k, have ηm measure zero.
To prove ηm(Aorb

x ) = 0 it suffices to check that the sets of the form (3.7) have ηm measure
zero. By (3.6), we have

{α ∈ Bm(0, 1) : φTα(x) = φTα(y)} = {α ∈ Bm(0, 1) : Dx,yα = −wx,y}

and Lemma 3.17 gives rankDx,y ­ 1 whenever y 6= x, so each set of the form (3.7) is contained
in an affine subspace of Rm of codimension at least 1. Consequently, it has ηm measure zero.
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To prove ηm(Apx) = 0 for p = 1, . . . , k, fix n ∈ N and define

Xp,n
x =

{
y ∈ Xp : σp(Dx,y) ­

1
n

and ‖y − x‖ ¬ n
}
,

Ap,nx = {α ∈ Bm(0, 1) : φTα(x) = φTα(y) for some y ∈ Xp,n
x \ {x}},

where σp(Dx,y) is the p-th largest singular value. Note that singular values of given order
depend continuously on the coefficients of the matrix, see e.g. [37, Corollary 8.6.2]. Hence,
the set Xp,n

x is σ-compact as a closed subset of Xp and by Lemma 3.4, the set Ap,nx is Borel.
By Lemma 3.17, for every y ∈ Xp \ Orb(x) we have rankDx,y ­ p, which implies

σp(Dx,y) > 0 (see e.g. [81, Lemma 14.2]). Hence,

Apx \Aorb
x =

∞⋃
n=1

Ap,nx \Aorb
x .

Consequently, it is enough to prove ηm(Ap,nx \Aorb
x ) = 0 for every n ∈ N.

Fix ε > 0. Since Hβp(Xp,n
x \ Orb(x)) ¬ Hβp(Xp) = 0, there exists a collection of balls

BN (yi, εi), for yi ∈ Xp,n
x \Orb(x) and 0 < εi < ε, i ∈ N, such that

Xp,n
x \Orb(x) ⊂

⋃
i∈N

BN (yi, εi) and
∑
i∈N

εβpi ¬ ε. (3.8)

Take α ∈ Ap,nx \Aorb
x and let y ∈ Xp,n

x \Orb(x) be such that φTα(x) = φTα(y). Then for yi with
y ∈ B(yi, εi) we have

‖Dx,yiα+ wx,yi‖ = ‖φTα(x)− φTα(yi)‖ = ‖φTα(y)− φTα(yi)‖

¬

√√√√√k−1∑
s=0

(
‖h(T sy)− h(T syi)‖+

m∑
j=1

αj‖hj(T sy)− hj(T syi)‖
)2

¬Mnε
β
i

(3.9)

for some Mn > 0 (depending also on m, k), since ‖y− yi‖ ¬ εi, ‖αj‖ ¬ 1, y, yi ∈ BN (x, n+ ε)
and T , h and hj are β-Hölder on bounded sets on X. By (3.9),

Ap,nx \Aorb
x ⊂

⋃
i∈N
{α ∈ Bm(0, 1) : ‖Dx,yiα+ wx,yi‖ ¬Mnε

β
i }.

Since for every i ∈ N we have σp(Dx,yi) ­ 1/n, we can apply Lemma 3.2 and (3.8) to obtain

ηm(Ap,nx \Aorb
x ) ¬

∑
i∈N

Cm,k
Mp
nε
βp
i

1/np
¬ Cm,kMp

nn
pε.

Since ε > 0 was arbitrary, we conclude that ηm(Ap,nx \Aorb
x ) = 0, so in fact ηm(Ap,nx ) = 0.

Let us end the proof by showing that if µ is T -invariant, then Xα can be taken to be
T -invariant. This follows from the fact that every Borel set Y ⊂ X of full measure has a

T -invariant subset of full measure. Indeed, let B =
∞⋃
n=0

T−n(X \ Y ). Then µ(B) = 0 and it is

easy to see that Y \B is T -invariant.

3.4 Conjectures of Shroer, Sauer, Ott and Yorke

The sufficiency of taking k > dim(X) measurements (instead of k > 2 dim(X)) for almost
surely lossless reconstruction of the system via k measurements was conjectured in a physical
literature by Shroer, Sauer, Ott and Yorke [85, Conjectures 1 and 2]. They provided heurestic
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arguments supporting this conjecture and numerical verification for certain systems, but no
rigorous proofs. In this section we present these conjectures and explain their connections to
the results from previous sections. We prove Conjecture 1 for general measures with Hausdorff
dimension replacing the information dimension. As a corollary, we prove Conjecture 1 for
ergodic measures. Let us introduce notions required to state the conjectures.

Definition 3.18 Let X ⊂ RN be a Borel set and let T : X → X be a Borel transformation.
Let µ be a Borel probability measure on X. Fix k ∈ N, let h : X → R be an observable and
let φ(x) = (h(x), . . . , h(T k−1x)) be the corresponding delay-coordinate map. For y0 ∈ Rk and
ε > 0 such that φ∗µ(B(y0, ε)) > 0 define

χε(y0) =
1

φ∗µ(B(y0, ε))

∫
φ−1(B(y0,ε))

φ(T (x))dµ(x)

and

σε(y0) =
(

1
φ∗µ(B(y0, ε))

∫
φ−1(B(y0,ε))

‖φ(T (x))− χε(y0)‖2dµ(x)
) 1
2

.

In other words, χε(y0) is the conditional expectation of φ ◦ T with respect to µ given φ ∈
B(y0, ε) and σε(y0) is the corresponding conditional variance. For y0 in the support of φ∗µ
define the prediction error at y0 as

σ(y0) = lim
ε→0

σε(y0).

A point y0 is said to be predictable if the above limit exists and σ(y0) = 0.

Note that the prediction error depends on the observable h. We simplify the notation by
suppressing this dependence.

Definition 3.19 Let X be a compact Riemannian manifold and T : X → X a smooth
diffeomorphism. Let Λ ⊂ X be a compact T -invariant set (an attractor) and let B ⊂ M
be the basin of attraction of Λ, i.e. a neighbourhood of X characterized by B = {x ∈ X :
lim
n→∞

dist(Tnx,Λ) = 0}. A T -invariant probability measure µ on Λ is called a natural measure

for T if for almost every x ∈ B (with respect to the volume measure on X)

lim
n→∞

1
n

n−1∑
k=0

δTkx = µ,

where the limit is taken in the weak∗ topology.

Note that some authors use the name physical measure or SRB (Sinai-Ruelle-Bowen) measure
for this or similar concepts (see e.g. [99]). The above notion of natural measure occurs is used
in mathematical physics literature (see e.g. [72, 73]). We are ready now to state the conjectures
of Shroer, Sauer, Ott and Yorke, following the formulations from [85]. Note that in [85] not
all the details are precisely specified (e.g. the notion of genericity).

Conjecture 3.20 ([85, Conjecture 1]). If µ is a natural measure for a smooth diffeomorphism
T of a compact Riemannian manifold X, then φ∗µ({x ∈ Rk : x is predictable}) = 1 holds for
a generic observable if k > ID(µ).

Conjecture 3.21 ([85, Conjecture 2]). Assume that µ is a natural measure for a smooth
diffeomorphism T of a compact Riemannian manifold X. Let δ > 0. Then the measure
φ∗µ(σε > δ) of points with finite prediction error σε > δ scales for a generic observable
in the following way (as ε↘ 0):
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(i) When ID(µ) > k, then µ(σε > δ) ∼ O(1).

(ii) When k
2 < ID(µ) < k, then µ(σε > δ) ∼ εk−ID(µ) if self-intersections occur (the delay

coordinate map is not injective). If self-intersections are absent, µ(σε > δ) = 0.

(iii) If ID(µ) < k
2 then µ(σε > δ) = 0.

If we understand the notion of generic observable as in Theorem 3.15, we can prove the
following:

Theorem 3.22. Conjecture 3.20 holds with dimH(µ) replacing ID(µ). Consequently, Con-
jecture 3.20 holds for ergodic measures.

Actually, we are able to prove a more general result - see Theorem 3.24 below. Indeed, the
first assertion of Theorem 3.22 follows from Theorem 3.24 (see Lemma 3.25). The second
assertion follows from the first one by Proposition 2.8. Before proceeding further, let us
introduce additional notation.

Definition 3.23 Let X ⊂ RN be a compact set, T : X → X be a continuous map and µ a
Borel probability measure µ on X. For x ∈ supp(µ) and ε > 0, let µx,ε be the conditional
distribution of µ on φ−1(B(φ(x), ε)) (i.e. we condition on the event φ ∈ B(φ(x), ε)):

µx,ε =
1

µ
(
φ−1(B(φ(x), ε))

) µ � φ−1(B(φ(x), ε)).

Theorem 3.24. Let X ⊂ RN be a compact set, µ be a Borel probability measure on X
and T : X → X an injective Lipschitz map. Fix k ∈ N and β ∈ (0, 1] such that µ ⊥ Hβk
and assume µ|Perp(T ) ⊥ Hβp for every p = 1, . . . , k − 1. Let h : X → R be β-Hölder and
h1, . . . , hm : X → R a 2k-interpolating family on X consisting of β-Hölder transformations.
For α = (α1, . . . , αm) ∈ Rm denote by hα : X → R the transformation

hα(x) = h(x) +
m∑
j=1

αjhj(x).

Then for Lebesgue almost every α = (α1, . . . , αm) ∈ Rm, there exists a set Xα ⊂ X of full
measure µ, such that the delay-coordinate map

φTα : X → Rk, φTα(x) = (hα(x), hα(Tx), . . . , hα(T k−1x))

is injective on Xα. Moreover, lim
ε→0

µx,ε = δx in the weak∗ topology for every x ∈ Xα and φTα(x)

is predictable for every x ∈ Xα. If µ is additionally T -invariant, then the sets Xα can be
taken to be T -invariant, i.e. satisfy T (Xα) ⊂ Xα.

Note that assumptions of the above theorem are the same as assumptions of Theorem 3.15,
hence this is its strengthening, which asserts additional properties of φTα (lim

ε→0
µx,ε = δx almost

surely). As the next lemma shows, in order to establish almost sure predictability, it is enough
to prove the convergence lim

ε→0
µx,ε = δx for almost every x ∈ X.

Lemma 3.25. Let X ⊂ RN be a compact set, T : X → X be a continuous map and µ
a Borel probability measure µ on X. Let φ be the delay-coordinate map corresponding to a
continuous observable h : X → R. Fix x0 ∈ X and assume that lim

ε→0
µx0,ε = δx0, where the

limit is in the weak∗ topology. Then φ(x0) is predictable
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Proof. Observe first that if µx0,ε
ε→0−→ δx0 , then

χε(φ(x0)) =
∫
X

φ ◦ Tdµx0,ε
ε→0−→ φ ◦ T (x0), (3.10)

as φ ◦ T is continuous. Moreover

σ2
ε(φ(x0)) =

∫
X

‖φ ◦ T − χε(φ(x0))‖2dµx0,ε ¬
∫
X

‖φ ◦ T − φ ◦ T (x0)‖2dµx0,ε +

+
∫
X

‖χε(φ(x0))−φ ◦T (x0)‖2dµx0,ε + 2
∫
X

‖χε(φ(x0))−φ ◦T (x0)‖‖φ ◦T −φ ◦T (x0)‖dµx0,ε ¬

¬
∫
X

‖φ ◦ T − φ ◦ T (x0)‖2dµx0,ε + ‖χε(φ(x0))− φ ◦ T (x0)‖2 + 2M‖χε(φ(x0))− φ ◦ T (x0)‖,

where M = sup
x∈X
‖φ ◦ T (x) − φ ◦ T (x0)‖. The latter integral converges to 0 as ε → 0, since

µx0,ε
ε→0−→ δx0 and ‖φ ◦ T − φ ◦ T (x0)‖2 is continuous. Applying (3.10) finishes the proof.

Remark 3.26 Note that in the proof of the above lemma, we did not use any special prop-
erties of the delay-coordinate map. In fact, Lemma 3.25 holds for any continuous function
φ : X → Rk.

In order to deduce Theorem 3.24 from Theorem 3.15, we will need the following version
of the Rokhlin Disintegration Theorem in compact metric spaces. We will use it to deduce
lim
ε→0

µx,ε = δx for µ-a.e. x ∈ X from almost sure injectivity of the delay coordinate map.

The existence and uniqueness of a system of conditional measures is a classical result, known
as the Rokhlin disintegration theorem (see e.g. [82]). The crucial fact for us is that in the
topological setting, the conditional measures can be defined as limits of conditional measures
on preimages of shrinking balls and the convergence is ensured almost surely, which was
proved by D. Simmons in [87].

Theorem 3.27 ([87, Theorems 2.1 and 2.2]). Let X be a compact metric space and let
µ be a Borel probability measure on X. Let Y be a separable Riemannian manifold and
let π : X → Y be a measurable map. Then for π∗µ-almost every y ∈ Y , the sequence of
probability measures 1

µ(π−1(B(y,ε)))µ � π−1(B(y, ε)) converges weakly∗ to a probability measure
µy as ε ↘ 0. Moreover, the collection of measures {µy : y ∈ Y } (we set here µy = 0 if the
convergence does not hold) is a system of conditional measures of µ with respect to π, i.e.

1. for each y ∈ Y, µy is a measure on π−1({y}),

2. µy is a probability measure for π∗µ-almost every y ∈ Y ,

3. for every Borel set B ⊂ X, the transformation Y 3 y 7→ µy(B) ∈ R is measurable (with
respect to the completion of the Borel σ-algebra according to the measure π∗µ on Y ) and

µ(B) =
∫
Y

µy(B)dπ∗µ(y).

Moreover, the system of conditional measures is unique, i.e. if {νy : y ∈ Y } is a collection
of measures satisfying 1. - 3., then νy = µy for π∗µ almost every y ∈ Y .
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The idea of the proof of Theorem 3.24 is the following. Theorem 3.15 guarantees that for
almost every α ∈ Rm, the corresponding delay-coordinate map φTα : X → Rk is injective on a
Borel set Xα of full measure. On the other hand, Theorem 3.27 guarantees that the measures
µx,ε are almost surely convergent as ε↘ 0, and the limits form a system of conditional mea-
sures of µ with respect to φTα . Almost sure injectivity implies that the conditional measures
are almost surely Dirac’s deltas, hence indeed lim

ε→0
µx,ε = δx. Below we present a formal proof,

were we check the details.

Proof of Theorem 3.24. By Theorem 3.15, for almost every α ∈ Rm there exists a Borel
set Xα of full measure µ, such that the corresponding delay-coordinate map φ := φTα : X → Rk
is injective on Xα. Let us fix such α. We shall prove lim

ε→0
µx,ε = δx for µ-almost every x ∈ X.

By applying Theorem 3.27 with π = φ and Y = Rk, we obtain that lim
ε→0

µx,ε =: µφ(x) exists

for x in a set A of full measure µ. Moreover, the system of measures {µy : y ∈ Y }, where
µy = µφ(x) if y = φ(x) for some x ∈ A (note that the measure µy does not depend on the
choice of the preimage x of y) and µy = 0 otherwise, is a system of conditional measures
of µ with respect to φ. It remains to show that µφ(x) = δx for µ-almost every x ∈ X. We
claim that this follows from injectivity of φ on Xα. For y ∈ φ(Xα), denote by ψ(y) the unique
element x ∈ Xα such that φ(x) = y. By the uniqueness in Theorem 3.27, it is enough to show
that the collection of measures {νy : y ∈ Y } defined as νy = δψ(y) if y ∈ φ(Xα) and νy = 0
otherwise, is also a system of conditional measures of µ with respect to φ. Let us check first
that for every Borel B ⊂ X, the map f : Y → R defined as f(y) = νy(B) is measurable with
respect to the completion of the Borel σ-algebra on Y according to the measure φ∗µ. It is
enough to show that f is equal φ∗µ-almost surely to a Borel map. Note that φ(Xα) is of full
φ∗µ measure and for y ∈ φ(Xα) we have

f(y) = δψ(y)(B) = 1B(ψ(y)) = 1φ(B∩Xα)(y). (3.11)

Therefore f = 1φ(B∩Xα) holds φ∗µ-almost surely, hence it is enough to show that φ(B ∩Xα)
is Borel. This follows from [53, Theorem 15.1], as φ is continuous and injective on a Borel set
B ∩Xα. Moreover, by (3.11)∫
Y

νy(B)dπ∗µ(y) =
∫
Y

1φ(B∩Xα)(y)π∗µ(y) = µ(φ−1(φ(B ∩Xα)) ∩Xα) = µ(B ∩Xα) = µ(B),

hence point 3. of the definition of a system of conditional measures is fulfilled. As each νy
is clearly a measure on φ−1({y}), we conclude that {νy : y ∈ Y } is indeed a system of
conditional measures of µ with respect to φ. The invariance of Xα in the case of T -invariant
measure follows by the same lines as in the proof of Theorem 3.15.

Note that the above proof does not use any specific properties of φTα other than its
continuity. Therefore, we can similarly use Theorem 3.27 to prove analogous extension of
Theorem 3.5.

Theorem 3.28. Let X ⊂ RN be a compact set and µ a Borel probability measure on X. Fix
k ∈ N and β ∈ (0, 1] such that µHβk and let φ : X → Rk be β-Hölder on bounded sets. Then
for Lebesgue almost every linear transformation L : RN → Rk there exists a set XL ⊂ X of
full measure µ, such that the map φL = φ+ L is injective on XL and for every x ∈ XL, the
sequence of measures

µx,ε =
1

µ
(
φ−1(B(φ(x), ε))

) µ � φ−1
L (B(φL(x), ε))

converges weakly∗ to δx as ε↘ 0.
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3.5 Measure with Hausdorff dimension smaller than lower
modified box dimension

To show that Theorem 3.5 is an actual strengthening of Theorem 3.8, we present an example
of a measure µ, for which dimH µ < dimMB µ. As we were unable to find an explicit example
in the literature, we give a suitable construction. More precisely, we show the following.

Theorem 3.29. There exists a Borel probability measure µ on [0, 1]2, such that dimH µ = 1
and dimMB µ = 2.

Informally speaking, the idea is to construct a measure of exact lower local dimension 1
and exact upper dimension 2, but such that the lower local dimensions are attained along an
uncountable collection of sequences of scales. In other words, there is no countable collection
of positive numbers {rin}∞n,i=1 such that for every i ∈ N, the sequence rin decreases to 0 as

n → ∞ and for µ-a.e. x there exists i ∈ N such that d(µ, x) = lim
n→0

log µ(B(x,rin))
log rin

= 1. If such

countable collection would exist, then indeed we would have dimH(µ) = dimMB (µ) = 1. In
the construction, we consider a collection of measures {µy : y ∈ [0, 1]} on [0, 1], each with
exact lower local dimension 0 and exact upper local dimension 1, but with the sequence of
scales rn(y), along which dimH(µy) is attained, depending on the binary expansion of y. The
desired measure is then µ on [0, 1]2 having µy as conditional measures on fibers [0, 1]× {y}.
For technical reasons, it is easier to work with the dyadic local dimension. Let us proceed
now with the formal proof.

For x ∈ [0, 1] we will write
x = 0.x1x2 . . . ,

where 0.x1x2 . . . is the binary expansion of x, i.e.

x =
∞∑
j=1

xj
2j
, x1, x2, . . . ∈ {0, 1}.

For a dyadic rational we agree to choose its eventually terminating expansion, i.e. the one
with xj = 0 for j large enough, with an exception of the number 1, for which we choose the
expansion 0.111 . . .. Let π : {0, 1}N → [0, 1] be the coding map

π(x1, x2, . . .) =
∞∑
j=1

xj
2j
.

To begin the construction of µ, fix an increasing sequence of positive integers Nk, k ∈ N, such

that Nk ↗ ∞ with Sk
Sk+1

¬ 1
k+1 , where Sk =

k∑
j=1

Nj . Consider the probability distributions

p0,p1 on {0, 1} given by

p0({0}) = 0, p0({1}) = 1, p1({0}) = p1({1}) =
1
2
.

For y = 0.y1y2 . . . ∈ [0, 1], define the probability measure νy on {0, 1}N as the infinite product

νy =
∞⊗
j=1

Nj⊗
i=1

pyj .

Further, let µy be the Borel probability measure on [0, 1] given by

µy = π∗νy.
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Finally, let µ be the Borel probability measure on [0, 1]2 defined as

µ(A) =
∫

[0,1]

µy(Ay)dLeb(y) for a Borel set A ⊂ [0, 1]2,

where Ay = {x ∈ [0, 1] : (x, y) ∈ A}. It is easy to see that µ is well-defined, as the function
y 7→ µy(Ay) is measurable for every Borel set A ⊂ [0, 1]2.

The proof of Theorem 3.29 is based on the analysis of the local dimension of µ, defined
in terms of dyadic squares (rather then balls). The following lemma gives estimates on the
measure of dyadic squares at suitable scales (recall Chapter 2 for notation on dyadic cubes
and local dimensions).

Lemma 3.30. Let x = 0.x1x2 . . . ,∈ [0, 1], y = 0.y1y2 . . . ∈ [0, 1], n ∈ N and D = Dn(x, y) =
[x1, . . . , xn]× [y1, . . . , yn]. Let k ∈ N be such that Sk < n ¬ Sk+1. Then the following hold.

(a) If yk = yk+1 = 1, then µ(D) ¬ 2−(2− 1
k

)n.

(b) If n = Sk+1 and yk+1 = 0, then either µ(D) = 0 or µ(D) ­ 2−(1+ 1
k+1 )n.

Proof. Note that for y′ = 0.y′1y
′
2 . . . ∈ [0, 1] such that (y′1, . . . , y

′
n) = (y1, . . . , yn) we have

µy′(Dy′) = µy′([x1, . . . , xn]) = py′1({x1}) · · ·py′1({xS1})py′2({xS1+1}) · · ·py′2({xS2})

· · ·py′
k+1

({xSk+1}) · · ·py′
k+1

({xn}).
(3.12)

Moreover, as k < n, the value of µy′(Dy′) depends only on (y1, . . . , yn) and (x1, . . . , xn). Using
(3.12), we can prove both assertions of the lemma, as follows.

Ad (a)
If yk = yk+1 = 1, then for j ∈ {Sk−1 + 1, . . . , n} we have pyl(xj) = 1

2 , where l ∈ {k, k+ 1}
is such that Sl−1 < j ¬ Sl. Therefore, in the product (3.12) there is at least n− Sk−1 terms
equal to 1

2 . Consequently,

µy′(Dy′) ¬ 2−(n−Sk−1) = 2−(1−
Sk−1
n

)n ¬ 2
−(1−

Sk−1
Sk

)n ¬ 2−(1− 1
k

)n,

hence

µ(D) =
∫

[y1,...,yn]

µy′(Dy′)dLeb(y′) ¬ Leb([y1, . . . , yn])2−n(1− 1
k

) = 2−n(2− 1
k

).

Ad (b).
Assume that µ(D) 6= 0. Then all the terms in (3.12) have to be non-zero, so every term

is equal to either 1
2 or 1. Moreover, as yk+1 = 0 and n = Sk+1, we have

pyk+1({xSk+1}) · · ·pyk+1({xn}) = 1

and, consequently,

µ(D) = 2−npy1({x1}) · · ·py1({xS1})py2({xS1+1}) · · ·py2({xS2})

· · ·pyk({xSk−1+1}) · · ·pyk({xSk}) ­ 2−n−Sk = 2
−(1+ Sk

Sk+1
)n ­ 2−(1+ 1

k+1 )n.

Now we are ready to give the proof of Theorem 3.29.
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Proof of Theorem 3.29. We begin by proving dimH µ = 1. Note that dimH µ ­ 1, as µ
projects under [0, 1]2 3 (x, y) 7→ y ∈ [0, 1] to the Lebesgue measure, so it is sufficient to
show dimH µ ¬ 1. By Propositions 2.4.1 and 2.6, it is enough to prove that d′(µ, (x, y)) ¬ 1
for µ-almost every (x, y) ∈ [0, 1]. Note that for Lebesgue almost every y = 0.y1y2 . . . ∈
[0, 1], the sequence (y1, y2, . . .) contains infinitely many zeros. Hence, it is sufficient to show
d′(µ, (x, y)) ¬ 1 for µy-almost every x ∈ [0, 1], assuming that y = 0.y1y2 . . . ∈ [0, 1] contains
infinitely many zeros. Moreover, for µy-almost every x ∈ [0, 1], we have µ(Dn(x, y)) > 0 for
all n ∈ N (see (3.12)). For such x, by Lemma 3.30(b), we have

d′(µ, (x, y)) ¬ lim inf
k→∞

− logµ(DSnk
(x, y))

Snk log 2
¬ lim

k→∞

(1 + 1
nk

)Snk
Snk

= 1.

Therefore, dimH µ ¬ 1, so in fact dimH µ = 1.
Let us prove now dimMB µ = 2. Since µ is supported on [0, 1]2, it suffices to show

dimMB µ ¬ 2. Let A ⊂ [0, 1]2 be a Borel set with µ(A) > 0. We show dimB A ­ 2. Note
that there exists c > 0 such that the set

B = {y ∈ [0, 1] : µy(Ay) ­ c} (3.13)

satisfies Leb(B) > 0. Fix ε ∈ (0, 1
4). By the Lebesgue density theorem (see e.g. [44, Corollary

3.16]), there exists a dyadic interval I ⊂ [0, 1] such that

Leb(B ∩ I)
|I|

­ 1− ε, (3.14)

where |I| = 2−N is the length of I. Fix k ­ N + 2 and n ∈ {Sk + 1, . . . , Sk+1}. Consider the
collection Cn of dyadic intervals of length 2−n defined as

Cn = {[y1, . . . , yn] : yk = yk+1 = 1 and [y1, . . . , yn] ∩B ∩ I 6= ∅}.

By (3.14), we have

Leb
(
B ∩

⋃
Cn
)
­
(1

4
− ε

)
2−N . (3.15)

Let
An = A ∩

(
[0, 1]×

(
B ∩

⋃
Cn
))
.

Then An ⊂ A and (3.13) together with (3.15) imply

µ(An) =
∫

B∩
⋃
Cn

µy(Ay)dLeb(y) ­ c
(1

4
− ε

)
2−N . (3.16)

Note that the above lower bound does not depend on k and n. Let N ′(An, 2−n) be the
number of dyadic squares of sidelength 2−n intersecting An. If D = I1× I2 is a dyadic square
of sidelength 2−n intersecting An, then I2 ∈ Cn, hence by Lemma 3.30(a) we have

µ(D) ¬ 2−(2− 1
k

)n.

As any two dyadic squares of the same sidelength are either equal or disjoint, (3.16) gives

N ′(A, 2−n) ­ N ′(An, 2−n) ­ c
(1

4
− ε

)
2−N+(2− 1

k
)n.

Since k and n can be taken arbitrary large, invoking (2.2) gives dimB A ­ 2. Hence,
dimMB µ ­ 2, so in fact dimMB µ = 2.

Remark 3.31 Note that as (see Proposition 2.4)

ess sup
x∼µ

d(µ, x) = dimH µ ¬ dimMB µ ¬ dimMB µ = ess sup
x∼µ

d(µ, x),

the equality dimH µ = dimMB µ holds for all exact dimensional measures.
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3.6 Examples

In this section we present several examples which illustrate the usage of Theorem 3.5. Let us
begin with an example showing that the requirement µ ⊥ Hβk(X) in Theorem 3.5 cannot be
replaced by weaker condition dimH(µ) ¬ βk.

Example 3.32 Let k = β = 1, X = S1 ⊂ R2 be the unit circle and let µ be the normalized
Lebesgue measure on S1. Then dimH(µ) = 1 but µ and H1 are not mutually singular. We
shall prove that there is no Lipschitz transformation φ : S1 → R which is injective on a set
of full measure µ. Let φ be such a transformation. Then φ(S1) = [a, b] for some compact
interval. As φ is injective on a set of full measure, interval [a, b] is non-degenerate, i.e. a < b.
Fix points x, y ∈ S1 with φ(x) = a, φ(y) = b. As x 6= y, there are exactly two open arcs
I, J ⊂ S1 of positive measure joining x and y such that I ∩ J = {x, y} and I ∪ J = S1

(these are clockwise and counter-clockwise arcs from x to y). Clearly φ(I) = φ(J) = [a, b].
Let A ⊂ S1 be a Borel set such that φ is injective on A and µ(A)=1. As Lipschitz maps
transform sets of zero Lebesgue measure to sets of zero Lebesgue measure, we conclude that
φ(I ∩A) and φ(J ∩A) are disjoint Lebesgue measurable subsets of [a, b], both with Lebesgue
measure equal to b− a. This contradiction finishes the proof.

By using the above example, we can show that the information dimension is not well
suited for embedding theorems, i.e. assumption k > ID(µ) is not sufficient for an existence of
Lipschitz almost surely injective map into Rk. As dimH(µ) < ID(µ) (see Proposition 2.4.(4)),
the same is the case for the lower Hausdorff dimension. The latter observation is not very
surprising, as dimH gives control of the dimension only over a set of positive measure, hence
one cannot expect to conclude injectivity on a set of full measure from a bound on dimH .

Example 3.33 Let S1 ⊂ R2 be the unit circle and let µ be the normalized Lebesgue measure
on S1. Choose p ∈ (0, 1), fix point x ∈ R2 \ S1 and let ν = pδx + (1 − p)µ. Then ID(ν) =
(1−p) < 1 (see Proposition 2.5.(2)), yet there does not exist a Lipschitz map φ : S∪{x} → R
which is injective on a set of full measure ν, a such map would be injective also on a set
full measure µ. This is however impossible, as Example 3.32 shows. Note that by considering
T : {x} ∪ S1 → {x} ∪ S1 given as the identity, we see that ID(µ) is not well suited for the
Probabilistic Takens Theorem 3.15 as well.

The next example shows that linear perturbations are not sufficient for Theorems 1.1
and 3.15.

Example 3.34 We will show that it may happen that φL = (φ(x) + Lx, . . . , φ(T k−1x) +
LT k−1x) is not (almost surely) injective for a generic linear map L : RN → R. As an example,
let X = B2(0, 1) ⊂ R2, fix a ∈ (0, 1) and define T : X → X as

T (x) = ax.

Then T is a Lipschitz injective transformation on the unit disc X ⊂ R2 with zero being the
unique periodic point. Fix φ ≡ 0. We claim that there is no linear observable L : R2 → R
which makes the delay map injective, i.e. for every k ∈ N and every v ∈ R2 the transformation
x 7→ φTv (x) = (〈x, v〉, 〈Tx, v〉, . . . , 〈T k−1x, v〉) ∈ Rk is not injective on X. This follows from
the fact that for each 1-dimensional linear subspace W ⊂ R2 the set W ∩X is T -invariant,
hence φTv = 0 on an infinite set Ker(〈·, v〉) ∩ X. We have seen that φTv is not injective for
any v ∈ R2. No we will see that it also not almost surely injecitve for µ being the Lebesgue
measure on X. Note that for v ∈ R2 and c ∈ R, the segment Wc = {z ∈ X : 〈z, v〉 =
c} satisfies T (Wc) ⊂ Wac, hence all points on Wc will have the same observation vector
(〈x, v〉, 〈Tx, v〉, . . . , 〈T k−1x, v〉) = (c, ac, a2c, . . . , ak−1c). Therefore, a set Xv ⊂ X on which
φTv is injective can only have one point on each of the parallel segments Wc contained in X.
However, such a set Xv cannot be of full Lebesgue measure. Note that the above example
can be easily modified to make T a homeomorphism.
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3.6.1 A modified Kan’s example

In the Appendix to [84], Kan presented an example of a compact set K ⊂ RN with dimH K =
0 and such that every linear transformation L : RN → RN−1 fails to be injective on K (see
also Remark 3.10). It follows from Theorem 3.5, that whenever we are given a σ-finite Borel
measure µ on such a set, then almost every linear transformation L : RN → R is injective
on a set of full measure µ. To illustrate this, we construct a σ-compact set X ⊂ R2 with
dimH X = 0, which is a slight modification of Kan’s example, equipped with a natural σ-
finite Borel measure µ, such that no linear transformation L : R2 → R is injective on X,
while for almost every L we explicitly show a set XL ⊂ X of full measure µ, such that L is
injective on XL.

Following [84, Appendix], we begin with constructing compact sets A,B ⊂ [0, 1] such that

dimH A = dimB A = dimH B = dimB B = 0 , (3.17)

and
dimB A = dimB B = 1, dimB (A ∪B) = dimB (A ∪B) = 1. (3.18)

Similarly as in the previous section, for x ∈ [0, 2) we write

x = x0.x1x2 . . . ,

where x0.x1x2 . . . is the binary expansion of x, i.e.

x =
∞∑
j=0

xj
2j
, x0, x1, x2, . . . ∈ {0, 1}.

For a dyadic rational we agree to choose its eventually terminating expansion, i.e. the one
with xj = 0 for j large enough (here, unlike in Section 3.5, it is convenient for us to choose
1.000 . . . as the expansion of 1). Recall that π : {0, 1}N → [0, 1] is the coding map

π(x1, x2, . . .) =
∞∑
j=1

xj
2j
.

Let Mk, k ­ 0, be an increasing sequence of positive integers such that M0 = 1 and Mk ↗∞
with lim

k→∞
Mk+1
Mk

=∞. Define

Ã =
{
(x1, x2, . . .) ∈ {0, 1}N : for every even k, xj = 0 for all j ∈ [Mk,Mk+1)

or xj = 1 for all j ∈ [Mk,Mk+1)
}
,

B̃ =
{
(x1, x2, . . .) ∈ {0, 1}N : for every odd k, xj = 0 for all j ∈ [Mk,Mk+1)

or xj = 1 for all j ∈ [Mk,Mk+1)
}
,

and set
A = π(Ã), B = π(B̃).

It is a straightforward calculation to check that A and B satisfy (3.17) and (3.18) (see [84,
Appendix], [30, Example 7.8] or [81, Section 6.1]). Define X ⊂ R2 as

X =
(
{0} ×

⋃
n∈Z

(A+ n)
)
∪
(
{1} ×

⋃
n∈Z

(B + n)
)
.

By (3.17) and Proposition 2.4.5, we have dimH X = 0. The following two propositions describe
the embedding properties of the set X.

Proposition 3.35. No linear transformation L : R2 → R is injective on X.
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Proof. The map L has the form L(x, y) = αx+ βy for α, β ∈ R. Obviously, we can assume
β 6= 0. Note that the points

u = (0, a+ n), v = (1, b+m), for a ∈ A, b ∈ B, n,m ∈ Z

are in X and
L(u) = L(v) if and only if b− a = z, (3.19)

where
z = −α

β
+ n−m.

For given α and β, choose n,m ∈ Z such that z ∈ [0, 1). Consider the binary expansion
z = 0.z1z2 . . . and define

a = 0.a1a2 . . . ∈ A, b = 0.b1b2 . . . ∈ B

setting
aj = 0, bj = zj for j ∈ [Mk,Mk+1), if k is even,

aj = 1− zj , bj = 1 for j ∈ [Mk,Mk+1), if k is odd
(3.20)

(if all bj are equal to 1, we set b = 1). Then z = b−a and (3.19) implies that L is not injective
on X.

Let us now define a natural Borel σ-finite measure µ on X, starting from a pair of
probability measures ν1, ν2 on Ã and B̃, respectively. Let

ν1 =
∞⊗
k=0

pk, ν2 =
∞⊗
k=0

qk,

where pk and qk are probability measures on {0, 1}Mk+1−Mk given as

pk =

{
1
2δ(0,...,0) + 1

2δ(1,...,1) if k is even

(1
2δ0 + 1

2δ1)⊗(Mk+1−Mk) if k is odd
, qk =

{
(1

2δ0 + 1
2δ1)⊗(Mk+1−Mk) if k is even

1
2δ(0,...,0) + 1

2δ(1,...,1) if k is odd

and the symbol δa denotes the Dirac measure at a. Then supp ν1 = Ã, supp ν2 = B̃, hence
defining

µ1 = π∗(ν1), µ2 = π∗(ν2),

we obtain probability measures on A,B, respectively, with suppµ1 = A, suppµ2 = B. Finally,
let

µ =
∑
n∈Z

δ0 ⊗ (τn)∗µ1 +
∑
n∈Z

δ1 ⊗ (τn)∗µ2,

where τn : R → R, τn(x) = x + n, n ∈ Z. Clearly, µ is a Borel σ-finite measure with
suppµ = X, hence dimH(µ) = 0. It follows from Theorem 3.5 that almost every linear
transformation L : R2 → R is injective on a set of full measure µ (compare with Proposition
3.35). We will find now such transformations and sets of injectivity explicitly.

For a ∈ A, b ∈ B let

Aa =
{
x ∈ A \ {1} : x+ a = z0.z1z2 . . . such that the sequence (z0, z1, . . .)

is constant on [Mk,Mk+1) ∩ N for every odd k
}
,

Bb =
{
x ∈ B \ {1} : x+ b = z0.z1z2 . . . such that the sequence (z0, z1, . . .)

is constant on [Mk,Mk+1) ∩ N for every even k
}
.

Lemma 3.36. For every a ∈ A, b ∈ B, we have µ1(Aa) = µ2(Bb) = 0.
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Proof. Fix b = b0.b1b2 . . . ∈ B. We will show µ2(Bb) = 0 (the fact µ1(Aa) = 0 can
be proved analogously). The proof proceeds by showing that for each even k, the vector
(xMk

, . . . , xMk+1−1), where x = x0.x1x2 . . . ∈ Bb, can assume at most four values. This will
imply µ2(Bb) ¬ 4 · 2−(Mk+1−Mk) for each even k and, consequently, µ2(Bb) = 0. To show the
assertion, fix an even k and let

ξ =
∞∑

j=Mk+1

xj + bj
2j

.

Note that ξ < 2−(Mk+1−2) (as ξ < 2 and we exclude expansions with digits eventually equal to
1). Hence, ξ = ξ0.ξ1ξ2 . . . with ξj = 0 for j ¬Mk+1−2. Note that, since b is fixed, the values of
ξMk+1−1 ∈ {0, 1} and (xMk

+ bMk
, . . . , xMk+1−1 + bMk+1−1) ∈ {(0, . . . , 0), (1, . . . , 1)} determine

uniquely the value of (xMk
, . . . , xMk+1−1). Therefore, (xMk

, . . . , xMk+1−1) can assume at most
four values.

Now for Lebesgue almost every linear transformation L : R2 → R we will construct a set
XL ⊂ X of full measure µ, such that L is injective on XL. As previously, write L(x, y) =
αx+ βy for α, β ∈ R. Neglecting a set of zero Lebesgue measure, we can assume β 6= 0. Let
l ∈ Z be such that

z = −α
β

+ l belongs to [0, 1). (3.21)

Similarly as in (3.20), we can write

z = a′ − b′, z − 1 = a′′ − b′′ for some a′, a′′ ∈ A, b′, b′′ ∈ B. (3.22)

Let
XL =

(
{0} ×

⋃
n∈Z

(A+ n)
)
∪
(
{1} ×

⋃
n∈Z

(
(B \ (Bb′ ∪Bb′′ ∪ {1})) + n

))
.

Then XL ⊂ X and Lemma 3.36 implies that XL has full measure µ.

Proposition 3.37. For every α ∈ R, β ∈ R \ {0}, the linear transformation L : R2 → R,
L(x, y) = αx+ βy, is injective on XL.

For the proof of the proposition we will need the following simple lemma. Its proof is left
to the reader.

Lemma 3.38. Let x = x0.x1x2 . . . ∈ [0, 1], y = y0.y1y2 . . . ∈ [0, 1], M,N ∈ N, M < N − 1,
be such that x + y < 2 and sequences (xM , . . . , xN ) and (yM , . . . , yN ) are constant. Then
x+ y = z0.z1z2 . . ., where the sequence (zM , . . . , zN−1) is constant.

Proof of Proposition 3.37. Assume, on the contrary, that there exist points u, v ∈ XL

such that L(u) = L(v). As β 6= 0, we cannot have u, v ∈ {0} × R or u, v ∈ {1} × R. Hence,
we can assume u ∈ {0} × R, v ∈ {1} × R. Then, following the previous notation, we have
u = (0, a + n), v = (1, b + m) for a ∈ A, b ∈ B \ (Bb′ ∪ Bb′′ ∪ {1}), n,m ∈ Z. Note that
b− a ∈ [−1, 1), so by (3.19), we have

b− a = z or b− a = z − 1,

for z from (3.21), and (3.22) implies

b− a = a′ − b′ or b− a = a′′ − b′′.

Hence,
a+ a′ = b+ b′ or a+ a′′ = b+ b′′.

This is a contradiction, as Lemma 3.38 implies that the binary expansion sequences of a+ a′

and a + a′′ are constant on [Mk,Mk+1 − 1) ∩ N for every even k, while by the condition
b ∈ B \ (Bb′ ∪Bb′′ ∪{1}), the binary expansion sequences of b+ b′ and b+ b′′ are not constant
on [Mk,Mk+1) ∩ N for some even k.
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Chapter 4

Singular stationary measures for
random piecewise affine interval
homeomorphisms

In this chapter we study stationary measures for Alsedà–Misiurewicz systems and provide sets
of parameters for which these measures are singular with respect to the Lebesgue measure.
The main results of this chapter are Theorems 4.10 and 4.12 (which deal the resonant case
and are extensions of Theorem 1.6), as well as Theorem 4.64 (which gives an open set of
parameters with singular stationary measure and extends Theorem 1.7).

The plan of this chapter is as follows. In Section 4.1 we describe the AM -systems and state
the results in a precise way. Section 4.2 contains preliminaries, while Section 4.3 is devoted to
the proofs of the auxiliary results and Theorem 4.4 (characterization of AM -systems with the
stationary measure equal to the Lebesgue measure). The proofs of Theorems 4.10 and 4.12)
are split into Section 4.4 (case l = 1) and Section 4.5 (case l > 1). Sections 4.6 and 4.7
contain, respectively, the proofs of Theorems 4.15 (establishing topological conjugacy between
some AM -systems with the same resonance type) and 4.16 (an example of AM -system with
resonance, stationary measure of full topological support, yet Hausdorff dimension smaller
than one). Section 4.8 is devoted to the proof of Theorem 4.64.

4.1 Main results

We begin with a precise description of an Alsedà–Misiurewicz system.

Definition 4.1 An AM -system is the system {f−, f+} of increasing homeomorphisms of the
interval [0, 1] of the form

f−(x) =

{
a−x for x ∈ [0, x−]

1− b−(1− x) for x ∈ (x−, 1]
, f+(x) =

{
b+x for x ∈ [0, x+]

1− a+(1− x) for x ∈ (x+, 1]
,

where 0 < a− < 1 < b−, 0 < a+ < 1 < b+ and

x− =
b− − 1
b− − a−

, x+ =
1− a+

b+ − a+
.

See Figure 4.1.

We consider an AM -system as a random system with probabilities p−, p+, where p−, p+ >
0, p− + p+ = 1.
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f−

f+

x+ x−

b−

a−

a+

b+

Figure 4.1: An example of an AM -system.

Definition 4.2 The endpoint Lyapunov exponents of an AM -system {f−, f+} with proba-
bilities p−, p+ are defined as

Λ(0) = p− ln f ′−(0) + p+ ln f ′+(0), Λ(1) = p− ln f ′−(1) + p+ ln f ′+(1).

It is known (see [2, 34, 35]) that if the Lyapunov exponents are positive, then there exists
a unique stationary measure without atoms at the endpoints of [0, 1], i.e. a Borel probability
measure µ on [0, 1], such that

µ = p− (f−)∗µ+ p+ (f+)∗µ,

with µ({0, 1}) = 0 (recall Definition 2.9). For details, see Theorem 4.22. Throughout the
chapter, by a stationary measure for an AM -system with positive Lyapunov exponents we
will mean the measure µ. It is known that the measure µ is non-atomic and is either absolutely
continuous or singular with respect to the Lebesgue measure (see Propositions 4.26 and 4.27).

Definition 4.3 We say that an AM -system {f−, f+} is of:

– disjoint type, if the intervals [0, f−(x−)], [f+(x+), 1] are disjoint, i.e. f−(x−) < f+(x+),

– border type, if the intervals [0, f−(x−)], [f+(x+), 1] touch each other, i.e. f−(x−) =
f+(x+),

– overlapping type, if the intervals [0, f−(x−)], [f+(x+), 1] overlap, i.e. f−(x−) > f+(x+).

See Figure 4.2.

Note that in the case x+ < x− (which will be assumed throughout most of the chapter,
see Lemma 4.29), the system is of

– disjoint type, if f−([x+, x−]), f+([x+, x−]) are disjoint,

– border type, if f−([x+, x−]) ∩ f+([x+, x−]) = {f−(x−)} = {f+(x+)},

– overlapping type, if f−([x+, x−]), f+([x+, x−]) overlap.
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f−(x−)f+(x+)
f+(x+)

f−(x−)
f+(x+)

f−(x−)

Figure 4.2: Three types of AM -systems: disjoint, border and overlapping.

In [2, Theorem 6.1] Alsedà and Misiurewicz showed that if a− = a+ = a, b− = b+ = b,
1/a + 1/b = 2, p− = p− = 1/2, then the measure µ is the Lebesgue measure on [0, 1]. The
first result of our work, presented below, gives an exact condition for an AM -system to have
a stationary Lebesgue measure.

Theorem 4.4. Let {f−, f+} be an AM -system with probabilities p−, p+, such that the Lya-
punov exponents Λ(0),Λ(1) are positive. Then the unique stationary measure µ (without atoms
at 0, 1) is the Lebesgue measure on [0, 1] if and only if the system is of border type and

p−
a−

+
p+

b+
= 1.

In this case we also have p−
b−

+ p+
a+

= 1.

In [2] the authors conjectured that the stationary measure µ for an AM -system with
positive Lyapunov exponents is typically singular. The main result of this chapter verifies
this conjecture for some set of the system parameters. First, we split the AM -systems into
two kinds: resonant and non-resonant, which have different kinds of behaviour.

Definition 4.5 We say that that an AM -system {f−, f+} with probabilities p−, p+ exhibits
a resonance at the point 0, if

ln f ′+(0)
ln f ′−(0)

∈ Q.

More precisely, a (k : l)-resonance at 0 occurs for k, l ∈ N if

(f ′−(0))k(f ′+(0))l = ak−b
l
+ = 1,

which is equivalent to a− = f ′−(0) = ρl, b+ = f ′+(0) = ρ−k for some ρ ∈ (0, 1) and also to
ln f ′+(0)
ln f ′−(0) = −k

l .

Analogously, a (k : l)-resonance at 1 occurs if

(f ′−(1))l(f ′+(1))k = ak+b
l
− = 1.

Without loss of generality, we always assume that k, l are relatively prime.

We will show that in the resonant case the (topological) support of the stationary measure
µ for some parameters is a Cantor set in [0, 1] of Hausdorff dimension smaller than 1 (see
Theorems 4.10 and 4.12). A different situation occurs in the non-resonant case, as shown
in the following proposition (for the definition of minimality see Definition 4.19 and for the
proof refer to Proposition 4.31 and Corollary 4.33).

Proposition 4.6. If an AM -system with positive Lyapunov exponents has no resonance at
one of the endpoints 0, 1, then it is minimal in (0, 1) and the support of µ is equal to [0, 1].
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Before stating the main results of this chapter, we need to present some definitions. Let

I : [0, 1]→ [0, 1], I(x) = I−1(x) = 1− x

be the symmetry of [0, 1] with respect to its center.

Definition 4.7 An AM -system {f−, f+} is called symmetric, if I ◦ f− = f+ ◦ I.

Obviously, a system {f−, f+} is symmetric if and only if a− = a+ and b− = b+. It is
straightforward that for symmetric systems we have x+ = I(x−) and f+(x+) = I(f−(x−)).
Moreover, for symmetric systems the existence of (k : l)-resonance at 0 is equivalent to the
existence of (k : l)-resonance at 1. Note also that if a symmetric systems exhibits (k : l)-
resonance, then the condition k > l is equivalent to the positivity of the exponents Λ(0),Λ(1)
for p− = p+ = 1/2 (see the proof of Lemma 4.29).

Definition 4.8 For an AM -system of disjoint type, we call the interval (f−(x−), f+(x+)) the
central interval of the system {f−, f+}.

Definition 4.9 Let x ∈ (0, 1) and i1, i2, . . . ∈ {−,+}. We say that a trajectory {fin ◦ · · · ◦
fi1(x)}∞n=0 jumps over the central interval at the time s, for s ­ 0, if fis ◦ · · · ◦ fi1(x) and
fis+1 ◦ · · · ◦ fi1(x) are in different components of the complement of the central interval in
[0, 1].

The main results of this chapter shows the singularity of the stationary measure µ for
some symmetric AM -systems of disjoint type, which exhibit a resonance.

Theorem 4.10. Let {f−, f+} be a symmetric AM -system of disjoint type with positive
Lyapunov exponents. If the system exhibits (k : l)-resonance for some relatively prime k, l ∈ N,
k > l, and satisfies ρ < η, where

ρ = (f ′−(0))1/l = (f ′+(0))−1/k = (f ′+(1))1/l = (f ′−(1))−1/k

and η ∈ (1/2, 1) is the unique solution of the equation ηk+l − 2ηk+1 + 2η − 1 = 0, then the
unique stationary measure µ (without atoms at 0, 1) is singular with

dimH(suppµ) =
log η
log ρ

< 1,

where suppµ denotes the topological support of µ. Moreover, suppµ is a nowhere dense perfect
set consisting of all limit points of trajectories of any point x ∈ (0, 1) under {f−, f+}, which
jump over the central interval infinitely many times.

Remark 4.11 The condition ρ < η is equivalent to ρx− < 1
2 and implies that the system is

of disjoint type. In the case l = 1 it holds for all systems of disjoint type. See Sections 4.4
and 4.5 for details.

In the case l = 1 we give a more precise description of the measure µ.

Theorem 4.12. Let {f−, f+} be a symmetric AM -system of disjoint type with probabilities
p−, p+, such that the Lyapunov exponents are positive. If the system exhibits (k : 1)-resonance
for some k ∈ {2, 3, . . .}, then

dimH µ =

k∑
r=1

r
(
p+
p−
ηr− log η− + p−

p+
ηr+ log η+

)
k∑
r=1

r
(
p+
p−
ηr− + p−

p+
ηr+

)
log ρ

,
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where ρ is defined as above and η−, η+ ∈ (0, 1) are, respectively, the unique solutions of the
equations

p+η
k+1
− − η− + p− = 0, p−η

k+1
+ − η+ + p+ = 0.

In particular, if p− = p+ = 1/2, then

dimH µ = dimH(suppµ) =
log η
log ρ

< 1.

Remark 4.13 Under the assumptions of Theorem 4.10, if l = 1 or l > 1, p− = p+ = 1/2,
then the stationary measure µ is a countable sum of (geometrically) similar copies, with
disjoint supports, of a self-similar measure of an iterated function system with the Strong
Separation Condition (recall Definition 2.14). In the case l = 1 this iterated function system
consists of k maps, while in the case l > 1, p− = p+ = 1/2 it is infinite. See Propositions 4.48
and 4.63.

Remark 4.14 For every k ∈ {2, 3, . . .} and ρ ∈ (0, η) and probability vector (p−, p+) with
p−, p+ ∈ (1/(k + 1), k/(k + 1)), the assumptions of Theorem 4.12 are fulfilled for some AM -
system with ρ = f ′−(0) = f ′+(1) and probabilities p−, p+. In particular, the theorem gives
examples of AM -systems with dimH µ = d for arbitrary d ∈ (0, 1).

The next result shows that the considered resonant systems are uniquely determined (up
to topological conjugacy) by their resonance data.

Theorem 4.15. Let {f−, f+}, {g−, g+} be symmetric AM -systems of disjoint type. If both
system exhibit (k : l)-resonance for some relatively prime k, l ∈ N, k > l, and satisfy ρ < η,
with ρ, η defined as in Theorem 4.10, then they are topologically conjugated, i.e. there exists
an increasing homeomorphism h : [0, 1]→ [0, 1] such that

g− ◦ h = h ◦ f−, g+ ◦ h = h ◦ f+.

The next result shows that there exist symmetric resonant AM -systems with singular
stationary measure of full support.

Theorem 4.16. If a symmetric AM -system with probabilities p− = p+ = 1/2 and positive
Lyapunov exponents exhibits (5 : 2)-resonance and satisfies ρ = η, with ρ, η defined as in
Theorem 4.10, then µ is singular with

dimH µ < 1, suppµ = [0, 1].

Note that in this case the condition ρ = η is equivalent to

ρ7 − 2ρ6 + 2ρ− 1 = 0,

which gives ρ ≈ 0.513649.

Remark 4.17 The resonance (5 : 2) was chosen because the proof is relatively short in this
case. Similar arguments work also for some other values of the resonance (k : l) with l > 1.

Our last result gives and open set of parameters for which the corresponding station-
ary measures is singular. In particular, there exist non-resonant AM -systems with singular
stationary measure. See Theorem 4.64 for a more detailed formulation.

Theorem 4.18. There exists a non-empty and open set of parameters (a, b) ∈ (0, 1)×(1,∞)
such that the stationary measure µ for the symmetric AM system with a− = a+ = a, b− =
b+ = b and probability vector (p−, p+) = (1

2 ,
1
2) is singular with dimH(µ) < 1.
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4.2 Preliminaries

Notation We write Z∗ = Z \ {0}. For j ∈ Z∗ we set

sgn(j) =

{
− for j < 0

+ for j > 0
.

For x ∈ R, A ⊂ R we use the notation

xA = {xy : y ∈ A}.

The convex hull of a set A is denoted by convA. We write |I| for the length of an interval I.
The symbol Leb denotes the Lebesgue measure.

The existence and uniqueness of stationary measures with atoms at the endpoints holds
for much more general family of systems than AM -systems. For the sake of the completeness,
let us state the corresponding result in the general case. Throughout this section we assume
that f1, . . . , fm, m ­ 2, are piecewise C1 increasing homeomorphisms of the interval [0, 1],
such that fi(0) = 0, fi(1) = 1 and fi(x) 6= x for x ∈ (0, 1), i = 1, . . . ,m.

For a set A ⊂ [0, 1] we define

f(A) = f1(A) ∪ . . . ∪ fm(A), f−1(A) = f−1
1 (A) ∪ . . . ∪ f−1

m (A)

and, inductively,

f0(A) = A, fn(A) = f(fn−1(A)), f−n(A) = f−1(f−(n−1)(A))

for n ∈ N.

Definition 4.19 Suppose f(X) ⊂ X for someX ⊂ [0, 1]. We say that the system {f1, . . . , fm}
is (forward) minimal in X, if the union of forward trajectories under {f1, . . . , fm} of every
point in X is dense in X, i.e. for every x ∈ X and every non-empty open subset U of X there
exist i1, . . . , in ∈ {1, . . . ,m}, n ­ 0, such that fin ◦ · · · ◦ fi1(x) ∈ U .

Let (p1, . . . , pm) be a probability vector, i.e. p1, . . . , pm ∈ (0, 1) and p1 + · · ·+ pm = 1. We
consider the symbolic space

Σ+
m = {1, . . . ,m}N

equipped with the Bernoulli measure

Ber+
p1,...,pm =

⊗
N

Pp1,...,pm ,

where Pp1,...,pm is the probability distribution on {1, . . . ,m} given by Pp1,...,pm({i}) = pi,
i = 1, . . . ,m.

We study {f1, . . . , fm} as the random systems of maps, given by the step skew product

F+ : Σ+
m × [0, 1]→ Σ+

m × [0, 1], F+(i, x) = (σ(i), fi1(x)),

where i = (in)n∈N and σ : Σ+
m → Σ+

m is the left-side shift, i.e. σ((in)n∈N) = (in+1)n∈N.
By T and T be will denote the corresponding Markov operator on measures (Definition

2.9) and the Perron-Frobenius transfer operator on densities (Definition 2.10), respectively.
Recall that the stationary measures of the system {f1, . . . , fm} with probabilities

p1, . . . , pm coincide with the fixed points of the transfer operator T , while the stationary
densities (densities of stationary measures with respect to the Lebesgue measure) are the
fixed points of the transfer operator T .

46



Proposition 4.20. Suppose that f(X) ⊂ X for some X ⊂ [0, 1] and the system {f1, . . . , fm}
is minimal in X. If ϑ is a stationary measure for the system and suppϑ ⊂ X, then suppϑ =
X.

The proof of this proposition is standard and can found e.g. in [19, Lemme 5.1] or [33, Lemma
2].

Note that since the maps fi fix the endpoints of the interval, the Dirac measures at 0
and 1 are stationary for any probabilities pi. If we assume that the endpoints are repelling
in average, then there exists a stationary measure with no atoms at 0, 1. More precisely, we
have the following.

Definition 4.21 Assuming f ′i(0), f ′i(1) > 0, i = 1, . . . ,m, the Lyapunov exponents of the
system {f1, . . . , fm} with probabilities p1, . . . , pm are defined as

Λ(0) = p1 ln f ′1(0) + · · ·+ pm ln f ′m(0), Λ(1) = p1 ln f ′1(1) + · · ·+ pm ln f ′m(1).

Theorem 4.22 ([34, Proposition 4.1], [35, Lemmas 3.2–3.4]). If Λ(0),Λ(1) > 0, then there
exists a unique probability stationary measure µ for the system {f1, . . . , fm} with probabilities
p1, . . . , pm, such that µ({0, 1}) = 0. Moreover, there exist positive constants c, α0, δ0 such that
for every α ∈ (0, α0), δ ∈ (0, δ0) and for

Dc,α,δ = {ν ∈M : ν([0, x]), ν([1− x, 1]) < cxα for every x ∈ (0, δ)},

we have T (Dc,α,δ) ⊂ Dc,α,δ and µ ∈ Dc,α,δ.

Remark 4.23 Actually, in [34, 35] the theorem was proved for systems of C1-diffeo-
morphisms, but the proof goes through if we only assume that the maps are smooth in
some neighbourhoods of 0, 1.

Remark 4.24 The uniqueness of the stationary measure µ ∈ Dc,α,δ implies

1
N

N−1∑
n=0

T nν → µ as N →∞ in weak-* topology for every ν ∈ Dc,α,δ.

Remark 4.25 The measure Ber+
p1,...,pm ×µ is an F+-invariant measure on Σ+

m× [0, 1]. More-
over, there is a Borel probability measure on Σm × [0, 1], where Σm = {1, . . . ,m}Z, invariant
with respect to the (extended) step skew product, which is associated to µ in a unique way
(see [5, 35]).

It is well-known (see e.g. [23, Theorem 2.5]) that whenever the operator T preserves
absolute continuity and singularity of measures (with respect to the Lebesgue measure) and
the stationary measure is unique, then it is of pure type (i.e. is either absolutely continuous
or singular with respect to the Lebesgue measure). It is easy to see that the same holds for
the measure µ from Theorem 4.22, as f1, . . . , fm are piecewise C1 homeomorphisms. Hence,
if Λ(0),Λ(1) > 0, then the following two propositions hold.

Proposition 4.26. The stationary measure µ is either absolutely continuous or singular
with respect to the Lebesgue measure.

Proposition 4.27. The stationary measure µ is non-atomic.
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Proof. The proof follows [33, proof of Lemma 2] (see also [19, Lemme 5.1]). By Theorem 4.22,
µ has no atoms at 0, 1. Suppose there exists an atom in (0, 1) and take x ∈ (0, 1) such
that µ({x}) = max{µ({y}) : y ∈ (0, 1)}. Then, by the definition of stationary measure,
µ({f−1

i (x)}) = µ({x}) for every i = 1, . . . ,m and, consequently, µ({f−ni (x)}) = µ({x}) > 0
for every n > 0. Since fi has no fixed points in (0, 1), the trajectory {f−ni (x)}∞n=0 is strictly
monotonic and thus infinite, which contradicts the finiteness of µ.

The following lemma is useful in determining singularity of the measure µ.

Lemma 4.28. If X ⊂ (0, 1) is non-empty, closed as a subset of (0, 1), and f(X) ⊂ X, then
suppµ ⊂ X ∪ {0, 1} and µ(X) = 1. Consequently, if there exists such a set X of Lebesgue
measure 0, then µ is singular.

Proof. Take x ∈ X. Since x ∈ (0, 1), the Dirac measure δx at x is in Dc,α,δ for sufficiently
small δ > 0, so by Remark 4.24 we have

1
N

N−1∑
n=0

T nδx → µ as N →∞ in weak-* topology.

Since
T nδx =

∑
i1,...,in∈{1,...,m}

pi1 · · · pinδfin◦···◦fi1 (x),

the measures 1
N

N−1∑
n=0
T nδx have topological support in

N−1⋃
n=0

fn({x}), which is contained in X,

as f(X) ⊂ X. Since X = X ∪ {0, 1} and µ({0, 1}) = 0, we have suppµ ⊂ X ∪ {0, 1} and
µ(X) = 1.

4.3 Preliminary results and proof of Theorem 4.4

From now on, we restrict our attention to AM -systems. In this section we prove Theorem 4.4
together with other preliminary results on the AM -systems. We begin with the following
observation.

Lemma 4.29. Let {f−, f+} be an AM -system. If the Lyapunov exponents Λ(0),Λ(1) are
positive for the probabilities p− = p+ = 1/2, then x+ < x−. In particular, x+ < x− holds if
the system is symmetric and exhibits a (k : l)-resonance for k, l ∈ N, k > l.

Proof. The inequality x+ < x− can be written as

1− a+

b+ − a+
<

b− − 1
b− − a−

,

which is equivalent to
(1− a−)(1− a+) < (b− − 1)(b+ − 1). (4.1)

By the positivity of the Lyapunov exponents for p− = p+ = 1/2,

b− >
1
a+
, b+ >

1
a−
,

so

(b− − 1)(b+ − 1) >
(

1
a+
− 1

)(
1
a−
− 1

)
=

(1− a−)(1− a+)
a−a+

> (1− a−)(1− a+),
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which gives (4.1). As already noted, if the system is symmetric and exhibits a (k : l)-resonance
for k > l, then the assumption on the positivity of the Lyapunov exponents for p− = p+ = 1/2
is satisfied. Indeed, in this case we have a− = a+ = a ∈ (0, 1) and b− = b+ = a−k/l, so

1
2

ln f ′−(x) +
1
2

ln f ′+(x)) =
1− k/l

2
ln a > 0.

for x = 0, 1.

The following lemma is used in the proof of Theorem 4.4.

Lemma 4.30. If an AM -system {f−, f+} with probabilities p−, p+ is of border type and
p−
a−

+ p+
b+

= 1, then p−
b−

+ p+
a+

= 1. Conversely, if

p−
a−

+
p+

b+
=
p−
b−

+
p+

a+
= 1,

then the AM -system {f−, f+} with probabilities p−, p+ is of border type.

Proof. An elementary calculation shows that the system is of border type if and only if

a− + a+ − 1
a−a+

=
b− + b+ − 1

b−b+
,

which is equivalent to
1− 1/b+

1/a− − 1/b+
=

1− 1/a+

1/b− − 1/a+
. (4.2)

Suppose that the system is of border type and

p−
a−

+
p+

b+
= 1.

Then

p− =
1− 1/b+

1/a− − 1/b+
,

so by (4.2),

p− =
1− 1/a+

1/b− − 1/a+
,

which gives
p−
b−

+
p+

a+
= 1.

Conversely, suppose
p−
a−

+
p+

b+
=
p−
b−

+
p+

a+
= 1.

Then

p− =
1− 1/b+

1/a− − 1/b+
=

1− 1/a+

1/b− − 1/a+
,

which gives (4.2).

The following proposition, which gives the first part of Proposition 4.6, is essentially
proved in [50, Lemma 3] and [35, Proposition 2.1] (formally, in the case of diffeomorphisms).
For completeness, we present the proof suited to our setup.

Proposition 4.31. If an AM -system {f−, f+} has no resonance at one of the endpoints
0, 1, then it is minimal in (0, 1).
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Proof. To fix notation, assume that the system has no resonance at 0 (in the other case the
proof is analogous). Choose x0 ∈ (0, 1). Since both families of intervals [fn+1

− (x0), fn−(x0)),
n ∈ Z, and [fn+(x0), fn+1

+ (x0)), n ∈ Z, cover (0, 1), it is sufficient to prove that for every
x, y ∈ K, where

K = [fn0+ (x0), fn0+1
+ (x0))

with some chosen n0 ∈ Z and every ε > 0 there exist n ∈ N and i1, . . . , in ∈ {−,+} such that

fin ◦ · · · ◦ fi1(x) ∈ K and |fin ◦ · · · ◦ fi1(x)− y| < ε. (4.3)

To show (4.3), we choose n0 so that K ⊂ (0, x+) and let

α = − ln a−
ln b+

,

Since we assume that {f−, f+} has no resonance at 0, we have α ∈ R+ \ Q. Hence, for any
y ∈ K and δ > 0 we can find k, l ∈ N such that

0 < k − αl − ln(y/x)
ln b+

< δ. (4.4)

As
bk+a

l
−x = e(k−αl) ln b++lnx = yb

k−αl−ln(y/x)/ ln b+
+ ,

(4.4) implies

y < bk+a
l
−x < ybδ+ = y + y(bδ+ − 1) < y + bδ+ − 1 < y + min(ε, supK − y),

if δ is chosen sufficiently small. In particular,

bk+a
l
−x ∈ K and |bk+al−x− y| < ε. (4.5)

Since x ∈ K ⊂ (0, x+), we have f l−(x) = al−x. Moreover, (4.5) implies bj+a
l
−x ∈ (0, x+) for

j = 0, . . . , k, which gives fk+(f l−(x)) = bk+a
l
−x. This together with (4.5) shows (4.3) and ends

the proof.

Assume now that an AM -system {f−, f+} with probabilities p−, p+ has positive Lyapunov
exponents, which is equivalent to

a
p−
− b

p+
+ > 1, b

p−
− a

p+
+ > 1.

Then, by Theorem 4.22, there exists a unique probability stationary measure µ for the system,
such that µ({0, 1}) = 0. By Propositions 4.26 and 4.27, we have the following.

Proposition 4.32. The stationary measure µ is non-atomic. Moreover, it is either absolutely
continuous or singular with respect to the Lebesgue measure.

Propositions 4.20 and 4.31 imply the following corollary, which completes the proof of
Proposition 4.6.

Corollary 4.33. If the system has no resonance at one of the endpoints 0, 1, then suppµ =
[0, 1].

We end the section by proving Theorem 4.4.
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Proof of Theorem 4.4. Recall that he transfer operator T on L1([0, 1],Leb) has the form
(see Definition 2.10)

Tg = p− (f−1
− )′ g ◦ f−1

− + p+ (f−1
+ )′ g ◦ f−1

+ ,

The measure µ is the Lebesgue measure if and only if

T1 = 1 (4.6)

for the constant unity function 1. If the system is of border type, then

T1(x) =


p−
a−

+ p+
b+

for x ¬ f−(x−)
p−
b−

+ p+
a+

for x > f−(x−)
,

so (4.6) is equivalent to
p−
a−

+
p+

b+
=
p−
b−

+
p+

a+
= 1. (4.7)

Conversely, if (4.6) holds, then applying it to points x ∈ [0, 1] close to the endpoints of [0, 1]
we get (4.7). To end the proof, it is enough to use Lemma 4.30.

Remark 4.34 As noted in the introduction, for the case a− = a+ = a, b− = b+ = b,
1/a+ 1/b = 2, p− = p− = 1/2, Theorem 4.4 was proved in [2, Theorem 6.1].

4.4 Proofs of Theorems 4.10 (case l = 1) and 4.12.

In Theorems 4.10 and 4.12 we consider a symmetric AM -system of disjoint type {f−, f+} with
probabilities p−, p+, positive Lyapunov exponents and a (k : l)-resonance for some relatively
prime k, l ∈ N, k > l. In this section we prove the results in the case l = 1. The proof is
divided into several parts concerning consecutive assertions of the theorems.

Preliminaries

By assumption, a− = a+ = ρ, b− = b+ = ρ−k, so the maps have the form

f−(x) =

{
ρx for x ∈ [0, x−]

I(ρ−kI(x)) for x ∈ (x−, 1]
, f+(x) =

{
ρ−kx for x ∈ [0, x+]

I(ρI(x)) for x ∈ (x+, 1]
,

where ρ ∈ (0, 1) and

x− =
1− ρk

1− ρk+1 , x+ = I(x−) =
ρk − ρk+1

1− ρk+1 ,

f−(x−) =
ρ− ρk+1

1− ρk+1 , f+(x+) = I(f−(x−)) =
1− ρ

1− ρk+1 .

Note that x+ < x− (see Lemma 4.29) and x+ < f−(x−). The assumption that the system is
of disjoint type, i.e. the condition f−(x−) < f+(x+), is equivalent to

ρk+1 − 2ρ+ 1 > 0 (4.8)

and also to ρx− < 1
2 . For the function h(ρ) = ρk+1 − 2ρ + 1, ρ ­ 0 we have h(1/2) > 0,

h(1) = 0, h′(ρ) < 0 for ρ < ρ0 and h′(ρ) > 0 for ρ > ρ0, where ρ0 = (2/(k + 1))1/k ∈ (1/2, 1).
This implies that h on (0, 1) has a unique zero η ∈ (1/2, 1), i.e.

ηk+1 − 2η + 1 = 0
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and the condition ρ < η is equivalent to (4.8) (this shows Remark 4.11 in the case l = 1).
Since the system is symmetric, in fact we have

x+ < f−(x−) <
1
2
< f+(x+) < x+. (4.9)

A simple computation shows that the condition of the positivity of the Lyapunov expo-
nents is equivalent to

p−, p+ ∈
( 1
k + 1

,
k

k + 1

)
. (4.10)

Note that the above considerations prove Remark 4.14.

Construction of the set Λ

Now we construct a set Λ ⊂ (0, 1) which will be shown later to be the support of the
measure µ restricted to (0, 1). Our strategy is the following. First, we construct a family of
disjoint closed intervals Ij , j ∈ Z∗, with the union I =

⋃
j∈Z∗ Ij being forward-invariant under

{f−, f+}. The disjointness of Ij follows from the assumption that the system is of disjoint
type. We check that the intervals I−k, . . . , I−1 are mapped by f+ into I1 with separation gaps,
i.e. f+(I−k), . . . , f+(I−1) are disjoint subsets of I1 (see Lemma 4.35 and Figure 4.3). Further
iterates of these images and their similar copies generate an infinite collection of disjoint
Cantor sets, whose union Λ is fully invariant and minimal under the action of {f−, f+} (see
Proposition 4.44). As we wish to calculate the dimension of Λ, it is convenient to describe Λ
as the union of the attractor Λ−1 of a self-similar iterated function system {φr}kr=1 on I−1

and its similar copies. Moreover, as the successive levels of the Cantor set Λ−1 are produced
during jumps over the central interval (x+, x−), we obtain a characterization of Λ in terms
of limit points of trajectories jumping over the central interval infinitely many times (see
Proposition 4.43).

Let

I−1 = [ρf+(x+), ρx−] = [ρf+(x+), f−(x−)] = [ρI(f−(x−)), f−(x−)] =

[
ρ− ρ2

1− ρk+1 ,
ρ− ρk+1

1− ρk+1

]

and for j ∈ Z∗ define

Ij =

{
ρ−j−1I−1 for j < 0

I(ρj−1I−1) for j > 0
.

The following lemma is elementary and describes the combinatorics of the intervals Ij , j ∈ Z∗.

Lemma 4.35. The following statements hold.

(a) I−j = I(Ij) for j ∈ Z∗.

(b) The sets Ij, j ∈ Z∗ are pairwise disjoint and situated in (0, 1) in the increasing order
with respect to j.

(c) inf I−k = x+, sup Ik = x−, sup I−1 = f−(x−), inf I1 = f+(x+). In particular,

f−(x) =

{
ρx for x ∈

⋃k
j=−∞ Ij

I(ρ−kI(x)) for x ∈
⋃∞
j=k+1 Ij

, f+(x) =

{
ρ−kx for x ∈

⋃−k−1
j=−∞ Ij

I(ρI(x)) for x ∈
⋃∞
j=−k Ij

.

(d) f−(Ij) = Ij−1 for j ¬ −1, f−(conv(I1 ∪ · · · ∪ Ik)) = I−1, f−(Ij) = Ij−k for j ­ k + 1.

(e) f+(Ij) = Ij+k for j ¬ −k − 1, f+(conv(I−k ∪ · · · ∪ I−1)) = I1, f+(Ij) = Ij+1 for j ­ 1.

See Figure 4.3.
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I1I−1 I2 Ik Ik+1I−2I−kI−k−1

f−
f−f−

f−

f+f+

f+

f+

x+ f−(x−) f+(x+) x−

Figure 4.3: A schematic view of the action of {f−, f+} on the intervals Ij .

Proof. The assertion (a) follows directly from the definition of Ij . To show (b), we first check
sup I−2 < inf I−1. This is equivalent to

ρ
ρ− ρk+1

1− ρk+1 <
ρ− ρ2

1− ρk+1 ,

which boils down to (4.8). By (4.9), sup I−1 < inf I1. The rest of the assertion (b) follows
directly from the above facts and the definition of Ij .

The assertions (c)–(e) are easy consequences of the definition of Ij , the symmetry of the
system and the fact

f−1
− (x) = ρ−1x, f−1

+ (x) = ρkx for x ∈
⋃
j<0

Ij ,

which follows from the definition of f±.

Let
I =

⋃
j∈Z

Ij , I− =
⋃
j<0

Ij , I+ =
⋃
j>0

Ij .

Note that Lemma 4.35 implies f(I) ⊂ I. More precisely, for every i ∈ {−,+} and j ∈ Z∗ we
have

fi(Ij) ⊂ Ij′ for some j′ = j′(i, j) ∈ Z∗.

Lemma 4.36. For every x ∈ (0, 1) there exists i1, . . . , in ∈ {−,+}, n ­ 0, such that
fin ◦ · · · ◦ fi1(x) ∈ I.

Proof. Enumerate the components of (0, 1)\I by Uj , j ∈ Z, such that Uj is the gap between
Ij−1 and Ij for j < 0, U0 is the gap between I−1 and I1, and Uj is the gap between Ij
and Ij+1 for j > 0. Take x ∈ (0, 1) \ I. Since the system is symmetric, we can assume
x ∈ Uj , j ¬ 0. Then to prove the lemma it is enough to notice that by Lemma 4.35, we have

f− ◦ f
b−j
k
c+1

+ (x) ∈ I−1.

Consider the maps

φr : I−1 → I−1, φr(x) = ρ− ρrx, r = 1, . . . , k.

Note that
φr(x) = ρI(ρr−1x) = f−(I(ρr−1x)) = I(f+(ρr−1x)) (4.11)
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for x ∈ I−1. Obviously, the maps φr are contracting similarities with ‖φ′r‖ = ρr.
Let

Λ−1 =
∞⋂
n=1

k⋃
r1,...,rn=1

φr1 ◦ · · · ◦ φrn(I−1)

be the attractor of the iterated function system generated by {φr}kr=1 on I−1. By Theorem
2.11, it is the unique non-empty compact set in I−1 satisfying

Λ−1 =
k⋃
r=1

φr(Λ−1)

For j ∈ Z∗ define

Λj =

{
ρ−j−1Λ−1 for j < 0

I(ρj−1Λ−1) for j > 0
, Λ =

⋃
j∈Z∗

Λj .

Obviously, Λj are pairwise disjoint compact sets and Λj ⊂ Ij . Furthermore, for n ­ 0,
r1, . . . , rn ∈ {1, . . . , k} let

Ij;r1,...,rn =

{
ρ−j−1φr1 ◦ · · · ◦ φrn(I−1) for j < 0

I(ρj−1φr1 ◦ · · · ◦ φrn(I−1)) for j > 0
,

where for n = 0 we set Ij;r1,...,rn = Ij , φr1 ◦ · · · ◦ φrn = id. Since |φ′r| = ρr, for every j ∈ Z∗
and an infinite sequence r1, r2, . . . ∈ {1, . . . , k} the segments Ij;r1,...,rn , n ­ 0, form a nested
sequence of sets, such that

|Ij;r1,...,rn | = ρ|j|−1+r1+···+rn ¬ ρn → 0 as n→∞,

so ∞⋂
n=1

Ij;r1,...,rn = {xj;r1,r2,...}

for a point xj;r1,r2,... ∈ Λ and

Λ =
⋃
j∈Z∗

∞⋂
n=1

k⋃
r1,...,rn=1

Ij;r1,...,rn = {xj;r1,r2,... : j ∈ Z∗, r1, r2, . . . ∈ {1, . . . , k}}.

Description of trajectories

Lemma 4.35 and (4.11) imply immediately the following.

Lemma 4.37. For j ∈ Z∗, r1, r2, . . . ∈ {1, . . . , k}, n ­ 0,

f−(Ij;r1,...,rn) =


Ij−1;r1,...,rn for j < 0

I−1;j,r1,...,rn for 1 ¬ j ¬ k
Ij−k;r1,...,rn for j > k

,

f+(Ij;r1,...,rn) =


Ij+k;r1,...,rn for j < −k
I1;−j,r1,...,rn for − k ¬ j ¬ −1

Ij+1;r1,...,rn for j > 0

and

f−(xj;r1,r2,...) =


xj−1;r1,r2,... for j < 0

x−1;j,r1,r2,... for 1 ¬ j ¬ k
xj−k;r1,r2,... for j > k

,

f+(xj;r1,r2,...) =


xj+k;r1,r2,... for j < −k
x1;−j,r1,r2,... for − k ¬ j ¬ −1

xj+1;r1,r2,... for j > 0

.
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The following lemmas characterize trajectories jumping over the central interval. The first
one follows directly from Lemma 4.35.

Lemma 4.38. The following statements hold.

(a) If a trajectory {fin ◦ · · · ◦ fi1(x)}∞n=0, for x ∈ (0, 1), jumps over the central interval at
the time s, for s ­ 0, then fis+1 ◦ · · · ◦ fi1(x) ∈ I−1 ∪ I1.

(b) A trajectory {fin ◦ · · · ◦fi1(x)}∞n=0, for x ∈ I, jumps over the central interval at the time
s, for s ­ 0, if and only if

fis ◦ · · · ◦ fi1(x) ∈
−1⋃
j=−k

Ij , is+1 = +, fis+1 ◦ · · · ◦ fi1(x) ∈ I1

or

fis ◦ · · · ◦ fi1(x) ∈
k⋃
j=1

Ij , is+1 = −, fis+1 ◦ · · · ◦ fi1(x) ∈ I−1.

In particular, for given j ∈ Z∗ and i1, i2, . . . ∈ {−,+}, for all x ∈ Ij the trajectories {fin ◦
· · · ◦ fi1(x)}∞n=0 jump over the central interval at the same times.

For j, j′ ∈ Z∗ such that sgn(j) = sgn(j′), define

Fj,j′ : Ij −−→onto
Ij′ , Fj,j′ =


f j−j

′

− |Ij for j < 0, j′ ¬ j
f
d(j′−j)/ke
+ ◦ f j−j

′+kd(j′−j)/ke
− |Ij for j < 0, j′ > j

f j
′−j

+ |Ij for j > 0, j′ ­ j
f
d(j−j′)/ke
− ◦ f j

′−j+kd(j−j′)/ke
+ |Ij for j > 0, j′ < j

.

Note that Fj,j′ = fin ◦ · · · ◦ fi1 |Ij for some i1, . . . , in ∈ {−,+}, n ­ 0, and, by Lemma 4.35,

Fj,j′(x) =

{
ρj−j

′
x for j < 0

I(ρ−j+j
′I(x)) for j > 0

(4.12)

for x ∈ Ij . In particular, this implies

Fj,j = id |Ij , Fj′,j′′ ◦ Fj,j′ = Fj,j′′

for j, j′, j′′ ∈ Z∗ such that sgn(j) = sgn(j′) = sgn(j′′). By Lemma 4.37,

Fj,j′(Ij;r1,...,rn) = Ij′;r1,...,rn , Fj,j′(xj;r1,r2,...) = xj′;r1,r2,... (4.13)

for r1, r2, . . . ∈ {1, . . . , k}, n ­ 0.

Lemma 4.39. A trajectory {fin ◦ · · · ◦ fi1(x)}∞n=0 of a point x ∈ Ij, j ∈ Z∗, does not jump
over the central interval at any time 0 ¬ s < n, for some n ­ 0, if and only if

fin ◦ · · · ◦ fi1 |Ij = Fj,j′

for j′ ∈ Z∗ such that fin ◦ · · · ◦ fi1(x) ∈ Ij′ and sgn(j) = sgn(j′).

Proof. If a trajectory {fin ◦ · · · ◦ fi1(x)}∞n=0 of x ∈ Ij does not jump over the central interval
at any time 0 ¬ s < n, then by Lemmas 4.35 and 4.38,

fin ◦ · · · ◦ fi1(x) =

{
ρj−j

′
x for j < 0

I(ρ−j+j
′I(x)) for j > 0

for j′ ∈ Z∗ such that fin ◦ · · · ◦ fi1(x) ∈ Ij′ . Therefore, fin ◦ · · · ◦ fi1 |Ij = Fj,j′ by (4.12). The
other implication follows directly from Lemmas 4.35 and 4.38.
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Define
G−r : I1 → I−1, G+

r : I−1 → I1, r ∈ {1, . . . , k}

setting
G−r = f− ◦ F1,r, G+

r = f+ ◦ F−1,−r.

We have G±r = fin ◦ · · · ◦ fi1 |I∓1 for some i1, . . . , in ∈ {−,+}, n ­ 0. Moreover, by (4.11) and
(4.12),

G−r = φr ◦ I|I1 , G+
r = I ◦ φr, (4.14)

while Lemma 4.37 and (4.13) imply

G−r (I1;r1,...,rn) = I−1;r,r1,...,rn , G−r (x1;r1,r2,...) = x−1;r,r1,r2,...,

G+
r (I−1;r1,...,rn) = I1;r,r1,...,rn , G+

r (x−1;r1,r2,...) = x1;r,r1,r2,...
(4.15)

for r1, r2, . . . ∈ {1, . . . , k}, n ­ 0.

Lemma 4.40. A trajectory {fin ◦ · · · ◦ fi1(x)}∞n=0 of a point x ∈ I jumps over the central
interval at the time s, for some s ­ 0, if and only if

fis ◦ · · · ◦ fi1(x) ∈ I−r, fis+1 |I−r = G+
r ◦ F−r,−1

or

fis ◦ · · · ◦ fi1(x) ∈ Ir, fis+1 |Ir = G−r ◦ Fr,1

for some r ∈ {1, . . . , k}.

Proof. Follows directly from Lemmas 4.38, 4.39 and the definitions of the maps Fj,j′ , G±r .

Lemma 4.41. A trajectory {fin ◦ · · · ◦ fi1(x)}∞n=0 of a point x ∈ Ij, j ∈ Z∗, jumps over the
central interval (exactly) at the times s1, . . . , sm, for some 0 ¬ s1 < · · · < sm < n, 0 ¬ m ¬ n,
if and only if

fin ◦ · · · ◦ fi1 |Ij =


F−1,j′ ◦G−r1 ◦G

+
r2 ◦ · · · ◦G

−
rm−1 ◦G

+
rm ◦ Fj,−1 for j < 0, m even

F1,j′ ◦G+
r1 ◦G

−
r2 ◦ · · · ◦G

+
r′m−2

◦G−rm−1 ◦G
+
rm ◦ Fj,−1 for j < 0, m odd

F1,j′ ◦G+
r1 ◦G

−
r2 ◦ · · · ◦G

+
rm−1 ◦G

−
rm ◦ Fj,1 for j > 0, m even

F−1,j′ ◦G−r1 ◦G
+
r2 ◦ · · · ◦G

−
rm−2 ◦G

+
rm−1 ◦G

−
rm ◦ Fj,1 for j > 0, m odd

for some j′ ∈ Z∗ and r1, . . . , rm ∈ {1, . . . , k}, where sgn(j) = sgn(j′) when m is even and
sgn(j) 6= sgn(j′) when m is odd. Moreover, in this case we have

fin ◦ · · · ◦ fi1(Ij) = Ij′;r1,...,rm

and

fin ◦ · · · ◦ fi1(x) =


ρ−j

′−1φr1 ◦ · · · ◦ φrm(ρj+1x) for j < 0, m even

I(ρj
′−1φr1 ◦ · · · ◦ φrm(ρj+1x)) for j < 0, m odd

ρ−j
′−1φr1 ◦ · · · ◦ φrm(ρ−j+1I(x)) for j > 0, m even

I(ρj
′−1φr1 ◦ · · · ◦ φrm(ρ−j+1I(x))) for j > 0, m odd

.

Proof. Follows directly from Lemmas 4.39 and 4.40, and (4.12), (4.13), (4.14), (4.15).

Definition 4.42 For x ∈ (0, 1) let ω∞(x) be the set of limit points of all trajectories of x
under {f−, f+}, which jump over the central interval infinitely many times, i.e.

ω∞(x) = { lim
s→∞

fins ◦ · · · ◦ fi1(x) : i1, i2, . . . ∈ {−,+}, ns →∞ as s→∞

and {fin ◦ · · · ◦ fi1(x)}∞n=0 jumps over the central interval infinitely many times}.
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Proposition 4.43. For every x ∈ (0, 1),

ω∞(x) = Λ ∪ {0, 1}.

Proof. First, we prove ω∞(x) ⊂ Λ∪ {0, 1} for x ∈ (0, 1). By Lemma 4.38(a), we can assume
x ∈ I. Take y ∈ ω∞(x). Then y = lims→∞ fins ◦ · · · ◦fi1(x), where ns →∞ and the trajectory
{fin ◦ · · · ◦ fi1(x)}∞n=0 jumps over the central interval infinitely many times. By Lemma 4.41,
we have

fins ◦ · · · ◦ fi1(x) ∈ Ij(s);r1(s),...,rm(s)(s)
for some j(s) ∈ Z∗, m(s) ­ 0, r1(s), . . . , rm(s)(s) ∈ {1, . . . , k}, where m(s) → ∞ as s → ∞.
Since |Ij(s);r1(s),...,rm(s)(s)| ¬ ρm(s) → 0 as s → ∞, Ij(s);r1(s),...,rm(s)(s) ∩ Λ 6= 0, we have

y ∈ Λ = Λ ∪ {0, 1}. In this way we have showed ω∞(x) ⊂ Λ ∪ {0, 1}.
Now we prove Λ ∪ {0, 1} ⊂ ω∞(x) for x ∈ (0, 1). By Lemma 4.36, we can assume x ∈ Ij ,

j ∈ Z∗. Since the system is symmetric, we can assume j < 0. Take y ∈ Λ. Then y = xj′;r1,r2,...
for some j′ ∈ Z∗, r1, r2, . . . ∈ {1, . . . , k}. Let

F (0) =

{
Fj,j′ if j′ < 0

F1,j′ ◦G+
1 ◦ Fj,−1 if j′ > 0

and note that F (0)(x) ∈ Ij′ . Define

F (n) =

{
F−1,j′ ◦G−r1 ◦G

+
r2 ◦ · · · ◦G

−
rn−1 ◦G

+
rn ◦ Fj′,−1 if j′ < 0

F1,j′ ◦G+
r1 ◦G

−
r2 ◦ · · · ◦G

+
rn−1 ◦G

−
rn ◦ Fj′,1 if j′ > 0

for even n > 0. Then F (n) is well-defined on Ij′ . Using (4.13) and (4.15) inductively, we see

F (n) ◦ · · · ◦ F (2) ◦ F (0)(x) ∈ Ij′;r1,...,rn

for every even n > 0. Since |Ij′;r1,...,rn | ¬ ρn → 0 as n→∞ and
⋂
n even Ij′;r1,...,rn = {y}, the

trajectory defined by · · · ◦F (n) · · · ◦F (2) ◦F (0)(x) has y as a limit point and, by Lemma 4.41,
jumps over the central interval infinitely many times. This shows Λ ⊂ ω∞(x).

Take now y ∈ {0, 1} and define

F (0) =

{
Fj,−1 if y = 0

G+
1 ◦ Fj,−1 if y = 1

and

F (n) =

{
F−1,−n−1 ◦G−1 ◦G

+
1 ◦ · · · ◦G

−
1 ◦G

+
1 ◦ F−n+1,−1 if y = 0

F1,n+1 ◦G+
1 ◦G

−
1 ◦ · · · ◦G

+
1 ◦G

−
1 ◦ Fn−1,1 if y = 1

for even n > 0. Then, arguing as previously, we see that

F (n) ◦ · · · ◦ F (2) ◦ F (0)(x) ∈
{
I−n−1 if y = 0

In+1 if y = 1

for even n > 0, the trajectory defined by · · ·◦F (n) · · ·◦F (2)◦F (0)(x) has y as its limit point and
jumps over the central interval infinitely many times. This implies Λ ∪ {0, 1} ⊂ ω∞(x).

Proposition 4.44. We have
Λ = f−(Λ) = f+(Λ).

Moreover, the system {f−, f+} is minimal in Λ.

Proof. The first assertion follows directly from Lemma 4.37, while Proposition 4.43 implies
minimality.
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Singularity of µ

Proposition 4.45. We have

suppµ = Λ ∪ {0, 1}, µ(Λ) = 1.

Proof. By Proposition 4.44, we have f(Λ) = Λ. Moreover, Λ is closed in (0, 1). Hence,
Lemma 4.28 implies suppµ ⊂ Λ ∪ {0, 1} and µ(Λ) = 1. On the other hand, the system is
minimal in Λ by Proposition 4.44, so Proposition 4.20 gives suppµ = Λ = Λ ∪ {0, 1}.

Proposition 4.46.

dimH Λ = dimB Λ =
log η
log ρ

< 1,

where η ∈ (1/2, 1) is the unique solution of the equation ηk+1 − 2η + 1 = 0.

Proof. By definition, the maps φr : I−1 → I−1, r = 1, . . . , k, are contractions and

φr(I−1) =

[
ρ− ρr ρ− ρ

k+1

1− ρk+1 , ρ− ρ
r ρ− ρ2

1− ρk+1

]
.

Using (4.8), we check that supφr(I−1) < inf φr+1(I−1) for r = 1, . . . , k − 1. Consequently,
{φr}kr=1 is an iterated function system of contracting similarities with scales ρ, . . . , ρk, re-
spectively, satisfying the Strong Separation Condition (i.e. φr(I−1) = φr(I−1), r = 1, . . . , k,
are pairwise disjoint). Therefore, its limit set Λ−1 is a Cantor set with Hausdorff (and box)
dimension equal to the unique positive number d satisfying

ρd + · · ·+ ρkd = 1

(see Proposition 2.15). This equation is equivalent to ηk+1 − 2η + 1 = 0 for η = ρd. Hence,

dimH Λ−1 = dimB Λ−1 = d =
log η
log ρ

,

Since Λj , j ∈ Z∗, are disjoint similar copies of Λ−1, we have dimH Λ = dimH Λ−1 by Propo-
sition 2.4.5. To see dimB Λ = dimB Λ−1 note that Λ = ψ(A× Λ−1) ∪ I(ψ(A× Λ−1)), where
A = {ρj : j ­ 0} and ψ : A×Λ−1 → [0, 1] is given as ψ(ρj , x) = ρjx. Since ψ is Lipschitz and
dimB A = 0, applying points 1, 4 and 6, of Proposition 2.4 we obtain

dimB Λ−1 ¬ dimB BΛ ¬ dimB BΛ ¬ dimB A+ dimB Λ−1 = dimB Λ−1,

hence dimB Λ exists and equals dimB(Λ−1) = d. The condition (4.8), equivalent to ρ < η,
implies dimH Λ−1 < 1.

Propositions 4.45 and 4.46 imply the following.

Corollary 4.47. The measure µ is singular with dimB(suppµ) = dimH(suppµ) < 1.
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Dimension of µ

To determine the exact form of µ, consider the natural projection for the IFS {φr}kr=1 on I−1

given by

π−1 : Σ+
k → Λ−1, π−1(r1, r2, . . .) = lim

n→∞
φr1 ◦ φr2 ◦ · · · ◦ φrn(x) = x−1;r1,r2,...,

where Σ+
k = {1, . . . , k}N and x is any point from I−1. By Proposition 2.13, π−1 is well defined,

does not depend on the choice of x and it is a π−1, since the IFS satisfies the Strong Separation
Condition. It follows that Λ is homeomorphic to Z∗ × Σ+

k with the topology defined as the
product of the discrete topology on Z∗ and the standard (product) topology on Σ+

k . The
homeomorphism is given by

π : Z∗ × Σ+
k → X, π(j, r1, r2, . . .) = xj;r1,r2,... =

{
ρ−j−1π−1(r1, r2, . . .) for j < 0

I(ρj−1π−1(r1, r2, . . .)) for j > 0
.

Let f̃−, f̃+ : Z∗ × Σ+
k → Z∗ × Σ+

k be the lifts by π of f−|Λ, f+|Λ, respectively, i.e.

π ◦ f̃i = fi ◦ π, i ∈ {−,+}. (4.16)

Lemma 4.37 implies

f̃−(j, r1, r2, . . .) =


(j − 1, r1, r2, . . .) for j < 0

(−1, j, r1, r2, . . .) for 1 ¬ j ¬ k
(j − k, r1, r2, . . .) for j > k

f̃+(j, r1, r2, . . .) =


(j + k, r1, r2, . . .) for j < −k
(1,−j, r1, r2, . . .) for − k ¬ j ¬ −1

(j + 1, r1, r2, . . .) for j > 0

.

(4.17)

Due to (4.16), there is a one-to-one correspondence between stationary probability measures
for the system {f−, f+} on Λ with probabilities p−, p+ and for the system {f̃−, f̃+} with
probabilities p−, p+, both considered on σ-algebras of Borel sets. Since there is a unique sta-
tionary probability measure µ for {f−, f+} on Λ, there is also a unique stationary probability
measure µ̃ for {f̃−, f̃+}. Moreover, µ = π∗µ̃.

Now we determine the structure of the measure µ̃.

Proposition 4.48. There exist numbers c−, c+ > 0 and probabilistic vectors β− =

(β−1 , . . . , β
−
k ), β+ = (β+

1 , . . . , β
+
k ), such that c−

∞∑
j=1

ηj− + c+
∞∑
j=1

ηj+ = 1, where η−, η+ ∈ (0, 1)

are the unique solutions of the equations

p+η
k+1
− − η− + p− = 0, p−η

k+1
+ − η+ + p+ = 0,

respectively, and
µ̃ =

∑
j∈Z∗

ηjδj ⊗ νj ,

where

ηj =

{
c−η

−j
− for j < 0

c+η
j
+ for j > 0

,

νj is a probability measure on Σ+
k given by

νj =

{
Pβ− ⊗ Pβ+ ⊗ Pβ− ⊗ Pβ+ ⊗ · · · for j < 0

Pβ+ ⊗ Pβ− ⊗ Pβ+ ⊗ Pβ− ⊗ · · · for j > 0
, j ∈ Z∗,

and δj is the Dirac measure at j.
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Proof. Let
h−(x) = p+x

k+1 − x+ p−, h+(x) = p−x
k+1 − x+ p+.

Since h± are convex, h±(0) > 0, h±(1) = 0 and, by (4.10), (h±)′(1) > 0, the function h± has a
unique zero in (0, 1), which determines the values of η−, η+. Suppose that c±, β±1 , . . . , β

±
k > 0

satisfy

c−

∞∑
j=1

ηj− + c+

∞∑
j=1

ηj+ = 1,
k∑
r=1

β−r = 1,
k∑
r=1

β+
r = 1. (4.18)

Then the measure
ν =

∑
j∈Z∗

ηjδj ⊗ νj

for ηj , νj as in the statement of the proposition is a probability measure on Z∗ × Σ+
k . Let

[j, r1, . . . , rn] = {(j′, r′1, r′2, . . .) ∈ Z∗ × Σ+
k : j′ = j, r′1 = r1, . . . , r

′
n = rn}

for j ∈ Z∗, n ­ 0 and r1, . . . , rn ∈ {1, . . . , k} be the cylinders in Z∗ × Σ+
k . By definition,

ν([j, r1, . . . , rn]) =


c−η

−j
− β−r1β

+
r2 · · ·β

−
rn−1β

+
rn for j < 0, n even

c−η
−j
− β−r1β

+
r2 · · ·β

−
rn−2β

+
rn−1β

−
rn for j < 0, n odd

c+η
j
+β

+
r1β
−
r2 · · ·β

+
rn−1β

−
rn for j > 0, n even

c+η
j
+β

+
r1β
−
r2 · · ·β

+
rn−2β

−
rn−1β

+
rn for j > 0, n odd

. (4.19)

Now we prove that for some choice of the constants c±, β±1 , . . . , β
±
k > 0 satisfying (4.18) the

measure ν is stationary for {f̃−, f̃+} with probabilities p−, p+. Note that to show that ν is
stationary, it is enough to check

ν([j, r1, . . . , rn]) = p− ν(f̃−1
− ([j, r1, . . . , rn])) + p+ ν(f̃−1

+ ([j, r1, . . . , rn])) (4.20)

for j ∈ Z∗, even n ∈ N and r1, . . . rn ∈ {1, . . . , k}, because the corresponding cylinders
[j, r1, . . . , rn] generate the σ-algebra of Borel sets in Z∗ × Σ+

k . By (4.17),

f̃−1
− ([j, r1, . . . , rn]) =


[j + 1, r1, . . . , rn] for j < −1

[r1, r2, . . . , rn] for j = −1

[j + k, r1, . . . , rn] for j > 0

,

f̃−1
+ ([j, r1, . . . , rn]) =


[j − k, r1, . . . , rn] for j < 0

[−r1, r2, . . . , rn] for j = 1

[j − 1, r1, . . . , rn] for j > 1

.

Using this together with (4.19), we check that (4.20) for even n ∈ N (split into four cases:
j < −1, j > 1, j = −1, j = 1, respectively) is equivalent to the following system of equations:

η− = p− + p+η
k+1
−

η+ = p+ + p−η
k+1
+

c−η−β
−
r = p−c+η

r
+ + p+c−η

k+1
− β−r for r = 1, . . . , k

c+η+β
+
r = p+c−η

r
− + p−c+η

k+1
+ β+

r for r = 1, . . . , k

(4.21)

(where we write r instead of r1).
Now we solve the system (4.21) together with (4.18). The first two equations of (4.21)

agree with the definitions of η−, η+. Substituting them, respectively, into the third and fourth
ones, we obtain

c−β
−
r = c+η

r
+, c+β

+
r = c−η

r
−. (4.22)
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Summing this over r ∈ {1, . . . , k} and using the second and third equation of (4.18), we have

c− = c+
η+ − ηk+1

+

1− η+
, c+ = c−

η− − ηk+1
−

1− η−

and substituting the second and first equation of (4.21) respectively, we arrive at a single
equation

c−p− = c+p+,

which together with the first equation of (4.18) gives

c− =
p+

p+η−/(1− η−) + p−η+/(1− η+)
, c+ =

p−
p+η−/(1− η−) + p−η+/(1− η+)

.

Using (4.22), we finally obtain

β−r =
p−
p+
ηr+, β+

r =
p+

p−
ηr−, r = 1, . . . , k.

The numbers c±, β±1 , . . . , β
±
k satisfy (4.21) and (4.18). In this way we showed that the system

of equations (4.21) and (4.18) has a unique solution for which the measure ν is stationary.
By the uniqueness of such a measure, we have ν = µ̃.

Finally, we determine the Hausdorff dimension of the measure µ. Since by Proposition 4.48
µ|Ij = π∗(ηjδj ⊗ νj) for j ∈ Z∗, applying Proposition 2.5 gives

dimH µ = sup
j∈Z∗

dimH µ|Ij = sup
j∈Z∗

dimH π∗(ηjδj ⊗ νj).

Note that the measure π∗(ηjδj⊗νj), supported on the Cantor set Λj , is bi-Lipschitz isomorphic
(after normalization) to the measure π∗(η−1δ−1⊗ν−1), which (after normalization) is the self-
similar measure for the iterated function system {φr ◦φs}kr,s=1 with probabilities (β−r β

+
s )kr,s=1.

Therefore, Theorem 2.15 gives

dimH π∗(ηjδj ⊗ νj) =

k∑
r,s=1

β−r β
+
s log β−r β

+
s

k∑
r,s=1

β−r β
+
s log ρr+s

=

k∑
r=1

(β−r log β−r + β+
r log β+

r )

k∑
r=1

(β−r + β+
r ) log ρr

=

k∑
r=1

r
(
p+
p−
ηr− log η− + p−

p+
ηr+ log η+

)
k∑
r=1

r
(
p+
p−
ηr− + p−

p+
ηr+

)
log ρ

.

4.5 Proof of Theorem 4.10. Case l > 1

Preliminaries

In Theorem 4.10 we consider a symmetric AM -system {f−, f+} of disjoint type with proba-
bilities p−, p+, positive Lyapunov exponents and a (k : l)-resonance for some relatively prime
k, l ∈ N, k > l. In this section we deal with the case l > 1. Our approach is similar to the case
l = 1, however the combinatorics of the obtained system of intervals is more complicated and
produces Cantor sets which are attractors for infinite iterated function systems.

We have

f−(x) =

{
ρlx for x ∈ [0, x−]

I(ρ−kI(x)) for x ∈ (x−, 1]
, f+(x) =

{
ρ−kx for x ∈ [0, x+]

I(ρlI(x)) for x ∈ (x+, 1]
,
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where ρ ∈ (0, 1), k, l ∈ N, 1 < l < k and

x− =
1− ρk

1− ρk+l , x+ = I(x−) =
ρk − ρk+l

1− ρk+l ,

f−(x−) =
ρl − ρk+l

1− ρk+l , f+(x+) = I(f−(x−)) =
1− ρl

1− ρk+l .

In particular, we have
x+ < f−(x−).

A direct computation gives
I(ρkI(ρlx−)) = x−. (4.23)

We assume that the system is of disjoint type, which is equivalent to

ρk+l − 2ρl + 1 > 0

and also (by symmetry) to

f−(x−) <
1
2
.

Hence, since the system is symmetric, we have

x+ < f−(x−) <
1
2
< f+(x+) < x−.

Consider the function h(ρ) = ρk+l − 2ρk+1 + 2ρ − 1, ρ ­ 0. We have h(0), h(1/2) < 0,
h(1) = 0, h′(1) < 0 and h′′ has exactly one zero in (0,+∞). This implies that h on (0, 1) has
a unique zero η ∈ (1/2, 1), i.e.

ηk+l − 2ηk+1 + 2η − 1 = 0

and the assumption ρ < η is equivalent to

ρk+l − 2ρk+1 + 2ρ− 1 < 0 (4.24)

and also to
ρx− <

1
2
. (4.25)

In particular, this shows that the condition ρ < η implies that the system is of disjoint type,
which proves Remark 4.11.

Finally, notice that the positivity of the Lyapunov exponents of the system is equivalent
to

p−, p+ ∈
( l

k + l
,

k

k + l

)
.

Construction of the set Λ

Let us define the basic intervals Ij ∈ Z∗ in the same manner as in the case l = 1, i.e.

I−1 = [ρf+(x+), ρx−] = [ρf+(x+), ρ1−lf−(x−)] = [ρI(ρlx−), ρx−] =

[
ρ− ρ1+l

1− ρk+l ,
ρ− ρk+1

1− ρk+l

]

and note that by (4.25),

sup I−1 <
1
2
. (4.26)

For j ∈ Z∗ let

Ij =

{
ρ−j−1I−1 for j < 0

I(ρj−1I−1) for j > 0
.
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Let us now explain briefly the differences compared to the case l = 1. Unlike previously, the
union

⋃
j∈Z∗ Ij is no longer forward-invariant under {f−, f+}. More precisely, f+(I−k ∪ . . . ∪

I−l) ⊂ Il, but f+(I−l+1 ∪ . . .∪ I−1) is situated between Il and Il+1, inside a larger interval Jl
(see Lemma 4.51 and Figure 4.5). Therefore, our first step is extending the family {Ij}j∈Z∗
to a larger family {Ij}j∈J consisting of similar copies of intervals f+(I−l+1), . . . , f+(I−1) and
their further iterates which are not contained in the intervals obtained in previous steps of
the construction (see Figures 4.4 and 4.5). As a result, we obtain a forward-invariant family
of intervals, which has infinitely many elements inside each of the (disjoint) intervals Jj . As
before, we iterate the intervals from this family to produce a fully invariant and minimal
union of disjoint Cantor sets. The corresponding iterated function system {Φr}r∈R on I−1 is
generated by the action of f+ on the interval [x+, f−(x−)], which maps some of the intervals
Ij into Il. This infinite IFS has a Cantor set attractor Λ−1 ⊂ I−1, which is copied inside each
of the intervals Ij to form a suitable invariant minimal set Λ ⊂ (0, 1).

Let
J−1 = [ρI(ρx−), ρx−]

and note that
I−1 ⊂ J−1, sup I−1 = supJ−1.

As previously, consider the maps

φr(x) = ρI(ρr−1x) = ρ− ρrx, r = 1, . . . , k

for x ∈ J−1. Recall that φr are orientation-reversing contracting similarities with |φ′r| = ρr

and φ1 < · · · < φk.

Lemma 4.49. We have

φr(J−1) ⊂
{
J−1 \ I−1 for r = 1, . . . , l − 1

I−1 for r = l, . . . , k − 1
, φk(I−1) ⊂ I−1.

Moreover, φr(J−1), r = 1, . . . , k, are pairwise disjoint.

Proof. By definition,

φr(J−1) = [ρI(ρrx−), ρI(ρrI(ρx−))] φr(I−1) = [ρI(ρrx−), ρI(ρrI(ρlx−))].

It is obvious that inf φr(J−1) ­ inf J−1 for r = 1, . . . , k and inf φr(J−1) ­ inf I−1 for r =
l, . . . , k. The inequality supφr(J−1) < inf I−1 for r = 1, . . . , l − 1 boils down to (4.24), while
supφr(J−1) ¬ sup I−1 for r = l, . . . , k−1 is equivalent to ρk+l+ρk−r+ρ−ρk+1−ρk+l−r+1 ¬ 0.
For l ¬ r ¬ k − 1 it is enough to have ρk+l + 2ρ − ρk+1 − ρk − 1 ¬ 0 (as ρk−r ¬ ρ and
ρk+l−r ­ ρk). By (4.24) this can be reduced to ρk+1 − ρk ¬ 0 which is obviously true, since
ρ ∈ (0, 1). This proves the first assertion. To show φk(I−1) ⊂ I−1, it is enough to notice that
supφk(I−1) = sup I−1 holds due to (4.23). To check the disjointness of φr(J−1), we notice
that the inequality supφr(J−1) < inf φr+1(J−1), r = 1, . . . , k − 1, is equivalent to (4.24).

For j ∈ Z∗ let

Jj = {j} ×
(
{∅} ∪

∞⋃
n=1

{1, . . . , l − 1}n
)
, J =

⋃
j∈Z∗
Jj .

We will denote the elements of J by j = (j, j1, . . . , jn), where j ∈ Z∗, n ­ 0, j1, . . . , jn ∈
{1, . . . , l − 1}, with the convention that j1, . . . , jn for n = 0 is the empty sequence.
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For j = (j, j1, . . . , jn) ∈ J define

Ij = Ij,j1,...,jn =

{
ρ−j−1φj1 ◦ · · · ◦ φjn(I−1) for j < 0

I(ρj−1φj1 ◦ · · · ◦ φjn(I−1)) for j > 0
, I =

⋃
j∈J

Ij.

Note that this notation is compatible with our previous definition of Ij for j ∈ Z∗. Further-
more, for j ∈ Z∗ let

Jj =

{
ρ−j−1J−1 for j < 0

I(ρj−1J−1) for j > 0
, J =

⋃
j∈Z

Jj .

The following lemmas describe the combinatorics of the intervals Ij, j ∈ J .

Lemma 4.50. The following statements hold.

(a) I−j,j1,...,jn = I(Ij,j1,...,jn), J−j = I(Jj) for j ∈ Z∗, n ­ 0, j1, . . . , jn ∈ {1, . . . , l − 1}.

(b) The segments Jj, j ∈ Z∗, are pairwise disjoint.

(c) For j ∈ Z∗, the segments Ij, j ∈ Jj, are pairwise disjoint subsets of Jj.

(d) For j ∈ Z∗, we have inf Jj = inf Ij,1, sup Jj = sup Ij for j < 0 and inf Jj = inf Ij,
sup Jj = sup Ij,1 for j > 0. In particular,

Jj = conv
⋃
j∈Jj

Ij.

(e) Let j ∈ Z∗. Then for j < 0 (resp. j > 0), the segments Ij,j1, j1 = 1, . . . , l − 1, are
situated in Jj in the increasing (resp. decreasing) order with respect to j1, to the left
(resp. right) of Ij.

(f) Let j ∈ Z∗, j1, . . . , jn ∈ {1, . . . , l − 1} for n ­ 1. Then for j < 0 and even n or j > 0
and odd n (resp. j < 0 and odd n or j > 0 and even n), the segments Ij,j1,...,jn+1,
jn+1 = 1, . . . , l − 1 are situated in Jj in the increasing (resp. decreasing) order with
respect to jn+1, between Ij,j1,...,jn and Ij,j1,...,jn−1,jn+1 if jn < l−1, and between Ij,j1,...,jn
and Ij,j1,...,jn−1 if jn = l − 1.

(g) inf I−k = x+, sup I−l = f−(x−), inf Il = f+(x+), sup Ik = x−.

See Figures 4.4 and 4.5.

Ij,1

Jj

Ij,l−1Ij,1,l−1 Ij,1,1 Ij,l−1,l−1 Ij,l−1,1 Ij

Figure 4.4: A schematic view of the location of the intervals Ij,j1,...,jn within Jj for j < 0.

Proof. The assertion (a) is straightforward. To show (b), it is enough to use (4.26) and check
sup Jj−1 < inf Jj for j < 0 (and use the symmetry of the system). By a direct computation,
the latter inequality is equivalent to (4.24). By symmetry and the definition of Ij and Jj ,
showing (c)–(f) we can assume j = −1. First, we prove (c). Since I−1 ⊂ J−1, Lemma 4.49
implies Ij ⊂ J−1 for j ∈ J−1. To show the disjointness of Ij, suppose that I−1,j1,...,jn ∩
I−1,j′1,...,j

′
n′
6= ∅ for some distinct (−1, j1, . . . , jn), (−1, j′1, . . . , j

′
n′) ∈ J−1. We can assume

n′ ­ n. Applying suitable sequence of inverses of maps φr to both segments, we can suppose
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j1 6= j′1 or I−1,j′1,...,j
′
n′

= I−1. In the first case we have a contradiction with the last assertion
of Lemma 4.49, while the second case contradicts with the first assertion of it. This proves
(c). The first part of (d) is straightforward. Together with (c), it shows the second part. The
assertion (e) follows from (c) and the fact φ1 < · · · < φl−1. The first part of (f) holds by a
direct checking. In turn, together with the fact that the maps φr reverse the orientation and
φ1 < · · · < φl−1, it proves the second part by induction. The assertion (g) is straightforward.

The following lemma is a direct consequence of the definition of the maps f± and
Lemma 4.50. See Figure 4.5.

Lemma 4.51. We have

f−(x) =

{
ρlx for x ∈ Ik ∪

⋃k−1
j=−∞ Jj

I(ρ−kI(x)) for x ∈
⋃∞
j=k Jj \ Ik

,

f+(x) =

{
ρ−kx for x ∈

⋃−k
j=−∞ Jj \ I−k

I(ρlI(x)) for x ∈ I−k ∪
⋃∞
j=−k+1 Jj

.

Moreover, for (j, j1, . . . , jn) ∈ J , we have:

f+(Ij,j1,...,jn) = Ij+k,j1,...,jn for j < −k,
f+(I−k,j1,...,jn) = Ij1,j2,...,jn for n > 0,

f+

(
conv

(
I−k ∪

−l⋃
j=−k+1

Jj
))

= Il,

f+(Ij,j1,...,jn) = Il,−j,j1...,jn for − l + 1 ¬ j ¬ −1,

f+(Ij,j1,...,jn) = Ij+l,j1,...,jn for j > 0.

Analogously,

f−(Ij,j1,...,jn) = Ij−l,j1,...,jn for j < 0,

f−(Ij,j1,...,jn) = I−l,j,j1...,jn for 1 ¬ j ¬ l − 1,

f−
(

conv
(
Ik ∪

k−1⋃
j=l

Jj
))

= I−l,

f−(Ik,j1,...,jn) = I−j1,j2,...,jn for n > 0,

f−(Ij,j1,...,jn) = Ij−k,j1,...,jn for j > k.

In particular, Lemma 4.51 implies f(I) ⊂ I. More precisely, for every i ∈ {−,+} and
j ∈ J ,

fi(Ij) ⊂ Ij′ for some j′ = j′(i, j) ∈ J .
Let

R = {l, . . . , k} ∪
∞⋃
n=1

{l, . . . , k − 1} × {1, . . . , l − 1}n.

We will denote the elements of R by r = (r, r1, . . . , rn), n ­ 0, where r ∈ {l, . . . , k} in the
case n = 0, r ∈ {l, . . . , k − 1} in the case n > 0 and r1, . . . , rn ∈ {1, . . . , l − 1}, with the
convention that r1, . . . , rn for n = 0 is the empty sequence. Note that

R ⊂ J .

For r = (r, r1, . . . , rn) ∈ R define the maps

Φr =

{
φr for n = 0

φr ◦ φr1 ◦ · · · ◦ φrn for n > 0
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I−1I−lI−k I−l+1 {I−1,j1,...,jn}{I−l+1,j1,...,jn}{I−l,j1,...,jn}{I−k,j1,...,jn}

x+ f−(x−)

f+ f+ f+

I1 Il{I1,j1,...,jn} Il−1 {Il−1,j1,...,jn} {Il,j1,...,jn}

f+(x+)

f+ f+

Il+1 {Il+1,j1,...,jn} Ik {Ik,j1,...,jn}

x−

I−k−1{I−k−1,j1,...,jn}

f+ f+

J−k−1

J−k J−l J−l+1 J−1

J1 Jl−1 Jl

Jl+1 Jk

Figure 4.5: A schematic view of the action of f+ on the intervals Ij.

on the interval I−1. By Lemma 4.49,

Φr : I−1 → I−1, r ∈ R,

so the family {Φr}r∈R is a countable infinite iterated function system of contractions in I−1

satisfying lim
s→∞

|φrs(I−1)| = 0 for any sequence (rs)∞s=1 of mutually distinct elements of R.
Moreover, the definition of Φr implies

{Φr(I−1)}r∈R = {φr(Ij) : r ∈ {l, . . . , k − 1}, j ∈ J−1} ∪ {φk(I−1)}.

This together with Lemma 4.49 implies that Φr(I−1), r ∈ R, are pairwise disjoint. Similarly
as before, we are interested in the limit set of this system. As the family {Φr}r∈R is infinite,
there are two limit sets one can consider:

L =
∞⋂
m=1

⋃
r1,...,rm∈R

Φr1 ◦ · · · ◦ Φrm(I−1) (4.27)

and its closure
Λ−1 = L.
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It is easy to see that they satisfy

L =
⋃
r∈R

Φr(L), Λ−1 =
⋃
r∈R

Φr(Λ−1) =
∞⋂
m=1

⋃
r1,...,rm∈R

Φr1 ◦ · · · ◦ Φrm(I−1)

(see e.g. [64, Section 2]). As our goal is to find the minimal attractor of the system {f−, f+}
(which equals also the support of µ), we will focus on Λ−1. However, we will use the set L in
the proof of Proposition 4.62, as it is better suited for calculating the Hausdorff dimension.

For j = (j, j1, . . . , jn) ∈ J let

Λj = Λj,j1,...,jn =

{
ρ−j−1φj1,...,jn(Λ−1) for j < 0

I(ρj−1φj1,...,jn(Λ−1)) for j > 0
, Λ =

⋃
j∈J

Λj ∩ (0, 1),

where we write
φj1,...,jn = φj1 ◦ · · · ◦ φjn .

Obviously, Λj ⊂ Ij for j ∈ J and Λ ⊂
⋃
j∈Z∗ Jj . Furthermore, for m ­ 0 and r1, . . . , rm ∈ R

let

Ij;r1,...,rm =

{
ρ−j−1φj1,...,jn(Φr1 ◦ · · · ◦ Φrm(I−1)) for j < 0

I(ρj−1φj1,...,jn(Φr1 ◦ · · · ◦ Φrm(I−1))) for j > 0

(for m = 0 the set Ij;r1,...,rm is equal to Ij). As |Φ′r| ¬ ρ, for j ∈ J , r1, r2, . . . ∈ R we have

|Ij;r1,...,rm | ¬ ρm → 0 as m→∞,

so
∞⋂
m=1

Ij;r1,...,rm = {xj;r1,r2,...}

for a point xj;r1,r2,... ∈ Λ and

Λ =
⋃
j∈J

∞⋂
m=1

⋃
r1,...,rm∈R

Ij;r1,...,rm ∩ (0, 1) = {xj;r1,r2,... : j ∈ J , r1, r2, . . . ∈ R} ∩ (0, 1).

Description of trajectories

Lemma 4.51 implies the following.

Lemma 4.52. For (j, j1, . . . , jn) ∈ J , r1, r2, . . . ,∈ R and m ­ 0, we have:

f−(I(j,j1,...,jn);r1,...,rm) =



I(j−l,j1,...,jn);r1,...,rm for j < 0

I(−l,j,j1,...,jn);r1,...,rm for 1 ¬ j ¬ l − 1

I−l;(j,j1,...,jn),r1,...,rm for l ¬ j ¬ k − 1 or j = k, n = 0

I(−j1,j2,...,jn);r1,...,rm for j = k, n > 0

I(j−k,j1,...,jn);r1,...,rm for j > k

,

f+(I(j,j1,...,jn);r1,...,rm) =



I(j+k,j1,...,jn);r1,...,rm for j < −k
I(j1,j2,...,jn);r1,...,rm for j = −k, n > 0

Il;(−j,j1,...,jn),r1,...,rm for j = −k, n = 0 or − k + 1 ¬ j ¬ −l
I(l,−j,j1,...,jn);r1,...,rm for − l + 1 ¬ j ¬ −1

I(j+l,j1,...,jn);r1,...,rm for j > 0

,
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and

f−(x(j,j1,...,jn);r1,r2,...) =



x(j−l,j1,...,jn);r1,r2,... for j < 0

x(−l,j,j1,...,jn);r1,r2,... for 1 ¬ j ¬ l − 1

x−l;(j,j1,...,jn),r1,r2,... for l ¬ j ¬ k − 1 or j = k, n = 0

x(−j1,j2,...,jn);r1,r2,... for j = k, n > 0

x(j−k,j1,...,jn);r1,r2,... for j > k

,

f+(x(j,j1,...,jn);r1,r2,...) =



x(j+k,j1,...,jn);r1,r2,... for j < −k
x(j1,j2,...,jn);r1,r2,... for j = −k, n > 0

xl;(−j,j1,...,jn),r1,r2,... for j = −k, n = 0 or − k + 1 ¬ j ¬ −l
x(l,−j,j1,...,jn);r1,r2,... for − l + 1 ¬ j ¬ −1

x(j+l,j1,...,jn);r1,r2,... for j > 0

.

The next lemma follows directly from Lemma 4.51.

Lemma 4.53. The following statements hold.

(a) If a trajectory {fiN ◦ · · · ◦ fi1(x)}∞N=0, for x ∈ (0, 1), jumps over the central interval at
the time s, for s ­ 0, then fis+1 ◦ · · · ◦ fi1(x) ∈ I−l ∪ Il.

(b) A trajectory {fiN ◦ · · · ◦ fi1(x)}∞N=0, for x ∈ J , jumps over the central interval at the
time s, for s ­ 0, if and only if

fis ◦ · · · ◦ fi1(x) ∈ I−k ∪
−l⋃

j=−k+1

Jj , is+1 = +, fis+1 ◦ · · · ◦ fi1(x) ∈ Il

or

fis ◦ · · · ◦ fi1(x) ∈ Ik ∪
k−1⋃
j=l

Jj , is+1 = −, fis+1 ◦ · · · ◦ fi1(x) ∈ I−l.

In particular, for given j ∈ J and i1, i2, . . . ∈ {−,+}, for all x ∈ Ij the trajectories {fiN ◦
· · · ◦ fi1(x)}∞N=0 jump over the central interval at the same times.

Since k, l are relatively prime, there exist N1, N2 > 0 such that N1l −N2k = 1. Let

F− = fN2+ ◦ fN1− , F+ = fN2− ◦ f
N1
+ .

Then

F−(Jj) = Jj−1, F−(x) = ρx for x ∈ Jj , j < 0,

F+(Jj) = Jj+1, F+(x) = IρI(x) for x ∈ Jj , j > 0.

For j, j′ ∈ Z∗ such that sgn(j) = sgn(j′), define

Fj,j′ : Jj −−→onto
Jj′ , Fj,j′ =


F j−j

′

− |Jj for j < 0, j′ ¬ j
f
d(j′−j)/ke
+ ◦ F j−j

′−kd(j′−j)/ke
− |Jj for j > 0, j′ > j

F j
′−j

+ |Jj for j < 0, j′ ­ j
f
d(j−j′)/ke
− ◦ F j

′−j−kd(j−j′)/ke
+ |Jj for j > 0, j′ < j

.

We have Fj,j′ = fiN ◦ · · · ◦ fi1 |Jj for some i1, . . . , iN ∈ {−,+}, N ­ 0, and, by Lemma 4.51,

Fj,j′(x) =

{
ρj−j

′
x for j < 0

I(ρ−j+j
′I(x)) for j > 0

(4.28)
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for x ∈ Jj . In particular, this implies

Fj,j = id |Jj , Fj′,j′′ ◦ Fj,j′ = Fj,j′′

for j, j′, j′′ ∈ Z∗ such that sgn(j) = sgn(j′) = sgn(j′′). By Lemma 4.52,

Fj,j′(I(j,j1,...,jn);r1,...,rm) = I(j′,j1,...,jn);r1,...,rm ,

Fj,j′(x(j,j1,...,jn);r1,r2,...) = x(j′,j1,...,jn);r1,r2,...
(4.29)

for j1, . . . , jn ∈ {1, . . . , l − 1}, r1, r2, . . . ∈ R, n,m ­ 0.

Lemma 4.54. For every x ∈ (0, 1) there exists i1, . . . , in ∈ {−,+}, n ­ 0, such that
fin ◦ · · · ◦ fi1(x) ∈ I.

Proof. If x ∈ Jj for j < 0 (resp. j > 0), then it is enough to notice that by Lemma 4.51,
we have f+ ◦ Fj,−l(x) ∈ Il (resp. f− ◦ Fj,l(x) ∈ I−l). Suppose x ∈ (0, 1) \ J . Enumerate the
components of (0, 1) \ J by Uj , j ∈ Z, such that Uj is the gap between Jj−1 and Jj for j < 0,
U0 is the gap between J−1 and J1, and Uj is the gap between Jj and Jj+1 for j > 0. Since
the system is symmetric, we can assume x ∈ Uj , j ¬ 0. Then, by Lemma 4.51, we have

f− ◦ f
b−j
k
c+1

+ (x) ∈ I−l.

Define
G−j : J1 → J−1, G+

j : J−1 → J1, j ∈ {1, . . . , l − 1},

by
G−j = F−l,−1 ◦ f− ◦ F1,j , G+

j = Fl,1 ◦ f+ ◦ F−1,−j .

Note that G±j = fiN ◦ · · · ◦ fi1 |J∓1 for some i1, . . . , iN ∈ {−,+}, N ­ 0. By (4.28), we have

G−j = φj ◦ I|J1 , G+
j = I ◦ φj (4.30)

and by Lemma 4.52 and (4.29),

G−j (I(1,j1,...,jn);r1,...,rm) = I(−1,j,j1,j2,...,jn);r1,...,rm ,

G+
j (I(−1,j1,...,jn);r1,...,rm) = I(1,j,j1,j2,...,jn);r1,...,rm ,

G−j (x(1,j1,...,jn);r1,r2,...) = x(−1,j,j1,j2,...,jn);r1,r2,...,

G+
j (x(−1,j1,...,jn);r1,r2,...) = x(1,j,j1,j2,...,jn);r1,r2,...

(4.31)

for j1, . . . , jn ∈ {1, . . . , l − 1}, r1, r2, . . . ∈ R, n,m ­ 0.
Define also

H− :
⋃

{(1,j1,...,jn)∈J :n>0}
I1,j1,...,jn → J−1, H+ :

⋃
{(−1,j1,...,jn)∈J :n>0}

I−1,j1,...,jn → J1

by

H−|I1,j1,...,jn = F−j1,−1 ◦ f− ◦ F1,k|I1,j1,...,jn , H+|I−1,j1,...,jn = Fj1,1 ◦ f+ ◦ F−1,−k|I−1,j1,...,jn .

Again, H± = fiN ◦ · · · ◦ fi1 |I∓1,j1,...,jn for some i1, . . . , iN ∈ {−,+}, N ­ 0. By (4.28) and
(4.30),

H−|I1,j1,...,jn = (G+
j1

)−1|I1,j1,...,jn = φ−1
j1
◦ I|I1,j1,...,jn ,

H+|I−1,j1,...,jn = (G−j1)
−1|I−1,j1,...,jn = I ◦ φ−1

j1
|I1,j1,...,jn

(4.32)
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while Lemma 4.52 and (4.29) give

H−(I(1,j1,...,jn);r1,...,rm) = I(−1,j2,...,jn);r1,...,rm ,

H+(I(−1,j1,...,jn);r1,...,rm) = I(1,j2,...,jn);r1,...,rm ,

H−(x(1,j1,...,jn);r1,r2,...) = x(−1,j2,...,jn);r1,r2,...,

H+(x(−1,j1,...,jn);r1,r2,...) = x(1,j2,...,jn);r1,r2,...

(4.33)

for j, j1, . . . , jn ∈ {1, . . . , l − 1}, n > 0, r1, r2, . . . ∈ R, m ­ 0.
We introduce the following notation. For j = (j, j1, . . . , jn) ∈ J we set j < 0 (resp. j > 0)

if j < 0 (resp. j > 0). We also write −j = (−j, j1, . . . , jn) and set sgn(j) = sgn(j), n(j) = n.
For j = (j, j1, . . . , jn), j′ = (j′, j′1, . . . , j

′
n′) ∈ J , such that sgn(j) = sgn(j′) and n(j)− n(j′)

is even, or sgn(j) 6= sgn(j′) and n(j)− n(j′) is odd, define

Fj,j′ : Ij −−→onto
Ij′

by

Fj,j′ =



F−1,j′ ◦G−j′1 ◦G
+
j′2
◦ · · · ◦G−j′

n′−1
◦G+

j′
n′
◦ (H− ◦H+)n/2 ◦ Fj,−1

F1,j′ ◦G+
j′1
◦G−j′2 ◦ · · · ◦G

+
j′
n′−2
◦G−j′

n′−1
◦G+

j′
n′
◦ (H− ◦H+)n/2 ◦ Fj,−1

F1,j′ ◦G+
j′1
◦G−j′2 ◦ · · · ◦G

+
j′
n′−1
◦G−j′

n′
◦H+ ◦ (H− ◦H+)bn/2c ◦ Fj,−1

F−1,j′ ◦G−j′1 ◦G
+
j′2
◦ · · · ◦G−j′

n′−2
◦G+

j′
n′−1
◦G−j′

n′
◦H+ ◦ (H− ◦H+)bn/2c ◦ Fj,−1

F1,j′ ◦G+
j′1
◦G−j′2 ◦ · · · ◦G

+
j′
n′−1
◦G−j′

n′
◦ (H+ ◦H−)n/2 ◦ Fj,1

F−1,j′ ◦G−j′1 ◦G
+
j′2
◦ · · · ◦G−j′

n′−2
◦G+

j′
n′−1
◦G−j′

n′
◦ (H+ ◦H−)n/2 ◦ Fj,1

F−1,j′ ◦G−j′1 ◦G
+
j′2
◦ · · · ◦G−j′

n′−1
◦G+

j′
n′
◦H− ◦ (H+ ◦H−)bn/2c ◦ Fj,1

F1,j′ ◦G+
j′1
◦G−j′2 ◦ · · · ◦G

+
j′
n′−2
◦G−j′

n′−1
◦G+

j′
n′
◦H− ◦ (H+ ◦H−)bn/2c ◦ Fj,1

for 

j < 0, n(j) even, n(j′) even

j < 0, n(j) even, n(j′) odd

j < 0, n(j) odd, n(j′) even

j < 0, n(j) odd, n(j′) odd

j > 0, n(j) even, n(j′) even

j > 0, n(j) even, n(j′) odd

j > 0, n(j) odd, n(j′) even

j > 0, n(j) odd, n(j′) odd

,

respectively. Note that in the case n = n′ = 0 the definition of Fj,j′ = Fj,j′ agrees with the
previous one. We have Fj,j′ = fiN ◦ · · · ◦ fi1 |Ij for some i1, . . . , iN ∈ {−,+}, N ­ 0.

By (4.28), (4.30) and (4.32),

Fj,j′(x) =



ρ−j
′−1(φj′1,...,j′n′ ◦ φ

−1
j1,...,jn

(ρj+1x)) if j < 0, j′ < 0

I(ρj
′−1(φj′1,...,j′n′ ◦ φ

−1
j1,...,jn

(ρj+1x))) if j < 0, j′ > 0

ρ−j
′−1(φj′1,...,j′n′ ◦ φ

−1
j1,...,jn

(ρ−j+1I(x))) if j > 0, j′ < 0

I(ρj
′−1(φj′1,...,j′n′ ◦ φ

−1
j1,...,jn

(ρ−j+1I(x)))) if j > 0, j′ > 0

(4.34)

for x ∈ Ij. In particular, this gives

Fj,j = id |Ij , Fj′,j′′ ◦ Fj,j′ = Fj,j′′
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for suitable j, j′, j′′ ∈ Z∗. Moreover, (4.29), (4.31) and (4.33) imply

Fj,j′(Ij;r1,...,rm) = Ij′;r1,...,rm , Fj,j′(xj;r1,r2,...) = xj′;r1,r2,... (4.35)

for r1, r2, . . . ∈ R, m ­ 0.

Lemma 4.55. A trajectory {fiN ◦ · · · ◦ fi1(x)}∞N=0 of a point x ∈ Ij, j ∈ J , does not jump
over the central interval at any time 0 ¬ s < N , for some N ­ 0, if and only if

fiN ◦ · · · ◦ fi1 |Ij = Fj,j′

for j′ ∈ J such that fiN ◦ · · · ◦ fi1(x) ∈ Ij′, where sgn(j) = sgn(j′) and n(j)− n(j′) is even, or
sgn(j) 6= sgn(j′) and n(j)− n(j′) is odd.

Proof. If a trajectory {fiN ◦ · · · ◦fi1(x)}∞N=0 of x ∈ Ij does not jump over the central interval
at any time 0 ¬ s < N , then by Lemmas 4.51 and 4.53,

fiN ◦ · · · ◦ fi1(Ij) = Ij′ ,

where j′ ∈ J such that sgn(j) = sgn(j′) and n(j) − n(j′) is even, or sgn(j) 6= sgn(j′) and
n(j) − n(j′) is odd. Consequently, Fj,j′ is defined on Ij and (Fj,j′)−1 ◦ fiN ◦ · · · ◦ fi1 |Ij is an
increasing affine homeomorphism from Ij onto itself, so it is equal to the identity. Therefore,
fiN ◦ · · · ◦ fi1 |Ij = Fj,j′ . The other implication follows from Lemmas 4.51 and 4.53 and the
definitions of the maps Fj,j′ , G

±
j , H±.

Define, for r ∈ R,

G+,−
r : I1 → I−1, G−,+r : I−1 → I1 for n(r) even,

G−,−r : I−1 → I−1, G+,+
r : I1 → I1 for n(r) odd,

setting

G+,−
r = F−l,−1 ◦ f− ◦ F1,r, G−,+r = Fl,1 ◦ f+ ◦ F−1,−r,

G−,−r = F−l,−1 ◦ f− ◦ F−1,r, G+,+
r = Fl,1 ◦ f+ ◦ F1,−r.

Note that G±,±r = fiN ◦ · · · ◦ fi1 |I±1 for some i1, . . . , iN ∈ {−,+}, N ­ 0. By Lemma 4.51
and (4.34), we have

G+,−
r = Φr ◦ I|I1 , G−,+r = I ◦ Φr,

G−,−r = Φr, G+,+
r = I ◦ Φr ◦ I|I1 ,

(4.36)

while by Lemma 4.52 and (4.35),

G+,−
r (I1;r1,...,rm) = I−1;r,r1,...,rm , G+,−

r (x1;r1,r2,...) = x−1;r,r1,r2,...

G−,+r (I−1;r1,...,rm) = I1;r,r1,...,rm , G−,+r (x−1;r1,r2,...) = x1;r,r1,r2,...

G−,−r (I−1;r1,...,rm) = I−1;r,r1,...,rm , G−,−r (x−1;r1,r2,...) = x−1;r,r1,r2,...

G+,+
r (I1;r1,...,rm) = I1;r,r1,...,rm , G+,+

r (x1;r1,r2,...) = x1;r,r1,r2,...

(4.37)

for r1, r2, . . . ∈ R, m ­ 0.

Lemma 4.56. A trajectory {fiN ◦ · · · ◦ fi1(x)}∞N=0 of a point x ∈ I jumps over the central
interval at the time s, for some s ­ 0, if and only if one of the four following possibilities:

fis ◦ · · · ◦ fi1(x) ∈ I−r, fis+1 |I−r = F1,l ◦G−,+r ◦ F−r,−1, n(r) even,

fis ◦ · · · ◦ fi1(x) ∈ I−r, fis+1 |I−r = F1,l ◦G+,+
r ◦ F−r,1, n(r) odd,

fis ◦ · · · ◦ fi1(x) ∈ Ir, fis+1 |Ir = F−1,−l ◦G+,−
r ◦ Fr,1, n(r) even,

fis ◦ · · · ◦ fi1(x) ∈ Ir, fis+1 |Ir = F−1,−l ◦G−,−r ◦ Fr,−1 n(r) odd,

holds for some r ∈ R.

71



Proof. Follows directly from Lemma 4.53.

Lemma 4.57. A trajectory {fiN ◦ · · · ◦ fi1(x)}∞N=0 of a point x ∈ Ij, j ∈ J , jumps over
the central interval (exactly) at the times s1, . . . , sm, for some 0 ¬ s1 < · · · < sm < N ,
0 ¬ m ¬ N , if and only if

fiN ◦ · · · ◦ fi1 |Ij = Ft′,j′ ◦Gσ1,σ0r1 ◦ · · · ◦Gσm,σm−1rm ◦ Fj,t,

for some r1, . . . , rm ∈ R, where σs ∈ {−,+}, s = 0, . . . ,m, t, t′ ∈ {−1, 1}, are defined by
backward induction as

σm =

{
− if j < 0, n(j) is even, or j > 0, n(j) is odd

+ if j < 0, n(j) is odd, or j > 0, n(j) is even
, sgn(t) = σm

σs−1 =

{
− if σs = −, n(rs) is odd, or σs = +, n(rs) is even

+ if σs = −, n(rs) is even, or σs = +, n(rs) is odd
for s = m, . . . , 1,

and
sgn(t) = σm, sgn(t′) = σ0

with j′ ∈ J such that sgn(j′) = σ0 and n(j′) is even, or sgn(j′) 6= σ0 and n(j′) is odd.
Moreover, in this case we have

fiN ◦ · · · ◦ fi1(Ij) = Ij′;r1,...,rm

and

fiN ◦ · · · ◦ fi1(x)

=


ρ−j

′−1(φj′1,...,j′n ◦ Φr1 ◦ · · · ◦ Φrm ◦ φ−1
j1,...,jn

(ρj+1x)) for j < 0, j′ < 0

I(ρj
′−1(φj′1,...,j′n ◦ Φr1 ◦ · · · ◦ Φrm ◦ φ−1

j1,...,jn
(ρj+1x))) for j < 0, j′ > 0

ρ−j
′−1(φj′1,...,j′n ◦ Φr1 ◦ · · · ◦ Φrm ◦ φ−1

j1,...,jn
(ρ−j+1I(x))) for j > 0, j′ < 0

I(ρj
′−1(φj′1,...,j′n ◦ Φr1 ◦ · · · ◦ Φrm ◦ φ−1

j1,...,jn
(ρ−j+1I(x)))) for j > 0, j′ > 0

,

where j = (j, j1, . . . , jn), j′ = (j′, j′1, . . . , j
′
n′).

Proof. The definitions of σs, t, t′ and the conditions for j′ imply that all the considered maps
are well-defined. The assertions of the lemma follow directly from Lemmas 4.55 and 4.56, and
(4.34), (4.35), (4.36), (4.37).

Lemma 4.58. For every j, j′ ∈ J , m ­ 0 and r1, . . . , rm ∈ R, there exists a map

Fj,j′;r1,...,rm : Ij → Ij′;r1,...,rm

such that Fj,j′;r1,...,rm = fiN ◦ · · · ◦ fi1 |Ij for some i1, . . . , iN ∈ {−,+}, N ­ 0 and any
trajectory of x ∈ J defined by · · · ◦ fiN ◦ · · · ◦ fi1(x) jumps over the central interval at the
times s1, . . . , sm+1, for some 0 ¬ s1 < · · · < sm+1 < N .

Proof. Since the system is symmetric, we can assume j < 0.
Let

t =

{
−1 if n(j) is even

1 if n(j) is odd
, t′ =

{
−1 if j′ < 0, n(j′) is even, or j′ > 0, n(j′) is odd

1 if j′ < 0, n(j′) is odd, or j′ > 0, n(j′) is even
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and
p = #{s ∈ {1, . . . ,m} : n(rs) is even}.

Define rm+1 ∈ R by

rm+1 =

{
l if t = t′, p is odd, or t 6= t′, p is even

(l, 1) if t = t′, p is even, or t 6= t′, p is odd
.

We have

n(rm+1) is

{
even if t = t′, p is odd, or t 6= t′, p is even

odd if t = t′, p is even, or t 6= t′, p is odd
. (4.38)

Furthermore, define σs ∈ {−,+}, s = 0, . . . ,m+ 1 by

σm+1 = sgn(t),

σs−1 =

{
− if σs = −, n(rs) is odd, or σs = +, n(rs) is even

+ if σs = −, n(rs) is even, or σs = +, n(rs) is odd
for s = m+ 1, . . . , 1.

By the definition of t, we have

σm+1 =

{
− if n(j) is even

+ if n(j) is odd
.

Note that σs−1 6= σs if and only if n(rs) is even. Therefore, as σm+1 = sgn(t) we obtain

σ0 =

{
sgn(t) if p is even, n(rm+1) is odd, or p is odd, n(rm+1) is even

− sgn(t) if p is even, n(rm+1) is even, or p is odd, n(rm+1) is odd
,

where − sgn(t) = − (resp. +) if sgn(t) = + (resp. −). This together with (4.38) implies

σ0 = sgn(t′).

Moreover, by the definition of t′, we have sgn(j′) = σ0 and n(j′) is even, or sgn(j′) 6= σ0 and
n(j′) is odd. This implies that if we define

Fj,j′;r1,...,rm = Ft′,j′ ◦Gσ1,σ0r1 ◦ · · · ◦Gσm+1,σmrm+1 ◦ Fj,t,

then by Lemma 4.57 (with m replaced by m + 1), Fj,j′;r1,...,rm is well-defined on Ij and
Fj,j′;r1,...,rm = fiN ◦ · · · ◦ fi1 |Ij for some i1, . . . , iN ∈ {−,+}, N ­ 0. Moreover, any trajectory
of x ∈ J defined by · · · ◦ fiN ◦ · · · ◦ fi1(x) jumps over the central interval at the times
s1, . . . , sm+1, for some 0 ¬ s1 < · · · < sm+1 < N . By (4.35) and (4.37),

Fj,j′;r1,...,rm(Ij) = Ij′;r1,...,rm+1 ⊂ Ij′;r1,...,rm .

Proposition 4.59. For every x ∈ (0, 1),

ω∞(x) = Λ = Λ ∪ {0, 1}.

Proof. First, we prove ω∞(x) ⊂ Λ∪ {0, 1} for x ∈ (0, 1). By Lemma 4.53(a), we can assume
x ∈ I. Take y ∈ ω∞(x). We have y = lims→∞ fiNs ◦ · · · ◦ fi1(x), where Ns → ∞ and the
trajectory {fiN ◦ · · · ◦ fi1(x)}∞N=0 jumps over the central interval infinitely many times. By
Lemma 4.57,

fiNs ◦ · · · ◦ fi1(x) ∈ Ij(s);r1(s),...,rm(s)(s)
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for some j(s) ∈ J and r1(s), . . . , rm(s)(s) ∈ R, where m(s) → ∞ as s → ∞. Moreover,
|Ij(s);r1(s),...,rm(s)(s)| ¬ ρm(s) → 0 as s → ∞ and Ij(s);r1(s),...,rm(s)(s) ∩ Λ 6= 0. Hence, y ∈ Λ =
Λ ∪ {0, 1}, which shows ω∞(x) ⊂ Λ ∪ {0, 1}.

Now we prove Λ ∪ {0, 1} ⊂ ω∞(x) for x ∈ (0, 1). By Lemma 4.54, we can assume x ∈ Ij
for some j ∈ J . Take y ∈ Λ. Then y = lims→∞ xj′(s);r1(s),r2(s),... for some j′(s) ∈ J and
r1(s), r2(s), . . . ∈ R, s ­ 0. Using Lemma 4.58, define inductively

F (0) = Fj,j′(0),

F (s) = Fj′(s−1),j′(s);r1(s),...,rs(s) for s > 0.

By Lemma 4.58, the trajectory of x under {f−, f+} defined by · · · ◦ F (s) · · · ◦ F (0)(x) is
well-defined and jumps over the central interval infinitely many times. Moreover,

F (s) ◦ · · · ◦ F (0)(Ij) ⊂ Ij′(s);r1(s),...,rs(s),

so
|F (s) ◦ · · · ◦ F (0)(x)− y| ¬ |Ij′(s);r1(s),...,rs(s)|+ |y − xj′(s);r1(s),r2(s),...| → 0

as s→∞, since |Ij′(s);r1(s),...,rs(s)| ¬ ρs →∞. Hence, y is a limit point of this trajectory.
Take now y ∈ {0, 1}. Then, by Lemma 4.58, we see

F2s−1,−2s ◦ · · · ◦ F−2,3 ◦ F1,−2 ◦ Fj,1(x) ∈ I−2s,

F−2s,2s+1 ◦ F2s−1,−2s ◦ · · · ◦ F−2,3 ◦ F1,−2 ◦ Fj,1(x) ∈ I2s+1

for s > 0, the trajectory defined by

· · · ◦ F−2s,2s+1 ◦ F2s−1,−2s ◦ · · · ◦ F−2,3 ◦ F1,−2 ◦ Fj,1(x)

jumps over the central interval infinitely many times and has y as its limit point. Hence,
Λ ∪ {0, 1} ⊂ ω∞(x).

Proposition 4.60. We have
Λ = f−(Λ) = f+(Λ).

Moreover, the system {f−, f+} is minimal in Λ.

Proof. The first assertion follows directly from Lemma 4.52, while Proposition 4.59 implies
minimality.

Singularity of µ

Proposition 4.61. We have

suppµ = Λ ∪ {0, 1}, µ(Λ) = 1.

Proof. Similarly as for the case l = 1, it is enough to use Proposition 4.60.

Proposition 4.62.

dimH Λ =
log η
log ρ

< 1,

where η ∈ (1/2, 1) is the unique solution of the equation ηk+l − 2ηk+1 + 2η − 1 = 0.
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Proof. Our first goal is to determine the dimension of Λ−1. We begin with calculating the
dimension of the L defined in (4.27). Recall that {Φr}r∈R is an iterated function system of
contracting similarities on I−1, satisfying the Strong Separation Condition. It is well-known
(see e.g. [64, Theorem 3.15]) that for such systems dimH L is equal to the (unique) zero of
the topological pressure function

P (t) = lim
n→∞

1
n

log
∑

r1,...,rn∈R
‖(Φr1 ◦ · · · ◦ Φrn)′‖t,

provided the system is regular (i.e. zero of the pressure function exists). Note that this is an
analog of the formula from Theorem 2.15. Since Φr are affine, we have

P (t) = log
∑
r∈R
‖Φ′r‖t

= log

 k∑
r=l

|φ′r|t +
∞∑
n=1

k−1∑
r=l

l−1∑
r1,...,rn=1

|(φr ◦ φr1 ◦ · · · ◦ φrn)′|t


= log

|φ′k|t +
k−1∑
r=l

|φ′r|t
∞∑
n=0

( l−1∑
r1=1

|φ′r1 |
t
)n

= log

ρkt +
k−1∑
r=l

ρrt
∞∑
n=0

( l−1∑
r1=1

ρr1t
)n

= log
ρlt − 2ρ(k+1)t + ρ(k+l)t

1− 2ρt + ρlt

(4.39)

provided ρt + · · ·+ ρ(l−1)t < 1, which is equivalent to ρlt− 2ρt + 1 > 0. Since by Lemma 4.49,
φr(J−1), r = 1, . . . , k are pairwise disjoint subset of J−1, we have ρt + · · · + ρ(l−1)t < 1 for
t = 1. It follows that ρlt−2ρt+1 > 0 for t ∈ (t0, 1], where t0 = inf{t > 0 : P (t) <∞} ∈ (0, 1)
is the unique solution of the equation ρlt0 − 2ρt0 + 1 = 0. Moreover, the condition P (1) < 0
is equivalent to

ρl − 2ρk+1 + ρk+l

1− 2ρ+ ρl
< 1,

which is the same as (4.24). Since t 7→ P (t) is strictly decreasing and continuous whenever
it is finite (see [64]) and limt→t+0

P (t) = +∞, we see that there exists d ∈ (t0, 1) such that

P (d) = 0. By (4.39), we have η = ρd, so

dimH L = d =
log η
log ρ

< 1.

We will prove now that dimH Λ−1 = dimH L, i.e. taking the closure does not increase the
Hausdorff dimension of L. To that end, let L(∞) be the “asymptotic boundary” of the system
{Φr}r∈R, i.e. the set of all limit points of sequences (xs)∞s=1, where xs ∈ Φrs(I−1) and {rs}∞s=1
consists of mutually distinct elements of R. It follows from [64, Lemma 2.1] that

Λ−1 = L = L ∪
∞⋃
m=0

⋃
r1,...,rm∈R

Φr1 ◦ · · · ◦ Φrm(L(∞)).

As the above sum is countable and the transformations Φr are bi-Lipschitz, applying points
5 and 6 of Proposition 2.4 yields

dimH Λ−1 = max{dimH L,dimH L(∞)}.
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Using Lemmas 4.49 and 4.50, it is easy to see that

L(∞) =
k−1⋃
r=l

φr(K),

where K is the limit set of the iterated function system {φr}l−1
r=1 on J−1. By Lemma 4.49,

this system satisfies the Strong Separation Condition, so its box and Hausdorff dimension are
both equal to the unique solution t0 ∈ (0, 1) of the equation ρlt0 − 2ρt0 + 1 = 0 (Theorem
2.15). As noted above, we have t0 < d, hence dimH Λ−1 = d. By Lemma 4.50, the sets Λj,
j ∈ J , are disjoint similar copies of Λ−1, so dimH

⋃
j∈J Λj = dimH Λ−1. To end the proof,

note that Λ \
⋃
j∈J Λj =

⋃
j>0

(
ρjK ∪ I(ρjK)

)
, hence, by the same argument as in the proof

of Proposition 4.46,
dimH

(
Λ \

⋃
j∈J

Λj
)

= t0 < d.

Finally, this implies dimH Λ = d.

The following proposition gives some information about the structure of the measure µ
in the case of equal probabilities p−, p+. It states that µ restricted to Ij for j ∈ J is the
self-similar measure (with weight mj) for the system {φr}r∈R corresponding to some infinite
probability vector (βr)r∈R. We do not find explicit formulas for mj and βr in terms of the
parameters of the original AM -system (the expression for mj is a general form of a solution
of a certain difference equation). Therefore, we are unable to give a formula for dimH(µ) in
the case l > 1. On the other hand, this description is sufficient for the proof of Theorem 4.7.

Proposition 4.63. Suppose p− = p+ = 1/2. Then for j = (j, j1, . . . , jn) ∈ J , r1, . . . , rm,
m ­ 0, we have

µ(Ij;r1,...,rm) = mjβr1 · · ·βrm ,

for

mj = mj,j1,...,jn = µ(Ij) = A1,j1,...,jnλ
|j|
1 + · · ·+Ap,j1,...,jnλ

|j|
p

+Ap+1,j1,...,jnλ
|j|
p+1 +Ap+1,j1,...,jn λp+1

|j|
+ · · ·+Aq,j1,...,jnλ

|j|
q +Aq,j1,...,jn λq

|j|
,

where A1,j1,...,jn , . . . , Ap,j1,...,jn ∈ R, Ap+1,j1,...,jn , . . . , Aq,j1,...,jn ∈ C, moreover λ1, . . . , λp (resp.
λp+1, λp+1, . . . , λq, λq) are real (resp. non-real) roots of the polynomial xk+l−2xl−1 of moduli
smaller than 1 and

βr =
mr

2ml −ml+k
.

Proof. Letmj = µ(Ij) for j = (j, j1, . . . , jn) ∈ J and define βr for r ∈ R as in the proposition.
Note that the assumption p− = p+ = 1/2 and the uniqueness of µ imply (recall that −j =
(−j, j1, . . . , jn) for j = (j, j1, . . . , jn))

m−j = mj. (4.40)

Furthermore, by Lemma 4.51 and the stationarity of µ, for every fixed j1, . . . , jn we have

mj+k,j1,...,jn = 2mj,j1,...,jn −mj−l,j1,...,jn

for every j ∈ N, j ­ l + 1. This defines a linear difference equation with characteristic
polynomial xk+l − 2xl − 1. It is well-known (see e.g. [27]) that a solution of such an equation
has the form

mj,j1,...,jn = A1,j1,...,jnλ
j
1 + · · ·+Ap,j1,...,jnλ

j
p

+Ap+1,j1,...,jnλ
j
p+1 +Ap+1,j1,...,jn λp+1

j
+ · · ·+Aq,j1,...,jnλ

j
q +Aq,j1,...,jn λq

j
,
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j ∈ N, where λ1, . . . , λp (resp. λp+1, λp+1, . . . , λq, λq) are real (resp. non-real) roots of the
characteristic polynomial and A1,j1,...,jn , . . . , Ap,j1,...,jn ∈ R, Ap+1,j1,...,jn , . . . , Aq,j1,...,jn ∈ C.
Since

∑∞
j=1mj,j1,...,jn ¬ µ(I) = 1, in fact we take into account only the roots of moduli

smaller than 1. This proves that mj has the form described in the proposition.
To show µ(Ij;r1,...,rm) = mjβr1 · · ·βrm , note that by Lemma 4.51 and the stationarity of

µ,

ml =
1
2

∑
r∈R

mr +
1
2
ml+k,

which together with Proposition 4.61 implies

βr > 0,
∑
r∈R

βr = 1.

Let ν(Ij;r1,...,rm) = mjβr1 · · ·βrm for j ∈ J , r1, . . . , rm, m ­ 0. Since the family of sets
Ij;r1,...,rm generates the σ-algebra of Borel sets in Λ, ν extends to a Borel probability measure
on Λ. Therefore, by the uniqueness of the stationary measure, to prove the proposition it is
sufficient to check that ν is stationary. It is enough to verify

ν(Ij;r1,...,rm) =
1
2
ν(f−1
− (Ij;r1,...,rm)) +

1
2
ν(f−1

+ (Ij;r1,...,rm)). (4.41)

By Lemma 4.52, for j = (j, j1, . . . , jn) ∈ J , we have

f−1
− (I(j,j1,...,jn);r1,...,rm) =



I(j+l,j1,...,jn);r1,...,rm for j ¬ −l − 1

I(j1,...,jn);r1,...,rm for j = −l, n > 0

Ir1;r2,...,rm for j = −l, n = 0

I(k,−j,j1,...,jn);r1,...,rm for − l + 1 ¬ j ¬ −1

I(j+k,j1,...,jn);r1,...,rm for j > 0

,

f−1
+ (I(j,j1,...,jn);r1,...,rm) =



I(j−k,j1,...,jn);r1,...,rm for j < 0

I(−k,j,j1,...,jn);r1,...,rm for 1 ¬ j ¬ l − 1

I−r1;r2,...,rm for j = l, n = 0

I(−j1,j2,...,jn);r1,...,rm for j = l, n > 0

I(j−l,j1,...,jn);r1,...,rm for j ­ l + 1

.

(4.42)

By (4.40) and (4.42), the statement (4.41) is equivalent to the systems of equations
mj,j1,j2,...,jn = 1

2mk,j,j1,j2,...,jn + 1
2mj+k,j1,j2,...,jn for 1 ¬ j ¬ l − 1

mlβr = 1
2mr + 1

2ml+kβr

ml,j1,j2,...,jn = 1
2mj1,j2,...,jn + 1

2ml+k,j1,j2,...,jn for n > 0

mj,j1,j2,...,jn = 1
2mj−l,j1,j2,...,jn + 1

2mj+k,j1,j2,...,jn for j ­ l + 1

,

where (j, j1, j2, . . . , jn) ∈ J and r ∈ R. The second equation is equivalent to the definition
of βr and the remaining ones hold due to (4.40), (4.42) for m = 0, and the fact that µ is
stationary.

4.6 Proof of Theorem 4.15

Let Λ(f) and Λ(g) be the sets constructed in Section 4.4 (in the case l = 1) or Section 4.5 (in
the case l > 1) for the systems {f−, f+} and {g−, g+}, respectively. Following the notation
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used in these sections, we have

Λ(f) = {x(f)
j;r1,r2,... : j ∈ Z∗, r1, r2, . . . ∈ {1, . . . , k}},

Λ(g) = {x(g)
j;r1,r2,... : j ∈ Z∗, r1, r2, . . . ∈ {1, . . . , k}}

in the case l = 1 and

Λ(f) =
{
x

(f)
j;r1,r2,... : j ∈ J , r1, r2, . . . ∈ R

}
∩ (0, 1),

Λ(g) =
{
x

(g)
j;r1,r2,... : j ∈ J , r1, r2, . . . ∈ R

}
∩ (0, 1)

in the case l > 1. We define the conjugating homeomorphism h setting

h(x(f)
j;r1,r2,...) = x

(g)
j;r1,r2,...

in the case l = 1 and
h(x(f)
j;r1,r2,...) = x

(g)
j;r1,r2,...

in the case l > 1 (with a unique continuous extension to Λ). By the definition of Λ(f),Λ(g),
the map h is an increasing homeomorphism between Λ(f) and Λ(g), while Lemmas 4.37
and 4.52 imply that it conjugates {f−, f+}|Λ(f) to {g−, g+}|Λ(g). It is easy to see that h can
be extended to an increasing homeomorphism of [0, 1] conjugating {f−, f+} to {g−, g+}, such
that h is affine on each component of (0, 1) \ Λ(f). For completeness, below we present a
detailed construction for the case l = 1, leaving the case l > 1 to the reader.

From the considerations preceding Proposition 4.48, it follows that {f−, f+}|Λ(f) and
{g−, g+}|Λ(g) are both conjugated to the system {f̃−, f̃+} acting on Z∗ × Σk. Hence, there
exists a homeomorphism h : Λ(f)→ Λ(g) conjugating {f−, f+} on Λ(f) to {g−, g+} on Λ(g).
We claim that h can be extended in a continuous and equivariant manner to the interval
[0, 1]. To show this, we describe the structure of the complement of Λ(f) in [0, 1].

Like in the proof of Lemma 4.36, let

U0 = (f−(x−), f+(x+)) = (f−(x−), I(f−(x−))) =

(
ρ− ρk+1

1− ρk+1 ,
1− ρ

1− ρk+1

)

and for j ∈ Z∗ define

Uj =

{
ρ−jU0 for j < 0

I(ρjU0) for j > 0
.

By Lemma 4.35, the following statements hold.

(a) U−j = I(Uj) for j ∈ Z.

(b) The sets Uj , j ∈ Z, are pairwise disjoint and together with Ij , j ∈ Z∗, form a partition
of (0, 1), where Uj is the gap between Ij−1 and Ij for j < 0, U0 is the gap between I−1

and I1, and Uj is the gap between Ij and Ij+1 for j > 0.

(c) f−(Uj) = Uj−1 for j ¬ 0, f−(I1 ∪ U1 ∪ · · · ∪ Ik−1 ∪ Uk−1 ∪ Ik) = I−1, f−(Uj) = Uj−k for
j ­ k.

(d) f+(Uj) = Uj+k for j ¬ −k, f+(I−k ∪U−k+1 ∪ · · · ∪ I−2 ∪U−1 ∪ I−1) = I1, f+(Uj) = Uj+1

for j ­ 0.

For s = 1, . . . , k − 1, define

U s−1 = f−(Us) = ρ(Us) ⊂ I−1.
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Note that U s−1 are the gaps between cylinders of the first order for the iterated function
system {φ1, . . . , φk} on I−1. More precisely, U1

−1, . . . , U
k−1
−1 together with I−1;1, . . . , I−1;k form

a partition of I−1, and are situated in the order

I−1;1, U
1
−1, I−1;2, U

2
−1, . . . , I−1;k−1, U

k−1
−1 , I−1;k.

For j ∈ Z∗, s ∈ {1, . . . , k − 1} and r1, . . . , rn ∈ {1, . . . , k}, n ­ 0, define

U sj;r1,...,rn =

{
ρ−j−1φr1 ◦ · · · ◦ φrn(U s−1) for j < 0

I(ρj−1φr1 ◦ · · · ◦ φrn(U s−1)) for j > 0
,

where φr1 ◦ . . . ◦φrn = id, U sj;r1,...,rn = U sj for n = 0, which agrees with the previous definition
for j = −1. Note that for a fixed j ∈ Z∗, the collection of disjoint intervals {U sj;r1,...,rn : 1 ¬
s ¬ k − 1, n ­ 0, r1, . . . , rn ∈ {1, . . . , k}} forms the complement of the Cantor set Λj and

(0, 1) \ Λ(f) =
⋃
j∈Z

Uj ∪
⋃
j∈Z∗

k−1⋃
s=1

∞⋃
n=0

k⋃
r1,...,rn=1

U sj;r1,...,rn

with the union being disjoint. We can carry the same construction for the system {g−, g+},
yielding a decomposition

(0, 1) \ Λ(g) =
⋃
j∈Z

Uj ∪
⋃
j∈Z∗

k−1⋃
s=1

∞⋃
n=0

k⋃
r1,...,rn=1

V s
j;r1,...,rn

for analogously defined Vj , V
s
j;r1,...,rn . By Lemma 4.35, for j ∈ Z,

f−(Uj) =


Uj−1 for j ¬ 0

U j−1 for 1 ¬ j ¬ k − 1

Uj−k for j ­ k
, f+(Uj) =


Uj+k for j ¬ −k
U−j1 for − k + 1 ¬ j ¬ −1

Uj+1 for j ­ 0

,

g−(Vj) =


Vj−1 for j ¬ 0

V j
−1 for 1 ¬ j ¬ k − 1

Vj−k for j ­ k
, g+(Uj) =


Vj+k for j ¬ −k
V −j1 for − k + 1 ¬ j ¬ −1

Vj+1 for j ­ 0

(4.43)

and for j ∈ Z∗, s ∈ {1, . . . , k − 1}, r1, . . . , rn ∈ {1, . . . , k}, n ­ 0,

f−(U sj;r1,...,rn) =


U sj−1;r1,...,rn for j ¬ 0

U s−1;j,r1,...,rn for 1 ¬ j ¬ k − 1

U sj−k;r1,...,rn for j ­ k
,

f+(U sj;r1,...,rn) =


U sj+k;r1,...,rn for j ¬ −k
U s1;−j,r1,...,rn for − k + 1 ¬ j ¬ −1

U sj+1;r1,...,rn for j ­ 0

,

g−(V s
j;r1,...,rn) =


V s
j−1;r1,...,rn for j ¬ 0

V s
−1;j,r1,...,rn for 1 ¬ j ¬ k − 1

V s
j−k;r1,...,rn for j ­ k

,

g+(V s
j;r1,...,rn) =


V s
j+k;r1,...,rn for j ¬ −k
V s

1;−j,r1,...,rn for − k + 1 ¬ j ¬ −1

V s
j+1;r1,...,rn for j ­ 0

.

(4.44)

We can now extend h to an increasing homeomorphism of [0, 1] as follows: on Uj , j ∈ Z,
we define h to be the unique affine increasing homeomorphism such that h(Uj) = Vj and

79



on U sj;r1,...,rn , j ∈ Z∗, s ∈ {1, . . . , k − 1}, n ­ 0, r1, . . . , rn ∈ {1, . . . , k}, we set h to be the
unique affine increasing homeomorphism such that h(U sj;r1,...,rn) = V s

j;r1,...,rn . Finally, we set
h(0) = 0, h(1) = 1. It is easy to see that h is a homeomorphism of [0, 1]. Using (4.43) and
(4.44) we see that

f±(Uj) = h−1 ◦ g± ◦ h(Uj) and f±(U sj;r1,...,rn) = h−1 ◦ g± ◦ h(U sj;r1,...,rn).

Since f± and h−1 ◦ g± ◦ h are both affine and increasing on each of the above intervals, we
have f± = h−1 ◦ g± ◦ h on each of them.

4.7 Proof of Theorem 4.16

We consider a symmetric AM -system with probabilities p− = p+ = 1/2 and positive Lya-
punov exponents, which exhibits (5 : 2)-resonance and satisfies ρ = η. The latter condition is
equivalent to

ρ7 − 2ρ6 + 2ρ− 1 = 0 (4.45)

and to ρx− = 1/2. Note that this implies f−(x−) = ρ2x− < 1/2, so the system is of disjoint
type (see the beginning of the proof of Theorem 4.10 in the case l > 1).

Define segments Jj , j ∈ Z∗ as in the case ρ < η. We have

Jj =

{
[ρ−j/2, ρ−j+1/2] for j < 0

[I(ρj/2), I(ρj−1/2)] for j > 0
,

so the segments Jj have pairwise disjoint interiors, each two consecutive intervals (according
to the order in Z∗) have a common endpoint and

⋃
j∈Z∗ Jj = (0, 1). Similarly, defining maps

φr and intervals Ij, j ∈ J as in the case ρ < η and proceeding as in the proofs of Lemmas 4.49
and 4.50, we check that for each j ∈ Z∗, the intervals Ij, j ∈ Jj are contained in Jj , have
disjoint interiors and satisfy

∑
j∈Jj |Ij| = |Jj|. Analogously, we can define maps Φr, r ∈ R,

intervals Ij;r1,...,rm and sets Λj,Λ in the same way as in the case ρ < η. The maps Φr form an
iterated function system in I−1, such that the intervals Φr(I−1) have disjoint interiors and∑
r∈R |Φr(I−1)| =

∑
r∈R |I−1;r| = |I−1|. Hence, Λ−1 = I−1 and the pressure (4.39) satisfies

P (1) = 0. The combinatorics of the intervals Ij;r1,...,rm is the same as in the case ρ < η, so
Lemmas 4.51 and 4.52 and Propositions 4.59 and 4.60 still hold. We have Λj = Ij for j ∈ J
and Λ = (0, 1).

By Theorem 4.22, there exists a unique stationary measure µ, and Proposition 4.60 implies
suppµ = Λ ∪ {0, 1} = [0, 1]. By Proposition 4.27, the measure µ is non-atomic. Hence, the
measure of the endpoints of the intervals Ij;r1,...,rm is zero. In particular, Proposition 4.63
holds in this case with the same proof.

The above facts show that {Φr}r∈R is a countable iterated function system of contracting
similarities on I−1 satisfying the Open Set Condition, with the attractor Λ−1 = I−1. By
Proposition 4.63, the probability measure

µ−1 =
µ|I−1
µ(I−1)

is the self-similar measure for this system with probabilities βr, r ∈ R.
To prove Theorem 4.16, we show dimH µ < 1. Since by Proposition 4.63, the measure µ

is a countable linear combination of µ−1 and its similar copies µ|Ij , j ∈ J , it is sufficient to
show dimH µ−1 < 1. Let

h(µ−1) = −
∑
r∈R

βr log βr

be the entropy of µ−1. The proof splits into two cases depending whether h(µ−1) is finite or
infinite. To shorten the proof, we do not determine which case actually takes place, but we
consider both possibilities.
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Suppose first that h(µ−1) is infinite. Then we have dimH µ−1 ¬ t0 < 1, where t0 =
inf{t > 0 : P (t) < ∞} is the unique solution of the equation ρlt0 − 2ρt0 + 1 = 0 (see the
proof of Proposition 4.62). This fact follows from [6, Proposition 3.1], which is based on [55,
Theorem 4.1]. Actually, the mentioned results in [6, 55] are formulated for a more specific
class of iterated function systems, but the proofs are valid in the general case of self-similar
systems on the interval.

Suppose now that h(µ−1) is finite. Recall that the self-similar iterated function system
{Φr}r∈R on I−1 is regular with the attractor Λ−1 = I−1. In particular, the normalized
Lebesgue measure L = Leb |I−1/|I−1| is the Gibbs and equilibrium state for the geomet-
rical potential in dimension 1 and also the 1-conformal measure for this system on I−1 (see
[65, Section 4.4]). Moreover, the Lyapunov exponent

χ(L) =
∑
r∈R
‖Φ′r‖ log ‖Φ′r‖

of the measure L is finite, since (similarly as in (4.39)) by the definition of the set R in the
considered case,

χ(L) =
4∑
r=2

∞∑
n=1

ρr+n log(ρr+n) +
5∑
r=2

ρr log(ρr) > −∞.

In such a situation [65, Theorem 4.4.7] (see also [43, Theorem 4.6]) asserts that either the
self-similar measure µ−1 is equal to L or dimH µ−1 < dimH Λ−1 = 1. Therefore, to end the
proof of the theorem, it is sufficient to show µ−1 6= L.

Suppose µ−1 = L. Then
µ(I−1;r)
µ(I−1)

=
|I−1;r|
|I−1|

= ρr (4.46)

for r ∈ {2, 3, 4, 5}. Consider the characteristic polynomial xk+l−2xl+1 from Proposition 4.63.
In the considered case it has the form

h(x) = x7 − 2x2 + 1 = (x− 1)(x3 + x2 − 1)(x3 + x+ 1).

Computing the derivatives, we check that the polynomial x3 + x2 − 1 has a unique real root
α ∈ (0, 1), while x3 + x + 1 has a unique real root β ∈ (−1, 0). By Viete’s formulas for
these polynomials, the remaining non-real roots of h have moduli greater than 1. Therefore,
Proposition 4.63 implies that for j ∈ Z∗ and r ∈ {2, 3, 4, 5},

µ(Ij) = Aα|j| +Bβ|j|, µ(I−1;r) =
µ(I−1)µ(Ir)

2µ(I2)− µ(I7)
(4.47)

for some A,B ∈ R. Since µ(Ij) > 0, we have (A,B) 6= (0, 0).
By (4.46) and (4.47),

Aαr +Bβr = qρr, r = 2, 3, 4, 5,

where q = 2µ(I2) − µ(I7) > 0. This implies Aαr+1 + Bβr+1 = ρ(Aαr + Bβr) for r = 2, 3, 4,
which gives (α

β

)r
A(α− ρ) = B(ρ− β), r = 2, 3, 4.

We have (A,B) 6= (0, 0). Moreover, ρ 6= β because ρ > 0, β < 0. If ρ = α, then by (4.45) and
the definition of α,

ρ6 − ρ5 − ρ4 − ρ =
ρ7 − 2ρ6 + 2ρ− 1

ρ− 1
+ ρ3 + ρ2 − 1 = 0

which is impossible since ρ ∈ (0, 1). Hence, A,B, α− ρ, ρ− β 6= 0 and we can write(α
β

)r
=
B(ρ− β)
A(α− ρ)

, r = 2, 3, 4,

which implies α = β and makes a contradiction. This ends the proof of Theorem 4.16.
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4.8 Singularity by estimating return times

In this section we present another approach to proving singularity of stationary measures for
AM -systems. Namely, rather than finding explicitly a closed invariant set of Lebesgue measure
zero (note that this strategy has to fail in a non-resonant case, as then supp(µ) = [0, 1] - see
Proposition 4.31), we use the well-known bound on the dimension of stationary measure
in terms of its entropy and Lyapunov exponent (see (4.50) below). We find an open set of
parameters for which the Lyapunov exponent is small enough (hence the average contraction
is strong enough) to guarantee dimH(µ) < 1. The upper bound on the Lyapunov exponent
is based on bounding the expected return time to the suitably chosen interval. In particular,
we find non-resonant parameters for which the corresponding stationary measure is singular.

For this part of the work, it is convenient to consider a new parametrization of symmetric
AM -systems. For a ∈ (0, 1) and γ > 0, we set a− = a+ = a and b− = b+ = a−γ in
Definition 4.1. In other words, we consider now AM -systems as pairs {f−, f+} consisting of
transformations

f−(x) =

{
ax for x ∈ [0, x−]

I(a−γI(x)) for x ∈ (x−, 1]
, f+(x) =

{
a−γx for x ∈ [0, x+]

I(aI(x)) for x ∈ (x+, 1]
, (4.48)

where

x+ =
1− a
a−γ − a

, x− =
a−γ − 1
a−γ − a

.

Note that an AM -system of the above form exhibits resonance if and only if γ ∈ Q. Let us
fix the probability vector as (p−, p+) = (1

2 ,
1
2). Note that the endpoint Lyapunov exponents

for the system of the above form are given by Λ(0) = Λ(1) = 1−γ
2 log a. From now on, we

will assume that γ > 1, hence Λ(0) and Λ(1) are positive. Therefore, there exists a unique
stationary probability measure µ such that µ({0, 1}) = 0 (recall Theorem 4.22).

Theorem 4.64. There is a non-empty and open set of parameters (a, γ) ∈ (0, 1)×(1,∞) such
that the corresponding stationary measure µ is singular with dimH(µ) < 1. More precisely, if
γ ∈ (1, 3

2) and x+ < f−(1
2), then

dimH(µ) ¬ (4γ − 1) log 2
(γ − 1)(γ − 3

2) log a
.

Therefore, if additionally a ∈ (0, 1) is such that log a < (4γ−1) log 2
(γ−1)(γ− 32 )

, then dimH(µ) < 1.

These three conditions hold simultaneously on an open and non-empty set of parameters
(a, γ) ∈ (0, 1)× (1,∞).

Remark 4.65 Note that the change of parametrization (0, 1)× (0,∞) 3 (a, γ) 7→ (a, a−γ) ∈
(0, 1) × (1,∞) is a diffeomorphism, hence Theorem 4.64 indeed implies Theorem 1.7 (and
Theorem 4.18).

Remark 4.66 All the systems with singular stationary measures covered by Theorem 4.64
are of disjoint type (recall Definition 4.3). To see that, observe first that any system of the
form (4.48) with a < 1

2 is of disjoint type, i.e. satisfies f−(x−) < f+(x+), or, equivalently,
f−(x−) < 1

2 . Indeed, the latter condition is equivalent to

2a1−γ − a− a−γ < 0 (4.49)

and if a < 1
2 then

2a1−γ − a− a−γ < 2a−γ(2a− 1) < 0.
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Therefore (4.49) is fulfilled provided a < 1
2 . On the other hand, conditions γ ∈ (1, 3

2) and

log a < (4γ−1) log 2
(γ−1)(γ− 32 )

imply that a < 2−48 < 1
2 . Indeed, we have

log a <
(4γ − 1) log 2
(γ − 1)(γ − 3

2)
¬ 3 log 2

(γ − 1)(γ − 3
2)
¬ 3 log 2
−(1

4)2
= −48 log 2,

hence a < 2−48. Therefore any system covered by Theorem 4.64 satisfies (4.49), hence is of
disjoint type.

The proof of Theorem 4.64 is based on an upper bound on the Hausdorff dimension of a
stationary measure in terms of its entropy and Lyapunov exponent. To state it, let

H((p−, p+)) := −p− log p− − p+ log p+

be the entropy of the probability vector (p−, p+) and let

χ(µ) :=
∫

[0,1]

(p− log f ′−(x) + p+ log f ′+(x))dµ(x)

be the Lyapunov exponent of the stationary measure µ. As measure µ is non-atomic (see
Proposition 4.32) and f−, f+ are differentiable everywhere except for points x−, x+, the Lya-
punov exponent χ(µ) is well defined. Moreover, measure µ is ergodic (cf. [35, Lemmas 3.2,
3.4]). It follows from [51, Theorem 1] that

dimH(µ) ¬ −H((p−, p+))
χ(µ)

(4.50)

as long as χ(µ) < 0. Since f− and f+ are piecewise affine, we can easily express χ(µ) in terms
of parameters and the measure of the middle interval M := [x+, x−]. Note that interval M
depends on parameters a and γ, but we suppress that dependence from the notation (we will
do the same for intervals defined later in the proof of Theorem 4.64). We have

H((p−, p+)) = H((
1
2
,
1
2

)) = log 2

and

χ(µ) = (1− µ(M))
1− γ

2
log a+ µ(M) log a =

(1− γ
2

+ µ(M)
1 + γ

2

)
log a. (4.51)

Clearly, in order to bound χ(µ) from above, we have to bound µ(M) from below. The next
lemma provides such an estimate.

Lemma 4.67. Let a ∈ (0, 1) and γ > 1 be such that x+ < f−(1
2). Then

µ(M) ­ γ − 1
2γ − 1

2

(4.52)

Moreover, the condition x+ < f−(1
2) is equivalent to

2a−1 − 2 + a− a−γ < 0 (4.53)

and for given γ > 1, it holds for all a ∈ (0, 1) small enough.

Before giving the proof of the above lemma, let us explain how it implies Theorem 4.64.
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Proof of Theorem 4.64. Fix a and γ satisfying x+ < f−(1
2). By Lemma 4.67

1− γ
2

+ µ(M)
1 + γ

2
­ 1− γ

2
+

γ − 1
2γ − 1

2

1 + γ

2
=

(γ − 1)(3
2 − γ)

4γ − 1
.

The above expression is positive for γ < 3
2 and the bound does not depend on a. Hence, by

(4.51), χ(µ) is negative for γ ∈ (1, 3
2) and a ∈ (0, 1) satisfying (4.53). Moreover, for such γ

lim
a→0

χ(µ) = lim
a→0

(1− γ
2

+ µ(M)
1 + γ

2

)
log a = −∞.

We can therefore apply (4.50) to conclude that dimH(µ) < 1 for a small enough. More
precisely, dimH(µ) < 1 provided that γ ∈ (1, 3

2) and a ∈ (0, 1) satisfies (4.53) together with

log a <
(4γ − 1) log 2

(γ − 1)(γ − 3
2)
.

Proof of Lemma 4.67. Let us begin by proving the second assertion of the lemma. As
1
2 < x−, we have f−(1

2) = a
2 , hence a direct computation yields that inequality x+ < f−(1

2)
is equivalent to (4.53). For a fixed γ > 1, this condition is satisfied for a > 0 small enough,
as the left hand side of (4.53) converges to −∞ as a↘ 0.

The proof of (4.52) is based on the Kac’s Lemma (see e.g. [77, Theorem 4.6]) and the
observation that outside of M , the system {f−, f+} acts like a random walk with a drift (after
a logarithmic change of coordinates). Note first that µ(M) > 0. Indeed, we have

f−1
+ (x−) > x+, (4.54)

as it is straightforward to check that this inequality is equivalent to a1−γ > 1, which holds
since γ > 1 and a ∈ (0, 1). This means that sets M and f−1

+ (M) are not disjoint. By symmetry,
M and f−1

− (M) are also not disjoint. As lim
n→∞

f−n+ (x−) = 0 and lim
n→∞

f−n+ (x+) = 1, we see that
∞⋃
n=0

f−n+ (M) ∪ f−n− (M) = (0, 1) and hence µ(M) > 0, as µ is stationary and µ({0, 1}) = 0.

We will apply Kac’s Lemma to the skew product

F+ : Σ+
2 × [0, 1]→ Σ+

2 × [0, 1], F+(i, x) = (σ(i), fi1(x)),

where Σ+
2 = {−,+}N, i = (i1, i2, ...) ∈ Σ+

2 and σ : Σ+
2 → Σ+

2 is the left-side shift. Let
nΣ+2 ×M

: Σ+
2 ×M → N ∪ {∞} be the first return time to Σ+

2 ×M , i.e.

nΣ+2 ×M
(i, x) := inf{n ­ 1 : F+n(i, x) ∈ Σ+

2 ×M}.

Let P = Ber+
1
2 ,
1
2

be the (1
2 ,

1
2)-Bernoulli measure on Σ+

2 . Since P⊗µ is ergodic for F+ (cf. [35,

Lemmas 3.2 and A.2]) and P ⊗ µ(Σ+
2 ×M) = µ(M) > 0, the Kac’s Lemma ([77, Theorem

4.6]) implies that ∫
Σ+2 ×M

nΣ+2 ×M
(i, x)dµ̃ =

1
µ(M)

, (4.55)

where µ̃ = 1
µ(M)P⊗ µ|Σ+2 ×M . Let us define two more intervals:

L = [x+, f
−1
− (x+)], R = I(L).

Note that L and R are disjoint if and only if f−1
− (x+) < 1

2 , which is equivalent to our
assumption x+ < f−(1

2). We will assume from now on that (4.53) is fulfilled, so L ∩ R = ∅.
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Let C := (supL, inf R), i.e. M = L∪C∪R with the union being disjoint. From the definitions
of L,C and R we get that

f−(L) ⊂ [0, x+], f−(C ∪R) ⊂M, f+(R) ⊂ [x−, 1], f+(L ∪ C) ⊂M. (4.56)

Let
E = {(i, x) ∈ Σ×M : fi1(x) /∈M} = {(i, x) ∈ Σ×M : nΣ+2 ×M

> 1}.

By (4.56) and disjointness of L and R, we see that for a given x ∈M , it cannot happen that
f−(x) and f+(x) both belong to the complement of M . Therefore

µ̃(E) ¬ 1
2
. (4.57)

Moreover, (4.56) gives
E = {i1 = −} × L ∪ {i1 = +} ×R,

hence

µ̃(E) =
µ(L)
µ(M)

. (4.58)

Using the symmetry of the system (f− ◦ I = I ◦ f+) and the choice of equal probabilities, we
obtain ∫

Σ+2 ×M

nΣ+2 ×M
(i, x)dµ̃(i, x) = 1− µ̃(E) +

∫
E

nΣ+2 ×M
(i, x)dµ̃(i, x) =

= 1− µ̃(E) + 2
∫

{i1=−}×L

nΣ+2 ×M
(i, x)µ̃(i, x) = (∗).

Note that it follows from (4.54) that f+(x+) < x−, hence a trajectory cannot jump from
[0, x+) to (x−, 1] without passing through M . Combining this observation with the fact that
transformations f− and f+ are increasing, we conclude that nΣ+2 ×M

(i, x) ¬ nΣ+2 ×M
(i, x+)

for (i, x) ∈ {i1 = −} × L. We can therefore estimate further and apply (4.57) together with
(4.58) to obtain

(∗) ¬ 1− µ̃(E) + 2
∫
{i1=−}×L

nΣ+2 ×M
(i, x+)dµ̃(i, x) =

= 1− µ̃(E) +
2

µ(M)

∫
{i1=−}

(∫
L
nΣ+2 ×M

(i, x+)dµ(x)
)
dP(i) =

= 1− µ̃(E) +
2µ(L)
µ(M)

∫
{i1=−}

nΣ+2 ×M
(i, x+)dP(i) =

= 1− µ̃(E) +
µ̃(E)

P({i1 = −})

∫
{i1=−}

nΣ+2 ×M
(i, x+)dP(i) =

= 1− µ̃(E) + µ̃(E)ẼN = 1 + µ̃(E)(ẼN − 1) ¬ 1 +
ẼN − 1

2
,

(4.59)

where N(i) = inf{n ­ 1 : fin ◦ . . .◦fi1(x+) ∈M} and the expectation Ẽ is taken with respect
to the conditional measure P̃ = 1

P({i1=−})P|{i1=−}. As fin ◦ . . . ◦ fi1(x+) ∈ [0, x+) provided
i ∈ {i1 = −} and n < N(i) (we use again the observation that a trajectory cannot jump
from [0, x+) to (x−, 1] without passing through M , which follows from (4.54)). Define random
variables

Xj : Σ+
2 → R, Xj(i) =

{
1 if ij = −
−γ if ij = +

, j ∈ N.
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For i ∈ {i1 = −} we have

N(i) = inf{n ­ 1 : a1+X2+...+Xnx+ ­ x+} = inf{n ­ 2 : X2 + . . .+Xn ¬ −1}.

Note that X2, X3, . . . is an i.i.d. sequence with P̃(Xj = 1) = P̃(Xj = −γ) = 1
2 and N is a

stopping time for {Xj}∞j=2 statisfying ẼN <∞. Indeed, Hoeffding’s inequality [45, Theorem
2] gives

P̃(N > n+ 1) ¬ P̃(
n+1∑
j=2

Xj > −1) ¬ P̃
( 1
n

n+1∑
j=2

Xj −
1− γ

2
­ − 1

n
− 1− γ

2

)
¬

¬ exp
(
−

2n2( 1
n + 1−γ

2 )2

n(γ + 1)2

)
¬ exp(−cn)

for some constant c > 0 and n ∈ N large enough. As ẼN =
∞∑
n=0

P̃(N > n), the above

inequality implies ẼN < ∞. Let SN (i) =
N(i)∑
n=2

Xn(i). This random variable is well defined,

since 2 ¬ N < ∞ holds P̃-almost surely. As ẼN < ∞, we can apply Wald’s identity [13,
Problem 22.8] to obtain

ẼSN = ẼX2(ẼN − 1) =
1− γ

2
(ẼN − 1). (4.60)

In order to estimate ẼSN , we condition on X2 and note that −γ < −1 and SN ­ −1 − γ
almost surely. This gives

ẼSN =
1
2
Ẽ(SN |X2 = −γ) +

1
2
Ẽ(SN |X2 = 1) ­ −γ

2
+
−1− γ

2
=
−1− 2γ

2
.

Combining this with (4.60) we get

ẼN − 1 ¬ 1 + 2γ
γ − 1

.

Applying the above estimate to (4.59) we see that∫
Σ+2 ×M

nΣ+2 ×M
(i, x)dµ̃(i, x) ¬ 1 +

1 + 2γ
2(γ − 1)

=
2γ − 1

2
γ − 1

.

Invoking (4.55) finishes the proof.
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Paris Sér. I Math., 311(10):645–648, 1990.

[40] Yonatan Gutman. Taken’s embedding theorem with a continuous observable. In Ergodic
theory, pages 134–141. De Gruyter, Berlin, 2016.
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[98] Yihong Wu and Sergio Verdú. Rényi information dimension: fundamental limits of almost
lossless analog compression. IEEE Trans. Inform. Theory, 56(8):3721–3748, 2010.

[99] Lai-Sang Young. What are SRB measures, and which dynamical systems have them? J.
Statist. Phys., 108(5-6):733–754, 2002. Dedicated to David Ruelle and Yasha Sinai on
the occasion of their 65th birthdays.

92


	Introduction
	A probabilistic Takens theorem
	Singular stationary measures for random piecewise affine interval homeomorphisms
	Organization of the dissertation

	Preliminaries
	Dimensions of sets
	Dimensions of measures
	Invariant and stationary measures

	A probabilistic Takens theorem
	Preliminaries
	Probabilistic embedding theorem
	Probabilistic Takens delay embedding theorem
	Conjectures of Shroer, Sauer, Ott and Yorke
	Measure with Hausdorff dimension smaller than lower modified box dimension
	Examples
	A modified Kan's example


	Singular stationary measures for random piecewise affine interval homeomorphisms
	Main results
	Preliminaries
	Preliminary results and proof of Theorem 4.4
	Proofs of Theorems 4.10 (case l = 1) and 4.12.
	Proof of Theorem 4.10. Case l > 1
	Proof of Theorem 4.15
	Proof of Theorem 4.16
	Singularity by estimating return times

	Bibliography

