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Abstract

In this thesis we show new data structures useful in designing planar graph algorithms.
First, we show an optimal data structure maintaining a planar graph subject to edge con-

tractions. Specifically, our data structure explicitly maintains individual vertices’ neighbors
lists and supports constant-time adjacency queries on the stored graph. After each subsequent
edge contraction, the data structure can be updated in amortized constant time. By applying
the data structure, we obtain optimal algorithms for several planar graph problems, such as
finding a unique perfect matching or computing maximal 3-edge connected subgraphs. We also
show that by using our data structure in a black-box manner one obtains conceptually simple
optimal algorithms for minimum spanning tree and 5-coloring in planar graphs.

Next, we study decremental reachability algorithms for planar directed graphs. In partic-
ular, we show a nearly-optimal decremental algorithm for single-source reachability for planar
digraphs. We also show a trade-off for decremental transitive closure. For any t ∈ [1, n], our
decremental transitive closure algorithm has Õ(n2/t) total update time and Õ(

√
t) query time.

Additionally, as a byproduct, we obtain nearly-linear time algorithms for several other static
and dynamic reachability-related problems on planar directed graphs.

Finally, we consider the problem of computing shortest paths in so-called dense distance
graphs, a basic building block for designing efficient planar graph algorithms. Fakcharoenphol
and Rao proposed an efficient implementation of Dijkstra’s algorithm (later called FR-Dijkstra)
computing single-source shortest paths in a dense distance graph. At the heart of their imple-
mentation lies a data structure updating distance labels maintained by Dijkstra’s algorithm and
extracting minimum labeled vertices in O(log2 n) amortized time per vertex. We show a more

efficient data structure accomplishing the same task in O
(

log2 n
log2 logn

)
amortized time per ver-

tex. This yields improved time bounds for all problems on planar graphs for which computing
shortest paths in dense distance graphs is currently a bottleneck, such as maximum bipartite
matching, single-source all-sinks maximum flow, and dynamic all-pairs shortest paths.

2012 ACM Subject Classification: Theory of computation → Data structures design and
analysis, Graph algorithms analysis

Keywords: Planar graph algorithms, Data structures, Dynamic graph algorithms, Decremen-
tal reachability, Shortest paths



Streszczenie

W tej rozprawie pokazujemy nowe struktury danych użyteczne w projektowaniu algorytmów na
grafach planarnych.

Po pierwsze, pokazujemy optymalną strukturę danych utrzymującą graf planarny zmieniany
za pomocą kontrakcji krawędzi. Nasza struktura danych jawnie utrzymuje listy sąsiedztwa
i stopnie poszczególnych wierzchołków, a także obsługuje zapytania o sąsiedztwo wierzchołków
w czasie stałym. Po każdej kolejnej kontrakcji, struktura jest aktualizowana w zamortyzowa-
nym czasie stałym. Używając jej, uzyskujemy optymalne algorytmy dla kilku problemów na
grafach planarnych, takich jak znajdowanie unikalnego doskonałego skojarzenia czy obliczanie
maksymalnych podgrafów 3-spójnych krawędziowo. Pokazujemy dodatkowo, że wykorzystując
naszą strukturę danych, można uzyskać proste koncepcyjnie optymalne algorytmy dla proble-
mów minimalnego drzewa rozpinającego i 5-kolorowania grafów planarnych.

Następnie zajmujemy się problemem dekrementalnej osiągalności w skierowanych grafach
planarnych. W szczególności, pokazujemy prawie optymalny dekrementalny algorytm dla pro-
blemu osiągalności z jednego źródła. Uzyskujemy także algorytm dla problemu dekrementalnego
domknięcia przechodniego. Dla dowolnego t ∈ [1, n], algorytm ten ma całkowity czas zmian
rzędu Õ(n2/t) i czas zapytania rzędu Õ(

√
t). Dodatkowo, niejako przy okazji, otrzymujemy

prawie liniowe algorytmy dla kilku innych statycznych i dynamicznych problemów związanych
z osiągalnością w skierowanych grafach planarnych.

W końcu, zajmujemy się problemem znajdowania najkrótszych ścieżek w tzw. gęstych gra-
fach odległości. Gęste grafy odległości, wraz z algorytmami operującymi nimi, są podstawo-
wym narzędziem używanym przy projektowaniu efektywnych algorytmów dla grafów planar-
nych. Fakcharoenphol i Rao zaproponowali podali bardzo efektywną implementację algorytmu
Dijkstry (nazwaną później FR-Dijkstra) na gęstych grafach odległości. Serce tej implementacji
stanowi struktura danych aktualizująca oszacowania odległości utrzymywane przez algorytm
Dijkstry i wyłuskująca nieodwiedzony wierzchołek o minimalnym oszacowaniu w zamortyzo-
wanym czasie O(log2 n) na wierzchołek grafu. My pokazujemy bardziej efektywną strukturę

danych, obsługującą te same operacje w zamortyzowanym czasie O
(

log2 n
log2 logn

)
na wierzchołek

gęstego grafu odległości. W ten sposób uzyskujemy lepsze oszacowania złożoności czasowej
wszystkich tych problemów na grafach planarnych, dla których obliczanie najkrótszych ścieżek
w gęstym grafie odległości jest wąskim gardłem najlepszego znanego dotychczas algorytmu. Są
to, przykładowo, maksymalne skojarzenie dwudzielne, maksymalny przepływ o wielu źródłach
i ujściach, czy dynamiczne najkrótsze ścieżki między wszystkimi parami wierzchołków.

Tytuł rozprawy w języku polskim: Struktury danych i algorytmy dynamiczne dla grafów
planarnych.

Słowa kluczowe: Algorytmy dla grafów planarnych, Struktury danych, Dynamiczne algorytmy
grafowe, Dekrementalna osiągalność, Najkrótsze ścieżki
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Chapter 1

Introduction

Obtaining provably efficient algorithms for the most basic graph problems like finding (shortest)
paths or computing maximum matchings, fast enough to handle real-world-scale graphs (i.e.,
consisting of millions of vertices and edges), is a very challenging task. For example, in a very
general regime of strongly-polynomial algorithms (see, e.g., [86]), we still do not know how
to compute shortest paths in a real-weighted sparse directed graph significantly faster than in
quadratic time, using the classical, but somewhat simple-minded, Bellman-Ford method.

One way to circumvent this problem is to consider more restricted computation models for
graph algorithms. If, for example, we restrict ourselves to graphs with integral edge weights, we
can improve upon the Bellman-Ford algorithm [18, 41]. Although these results are very deep
algorithmically, their theoretical efficiency is still very far from the only known trivial linear
lower bound on the actual time complexity of the negatively-weighted shortest path problem.

Another approach is to develop algorithms specialized for certain graph classes that appear
in practice. Planar graphs constitute one of the most important and well-studied such classes.
Many of the real-world networks can be drawn on a plane with no or few edge crossings. The
examples include not very complex road networks and graphs considered in the domain of VLSI
design. Complex road networks, although far from being planar, share with planar graphs some
useful properties, like the existence of small separators [24]. Special cases of planar graphs, such
as grids, appear often in the area of image processing (e.g., [10]).

And indeed, if we restrict ourselves to planar graphs, many of the classical polynomial-time
graph problems, in particular computing shortest paths [47, 77] and maximum flows [6, 7, 25]
in real-weighted graphs, can be solved either optimally or in nearly-linear time. The very
rich combinatorial structure of planar graphs often allows breaking barriers that appear in
the respective problems for general graphs by using techniques from computational geometry
(e.g., [32]), or by applying sophisticated data structures, such as dynamic trees [6, 13, 25, 87].

In this thesis, we focus on the data-structural aspect of planar graph algorithmics. By this,
we mean that rather than concentrating on particular planar graph problems, we study more
abstract, “low-level” problems. Efficient algorithms for these problems can be used in a black-
box manner to design algorithms for multiple specific problems at once. Such an approach
allows us to improve upon many known complexity upper bounds for different planar graph
problems simultaneously, without going into the specifics of these problems.

We also study dynamic algorithms for planar graphs, i.e., algorithms that maintain certain
information about a dynamically changing graph (such as “is the graph connected?”) much more
efficiently than by recomputing this information from scratch after each update. We consider
the edge-update model where the input graph can be modified only by adding or removing
single edges. A graph algorithm is called fully-dynamic if it supports both edge insertions and
edge deletions, and partially dynamic if it supports either only edge insertions (then we call it
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incremental), or only edge deletions (then it is called decremental).
When designing dynamic graph algorithms, we care about the update time, i.e., the time

needed by the algorithm to adapt to an elementary change of the graph, and query time, i.e., the
time needed by the algorithm to recompute the requested portion of the maintained information.
Sometimes, especially in partially dynamic settings, it is more convenient to measure the total
update time, i.e., the total time needed by the algorithm to process any possible sequence
of updates. For some dynamic problems, it is worth focusing on a more restricted explicit
maintenance model where the entire maintained information is explicitly updated (so that the
user is notified about the update) after each change. In this model the query procedure is trivial
and thus we only care about the update time.

Note that there is actually no clear distinction between dynamic graph algorithms and graph
data structures since dynamic algorithms are often used as black-boxes to obtain efficient static
algorithms (e.g., [31]). For example, the incremental connectivity problem, where one needs to
process queries about the existence of a path between given vertices, while the input undirected
graph undergoes edge insertions, is actually equivalent to the disjoint-set data structure problem,
also called the union-find data structure problem (see, e.g., [19]).

We concentrate mostly on the decremental model and obtain very efficient decremental
algorithms for problems on unweighted planar graphs related to reachability and connectivity.
We also apply our dynamic algorithms to static problems, thus confirming once again the data-
structural character of these results.

In the following, let G = (V,E) denote the input planar graph with n vertices. For clarity
of this introduction, assume G is a simple graph. Then, by planarity, it has O(n) edges. When
we talk about general graphs, we denote by m the number of edges of the graph.

1.1 Contracting a Planar Graph

Edge contraction is one of the fundamental graph operations. Given an undirected graph and its
edge e, contracting the edge e consists in removing it from the graph and merging its endpoints.
The notion of contraction has been used to describe a number of prominent graph algorithms,
including Edmonds’ algorithm for computing maximum matchings [23], or Karger’s minimum
cut algorithm [60].

Edge contractions are of particular interest in planar graphs as a number of planar graph
properties can be described using contractions. For example, it is well-known that a graph
is planar precisely when it cannot be transformed into K5 or K3,3 by contracting edges, or
removing vertices or edges (see e.g., [21]). Moreover, contracting an edge preserves planarity.

We would like to have at our disposal a data structure that performs contractions on the
input planar graph and still provides access to the most basic information about our graph,
such as the sizes of neighbors sets of individual vertices and the adjacency relation. While
contraction operation is conceptually very simple, its efficient implementation is challenging.
This is because it is not clear how to represent individual vertices’ adjacency lists so that
adjacency list merges, adjacency queries, and neighborhood size queries are all efficient. By
using standard data structures (e.g., balanced binary search trees), one can maintain adjacency
lists of a graph subject to contractions in polylogarithmic amortized time. However, in many
planar graph algorithms this becomes a bottleneck.

As an example, consider the problem of computing a 5-coloring of a planar graph. There
exists a very simple algorithm based on contractions [71] that only relies on a folklore fact that
a planar graph has a vertex of degree no more than 5. However, linear-time algorithms solving
this problem use some more involved planar graph properties [28, 71, 81]. For example, the
algorithm by Matula et al. [71] uses the fact that every planar graph has either a vertex of
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degree at most 4 or a vertex of degree 5 adjacent to at least four vertices, each having degree
at most 11. Similarly, although there exists a very simple algorithm for computing a minimum
spanning tree of a planar graph based on edge contractions, various different methods have been
used to implement it efficiently [28, 69, 70].

Our Results

We show a data structure that can efficiently maintain a planar graph subject to edge contrac-
tions in linear total time, assuming the standard word-RAM model with word size Ω(log n). It
can report groups of parallel edges and self-loops that emerge. It also supports constant-time
adjacency queries and maintains the neighbor lists and degrees explicitly. The data structure
can be used as a black-box to implement planar graph algorithms that use contractions. As an
example, it can be used to give clean and conceptually simple implementations of algorithms for
computing 5-coloring or minimum spanning tree that do not manipulate the embedding. More
importantly, by using our data structure, we give improved algorithms for a few problems in
planar graphs. In particular, we obtain optimal algorithms for decremental 2-edge-connectivity,
finding a unique perfect matching, and computing maximal 3-edge-connected subgraphs.

Related Work

The problem of detecting self-loops and parallel edges under contractions has been implicitly
addressed by Giammarresi and Italiano [40] in their work on decremental (edge-, vertex-) con-
nectivity in planar graphs. Their data structure uses O(n log2 n) total time.

In their book, Klein and Mozes [63] showed that there exists a data structure maintaining
a planar graph under edge contractions and deletions, and answering adjacency queries in O(1)
worst-case time. The update time is O(log n). This result is based on the work of Brodal and
Fagerberg [11], who showed how to maintain a bounded-outdegree orientation of a dynamic
planar graph so that edge insertions and deletions are supported in O(log n) amortized time.

Gustedt [43] showed an optimal solution to the union-find problem in the case when at any
time the actual subsets form disjoint and connected subgraphs of a given planar graph G. In
other words, in this problem the allowed unions correspond to the edges of a planar graph and
the execution of a union operation can be seen as a contraction of the respective edge.

Technical Overview

As mentioned before, it is relatively easy to design a simple vertex merging data structure for
general graphs that would process any sequence of contractions in O(m log2 n) total time and
support the same queries as our data structure in O(log n) time. To this end, one can store
the neighbors lists of individual vertices as balanced binary search trees. Upon a contraction
of an edge uv, or a more general operation of merging two (not necessarily adjacent) vertices
u, v, the neighbors lists of u and v are merged by inserting the smaller set into the larger one
(and detecting loops and parallel edges on the fly at no additional cost). If we used hash tables
instead of balanced binary search trees, we could achieve O(log n) expected amortized update
time and O(1) query time. In fact, such an approach was used in [40].

To obtain the speed-up we take advantage of planarity. Our general idea is to partition
the graph into small pieces and use the above simple-minded vertex merging data structures
to solve our problem separately for each of the pieces and for the subgraph induced by the
vertices contained in multiple pieces (the so-called boundary vertices). Due to the nature of
edge contractions, we need to specify how the partition evolves when our graph changes.
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The data structure builds a so-called r-division (see Chapter 2) R = P1, P2, . . . of the
input graph for r = log4 n, i.e., it partitions G into edge-disjoint pieces of size O(r). The set
∂R of boundary vertices (i.e., those shared by at least two pieces) has size O(n/ log2 n). Let
(V0, E0) denote the original graph, and (V,E) denote the current graph (after performing some
number of contractions). Since edge contractions merge the vertices of G, V can be viewed as
a partition of V0. Then, when an edge e = uv, where u, v ∈ V , is contracted, the vertices u
and v are replaced with their union u ∪ v. Let us denote by φ : V0 → V the unique function
such that for each initial vertex v0 ∈ V0, where v0 ∈ φ(v0). We use vertex merging data
structures to detect parallel edges and self-loops in the “top-level” subgraph G[φ(∂R)], which
contains only edges between boundary vertices, and separately in the “bottom-level” subgraphs
G[φ(V (Pi))] \G[φ(R)]. At any time, each edge of G is contained in exactly one of the defined
subgraphs, and thus, the distribution of responsibility for handling individual edges is based
solely on the initial r-division.

However, such an assignment of responsibilities gives rise to additional difficulties. First,
a contraction of an edge in a lower-level subgraph might cause some edges “flow” from this
subgraph to the top-level subgraph (i.e., we may get new edges connecting boundary vertices).
As such an operation turns out to be costly in our implementation, we need to prove that the
number of such events throughout is only O(n/ log2 n).

Another difficulty lies in the need of keeping the individual data structures synchronized:
when an edge of the top-level subgraph is contracted, pairs of vertices in multiple lower-level
subgraphs might need to be merged. We cannot afford iterating through all the lower-level
subgraphs after each contraction in G[φ(∂R)]. This problem is solved by maintaining a system
of pointers between representations of the same vertex of V in different vertex-merging data
structures and another clever application of the smaller-to-larger merge strategy.

Such a two-level data structure would yield a data structure with O(n log logn) total update
time. To obtain a linear time data structure, we further partition the pieces Pi and add another
layer of maintained subgraphs on O(log4 log4 n) = O(log4 log n) vertices. These subgraphs are
so small that we can precompute in O(n) time the self-loops and parallel edges for every possible
graph on t = O(log4 log n) vertices and every possible sequence of edge contractions.

We note that this overall idea of recursively reducing a problem with an r-division to a size
when micro-encoding can be used has been previously exploited in [43] and [68] (Gustedt [43]
did not use r-divisions, but his concept of a patching could be replaced with an r-division). Our
data structure can be also seen as a solution to a more general version of the planar union-find
problem studied by Gustedt [43]. However, maintaining the status of each edge e of the initial
graph G (i.e., whether e has become a self-loop or a parallel edge) subject to edge contractions,
turns out to be a serious technical challenge. For example, in [43], the requirements posed on
the bottom-level union-find data structures are in a sense relaxed and it is not necessary for
those to be synchronized with the top-level union-find data structure.

1.2 Decremental Reachability

In the dynamic reachability problem we are given a (directed) graph G subject to edge updates
and the goal is to design a data structure that would allow answering queries about the existence
of a path between a pair of query vertices u, v ∈ V .

Two variants of dynamic reachability are studied most often. In the all-pairs variant, our
data structure has to support queries between arbitrary pairs of vertices. This variant is also
called the dynamic transitive closure problem since a path u→ v exists in G if uv is an edge of
the transitive closure of G.
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In the single-source reachability problem, a source vertex s ∈ V is fixed from the very
beginning and the only allowed queries are about the existence of a path s→ v, where v ∈ V .

If we work with undirected graphs, the dynamic reachability problem is called the dynamic
connectivity problem. Note that in the undirected case a path u→ v exists in G if and only if
a path v → u exists in G.

State of the Art

Dynamic reachability in general directed graphs turns out to be a very challenging problem.
First of all, it is computationally much more demanding than its undirected counterpart. For
undirected graphs, fully-dynamic all-pairs algorithms with polylogarithmic amortized update
and query bounds are known [48, 52, 95]. For directed graphs, on the other hand, in most
settings (either single-source or all-pairs, either incremental, decremental or fully-dynamic) the
best known algorithm has either polynomial update time or polynomial query time. The only
exception is the incremental single-source reachability problem, for which a trivial extension of
depth-first search [90] achieves O(1) amortized update time.

One of the possible reasons behind such a big gap between the undirected and directed
settings is that one needs only linear time and space to compute the connected components of
an undirected graph and thus there exists a O(n)-space static data structure that can answer
connectivity queries in undirected graphs in O(1) time. On the other hand, the best known
algorithm for computing the transitive closure runs in Õ(min(nω, nm)) = Õ(n2)1 time [14, 78].

So far, the best known bounds for fully-dynamic reachability are as follows. For dynamic
transitive closure, there exist a number of algorithms with O(n2) update time and O(1) query
time [20, 82, 85]. These algorithms, in fact, maintain the transitive closure explicitly. There also
exist a few fully-dynamic algorithms that are better for sparse graphs, each of which has Ω(n)
amortized update time and query time which is o(n) but still polynomial in n [83, 84, 85]. For
the single-source variant, the only known non-trivial (i.e., other than recompute-from-scratch)
algorithm has O(n1.53) update time and O(1) query time [85].

Algorithms with O(nm) total update time are known for both incremental [53] and decre-
mental [66, 83] transitive closure. Note that for sparse graphs this bound is only poly-logarithmic
factors away from the best known static transitive closure upper bound [14].

All the known partially-dynamic single-source reachability algorithms work in the explicit
maintenance model. As mentioned before, for incremental single-source reachability, an optimal
(in the amortized sense) algorithm is known. Interestingly, the first algorithms with O(mn1−ε)
total update time (where ε > 0) have been obtained only recently [44, 45]. The best known
algorithm to date has Õ(m

√
n) total update time and is due to Chechik et al. [16].

Dynamic reachability has also been previously studied for planar graphs. Diks and Sankowski
[22] showed a fully-dynamic transitive closure algorithm with Õ(

√
n) update and query times,

which works under the assumption that the graph is plane embedded and the inserted edges
can only connect vertices sharing some adjacent face. Łącki [66] showed that one can maintain
the strongly connected components of a planar graph under edge deletions in O(n

√
n) total

time. By known reductions, it follows that there exists a decremental single-source reachability
algorithm for planar graphs with O(n

√
n) total update time. Note that this bound matches the

recent best known bound for general graphs [16] up to polylogarithmic factors.

Our Results

We show new decremental reachability algorithms for planar digraphs.

1We denote by Õ(f(n)) the order O(f(n) polylogn).
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For decremental single-source reachability, we obtain an almost optimal (up to polylogarith-
mic factors) algorithm explicitly maintaining the set of vertices reachable from the source. Our
algorithm processes any online sequence of edge deletions in O(n log2 n log logn) total time.

For decremental transitive closure, we obtain a randomized trade-off algorithm. For any
chosen t ∈ [1, n], our algorithm has Õ(n2/t) total update time and Õ(

√
t) query time. In

particular, for t = n, our algorithm has polylogarithmic amortized update time and Õ(
√
n)

time. For t = n2/3, we obtain an algorithm with Õ(n1/3) update and query time. To the best
of our knowledge, this is the first dynamic algorithm for general planar digraphs answering
arbitrary point-to-point queries with O(n1/2−ε) update and query bounds.

As a byproduct, we also obtain nearly-linear time planar algorithms for a few static and
decremental reachability-related problems that have been previously studied only for general
graphs, and for which no nearly-linear algorithms have been known. These include computing
maximal 2-edge-connected subgraphs of a directed graph [15] and decremental maintenance of
the set of so-called strong bridges of the graph [37].

Technical Overview

All our reachability-related algorithms are obtained using a uniform approach. We first con-
struct a recursive decomposition of the initial graph G. A recursive decomposition is a tree-like
hierarchy of subgraphs of a graph G (pieces) built by recursively partitioning G with O(

√
n)-size

cycle separators [72]. For each piece H of the decomposition, the set of its boundary vertices
∂H is defined to be the set of vertices of H shared with its complement G−H (defined, in turn,
as the subgraph of G induced by the edges E(G) \ E(H)). The used recursive decomposition
algorithm guarantees that ∂H lies on a small number of faces of H and the size of ∂H is small
compared to the size of H. Such decompositions proved very useful in obtaining nearly-linear
time algorithms for planar graphs (e.g., [5, 8, 67]), as well as dynamic planar graph algorithms
(e.g., [22]).

Subsequently, for each pieceH, we explicitly maintain only certain parts of transitive closures
of graphs H and G−H. Specifically, we are only interested in the existence of the paths between
the vertices ∂H in H and G−H. This way, as we show, the total amount of information we store,
which is O(|∂H|2) per piece, is nearly-linear in n. We prove that these parts of the transitive
closures of H and G − H can be computed inductively by taking a transitive closure of the
union of the corresponding parts of transitive closures stored in the children and the parent
of H. Therefore, the needed information can be maintained inductively using a decremental
transitive closure algorithm run on the corresponding data accompanying the children and the
parent pieces of H.

In order to obtain an efficient algorithm maintaining the needed reachability information dy-
namically, as described above, we analyze and exploit the structural properties of a reachability
matrix of a set of vertices2 that, roughly speaking, lie on a constant number of faces of a plane
graph (which is a property satisfied by vertices ∂H of each piece H in our decomposition). The
matrix viewpoint allows us to obtain properties that are algorithmically useful and otherwise
not easy to capture using the previously used separating path approach to reachability in planar
digraphs [22, 89, 91]. Subsequently, we show that these properties can be used to simulate the
randomized decremental transitive closure algorithm of Bernstein [4] very efficiently, so that the
total update time of our recursive data structure is still nearly-linear in n.

Finally, we show that the maintained reachability information is sufficient to support reach-
ability queries in Õ(

√
n) time and explicitly maintain the strongly-connected components of G

2 A reachability matrix of a set S is a submatrix of the transitive closure matrix consisting of rows and columns
corresponding to vertices belonging to S.
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under edge deletions. By known black-box reductions, this is sufficient to solve decremental
single-source reachability in nearly-linear time. Using a technique of [76], we can reduce the
point-to-point query time to Õ(

√
t) at the cost of increasing the total update time to Õ(n2/t).

Note that this way we obtain randomized algorithms. We also show that by using plane
duality we can, in a sense, turn the decremental strongly-connected components problem into a
certain incremental reachability problem, where the edges of a graph (fixed from the beginning)
are switched-on in an online manner. This problem is solved using an analogous recursive data
structure, but now the reachability information between the boundary vertices of individual
pieces has to be maintained incrementally. As a result, we can replace Bernstein’s decremental
transitive closure algorithm with a conceptually simpler, “folklore” incremental algorithm which
is more efficient and deterministic at the same time. Consequently, we obtain a deterministic
decremental single-source reachability algorithm with O(n log2 n log log n) total update time.

1.3 Shortest Paths in Dense Distance Graphs

In their breakthrough paper [27], Fakcharoenphol and Rao introduced the general concept of a
dense distance graph. Let G be a non-negatively-weighted plane digraph and let U denote some
subset of its “boundary” vertices lying on some O(1) faces of G. Such graphs with a topologically
nice boundary typically emerge after decomposing a plane graph using a cycle separator. For
example, by using a cycle separator of Miller [72], one can decompose any n-vertex triangulated
plane graph H into two subgraphs Hin and Hout such that (i) Hin∪Hout = H; (ii) Hin and Hout
are smaller than H by a constant factor; (iii) the set U = V (Hin) ∩ V (Hout) has size O(

√
n),

and lies both on a single face of Hin and on a single face of Hout.
We define a distance clique of G, denoted DC(G), to be a complete graph on U such that

the weight of an edge uv is equal to the length of the shortest path from u to v in G. A dense
distance graph is a union of possibly many unrelated distance cliques DC(G1), . . . ,DC(Gq).

We note that such a definition of a dense distance graph (also used in [79]) is a bit more
general than in [27], where a dense distance graph was only defined with respect to a recursive
decomposition of G using cycle-separators. In fact, subsequently dense distance graphs have
been also defined a bit differently with respect to so-called r-divisions [58], and even the two
sides of a cycle-separator [63] (i.e., DC(Hin) ∪DC(Hout) in the above example). Our definition
captures all these cases.

Fakcharoenphol and Rao [27] proposed an efficient implementation of Dijkstra’s algorithm
(later called FR-Dijkstra) computing single-source shortest paths in a dense distance graph.
Their algorithm spends O(b log b log n) time per distance clique with b vertices, even though
a clique has b2 edges. Here, n is the total number of vertices of the dense distance graph.
Whereas Dijkstra’s algorithm uses a priority queue to maintain its distance labels and extract
a non-visited vertex with minimum label, a much more sophisticated data structure is used
in FR-Dijkstra. This data structure is capable of relaxing many edges in a single step, by
leveraging the fact that certain submatrices of the weight matrix of a distance clique constitute
so-called Monge matrices [94].

Fakcharoenphol and Rao originally employed FR-Dijkstra to construct their dense distance
graph recursively, and consequently solve the real-weighted single-source shortest paths prob-
lem on planar graphs in nearly-linear time. However, the applications of FR-Dijkstra proved
much broader. As a result, it has become an important planar graph primitive used to obtain
numerous breakthrough results in recent years. We briefly cover the most important of these
results below.

The dense distance graphs and FR-Dijksta have been used to break the long-standing
O(n log n) barrier for computing minimal s, t-cuts [55] in undirected planar graphs, and global
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min-cuts in both undirected [65] and directed [74] planar graphs. Borradaile et al. [8] devel-
oped an oracle answering arbitrary min s, t-cut queries in a weighted undirected planar graph
after only nearly-linear preprocessing. This result has been later generalized to bounded-genus
graphs [5], thus proving the usefulness of FR-Dijkstra in more general graph classes.

The most sophisticated applications of FR-Dijkstra to date are probably those related to
computing maximum flow in directed planar graphs. Borradaile et al. [7] gave a nearly-linear
time max-flow algorithm for the case of multiple sources and multiple sinks, and consequently,
a nearly-linear algorithm for maximum bipartite matching. Later, Łącki et al. [67] gave a
nearly-linear time algorithm computing the maximum flow values between a specified source
and all possible sinks.

Most recently, Asathulla et al. [3] used FR-Dijkstra to break through the O(n3/2) barrier
for the planar assignment problem with integer weights. Cabello [12] showed the first truly
subquadratic algorithm for computing a diameter of a weighted planar graph. Even though it
mainly builds on a new concept of additively-weighted Voronoi diagrams for planar graphs, dense
distance graphs and FR-Dijkstra are still used extensively in his work. The diameter algorithm
was later improved by Gawrychowski et al. [32] to run in O(n5/3 polylog n). Currently, the
diameter algorithm of [32] does not require FR-Dijkstra, but it seems that using it would be
again required if one gave a more efficient Voronoi diagrams construction algorithm for planar
graphs.

Last but not least, FR-Dijkstra has been instrumental in obtaining virtually all sublinear
update/query time exact dynamic algorithms for shortest paths, maximum flows and minimum
cuts in planar graphs [27, 55, 58, 62, 65].

Related Work

Dense distance graphs are pivotal in designing efficient planar graph algorithms, and therefore
obtaining fine-grained bounds for computing and manipulating them is an important research di-
rection. Although a better algorithm (in comparison to the recursive method of [27]), running in
O((|V | + |U |2) log n) time, has been proposed for computing a distance clique [62], improving
FR-Dijkstra itself proved very challenging and no progress over [27] has been made in the most
general setting so far.

For the important case of a dense distance graph over an r-division, i.e., when the individual
graphs Gi are the pieces of an r-division with few holes of a single planar graph (see e.g., [64]),

Mozes et al. [75] gave an algorithm for computing single source shortest paths in O
(
n√
r

log2 r
)

time. The original FR-Dijkstra runs in O
(
n√
r

log n log r
)

time in that case. Hence, [75] does not
improve over it in the case of r = poly n which emerges in many important applications, e.g.,
[3, 5, 7, 58, 67]. However, dense distance graphs over r-divisions with r = polylog(n) have also
found applications, most notably in O(n log logn) algorithms for minimum cuts [55, 65, 74].
Computing shortest paths in dense distance graphs is not a bottleneck in those algorithms,
though. For other applications of dense distance graphs over r-divisions with small r, con-
sult [75].

Our Results

We show an algorithm for computing single-source shortest paths in a dense distance graph
with O

(
b
(

log2 b
log2 log b

+ logε b log n
))

= O
(
b log2 n

log2 logn

)
time overhead per distance clique with b

vertices, for any ε ∈ (0, 1). Our algorithm is asymptotically faster than FR-Dijkstra in all
cases. Specifically, for a dense distance graph defined over an r-division the algorithm runs in
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O
(
n√
r

log2 n
log2 logn

)
time.

Our result implies an immediate improvement by a factor of O(log2 log n) in the time com-
plexity for a number of planar digraph problems such as multiple-source multiple-sink max-
imum flows, maximum bipartite matching [7], single-source all-sinks maximum flows [67] for
which the best known time bounds were O(n log3 n), i.e., already nearly-linear. It also yields
polylog-logarithmic speed-ups to both preprocessing and query/update algorithms of dynamic
algorithms for shortest paths and max-flows [55, 58, 62]. More generally, we make polylog-
logarithmic improvements to all previous results (such as [3]), for which the bottleneck of the
best known algorithm is computing shortest paths in a dense distance graph.

It should be noted that for small values of r, such as r = polylog(n), our algorithm does not
improve upon [75] for the case of a dense distance graph over an r-division.

Technical Overview

We treat the problem of computing shortest paths in a dense distance graph from a purely
data-structural perspective. At a high level, instead of developing an entirely new shortest
paths algorithm, we propose a new data structure for maintaining distance labels and extracting
minimum labeled vertices in amortized O

(
log2 b

log2 log b

)
time, as opposed to O(log2 b) time in [27].

In [27], a distance clique is first partitioned into square Monge matrices, each handling a
subset of the clique’s edges. For any such matrix, a separate data structure is used for relaxing
the corresponding edges and extracting the labels possibly induced by these edge relaxations.
Recall that in the case of Dijkstra’s algorithm, the improvement from O(m log n) to O(m +
n log n) time is obtained by noticing that relaxing edges is cheaper than extracting minimum
labeled vertices. Consequently, one can use a Fibonacci heap [30] in place of a binary heap.
We show that in the case of the data structure originally used in [27] for handling Monge
matrices the situation is in a sense the opposite: label extractions can be made cheaper than
edge relaxations. We make use of this fact by proposing a different than in [27], biased scheme of
partitioning distance cliques into rectangular (as opposed to square) Monge matrices. Whereas
in [27] the partition follows from a very natural idea of splitting a face boundary into halves,
our partition is tailored to exploit this asymmetry between the cost of processing a row and the
cost of processing a column. A more detailed overview can be found in Chapter 5, after all the
needed notions are introduced.

1.4 Organization of This Thesis

In Chapter 2 we introduce the notation that we use throughout the thesis.
The data structure for maintaining a planar graph under contractions, along with its appli-

cations, is described in detail in Chapter 3.
Decremental reachability algorithms for planar graphs are described in Chapter 4.
In Chapter 5 we show our improved algorithm for computing single-source shortest paths in

dense distance graphs and discuss some of its implications.
Finally, in Chapter 6 we highlight some open problems and possible further research direc-

tions that are closely related to this thesis’ findings.

1.5 Articles Comprising This Thesis

The preliminary versions of the contents of this thesis have been included in the following
conference papers.
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Jakub Łącki, Eva Rotenberg, and Piotr Sankowski, published at ESA 2017 [49].

• Decremental Single-Source Reachability in Planar Digraphs, joint work with Giuseppe F.
Italiano, Jakub Łącki, and Piotr Sankowski, published at STOC 2017 [54].

• Decremental Transitive Closure and Shortest Paths for Planar Digraphs and Beyond, pub-
lished at SODA 2018 [59].
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Chapter 2

Preliminaries

2.1 Graphs

Let G = (V,E) be a graph. We study both undirected and directed graphs (digraphs). If not
stated explicitly, it should be clear from the context at all times whether the graphs we consider
are undirected or directed.

If G is undirected, then each edge e ∈ E is formally a pair ({u, v}, id(e)) where u, v ∈ V
and id(e) is an identifier that is unique among the identifiers of all elements of E. When G is
directed, each edge e ∈ E is a pair ((u, v), id(e)) where u, v ∈ V . If u = v, then e is called a
self-loop. If there are two distinct edges e1, e2 ∈ E such that the first coordinates of e1 and e2

are equal, we say that e1 and e2 are parallel to each other. If the graph contains no parallel
edges and no self-loops, we call it simple.

The identifiers id(e) serve two purposes. First, they are used to distinguish between the
parallel edges of G. Moreover, sometimes we use them to describe a correspondence between
the edges of one graph G1 and the (subset of) edges of some other graph G2. The edges of two
graphs correspond to each other if they have equal identifiers. Sometimes it is convenient to
view the identifiers as integers 1 through |E|.

For simplicity, we often use the notation uv to denote one of the edges connecting vertices
u and v, i.e., when the first coordinate of the edge is {u, v} if G is undirected, or (u, v) if G
is directed. Hence, uv and vu have the same meaning if G is undirected, whereas uv and vu
are different if G is directed. We write uv = e ∈ E to refer to some specific edge uv. A vertex
w ∈ V is incident to an edge uv = e ∈ E if w ∈ {u, v}.

We often deal with multiple different graphs at once. For a graph G, we let V (G) and E(G)
denote the vertex and edge set of G, respectively.

If G is undirected, for each vertex u ∈ V (G) we define NG(u) = {v : uv ∈ E(G), u 6= v} to
be the neighbor set of v in G. On the other hand, if G is directed, then for each vertex u we
define Nout

G (u) = {v : uv ∈ E(G), u 6= v} and N in
G (u) = {v : vu ∈ E(G), u 6= v}.

Let G1, G2 be two graphs. G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) is called the union
of G1 and G2, whereas G1 \G2 = (V (G1), E(G1) \ E(G2)) is their difference.

We write G+uv to denote the graph G with some edge uv added. For E′ ⊆ E(G), we write
G−E′ to denote the graph (V (G), E(G) \E′). For brevity, when e ∈ E(G), we write G− e to
denote G− {e}, i.e., the graph obtained from G by removing a single edge e.

We consider both unweighted and weighted graphs. If a graph G is weighted, then we assume
a function wG : E(G) → R is given. We can view unweighted graphs as weighted graphs with
wG ≡ 1.
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Subgraphs. A graph G′ is called a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For
S ⊆ V (G), we denote by G[S] the induced subgraph (S, {e : uv = e ∈ E(G), {u, v} ⊆ S}). For
E′ ⊆ E(G), we denote by G[E′] the edge-induced subgraph (VE′ , E

′), where VE′ ⊆ V (G) is the
set of all vertices of G incident to at least one edge of E′. If G′ is a subgraph of G, we denote
by G−G′ the edge-induced subgraph G[E(G) \E(G′)]. Note that G−G′ is equal to the graph
G− E(G′) with isolated vertices removed.

Paths and cycles. A path P ⊆ G is a subgraph whose edges E(P ) can be ordered e1, . . . , ek
such that if ei = uivi, then for each i = 2, . . . , k we have ui = vi−1. Such P is also called a
u1 → vk path. A path P is simple if ui 6= uj for i 6= j. A cycle is a path such that u1 = vk.
A simple cycle is a cycle that is a simple path.

For u, v ∈ V (G), we say that v is reachable from u if there exists a u→ v path in G.
The length `(P ) of a path P is defined as

∑k
i=1wG(ei). If P is unweighted, then clearly

`(P ) = k.
A shortest u→ v path is a u→ v path with minimal length. Shortest paths are guaranteed

to exist if the graph does not contain any cycles of negative length. This condition is trivially
satisfied if the edge weights are non-negative.

Suppose that G contains no cycles of negative length. For u, v ∈ V , the distance δG(u, v) is
the length of a shortest u→ v path in G if v is reachable from u, and δG(u, v) =∞ otherwise.

Transitive closure and transitive reduction. Let G be an unweighted directed graph.
The transitive closure G+ of G is a simple directed graph on V (G) such that uv ∈ E(G+) if
and only if u 6= v and v is reachable from u in G.

An edge uv = e ∈ E(G) is called a 1-cut edge if v is not reachable from u in G− e.
A transitive reduction G− of a directed graph G is a directed graph on V (G) such that

G+ = (G−)+ and G− has a minimum number of edges. In general, G− may not be uniquely
defined. However, if we limit ourselves to acyclic graphs then the following property holds.

Lemma 2.1.1 ([2]). Let G be an acyclic digraph. Then G− is unique and is a subgraph of G
consisting exactly of the 1-cut edges of G.

Connectivity and components. Let G be a directed graph. If u reachable from v and v
is reachable from u, then u and v are strongly connected. Clearly, strong-connectivity is an
equivalence relation on V (G). The strongly connected components of G are the subgraphs of G
induced by the equivalence classes of this relation. G is strongly connected if it has only one
strongly connected component.

An edge uv = e ∈ E(G) is called intra-SCC if u and v are strongly-connected. Otherwise, e
is said to be an inter-SCC edge.

If G is undirected, v is reachable from u if and only if u and v are strongly connected. In this
case we say that u and v are connected. We define connected components for both directed and
undirected graphs: these are the strongly-connected components of the graph obtained from G
by ignoring the edge directions. A graph G is connected if it consists of a single connected
component.

Cutsets and higher edge-connectivity. Let G be an undirected graph. A subset C ⊆ E(G)
is called a cutset of G if G − C has more connected components than G. A cutset C of G is
minimal if no proper subset of C is a cutset of G. A k-cutset is a cutset of size k. The only
element of a 1-cutset is traditionally called a bridge.
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Two vertices u, v ∈ V (G) are k-edge-connected if there exists k edge-disjoint paths between
them. Equivalently, by Menger’s theorem (see, e.g., [21]), u and v are k-edge-connected if u and
v are in the same connected component of G − C for any (k − 1)-cutset C of G. It is known
that k-edge-connectivity is an equivalence relation on V (G). The k-edge-connected components
are the equivalence classes of this relation. The graph G is called k-edge connected if all pairs
of its vertices are k-edge-connected, or equivalently, if G has no (k − 1)-cutsets.

For k ≥ 3, the (subgraphs induced by) k-edge-connected components of G are generally
not equal to the maximal k-edge-connected subgraphs of G. It might be the case that for some
two vertices u, v of G that are k-edge-connected all sets of k edge-disjoint paths between them
use vertices from outside the k-edge-connected component of u and v. On the other hand, if
G′ is a maximal k-edge-connected subgraph of G then clearly all vertices of G′ lie in the same
k-edge-connected component of G.

2-edge-strong-connectivity in directed graphs. Let G be a directed graph. We say
that u, v ∈ V (G) are 2-edge-strongly-connected if there are two edge-disjoint paths between u
and v and two edge-disjoint paths between v and u. Equivalently, u and v are 2-edge-strongly-
connected if u, v are strongly-connected in G− e for any e ∈ E(G). 2-edge-strong-connectivity
is also an equivalence relation on V (G) [38].

Similarly as was the case for k-edge-connectivity in undirected graphs for k ≥ 3, (the
subgraphs induced by) 2-edge-strongly-connected components of G are generally not equal to
the maximal 2-edge-strongly-connected subgraphs of G.

We call e ∈ E(G) a strong bridge (see, e.g., [15, 38]) if G − e has more strongly-connected
components than G.

Edge contraction. For e ∈ E(G) that is not a self-loop, we denote by G/e the graph obtained
by contracting e. We will often look at contraction from the following perspective: as a result of
contracting e, all edge endpoints equal to x or y are replaced with some new vertex z. In some
cases it is convenient to assume z ∈ {x, y}. This yields a 1-to-1 correspondence between the
edges of G− e and the edges of G/e. Formally, we assume that the contraction preserves edge
identifiers, i.e., e1 ∈ E(G− e) and e2 ∈ E(G/e) are corresponding if and only if id(e1) = id(e2).

Note that contracting an edge may introduce parallel edges and self-loops. For example, if
G is undirected, then for each edge that is parallel to e in G, there is a self-loop in G/e. And
for each cycle consisting of 3 edges that contains e in G, there is a pair of parallel edges in G/e.

A graph G′ is called a minor of G if it can be obtained from G by performing on G a
sequence of edge deletions, edge contractions, and vertex deletions.

2.2 Model of Computation

We assume the standard word-RAM model with word size Ω(log n), where n is the number of
vertices of the input graph.

However, all our algorithms for weighted graphs work even if the edge weights are real
numbers. Whereas we can manipulate integers that fit into a single word using arithmetical
and bitwise operations, the edge weights can only be manipulated by performing arithmetical
operations and comparisons on them.

In our algorithms we sometimes use randomization. We say that a probabilistic statement
holds with high probability if it holds with probability at least 1 − nβ, where β > 0 is a real
constant that can be fixed arbitrarily.
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Figure 2.1: A semi-strict graph with 6 vertices and 5 faces.

2.3 Planar Graphs.

A plane embedding of a graph is a mapping of its vertices to distinct points and of its edges to
non-crossing curves in the plane. We say that G is plane embedded (or plane, in short) if some
embedding of G is assumed.

A graph G is planar if there exists a plane embedding of G. It is known that if G is planar
then all its subgraphs and minors are also planar.

For any vertex v of a plane graph G we define an edge ring of v to be a circular list of all
edges incident to v, ordered either clockwise or counter-clockwise according to the embedding
of these edges around v. An edge ring can start with any edge incident to v.

A face of a connected plane G is a maximal open connected set of points that are not in the
image of any vertex or edge in the embedding of G. There is exactly one unbounded face.

The bounding cycle cyc(f) of a bounded (unbounded, respectively) face f is a sequence
of edges bounding f in clockwise (counterclockwise, respectively) order. Here, we ignore the
directions of edges. An edge can appear in a bounding cycle at most twice.

We denote by E(f) the set of edges that appear at least once in the sequence cyc(f). We
denote by V (f) the set of vertices incident to at least one edge of E(f). We sometimes say that
v ∈ V (f) lies on the face f .

The size of a face is defined to be the length of its bounding cycle. We say that G is
triangulated if all its faces have size 3.

The face is called simple if no edge appears in its bounding cycle twice and the subgraph
induced by the edges of the bounding cycle forms a simple cycle.

By Jordan Curve Theorem, a Jordan curve C partitions R2 \ C into two connected regions,
a bounded one B and an unbounded one U . We say that a set of points P is strictly inside
(strictly outside) C if and only if P ⊆ B (P ⊆ U , respectively). P is weakly inside (weakly
outside) if and only if P ⊆ B ∪ C (P ⊆ U ∪ C, respectively). We sometimes identify simple
cycles of G and bounding cycles of simple faces of G with the respective Jordan curves obtained
by concatenating the embeddings of the subsequent edges of these cycles.

We call a plane graph G semi-strict [63] if the bounding cycle of each of its faces has length
at least 3 (see Figure 2.1). It is known that any undirected simple planar graph G with n
vertices has at most 3n−6 edges (a simple planar digraph can have twice as much since uv and
vu are not parallel for digraphs). A folklore proof of this fact (see e.g. [21]) uses Euler’s formula
and easily extends to semi-strict plane graphs. Therefore, a semi-strict plane graph with n
vertices has at most 3n− 6 edges as well. Consequently, for simple planar and semi-strict plane
graphs G we have |E(G)| = O(|V (G)|).

Duality. The dual graph of a connected plane graph G, denoted by G∗, is a plane graph whose
set of vertices is the set of faces of G. Moreover, for each edge uv = e ∈ E(G), G∗ contains
a dual edge e∗ between the faces on the two sides of e. We assume id(e) = id(e∗). When G is
directed, e∗ is directed from the face left of e (looking from u in the direction of v) to the face

18



right of e.
For E1 ⊆ E(G), we denote by E∗1 the set {e∗ : e ∈ E1}.
We often use the fact that removing an edge in the primal graph corresponds to contracting

its dual edge in the dual graph. Formally:

Fact 2.3.1. Let G be a connected plane graph and e ∈ E(G). Then (G− e)∗ = G∗/e∗.

There is a well-known correspondence between the minimal cutsets of a plane graph and
simple cycles in its dual graph.

Fact 2.3.2. Let G be an undirected connected plane graph and let C ⊆ E(G). C is a minimal
cutset of G if and only if C∗ is a simple cycle in G∗.

By Fact 2.3.2 it follows that e ∈ E(G) (where G is plane and undirected) is a bridge if and
only if e∗ is a self-loop of G∗. Similarly, a pair of edges {e1, e2} ⊆ E(G) is a 2-cutset if and only
if e∗1 and e∗2 are parallel in G∗.

Embedding planar graphs. Every time we develop an algorithm working on a plane graphG,
we only assume that we can access the edge rings and bounding cycles of all the vertices and
faces, respectively, of both G and the dual graph G∗. Fortunately, the known linear-time pla-
narity testing algorithms, e.g., [9, 17, 51], all output such edge rings and bounding cycles as a
byproduct.

We never access the actual embedding of G (i.e., the points and curves) when implementing
the algorithms, but use it only for analysis.

Plane subgraphs and boundary vertices. If H is a subgraph of a plane graph G, we
assume that H is also plane and it inherits the embedding of G.

We define the set of boundary vertices ∂H of H as ∂H = V (H) ∩ V (G−H).
A face of H that is not a face of G is called a hole of H. A simple hole is a hole of H that

is a simple face of H.

Lemma 2.3.3. Let H be a connected subgraph of a connected plane graph G. Then for any
v ∈ ∂H, v lies on some hole of H.

Proof. Recall that G − H is edge-induced, so from v ∈ ∂H = V (H) ∩ V (G − H) it follows
that there exists an edge e = vw such that e ∈ E(G) and e /∈ E(H). Since H and H + e
are both subgraphs of G, there exists a face f of H which contains the embedding of e and
{v, w} ⊆ V (f). But no face of G contains the embedding of any edge of G so f is not a face
of G, hence it is a hole of H.

Plane graph separators and divisions. Let G = (V,E) and let x : V → R≥0 be a vertex
weight function. For X ⊆ V we define x(X) :=

∑
v∈X x(v). Let c be a positive real number

less than 1. A set S ⊆ V is called a c-balanced separator of G with respect to x if V \ S can be
split into disjoint parts A,B such that are no edges in G with one endpoint in A and the other
in B, and max(x(A), x(B)) ≤ c · x(V ).

Lemma 2.3.4 ([72]). Let G be a triangulated connected plane graph with n vertices and let
x : V (G)→ R≥0. In linear time one can compute a simple cycle C ⊆ G of length at most 2

√
2n

(also called a simple cycle separator) such that V (C) is a 2
3 -balanced separator of G with respect

to x.
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Let G be a simple plane graph with n vertices. For any r ∈ [1, n], an r-division R of G is
a collection of O(n/r) edge-induced subgraphs of G, called pieces, whose union is G and such
that each piece P has O(r) vertices and O(

√
r) boundary vertices. We denote by ∂R the set⋃

P∈R ∂P , also called the boundary of r-division R. Clearly, |∂R| = O(n/
√
r).

If the pieces of an r-division R are edge-disjoint, we call it an r-partition.

Theorem 2.3.5 ([29, 42]). Let G be a simple plane graph and let n = |V (G)|. For any r ∈ [1, n],
an r-partition of G can be computed in O(n) time.

Suppose now that G is plane embedded. An r-division with few holes is an r-division with
an additional property that each piece is connected, has O(1) holes, and for each hole h of P ,
V (h) ⊆ ∂P .

Theorem 2.3.6 ([64]). Let G be a simple triangulated connected plane graph with n vertices.
For any r ∈ [1, n], an r-division with few holes of G can be computed in O(n) time.1

2.4 Data-Structural Toolbox

Priority queues. We assume that priority queues store elements with real keys. A priority
queue H supports the following set of operations.

• Insert(e, k) – insert an element e with key k into H.

• Extract-Min() – delete an element e ∈ H with the smallest key and return e.

• Decrease-Key(e, k) – given an element e ∈ H, decrease the key of e to k. If the current
key of e is smaller than k, do nothing.

• Min-Key() – return the smallest key in H.

Formally, we assume that each call Insert(e, k) also produces a “handle” which can be later
used to point the call Decrease-Key to a place inside H where e is being kept. In our
applications, the elements stored in a priority queue are always distinct and thus for brevity we
skip the details of using handles later on.

Fredman and Tarjan [30] showed a data structure called the Fibonacci heap, which can per-
form Extract-Min in amortized O(log n) time and all the remaining operations in amortized
O(1) time. Here n is the current size of the queue. In the following sections, we assume that
each priority queue is implemented as a Fibonacci heap.

Predecessor searching. Let S be some fixed totally ordered set such that for any s ∈ S we
can compute the rank of s, i.e., the number |{y ≤ s : y ∈ S}|, in constant time.

A dynamic predecessor/successor data structure maintains a subset R of S and supports the
following operations.

• Insertion of some s ∈ S into R.

• Deletion of some s ∈ R.
1Klein et al. [64] do not explicitly state that for each piece P of the r-division produced by their algorithm,

each hole of P consists solely of vertices of ∂P . However, as noted by Nussbaum [79], this is indeed the case since
in their r-division, each face of G is a face of exactly one piece and thus each edge of a hole of a piece is also an
edge of some other piece.
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• Pred(s) (Succ(s)) – for some s ∈ S, return the largest (smallest respectively) element r
of R such that r ≤ s (r ≥ s respectively).

Van Emde Boas [93] showed that using O(|S|) space we can perform each of these operations in
O(log log |S|) time. Therefore, whenever we use a dynamic predecessor/successor data structure
in the following sections, we can assume that all the above operations can be performed in
O(log log |S|) time.

Balanced binary search trees. We often use balanced binary search trees (balanced BSTs;
e.g., splay trees [88]) to represent dynamic sets R over various totally ordered universes S whose
elements can be compared in constant time. We assume that if R ⊆ S is stored in a balanced
binary search tree, then we can add elements to R, remove elements from R and perform
predecessor/successor searches on R in O(log |R|) time. A balanced binary search tree storing
R uses only O(|R|) space. It also allows to iterate through all elements of R in O(|R|) time.

Hence, in comparison to a dynamic predecessor data structure, a balanced binary search is
more space-efficient and does not require computation of ranks in S at a cost of exponentially
slower time costs of individual operations.
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Chapter 3

Maintaining a Planar Graph Under
Contractions

In this chapter we describe an optimal data structure that can efficiently maintain a planar
graph subject to edge contractions. It can report groups of parallel edges and self-loops that
emerge in an online fashion. It also supports constant-time adjacency queries and maintains
the neighbor lists and degrees explicitly.

Outline. This chapter is organized as follows. In Section 3.1 we define precisely what kind
of information our data structure maintains and specify the set of operations that our data
structure supports. Then, in Section 3.2 we present some applications of our data structure:
we obtain linear time algorithms for a few problems related to connectivity, matchings, and
colorings. In Section 3.3 we give a detailed implementation and performance analysis of our
data structure.

3.1 The Data Structure Interface

In this section we specify the set of operations that our data structure supports so that it fits
our applications. It proves beneficial to look at the graph undergoing contractions from two
perspectives.

1. The adjacency viewpoint allows us to track the neighbor sets of the individual vertices as
if G was simple at all times.

2. The edge status viewpoint allows us to track, for all the original edges E0, whether they
have become self-loops or parallel edges, and also track how E0 is partitioned into classes
of pairwise-parallel edges.

Let G0 = (V0, E0) be an undirected planar graph used to initialize the data structure.
Recall that any contraction alters both the set of vertices and the set of edges of the graph.
Throughout, we let G = (V,E) denote the current version of the graph, unless otherwise stated.

Each edge e ∈ E can be either a self-loop, an edge parallel to some other edge e′ 6= e (we
call such an edge parallel), or an edge that is not parallel to any other edge of G (we call it
simple in this case). An edge e ∈ E that is simple might either get contracted, or might change
into a parallel edge as a result of contracting other edges. Similarly, a parallel edge might either
get contracted or might change into a self-loop. Note that during contractions, neither can a
parallel edge ever become simple, nor can a self-loop become parallel.
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Observe that parallelism is an equivalence relation on the edges of G. Once two edges e1, e2

connecting vertices u, v ∈ V become parallel, they remain parallel until some edge e3 (possibly
equal to e1 or e2) parallel to both of them gets contracted. However, groups of parallel edges
might merge (Figure 3.1), and this might also be a valuable piece of information.

Figure 3.1: Contracting the blue dotted edge will merge two groups of parallel edges.

To succinctly describe how the groups of parallel edges change, we report parallelism in a
directed manner as follows. Each group Y ⊆ E of parallel edges in G is assumed to have its
representative edge α(Y ). For e ∈ Y we define α(e) = α(Y ). When two groups of parallel
edges Y1, Y2 ⊆ E merge as a result of a contraction, the data structure chooses α(Yi) for some
i ∈ {1, 2} to be the new representative of the group Y1 ∪ Y2, and reports an ordered pair
α(Y3−i) → α(Yi). We call each such pair a directed parallelism. After such an event, α(Y3−i)
will not be reported as a part of a directed parallelism anymore. The choice of i can also be
made according to some fixed strategy, e.g., if the edges are assigned weights w(·), then we may
choose α(Yi) so that w(α(Yi)) ≤ w(α(Y3−i)). This is convenient in what Klein and Mozes [63]
call strict optimization problems, such as the minimum spanning tree problem, where we can
discard one of any two parallel edges based only on these edges.

Note that at any point of time the set of directed parallelisms reported so far can be seen
as a forest of rooted trees T over E, such that each tree T of T represents a group Y of parallel
edges of G. The root of T is equal to α(Y ).

When some edge is contracted, all edges parallel to it are reported as self-loops. Clearly,
each edge e is reported as a self-loop at most once. Moreover, it is reported as a part of a
directed parallelism e→ e′, where e′ 6= e, at most once.

Recall that edge contraction preserves edge identifiers (see Section 2.1) of all edges except
the contracted edge. Hence, the set id(E) can be easily seen to be equal to the set id(E0)
with the contracted edges’ identifiers removed. Technically speaking, in the implementation we
refer to the edges of E using their identifiers. However, the endpoints of the edge with a given
identifier generally change in time. Our data structure also provides access to the “current”
endpoints of each edge e ∈ E.

Since the vertices V can actually be viewed as sets forming a partition of V0, we also need
some way of labeling V . For v ∈ V , denote by v′ the label of v. Let V ′ be the sets of labels
such that there is a 1-1 correspondence between V and V ′. Initially, V = {{v} : v ∈ V0} and
{v}′ = v, so V ′ ⊆ V0. When an edge uv is contracted, the vertices u, v ∈ V are merged. Then,
the labels u′ and v′ are invalidated, and the data structure computes a new label s = (u ∪ v)′.
The set V ′ is replaced by V ′ \ {u′, v′} ∪ {s}.

We are now ready to define the complete interface of our data structure.

• Init(G0 = (V0, E0), w) – initialize the data structure and report all the initial self-loops
and directed parellelisms. Here, w is an optional weight function.

• (s, P, L) := Contract(e), for e ∈ E – contract the edge e. Let e = uv. The call
Contract(e) returns a new label s corresponding to the vertex resulting from merging
u and v, and two lists P and L of new directed parallelisms and self-loops, respectively,
reported as a result of contraction of e.

• Vertices(e), for e ∈ E – return {u′, v′} ⊆ V ′ such that e = uv.
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• Neighbors(u′), for u′ ∈ V ′ – return a pointer to the list {(v′, α(uv)) : v ∈ NG(u)}.

• Deg(u′), for u′ ∈ V – find the number of neighbors of u in G.

• Edge(u′, v′), for u′, v′ ∈ V – if uv ∈ E, then return α(uv). Otherwise, return nil.

The following theorem summarizes the performance of our data structure.

Theorem 3.1.1. Let G = (V,E) be an undirected planar graph with |V | = n and |E| = m.
There exists a deterministic data structure supporting Edge, Vertices, Neighbors and Deg
in O(1) worst-case time, and whose initialization and any sequence of Contract operations
take O(n + m) total time. The data structure supports iterating through the neighbor list of a
vertex with O(1) overhead per element.

3.2 Applications

3.2.1 Optimal Decremental 2-Edge-Connectivity and Unique Matchings

In the decremental 2-edge connectivity problem, the goal is to design a data structure that
supports queries about the existence of two edge-disjoint paths between a pair of given vertices
subject to edge deletions. Giammarresi and Italiano [40] showed a data structure for this
problem with O(log n) amortized update time and O(1) query time.

Theorem 3.2.1. Let G = (V,E) be a simple planar graph and let n = |V |. There exists a
deterministic data structure that maintains G subject to edge deletions and can answer 2-edge
connectivity queries in O(1) time. Its total update time is O(n).

Proof. Denote by G0 the initial graph. Suppose without loss of generality that G0 is connected.
Let B(H) denote the set of all bridges of a graph H. Note that two vertices u, v are in the same
2-edge-connected component of G if and only if they are in the same connected component of
the graph (V,E \B(G)).

Observe that if e is a bridge of G, then deleting e from G does not influence the 2-edge-
components of G. Hence, when a bridge e is deleted, we may ignore this deletion. We denote
by G′ be the graph obtained from G0 by the same sequence of deletions as G, but ignoring the
bridge deletions. This way, G′ is connected at all times and the 2-edge-connected components
of G′ and G are the same. It is also easy to see that E(G) \ B(G) = E(G′) \ B(G′) and
B(G) = B(G′) ∩ E(G). Moreover, the set E(G′) shrinks in time, whereas B(G′) only grows.

First we show how the set B(G′) is maintained. Recall that e ∈ E(G′) is a bridge of G′ if
and only if e∗ is a self-loop of (G′)∗. We build the data structure of Theorem 3.1.1 for (G′)∗,
which initially equals G∗0. As deleting a non-bridge edge e of G′ translates to a contraction of
a non-loop edge e∗ in (G′)∗, we can maintain B(G′) in O(n) total time by detecting self-loops
in (G′)∗.

Denote by H the graph (V,E(G′)\B(G′)). To support 2-edge connectivity queries, we main-
tain the graph H with the decremental connectivity data structure of Łącki and Sankowski [68].
This data structure maintains a planar graph subject to edge deletions in linear total time and
supports connectivity queries in O(1) time. When an edge e is deleted from G, we first check
whether it is a bridge and if so, we do nothing. If e is not a bridge, the set E(G′) shrinks and
thus we remove the edge e from H. The deletion of e might cause the set B(G′) to grow. Any
new edge of B(G′) is also removed from H afterwards.

To finish the proof, note that each 2-edge connectivity query on G translates to a single
connectivity query in H. All the maintained data structures have O(n) total update time.
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As an almost immediate consequence of Theorem 3.2.1, we improve upon [31] and obtain an
optimal algorithm for the unique perfect matching problem when restricted to planar graphs.

Corollary 3.2.2. Given a simple planar graph G = (V,E) with n = |V |, in O(n) time we can
find a unique perfect matching of G or detect that the number of perfect matchings in G is not 1.

Proof sketch. The algorithm by Gabow et al. [31] for this problem runs in O(n log n) time. The
algorithm has the following two bottlenecks and otherwise runs in linear time.

1. Maintaining the set of bridges of G under edge deletions.

2. Maintaining the sizes of connected components of G under edge deletions. Specifically,
one has to be able to query the size of a component containing given v ∈ V in O(1) time.

We can remove the former bottleneck by proceeding as in the proof of Theorem 3.2.1. The latter
bottleneck can be dealt with by extending the data structure for decremental connectivity in
planar graphs due to Łącki and Sankowski [68]. This data structure computes an r-partition R
of the input graph, and based on it defines a skeleton graph. Roughly speaking, the skeleton
graph is defined as follows. We say that a connected component is interesting if it contains
a boundary vertex. Thus, each connected component is either interesting or fully contained
within one piece of the r-division (in which case it is handled recursively).

The skeleton graph represents all interesting connected components of the graph. It has
vertices of two types, namely it contains all boundary vertices of the r-division and, for each
interesting component C and each piece containing vertices of C, one auxiliary vertex represent-
ing the intersection of C and the piece. Such an auxiliary vertex may correspond to multiple
vertices in the entire graph.

The skeleton graph has O(n/
√
r) vertices, and for each vertex the data structure explicitly

maintains the identifier of its connected component. In order to extend the data structure to
maintain the sizes of the components, it suffices to maintain, for each auxiliary vertex, the
number of vertices in the entire graph, that it corresponds to. From the algorithm, it follows
that this information can be updated without impacting the overall running time.

3.2.2 Maximal 3-Edge-Connected Subgraphs

Lemma 3.2.3. Let k ≥ 2. Suppose there exists a data structure Dk maintaining a planar
graph H under edge contractions and reporting edges of H participating in some cycle of length i,
where 2 ≤ i ≤ k, in an online manner. Denote by O(fk(n,m)) the total time needed by Dk to
execute any sequence of contractions on a graph with n vertices and m edges.

Then, there exists an algorithm computing the maximal (k+ 1)-edge-connected subgraphs of
a planar graph G in O(fk(n,m) + n+m) time.

Proof. Assume without loss of generality that G is connected – otherwise we could handle the
connected components of G separately. Recall that each simple cycle of length i, 1 ≤ i ≤ k,
in G∗ corresponds to a minimal i-cutset in G.

First, analogously as in Theorem 3.2.1, we build for G a data structure D1 maintaining the
set of bridges of G under deletions of non-bridge edges. Recall that this data structure needs
O(n+m) total time to operate. We also build a data structure Dk for G∗.

Clearly, if G does not have cutsets of size at most k, it is (k + 1)-edge connected. Suppose
some edge e participates in some cutset of size i, 2 ≤ i ≤ k, in G. Then e participates in some
cutset of size no more than i in every subgraph of G containing e. As a result, any subgraph
of G containing e is not (k + 1)-edge-connected. We may thus safely discard e: the maximal
(k + 1)-edge-connected subgraphs of G and G− e are the same.
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The above observation leads to a simple algorithm for computing maximal (k + 1)-edge-
connected subgraphs. We maintain a queue Q of non-bridge edges e that participate in some
cutset of G of size no more than k. As long as Q 6= ∅, we extract some e of Q and remove
it from G. We issue the removal of e to D1. Some new edges might be reported as bridges
– these are removed from Q. Recall that removal of a non-bridge edge e in G corresponds to
contraction of e∗ in G∗. We thus issue a contraction to Dk, after which new non-bridge edges
can be marked as participating in cycles of length at least 2 and at most k of G∗. These newly
marked edges in G∗ are added to Q.

Once the algorithm finishes, let G′ be the remaining graph G. The edges of G′ can be
partitioned into two sets: the set B of bridges and the set X of edges whose duals do not
participate in any cycle of length at most k in G′∗. We show that the connected components
of (V,X), i.e., the 2-edge-connected components of G′, are (k + 1)-edge-connected. Take some
such component H and suppose it is not (k+ 1)-edge-connected. Then it has a cutset C of size
at most k. Moreover, |C| > 1 and C is not a cutset of G′. Hence, there exist some two vertices
x, y ∈ V (H) such that there is a simple path P from x to y in G′ and P 6⊆ H. We conclude
that P has to contain some edge from B. However, no simple path between two vertices of the
same 2-edge-connected component of G′ can contain a bridge, a contradiction.

Lemma 3.2.4. The maximal 3-edge-connected subgraphs of a planar graph can be computed in
linear time.

Proof. Recall that, by Theorem 3.1.1, we can maintain any planar graph H under edge con-
tractions in linear total time so that the edges participating in 2-cycles, i.e., parallel edges, are
reported in an online fashion. To finish the proof, we apply Lemma 3.2.3.

3.2.3 Simple Linear-Time Algorithms

Finally, we present two examples showing that Theorem 3.1.1 might be a useful black-box in
designing linear time algorithms for planar graphs.

Example 3.2.5. Every planar graph G can be 5-colored in linear time.

Proof. A textbook proof of the 5-color theorem proceeds by induction as follows (see Figure 3.2).
By Euler’s formula, each planar graph has a vertex u with at most 5 different neighbors. The
case when u has less than 5 neighbors is easy: let uv = e ∈ E(G), for any v ∈ NG(u). We can
color G/e inductively, uncontract the edge e, and finally recolor u with a color not used among
the vertices NG(u). When, however, u has exactly 5 neighbors, there exist two neighbors of
x, y of u such that x and y are not adjacent as otherwise G would contain K5 and therefore G
would not be planar. We could thus obtain a planar graph G′ by contracting both some ex = ux
and some ey = uy. After inductively coloring G′ and “uncontracting” ex and ey, we obtain a
coloring of G that is valid, except that x, y, and u have the same colors assigned. Thus, at
most 4 colors are used among the neighbors of u and we recolor u to the remaining color in
order to get a valid coloring of G.

Note that this proof can be almost literally converted into a linear time 5-coloring algorithm
(see Algorithm 1 for pseudocode) using the data structure of Theorem 3.1.1 built for G. We
only need to maintain a subset Q of vertices of G with at most 5 neighbors. The subset Q can
be easily maintained in linear total time since all vertices that potentially change their neighbor
sets after the call contract(e) are endpoints of the reported parallel edges.

Example 3.2.6. A minimum spanning tree of a planar graph G can be computed in linear time.
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Figure 3.2: The degree ≤ 5 vertex and its two independent neighbors may be colored using the
remaining two colors.

Algorithm 1 A linear-time 5-coloring algorithm for planar graphs.
1: procedure Contract-And-Update-Queue(e)
2: {u′, v′} := Vertices(e)
3: Q := Q \ {u′, v′}
4: (s, P, L) := Contract(e)
5: for w ∈ {s} ∪⋃{Vertices(e1) : (e1 → e2) ∈ P} do
6: if w /∈ Q and Deg(w) ≤ 5 then
7: Q := Q ∪ {w}
8: return s
9:

10: procedure Color()
11: if Q = ∅ then
12: return
13: u := any element of Q
14: Q := Q \ {u}
15: Z := Neighbors(u)
16: if Deg(u) ≥ 1 and Deg(u) ≤ 4 then
17: (v, e) := any element of Z
18: s := Contract-And-Update-Queue(e)
19: Color()
20: C[v] := C[s]
21: else if Deg(u) = 5 then
22: (x, ex), (y, ey) := any two elements of Z such that Edge(x, y) = nil
23: Contract-And-Update-Queue(ex)
24: s := Contract-And-Update-Queue(ey)
25: Color()
26: C[x] := C[s]
27: C[y] := C[s]

28: C[u] := any color of ({1, 2, 3, 4, 5} \ {C[w] : (w, ·) ∈ Z})
29:

30: function 5-Color(G)
31: Init(G)
32: Q := {v′ ∈ V ′ : Deg(v′) ≤ 5}
33: C ← an array indexed with vertices, with values from the set {1, 2, 3, 4, 5}
34: Color()
35: return C
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Algorithm 2 A linear-time minimum spanning tree algorithm for planar graphs.
1: function MST(G)
2: Init(G,wG). . Each time e′ → e is reported, we have wG(e′) ≥ wG(e).
3: Q := {v′ ∈ V ′ : Deg(v′) ≤ 5}
4: T := ∅
5: while Q 6= ∅ do
6: u := any element of Q
7: Q := Q \ {u}
8: if Deg(u) ≥ 1 then
9: e := an edge such that (v, e) ∈ Neighbors(u) and wG(e) is minimal
10: T := T ∪ {e}
11: Contract-And-Update-Queue(e) . See Algorithm 1.

12: return T

Proof. Observe that by the cut property of a minimum spanning tree (see, e.g., [19]), for any
vertex u ∈ V (G) and an edge e of minimum weight among the edges adjacent to u, there exists
a minimum spanning tree T of G such that e ∈ T .

This observation can be turned into an efficient algorithm as follows. Again we build the
data structure of Theorem 3.1.1, this time keeping in mind that a representative edge of each
set of parallel edges should be an edge of minimum weight. We maintain the subset Q ⊆ V (G)
containing the vertices with no more than 5 neighbors. We repeatedly pick any u ∈ Q, find the
minimum cost edge e = uv adjacent to u (in O(1) time), include e in the constructed minimum
spanning tree, and subsequently contract e. We stop when G consists of a single vertex.

The set S can be updated after a contraction analogously as in Example 3.2.5 (see Algo-
rithm 2). By Theorem 3.1.1, the total running time of this algorithm is linear.

3.3 Maintaining a Planar Graph Under Contractions

In this section we prove Theorem 3.1.1. We first assume all edges to have equal weights.
Supporting weights will be discussed later on.

We start by reducing our problem to the case when the graph G is initially simple and of
bounded degree. We build a graph H from G by introducing, for each edge uv = e ∈ E, an
auxiliary vertex we and an edge e′ = wev, and changing the endpoint v of e to we. Observe that
after this transformation H is simple and planar, and thus has O(n+m) vertices and edges.

Let us now compute the embedding of H in linear time [9, 17, 51]. We build a graph H ′

from H by replacing each vertex v of H of degree at least 4 with a path Pv of length deg(v)− 1
consisting of newly introduced vertices and edges, and replacing the endpoint v of the i-th edge
ei in the edge ring of v in H with the i-th vertex of the path Pv. After this step, all the vertices
of H ′ have degree no more than 3. Moreover, H ′ is still planar, simple, and has O(n+m) edges
and vertices. Let us call auxiliary the edges of the form e′ = wev and those constituting the
paths Pv.

We now build a data structure for maintaining H ′ under contractions. We first perform
Contract(e′) on all the introduced auxiliary edges. Note that after these contractions the
graph H in fact becomes equal to G (up to relabeling the vertices). Moreover, no auxiliary edge
is reported either as a self-loop or as a part of a directed parallelism. Only the original edges
of G are possibly reported as self-loops or parallel edges.

By the described reduction, in the remaining part of this section we can assume that G is
initially simple and of bounded degree. We denote by n the number of vertices of this modified
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graph G, and since G then has O(n) edges, we can forget about the parameter m.

3.3.1 A Vertex Merging Data Structure

We first consider a more general problem, which we call the bordered vertex merging problem.
The data structure presented below will constitute a basic building block of the multi-level data
structure. Let us now describe the data structure for the bordered vertex merging problem in
detail.

Suppose we have a dynamic simple planar graph G = (V,E) and a border set B ⊆ V .
Assume G is initially equal to G0 = (V0, E0) and no edge of E0 connects two vertices of B. The
data structure supports the following update operations.

• Merge (or in other words, an identification) of two vertices u, v ∈ V (u 6= v) such that the
resulting graph is still planar. If at least one of u, v is in B, the resulting vertex s is also
in B after the merge, i.e., B := B \ {u, v} ∪ {s}. Otherwise, if {u, v} ∩B = ∅, then s /∈ B
and B does not change either.

• Insertion of an edge e = uv (where uv /∈ E is not required) such that G+ uv is planar.

Let Ẽ be the set of edges inserted using an update operation of the latter type. After each
update operation the data structure performs a “cleanup” on G so that the following invariants
are satisfied:

1. G is planar and simple.

2. No edge of E has both its endpoints in B.

To satisfy the first invariant, the data structure reports and removes the parallel edges and
self-loops that emerge. Once reported, each set of parallel edges is merged into one representative
edge. The reporting of parallel edges is done in the form of directed parallelisms, as described in
Section 3.1. Again, it is easy to see that each edge of E0 ∪ Ẽ is reported as the first coordinate
of a directed parallelism at most once.

Observe that some modifications might also break the second invariant: both an edge inser-
tion and a merge might introduce an edge e with both endpoints in B. We call such an edge
a border edge. Each border edge e that is not a self-loop is reported and deleted from (or not
inserted to) G. Note that an edge e may be first reported parallel (in a directed parallelism of
the form e′ → e, where e′ 6= e) and then reported border.

Clearly, merging vertices alters the set V by replacing two vertices u, v with a single vertex s.
It is useful to additionally require that in fact:

• s ∈ {u, v}, i.e., we always merge one vertex into the other. This way, we have V ⊆ V0 at
all times.

• If u ∈ B and v /∈ B, then s = u. In other words, we always merge a non-border vertex
into a border vertex.

As the merges proceed, each vertex of G corresponds to a set of vertices of the initial
graph G0. Let φ : V0 → V0 be a mapping such that for a ∈ V0 φ(a) is a vertex of the current
vertex set “containing” a. In this section we formally define V as φ(V0). Let φ−1 : V → 2V0 be
a reverse mapping such that φ−1(v) = {v0 ∈ V0 : φ(v0) = v}.

At any time, the edges of E constitute a subset of E0 ∪ Ẽ in the following sense: for each
e = xy ∈ E there exists an edge e′ = uv ∈ E0 ∪ Ẽ such that id(e) = id(e′) and vertices u and v
have been merged into x and y, respectively. Note that by our assumption that we merge one
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vertex into another and V ⊆ V0, we can also equivalently say that φ(u) = x and φ(v) = y, even
though when e′ was inserted we already could have |φ−1(u)| > 1 or |φ−1(v)| > 1.

Apart from reporting self-loops, parallel edges, and border edges, the data structure is
required to explicitly maintain the mappings φ and φ−1, and also support constant-time queries
regarding the representative edge connecting any two vertices u, v of the current vertex set V
(if such an edge exists).

Graph representation. The data structure for the bordered vertex merging problem inter-
nally maintains G using the data structure of the following lemma for planar graphs.

Lemma 3.3.1 ([11]). There exists a deterministic, linear-space data structure maintaining a
dynamic simple planar graph H with n vertices so that:

• adjacency queries in H can be performed in O(1) worst-case time,

• edge insertions and deletions can be performed in O(log n) amortized time.

The data structure can be initialized in O(n) time.

Fact 3.3.2. The data structure of Lemma 3.3.1 can be easily extended so that:

• for each v ∈ V , a doubly-linked list storing NH(v) is maintained within the same bounds,

• for each pair (x, y) of vertices adjacent in H, some auxiliary data associated with (x, y)
can be accessed and updated in O(1) worst-case time.

In addition to the data structure of Lemma 3.3.1 representing G, for each unordered pair
x, y of vertices adjacent in G, we maintain an edge α(x, y) = e where e is the unique edge in E
connecting x and y. Recall that in fact α(x, y) corresponds to some of the original edges of E0

or one of the inserted edges Ẽ. By Fact 3.3.2, we can access α(x, y) in constant time.
The mapping φ is stored in an array, whereas the sets φ−1(·) – in doubly-linked lists.
Suppose a merge of u and v, u, v ∈ V , is issued and we decide to merge u into v. In terms of

the operations supported by the data structure of Lemma 3.3.1, we need to remove each edge
ux and insert an edge vx unless v has been adjacent to x before.

More precisely, to update our representation, we only need to perform the following steps:

• For each v0 ∈ φ−1(u), set φ(v0) = v and add v0 to φ−1(v).

• Compute the list Nu = {(x, α(u, x)) : x ∈ NG(u)}. Remove all edges adjacent to u from G.
For each (x, α(u, x)) ∈ Nu, x 6= v, check whether x ∈ NG(v) (this can be done in O(1)
time, by Lemma 3.3.1). If so, report the parallelism α(u, x) → α(v, x). Otherwise, if vx
is not a border edge, insert an edge vx to G and set α(v, x) = α(u, x). If, on the other
hand, v ∈ B and x ∈ B (i.e., vx is a border edge), report α(u, x) as a border edge.

Observe that the order of updates issued to the data structure of Lemma 3.3.1 guarantees that
the graph this data structure stores is planar at all times. After the update procedure ends, the
data structure again represents the graph G.

Recall that if exactly one of the merged vertices (say u) belongs to B, then we are required
to merge v into u. However, the decision whether we merge u into v or v into u, when both u
and v are both border vertices or both non-border vertices, heavily affects the efficiency of the
data structure. Our strategy will be to always pick a vertex (say u) with a smaller set φ−1(u),
and merge u into v.

In order to handle the update operation of the second type, i.e., an insertion of a new edge
e = xy, we first check whether xy is a border edge. If so, we discard e and report it. Otherwise,
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we check whether x and y are adjacent in G. If so, we report the parallelism e → α(x, y). If
not, we add the edge xy to G and set α(x, y) = e.

Lemma 3.3.3. Let G be a graph initially equal to a simple planar graph G0 = (V0, E0) such that
n = |V0|. There is a deterministic data structure for the bordered vertex merging problem that
processes any sequence of modifications of G0 in O((n+ f) log2 n+m∗) total time, where m∗ is
the total number of edge insertions, and f is the total number of insertions of edges connecting
non-adjacent vertices.

Proof. By Lemma 3.3.1, building the initial representation takes O(n log n) time as we insert
O(n) edges to G. The reporting of parallel edges and border edges takes O(n+m∗) time since
each (initial or inserted) edge is reported as a border edge or occurs as the first coordinate of a
reported directed parallelism at most once.

Also note that, by Lemma 3.3.1, an insertion of a parallel edge costs O(1) time, for a total
of O(m) time over all insertions, as G is not updated in that case. Recall that, by Fact 3.3.2,
accessing and updating values α(x, y), for xy ∈ E(G), takes O(1) time.

The total cost of maintaining the representation of G is O(g log n), where g is the to-
tal number of edge updates to the data structure of Lemma 3.3.1. We now prove that g =
O((n+ f) log n). To this end, we look at the merge of u into v from a different perspective:
instead of removing an edge e = ux and inserting an edge vx, imagine that we simply change
an endpoint u of e to v but the edge itself does not lose its identity. Then, new edges in G
are only created either during the initialization or by inserting an edge connecting the vertices
that have not been, at that moment, adjacent in G. Hence, there are O(n+ f) creations of new
edges.

Consider some edge e = xy of G immediately after its creation. Denote by q(e) the pair
(|φ−1(x)|, |φ−1(y)|). The value of q(e) always changes when some endpoint of e is updated.
Suppose a merge of u into v (u 6= v) causes the change of some endpoint u of e to v. Either
we have u /∈ B and v ∈ B, or |φ−1(v)| ≥ |φ−1(u)| before the merge. The former situation can
happen at most once per each endpoint of e since we always merge a non-border vertex into a
border vertex if such case arises. In the latter case, on the other hand, one coordinate of q(e)
grows at least by a factor of 2, and clearly this can happen at most O(log n) times as the size
of any φ−1(x) is never more than n. Since there are O(n + f) “created” edges, and each such
edge undergoes O(log n) endpoint updates, indeed we have g = O((n+ f) log n).

A very similar argument can be used to show that the total time needed to maintain the
mapping φ along with the reverse mapping φ−1 is O(n log n).

A micro variant. In order to obtain an optimal data structure, we need a specialized version
of the bordered vertex merging data structure that handles small graphs in linear total time.

Suppose we restrict our problem even more by disallowing inserting new edges into G.
Additionally, assume we are allowed to perform some preprocessing in time O(n). Then, due to
a monotonous nature of allowed operations on G, when the size of G0 is very small compared
to n, we can maintain G faster than by using the data structure of Lemma 3.3.3.

Lemma 3.3.4. After preprocessing in O(n) time, we can repeatedly solve the bordered vertex
merging problem without edge insertions for simple planar graphs G0 with t = O(log4 log4 n)
vertices in O(t) time.

Proof. Let f(n) = c log4 log4 n for some c > 0. We use the preprocessing time to simulate every
possible sequence of updates on every possible graph G0 = (V0, E0) with no more than f(n)
vertices and each possible B ⊆ V0. The simulation allows us to precompute, for each step, the
list of self-loops and directed parallelisms to be reported.
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We identify the vertices V0 with the set {1, . . . , t} and assume that edges of E0 are assigned
identifiers from the set {1, . . . , |E0|} so that e = uv ∈ E0 is assigned an identifier equal to the
position of the pair (u, v) in the sorted list {(u, v) : u < v, uv ∈ E0}.

Any possible graph G0 can be encoded with t2 = O(f(n)2) bits representing the adjacency
matrix of G0. For a given G0 with t vertices, each possible B ⊆ V0 can be easily encoded with
additional t = f(n) bits. On a graph G initially equal to G0, at most t merges can be performed.
Clearly, a single operation on G can be encoded as a pair of affected vertices, i.e., O(log t) bits.
Each possible (not necessarily maximal) sequence S of modifications of G can be thus encoded
with additional O(t log t) = O(f(n)2) bits. We conclude that each triple (G0, B, S) can be
encoded with O(f(n)2) bits and thus there are no more than O(2poly(f(n))) such triples.

For each triple ψ = (G0, B, S), we do the following:

• We compute its bit encoding z(ψ).

• We use the data structure D of Lemma 3.3.3 to simulate the sequence of updates S on a
graph G initially equal to G0 and a border set B.

• Afterwards, a record Q[z(ψ)] is filled with the following information:

– mappings φ and φ−1 computed by D,

– the lists of border edges and directed parallelisms that were reported after the last
modification of the sequence S.

– the bit encodings z(ψ′) of all the triples ψ′ = (G0, B, S
′) such that S′ extends S by

a single update.

For each triple ψ = (G0, B, S), all the needed information can be clearly computed in time
polynomial in f(n). Hence, in total we need O(2poly(f(n))) time to compute all the necessary
information. As O(poly(f(n))) = o(log n), any bit encoding z(ψ) is an integer of order O(n).

Now, to handle any sequence of modifications on a graph G0 with at most f(n) vertices and
a border set B ⊆ V0, we first compute in linear time the bit encoding z(ψ∗) of ψ∗ = (G0, B, S),
where initially S = ∅. Each modification Y is executed as follows: we use the information in
Q[z(ψ∗)] to find the bit encoding z(ψ′) of the configuration ψ′ = (G0, B, S∪{Y }), and we move
from the configuration ψ∗ to ψ′. Next, we read from Q[z(ψ

′
)] which edges should be reported

as parallel edges or border edges. As we only move between the configurations by updating
the bit encoding of the current configuration and possibly report edges, the whole sequence of
updates takes time linear in the size of G0. Clearly, the record Q[z(ψ∗)] can be used to access
the mappings φ and φ−1 in constant time.

3.3.2 A Multi-Level Data Structure

Recall that our goal is to maintain a planar graph G under contractions, where G is simple and
has constant degree. Below we describe in detail how to take advantage of graph partitioning
and bordered vertex merging data structures to obtain a linear total time solution.

We build an r-partition R = {P1, P2, . . . , } of G with r = log4 n, where n = |V0|. Then,
for each piece Pi ∈ R, we build an r-partition Ri = {Pi,1, Pi,2, . . .} of Pi with r = log4 log4 n.
By Theorem 2.3.5, building all the necessary pieces takes O(n) time in total. Since G0 is of
constant degree, any vertex v ∈ V0 is contained in O(1) pieces of R. Similarly, for any v ∈ Pi,
v is contained in O(1) pieces of Ri.

As G undergoes contractions, we can view its vertex set as a partition of V0. Initially,
V = {{v} : v ∈ V0}, and when an edge uv is contracted (u, v ∈ V ), the resulting vertex is u∪ v.
Denote by φ : V0 → V the unique mapping such that for each v ∈ V0, v ∈ φ(v). Of course,
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initially φ(v) = {v} for each v ∈ V0. We will never store the mapping φ explicitly; we use it
only for the data structure’s description and analysis.

Let G = (V,E) denote the maximal simple subgraph of G, i.e., the graph G with self-
loops discarded and each group Y of parallel edges replaced with a single edge α(Y ). The key
component of our data structure is a 3-level set of (possibly micro-) bordered vertex merging
data structures Π = {π} ∪ {πi : Pi ∈ R} ∪ {πi,j : Pi ∈ R, Pi,j ∈ Ri}. The data structures Π
form a tree such that π is the root, {πi : Pi ∈ R} are the children of π, and {πi,j : Pi,j ∈ Ri} are
the children of πi. For a data structure D ∈ Π, let par(D) be the parent of D and let A(D) be
the set of ancestors of D. We call the value `(D) = |A(D)| the level of D. The data structures
of levels 0 and 1 are stored as data structures of Lemma 3.3.3, whereas the data structures of
level 2 are stored as micro structures of Lemma 3.3.4.

Each data structure D ∈ Π has a set VD ⊆ V0 of interesting vertices, defined as follows:
Vπ = ∂R, Vπi = ∂Pi ∪ ∂Ri, and Vπi,j = V (Pi,j). The data structure D maintains a certain
subgraph GD of G defined inductively as follows (recall that we defined G1 \G2 to be a graph
containing all vertices of G1 and edges of G1 that do not belong to G2):

GD = G[φ(VD)] \
( ⋃
D′∈A(D)

GD′

)
.

Fact 3.3.5. For any D ∈ Π, GD is a minor of G0.

Fact 3.3.6. For any uv = e ∈ E, there exists D ∈ Π such that e ∈ E(GD).

Proof. Let u0, v0 be the initial endpoints of e. Initially e ∈ Pi,j for some i, j. Observe that since
{φ(u0), φ(v0)} ⊆ V (Gπi,j ), e is contained in Gπi,j or some of its ancestors.

For each D ∈ Π, we define the set of ancestor vertices AVD = VD ∩
(⋃
D′∈A(D) VD′

)
. Now

we discuss more precisely what it means for the bordered vertex merging data structure D to
maintain the graph GD. The vertex set used to initialize D is VD. Observe that the vertices
of VD come from an n-element set V0, and thus each of them might need Θ(log |V0|) bits to
be represented. In Section 3.3.1, however, we assumed implicitly that we can use linear-space
arrays indexed with the vertices of the graph, i.e., that each vertex can be encoded using a
number of bits logarithmic in the size of the vertex set. We circumvent this technical problem by
introducing, for each D ∈ Π, a separate two-way mapping between VD and the set {1, . . . , |VD|},
which makes it possible for the bordered vertex merging data structure to internally use the
vertices {1, . . . , |VD|} and allows us to translate these vertices to VD in constant time. For π,
such a mapping can be implemented using an ordinary array, whereas for the data structures πi
and πi,j , we can use deterministic integer dictionaries of Pătraşcu and Thorup [80] (since these
mappings are of O(r) = O(polylog n) size). In the following, we forget about this technical
issue, and assume that the initial vertex set of each data structure D ∈ Π is VD.

Each D ∈ Π is initialized with the graph GD, so that the vertex v ∈ VD in the data structure
corresponds to the vertex φ(v) = {v} in GD. We initially set BD, the border set of D, to AVD.
We write φD, φ−1

D to denote the mappings φ, φ−1 maintained by D ∈ Π, respectively. Initially,
φD(v) = v and φ−1

D (v) = {v} for each v ∈ VD.
Throughout a sequence of contractions, we maintain the following invariants for any D ∈ Π:

• There is a 1-1 mapping between the sets φ(VD) and φD(VD) such that for the corresponding
vertices x ∈ φ(VD) and y ∈ φD(VD) we have φ−1

D (y) = x ∩ VD, and if x ∈ φ(AVD), then
y ∈ BD. We also say that x is represented in D in this case.
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• There is an edge xy ∈ E(GD) if and only if there is an edge xDyD in the graph maintained
by D, where xD, yD ∈ φD(VD) are the corresponding vertices of x and y, respectively.

In other words, the graph maintained by D is isomorphic to GD, but can technically use a
different vertex set.

Observe that in GD there are no edges between the vertices φ(AVD). The following fact
describes how this is reflected in the data structure D.

Fact 3.3.7. In the graph stored in D, no two vertices of BD are adjacent.

Note that since the sets VD and VD′ might overlap for D 6= D′, the vertices of V can be
represented in multiple data structures.

Now we formulate a few useful properties following from the above invariants.

Lemma 3.3.8. Suppose for v ∈ V we have v ∈ V (GD1) and v ∈ V (GD2). Then, v ∈ V (GD),
where D is the lowest common ancestor of D1 and D2.

Proof. We first prove that for i 6= j, φ(V (Pi)) ∩ φ(V (Pj)) ⊆ φ(∂R). Assume the contrary.
Then, there exists such w ∈ φ(V (Pi)) ∩ φ(V (Pj)) that w /∈ φ(∂R). But since G undergoes
contractions only, for x ∈ V , G0[x] is a connected subgraph of G0. Thus, G0[w] is connected
and contains both some vertex of Pi and some vertex of Pj . But each path from V (Pi) to V (Pj)
in G0 has to go through a vertex of ∂R, by the definition of an r-partition. Hence ∂R∩ w 6= ∅
and w ∈ φ(∂R), a contradiction.

Analogously one can prove that for any i and j 6= k, φ(V (Pi,j)) ∩ φ(V (Pi,k)) ⊆ φ(∂Ri).
Suppose that v ∈ V (GD1) ∩ V (GD2). If for some i 6= j we have D1 ∈ {πi} ∪

⋃
k{πi,k} and

D2 ∈ {πj} ∪
⋃
k{πj,k} then v ∈ φ(V (Pi)) ∩ φ(V (Pj)) and we conclude v ∈ φ(∂R). Hence,

v ∈ V (Gπ). Analogously we prove that if D1 = πi,j and D2 = πi,k for some j 6= k, then
v ∈ V (Gπi).

By Lemma 3.3.8, each vertex v ∈ V is represented in a unique data structure of minimal
level, a lowest common ancestor of all data structures where v is represented. We denote such
a data structure by D(v).

Lemma 3.3.9. For any D ∈ Π, the vertices {v : D(v) = D} are represented in D by the vertices
from φD(VD) \BD ⊆ VD \AVD.

Proof. Let v ∈ V be such that D(v) = D. We have v /∈ V (Gpar(D)), so v ∈ φ(VD) \ φ(AVD).
Since there is a 1-1 correspondence between φ(AVD) and BD, v is represented in D(v) by a
vertex of φD(VD) \BD.

φD(VD) \ BD ⊆ VD \ AVD follows from the initial condition BD = AVD and the fact that
bordered vertex merging data structures always merge one vertex into another, and additionally
non-border vertices into border vertices.

Lemma 3.3.10. Let uv = e ∈ E and `(D(u)) ≥ `(D(v)). Then, e ∈ E(GD(u)) and either
D(u) = D(v) or D(u) is a descendant of D(v).

Proof. If {u, v} ⊆ φ(∂R), then clearly `(D(u)) = `(D(v)) = 0, e ∈ E(Gπ), and the lemma holds.
Moreover, no GD such that D is a descendant of π can contain the edge uv.

Otherwise, u does not belong to φ(∂R). Consequently, by Fact 3.3.6 and Lemma 3.3.8, there
exists exactly one i such that u is a vertex of some graph GD, and e is an edge of some graph
GD′ , where D,D′ are data structures in the subtree of Π rooted of πi. If v /∈ φ(∂R), v cannot
be a vertex of any GD′′ , where D′′ is in the subtree of πj , j 6= i.
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Again, if {u, v} ⊆ φ(∂Pi ∪ ∂Ri), then uv ∈ E(Gπi), D(u) = πi, and no descendant of Gπi
can contain uv. If not, we analogously get that there might exist at most one Gπi,j containing
the edge uv and the vertex u. If v /∈ φ(∂Pi ∪ ∂Ri), then only Gπi,j can contain the vertex v.

In all cases, D(u) = D(v) or D(u) is a descendant of D(v).

Lemma 3.3.11. Let uv be an edge of some GD, D ∈ Π. If {u, v} ⊆ V (GD′), where D′ 6= D,
then D′ is a descendant of D and both u and v are represented as border vertices of D′.

Proof. Suppose without loss of generality that `(D(u)) ≥ `(D(v)). By Lemma 3.3.10, we have
D = D(u).

Let {u, v} ⊆ V (GD′). If D′ is a descendant of D, then {u, v} ⊆ φ(AVD′), and by the
invariants maintained by our data structure, u and v are represented by the vertices of BD′ .

Suppose D′ 6= D and D′ is not a descendant of D. Then, by Lemma 3.3.8, the lowest common
ancestor of D′ and D contains the vertex u and is an ancestor of D = D(u), a contradiction.

Lemma 3.3.12. Let v ∈ φ(VD), where D ∈ Π. Let vD be the vertex representing v in D.
Then, v is represented in O(|φ−1

D (vD)|) data structures D′ such that par(D′) = D.

Proof. Let D′ be a child of D. If v is represented in D′, then v ∈ φ(VD)∩φ(VD′). It follows that
as G0[v] is a connected subgraph of G0, it contains a path between some vertex x ∈ VD and
some vertex y ∈ VD′ . Assume x /∈ VD′ . If D′ = πi, then in fact we have x ∈ V (Pj) for j 6= i,
and any path from x to y has to go through some vertex z ∈ ∂Pi. As ∂Pi ⊆ VD ∩ VD′ , there
exists a vertex from VD ∩ VD′ in the set v. Similarly, if D′ = πi,j , there exists a vertex of ∂Pi,j
in the set v and we again obtain v ∩ VD ∩ VD′ 6= ∅.

Recall that we maintain the invariant φ−1
D (vD) = v ∩ VD. Therefore, φ−1

D (vD) ∩ VD′ 6= ∅.
However, for each w ∈ φ−1

D (vD), there are only O(1) child data structures D′ such that w ∈
VD′ , by the constant degree assumption. It follows that there are at most O(|φ−1

D (vD)|) data
structures D′ such that par(D′) = D and φ−1

D (vD) ∩ VD′ 6= ∅, which in turn means that there
are at most O(|φ−1

D (vD)|) data structures D′ such that v is also represented in D′.

Auxiliary components. We need the following auxiliary components for each D ∈ Π \ {π}.

• For each x ∈ BD, a pointer βD(x) to y ∈ φpar(D)(Vpar(D)) such that x and y represent the
same vertex of the maintained graph G.

• A dictionary γD mapping each x ∈ φpar(D)(Vpar(D)), such that its corresponding vertex
x′ ∈ V is also represented in D, to a vertex y ∈ BD corresponding to x′ in D. Note that
γD has always size O(r) = O(log4 n) and its keys are integers fitting in a single word.
Therefore, each γD can be implemented using a dynamic integer dictionary of Pătraşcu
and Thorup [80]. This allows us to perform insertions, deletions, and lookups on γD
deterministically in O(1) worst-case time.

Another component of our data structure is the forest T of reported parallelisms: for each
reported parallelism e → α(e), we make e a child of α(e) in T . Note that the forest T allows
us to go through all the edges parallel to α(e) in time linear in their number.

We also need some way to index the vertices of V as upon a contraction our data structure
should return a label of a new vertex. Namely, a vertex v ∈ V is assigned the same label as
is assigned to its corresponding vertex v′ in the data structure D(v). By Lemma 3.3.9, this
label of v comes from the set φD(v)(VD(v)) \ BD(v) ⊆ VD(v) \ AVD(v). Since the sets of the form
VD \AVD are pairwise disjoint for distinct D, such a labeling scheme makes it trivial to find the
data structure D(v) based on the label of v only. We set V ′ =

⋃
D∈Π(φD(VD) \BD).
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Lemma 3.3.13. For v0 ∈ V0, we can compute the label of φ(v0) and find D(φ(v0)) in O(1)
time.

Proof. Let Pi,j be any piece such that v0 ∈ V (Pi,j). First, we can compute the representation
x = φπi,j (v0) of φ(v0) in πi,j in O(1) time as the data structure πi,j stores the mapping φπi,j
explicitly. Set D = πi,j .

Next, if x ∈ BD (or, technically speaking, if x ∈ AVD), we follow the pointer βD(x) to the
data structure of lower level and repeat if needed until we reach the data structure D(φ(v0)).
As the tree of data structures has 3 levels, we follow O(1) pointers.

Lemma 3.3.14. Let v ∈ φ(VD) and suppose we are given vD – the vertex representing v in D.
For any D′, such that par(D′) = D, we can compute the vertex v′ representing v in GD′ (or
detect that such v′ does not exist) in O(1) time.

Proof. If γD′ contains the key vD, we return γD′ [vD]. Recall that the lookup cost of γD′ is
constant.

Implementing the operations. We now describe how to implement the operation (s, P, L) :=
Contract(e), where uv = e ∈ E, u, v ∈ V . Suppose the initial endpoints of e were u0, v0 ∈ V0.
First, we iterate through the tree Te ∈ T containing e to find α(e). By Lemma 3.3.13, we can
find the vertices u, v, along with the respective data structures D(u),D(v), based on u0, v0 in
O(1) time. Assume without loss of generality that `(D(u)) ≥ `(D(v)). By Lemma 3.3.10, α(e)
is an edge of GD(u). Although we are asked to contract e, we conceptually contract α(e) by
issuing a merge of the vertices corresponding to u and v, respectively, in D(u). To reflect that
we were actually asked to contract e, we include all the edges of Te \ {e} in L as self-loops. The
merge might make D(u) report some parallelisms e1 → e2. In such a case our data structure
reports e1 → e2 (by including it in P ) and update the forest T .

We also have to reflect the contraction of e in all the required data structures D ∈ Π and
update the auxiliary data structures so that our invariants are again satisfied. If, before the
contraction, both u and v were the vertices of some GD, D 6= D(u), then by Lemma 3.3.11, D
is a descendant of D(u). Moreover, observe that if both u and v are vertices of some GD, where
`(D) = 2 and `(D(u)) = 0, then both u and v are also vertices of the graph Gpar(D). Hence,
the representations of u and v have to be merged in D(u), some children of D(u), and some
children of these children of D(u). However, by Lemma 3.3.11, the merges to be performed in
the descendants of D(u) are always between border vertices, and thus cannot cause these data
structures report new border edges (that is, e.g., those with both endpoints in BDi for Di).

The merge of u and v might also create some new edges e′ = xy between the vertices
φ(AVD(u)) in GD(u). Note that since the vertices φ(AVD(u)) are represented by BD(u) in D(u),
in this case D(u) reports e′D(u) = xD(u)yD(u), where id(e′D(u)) = id(e′), as a border edge and
also we know that `(D(x)) < `(D(u)) and `(D(y)) < `(D(u)). Hence, e′ should end up in some
of the ancestors of D(u). To reflect this, we insert e′par(D(u)) = βD(u)(xD(u))βD(v)(yD(u)), where
id(e′par(D(u))) = id(e′), to par(D(u)) unless it would become a border edge in par(D(u)). In that
case an edge connecting the representations of x and y is inserted to the grandparent of D. It
is also possible that e′ will be reported a parallel edge in some of the ancestors of D: in such a
case an appropriate directed parallelism is added to P .

By the above discussion, the edges can only move up the data structure tree, between D(u)
and its ancestors, whereas the merges of the representations of u and v have to be performed in
D(u) and some of its descendants. We now describe how to perform these merges and update
the auxiliary data structures.
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Let D be some data structure where the vertices uD and vD, corresponding to u and v, are
to be merged. Suppose the merge has already been performed in all the relevant ancestors of
D and the values βD(·) and γD(·) are updated. Specifically, if u ∪ v is represented in par(D)
by x, then βD(uD) = x if uD ∈ BD and βD(vD) = x if vD ∈ BD. This condition is automatically
satisfied for the first data structure to be updated, i.e., D = D(u) since, by the fact that uv
was located in GD(u), we had uD /∈ BD before the merge and no merges have been issued (when
handling this contraction) to the ancestors of D(u).

Let us issue the merge to D and assume D merges uD into vD. This is without loss of
generality since for D = D(u), uD /∈ BD and for D 6= D(u) we have {uD, vD} ⊆ BD. If
βD(vD) 6= nil, we set γD(βD(vD)) = vD. By a similar argument as in the proof of Lemma 3.3.3,
we can afford to iterate through φ−1

D (uD) without increasing the asymptotic performance of the
uD-into-vD merge performed by D as long as we spend only O(log |VD|) additional time per each
element of φ−1

D (uD). By Lemma 3.3.12, there are O(|φ−1
D (uD)|) data structures D1,D2, . . . that

are the children of D and contain the representation of u. For each such Di, we first use the
dictionary γDi to find the vertex uDi representing u in Di, and update βDi(uDi) to vD. Then,
using Lemma 3.3.14, we check whether v ∈ V (GDi) in O(1) time. If not, we set γDi(vD) to
uDi . Otherwise, let vDi represent v in Di. At this point, the values βDi(·) are updated so we
can issue a merge of uDi and vDi to Di and handle this merge recursively. The merge may also
cause Di report some parallelisms. We handle them as described above in the case of the data
structure D(u).

The vertex s to be returned by the call Contract(e) can be computed, after the update
procedure finishes, in O(1) time using Lemma 3.3.13 for some original endpoint u0 ∈ V0 of e.

Note that all the performed merges and edge insertions are only used to make the graphs rep-
resented by the data structures satisfy their definitions. Fact 3.3.5 implies that the represented
graphs remain planar at all times.

The key invariants are satisfied by construction and the fact that the bordered vertex merging
data structures always merge non-border vertices into border vertices.

We now describe how the other operations are implemented. To compute u′, v′ ∈ V such
that {u′, v′} = Vertices(e), where e ∈ E, we use Lemma 3.3.13. u′ is the label of φ(u0) and v′

is the label of φ(v0), where u0, v0 are the initial endpoints of e. Clearly, this takes O(1) time.
To maintain the values Deg(v′), v′ ∈ V , before each call (s, P, L) := Contract(e) we

compute {u′, v′} = Vertices(e) and simply set Deg(s) := Deg(u′) +Deg(v′)− 1 after the
call. Additionally, for each directed parallelism e1 → e2 we decrease Deg(x) and Deg(y) by
one, where {x, y} = Vertices(e1).

For each u′ ∈ V ′, we maintain a doubly-linked list E(u′) = {α(uv) : uv ∈ E}. Additionally,
for each e ∈ E we store the pointers to the two occurrences of e in the lists E(·). Again, after
a call (s, P, L) := Contract(e), where e = uv and {u′, v′} = Vertices(e), we set E(s) to be
a concatenation of the lists E(u′) and E(v′). Finally, we remove all the occurrences of edges
{α(e)} ∪ {e1 : (e1 → e2) ∈ P} from the lists E(·). Now, the implementation of the pointer to
Neighbors(u′) is easy as the endpoints of the edges in E(u′) not equal to u (obtained using the
operation Vertices) form exactly the labels of the set NG(u). We have proved the following.

Lemma 3.3.15. The operations Vertices, Deg and Neighbors run in O(1) worst-case time.

We now show how to implement the operation Edge(u′, v′) in O(1) time. Recall that D(u)
and D(v), along with the representations of u and v in these respective data structures, can be
computed in constant time based on the labels u′, v′ only. By Lemma 3.3.10, the edge α(uv)
can be contained in either D(u) or D(v), whichever has greater level. Suppose without loss of
generality that `(D(u)) ≥ `(D(v)). Again, by Lemma 3.3.10, D(u) is a descendant of D(v).
Recall that Lemma 3.3.14 allows us to compute the representation of a vertex in a child data
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structure D′ in O(1) time. Thus, we can find v in D(u) by applying Lemma 3.3.14 at most
twice. Finally, given representations of u and v in D(u), the edge α(uv) can be found in O(1)
time by issuing a query to the bordered vertex merging data structure D(u).

Lemma 3.3.16. The operation Edge runs in O(1) worst-case time.

The following lemma summarizes the total time spent on updating all the vertex merging
data structures Π and is proved in Section 3.3.3.

Lemma 3.3.17. The cost of all operations on the data structures D ∈ Π is O(n).

Proof of Theorem 3.1.1. Recall that we first reduced the general case to the case when G is
simple and bounded-degree, and has O(n+m) vertices and edges.

To initialize our data structure, we initialize all the data structures D ∈ Π and the aux-
iliary components. This takes O(n + m) time. The time needed to perform any sequence of
operations Contract is proportional to the total time used by the data structures Π as the
cost of maintaining the auxiliary components can be charged to the operations performed by
the individual structures of Π. By Lemma 3.3.17, this time is linear.

By combining the above with Lemmas 3.3.15 and 3.3.16, the theorem follows.

3.3.3 Running Time Analysis

Lemma 3.3.18. Let D ∈ Π. After the initialization of D, only the edges initially contained in
the graphs represented by the descendants of D might be inserted into D, each at most once.

Proof. Note that whenever we report a border edge in D, we insert it to par(D).

To bound the operating time of our data structure, we need to analyze, for any D ∈ Π
and any sequence of edge contractions, the number of changes to E(GD) that result in a costly
operation of inserting an edge connecting non-adjacent vertices into the underlying bordered
vertex merging data structure D.

Consider some sequence S of k edge contractions on G. We abuse notation a bit and identify
each v0 ∈ V0 with {v0}. Let Gi = (Vi, Ei) (for i = 0, 1, . . . , k) be the graph G after i contractions.
Denote by ei = uivi, where ui, vi ∈ Vi−1, the edge involved in the i-th contraction. We have
Vi = Vi−1 \ {ui, vi}∪ {ui ∪ vi}. Moreover, let φi : V0 → Vi be the mapping φ after i contractions
of S. Denote by Gi the graph G (recall that G is a “simple” version of G) after i contractions.

Let W ⊆ V0. For i > 0, let ∆W
i ⊆ E(Gi[φi(W )]) be the set of edges that we would need

to add to Gi−1[φi−1(W )], after possibly merging ui and vi in Gi−1[φi−1(W )], in order to obtain
Gi[φi(W )].

We now define ∆W
i more precisely. For any E′ ⊆ Ei−1 define ri(E′) to be the set obtained

by taking all edges e ∈ E′ and adding it to ri(E′), but with all endpoints of e equal to ui or vi
replaced with ui ∪ vi. Using this notation, we formally have

∆W
i = E

(
Gi[φi(W )]

)
\ ri

(
E
(
Gi−1[φi−1(W )]

))
.

Clearly, for any x, y ∈ φi(W ), there is at most one edge xy in ∆W
i . Let

Ψ(W ) =
k∑
i=1

|∆W
i |.

Observe that we perform exactly Ψ(Vπ) = Ψ(∂R) costly insertions on the data structure π.
Similarly, for each πj , we perform no more than Ψ(Vπj ) costly insertions since some of the edges
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of ∆
Vπj
i are actually not inserted as they constitute border edges in πj . Generally speaking, for

any D ∈ Π we perform at most Ψ(VD) costly insertions on D.

Lemma 3.3.19. For any W ⊆ V0, Ψ(W ) = O(|W |).

Proof. The idea behind the proof is to analyze how many “costly” insertions would we perform
if we maintained semi-strict graphs instead of simple graphs in our data structures. It turns
out that this quantity is easier to track and additionally constitutes an upper bound on the
quantity we actually care about.

Fix some plane embedding of G0. We define semi-strict versions GW0 , GW1 , . . . , GWk of graphs
G0[φ0(W )], G1[φ1(W )], . . . , Gk[φk(W )], respectively, so that:

• GW0 = G0[W ]. Recall that G0 is simple, and thus its subgraph G0[W ] is also simple and
in particular semi-strict.

• If {ui, vi} ∩ φi−1(W ) = ∅, then GWi = GWi−1.

• If {ui, vi} ⊆ φi−1(W ), then we obtain GWi from GWi−1 by first contracting uivi. The vertices
ui, vi are merged into ui ∪ vi. For any triangular face f = uivixi of GWi−1 (there can be
between 0 and 2 such faces since GWi−1 is semi-strict), the contraction introduces a face
f ′ = (ui ∪ vi)xi of length 2. We remove one of these edges (ui ∪ vi)xi from GWi so that
the face f ′ is merged with any neighboring face and GWi becomes semi-strict.

• If |{ui, vi} ∩ φi−1(W )| = 1, suppose without loss of generality that ui ∈ φi−1(W ) and
vi /∈ φi−1(W ) (the case when vi ∈ φi−1(W ) is symmetrical). Pick a maximal pairwise
non-parallel subset Fi of such edges vibi of Gi−1 that bi ∈ φi−1(W ) and uibi /∈ E(GWi−1).
Let GWi be obtained from the following subgraph of Gi−1:

Xi = (φi−1(W ) ∪ {vi}, E(GWi−1) ∪ {ei} ∪ Fi)

by contraction of uivi. Observe that, by definition of Xi, the contraction of uivi in Xi

does not introduce new parallel edges and, as a result, GWi is semi-strict.

The graphs GWi are defined in such a way that E(GWi ) ⊆ Ei and for any x, y ∈ Vi, xy ∈
E(Gi[φi(W )]) if and only if xy ∈ E(GWi ).

Let E′i−1 = ri(E(GWi−1)). Take some x, y such that xy ∈ ∆W
i . Note that since ∆W

i =
E
(
Gi[φi(W )]

)
\ ri

(
E
(
Gi−1[φi−1(W )]

))
, we have xy ∈ E(GWi ) \ E′i−1. Since there are no

parallel edges in ∆W
i , we obtain

|∆W
i | ≤ |E(GWi ) \ E′i−1|.

Hence, in order to prove Ψ(W ) = O(|W |), it is thus sufficient to show

|E(GW1 ) \ E′0|+ |E(GW2 ) \ E′1|+ . . .+ |E(GWk ) \ E′k−1| = O(|W |).

As each GWi is semi-strict, |E(GWi )| ≤ 3|V (GWi )| = 3|φi(W )| ≤ 3|W |. Moreover, as any contrac-
tion in a semi-strict graph decreases the number of edges by at most 3, we have
|E′i−1 \ E(GWi )| ≤ 3. In fact, by the definition of GWi , we can have E′i−1 6⊆ E(GWi ) only if
{ui, vi} ⊆ φi−1(W ), i.e., when |V (GWi )| < |V (GWi−1)|. This may happen for at most |W | values
of i as |V (GW0 )| = W . Denote the set of these values i as I.
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We have

Ψ(W ) ≤
k∑
i=1

|E(GWi ) \ E′i−1|

=

k∑
i=1

|E(GWi ) \ (E(GWi ) ∩ E′i−1)|

=
k∑
i=1

|E(GWi )| − |E(GWi ) ∩ E′i−1|

≤
k∑
i=1

|E(GWi )| −
∑

i∈{1,...,k}\I

|E′i−1| −
∑
i∈I

(|E′i−1| − 3)

=

k∑
i=1

|E(GWi )| −
k∑
i=1

|E′i−1|+ 3|I|

=
k∑
i=1

|E(GWi )| −
k∑
i=1

|E(GWi−1)|+ 3|I|

= |E(GWk )| − |E(GW0 )|+ 3|W |
≤ 6|W |
= O(|W |).

Proof of Lemma 3.3.17. Recall that by Lemma 3.3.3, the cost of any sequence of operations on
D ∈ {π} ∪ {πi : Pi ∈ R} is O((|VD| + fD) log2 |VD| + mD) where mD is the total number of
times an edge is inserted into D, and fD is the number of “costly” insertions connecting non-
adjacent vertices. By Lemma 3.3.18, mπ = O(|E0|) and mπi = O(|E(Pi)|). By Lemma 3.3.19,
fD = Ψ(VD) = O(|VD|). We have |Vπ| = O(n/ log2 n), and thus the total time used by π is
O(n). Similarly, we have |Vπi | = O(log4 n/ log2 log4 n), and the total time used by O(n/ log4 n)
data structures πi is O(n/ log2 log4 n+

∑
i |E(Pi)|) = O(n).

By Lemma 3.3.4, after O(n) preprocessing, the total time used by each πi,j is
O(|V (Pi,j)|), and thus, summed over all i, j, we again obtain O(n) time.

3.3.4 Supporting Edge Weights

In this section we show how to modify the data structure of Section 3.3 by adding additional
layer so that, given a weight function w : E0 → R, for each reported directed parallelism
α(Y3−i)→ α(Yi) (see Section 3.1), we have w(α(Yi)) ≤ w(α(Y3−i)).

We maintain an array δ defined as follows. Let Y be a group of parallel edges represented by
a tree T ∈ T . Then, δ[α(Y )] is equal to an edge e ∈ T such that w(e) is minimum. Initially, for
each e ∈ E0 we have δ(e) = e. To maintain the invariant posed on δ throughout any sequence
of contractions, we do the following.

Suppose the data structure of Section 3.3 reports a parallelism α(Y1) → α(Y2). Then, if
δ[α(Y1)] ≤ δ[α(Y2)], the weight supporting layer reports δ[α(Y2)] → δ[α(Y1)] instead and sets
δ[α(Y2)] = δ[α(Y1)]. On the other hand, when δ[α(Y1)] > δ[α(Y2)], we only report δ[α(Y1)] →
δ[α(Y2)] instead.

The layer also modifies the behavior of operations Edge and Neighbors: whenever they
return some edge α(uv), the user is given the edge δ[α(uv)] instead.
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Chapter 4

Decremental Reachability in Planar
Digraphs

In this chapter we study the problem of maintaining the reachability information for a given
planar directed graph G when G is subject to edge deletions.

We assume that our input graph G is initially simple (and hence |E(G)| = O(|V (G)|)). This
is without much loss of generality since removing self-loops of parallel edges does not influence,
for any u, v ∈ V (G), whether a path u→ v exists in G. However, by applying various reductions
and using auxiliary graphs, we sometimes internally use non-simple graphs for convenience.

Outline. All algorithms in this chapter build upon a recursive decomposition of a graphG. We
define the decomposition that we need along with all its structural and quantitative properties
in Section 4.1. That section also describes in detail how to compute such a decomposition.

Next, in Section 4.2 we describe the structural properties of reachability in plane graphs
that we later exploit algorithmically.

Section 4.3 contains the main technical part of this chapter. In that section we solve an
abstract problem of maintaining the transitive closure of a union of two graphs of the form
H+[U ] where U , roughly speaking, lies on a small number of faces of H, when those two
graphs undergo partially dynamic updates. We give both incremental and decremental transitive
closure algorithms as they both prove useful later on, even though our input graph G undergoes
edge deletions only.

In Section 4.4 we combine the recursive decomposition with the decremental transitive clo-
sure algorithm of Section 4.3 and obtain a randomized decremental transitive closure algorithm
with Õ(n) total update time and Õ(

√
n) query time (here, n is the number of vertices of G).

Next, in Section 4.5 we show a simple extension of the dynamic algorithm of Section 4.4
that allows us to decrementally maintain certain useful information about individual edges of G
in nearly-linear total time. This information can used in an almost straightforward way to solve
other decremental reachability-related problems on a planar digraph such as single-source reach-
ability, maintaining the strongly-connected components, or maintaining the transitive reduction
(the last one only if G happens to be acyclic).

Section 4.6 shows how plane duality can be used to obtain some of the extensions of Sec-
tion 4.5 more efficiently and without resorting to randomization. This is where we take advan-
tage of the incremental transitive closure algorithm developed in Section 4.3, which is deter-
ministic and more efficient than its decremental counterpart.

Finally, in Section 4.7 we show a generalization of the decremental transitive closure algo-
rithm from Section 4.4. Namely, we show a trade-off data structure that, given any parameter
t ∈ [1, n], supports edge deletions in Õ(n/t) amortized time and queries in Õ(

√
t) time.
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4.1 Simple Recursive Decomposition.

Let G be a plane graph and let n = |V (G)|. A simple recursive decomposition of G is a collection
of edge-induced, connected subgraphs of G (called pieces) organized in a binary tree TG. We
write H ∈ TG to denote that H, which is a subgraph of G, is a piece, or in other words, a node
of TG.

The root of TG is the graph G itself. Each non-leaf piece H ∈ TG has exactly two children
child1(H), child2(H), such thatH = child1(H)∪child2(H) and E(child1(H))∩E(child2(H)) = ∅.

Let H ∈ TG be any piece. We define the level `(H) of a piece H to be the number of edges
on the path from the root to H. We define the height χ(H) of a piece H to be the maximum
number of edges on the path from H to a leaf piece. We also denote by TG(H) the subtree of
TG rooted at the node H.

The separator Sep(H) of a piece is defined as ∅ if H is a leaf of TG and

Sep(H) = V (child1(H)) ∩ V (child2(H))

otherwise.
The tree TG has the following additional properties:

(1) The height of the decomposition TG is O(log n).

(2) There are O(n) leaf subgraphs in TG and each leaf subgraph has O(1) vertices.

(3) There exists a constant ρ > 1 such that for any H ∈ TG, |∂H| = O
(√

n/ρ`(H)
)

.

(4)
∑

H∈TG |∂H|
2 = O(n log n).

(5) For any H ∈ TG, H has O(1) holes, all of them simple and pairwise vertex-disjoint.

(6) For any H ∈ TG, each hole of H consists solely of the vertices of ∂H.

Before showing how to compute a simple recursive decomposition TG, let us make some
simple but useful observations about TG.

Fact 4.1.1. Every e ∈ E(G) is contained in a unique leaf subgraph of TG.

Proof. Observe that the edge set of each non-leaf piece is partitioned among its two children.

Lemma 4.1.2. Let H ∈ TG be a non-root piece. Let P be its parent and let S be its sibling.
Then,

∂H = Sep(P ) ∪ (V (H) ∩ ∂P ).

Proof. We have:

∂H = V (H) ∩ V (G−H)

= V (H) ∩ V (S ∪ (G− P ))

= (V (H) ∩ V (S)) ∪ (V (H) ∩ V (G− P ))

= Sep(P ) ∪ (V (H) ∩ V (P ) ∩ V (G− P ))

= Sep(P ) ∪ (V (H) ∩ ∂P ).

Lemma 4.1.3. Let TG be a simple recursive decomposition and let H ∈ TG. Then, the vertices
of the holes of H are precisely the boundary vertices of H.
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Proof. Combine Lemma 2.3.3 and property (6) of a simple recursive decomposition.

Unfortunately, not all plane graphs admit simple decompositions. However, we show that
one can “extend” a plane graph so that constructing a simple decomposition is possible. The
remainder of this section is devoted to proving the following theorem.

Theorem 4.1.4. Let G = (V,E) be a simple, connected and triangulated plane graph with n ver-
tices. In O(n log n) time one can construct a (not necessarily simple) plane graph
G′ = (V ′, E0 ∪ E′ ∪ E×), along with its simple recursive decomposition TG′ such that:

• V ′ is a disjoint union of sets S(v), v ∈ V , where v ∈ S(v).

• The sets E0, E′ and E× are pairwise disjoint.

• The connected components of (V ′, E0) are exactly the sets S(v).

• The edges of each G′[S(v)] can be oriented in such a way that G′[S(v)] becomes strongly-
connected.

• If uv = e ∈ E, then there exists an edge u′v′ = e′ ∈ E′ such that id(e) = id(e′), u′ ∈ S(u)
and v′ ∈ S(v).

• |V ′| = O(n) and |E0 ∪ E′ ∪ E×| = O(n).

Our algorithm resembles [8, 27, 64] (in that the graph G is recursively separated using
Miller’s cycle separator (Lemma 2.3.4) until we reach O(1)-size pieces) and builds upon these
algorithms, but is more involved due to the stronger properties that we pursue (in [8, 27, 64],
the holes of individual pieces are not required to be simple and pairwise vertex-disjoint).

To compute a simple decomposition, we proceed as follows. Our recursive decomposition
procedure maintains the following invariants about the input piece H of each its recursive call:

1. H is a connected simple plane graph.

2. H has O(1) holes.

3. The holes of H are simple and pairwise disjoint.

4. Each hole of H consists solely of vertices of ∂H.

Moreover, as we will gradually change G (i.e., the root piece of the decomposition tree)
during the decomposition process, we maintain the invariant that immediately before each
recursive call the root of the decomposition G has only faces of size 2 or 3.

These invariants are clearly satisfied when the recursive procedure is first called on G as G
is simple, connected, triangulated, ∂G = ∅, and G has no holes at all.

Let H be the graph to be decomposed and suppose |V (H)| > n0, where n0 is a sufficiently
large integer, to be set later, so that various inequalities that we will need hold all at once.
Let H∆ be a graph obtained from H by putting a vertex vh inside each hole h of H and
connecting it (by edges embedded inside h) with all vertices of h. Denote by A∆ the set of
auxiliary “hole” vertices of H∆. Clearly, V (H∆) = V (H)∪A∆ and H ⊆ H∆. As H∆ is simple
and triangulated, we can use Lemma 2.3.4 to compute a simple cycle C(H) that is additionally a
balanced separator of H∆ with respect to some weight function x : V (H∆)→ R≥0. Throughout,
we sometimes use C(H) to refer to the underlying curve (or, in other words, the embedding) of
the cycle C(H) of H∆. Note that since C(H) is a simple cycle in H∆, the curve C(H) can go
through each hole h of H at most once (by passing through vh ∈ A∆ at most once).
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First, suppose we simply set child1(H) (child2(H)) to be the part of H weakly inside (weakly
outside, respectively) the curve C(H). Consider child1(H) and let us construct a cycle C1(H)
by replacing each pair of consecutive edges uvh, vhw of C(H) such that vh ∈ A∆, with the
unique subpath of the bounding cycle of h that goes from u to w weakly inside (weakly outside,
respectively) the curve C(H). It might happen that Ci(H) = C(H) if C(H) does not go through
any vertices of A∆.

Observe that C1(H) is actually a face of child1(H) and there is a 1-1 correspondence between
the vertices A∆ \V (C(H)) inside C(H) (or equivalently, inside C1(H)) and the remaining holes
of child1(H) (excluding C1(H) if it happens to be a hole). Hence, if H has ` holes, child1(H)
has at most `+ 1 holes.

Note that in fact child1(H) is equal to the part of H weakly inside C1(H) and C1(H) ⊆
child1(H). Let x, y ∈ V (child1(H)). Since H is connected, there is a path P from x to y in H.
For each maximal subpath Q of P that consists of edges not in child1(H), the endpoints a, b of Q
are vertices of C1(H) as V (child1(H)) ∩ V (child2(H)) ⊆ V (C1(H)). Hence, we can replace Q
with a path from a to b that uses the edges of C1(H) only. This way we conclude that there
also exists a path from x to y in child1(H), or equivalently, child1(H) is connected.

Analogously we argue that child2(H) is connected and has at most `+ 1 holes.
Unfortunately, if we use the curve C(H) to separate H as described above, the holes of

childi(H) might still be not necessarily pairwise disjoint or non-simple.
We say that a vertex v ∈ ∂H ∩ V (C(H)) lying on a hole h (recall h is uniquely defined, by

the invariants that H satisfies and Lemma 4.1.3) of H is bad, if:

1. either vh /∈ C(H),

2. or u, vh, w are consecutive vertices on C(H) and v /∈ {u,w}.

The first type of a bad vertex leads to non-disjoint holes in either child1(H) or child2(H),
whereas the second leads to a non-simple hole in some child of H. Observe that if there are
no bad vertices, the face Ci(H) of childi(H) (defined as before) is disjoint with other holes of
childi(H), and Ci(H) is simple. All remaining holes of childi(H) are simple and pairwise disjoint
by the fact that they are holes of H as well. Consequently, our strategy will be to transform H
slightly so that bad vertices are eliminated.

While there exists a bad vertex v ∈ V (h) of H, we perform the following operation. Let
e1, . . . , eq, eq+1 = e1 be the clockwise edge ring of v (in G) defined so that e1 and ei (i > 2)
lie on the bounding cycle of h and e2, . . . , ei−1 ∈ E(G − H). Such a cyclical rotation and an
index i of the edge ring of v exist and are uniquely defined by the invariant that the holes of H
are simple and disjoint.

We first introduce a copy e′1 of the edge e1 embedded between eq and e1 in this order. We
also introduce a copy e′i of the edge ei embedded between ei and ei+1 in this order. The copies
are given fresh identifiers id(e′1), id(e′i). Afterwards, we split v into two vertices v and v′ and
connect them by a pair of new edges e′, e′′ so that the old edge ring of v is also split as follows:

• the clockwise edge ring of v (in G) is now e1, . . . , ei, e
′, e′′,

• the clockwise edge ring of v′ (in G) is now e′′, e′, e′i, ei+1, . . . , eq, e
′
1.

The identifiers of the edges of the split edge ring are unchanged. This operation is performed
consistently on H and all its (weak) ancestors H ′, and also on H∆ (in H∆ the edge ring of the
vertex v will become e1, vvh, ei, e

′, e′′).
Let H ′ be any weak ancestor of H. Observe that if v ∈ ∂H ′ then v is still a boundary vertex

of H ′ after such an operation. Vertex v′, on the other hand, has no adjacent edges in G −H,
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and hence no adjacent edges in G − H ′. As a result, we have v′ /∈ V (G − H ′) (since G − H ′
is edge-induced) and consequently v′ /∈ ∂H ′. Observe that the transformation does not alter
the holes of any of the ancestors H ′ (in terms of their bounding cycles) and only introduces
two new triangular faces e1e

′
1e
′, eie′ie

′′ and one face e′e′′ of size 2 in each of these ancestors H ′

(including H and G).
The last step of the transformation is to replace v with v′ on C(H) and the edges e1, ei

(if they appear on C(H)) with the edges e′1, e
′
i respectively. Afterwards, C(H) is still a simple

cycle (of the same size) in H∆, but v /∈ C(H) and thus v is no longer bad.
Once there are no more bad vertices, setting child1(H) and child2(H) to be the part of H

that is weakly inside and weakly outside of C(H), respectively, produces pieces with simple and
pairwise disjoint holes. We have Sep(H) = V (child1(H)) ∩ V (child2(H)) = V (C(H)) \A∆ and
the size of V (C(H)) did not increase as a result of to the performed transformations, so we have
|Sep(H)| = O(

√
|V (H)|).

Note that setting childi(H) to be the weak interior or weak exterior of C(H) can generally
lead to E(child1(H))∩E(child2(H)) 6= ∅, which violates our definition of a recursive decompo-
sition. We circumvent this problem as follows. After the previous transformations, but before
initializing child1(H) and child2(H), in H and all its ancestors, for each e ∈ E(H) ∩ E(C(H))
we introduce an edge e′ parallel to e and connecting the same endpoints, so that ee′ forms a
face of size 2. We make e embedded inside the curve C(H) (i.e., we “bend” the embedding
of the original e so that it lies inside the curve C(H), as opposed to on the curve C(H)) and
embed e′ is outside C(H). As a result, the embedding of H now intersects with the curve C(H)
only in the vertices of C(H). Observe that this transformation does not change the status of
the individual faces of the affected graphs: each face of size at least 3 is a hole if and only if it
was a hole before the transformation. Also, all the affected graphs are still connected.

We now argue why each hole of child1(H) consists solely of vertices ∂child1(H) (the argument
for child2(H) is analogous). Recall that by invariants posed on H and Lemma 4.1.3, before
transforming H, ∂H was equal to the set of vertices of holes of H. As we argued before, this
is still true after the transformation of H which did not change either the boundary of H or
its holes. If h is a hole of H as well, then by the invariant posed on H, it consists solely
of vertices of ∂H ∩ V (child1(H)) ⊆ ∂child1(H), by Lemma 4.1.2. On the other hand, if h is
not the hole of H, it is uniquely defined and consists of vertices of Sep(H) and vertices W of
holes of H crossed by the curve C(H) such that these vertices are inside C(H). Since again
by Lemma 4.1.2, Sep(H) ⊆ ∂child1(H) and by the invariants combined with Lemma 4.1.3,
W ⊆ ∂H ∩ V (child1(H)) ⊆ ∂child1(H), we conclude that in fact V (h) ⊆ ∂child1(H).

Now we discuss how we pick the weight function x : V (H∆) → R≥0 used to separate each
piece H based on its level `(H). We assign the weights as follows (recall that the simple cycle
separator algorithm is run on H∆ before any transformations):

• If `(H) ≡ 0 (mod 3), we set x(v) = [v ∈ V (H)] for v ∈ V (H∆).

• If `(H) ≡ 1 (mod 3), we set x(v) = [v ∈ ∂H] for v ∈ V (H∆).

• If `(H) ≡ 2 (mod 3), we set x(v) = [v ∈ A∆] for v ∈ V (H∆).

Note that this strategy indeed guarantees that the number of holes remains O(1) since if `(H) ≡
2 (mod 3), all holes h of H such that vh ∈ V (C(H)) are replaced with a single new hole in
the children of H, and the number of remaining holes on each side of C(H) drops at least by a
factor of 3

2 .
Denote by G′ the root piece of the obtained decomposition, after the decomposition of G

ends (in the following we assume G is the initial, input graph). For v ∈ V , we set S(v) to be {v}
combined with the set of vertices v′ of root piece G′ that were split out of v during the process,
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the set of vertices split out of all v′ and so on. It is clear that each time a vertex is split, the
two obtained vertices are connected by a pair of parallel edges. We include all these parallel
edges in the set E0. Hence, G′[S(v)] is connected for each v ∈ S(v) and in fact the connected
components of (V ′, E0) are exactly the sets S(v). Each introduced pair of parallel edges can be
oriented to form a directed cycle of length 2, and therefore G′[S(v)] can be easily oriented to
be strongly-connected.

For each original edge uv = e ∈ E, e may change its endpoints as a consequence of vertex
splits, but it is easy to see that, throughout the process, the former endpoint always belongs to
S(u) and the latter always belongs to S(v). Since the identifiers of edges connecting vertices
from different sets S(u), S(v) are never changed, it is easy to see that the edge e′ ∈ E(G′) such
that id(e′) = id(e) connects a vertex from S(u) with a vertex of S(v). These edges form the set
E′, i.e., E′ = {e′ ∈ E(G′) : id(e′) ∈ id(E)}.

We define E× to be the set of remaining auxiliary edges, i.e., E× = E(G′) \ (E0 ∪ E′).
Now that we described our construction and argued that the invariants are preserved in the

children of each piece, which results in the obtained decomposition being simple, we need to
prove that the quantitative properties (1), (2), (3), and (4) of the recursive decomposition are
also satisfied.

Let f = 2
√

2 and γ = 2
3 . First, we introduce a notion of initial and extra vertices of each

piece H of the obtained decomposition. The initial vertices V0(H) ⊆ V (H) are the vertices
of H before H is transformed and further decomposed, or in other words, V0(H) is the set
of vertices of H at the beginning of the recursive call on H. Here, by V (H) we denote the
final set of vertices of H, after the decomposition of H ends. Recall that if |V0(H)| ≥ n0,
then a simple cycle separator C(H) is computed, and at most |V (C(H))| ≤ f

√
|V0(H)| new

vertices are introduced to make sure there are no bad vertices and the decomposition algorithm
is run on the parts of H on the two sides of C(H). The children of H are further decomposed
and each new vertex introduced in a descendant piece of H is also added to H. When the
algorithm terminates, V0(H) ⊆ V (H), but V (H) can be generally larger than V0(H). We call
the vertices V (H) \ V0(H) extra vertices of H. Observe that the set ∂H is never altered by the
transformations of H or its descendants (i.e., ∂H is fixed before H is further decomposed) so
we have ∂H ⊆ V0(H).

Let n0 be such that γn0 + 5f
√
n0 < n0.

Lemma 4.1.5. Suppose a recursive call is being performed on a graph H with n initial vertices.
Then, χ(H) = O(n) and all pieces in the decomposition of H have O(n) initial vertices.

Proof. First note that if a piece H has n initial vertices, the transformations on H never add
more than min(f

√
n, n) vertices. Hence, a child of any piece has no more than twice as many

initial vertices than that piece. Moreover, if the level of H (in TG) is divisible by 3, we perform
a balanced partition of H with respect to its initial vertices and then add at most f

√
n extra

vertices to H before initializing the children of H. Thus, the children of H have at most
γn+ 2f

√
n initial vertices in this case.

Suppose H ′ is any nearest descendant of H such that `(H ′) ≡ 1 (mod 3) (with respect
to TG′). Observe that the parent of H ′ can have no more than n + f

√
n + f

√
2n < n + 3f

√
n

initial vertices. Hence, H ′ can have at most γ(n + 3f
√
n) + 2f

√
n < γn + 5f

√
n < n initial

vertices. Consequently, on any H-to-leaf path of the decomposition of H, the pieces H ′ at levels
`(H ′) ≡ 1 (mod 3) (with respect to TG′) have decreasing numbers of initial vertices. We thus
have χ(H) ≤ 3n+ 4 = O(n).

Note also that each piece H ′ in the decomposition of H has no more than 4n = O(n) initial
vertices as either H ′ or some of the two nearest ancestors of H ′ is either equal to H or has level
congruent to 1 modulo 3 and hence has no more than n initial vertices.
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Lemma 4.1.6. There exist constants K, d such that K ≥ 1 is an integer, d ≥ 1, and such that
for any n0 satisfying γn0 + 5f

√
n0 < n0, there exists n∗ ≥ n0 satisfying the following property.

Suppose a recursive call is being performed on a graph H with n ≥ n∗ initial vertices and
b boundary vertices. Then, after K levels of recursive decomposition according to the described
rules, we obtain a decomposition of H into q ≤ 2K leaf graphs H1, . . . ,Hq such that:

• each Hi has n′i initial vertices and ni ≤ n′i ≤ ni + d
√
n < 1

2n,

• each Hi has at most b′i boundary vertices and bi ≤ b′i ≤ bi + d
√
n,

• ∑q
i=1 ni ≤ n, and ni ∈ [0, 1

3n],

• ∑q
i=1 bi ≤ b, and bi ∈ [0, 1

3b],

• for each intermediate graph H ′ that is decomposed to obtain H1, . . . ,Hq (i.e., H ′ is a
descendant of H and an ancestor of some Hi), H ′ has at most b+d

√
n boundary vertices.

Proof. Consider the recursion tree of this algorithm called on a graph H, but truncated to the
first K + 1 levels, where K is divisible by 3. The graph H is considered to be at level 0 in this
truncated tree. Let n∗ be such that n+ 2Kf

√
n ≤ 4n for any n ≥ n∗.

Let us analyze the maximum number of initial vertices Ni of some i-th level piece in this
truncated tree. First, we have Ni ≤ Ni−1 + f

√
Ni−1 for 0 < i ≤ K. If `(H) + i ≡ 1 (mod 3),

then we have Ni ≤ γNi−1 + 2f
√
Ni−1 (see the proof of Lemma 4.1.5).

Let us now prove Ni ≤ n + 2if
√
n. The bound is valid for i = 0 as N0 = n. Proceeding

inductively and using n ≥ n∗, for i > 0 we obtain

Ni ≤ Ni−1 + f
√
Ni−1

≤ n+ 2(i− 1)f
√
n+ f

√
n+ 2(i− 1)f

√
n

≤ n+ 2(i− 1)f
√
n+ f

√
4n

= n+ 2if
√
n.

Consequently, for i ≤ K we obtain

Ni ≤ n+ 2if
√
n ≤ n+ 2Kf

√
n ≤ 4n

and, as a result, Ni ≤ Ni−1 + 2f
√
n. For `(H) + i ≡ 1 (mod 3), in turn, we have Ni ≤

γNi−1 + 4f
√
n.

Using this, we now prove a stronger bound Ni ≤ γbi/3bn+3if
√
n. The bound holds trivially

for i = 0, 1, 2. Suppose i ≥ 3. For `(H) + i ≡ 0 (mod 3), we have

Ni ≤ Ni−1 + 2f
√
n

≤ Ni−2 + 4f
√
n

≤ γNi−3 + 8f
√
n

≤ γbi/3cn+ 3(i− 3)f
√
n+ 8f

√
n

≤ γbi/3cn+ 3if
√
n.

If `(H) + i ≡ 1 (mod 3), we have

Ni ≤ γNi−1 + 4f
√
n

≤ γ(Ni−2 + 2f
√
n) + 4f

√
n

≤ γ(Ni−3 + 4f
√
n) + 4f

√
n

≤ γ · γb(i−3)/3cn+ 3(i− 3)f
√
n+ 8f

√
n

≤ γbi/3cn+ 3if
√
n.
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Finally, if `(H) + i ≡ 2 (mod 3), we have

Ni ≤ Ni−1 + 2f
√
n

≤ γNi−2 + 6f
√
n

≤ γ(Ni−3 + 2f
√
n) + 6f

√
n

≤ γ · γb(i−3)/3cn+ 3(i− 3)f
√
n+ 8f

√
n

≤ γbi/3cn+ 3if
√
n.

Now let Bi be the maximum number of boundary vertices of a level-i piece in the considered
truncated tree. As we have Bi ≤ Bi−1 + f

√
Ni−1 ≤ Bi−1 + 2f

√
n for all 0 < i ≤ K and

Bi ≤ γBi−1 + 2f
√
n if `(H) + i ≡ 2 (mod 3), we can proceed analogously as for Ni and prove

that Bi ≤ γbi/3cb+ 2if
√
n.

Denote by V1(H) the set
⋃q
i=1 V0(Hi). We obviously have V0(H) ⊆ V1(H) ⊆ V (H). Note

that each vertex of V1(H) \ V0(H) is introduced when a bad vertex of some non-leaf (in the
truncated tree) piece is eliminated. As for each piece this happens at most f

√
4n = 2f

√
n times

and the number of non-leaf pieces is at most q − 1, we obtain

|V1(H)| = |V0(H)|+ |V1(H) \ V0(H)| ≤ n+ 2qf
√
n ≤ n+ 2K+1f

√
n.

Now let us set K ≥ 6 divisible by 3 such that γK/3 ≤ 1
3 , d = 2K+1f + 1 and n∗ large enough

so that the following inequalities are all satisfied for n ≥ n∗:
• 2K+1f

√
n > n0,

• γK/3n+ d
√
n < 1

2n,

• n+ 2Kf
√
n ≤ 4n,

• 22K+1f
√
n ≤ n.

Define now Xi = V (Hi) ∩ V (H −Hi). Since ∂H = V (H) ∩ V (G−H) and ∂Hi = V (Hi) ∩
V (G−Hi), we have Xi ⊆ ∂Hi ⊆ V0(Hi) and ∂Hi \Xi = V (Hi) ∩ (V (G−Hi) \ V (H −Hi)) ⊆
V (Hi) ∩ V (G − H) ⊆ ∂H ⊆ V0(H). Note that if v ∈ V (Hi) ∩ V (Hj), where i 6= j, then
v ∈ Xi ∩ Xj . Hence, any vertex of Hi not contained in Xi cannot be found in any other Hj .
We now prove the existence of the numbers n1, . . . , nq.

Let p ∈ {1, . . . , q} be such that |V0(Hp)| ≥ 2K+1f
√
n. Such p indeed exists as some leaf

piece has size at least n
q ≥ n

2K
≥ 2K+1f

√
n and we assumed n ≥ n∗.

Observe that we have |Xi| ≤ 2Kf
√
n since

Xi ⊆
⋃
{Sep(A) : A is an ancestor of Hi in the truncated tree},

Hi has at most K ancestors A, and we have Sep(A) ≤ f
√

4n = 2f
√
n. Let X ′i be any subset

of V0(Hi) of size min(|V0(Hi)|, d2K+1f
√
ne) such that Xi ⊆ X ′i. We set ni = |V0(Hi) \X ′i|. It

follows that Hi has at most ni + d2K+1f
√
ne ≤ ni + d

√
n initial vertices. The sets V0(Hi) \Xi,

where i 6= p, and V0(Hp) are all pairwise disjoint, and are all contained in V1(H), hence
q∑
i=1

ni =

q∑
i=1

|V0(Hi) \X ′i|

≤
∑

1≤i≤q
i 6=p

|V0(Hi) \Xi|+ |V0(Hp)| − 2K+1f
√
n

≤ |V1(H)| − 2K+1f
√
n

≤ n.
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Moreover, if Hi is not at level K of the truncated tree, then |V (Hi)| < n0 < 2K+1f
√
n∗ ≤

2K+1f
√
n. Hence, X ′i = V0(Hi) in that case. Therefore, we have either ni = 0 ≤ 1

3n if
X ′i = V0(Hi) or otherwise

ni = |V0(Hi)| − d2K+1f
√
ne

≤ NK − 2Kf
√
n

≤ γK/3n+ 3Kf
√
n− 2Kf

√
n

≤ γK/3n

≤ 1

3
n.

Similarly we prove that the numbers b1, . . . , bq within the required bounds do exist. In this
case we set bi = |∂Hi \ Y ′i |, where Y ′i is now defined to be any subset of ∂Hi such that Xi ⊆ Y ′i
and |Y ′i | = min(|∂Hi|, d2Kf

√
ne). Again, the sets ∂Hi \ Y ′i are pairwise disjoint and are all

contained in ∂H, thus
∑q

i=1 bi ≤ b. Observe that if the level of Hi in the truncated tree is less
than K, then |∂Hi| ≤ |V (Hi)| ≤ n0 ≤ 2Kf

√
n, and hence Y ′i = ∂Hi. If Y ′i = ∂Hi, then bi = 0;

otherwise (if Hi is at level K and Y ′i 6= ∂Hi), we have bi ≤ BK − 2Kf
√
n ≤ γK/3b ≤ 1

3b.

We now analyze a recurrence that will prove very useful when arguing about our decompo-
sition algorithm.

Lemma 4.1.7. Let K, d (independent of n0) and n∗ (dependent on n0) be constants as in
Lemma 4.1.6. Let u, z ≥ 1 and β ∈ [0, 1

2 ] ∪ {1} be some real constants.
Let Tz,β : TG′ → R≥0 be a function satisfying:

Tu,z,β(H) = unβ + zb2β if H ∈ TG is a leaf,

Tu,z,β(H) = unβ + zb2β + Tu,z,β(child1(H)) + Tu,z,β(child2(H)) otherwise.

where n = |V0(H)| and b = |∂H|. If n0 is sufficiently large (dependent on u, z and β), then:

Tu,z,β(H) =

{
O(n+ b log n) for β ∈ [0, 1

2 ],

O(n log n+ b2) for β = 1.

Proof. Let T (n, b) be defined as the maximum possible value of Tu,z,β(H) for any simple recursive
decomposition TG′ and H ∈ TG′ such that |V0(H)| = n and |∂H| = b. Let Q = 2K . By
Lemma 4.1.5 we have T (n, b) = 2O(n) · (u+ z) ·O(n2β), hence each T (n, b) is finite. Let

M = max
1≤n<n∗
0≤b≤n

T (n, b).

Clearly, M ≥ 1.
Observe that by Lemmas 4.1.5 and 4.1.6, when we decompose a piece H with n ≥ n∗ vertices

and b boundary vertices, each of weak descendants H ′ of H at levels `(H) through `(H) + K
has O(n) vertices and at most b+d

√
n boundary vertices. Hence, for each of these pieces H ′ we

would add an O(unβ + (b+ d
√
n)2β) = O(nβ + b2β) term when computing Tu,z,β(H) directly

using its definition. Hence, there exists a constant p ≥ 1 such that if n ≥ n∗, then we have

T (n, b) ≤ Qp(nβ + b2β) + max

{
q∑
i=1

T (n′i, b
′
i)

}
,

where the maximum is taken over:

• all possible q, 1 ≤ q ≤ Q = 2K ,
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• all possible q-tuples of integers n1, . . . , nq ∈ [0, 1
3n] such that

∑q
i=1 ni ≤ n,

• all possible q-tuples of integers n′1, . . . , n
′
q such that n′i ∈ [ni, ni + d

√
n].

• all possible q-tuples of integers b1, . . . , bq ∈ [0, 1
3b] such that

∑q
i=1 bi ≤ b,

• all possible q-tuples of integers b′1, . . . , b
′
q such that b′i ∈ [bi, bi + d

√
n].

We first inductively prove that for β ∈ [0, 1
2 ], if n0 is sufficiently large, we have

T (n, b) ≤M ·max(n− xn0.6 + yb log2 n, 1)

for all n, where y = 2Qp and x = 30.6

2−30.6
≥ 1. Clearly the bound holds for n ≤ n∗ by the

definition of M .
Let n0 be sufficiently large so that the following inequalities hold for all n ≥ n0:

• n0.6 + 2
3n ≤ n− x

√
n,

• 2Q(p+ yd)
√
n log2 n ≤ n0.6

Suppose now that n ≥ n∗ and the bound T (n, b) ≤M ·max(n−xn0.6 +yb log2 n, 1) holds for
all n′ < n. For fixed n′1, . . . , n

′
q, b
′
1, . . . , b

′
q, let S = {i : 1 ≤ i ≤ q ∧n′i− x(n′i)

0.6 + yb log2 n
′
i ≥ 1}.

We have:

T (n, b) ≤ Qp(nβ + b2β) + max

{
q∑
i=1

T (n′i, b
′
i)

}

≤ Qp(√n+ b) + max

{
q∑
i=1

T (n′i, b
′
i)

}
β ≤ 1

2

= Qp(
√
n+ b) + max

∑
i∈S

T (n′i, b
′
i) +

∑
i∈{1,...,q}\S

T (n′i, b
′
i)


≤ Qp(√n+ b) + max

{∑
i∈S

T (n′i, b
′
i)

}
+QM q ≤ Q

≤ Qp(√n+ b) +QM +M ·max

{∑
i∈S

(
n′i − x(n′i)

0.6 + yb′i log2 n
′
i

)}
induction

≤M ·
(

2Qp(
√
n+ b) + max

{∑
i∈S

(
n′i − x(n′i)

0.6 + yb′i log2 n
′
i

)})
M,p, n ≥ 1

≤M ·
(

2Qp(
√
n+ b) + max

{∑
i∈S

(
ni − xn0.6

i + ybi log2

(
1

2
n

))}
+2yQd

√
n log2 n

) ni ≤ n′i ≤
1

2
n

≤M ·
(
2Q(p+ yd)

√
n log2 n+ b(2Qp+ y log2 n− y)

+ max

{∑
i∈S

(
ni − xn0.6

i

)})

≤M ·
(
n0.6 + by log2 n+ max

{∑
i∈S

ni − x
∑
i∈S

n0.6
i

})
n ≥ n0, y = 2Qp
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Now suppose the maximum above is attained when
∑

i∈S ni <
2
3n. We then have:

n0.6 + max

{∑
i∈S

ni − x
∑
i∈S

n0.6
i

}
≤ n0.6 + max

{∑
i∈S

ni

}

≤ n0.6 +
2

3
n

≤ n− xn0.6.

If on the other hand the maximum is attained when n ≥∑i∈S ni ≥ 2
3n, then

n0.6 + max

{∑
i∈S

ni − x
∑
i∈S

n0.6

}
≤ n−

(
2

30.6
x− 1

)
n0.6 = n− xn0.6.

The last inequality above is by the fact that
∑

i∈S n
0.6
i is minimized (for real numbers n1, . . . , nq)

subject to
∑

i∈S ni ≥ 2
3n and 0 ≤ ni ≤ 1

3n when
∑

i∈S ni = 2
3n and the individual ni’s (i ∈ S)

are largest possible, i.e., two of them are equal to 1
3n, and all other are equal to 0. Hence,∑

i∈S n
0.6
i ≥ 2

(
n
3

)0.6.
Now we move on to the case β = 1. We prove that T (n, b) ≤ xn log2 n + yb2, where

y = 3Qp and x = max(M,Qp+ 2yQd2 + 1). Let n0 be sufficiently large so that the inequality
xQd
√
n log2 n ≤ n holds for all n ≥ n0.

Clearly, since x ≥M , the bound T (n, b) ≤ xn log2 n+yb2 holds for all n < n∗. Now suppose
n ≥ n∗ and assume the bound holds for all n′ < n. We have

T (n, b) = Qp(n+ b2) + max

{
q∑
i=1

T (n′i, b
′
i)

}

≤ Qp(n+ b2) + max

{
q∑
i=1

xn′i log2(n′i) + y(b′i)
2

}
n′i < n and induction

≤ Qp(n+ b2) + max

{
q∑
i=1

x(ni + d
√
n) log2

n

2
+ y(bi + d

√
n)2

}
n′i ≤ ni + d

√
n ≤ 1

2
n

≤ Qp(n+ b2) + max

{
q∑
i=1

x(ni + d
√
n) log2

n

2
+ 2y(b2i + d2n)

}
(e+ f)2 ≤ 2e2 + 2f2

≤ (Qp+ 2yQd2)n+Qpb2 + xQd
√
n log2 n

+ max

{
q∑
i=1

xni log2

n

2
+ 2yb2i

}

≤ (Qp+ 2yQd2 + 1 + x log2 n− x)n+Qpb2 + 2ymax

{
q∑
i=1

b2i

}
q∑
i=1

ni ≤ n, n ≥ n0

≤ (Qp+ 2yQd2 + 1 + x log2 n− x)n+

(
Qp+

2

3
y

)
b2

q∑
i=1

b2i ≤
1

3
b2

= xn log2 n+

(
Qp+

2

3
y

)
b2 x = Qp+ 2yQd2 + 1

= xn log2 n+ yb2. y = 3Qp

In the above, the inequality
∑q

i=1 b
2
i ≤ 1

3b
2 is justified by the fact that, by the convexity

of the function x2, the sum
∑q

i=1 x
2
i is maximized subject to

∑q
i=1 xi ≤ X and 0 ≤ xi ≤ 1

3X
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(for reals x1, . . . , xq) if x1 = x2 = x3 = 1
3X and xi = 0 for i > 3. In other words, under these

constraints we have
∑q

i=1 x
2
i ≤ 3 · X2

32
= X2

3 . Therefore,
∑q

i=1 b
2
i ≤ 1

3b
2.

Hence, the bound holds for all n. We have proved inductively that for β = 1 we indeed have
T (n, b) = O(n log n+ b2).

In the following, let n∗,K, d be as in Lemma 4.1.6. The following Lemmas 4.1.8 and 4.1.9
prove properties (1) and (2), respectively.

Lemma 4.1.8. Let H ∈ TG′ and n = |V0(H)|. Then χ(H) = O(log n).

Proof. Denote by h(n) the maximum height of a decomposition of an n-vertex piece. By
Lemma 4.1.5, h(n) = O(n) and hence h(n) is finite. We prove inductively that h(n) ≤
y +K log2 n, where y = max1≤n<n∗ h(n) = O(1). The bound holds trivially for n < n∗.

Suppose now that it holds for all n′ < n, where n ≥ n∗. Then, by Lemma 4.1.6:

h(n) ≤ K + max
(n′i)

q
i=1

{
max
1≤i≤q

h(n′i)

}
(n′i)

q
i=1 as in Lemma 4.1.6

≤ K + y +K · max
(n′i)

q
i=1

{
max
1≤i≤q

log2(n′i)

}
≤ K + y +K log2

(
1

2
n

)
monotonicity of log2 n and n′i <

1

2
n

≤ y +K log2 n.

We conclude that indeed h(n) = O(log n) and hence χ(H) ≤ h(n) = O(log n).

Lemma 4.1.9. Let H ∈ TG′ and n = |V0(H)|. Then TG′(H) has O(n) leaves and each leaf has
O(1) vertices.

Proof. Since the decomposition stops only when the piece to be decomposed has size less than
n0, each leaf has no more than n0 = O(1) vertices.

Now consider N(H), the total number of pieces in the decomposition of H, i.e., N(H) =
|TG(H)|. We have N(H) = 1 if H is a leaf and N(H) = 1 + N(child1(H)) + N(child2(H))
otherwise. Hence, in terms of the notation of Lemma 4.1.7, N = T1,0,0. Consequently, by
Lemma 4.1.7, N(H) = O(n).

Since the number L(H) of leaf pieces in TG′(H) is no more than |TG′(H)|, L(H) = O(n).

Lemma 4.1.10. Let H0 ∈ TG′ and n = |V0(H0)|. There exists a constant ρ > 1 such that for
any H ∈ TG′(H0), H has O(n/ρ`(H)−`(H0)) initial vertices.

Proof. Let s ≥ 1 be an integer such that for any graph H ′ with n′ initial vertices, the decom-
position of H ′ has height no more than sn′. Similarly, let g ≥ 1 be a constant such that for any
H ′ with n′ initial vertices, all pieces in the decomposition of H ′ have no more than gn′ initial
vertices. Both constants are guaranteed to exist by Lemma 4.1.5.

Let `′(H) = `(H) − `(H0). Let ρ = 21/K . We first prove that if |V0(H)| ≥ n∗, then
|V0(H)| ≤ gρK−`

′(H)n. We use induction on `′(H). For 0 ≤ `′(H) < K, we have |V0(H)| ≤
gn ≤ gn · ρK−`′(H) and the bound clearly holds.

Now suppose `′(H) ≥ K and that the bound holds for all ancestors of H. Let H ′ be the
ancestor of H at level `(H)−K. Then, by Lemma 4.1.6 applied to H ′,

|V0(H)| ≤ 1

2
|V0(H ′)| = 1

ρK
|V0(H ′)| ≤ 1

ρK
· gρK−`′(H′)n =

1

ρK
· gρ2K−`′(H)n = gρK−`

′(H)n.
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Now suppose |V0(H)| < n∗. If all ancestors of H in TG′(H0) have less than n∗ vertices, then
by Lemma 4.1.5, `′(H) ≤ sn ≤ sn∗ and thus ρ−`

′(H)+sn∗ ≥ 1. Thus, by Lemma 4.1.5,

|V0(H)| ≤ gn ≤ gρK−`′(H)+sn∗n.

Otherwise, let H ′ be the nearest ancestor of H (in TG′(H0)) of size at least n∗. Let H ′′

be the child of H ′ that is an ancestor of H (or is equal to H). By Lemma 4.1.5, we have
χ(H ′′) ≤ s · (n∗ − 1). From

`′(H) ≤ `′(H ′′) + χ(H ′′) = `′(H ′) + 1 + χ(H ′′) ≤ `′(H ′) + s · n∗

and |V0(H ′)| ≤ gρK−`′(H′)n, we obtain

1 ≤ |V0(H ′)| ≤ gρK−`′(H)+sn∗n.

By Lemma 4.1.5 applied to H ′, we conclude |V0(H)| ≤ g|V0(H ′)| ≤ g2ρK−`
′(H)+sn∗n.

Hence, for all pieces H, regardless of the size of V0(H), we have

|V0(H)| ≤ g2ρK+sn∗ · n/ρ`(H)−`(H0) = O(n/ρ`(H)−`(H0)).

Lemma 4.1.11. Let H0 ∈ TG′, n = |V0(H0)| and b = |∂H0|. Let ρ be the constant from

Lemma 4.1.10. For any H ∈ TG′(H0), |∂H| = O
(√

n/ρ`(H)−`(H0) + b/ρ`(H)−`(H0)
)

.

Proof. We proceed analogously as we did when bounding |V0(H)|. Let s and g be defined
as in the proof of Lemma 4.1.10 and let `′(H) = `(H) − `(H0). Recall that in the proof of
Lemma 4.1.10 we set ρ = 21/K .

First we prove that for a sufficiently large constant u ≥ d (to be determined later, d is as in
Lemma 4.1.6), if |V0(H)| ≥ n∗, then

|∂H| ≤ u
√
ρK ·

√
n/ρ`′(H) + b · ρK−`′(H).

We proceed by induction on `′(H). Indeed, if 0 ≤ `′(H) < K, then by Lemma 4.1.6 applied to
H0:

|∂H| ≤ |∂H0|+ d
√
n = b+ d

√
n ≤ u√n

√
ρK−`′(H) + b · ρK−`′(H).

Now suppose `′(H) ≥ K and that the bound holds for all ancestors of K. Let H ′ be the
ancestor of H at level `(H)−K. Then, by Lemmas 4.1.6 and 4.1.10 (both applied to H ′), for
some constant t > 1 we have:

|∂H| ≤ 1

3
|∂H ′|+ d

√
|V0(H ′)|

≤ 1

3
u

√
nρK−`′(H′) +

1

3
b · ρK−`′(H′) + d

√
tnρ−`′(H′)

=
√
n

(
1

3
u

√
ρ2K−`′(H) + d

√
t

√
ρK−`′(H)

)
+

1

3
b · ρ2K−`′(H).

Since 1
3b · ρ2K−`′(H) = ρK

3 bρ
K−`′(H) = 2

3bρ
K−`′(H) ≤ bρK−`′(H), it is enough to pick u such that

1

3
u

√
ρ2K−`′(H) + d

√
t

√
ρK−`′(H) ≤ u ·

√
ρK−`′(H).

Equivalently,
1

3
u
√
ρK + d

√
t ≤ u.
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As ρ = 21/K , it is sufficient to set u = d
√
t

1− 1
3

√
2
≥ d.

Now consider the case when |V0(H)| < n∗. Then if H has no ancestors with at least n∗

vertices in TG′(H0) then by Lemma 4.1.5, `′(H) ≤ sn ≤ sn∗ and thus ρ`
′(H)−sn∗ ≤ 1 and√

tn/ρ`′(H)−sn∗ ≥ 1.
Similarly, if H has the nearest ancestor H ′ with at least n∗ vertices, then `′(H ′) ≥ `′(H)−

sn∗, and by Lemma 4.1.10, 1 ≤ |V0(H ′)| ≤ tn/ρ`
′(H′) ≤ tn/ρ`

′(H)−sn∗ . We can conclude√
tn/ρ`′(H)−sn∗ ≥ 1 also in this case.
Therefore,

|∂H| < n∗ ≤ n∗
√
tn/ρ`′(H)−sn∗ = n∗

√
tρsn∗ ·

√
n/ρ`′(H).

Hence, by combining the obtained bounds, for all pieces H we obtain

|∂H| ≤
(
u
√
ρK + n∗

√
tρsn∗

)
·
√
n/ρ`′(H) +b ·ρK−`′(H) = O

(√
n/ρ`(H)−`(H0) + b/ρ`(H)−`(H0)

)
.

Lemma 4.1.11 proves property (3) of the obtained decomposition. The below Lemma 4.1.12
proves property (4).

Lemma 4.1.12. Let n = |V (G)| = |V0(G′)|. Then,
∑

H∈TG′
|∂H|2 = O(n log n).

Proof. Let S2(H) =
∑

H′∈TG′ (H) |∂H ′|2. Observe that S2(H) = |∂H|2 if H is a leaf and S2(H) =

|∂H|2 + S2(child1(H)) + S2(child2(H)) otherwise. Therefore, we have Sp = T0,1,1, where T0,1,1

is defined as in Lemma 4.1.7. Consequently, since ∂G = ∅, the lemma follows by the bound of
Lemma 4.1.7.

Lemma 4.1.13. Let H ∈ TG′. Then, |V (H)| = O(|V0(H)|).

Proof. Note that V (H) is equal to the union of initial vertex sets of the leaves of TG′(H).
However, by Lemma 4.1.9, there are O(|V0(H)|) leaves in TG′(H) and each has O(1) initial
vertices. Therefore, the union of initial vertex sets of the leaves of TG′(H) has O(|V0(H)|)
vertices and |V (H)| = O(|V0(H)|).

Corollary 4.1.14. Let n = |V0(G)|. Then, the obtained root graph G′ has O(n) vertices and
edges.

Proof. Since each leaf of TG′ is additionally simple, it hasO(1) edges and hence by Lemma 4.1.13,
the entire graph G′ has O(n) edges.

Lemma 4.1.15. The running time of the decomposition algorithm on an n-vertex simple, con-
nected, and triangulated graph G is O(n log n).

Proof. Again, the worst-case running time T (H) of the decomposition algorithm on a piece H
can be described as O(n) for a leaf piece H and O(n) +T (child1(H)) +T (child2(H)) otherwise.
Hence, by Lemma 4.1.7, we obtain T (H) = O(|V0(H)| log |V0(H)|). Consequently, the running
time of the algorithm on a n-vertex graph G is O(n log n).
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4.2 Structural Properties of Reachability in Plane Digraphs

In this section we present the structural properties of reachability in planar digraphs that we
exploit later in this chapter. We show how to efficiently represent reachability information
between a set of vertices that, roughly speaking, lie on a constant number of faces.

In fact, our analysis is more general and extends to sets of vertices that lie on a constant
number of separator curves, which we define below. In the following definition, we consider
undirected graphs or directed graphs where edge directions are ignored.

Definition 4.2.1. Let G be a plane embedded graph. A Jordan curve C is a separator curve
of G if and only if one of the following holds:

1. each connected component of G lies either weakly inside C or strictly outside C;

2. each connected component of G lies either weakly outside C or strictly inside C.

Moreover, for each uv = e ∈ E(G), the embedding of e either constitutes a contiguous fragment
of C or intersects with C only at its endpoints u, v.

Fact 4.2.2. Let f be a cycle bounding some simple face of a plane embedded connected graph G.
Then, the closed curve defined by the embedding of f is a separator curve.

We focus on separator curves instead of faces because for any subgraph H of G, any separator
curve of G is also a separator curve of H. However, clearly, a face of G might no longer be a
face of H.

Definition 4.2.3. Let P be some set totally ordered by ≺. An interval over the set P is a set
of the form [x, y]P = {z ∈ P : x � z � y}, where x, y ∈ P and x � y.

Consider a plane digraph G and let U = U1 ∪ . . . ∪ U`, U ⊆ V , be a set of vertices of G
that lie on ` = O(1) pairwise disjoint separator curves C1, . . . , C` of G. We have Ui = U ∩ Ci,
which implies Ui ∩ Uj = ∅ for i 6= j. For each considered set U satisfying these properties, we
fix any (out of possibly many) total order ≺ on the elements of U which satisfies the following
property. Consider the sequence S(U) of elements of U sorted according to ≺. Then, elements
of each Ui form a contiguous fragment of S(U) and are sorted in clockwise order (with respect
to Ci).

For X,Y ⊆ U we also write X ≺ Y if for each x ∈ X, y ∈ Y , we have x ≺ y. Note that
X ≺ Y implies X ∩ Y = ∅.

Definition 4.2.4. Let A be a binary matrix with both its rows and columns indexed with the
vertices of U . The rows and columns of A are ordered according to the order ≺. We say that A
is a reachability matrix for U in G if and only if for each u, v ∈ U , Au,v = 1 holds if and only
if there exists a path u→ v in G.

Definition 4.2.5. Let X,Y ⊆ U and let A be the reachability matrix of U . A binary matrix
AX,Y with rows indexed with X and columns indexed with Y (ordered according to ≺) is called
a reachability submatrix for X,Y if and only if AX,Yx,y = Ax,y for all x ∈ X and y ∈ Y .

Definition 4.2.6. Let X,Y ⊆ U . The subset of Y containing those y such that for some x ∈ X,
AX,Yx,y = 1 is called the set of active columns of AX,Y and is denoted by act(AX,Y ).

Definition 4.2.7. For a set A = {AS1,T1 , . . . , ASk,Tk} of reachability submatrices of A and a
row s ∈ U , we define a row projection rπs(A) to be the subset {ASj ,Tj ∈ A : s ∈ Sj}.

Similarly, for t ∈ U , we define a column projection cπt(A) = {ASj ,Tj ∈ A : t ∈ Tj}.
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The following lemma provides a decomposition of the reachability matrix A = AU used in
the next sections in a black-box manner.

Lemma 4.2.8. Let M = |U |. The reachability matrix A of U can be partitioned into a set
A = {AS1,T1 , . . . , ASk,Tk} of reachability submatrices such that:

1. for each s, t ∈ U , s 6= t, there exists exactly one such ASj ,Tj ∈ A that s ∈ Sj and t ∈ Tj,

2. for each ASj ,Tj ∈ A and T = act(ASj ,Tj ), the ones in each row of ASj ,T form O(1) blocks,

3. for any s ∈ U and t ∈ U , the sets rπs(A) and cπt(A) have size O(logM).

The sets Sj and Tj that define the partition depend only on the sets U1, . . . , Ut and the total
order ≺. The partition A can be computed in O(M2) time.

Observe that the fact that the partition of A in Lemma 4.2.8 only depends on the sets
U1, . . . , Ut and the order ≺ actually means that A computed for G preserves its properties if we
replace G with any subgraph H ⊆ G, V (H) = V . This is justified by the fact that each Ci is
also a separator curve of H.

We will also need the following extension of Lemma 4.2.8 which captures how the sets of
active columns of individual rows of the matrices of the partition A when G is subject to edge
deletions.

Lemma 4.2.9. Let G, U , A and A be as in Lemma 4.2.8. Suppose G undergoes edge deletions.
Fix some AS,T ∈ A and let T = act(AS,T ). Then, for any s ∈ S, the ones in row s of AS,T can
be covered by O(1) blocks, which only shrink in time.

Formally, let G = G0 ⊇ G1 ⊇ . . . ⊇ Gt be the subsequent versions of G undergoing edge
deletions. For i = 0, . . . , t, denote by Ai the matrix A and by T i the set act(AS,T ) when G = Gi.

Then for each i and s ∈ S, the subset of columns Cis ⊆ T i containing ones in row s of AS,T ii

can be covered by ks = O(1) (possibly empty) sets J is = J i1, . . . , J
i
ks

such that J i1∪ . . .∪J iks = Cis,
and:

• Each J ij is either empty or is of the form [xij , y
i
j ]T i.

• For any i > 0 and all j = 1, . . . , ks, J ij ⊆ J i−1
j , i.e., either J ij is empty or xi−1

j � xij and
yij � yi−1

j .

The remaining part of this section is devoted to proving Lemmas 4.2.8 and 4.2.9.

Definition 4.2.10. The reachability submatrix AS,T is called bipartite if S and T lie on a
single separator curve (i.e., S, T ⊆ Ui for some i ∈ {1, . . . , `}) and either S ≺ T or T ≺ S.

Lemma 4.2.11 (Monge property). Let AS,T be a bipartite reachability submatrix of U . Let
a, b ∈ S and c, d ∈ T be such that a ≺ b and c ≺ d. Suppose AS,Ta,c = 1 and AS,Tb,d = 1. Then

AS,Ta,d = 1 and AS,Tb,c = 1 also hold.

Proof. We have S, T ⊆ Ui for some i. Without loss of generality, assume that S ≺ T and that
all connected components of G lie either weakly inside of Ci or strictly outside Ci. Since a, b, c, d
lie on Ci, the connected components of G containing any of these vertices are all weakly inside
Ci. As AS,Ta,c = 1, there exists a simple path P = a → c contained entirely weakly inside Ci.
Similarly, there exists a path Q = b → d contained weakly inside Ci. By planarity of G, we
conclude that the paths P and Q must have a common vertex w (see Figure 4.1). Note that w
is reachable from both a and b. Analogously, both c and d are reachable from w. Thus, there
also exist paths a→ d and b→ d in G.
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Lemma 4.2.12. Let AS,T be a bipartite reachability submatrix of U . Let T = act(AS,T ). Let
s ∈ S be some row of AS,T containing at least one non-zero entry. Then, the columns Cs ⊆ T
containing ones in row s of AS,T form a single interval over T , i.e., C = [ls, rs]T , for some
ls, rs ∈ T , ls � rs.

This property is preserved when G undergoes edge deletions and the interval [ls, rs]T shrinks
in time.

Proof. Suppose there exist a, b, c ∈ T such that a ≺ b ≺ c and AS,Ts,a = 1, AS,Ts,b = 0 and AS,Ts,c = 1.

By the definition of T , there exists some other row s′ ∈ S, s′ 6= s, such that AS,Ts′,b = 1. Without
loss of generality let us assume s ≺ s′ (the case when s′ ≺ s is symmetric). Then we have both

AS,Ts,a = 1 and AS,Ts′,b = 1. By Lemma 4.2.11, this implies AS,Ts,b = 1, a contradiction.
Clearly, the above holds for every subgraph of G so when G undergoes deletions, the ones

in row s form a single interval over T until the row s becomes all-zero. Since the ones in AS,T

only disappear in time, the interval after a deletion has to be contained in the interval before
the deletion.

Lemma 4.2.13. Let m = |Ui|. The reachability submatrix AUi can be partitioned into a set
AUi = {AS1,T1 , . . . , ASk,Tk} of bipartite reachability submatrices such that:

1. for each s, t ∈ Ui, s 6= t, there exists exactly one such ASj ,Tj ∈ AUi that s ∈ Sj and t ∈ Tj,

2. for any s ∈ Ui and t ∈ Ui, the sets rπs(AUi) and cπt(AUi) have size O(logm).

The sets Sj and Tj that define the partition do not depend on the entries of AUi. The partition
AUi can be computed in O(m2) time.

Proof. We give a recursive procedure to construct the partition AX , for X ⊆ Ui. If |X| = 1,
the procedure exits immediately with AX = {AX}. Otherwise, let X = {x1, . . . , xk}, where
x1 ≺ . . . ≺ xk and k ≥ 2. Let q = b(k + 1)/2c. Set X1 = {x1, . . . , xq} and X2 = {xq+1, . . . , xk}.
Note that X1 ≺ X2. Thus, both AX1,X2 and AX2,X1 are bipartite reachability submatrices. We
add these matrices to the partition and recurse on the subsets X1 and X2 (see Figure 4.2).

Note that for any s, t ∈ Ui, s 6= t, the last recursive call with both s and t in the input set
X places the entries AUis,t and AUit,s in the bipartite reachability submatrices AX1,X2 and AX2,X1 ,
respectively.

Fix x ∈ X and assume |X| = k. Let f(k) be the number of bipartite reachability submatrices
that are produced by the recursive algorithm and contain a row (column) corresponding to x.
We have f(k) ≤ f(dk/2e)+1 and thus it is easy to see that f(k) = O(log k). Thus, we conclude
that for any s, |rπs(AUi)| = O(logm) and similarly |cπs(AUi)| = O(logm).
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The recursive procedure runs in time that is proportional to the total size of matrices that
are produced. Recall that for each s, t ∈ Ui, s 6= t, there exists exactly one such ASj ,Tj ∈ AUi
that s ∈ Sj and t ∈ Tj . It follows that the total running time is O(m2).

An analogue of Lemma 4.2.12 can be also shown for reachability submatrices AUi,Uj , where
i 6= j.

Lemma 4.2.14. Let AS,T be a reachability submatrix for the sets S = Ui, T = Uj, where i 6= j.
Let T = act(AS,T ). For each row s of AS,T , the ones in that row can be covered by O(1) intervals
over T that shrink over time when G undergoes edge deletions.

Proof. Let s be some row of AS,T containing at least one non-zero entry. Equivalently, there
exists a path s // y in G for some y ∈ T . Without loss of generality, assume that all connected
components of G lie either weakly inside Ci or strictly outside Ci. As s ∈ Ci and y is in the same
connected component of G as s, y lies weakly inside Ci. However, y ∈ Cj and Ci ∩ Cj = ∅, so
entire Cj lies strictly inside Ci. In particular, all vertices of T lie strictly inside Ci.

Recall that G undergoes edge deletions and let G0, G1, . . . be its versions over time. Let Gl
be the last version such that the row s in AS,T contains at least one non-zero entry.

Let P = s // y be the shortest directed path from s to a vertex of T in Gl. Note that the
path P exists in all graphs G = G0, . . . , Gl for which the row s in AS,T is not all-zero and P
does not exist in Gl+1. Clearly, P is simple (otherwise it would not be shortest in Gl) and y is
the only vertex of V (P ) ∩ T (again, otherwise it would not be the shortest).

Let us again focus on G. Let q be the last vertex of P such that q ∈ S and denote by Q the
directed subpath q = v1 . . . vk = y of P . By the definitions of a separator curve and path P , Q
is weakly inside Ci, weakly outside Cj , and V (Q) ∩ Ci = {q}, V (Q) ∩ Cj = {y}.

Let G′ be obtained by “cutting” G along the path Q as follows. We split each vertex vi
of Q into two vertices v′i and v′′i that inherit the edges of vi emanating strictly left or right
of Q, respectively. The created vertices are connected with directed paths Q′ = v′1 . . . v

′
k and

Q′′ = v′′1 . . . v
′′
k (see Figure 4.3). Let U∗ = (S ∪ T ) \ Q ∪ Q′ ∪ Q′′. Note that all the vertices of

U∗ lie on a single separator curve C∗ of G′. This curve can be used to impose some clockwise
order ≺s on U∗. Let us pick the order so that (S \Q) ≺s Q′′ ≺s (T \Q) ≺s Q′.

First we prove that any t ∈ T \ {y} is reachable from q in G if and only if t is reachable
from either q′ or q′′ in G′. The “if” part is trivial. Suppose there is a path R = q // t in G
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and let z be the last vertex that R and Q have in common. Note that z is not the last vertex
of R (by V (Q) ∩ T = {y}) and let the edge going out of z emanate left of R (without loss of
generality, the case when that edge emanates right of R is symmetric). The subpath z // t of
R has only its starting point in V (Q) and thus corresponds to a path z′ // t in G′. Therefore,
there exists a path q′ → z′ → t in G′.

Next we prove that if s 6= q, then any t ∈ T \ {y} is reachable from s in G if and only if t
is reachable from either q′ or q′′ or s in G′. To see the “if” part, note that t is reachable from
q′ or q′′ in G′ if and only if it is reachable from q in G, whereas q is reachable from s in G. For
the “only if” part, suppose there is a path s // t in G. Either this path intersects with Q and
then t is reachable from q in G (which, equivalently, means that t is reachable from q′ or q′′ in
G′), or the path does not intersect with Q and is thus preserved in G′.

Now let S∗ = S \ {q} ∪ {q′, q′′} and T ∗ = T \ {y}. Observe that the sets S∗, T ∗ constitute
contiguous fragments of the cycle containing the elements of U∗ on C∗ and S∗ ≺s T ∗. Con-
sider the bipartite reachability submatrix AS

∗,T ∗ in the graph G′. We show that act(AS,T ) =
act(AS

∗,T ∗) ∪ {y}. Clearly, act(AS
∗,T ∗) ∪ {y} ⊆ act(AS,T ). Let x ∈ act(AS,T ). There exists a

path S // x in G, where x ∈ T \ {y}. If this path does not intersect with Q, then it also exists
in G′. Otherwise, x is reachable from q in G and thus is reachable from either q′ or q′′ in G′, so
clearly x ∈ act(AS

∗,T ∗).
By Lemma 4.2.12, the ones in each row of AS

∗,T
∗

(with columns ordered with ≺s), where
T
∗

= act(AS
∗,T ∗) form at most one interval over T

∗
. Moreover, this interval of ones only shrinks

in time in versions G0, . . . , Gl.
Now let B be the matrix AS

∗,T
∗

but with columns ordered according to the original order
≺ imposed on U . Since the order ≺s restricted to T ∗ is just a cyclical shift of the order ≺
restricted to T \ {y}, and thus the order ≺s restricted to T

∗
is a cyclical shift of the order ≺

restricted to T \ {y}, we conclude that for each row of B the ones in that row:

• either form a single interval over T
∗

ordered by ≺, and this interval also shrinks in time
in versions G0, . . . , Gl,

• or they form two intervals over T
∗

ordered by ≺ such that one of these intervals starts
with the first column of T

∗
and the other ends with the last column of T

∗
. These two

intervals also only shrink in time in versions G0, . . . , Gl.

Observe that the set of ones in the row s of AS,T can be seen as the union of:

• a single one in the column y (since we have y ∈ T ),

• the set of ones in the row q′ of B,

• the set of ones in the row q′′ of B,

• if s 6= q, the set of ones in the row s of B.

Each of the above contributes at most two intervals over T \ {y} that only shrink over time.
These intervals, if interpreted as intervals over T , might contain the column y. This is not a
problem though because in fact y was chosen in such a way that the one in column y of row s
is there in all the versions G0, . . . , Gl for which s can reach some vertex of T .

In total, the ones in the row s of AS,T can be covered by O(1) intervals over T that shrink
in time.

Remark 4.2.15. Note that in the above proof of Lemma 4.2.14, for each row s we have shown
the existence of the interval cover that shrinks over time non-constructively as we referred to
some future version of the graph. However, this will turn out to be sufficient for our needs.
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Proof of Lemmas 4.2.8 and 4.2.9. We first partition A into `2 reachability submatrices AUi,Uj ,
for all i, j ∈ {1, . . . , `}. Each AUi,Ui is then partitioned using Lemma 4.2.13, whereas each AUi,Uj ,
for i 6= j, is included in A without further partitioning. As each u ∈ U belongs to exactly one
Ui, |rπu(A)| = |cπu(A)| = O(log |Ui|) + ` − 1 = O(logm). By Lemmas 4.2.12 and 4.2.14,
for all AS,T ∈ A, the ones in each row of AS,T , where T = act(AS,T ), can be covered with
O(1) intervals over T that only shrink in time. The running time of this procedure is clearly
O
(
m2 +

∑
i |Ui|2

)
= O(m2).

4.3 Partially-Dynamic Monge Transitive Closure

Let G be a plane embedded digraph and let U = U1 ∪ . . . U` ⊆ V (G) be a set of vertices lying
on O(1) fixed, pairwise disjoint separator curves C1, . . . , C` of G, as was the case in Section 4.2.

We say that the graph G is decremental if it is subject to edge deletions. We say that G is
U -incremental if it is subject to edge insertions but only such that they respect the embedding
of G and do not break the property that each Ci is a separator curve of G.

In this section we consider the following problem. For i = 1, 2, let Gi be a plane digraph
such that Ui ⊆ V (Gi) lies on O(1) fixed, pairwise disjoint separator curves of Gi. Suppose
that either both G1 and G2 are decremental, or G1 is U1-incremental and G2 is U2-incremental.
Our goal is to maintaining the transitive closure of the union of G+

1 [U1] and G+
2 [U2] subject to

batches of decremental (incremental) updates to these graphs resulting from deleting (inserting,
respectively) edges of G1 and G2. Efficient algorithm for these partially-dynamic problems will
turn out to be the key to obtaining fast decremental reachability algorithms for planar graphs.

The remainder of this section is devoted to proving the following two theorems.

Theorem 4.3.1. For i = 1, 2. let Gi be a plane digraph that is Ui-incremental. Let M =
|U1 ∪ U2| = poly(n). Then, we can maintain the transitive closure (G+

1 [U1] ∪G+
2 [U2])+ subject

to batches of incremental updates to the transitive closures G+
1 [U1] and G+

2 [U2] (resulting from
inserting edges to G1 and G2, respectively) in O(M2 log n log log n) total time.

Theorem 4.3.2. For i = 1, 2, let Gi be a plane digraph that is decremental. Let M = |U1∪U2| =
poly(n). Then, we can maintain the transitive closure (G+

1 [U1] ∪ G+
2 [U2])+ subject to batches

of decremental updates to the transitive closures G+
1 [U1] and G+

2 [U2] (resulting from deleting
edges from G1 and G2, respectively) in O(M2 log4 n) total time. The algorithm is Monte Carlo
randomized and is correct with probability at least 1− n−d, for any constant d ≥ 1.

4.3.1 Auxiliary Data Structures for Reachability Matrices

Similarly as in Section 4.2, let G be a plane digraph and let U ⊆ V (G) lie on a set of O(1)
disjoint separator curves of G. Let ≺ be the order imposed on U , as described in Section 4.2.
Let A be the reachability matrix of U in G and M = |U |. Let A be the partition of A of
Lemma 4.2.8.

Suppose G is either decremental or U -incremental. We would like to maintain the following
auxiliary data structures for each AS,T ∈ A:

• The set T = act(AS,T ).

• For all s ∈ S, the sets Outs(A
S,T ) = {x : AS,Ts,x = 1} along with its representation

Ivals(A
S,T ) as O(1) disjoint and non-empty intervals over T . Such a representation con-

sists of k disjoint intervals [x1, y1]T , . . . , [xk, yk]T , such that Outs(A
S,T ) =

⋃k
i=1[xi, yi]T .

Here, the number k might change in time, but is always bounded by a constant.
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Lemma 4.3.3. Suppose G is either decremental or U -incremental and after each change that
results in a change to the reachability matrix A we are given the updates to A accordingly.

Then, in O(M2 log n) total time, we can maintain the above auxiliary data structures for all
elements AS,T of the partition A.

Additionally, if G is decremental, then for all s ∈ S, each edge deletion issued to G can
only split or shrink the intervals of Ivals(A

S,T ), but never merge them. Specifically, at any
moment of time, if we denote by Ivals(A

S,T ) the representation after an edge deletion, and
by Ival′s(A

S,T ) the representation before that deletion, then for any J ∈ Ivals(A
S,T ), there is

exactly one J ′ ∈ Ival′s(A
S,T ) such that J ⊆ J ′ (here, J ′ is assumed to be an interval over T

′
,

where T
′
= act(AS,T ) before the deletion).

Proof. By Lemma 4.2.8, we can compute A in O(M2) time. Observe that by Lemma 4.2.8, this
partition is independent of the values in the cells of A so it does not need to be updated.

Note that the values in the cells of A can either only go from 1 to 0, or only from 0 to 1, so
clearly there are at most O(M2) updates to A throughout. Whenever a cell of A changes, we
update the corresponding cell in some AS,T . Again by Lemma 4.2.8, for each cell of A there is
exactly one AS,T ∈ A that contains that cell. While updating the matrices, it is also easy to
update the set act(AS,T ) for each AS,T ∈ A. We store act(AS,T ) in a balanced binary search
tree ordered by ≺.

For each row s ∈ AS,T , we store the set Outs(A
S,T ) in a balanced binary tree, again ordered

by ≺. This set can be updated in logarithmic time when some cell in this row changes its value.
In total, maintaining these sets takes O(M2 log n) time.

Let T = act(AS,T ). We initialize each set Ivals(A
S,T ) with a unique minimum-size set of

disjoint intervals [x, y]T such that
⋃

Ivals(A
S,T ) = Outs(A

S,T ). By Lemma 4.2.8 and minimality,
initially Ivals(A

S,T ) has O(1) intervals.
In the following we describe how the set Ivals(A

S,T ) is updated when some value in row
s of AS,T changes. Define Ival′s(A

S,T ), Out′s(A
S,T ) and T

′
to be the respective sets before the

deletion. We maintain the invariant that |Ival′s(A
S,T )| = O(1). Clearly, the invariant is satisfied

before the first update to the row s of A. We then construct the new representation Ivals(A
S,T )

as follows.
First consider the case when G is U -incremental. Then clearly T

′ ⊆ T and Out′s(A
S,T ) ⊆

Outs(A
S,T ). For each [xi, yi]T ′ ∈ Ival′s(A

S,T ), we construct a minimum set Ii of O(|T \ T ′|)
intervals over T such that

⋃
Ii = [xi, yi]T \ (T \ T ′). Let

I∗s =
(⋃{

Ii : [xi, yi]T ′ ∈ Ival′s(A
S,T )

})
∪
{

[z, z]T : z ∈ Outs(A
S,T ) \Out′s(A

S,T )
}
.

Note that since (T \T ′)∩Out′s(A
S,T ) = ∅, ⋃{Ii : [xi, yi]T ′ ∈ Ival′s(A

S,T )} = Out′s(A
S,T ), and

therefore
⋃
I∗s = Outs(A

S,T ) and the elements of I∗s are disjoint. Since |Ival′s(A
S,T )| = O(1), we

have

|I∗s | = |Ival′s(A
S,T )|·|T \T ′|+|Outs(A

S,T )\Out′s(A
S,T )| = O(|T \T ′|)+|Outs(A

S,T )\Out′s(A
S,T )|.

Observe that by first sorting the intervals I∗s , we can easily obtain a minimal set Ivals(A
S,T )

of intervals over T , such that
⋃

Ivals(A
S,T ) = I∗s = Outs(A

S,T ) in O(|I∗s | log n) time. By the
minimality of Ivals(A

S,T ) and Lemma 4.2.8, we conclude |Ivals(A
S,T )| = O(1).

To bound the total time needed to update the sets Ivals(A
S,T ) over all updates when G is

U -incremental, note that the sum of terms |T \ T ′| over all updates is at most |T |. Similarly,
the sum of terms |Outs(A

S,T ) \ Out′s(A
S,T )| over all updates is no more than |T |. Hence, the

total time needed to maintain the sets Ivals(A
S,T ) is O(|T | log n). Summing these total time
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costs over all AS,T ∈ A and s ∈ S, we obtain the bound O(M2 log n) as the total number of
cells in all matrices AS,T ∈ A is O(M2).

Let us now focus on the case when G is decremental. This case is a bit more involved because
we pursue stronger properties of how the sets Ivals(A

S,T ) change. For any [x, y]
T
′ ∈ Ival′s(A

S,T )
we just split [x, y]

T
′ into a minimum number of intervals [a, b]T , where [a, b]T ⊆ [x, y]

T
′ ,

such that [a, b]T ⊆ Outs(A
S,T ). Observe that splitting of each interval can be done in time

nearly linear in time number of elements removed from Out′s(A
S,T ) after the edge deletion.

Namely, the endpoints of new intervals that should replace [a, b]T can be found by issuing cer-
tain predecessor/successor queries to the BST storing the already-up-to-date set Outs(A

S,T ) in
O
(
|Out′s(A

S,T ) \Outs(A
S,T )| log n

)
time.

Clearly, from the algorithm computing Ivals(A
S,T ) it follows that the intervals shrink or

split but never merge. We only need to prove that the size of Ivals(A
S,T ) is O(1) at all times.

Note that since the total number of entries in all matrices AS,T is M2, it will follow that the
total time needed to maintain these sets is O(M2 log n).

By Lemma 4.2.9, there exists a collection Js of ks = O(1) “shrinking” intervals
[x1, y1]T , . . . , [xk, yk]T that cover Outs(A

S,T ), i.e.,
⋃Js = Outs(A

S,T ), when time passes. How-
ever, we do not know how this collection looks like exactly and how it behaves when G undergoes
deletions. What we can prove, however, is that at all times each of these shrinking intervals
[xi, yi]T is contained in exactly one [a, b]T ∈ Ivals(A

S,T ) and each [a, b]T ∈ Ivals(A
S,T ) contains

some [xi, yi]T ∈ Js. Observe that a simple consequence of this fact is that
|Ivals(A

S,T )| ≤ |Js| = O(1).
We prove this property inductively. Obviously, it holds at the beginning as we initialize

Ivals(A
S,T ) with a minimal set of disjoint intervals whose union is Outs(A

S,T ). Suppose some
edge deletion happens. Let J ′s be the collection of Lemma 4.2.9 before the deletion, and Js –
after the deletion. By the induction hypothesis, the collection J ′s can be partitioned into disjoint
classes J ′[c,d], containing intervals of J ′s that were contained in each [c, d]

T
′ ∈ Ival′s(A

S,T ). Let

[a, b]
T
′ ∈ Ival′s(A

S,T ). Suppose our algorithm breaks [a, b]
T
′ into intervals [a1, b1]T , . . . , [aq, bq]T

after the deletion. By the minimality of this partition, after the deletion, for all i, 1 ≤ i < q,
there exists z ∈ T , bi ≺ z ≺ ai+1 such that z /∈ Outs(A

S,T ). Clearly, for all [x, y]T ∈ J[a,b], we
have either z ≺ x or y ≺ z. Here, J[a,b] are the shrunk versions (recall Lemma 4.2.9) of intervals
J ′[a,b]. Therefore, each [x, y]T ∈ J[a,b] intersects with at most one interval [ai, bi]T and by the

definition of J ′[a,b], [x, y]
T
′ ⊆ [a, b]

T
′ . However, recall that

⋃Js =
⋃

Ivals(A
S,T ) = Outs(A

S,T )

so in fact each [x, y]T ∈ J[a,b] is contained in exactly one interval [ai, bi]T . On the other hand,
since both Js and Ivals(A

S,T ) cover Outs(A
S,T ), and Ivals(A

S,T ) is minimal, for each [ai, bi]T ,
some [x, y]T ∈ J[a,b] is contained in [ai, bi]T .

Remark 4.3.4. Assume the notation from Lemma 4.3.3. We will often need to access both
Ivals(A

S,T ) (the intervals after) and Ival′s(A
S,T ) (before) to capture the difference between these

two sets. We further assume that both these sets are maintained: when a new update comes,
Ival′s(A

S,T ) is set to Ivals(A
S,T ), and Ivals(A

S,T ) is computed as described in the proof of
Lemma 4.3.3.

Remark 4.3.5. Assume the notation from Lemma 4.3.3. Recall that if G is decremental, the
intervals of Ivals(A

S,T ) only shrink or split. When an interval [x, y]
T
′ ∈ Ival′s(A

S,T ) shrinks,
we assume it maintains its identity in Ivals(A

S,T ). When an interval [x, y]
T
′ splits into k > 1

intervals [x1, y1]T , . . . , [xk, yk]T , we assume that [x1, y1] takes over the identity of [x, y]
T
′ and

the intervals [x2, y2]T , . . . , [xk, yk]T are created. This way, for a fixed s, only O(1) intervals are
ever created in Ivals(A

S,T ).
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Proof. Note that |Ivals(A
S,T )| is equal to |Ival′s(A

S,T )| plus the number of intervals created,
minus the number of intervals of Ival′s(A

S,T ) that shrink to an empty interval. Observe that an
interval of J ′s can only shrink to an empty interval when some of the intervals of J ′s becomes
empty in Js. This might only happen O(1) times. However, in the proof of Lemma 4.3.3 we
have |Ivals(A

S,T )| ≤ |Js| = O(1) and |Js| is constant in time. Therefore, a new interval can be
created in Js only O(1) times.

4.3.2 Fast Breadth-First Search in a Union of Reachability Matrices

In this section we show how Lemma 4.2.8, along with the data structures of Section 4.3.1, can be
used to find paths in a graph that, roughly-speaking, is a union of several reachability matrices
that satisfy the assumptions of Lemma 4.2.8. This algorithm resembles FR-Dijkstra [27] (see
also Chapter 5) and will prove very useful in the following sections of this chapter.

Lemma 4.3.6. For i = 1, . . . , p, let Gi be a plane digraph with vertices Vi. Let Ui be a subset
of Vi lying on a constant number of pairwise disjoint separator curves of Gi.

Suppose that for each i we are given the reachability matrix Ai of Ui in Gi, along with its
partition Ai of Lemma 4.2.8, and the auxiliary data of Lemma 4.3.3.

Define G =
⋃p
i=1G

+
i [Ui] and let |V (G)| = O(poly(n)). Then, for any s ∈ V (G), we can

perform a breadth-first search from s (i.e., compute the distances δG(s, v), for all v ∈ V ) in
O(|V (G)| log n log log n) = O ((

∑p
i=1 |Ui|) log n log logn) time.

Proof. We maintain the set W ⊆ V (G) of vertices discovered as reachable from s during the
breadth-first search. Initially, W = {s}. Moreover, for each v ∈ V (G), we maintain the value
D(v) which will eventually store the distance from s to v. Initially, D(s) = 0 and D(v) = ∞
for v 6= s.

The algorithm repeatedly chooses an unprocessed vertex v ∈W in fifo-order, and computes
the set Nout

G (v) \W containing exactly the vertices reachable from s through v by a single edge
that have not been yet discovered. Then, for each x ∈ Nout

G (v) \W , x is inserted into W and
we set D(x) = D(v) + 1.

It is clear that the entire computation, excluding the computation of sets Nout
G (v)\W , takes

O(|V (G)|) time. To compute the sets Nout
G (v)\W efficiently, we proceed as follows. Recall that

for each graph G+
i [Ui] that comprises G, we maintain the partition Ai of Ai of Lemma 4.2.8,

and some auxiliary components from Lemma 4.3.3. For all i, and each AS,T ∈ Ai, our algorithm
initializes and maintains the set act(AS,T ) \W in a dynamic predecessor data structure [93].
The total size of these sets is O(

∑p
i |Ui| log |Ui|) = O(|V (G)| log n), by Lemma 4.2.8.

First, any act(AS,T ) \W is possibly updated when act(AS,T ) shrinks. Such updates take
O (
∑p

i |Ui| log n log log n) time in total. When some new vertex v is inserted into W , for all i
such that v ∈ Ui we go through all of O(logUi) matrices AS,T ∈ cπv(Ai) and remove v from
act(AS,T ) \W . Such updates also take O (

∑p
i |Ui| log n log logn) time in total since each vertex

of Ui is inserted into W at most once. Now, observe that Nout
G (v) \W can be expressed as⋃

Ui:v∈Ui
AS,T∈rπv(Ai)

(
Outv(A

S,T ) \W
)
,

whereas for any v ∈ Ui and AS,T ∈ rπv(Ai) we have

Outv(A
S,T ) \W = (act(AS,T ) \W ) ∩ Ivalv(A

S,T ).

Thus, to compute Nout
G (v)\W , it is enough to intersect O(q log n) sets act(AS,T )\W with O(1)

intervals over act(AS,T ) where q ≤ p is the number of sets Ui such that v ∈ Ui.
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As the sets act(AS,T ) \W are stored as dynamic predecessor data structures, the elements
of each intersection can be reported in O(log log n) time per element. Hence, this step can
be implemented in O((|Nout

G (v) \W |+ q) log n log log n) time. In other words, we spend addi-
tional O(q log n log log n) time to process v and O(log n log logn) time per each vertex inserted
to W . Summing over all vertices v, the total time spent in this step during the search is
O (
∑p

i |Ui| log n log log n).
We conclude that the whole procedure takes O (

∑p
i=1 |Ui| log n log logn) time.

Corollary 4.3.7. For i = 1, . . . , p, let Gi, Vi, Ui, Ai and Ai be as in Lemma 4.3.6. Let H be
some (not necessarily planar) directed graph.

Define G = H ∪⋃p
i=1G

+
i [Ui] and let |V (G)| = O(poly(n)) and |E(H)| = O(poly(n)). Then,

we can compute distances from s to all vertices of G in O ((|V (G) + |E(H)|) log n log logn) time.

Proof. Note that each edge uv = ej ∈ E(H) can be treated as two-vertex graph Gp+j with
Up+j = {u, v}. For any embedding of e there clearly exists a Jordan curve going through u
and v and not crossing this embedding of e. Hence, Up+j lies on a constant number of disjoint
separator curves of Gp+j . Therefore, we can apply Lemma 4.3.6.

4.3.3 Incremental Algorithm

Queue-Based Incremental Transitive Closure Algorithm

We first show and analyze a simple queue-based algorithm for updating the transitive closure
of a (general) graph after a set of edges is added. Its pseudocode is given as Algorithm 3. The
algorithm should be considered folklore, but for the sake of completeness we describe it in a
detailed way as we need its efficient implementation.

The transitive closure algorithm is based on the following idea. Whenever it determines
that a vertex b is reachable from a vertex a, it infers that every vertex reachable from b by an
edge is also reachable from a and every vertex that has an edge to a can also reach b. Then, it
propagates this information using a queue.

Algorithm 3 The queue-based incremental transitive closure.
Require: A digraph G, such that F ⊆ E(G) and the transitive closure H = (G− F )+.
Ensure: H = G+.
1: function UpdateTransitiveClosure(G,H,F )
2: Q := empty queue
3: for uv ∈ F do
4: if uv /∈ E(H) then
5: E(H) := E(H) ∪ {uv}
6: Q.Enqueue(uv)

7: while Q is not empty do
8: ab := Q.Dequeue
9: for x ∈ Nout

G (b) \Nout
H (a) do

10: E(H) := E(H) ∪ {ax}
11: Q.Enqueue(ax)

12: for x ∈ N in
G (a) \N in

H (b) do
13: E(H) := E(H) ∪ {xb}
14: Q.Enqueue(xb)

Lemma 4.3.8. Algorithm 3 is correct.
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Proof. First we show that pq ∈ E(H) only if there is a path p → q in G. This is satisfied
initially by the fact that H = (G − F )+. Note that the algorithm adds uv to H in line 5 if
uv ∈ E(G) and thus there is a path u → v in G. Hence, before the first iteration of the while
loop, pq ∈ E(H) only if pq ∈ E(G+) and Q only contains edges pq such that pq ∈ E(G+). Now
we show that this condition is satisfied after all subsequent iterations of the while loop. Indeed,
the algorithm adds ax to H in line 10 when ab ∈ E(G+) (since ab has been removed from Q)
and bx ∈ E(G). Similarly, it adds xb to H in line 13 when ab ∈ E(G+) and xa ∈ E(G). In both
cases it is easy to see that if pq is added to H (and to Q) then there exists a path p→ q in G.

It remains to show that if adding F causes q to be reachable from p, then the algorithm
adds the edge pq to H (we assume that q was not reachable from p before adding edges F to
G). Let P be some p → q path in G. We say that an edge e of P has a detour avoiding F if
a subpath of P containing e can be replaced with a path (detour) that does not contain edges
of F and the obtained path still connects p and q. As long as P has an edge of F that has a
detour avoiding F we replace its respective subpath with the detour. This process terminates
as at each step we reduce the number of edges of F on P . Once the process terminates, P
contains some edge uv of F as there is no path from p to q that does not contain edges of F .
Moreover, uv does not have a detour avoiding F .

Let P ′ = p′ → q′ be a subpath of P that contains the edge uv. We have that p′q′ /∈ E(H) =
E((G−F )+) before the algorithm was run as P ′ could not be replaced with a detour. We now
use induction on the length of P ′ to show that the algorithm adds p′q′ to H.

The case when k = 1 is easy because the only valid path P ′ of length 1 is the edge uv itself:
uv is added to H in line 5. Let us now consider a path P ′ of length k > 1. Either the first or
the last edge of P ′ is not equal to uv. Without loss of generality, let us assume that it is the
last one and denote it by rq′. By the induction hypothesis, the algorithm adds the edge p′r
to H. This means that it then adds p′r to the queue. Consider the iteration of the while loop
when p′r is removed from the queue, that is ab = p′r. Clearly, q′ ∈ Nout

G (b) = Nout
G (r) as rq′ is

an edge on a path in G. There are two cases to consider. If q′ ∈ Nout
H (a) = Nout

H (p′), then we
already have p′q′ ∈ E(H). Otherwise, q′ ∈ Nout

G (b) \Nout
H (a) and then aq′ = p′q′ is added to H

in line 10 of some iteration of the for-loop. This completes the proof.

The following lemma highlights which part of Algorithm 3 can be sped up.

Lemma 4.3.9. The running time of Algorithm 3, excluding the time needed to compute the sets
Nout
G (b) \Nout

H (a) and N in
G (a) \ N in

H (b), is proportional to the number of edges added to H (or
constant, if no edges are added to H).

Proof. Let k be the total number of edges added to H by the algorithm. Observe that just
before the algorithm adds ax to H in line 10, we have ax /∈ E(H) as x /∈ Nout

H (a). The similar
reasoning applies to line 13. Thus, the total running time of the two for loops is proportional
to k.

Moreover, the number of elements added to the queue Q is at most k. This implies that the
total number of iterations of the while loop is at most k, and the lemma follows.

Proof of Theorem 4.3.1

For i = 1, 2, let us identify the graph G+
i [Ui] with the reachability submatrix of Ui in Gi. In

order to handle each update efficiently, we use Algorithm 3 for a graph G = G+
1 [U1] ∪ G+

2 [U2]
initially equal to (U1 ∪ U2, ∅). Specifically, initially and after each updated we require that
H = (G+

1 [U1] ∪ G+
2 [U2])+. When some Gi is updated and thus we are given a batch F of

new edges that have been added to G+
i [Ui], we run UpdateTransitiveClosure(G,H,F ).

Moreover, we leverage the special structure of matrices G+
i [Ui] to reduce the total time spent
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on computing the sets Nout
G (b) \Nout

H (a) and N in
G (a)\N in

H (b) in lines 9 and 12. In the following we
only deal with the former set; in order to compute the latter, one needs to proceed symmetrically.

We start by computing the partition Ai = {AS1,T1 , . . . , ASk,Tk} of Lemma 4.2.8 of the
matrix G+

i [Ui]. This is possible since Ui lies on O(1) fixed, pairwise disjoint separator curves
of Gi. While G+

i [Ui] undergoes incremental updates, we also maintain the data structures
accompanying the matrices AS,T ∈ Ai described in Section 4.3.1. This takes O(M2 log n) total
time, by Lemma 4.3.3.

For each a ∈ U1 ∪ U2 and AS,T ∈ A1 ∪A2 the algorithm stores a reachability candidates set
cana(A

S,T ) ⊆ act(AS,T ). The algorithm maintains the invariant that

cana(A
S,T ) = act(AS,T ) \Nout

H (a).

Whenever a column t ∈ T of AS,T becomes active, we check whether at ∈ E(H) and if not, we
insert t into cana(A

S,T ). Once we insert at to H, t is removed from cana(A
S,T ) (and, clearly,

never added again as we never remove edges from H in Algorithm 3). Each cana(A
S,T ) is stored

as a dynamic predecessor data structure [93].

Lemma 4.3.10. The sets of reachability candidates can be maintained in O(M2 log n log logn)
total time.

Proof. Fix a ∈ U1 ∪ U2. For each AS,T ∈ A1 ∪ A2, each element of T is added to and removed
from cana(A

S,T ) at most once. If A1 ∪ A2 = {AS1,T1 , . . . , ASk,Tk} then the total number of
operations is

∑k
i=1 |Ti|. By Lemma 4.2.8, for each b ∈ U1 ∪ U2 there are O(logM) = O(log n)

matrices AS,T ∈ A1 ∪ A2 such that b ∈ T . Thus we make at most
∑k

i=1 |Ti| = O(M log n)
operations for a fixed a, which gives O(M2 log n) operations in total. Since each operation on
a dynamic predecessor data structure takes O(log log n) time, we conclude that maintaining
reachability candidates sets takes O(M2 log n log logn) time.

We are now ready to show how to speed up line 9 of Algorithm 3. The goal is to compute
the set Nout

G (b) \Nout
H (a) efficiently. Algorithm 3 traverses this set, once it is computed, but

this does not affect the running time considerably. Only the computation of the set could be
slow. This means that it suffices to compute the set in time which is, say, almost linear in
its size. Our algorithm, roughly speaking, uses the property that Nout

G (b) is represented by a
small number of intervals, so computing an intersection with the set Nout

G (b) is easy. Recall that
rπb(Ai) is the subset of Ai consisting of matrices which contain the row b.

Lemma 4.3.11. Let

Q =
⋃

i∈{1,2}

⋃
AS,T∈rπb(Ai)

(
cana(A

S,T ) ∩Outb(A
S,T )

)
.

Then Q = Nout
G (b) \Nout

H (a).

Proof. By Lemma 4.2.8 and the definition of the sets Outb(A
S,T ), we have

Nout
G (b) =

⋃
i∈{1,2}

⋃
AS,T∈rπb(Ai)

Outb(A
S,T )

=
⋃

i∈{1,2}

⋃
AS,T∈rπb(Ai)

act(AS,T ) ∩Outb(A
S,T ).
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Moreover cana(A
S,T ) = act(AS,T ) \Nout

H (a). Hence

Q =
⋃

i∈{1,2}

⋃
AS,T∈rπb(Ai)

cana(A
S,T ) ∩Outb(A

S,T )

=
⋃

i∈{1,2}
AS,T∈rπb(Ai)

(act(AS,T ) \Nout
H (a)) ∩Outb(A

S,T )

=

 ⋃
i∈{1,2}

AS,T∈rπb(Ai)

(act(AS,T ) ∩Outb(A
S,T ))

 \Nout
H (a)

= Nout
G (b) \Nout

H (a).

Lemma 4.3.12. Q = Nout
G (b) \Nout

H (a) can be computed in O(|Q| log log n+ log n) time.

Proof. By Lemma 4.3.11, it suffices to compute⋃
i∈{1,2}

⋃
AS,T∈rπb(Ai)

cana(A
S,T ) ∩Outb(A

S,T ).

Since |rπb(Ai)| = O(log n) (by Lemma 4.2.8), this is a sum of O(log n) sets of the form
cana(A

S,T ) ∩ Outb(A
S,T ). Moreover, these sets are disjoint since for the matrices AS,T such

that AS,T ∈ rπb(Ai), the sets T are disjoint.
Let us focus on computing cana(A

S,T )∩Outb(A
S,T ). Recall that Outb(A

S,T ) = Ivalb(A
S,T ),

where Ivalb(A
S,T ) is a set of O(1) disjoint intervals over act(AS,T ).

However, we also have cana(A
S,T ) ⊆ act(AS,T ). As a result, to compute the intersection it

suffices to take elements of cana(A
S,T ) that are contained in the intervals describing Ivalb(A

S,T ).
Since cana(A

S,T ) is represented as dynamic predecessor data structure, finding a single element
of cana(A

S,T ) contained in a given interval can be done in O(log log n) time. Thus, we spend
O(log log n) time on computing each element of Q plus O(log n) time to consider O(log n) sets
that comprise the sum.

Proof of Theorem 4.3.1. By Lemmas 4.3.3 and 4.3.10 the total cost of computing and updating
the auxiliary data structures of Section 4.3.1 for graphs G+

i [Ui] and the reachability candidates
is O(M2 log n log log n). By Lemma 4.3.9, the total running time of Algorithm 3 excluding the
cost of lines 9 and 12 is O(M2). By Lemma 4.3.12, it takes O(q log logn + log n) to execute
each of these lines, assuming that they compute a set of size q. Since each such set is then
traversed by the algorithm, the O(q log logn + log n) = O((q + 1) log n) overhead implies that
the transitive closure algorithm runs in O(M2 log n) total time. Thus, the overall running time
is O(M2 log n log log n).

4.3.4 Decremental Algorithm

Our strategy will be again to adjust an algorithm developed for general graphs to our needs. We
base our approach on the decremental (1 + ε)-approximate all-pairs shortest paths algorithm of
Bernstein [4]. Even though this algorithm is designed for a more general problem of computing
shortest paths, its simplified version – which, as we will see in this section, basically follows
from replacing all usages of the so-called h-SSSP data structure (also due to Bernstein [4])
with so-called Even-Shiloach tree (see Theorem 4.3.13 below) – in fact solves the decremental
transitive closure problem in Õ(nm) total time.
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Theorem 4.3.13 (Even-Shiloach tree [26, 46, 61]). Given an unweighted directed graph G and
a source s ∈ V , we can maintain the set of vertices of G at distance no more than d from s
subject to edge deletions in O(md) total time.

The advantage of the simplified algorithm of Bernstein [4], which we review below, over
other known Õ(mn) total update time decremental transitive closure algorithms [66, 83] is that
it essentially has a single bottleneck which is the efficiency of the Even-Shiloach tree. Thus,
giving a faster implementation of the Even-Shiloach algorithm for our graph of special form,
almost immediately yields a faster decremental algorithm maintaining (G+

1 [U1]∪G+
2 [U2])+. This

property of Bernstein’s algorithm, however, comes at a cost of using Monte-Carlo randomization
and assuming that the adversary is oblivious to the random choices made internally by the data
structure.

The Decremental Transitive Closure Algorithm of Bernstein [4].

Our description uses some parts of Section 6 of [4]. Some key claims about the transitive closure
algorithm of Bernstein are are only stated here. For full proofs consult [4].

In this section we will also −→es(G, s, d) (←−es(G, s, d)) to denote the set of vertices v of G at
distance no more than d from s (such that s is at distance no more than d from v, respectively),
but emphasizing that it is maintained using the data structure of Theorem 4.3.13 (used on the
reverse graph of G, respectively).

Assume for simplicity that n is a power of 2 and let q = log2 n. Let A0 = V . For each
i = 1, . . . , q, construct Ai from Ai−1 by picking half of vertices of Ai−1 uniformly at random.
This way, Ai is a random subset of n

2i
vertices, and in particular, |Aq| = 1.

Let d be the constant of Theorem 4.3.2 and set c = dd+ 5e. The algorithm sets up various
graphs depending on each other (without cyclic dependencies) and updates them accordingly
after each edge deletion so that they still satisfy their definitions.

In the following, denote by E(−→es(H, v, d)) the set {vy : y ∈ −→es(H, v, d)}, and similarly let
E(←−es(H, v, d)) = {xv : x ∈ ←−es(H, v, d)}. Set Aq+1 = ∅ and Dq+1 = ∅. There are q + 1 steps
numbered 0 through q.

For each step k = q down to 0, we do the following:

• For each v ∈ Ak, let

Gv,k = (V,E(G) ∪ {vy : y ∈ Ak+1, vy ∈ Dk+1} ∪ {xv : x ∈ Ak+1, xv ∈ Dk+1}).

• For each v ∈ Ak, maintain −→es(Gv,k, v, dk) and←−es(Gv,k, v, dk) for dk = min(n, dc·2k+1 lnne).
Using this, maintain an edge set

Dk =
⋃
v∈Ak

E(−→es(Gv,k, v, dk)) ∪ E(←−es(Gv,k, v, dk)).

Suppose an edge e is removed from G. The update procedure is very simple: we only
need to make all the maintained graphs, edge sets, and Even-Shiloach trees again satisfy their
definition, which is done as follows. Deleting an edge of G and issuing this deletion to relevant
Even-Shiloach trees may shrink the sets −→es(Gv,q = G, v, n) and←−es(Gv,q = G, v, n) for the unique
element v ∈ Aq. That, in turn, can cause an edge deletion from Dq which clearly influences
the graphs Gv,q−1, where v ∈ Aq1 , which in turn influences the edge sets E(−→es(Gv,q−1, v, d))
comprising Dq−1, and so on.

To check whether there exists a path u→ v in G, it is sufficient to check whether uv ∈ D0,
i.e., D0 contains exactly the edges of G+, as proved below.
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Theorem 4.3.14 ([4]). With probability at least 1 − n−d, the above algorithm maintains the
edges D0 of the transitive closure G+ subject to edge deletions issued to G. The total update
time is O(mn log2 n).

Proof sketch. The proof starts by noting a well-known fact (Lemma 4.4 in [4]), that if P is any
fixed simple path with at least min(n, dcn lnn/re) vertices, then the set S of r vertices of V
chosen uniformly at random contains at least one vertex of S with probability at least 1− n−c.

One can first observe that if uv ∈ Dk (for any k = q, . . . , 0), then there exists a u→ v path
in G. Suppose without loss of generality that u ∈ Ak. Then indeed, uv is put into Dk if there
exists a u→ v path in Gu,k and such a path is either entirely contained in G, or (if k < q) is a
concatenation of a single edge uu′ of Dk+1, where u′ ∈ Ak+1, with some u′ → v path from G.
Since uu′ ∈ Dk+1 certifies that there exists a u→ u′ path in G, we can apply induction.

Subsequently, one can prove inductively that for any moment of time t (recall that there
are at most m ≤ n2 edge deletions, hence t ≤ n2), for any k = q, . . . , 0, and for any (u, v) ∈
(Ak×V )∪ (V ×Ak), if some path P (t, u, v) = u→ v exists in G, then uv ∈ Dk with probability
at least 1− (q−k)n−c. In particular, since A0 = V , by the union bound it follows that D0 is the
edge set of the transitive closure of G at any time with probability at least 1− n2 · n2 · qn−c ≥
1− n−c+5 ≥ 1− n−d.

The claim clearly holds for k = q since for k = q we maintain the sets of all the vertices
reachable from v and all vertices that can reach v where v is the unique element of Aq.

Let k < q and suppose the claim holds for k′ = k + 1. We focus on proving the inductive
step in the case (u, v) ∈ Ak × V since the case (u, v) ∈ V ×Ak is completely analogous.

If P (t, u, v) has no more than dk = min(n, dc · 2k+1 lnne) vertices, then clearly there exists
a u → v path of length less than dk in Gu,k since G ⊆ Gu,k. Suppose that P (t, u, v) has more
than dk vertices and consider the subpath P ′(t, u, v) = u′ → v of P (t, u, v) consisting of its dk
last vertices. Since Ak+1 is completely random from the point of view of the path P ′(t, u, v),
with probability at least 1−n−c, P ′(t, u, v) contains a vertex of v′ ∈ Ak+1. It follows that there
exists a path u→ v′ in G. Hence, by the inductive assumption, uv′ ∈ Dk+1 with probability at
least 1− (q−k−1)n−c. Let P ′′(t, u, v) be the v′ → v subpath of P ′(t, u, v). Then uv′ ∈ E(Gu,k)
and v′ → v = P ′′(t, u, v) ⊆ G ⊆ Gu,k, so we conclude that there exists a path u → v of length
at most dk in Gu,k with probability at least 1− (q − k)n−c. By the definition of Dk, it follows
that uv ∈ Dk with the same probability.

To bound the total update time of this algorithm, first note that for each k = q, . . . , 0,
we maintain O(n/2k) Even-Shiloach trees on graphs with m + O(n) edges up to depth dk =
O(2k log n). Hence, by Theorem 4.3.13, the total update time for a fixed k is O(mn log n). Since
there are O(log n) different values of k, we conclude that the total update time is O(mn log2 n).

A Fast Even-Shiloach Tree Implementation.

This section is devoted to showing how to speed-up the decremental transitive closure algorithm
of Theorem 4.3.14 for a special case that fits our applications.

Theorem 4.3.15. Let G1, U1, G2, U2 and M be as in Theorem 4.3.2. Let U = U1 ∪ U2. Let
s1, . . . , sp be some vertices of U and let F1, . . . , Fp ⊆ U × U be sets of edges such that initially
|Fi| = O(M). Let d ≤M be a positive integer.

Suppose G1 and G2 undergo edge deletions and we are given a batch of updates to G+
1 [U1]

or G+
2 [U2] resulting from each deletion. Also assume each set Fi is subject to deletions. For

i = 1, . . . , p, let
Hi = G+

1 [U1] ∪G+
2 [U2] ∪ (U,Fi).
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Then, we can explicitly maintain the sets Bi = {v ∈ U : δHi(v, si) ≤ d}, for all i = 1, . . . , p, in
O((M2 +Mpd) log2 n) total time.

For j = 1, 2, we identify each G+
j [Uj ] with its adjacency matrix, which is in fact the reacha-

bility matrix of Uj in Gj . Note that Gj and Uj satisfy the properties required by Lemma 4.2.8.
We first compute the partition Aj of G+

j [Uj ] in O(M2) time. We also maintain the auxiliary
information of Lemma 4.3.3 about the elements of Aj subject to updates to G+

j [Uj ]. This takes
O(M2 log n) time in total.

Observe that for each i = 1, . . . , p, the graph Hi is subject to an edge deletion whenever an
edge is deleted from either G+

1 [U1], G+
2 [U2], or Fi.

For each i = 1, . . . , p and u ∈ U , we explicitly maintain the value Di(u) called a level of u
in Hi. At all times (even during the update procedure) we will guarantee that:

(1) Di(u) ∈ {0, 1, . . . , d,∞},

(2) Di(u) never decreases,

(3) for any uv ∈ E(Hi), Di(u) ≤ Di(v) + 1.

Observe that this way each value Di(u) can change at most d+1 times. Hence, the total number
of times any level Di(u) changes is O(Mpd).

The Even-Shiloach algorithm. We now refer to the Even-Shiloach algorithm [26, 61], which
constitutes the base of our algorithm. Suppose we run the Even-Shiloach algorithm for each
i = 1, . . . , p. For a single source si, this algorithm also maintains the levels Di(v) that satisfy
the properties (1)-(3) of how they change.

After the initialization (which involves computing shortest paths to si) and after processing
each update to E(Hi), the Even-Shiloach algorithm guarantees that:

• Di(u) = δHi(u, si) if δHi(u, si) ≤ d,

• Di(u) =∞ otherwise.

We call a vertex v good with respect to i if and only if either v = si and Di(si) = 0,
Di(v) = ∞, or there exists an edge vx ∈ E(Hi) such that Di(v) = Di(x) + 1. It is easy to see
that when the values Di(v) constitute correct distances from si, then all vertices are good.

The Even-Shiloach update procedure can be summarized as follows. Suppose the set E(Hi)
is updated first. While there exists some vertex v that is not good:

• choose some vertex v that is not good and has the smallest level Di(v),

• increase the level Di(v) by 1 (or set Di(v) =∞ if Di(v) was already equal to d).

For a proof that after this update procedure ends the levels are the same as distances to si,
see [26, 61].

Suppose that the information which vertices are good is known to us and is updated accord-
ingly. Then, the remaining part of the Even-Shiloach algorithm can be implemented as follows.
Store the vertices that are not good in a priority queue keyed by their levels. Since each step
of the update procedure involves increasing some level, the total update time for a fixed i can
be seen to be O(|V (Hi)| · d log n) = O(Md log n), for a total of O(Mpd log n) over all graphs
H1, . . . ,Hp.

The remainder of this section is devoted to showing how to maintain the vertices that are
not good with respect to all valid indices i in O((M2 + Mpd) log2 n) total time subject to the
levels change issued by the Even-Shiloach algorithm. From this, Theorem 4.3.15 will follow.
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Data structure components. In this paragraph we describe the components our decremen-
tal algorithm stores. First, we need the following data-structure which can be implemented
quite easily using the known dynamic orthogonal range searching data structures (e.g., [73]).

Lemma 4.3.16. Let Z be some set of size z and let ≺ be a total order on Z. There exists a
data structure for maintaining a set Q of elements keyed with intervals over Z, supporting the
following operations.

1. Insert an element q with key(q) = I to Q.

2. Delete some element q of Q.

3. Query 1: let each of A,B be either ∅ or an interval over Z and suppose A ⊆ B. Report
all elements q ∈ Q satisfying A ⊆ key(q) and B 6⊆ key(q).

4. Query 2: let each of A,B be either ∅ or an interval over Z and suppose A ⊆ B. Report
all elements q ∈ Q satisfying key(q) 6⊆ A and key(q) ⊆ B.

The insertions and deletions take O(log z) time, whereas the query takes O(k + log z) time,
where k is the number of reported elements.

Proof. We can identify the set Z with integers {1, . . . , z}. Thus, we can in fact work with
intervals over {1, . . . , z}.

We map any interval [a, b] over {1, . . . , z} to a point p([a, b]) = (z + 1 − a, b) of the plane.
This way, for two intervals [a, b] and [c, d], [a, b] contains [c, d] if and only if a ≤ c and b ≥ d,
which is equivalent to z + 1 − a ≥ z + 1 − c and b ≥ d, i.e., p([a, b]) dominates p([c, d]) in the
sense that it has both coordinates not smaller than the respective coordinates of p([c, d]).

Hence, the keys of all the elements of Q are mapped to a point set P on the plane. Let
p(q) = A = (x, y) be some query point. Then:

• All points of P that A dominates lie in a single orthogonal rectangle, namely [0, x]× [0, y].

• Hence, all points that A does not dominate lie in the sum of two disjoint rectangles
[x+ 1, z]× [0, z] and [0, x]× [y + 1, z].

• Similarly, all points that dominate A lie in a single rectangle [x, z]× [y, z].

• All points that do not dominate A lie in the union of two disjoint orthogonal rectangles.

Note that both required queries ask for points of P lying in the intersection of two regions of
one of the above forms. Hence, both queries can be reduced to reporting points of O(1) disjoint
rectangles.

To finish the proof, we apply the existing fully dynamic two-dimensional orthogonal range
reporting data structure [73]. This data structure has O(log z) update time and O(log z + k)
query time, where k is the number of reported points.

Set A = A1 ∪ A2. The following components are all inductively defined in terms of values
Di(u), the matrices of A along with the accompanying data structures of Lemma 4.3.3, and
the previously defined components. The dependencies between these components in fact form a
DAG: once some component changes its state, it automatically causes updates to data structures
that depend on it so that every component complies its definition. Hence, when describing the
individual components, at the same time we also explain how they are updated.

• For each i = 1, . . . , p, j = 0, . . . , d, set Bi,j = {v ∈ V (Hi) : Di(v) ≤ j}. We explicitly
maintain all sets Bi,j : these can be easily updated whenever some value Di(u) changes.
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Recall that the values Di(u) only increase, and in fact each increases at most d+ 1 times.
As a result, each Bi,j only shrinks and the total time used to keep all sets Bi,j updated is
O(Mpd).

• For all i = 1, . . . , p, j = 0, . . . , d, and AS,T ∈ A, we maintain the set BS,T
i,j = act(AS,T ) ∩

Bi,j . Recall that by Lemma 4.2.8, for any u ∈ U , |cπu(A)| = O(log n). Hence, each u

can be included in at most O(pd log n) sets BS,T
i,j . It follows that the total size of all the

sets BS,T
i,j is O(Mpd log n). Clearly, these sets can be initialized in O(Mpd log n) time.

Also, they can be easily updated whenever some set act(AS,T ) shrinks (which happens
O(M log n) times in total), or when some Bi,j shrinks (O(Mpd) times in total). Hence,
all sets BS,T

i,j can be maintained in O(Mpd log n) total time.

• For all i = 1, . . . , p, j = 0, . . . , d, and AS,T ∈ A, we maintain the set QS,Ti,j containing
the maximal intervals [ai, bi]T such that for all x ∈ T satisfying ai � x � bi we have
x ∈ T \BS,T

i,j . As BS,T
i,j only shrinks in time,

⋃
QS,Ti,j only grows. We store each QS,Ti,j in a

balanced binary search tree ordered by left endpoints. These sets can be easily computed
in O(Mpd log2 n) time.

We now explain how QS,Ti,j is updated when an element x is deleted from BS,T
i,j . Namely,

at most two intervals of QS,Ti,j (with endpoints neighboring x in T ) are removed, and one
new interval – containing the removed intervals and x – is inserted. Hence, the total time
spent on maintaining all the sets QS,Ti,j can be charged to the number of changes to the

sets BS,T
i,j times O(log n) and therefore is again O(Mpd log2 n).

• For each AS,T ∈ A, we maintain a data structure LS,T of Lemma 4.3.16. For each valid i, j,
and [ak, bk]T ∈ QS,Ti,j , LS,T contains an element (i, j) keyed with [ak, bk]T . As discussed

above, the number of times an element is inserted or removed into any of sets QS,Ti,j is
O(Mpd log n). Thus, the data structures LS,T can also be initialized and maintained in
O(Mpd log2 n) total time because by Lemma 4.3.16, insertions and deletions to LS,T cost
O(log n) time.

• For each AS,T ∈ A, we maintain a data structure PS,T of Lemma 4.3.16. Let T =
act(AS,T ). For each s ∈ S, and [xk, yk]T ∈ Ivals(A

S,T ), there is an element (s, [xk, yk]T )
keyed with [xk, yk]T in PS,T at all times. Recall that by Lemma 4.3.3, the sets Ivals(A

S,T )
are stored explicitly and undergo O(M2) changes in total. Thus, the data structures PS,T

can also be initialized and maintained in O(M2 log n) total time because by Lemma 4.3.16,
insertions and deletions to PS,T cost O(log n) time.

• For each i = 1, . . . , p, j = 0, . . . , d, and AS,T ∈ A, let T = act(AS,T ). For all s ∈ S and
[xk, yk]T ∈ Ivals(A

S,T ), we maintain the cover bit φi,j([xk, yk]T ) equal to 1 if and only if
[xk, yk]T ⊆

⋃
QS,Ti,j (i.e., if and only if for some [a, b]T ∈ QS,Ti,j , [xk, yk]T ⊆ [a, b]T ) and 0

otherwise. Note that as the sets
⋃
QS,Ti,j only grow and the intervals [xk, yk]T only shrink

(once created, see Lemma 4.3.3), the cover bits (once initialized) can only go from 0 to 1.

Now we discuss how the cover bits are maintained. A cover bit can change for two reasons.

Updating cover bits after Ivals(A
S,T ) changes. Let T

′
= act(AS,T ), T and Ival′s(A

S,T ),
Ivals(A

S,T ) be the corresponding sets before and after the deletion of a batch of edges from
G+

1 [U1]∪G+
2 [U2] (see Remark 4.3.4). First, if the interval [x, y]

T
′ is not deleted from Ival′s(A

S,T ),
it is split into k ≥ 1 intervals [x1, y1]T , . . . , [xk, yk]T in Ivals(A

S,T ). Recall that by Remark 4.3.5,
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we assume that [x1, y1]T inherits the identity of [x, y]
T
′ . By that we also mean that it inherits all

the cover bits of [x, y]
T
′ . Each of the intervals [x2, y2]T , . . . , [xk, yk]T is created and we initialize

all the cover bits of these intervals to be equal to the cover bits of [x, y]
T
′ . As by Remark 4.3.5,

no more than O(1) in intervals are ever created in a single set Ivals(A
S,T ), O(Mpd log n) cover

bits are ever initialized. Observe that at this point the cover bits of all [xl, yl]T (l = 1, . . . , k)
may be incorrect (are equal to 0 but should be set to 1) as they were set to the cover bits of a
larger interval [x, y]

T
′ . We fix them for each [xl, yl]T as follows.

Suppose we knew the set X of pairs (i, j) for which the cover bit φi,j([xl, yl]T ) should be
switched from 0 to 1. Then, by going through (a, b) ∈ X and just setting φa,b([xl, yl]T ) = 1, we
would spend O(Mpd) time in total as each of O(Mpd) cover bits that is ever initialized would
be switched from 0 to 1 at most once. Hence, we would like to find the set X.

Let Y be the set of elements (i, j) ∈ LS,T such that (i, j) is included in the set Y if and only
if [xl, yl]T ⊆ key((i, j)) and [x, y]T 6⊆ key((i, j)). Observe that in LS,T there can be multiple
elements (i, j), but all of them have disjoint keys. Thus, by the definition of Y , at most one
can be included in Y .

We now prove that X = Y . Take some (i, j) ∈ Y and let key((i, j)) = [f, g]T . Then,
[f, g]T ∈ QS,Ti,j . Hence, [xl, yl]T ⊆ [f, g]T and thus φS,Ti,j ([xl, yl]T ) should be set to 1. We also
have [x, y]T 6⊆ [f, g]T . Note that ∅ 6= [xl, yl]T ⊆ [f, g]T ∩ [x, y]T , so by the maximality of [f, g]T
in QS,Ti,j we conclude that there exists some z ∈ T such that z ∈ [x, y]T \

⋃
QS,Ti,j . Therefore,

[x, y]T 6⊆
⋃
QS,Ti,j , i.e., φS,Ti,j ([x, y]

T
′) was indeed set to 0, so (i, j) ∈ X.

We have proved Y ⊆ X. Now let (i, j) ∈ X. After the deletion φi,j([xl, yl]T ) should be set
to 1 if and only if [xl, yl]T ⊆

⋃
QS,Ti,j . Equivalently, as each QS,Ti,j is a disjoint union of intervals

over T , there exists a unique [c1, d1]T ⊆ QS,Ti,j such that [xl, yl]T ⊆ [c1, d1]T . Recall that since

the cover bits were correct before the update, φi,j([x, y]
T
′) = 0 if and only if [x, y]

T
′ 6⊆ ⋃QS,Ti,j ,

and in particular [x, y]T 6⊆ [c1, d1]T . As [c1, d1]T ∈ QS,Ti,j , there is an element (i, j) with key
[c1, d1]T in LS,T . Moreover, we have [xl, yl]T ⊆ [c1, d1]T and [x, y]T 6⊆ [c1, d1]T which proves
(i, j) ∈ Y .

It remains to note that by Lemma 4.3.16, we can find Y = X in O(|X|+log n) time. Hence,
by the previous discussion, computation of all sets X throughout any sequence of edge deletions
takes O(

∑ |X|+M2 log n) = O((Mpd+M2) log n) time in total.

Updating cover bits when the sets QS,Ti,j change. Suppose some set QS,Ti,j undergoes a

change. Let again T = act(AS,T ). Recall that an elementary change onQS,Ti,j involves inserting to

QS,Ti,j one new interval [a, b]T and deleting from QS,Ti,j l (0 ≤ l ≤ 2) intervals [a1, b1]T , . . . , [al, bl]T
where [ai, bi]T are pairwise disjoint and for each i, [ai, bi]T ⊆ [a, b]T . For simplicity, we only
consider the case when l = 2. The cases l = 0, 1 can be handled by setting the non-existent
intervals to ∅.

We would thus like to find the set X of all pairs (s, [xk, yk]T ) such that s ∈ S, [xk, yk]T ∈
Ivals(A

S,T ), and the cover bit φS,Ti,j ([xk, yk]T ) has to be updated from 0 to 1.
For g = 1, . . . , l, let Yg be the subset of elements e = (s, [xk, yk]T ) of PS,T such that

key(e) ⊆ [a, b]T and key(e) 6⊆ [ag, bg]T . Let Y = Y1 ∪ Y2. The proof that X = Y proceeds
completely analogously to that of the previous paragraph, so we skip it. Again, by Lemma 4.3.16,
we find each set Yi in O(|Yi|+ log n) = O(|X|+ log n) time. Recall that the sets QS,Ti,j undergo
O(Mpd log n) updates in total. The total time spent on the computation of sets X is hence
O(
∑ |X|+Mpd log2 n) = O(Mpd log2 n).

Further components. We now continue describing our data structure.
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• For each i = 1, . . . , p, AS,T ∈ A, let T = act(AS,T ). For all s ∈ S and [xk, yk]T ∈
Ivals(A

S,T ), we also define the cover rank αi([xk, yk]T ) to be the minimum j such that
φi,j([xk, yk]T ) = 0, i.e., the minimum j such that [xk, yk]T is not covered by any interval
of QS,Ti,j . If no such j exists, we set αi([xk, yk]T ) =∞.

Keeping that in mind, the cover ranks can be maintained in total time O(Mpd log n),
which can be shown as follows. For for each s ∈ S, by Lemma 4.3.3, only O(1) intervals
are ever created in Ivals(A

S,T ). Since s is a row of O(log n) matrices AS,T , there are no
more than O(Mp log n) cover ranks ever initialized. Note that the as the cover bits go
only from 0 to 1, the cover ranks can only increase. Each cover rank is thus maintained
in O(d) time.

• For each i = 1, . . . , p and u ∈ U , we maintain the set Zi(u) = {Di(x) : ux ∈ Fi} in a
balanced binary tree, augmented so that the value βi(u) = minZi(u), called the edge rank,
is updated efficiently when some set Zi(u) changes. If Zi(u) = ∅, we set βi(u) =∞.

The sets Zi(u) are maintained as follows. First, when uv ∈ Fi is deleted, we remove Di(v)
from Zi(u). Such updates take O (

∑p
i=1 |Fi| log n) = O(Mp log n) time in total. When

some valueDi(x) changes, we go through all edges ux ∈ Fi and update the value ofDi(x) in
Zi(u) accordingly. Denote by degi(x) the number of edges of Fi with an endpoint in x. As
each Di(x) changes only O(d) times, we spend O(degi(x)d log n) time in total on updating
the values Zi(·) when the values Di(x) change. Since

∑
x∈U degi(x) = O(|Fi|) = O(M),

this again gives us O(Mpd log n) total time used on updating the values Zi(·) for all i.

• Finally, for all i = 1, . . . , p and u ∈ U , we maintain the rank

µi(u) = min

{βi(u)} ∪
⋃

AS,T∈rπu(A)

J∈Ivalu(AS,T )

{αi(J)}

 .

Note that the rank µi(u) can recomputed from scratch in O(log n) time when some edge
rank or some cover rank changes. Both are updated at most O(Mpd log n) times, and
thus the total time needed to maintain ranks is also O(Mpd log2 n).

Initialization. As discussed before, we first set up the partitions A1,A2 of the matrices
G+

1 [U1] and G+
2 [U2], respectively, set A = A1∪A2 and initialize all the auxiliary data structures

of Section 4.3.1 accompanying A in O(M2 log n) time.
Note that we already described how to inductively initialize each component of our data

structure once we know the values Di(v). Recall that each of these initialization costs was either
O(M2 log n) or O(Mpd log2 n).

In remains to initialize each Di(v) to the value δHi(v, si). In order to find the values δHi(·, si),
for each i = 1, . . . , p, we run the breadth-first-search on Hi. By Lemma 4.3.6 and Corollary 4.3.7,
this can be done in O((|U |+ |Fi|) log n log logn) = O(M log2 n) time. Thus, running p breadth-
first searches takes O(Mp log2 n) time. The overall cost of initialization can be easily seen to
be O(Mpd log2 n+M2 log n).

Finding vertices that are not good. We now show the key property of the maintained
ranks that allows us to identify vertices that are not good.

Lemma 4.3.17. For any i = 1, . . . , p, a vertex u ∈ U is good with respect to i if and only if

µi(u) = Di(u)− 1.
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Proof. Let u be good with respect to i. Since the Even-Shiloach algorithm guarantees that for
each ux ∈ E(Hi), Di(u) ≤ Di(x) + 1, then we also have Di(u) ≤ min{Di(x) : ux ∈ E(Hi)}+ 1.
Recall that u is good with respect to i if and only if for some edge ux ∈ E(Hi) we have

Di(u) = Di(x) + 1 ≥ min{Di(x) : ux ∈ E(Hi)}+ 1.

Hence, in fact u is good if and only if

Di(u) = min{Di(x) : ux ∈ E(Hi)}+ 1,

and it is sufficient to show that µi(u) = min{Di(x) : ux ∈ E(Hi)}. We have

min{Di(x) : ux ∈ E(Hi)} = min
(
{Di(x) : ux ∈ Fi} ∪ {Di(x) : ux ∈ E(G+

1 [U1] ∪G+
2 [U2])}

)
= min

(
βi(u),min{Di(x) : ux ∈ E(G+

1 [U1] ∪G+
2 [U2])}

)
.

Hence, by the definition of the rank, it is enough to prove that:

min{Di(x) : ux ∈ E(G+
1 [U1] ∪G+

2 [U2])} = min
AS,T∈rπu(A)

J∈Ivalu(AS,T )

{αi(J)}.

Recall that

{x : ux ∈ E(G+
1 [U1] ∪G+

2 [U2])} =
⋃

AS,T∈rπu(A)

Outu(AS,T ) =
⋃

AS,T∈rπu(A)

⋃
Ivalu(AS,T ).

Therefore, it is enough to prove that

min

Di(x) : x ∈
⋃

AS,T∈rπu(A)

J∈Ivalu(AS,T )

J

 = min
⋃

AS,T∈rπu(A)

J∈Ivalu(AS,T )

{αi(J)}.

Consequently, this can be done by proving that for any u ∈ U , AS,T ∈ rπu(A), and J ∈
Ivalu(AS,T ):

min{Di(x) : x ∈ J} = αi(J).

Recall that αi(J) is defined as min{j : φi,j(J) = 0}, or equivalently

αi(J) = min{j : φi,j(J) = 0}
= min

{
j : J 6⊆

⋃
QS,Ti,j

}
= min

{
j : J 6⊆ T \BS,T

i,j

}
= min

{
j : J ∩BS,T

i,j 6= ∅
}

= min
{
j : J ∩Bi,j ∩ act(AS,T ) 6= ∅

}
= min {j : J ∩Bi,j 6= ∅},

since we have J ⊆ act(AS,T ). Finally, we obtain

αi(J) = min{j : J ∩Bi,j 6= ∅} = min{j : J ∩ {v : Di(v) ≤ j} 6= ∅}.
Therefore, we have J ∩ {v : Di(v) ≤ αi(J)} 6= ∅ and J ∩ {v : Di(v) ≤ αi(J) − 1} = ∅. Hence,
for some vertex u ∈ J , Di(u) = αi(J), and for all v ∈ J , Di(v) ≥ αi(J). Therefore, we conclude
that in fact

min{Di(x) : x ∈ J} = αi(J)

holds.
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Proof of Theorem 4.3.15. Observe that Lemma 4.3.17 gives us a very simple characterization
of good vertices in terms of the values we maintain. We have shown that the time needed to
maintain all the components of our data structure is O((Mpd+M2) log2 n). Hence, maintaining
the good vertices with respect to all values i when the values Di(v) are updated also takes
O((Mpd+M2) log2 n) time.

Proof of Theorem 4.3.2.

In our case we run the algorithm of Theorem 4.3.14 on the graph H = G+
1 [U1]∪G+

2 [U2]. Observe
that in the algorithm of Bernstein (Theorem 4.3.14), each instance of Even-Shiloach tree is run
on a graph H with O(M) additional edges with endpoints in U1∪U2 added. Moreover, for each
step k = q, . . . , 0 of the algorithm of Theorem 4.3.14, there are p instances of Even-Shiloach
tree maintained, each up to depth d, for numbers p, d satisfying pd = O(M log n). Apart from
maintaining Even-Shiloach trees, Bernstein’s algorithm it runs in O(M2 log n) time.

We maintain the Even-Shiloach trees of each step using the data structure of Theorem 4.3.15.
Since pd = O(M log n) in each step, and there are O(log n) steps, the total update time of the
algorithm is

O(M2 log n+ (M2 +M2 log n) log2 n · log n) = O(M2 log4 n).

4.4 Decremental Planar Transitive Closure With Near-Linear
Total Update Time

In this section we show a decremental all-pairs reachability algorithm for planar graphs with
nearly-linear total update time. Formally, we prove the following Theorem.

Theorem 4.4.1. Let G be a simple planar digraph. Then, there exists a decremental transi-
tive closure algorithm with O(log5 n) amortized update time (over all the edge deletions), and
O(
√
n log n log logn) worst-case query time. The algorithm is Monte Carlo randomized and is

correct with high probability.

4.4.1 Reachability Preserving Reductions

In Theorem 4.4.1 we only assume that our input digraph G is simple and planar. However, it
will be more convenient for us to work with plane digraphs with additional special properties,
such as triangulation or bounded-degree. Consequently, we will repeatedly reduce our general
problem of maintaining various reachability information about G to the same problem on a
graph with more structure.

Definition 4.4.2. Let G = (V,E) be a planar digraph. Let G′ = (V ′, E0∪E′∪E×) be a digraph
such that V ′ is a disjoint union of sets S(v), where v ∈ V and such that v ∈ S(v), and the sets
E0, E

′, E× are pairwise disjoint. We say that G′ preserves reachability of G if:

1. The components of (V ′, E0) are exactly the sets S(v), v ∈ V .

2. The strongly-connected components of (V ′, E0) are exactly the sets S(v), v ∈ V .

3. We have uv = e ∈ E if and only if there exists u′v′ = e′ ∈ E′ such that id(e) = id(e′),
u′ ∈ S(u) and v′ ∈ S(v).
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Let reachability preserving reduction be a procedure that takes the input graph G and
produces a more structured graph G′ that additionally preserves the reachability of G.

The following lemma shows that we can combine reachability preserving reductions sequen-
tially.

Lemma 4.4.3. Let G = (V,E) be a digraph. Suppose G′1 = (V ′1 , E0,1 ∪ E′1 ∪ E×1 ) preserves
reachability of G and G′2 = (V ′2 , E0,2 ∪ E′2 ∪ E×2 ) preserves reachability of G′1.

Then G′2 = G′ = (V ′2 , E0 ∪ E′ ∪ E×) preserves reachability of G, where:

E0 = E0,2 ∪ {e′ ∈ E′2 : e ∈ E0,1 ∧ id(e) = id(e′)},
E′ = {e′ ∈ E′2 : e ∈ E′1 ∧ id(e) = id(e′)},
E× = E×2 ∪ {e′ ∈ E′2 : e ∈ E×1 ∧ id(e) = id(e′)}.

Proof. Since we have {id(e) : e ∈ E(G′1)} = {id(e) : e ∈ E′2} and {id(e) : e ∈ E} =
{id(e) : e ∈ E′1}, E0, E′ and E× are pairwise disjoint, E0 ∪ E′ ∪ E× = E(G′2) and
{id(e) : e ∈ E} = {id(e) : e ∈ E′}.

Let the strongly connected components of (V ′1 , E0,1) be the sets S1(v), v ∈ V . Let the
strongly connected components of (V ′2 , E0,2) be the sets S2(v′), v′ ∈ V ′1 . We now prove that the
(strongly) connected components of (V ′2 , E0) are the sets S(v) =

⋃
v′∈S1(v) S2(v′).

First, since E0,2 ⊆ E0, each strongly connected component of (V ′2 , E0,2) is a subset of some
strongly connected component of (V ′2 , E0). We have u′′v′′ = e′′ ∈ E0 \ E0,2 if and only if there
exists an edge u′v′ = e ∈ E0,1 satisfying id(e) = id(e′) and u′′ ∈ S2(u′) and v′′ ∈ S2(v′).
Subsequently, we can say more generally that a path u′ → v′ exists in (V ′1 , E0,1) if and only if a
path from S2(u′) to S2(v′) exists in (V ′2 , E0). But a path u′ → v′ exists in (V ′1 , E0,1) if and only
if v′ → u′ also exists in this graph, or, equivalently, {u′, v′} ∈ S1(v) for some v ∈ V . So finally
a path from S2(u′) to S2(v′) exists in (V ′2 , E0) if and only if a path from S2(v′) to S2(u′) exists
in (V ′2 , E0), and if and only if {u′, v′} ∈ S1(v) for some v ∈ V . This proves that the strongly
connected components of (V ′2 , E0) are indeed the sets S(v) =

⋃
v′∈S1(v) S2(v′).

By the definitions of E′ and E′2, we have u′′v′′ = e′′ ∈ E′ if and only if there exists an edge
u′v′ = e′ ∈ E′1 such that id(e′) = id(e′′), u′′ ∈ S2(u′), and v′′ ∈ S2(v′). By the definition of E′1,
such an edge e′ exists if and only if there exists an edge uv = e ∈ E such that id(e) = id(e′)
,u′ ∈ S1(u), and v′ ∈ S1(v). Since S(u) =

⋃
u′∈S1(u) S2(u′) and S(v) =

⋃
v′∈S1(v) S2(v′), u′′ ∈

S(u) and v′′ ∈ S(v).

We now discuss four useful reachability preserving reductions.

Lemma 4.4.4. Let G be a simple digraph. In linear time one can compute a graph G′ larger
than G by a constant factor, that preserves the reachability of G and is connected.

Proof. We obtain G′ = (V,E ∪ E×) by adding a minimal set E× of k − 1 edges that would
make G connected where k is the number of connected components of G.

Lemma 4.4.5. Let G be a simple and connected plane digraph. In linear time one can compute
a simple and connected plane digraph G′ larger than G by a constant factor that preserves the
reachability of G and has constant degree.

Proof. We compute G′ = (V ′, E0 ∪ E′) based on G = (V,E) as follows. Let v be a vertex of G
with an edge ring ev1, . . . , e

v
k. If k ≥ 3, define C(v) to be a directed cycle v1v2 . . . vk where v1 = v

and C(v) contains directed edges vivi+1 for each i = 1, . . . , k, and vk+1 = v1. If k ≤ 2, on the
other hand, we set C(v) = {v} and v1 = vk = v.

Define V ′ =
⋃
v∈V V (C(v)) and E0 =

⋃
v∈V E(C(v)). We also let S(v) = V (C(v)) – clearly

for each v G′[S(v)] is strongly connected and v ∈ S(v).
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For any uv = e ∈ E, suppose the tail of e appears as the i-th edge in the edge ring of u and
its head appears as the j-th edge in the edge ring of v. We include the edge e′ = uivj in E′ and
set id(e′) = id(e). Clearly, the edge e′ goes from a vertex in S(u) to a vertex of S(v).

Since G′ is obtained from G be expanding vertices of G into cycles, the embedding of G′

can be easily devised from the embedding of G and thus G′ is also plane. Finally, observe that
each vertex of G′ has degree no more than 3.

Lemma 4.4.6. Let G be a simple and connected plane digraph. Let F be some subset of faces
of G such that the bounding cycle of each face of F has length at least 4. Then, in linear time
one can triangulate each face of F by only adding edges inside F so that the obtained graph
G′ = (V,E ∪ E×) preserves the reachability and the degree of each vertex grows by a constant
factor.

Proof. We obtain G′ from G by triangulating each face f ∈ F , where V (f) = w1, . . . , wk,
k > 3, by adding k − 3 edges inside it so that no vertex v gets added more than 2 edges
per its occurrence on the bounding cycle of f . This can be achieved, e.g., by adding edges
w1w3, w3wk, wkw4, w4wk−1, . . . and so on. These edges are included in E×. Afterwards, all
faces of F are triangulated.

Consequently, since the total number of occurrences of a vertex v on the face bounding cycles
is deg(v), we have degG′(v) ≤ 3 degG(v). Clearly, we have |E(G′)| = O(|V |+ |E|) = O(n).

Lemma 4.4.7. Let G = (V,E) be a simple, connected, and triangulated digraph. In O(n log n)
time one can compute a graph G′ that preserves the reachability of G and is larger than G by a
constant factor, and its simple decomposition TG′.

Proof. We apply Theorem 4.1.4 to the undirected graph Ḡ obtained from G by turning directed
edges into undirected edges and consequently obtain a graph Ḡ′ = (V ′, Ē0, Ē′, Ē×) along with its
simple decomposition TḠ′ in O(n log n) time. We obtain G′ from Ḡ′ by restoring edge directions
of each ē ∈ E(Ḡ′) in each piece H ∈ TḠ′ that contains ē, as follows.

• The edges of Ē0 are oriented so that each G′[S(v)], where v ∈ V , is strongly-connected.
This can be easily done by the construction of Theorem 4.1.4.

• For each uv = e ∈ E, let u′v′ = e′ ∈ Ē′ be such that id(e) = id(ē) = id(e′), u′ ∈ S(u), and
v′ ∈ S(v). We orient ē from u′ to v′.

• For each ē ∈ Ē×, we orient it arbitrarily.

Clearly, by the properties of Ḡ′ guaranteed by Theorem 4.1.4, the obtained graph G′ preserves
the reachability of G and has a simple decomposition TG′ .

4.4.2 The Data Structure

Lemma 4.4.8. Let G be planar digraph and suppose G′ = (V ′, E0 ∪E′ ∪E×) preserves reach-
ability of G. Then, the decremental transitive closure problem on G can be reduced to the
decremental transitive closure problem on G′.

Proof. We first initialize the decremental transitive closure algorithm with the graph G′. Next,
we issue deletions of all the edges of E×. Afterwards, G′ contains exactly |E| edges that are
not in E0. The edges of E0 are never removed from G′, whereas a deletion of e ∈ E from G is
translated to a deletion of e′ from G′, where id(e′) = id(e).

At any time, since (V,E0) ⊆ G′ and G′[S(v)] is strongly-connected for any v ∈ V , one can
easily see that a path u → v exists in G if and only if a path u′ → v′ exists in G′, where u′
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is any vertex of S(u) and v′ is any vertex of S(v). Hence, a reachability query on G can be
translated to a single reachability query on G′ (regarding a different pair of vertices).

In the remaining part of this section we assume that G is in fact connected, plane-embedded,
and we are given its simple recursive decomposition TG. To actually perform the reduction
to that case, we use Lemma 4.4.8 with graph G′ obtained from G by subsequently applying
Lemma 4.4.4, computing some plane embedding of G in linear time [9, 17, 51], triangulating G
using Lemma 4.4.6, and finally using Lemma 4.4.7. The reduction takes O(n log n) time, by
Lemma 4.4.7. The obtained graph G′ is larger than the original graph G by a constant factor
only so we may ignore this overhead.

Although the graph G undergoes edge updates, the decomposition TG will evolve only in
a very limited way. Namely, suppose an edge e is removed from G. Then, e is also removed
from all the pieces H ∈ TG that initially contained e. We assume that the sets V (H) and
∂H are fixed before any updates to G happen, and do not change throughout, even though
the individual pieces may cease to be edge-induced (i.e., some vertices of V (H) may become
isolated). Moreover, even though we have ∂H = V (H)∩ V (G−H) initially, since ∂H does not
change and V (G − H) shrinks in time, we only guarantee V (H) ∩ V (G − H) ⊆ ∂H. This is
sufficient for our needs, though. Clearly, edge deletions cannot break any of the properties (1),
(2), (3) and (4) of the simple recursive decomposition of Section 4.1.

However, now edge deletions may change the holes of individual pieces and possibly break
properties (5) and (6) of a simple decomposition. It turns out that this is not a problem,
though. Since our recursive decomposition is initially simple, for each H ∈ TG, ∂H lies on O(1)
separator curves of H. This property remains true when G undergoes edge deletions (without
changing the separator curves) since a separator curve of G is also a separator curve of any
subgraph of G. Thus, we may fix some order ≺H on ∂H precisely as described at the beginning
of Section 4.2.

In the following, when we write TG, we always refer to the current decomposition, as ex-
plained above.

Given H ∈ TG, we define two directed graphs R(H), In(H) on the subsets of V (H). Both
of these graphs are induced subgraphs of the transitive closure of H.

• If H is non-leaf, then
R(H) = H+[∂H ∪ Sep(H)],

i.e., for u, v ∈ ∂H ∪ Sep(H) there is a directed edge uv in R(H) if and only if there is a
path u→ v in H. Otherwise, for a leaf H we set R(H) = H+.

• In(H) = H+[∂H]. Note that In(H) is a subgraph of R(H).

Lemma 4.4.9. Let H ∈ TG be a non-leaf piece. Then R(H) = (In(child1(H)) ∪ In(child2(H)))+.

Proof. Let Hi = childi(H) for i = 1, 2. By Lemma 4.1.2, we have ∂H ∪ Sep(H) = ∂H1 ∪ ∂H2.
Hence, we only need to show that for u, v ∈ ∂H ∪ Sep(H) there is a path P = u → v in H if
and only if there is a path u→ v in In(H1) ∪ In(H2).

The “⇐= ” direction is obvious because each edge in In(Hi) corresponds to a path in Hi.
To prove the “ =⇒ ” part, split P into maximal paths P1, . . . , Pq fully contained in either

H1 or H2. Let Pj go from aj to bj and suppose that Pj is fully contained in Hi. Then aj
is either equal to u ∈ ∂Hi if j = 1 or is the same as the last vertex of Pj−1, and hence
aj ∈ V (H1) ∩ V (H2) = Sep(H) ⊆ ∂Hi. Similarly we prove that bj ∈ ∂Hi. By the definition of
In(Hi), there is an edge ajbj in In(Hi). We conclude that there is a directed path ua2 . . . aqv in
In(H1) ∪ In(H2).
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For each H ∈ TG, we maintain the graphs R(H) and In(H) subject to edge deletions issued
to G. If H is a leaf, we can afford recomputing R(H) from scratch after the deletion of each
edge e that is also contained in E(H). Since H has O(1) edges initially, the recomputation of
R(H) = H+ takes O(1) time and happens O(1) times in total. Since TG has O(n) leaves, the
total time needed to maintain the graphs R(H) for leaf pieces H is O(n).

SupposeH is not a leaf piece. Then by Lemma 4.4.9,R(H) = (In(child1(H))∪In(child2(H)))+.
Hence, it is possible to compute (and maintain) R(H) based only on the graphs In(child1(H))
and In(child2(H)), and the updates they undergo. Similarly, since for any H ∈ TG, In(H) is a
subgraph of R(H), In(H) is updated easily based only on the updates to R(H). We say that
R(H) depends on In(child1(H)) and In(child2(H)), whereas In(H) depends on R(H).

Since for i = 1, 2, ∂childi(H) lies on O(1) pairwise disjoint separator curves of childi(H),
we can use Theorem 4.3.2 for maintaining R(H). Specifically, by setting for i = 1, 2, Gi =
childi(H) and Ui = ∂childi(H), we conclude that if we are given the updates to In(child1(H))
and In(child2(H)) after each edge deletion that actually changes these graphs, we can maintain
R(H) in O(|∂child1(H)∪ ∂child2(H)|2 log4 n) = O((|∂child1(H)|2 + |∂child2(H)|2) log4 n) time.
The total time needed to maintain all the graphsR(H), if we are given the updates the respective
graphs In(child1(H)) and In(child2(H)), through all pieces H ∈ TG, is, by property (4) of TG,

O

 ∑
H∈TG

|∂H|2 log4 n

 = O(n log5 n).

In order to be sure that all the O(n) maintained graphs R(H) are correct with high probability,
it is enough to set the constant d from Theorem 4.3.2 to d = β + 2.

To guarantee that all the graphs are updated before we start updating their dependent
graphs, we proceed as follows. During the initialization, we fix some topological order on the
graph describing the dependencies between various graphs that we maintain (the dependencies
between the graphs R(·), In(·), and other useful graphs that we will define in Section 4.5, are
depicted in Figure 4.4). When an edge e is removed from G, we create a priority queue Q of
graphs that potentially need updates. The elements of Q are keyed by their position in the
fixed topological order. First, the unique graph R(H) such that H is a leaf and e ∈ E(H), is
pushed to Q. We repeatedly pop a graph Z out of Q and process either the edge deletion (in
the case when Z = R(H) and H is a leaf) or the changes to the graphs that Z depends on.
If the graph Z actually changes after switching e on, we push to Q all graphs Z ′ such that Z ′

directly depends on Z. The correctness of this update procedure follows form the fact that the
dependencies do not form cycles.

Observe that since for each maintained graph Z, there are at most two graphs Z ′ (again, see
Figure 4.4) that depend directly on M , the total number of times a graph Z is inserted into Q
is proportional to the total number of changes to the maintained graphs R(·) and In(·). This

quantity is clearly bounded by their total size, i.e., O
(∑

H∈TG |∂H|
2 + |E(G)|

)
= O(n log n).

Thus, the cost of priority queue operations on Q is O(n log2 n). We have thus proved the
following lemma.

Lemma 4.4.10. The total time needed to maintain all the graphs R(H) and In(H), where
H ∈ TG, subject to any sequence of edge deletions issued to G, is O(n log5 n). The algorithm is
correct with high probability.

Before we show how the maintained graphs can be used to answer reachability queries on G,
we need one more definition. Let H ∈ TG. For v ∈ V (H), let Hv be the leftmost leaf piece in
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TG(H) such that v ∈ V (Hv). Then we define

Rv(H) = R(Hv) ∪
⋃

H′∈TG(H)
H′ 6=Hv

Hv∈TG(H′)

In(child1(H ′)) ∪ In(child2(H ′)).

In other words, Rv(H) is the union of R(Hv) and all graphs In(child1(H ′)) ∪ In(child2(H ′)),
where H ′ 6= Hv lies on the path from H to Hv in TG.

Lemma 4.4.11. Let H ∈ TG, u ∈ ∂H ∪Sep(H) and v ∈ V (H). Then there exists a path u→ v
(v → u) in H if and only if there exists a path u→ v (v → u, respectively) in Rv(H).

Proof. We only consider u → v paths; the proof for v → u paths is analogous. We proceed
by induction on χ(H). Clearly, if χ(H) = 0, i.e., H is a leaf piece, the lemma holds since
Rv(H) = Rv(Hv) = R(Hv) = H+.

Suppose H is a non-leaf piece. The “⇐= ” part is easy since Rv(H) is a union of subgraphs
of transitive closures over some subgraphs of H.

To prove the “ =⇒ ” part, let P = u → v be a simple path in H. Split P into two paths
P1P2, where P1 = u → s and P2 = s → v are such that s ∈ ∂H ∪ Sep(H) and all subsequent
vertices of P2 do not belong to ∂H ∪ Sep(H). Note that P1 and P2 can both be of length 0.
Also, if P2 has at least one edge, then v /∈ ∂H ∪ Sep(H).

Since u, s ∈ ∂H ∪ Sep(H) and there exists a path u → s in H, we have us ∈ E(R(H)).
Recall that by Lemma 4.4.9, R(H) = (In(child1(H)) ∪ In(child2(H)))+. Hence, there exists a
path P1 = u→ s in (In(child1(H)) ∪ In(child2(H)) ⊆ Rv(H).

Also note that if P2 has at least one edge, then all its vertices except s belong to
V (H) \ (∂H ∪ Sep(H)) ⊆ V (H) \ Sep(H). Hence, P2 is entirely contained in the unique piece
childi(H) such that v ∈ V (childi(H)). We obtain that Hv is a descendant of childi(H) and
hence Rv(H) = R(H) ∪ Rv(childi(H)). By the induction hypothesis, a path s → v exists in
Rv(childi(H)). As Rv(childi(H)) ⊆ Rv(H), the lemma follows.

Lemma 4.4.12. Let H ∈ TG. For any u, v ∈ V (H), there exists a path u→ v in H if and only
if there exists a path u→ v in Ru(H) ∪Rv(H).

Proof. We again proceed by induction on χ(H). If H is a leaf, then Ru(H) = Rv(H) = H+,
and the lemma holds trivially. Suppose H is a non-leaf piece. The “ ⇐= ” part is easy since
Ru(H) ∪Rv(H) is a union of subgraphs of transitive closures over some subgraphs of H.

Let P be a path u→ v in H. If P does not go through a vertex of Sep(H), then it is fully
contained in childi(H) for some i ∈ {1, 2}, and both Hu and Hv are descendants of childi(H)
(in fact, we have {u, v} ∩ V (child3−i(H)) = ∅). Then by the induction hypothesis, there exists
a path u→ v in Ru(childi(H)) ∪Rv(childi(H)) which is a subgraph of Ru(H) ∪Rv(H) in this
case.

Otherwise P goes through a vertex s ∈ Sep(H). By Lemma 4.4.11, there exist paths: u→ s
in Ru(H) and s→ v in Rv(H). Their concatenation is clearly contained in Ru(H)∪Rv(H).

For each matrix In(H)1, where H ∈ TG, we also maintain the auxiliary data structures of

Section 4.3.1. By Lemma 4.3.3, for all pieces H this takes O
(∑

H∈TG |∂H|
2 log n

)
= O(n log2 n)

additional time.

Lemma 4.4.13. Let u, v ∈ V (H), where H ∈ TG. We can test whether v is reachable from u

in Ru(H) ∪Rv(H) in O
(√

n/ρ`(H) log n log logn
)

time.

1Recall that we sometimes identify the graphs that we maintain with their respective adjacency matrices.
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Proof. Note that Ru(H) ∪Rv(H) is a union of O(log n) graphs of the form In(H ′) = H∗[∂H ′],
for which we maintain the partition of Lemma 4.2.8 and auxiliary data of Lemma 4.3.3, and
two graphs R(Hu),R(Hv) of constant size. Hence, Ru(H) ∪ Rv(H) satisfies the requirements
of Lemma 4.3.6 and Corollary 4.3.7, and we can find the vertices reachable from u in Ru(H) ∪
Rv(H) using breadth-first-search in O(|V (Ru(H)∪Rv(H)) +O(1)| log n log logn+ 1) time. To
finish the proof, observe that

|V (Ru(H) ∪Rv(H))| = O(1) +
∑

H′:H′∈TG(H)
Hu∈TG(H′)∨Hv∈TG(H′)

H′ 6=Hu∧H′ 6=Hv

|∂child1(H ′)|+ |∂child2(H ′)|

≤ O(1) + 2

`(Hu)∑
i=`(H)

O

(√
n/ρi

)
+ 2

`(Hv)∑
i=`(H)

O

(√
n/ρi

)

= O

(√
n/ρ`(H)

)
.

Corollary 4.4.14. Let u, v ∈ V (G). We can test whether v is reachable from u in G in
O(
√
n log n log logn) time.

Proof. Apply Lemma 4.4.13 for H = G.

Note, however, that in the query algorithm described in Lemma 4.4.13 the graph
Ru′(H) ∪ Rv ′(H) is never built explicitly: we only access O(log n) needed matrices In(·) and
the auxiliary data structures accompanying them. This proves Theorem 4.4.1.

4.5 Extensions of The Decremental Transitive Closure

In this section we show some additional interesting results concerning decremental reachability
in planar digraphs.

4.5.1 Maintaining the Status of Individual Edges

Lemma 4.5.1. Let G be a simple planar digraph and suppose G′ = (V ′, E0∪E′∪E×) preserves
reachability of G. Then the problems of:

• maintaining the set of intra-SCC edges of G,

• maintaining the set of 1-cut edges of G,

• maintaining the set of strong bridges of G,

under edge deletions can be reduced to the respective problems on G′.

Proof. Analogously as in Lemma 4.4.8, we first initialize the decremental algorithm with the
graph G′. Next, we issue deletions of all the edges of E×. Afterwards, G′ contains exactly |E|
edges that are not in E0. The edges of E0 are never removed from G′, whereas the deletion of
each e ∈ E from G is translated to a deletion of e′ from G′, where id(e′) = id(e).

Recall from the proof of Lemma 4.4.8, that for any u, v ∈ V (G) a path u→ v exists in G if
and only if a path u′ → v′ exists in G′, where u′ is any vertex of S(u) and v′ is any vertex of S(v).
Hence e ∈ E is an inter-SCC edge, a 1-cut edge, or a strong bridge of G if and only if e′ ∈ E′,
id(e′) = id(e), and e′ is an inter-SCC edge, a 1-cut edge, or a strong bridge, respectively, of G′.
Note that G′ might have more 1-cut edges or strong bridges in the set E0, but those are not of
our interest.
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We now show how to extend the data structure of Section 4.4 so that it additionally maintains
the sets of intra-SCC edges, 1-cut edges, and strong bridges of a planar graph G under edge
deletions. By applying the same set of reachability preserving reductions as we did in Section 4.4,
and applying Lemma 4.5.1, we may assume that G is initially plane and has a simple recursive
decomposition TG.

We start with the following lemma, from which it follows that for each H ∈ TG, ∂H lies on
O(1) separator curves of G−H throughout the process.

Lemma 4.5.2. Let TG be a simple recursive decomposition and let H ∈ TG. A cycle bounding
a hole of H is a separator curve of G−H.

Proof. Note that the holes of H can be seen as unions of original faces of G, merged by removing
the edges of G−H from G. Thus, each edge of G−H lies inside some unique hole h of H. Let
Eh ⊆ E(G−H) be the subset of edges lying inside h.

Let Ch be the cycle bounding a hole h of H. Assume without loss of generality that h is
a bounded face. Then, the interior of Ch is the same as the interior of h (the case when h is
unbounded is analogous; we replace each occurrence of “inside of Ch” with “outside of Ch”). By
Fact 4.2.2 and since H is connected, for each Ch, H lies weakly outside Ch. If h is the only hole
of H, then clearly G−H = G[Eh] lies weakly on one side of Ch and the Lemma holds.

Assume now that h is not the only hole and let h′ 6= h be some other hole of H. As h′

and h are disjoint, h′ lies strictly outside Ch. Thus, all edges of Eh′ lie strictly outside Ch.
Hence, V (G[Eh])∩V (G[Eh′ ]) = ∅ for h′ 6= h. To conclude, note that for each weakly connected
component of G−H the edges of that component are contained in a unique subset Eh.

Remark 4.5.3. The assumption that TG is simple is crucial to proving Lemma 4.5.2, which
does not hold if the holes of H are not pairwise-disjoint or not necessarily simple.

For each piece H ∈ TG, apart from the graphs R(H) and In(H), we also maintain a graph

Ex(H) = (G−H)+[∂H]

under edge deletions.

Lemma 4.5.4. Let H ∈ TG be a non-root piece. Denote by P and S the parent and the sibling
of H in TG, respectively. Then, Ex(H) = (Ex(P ) ∪ In(S))+[∂H].

Proof. By the definition of a boundary, we have V (G − P ) ∩ V (S) ⊆ V (G − P ) ∩ V (P ) ⊆ ∂P
and similarly V (G−P )∩V (S) ⊆ V (G−S)∩V (S) ⊆ ∂S. Hence, V (G−P )∩V (S) ⊆ ∂P ∩∂S.

We only need to show that for u, v ∈ ∂H, there is a path P = u → v in G − H if and
only if there is a path u → v in Ex(P ) ∪ In(S). The “ ⇐= ” direction is obvious as each edge
in In(S) corresponds to a path in S, each edge in Ex(P ) corresponds to a path in G − P and
G−H = (G− P ) ∪ S.

To prove the “ =⇒ ” part, split P into maximal paths P1, . . . , Pq fully contained in either
G − P or S. Let Pj go from aj to bj and suppose that Pj is fully contained in S. Then aj is
either equal to u ∈ ∂H ∩ V (S) ⊆ ∂S if j = 1, or is the same as the last vertex of Pj−1. Hence,
aj ∈ V (G−P )∩V (S) ⊆ ∂S. Similarly we prove that bj ∈ ∂S. By the definition of In(S), there
is an edge ajbj ∈ E(In(S)). Analogously, for each subpath Pj = ajbj fully contained in G− P ,
both aj and bj belong to ∂P , and by the definition of Ex(P ), there is an edge ajbj in Ex(P ).
We conclude that there is a directed path ua2 . . . aqv in Ex(P ) ∪ In(S).

By Lemma 4.5.4, for each non-leaf piece H, the graph Ex(childi(H)) can be computed induc-
tively based on the “nearby” graphs In(child3−i(H)) and Ex(H). In other words, Ex(childi(H))
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depends on the graphs In(child3−i(H)) and Ex(H). Consequently, for maintaining the graphs
Ex(childi(H)) we may use the same strategy as we did for maintaining the graphs R(·) in
Section 4.4. Namely, each Ex(childi(H)) is maintained using Theorem 4.3.2 applied to G1 =
child3−i(H), U1 = ∂child3−i(H), G2 = G−H, U2 = ∂H. Then, we haveG+

1 [U1] = In(child3−i(H))
and G+

2 [U2] = Ex(H). Note that U2 indeed lies on O(1) pairwise disjoint separator curves of G2,
by Lemma 4.5.2.

Hence, the total time needed to maintain the graph Ex(childi(H)) subject to deletions to
the graphs In(child3−i(H)) and Ex(H) is O

(
(|child1(H)|2 + |child2(H)|2) log4 n

)
. Through all

non-leaf pieces H ∈ TG, this sums up to O(n log5 n) total time. In other words, maintaining
the graphs Ex(·) does not affect the asymptotic total update time of the data structure of
Section 4.4.

Now, for each leaf piece L ∈ TG, and each e ∈ E(L), define Le(L) = (G − e)∗[V (L)]. The
proof of the following lemma is completely analogous to the proofs of Lemmas 4.4.9 and 4.5.4,
and is thus omitted.

Lemma 4.5.5. For any leaf piece L ∈ TG, and e ∈ E(L), Le(L) = (Ex(L) ∪ (L− e))+.

Each graphs Le(L) is recomputed from scratch each time either L or Ex(L) changes (recall
that L changes when some of its edges is deleted). As each leaf L piece is of constant size, there
are O(n) relevant (L, e) pairs. Note that the edge sets of both graphs L − e and Ex(L) can
only shrink O(1) times in total. Therefore, we can maintain the graphs Le(L) subject to edge
deletions issued to G based on the respective graphs Ex(L) and L− e in O(n) total time.

The update procedure when some edge is removed from G is the same as in Section 4.4. The
only difference is that now we maintain more graphs for each piece of the decomposition. The
dependencies between the data structures maintaining the graphs In(·), R(·), Ex(·) and Le(·)
we use, imposed by Lemmas 4.4.9, 4.5.4 and 4.5.5, are clearly not cyclic. See Figure 4.4.

Lemma 4.5.6. Let e = uv be contained in a leaf piece L ∈ TG. Then:

• e is an intra-SCC edge if and only if vu ∈ E(Le(L)).

• e is a 1-cut edge if and only if uv /∈ E(Le(L)),

• e is a strong bridge if and only if uv /∈ E(Le(L)) and vu ∈ E(Le(L)).

Proof. Trivial by the definition of Le(L).

Theorem 4.5.7. Let G be a planar digraph. Then, in O(n log5 n) total time, we can maintain
the sets of intra-SCC edges of G, 1-cut edges of G, and strong bridges of G under edge deletions
issued to G. The algorithm is Monte Carlo randomized and is correct with high probability.

Proof. Observe that by Lemma 4.5.6, we can maintain intra-SCC edges, 1-cut-edges, and strong
bridges of G decrementally by simply tracking when certain edges of the graphs Le(L) disappear.

The total time needed to maintain the graphs In(·), R(·), Ex(·), and Le(·) is O(n log5 n) as
discussed previously.

4.5.2 Applications

In this section we describe some implications of Theorem 4.5.7. We show that maintaining the
status of individual edges under edge deletions can be used in a black-box manner to obtain
decremental algorithms for several other reachability problems on planar graphs.

Lemma 4.5.8. Let G be a simple planar digraph. Suppose we can maintain the intra-SCC edges
of G under edge deletions. Then, in O(n log n) additional total time we can explicitly maintain
the identifiers of strongly-connected components of all vertices of G under edge deletions.
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H4 H5 H6 H7

H2 H3

G = H1

In(H4) Ex(H4)

R(H4) Le(H4)

In(H5) Ex(H5)

R(H5) Le(H5)

In(H6) Ex(H6)

R(H6) Le(H6)

In(H7) Ex(H7)

R(H7) Le(H7)

In(H2) Ex(H2)

R(H2)

In(H3) Ex(H3)

R(H3)

In(H1) Ex(H1)

R(H1)

Figure 4.4: An example decomposition TG (top) and the dependencies between the correspond-
ing matrices In(H),L(H),Ex(H),Le(H), for H ∈ TG (bottom).

Proof. Define Ḡ to be the undirected graph obtained from G by first removing inter-SCC edges
and then ignoring edge directions, i.e., Ḡ contains only intra-SCC edges ofG with their directions
ignored. Note that the connected components of Ḡ are exactly the same as the strongly-
connected components of G.

Observe that the set of intra-SCC edges of G only shrinks if G is subject to edge deletions,
hence Ḡ is also subject to edge deletions only. Since we maintain the set of intra-SCC edges of
G under edge deletions, we can maintain the set of edges of Ḡ under edge deletions in additional
O(n) time.

To maintain the identifiers of strongly connected components of vertices of G, we can equiv-
alently maintain the identifiers of connected components of the graph Ḡ, which is clearly also
planar. This can be achieved by using the planar decremental connectivity algorithm of Łącki
and Sankowski [68, Lemma 3] on Ḡ. The total update time of this algorithm is O(n log n).

Lemma 4.5.9. Let G be a simple planar digraph. Suppose we can maintain the intra-SCC edges
of G under edge deletions. Let s ∈ V (G). Then we can maintain the set of vertices reachable
from s when G is subject to edge deletions in O(n log n) additional total time.

Proof. First let us explicitly maintain the strongly-connected component identifiers of all ver-
tices of G under edge deletions. This takes O(n log n) additional time, by Lemma 4.5.8. Since
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we maintain intra-SCC edges explicitly, we can easily maintain the set of inter-SCC edges of G
as well.

A condensation of a directed graph G, denoted by cond(G), is a graph obtained from G
by contracting all its strongly-connected components. The vertices of cond(G) are sets of
vertices of G contained in the corresponding strongly connected components. There is a 1-to-1
correspondence between the edges of cond(G) and the inter-SCC edges of G. Note that cond(G)
is a directed acyclic graph (DAG).

Our goal is to maintain the set of vertices of cond(G) which are reachable from the vertex of
cond(G) containing the source vertex s. The high-level idea is that in order to maintain strongly-
connected components of G we use the decremental strong-connectivity algorithm, whereas to
maintain the set of reachable vertices in cond(G) we use the fact that it is a DAG, which makes
the problem much easier.

We first describe a simple dynamic single-source reachability algorithm for DAGs. This
algorithm maintains the set of vertices reachable from a fixed source and supports two types of
updates. The first update removes a single edge, whereas the second one replaces a vertex v
with an acyclic subgraph H. This happens in three steps. First, some number of new vertices
are added to the maintained graph G (vertex v is not deleted). Second, some edges of G, whose
endpoint is v may change this endpoint to one of the newly added vertices. Third, new edges
can be added, but their endpoints can only be the newly added vertices and v. Also, adding
these edges may not introduce cycles.

Note that both operations are in a sense decremental as once a vertex becomes unreachable
from the source, it never becomes reachable again. The set of vertices reachable from the source
can be easily maintained by iteratively applying the following principle: if a vertex distinct from
the source has no incoming edges, it is not reachable from the source and thus can be deleted
from G. The resulting algorithm runs in time which is linear in the size of the original graph
and the number of vertices and edges added in the course of the algorithm. See [66] for details.

It remains to describe how to maintain cond(G) and funnel the updates to cond(G) to the
dynamic single-source reachability algorithm for DAGs. Recall that we maintain the inter-SCC
edges and strongly connected components of G explicitly. Whenever an inter-SCC edge of G
is deleted, it has a corresponding edge in cond(G) and to update cond(G) it suffices to remove
this corresponding edge. Otherwise, suppose a strongly connected component C decomposes
into strongly-connected components C1, . . . , Ck. Without loss of generality assume that C1 is
the largest one (in the sense of the number of vertices) of these strongly-connected components.
Thus, to update cond(G) we add one new vertex for each of C2, C3, . . . , Ck. We do not need
to add a vertex corresponding to C1 as we update the vertex corresponding to C (reuse it) so
that it represents C1. Some edges that were incident to C need to be updated as after the edge
deletion their endpoint is one of C2, . . . , Ck. In order to do that, we iterate through all edges of
G incident to vertices contained in C2, . . . , Ck. Similarly, by iterating through all these edges
we may add all new inter-SCC edges that appear as a result of the edge deletion.

It follows that the total running time of the algorithm is dominated by the initial graph
size and the total time of iterating through edges in the process of handling an edge deletion.
An edge uw is considered only when the size of the strongly-connected component containing
either u or w halves. Thus, we spend O(log n) time for each edge, which gives O(n log n) total
time.

Lemma 4.5.10. Let G be a planar DAG. Suppose we can maintain the set of 1-cut edges of G
when G is subject to edge deletions. Then, we can maintain the transitive reduction G− of G
in O(n) additional time.

Proof. By Lemma 2.1.1, it is indeed sufficient to decrementally maintain the 1-cut edges of G.
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Lemma 4.5.11. Let G be a planar digraph. Suppose we can maintain the sets of intra-SCC
edges and strong bridges of G under edge deletions. Then, in O(n) additional total time we can
maintain the set of 2-edge-strongly-connected subgraphs of G under edge deletions.

Proof. It is known that the maximal 2-edge-strongly-connected subgraphs of a directed graph
can be found by repeatedly removing all the inter-SCC edges and strong bridges of G until none
are left [39], and then taking the connected components of the obtained graph. Hence, we can
use the fact that we maintain the sets of inter-SCC edges and strong bridges of G under deletions
to not only compute the maximal 2-edge-strongly-connected subgraphs (by repeatedly detecting
and deleting the arising inter-SCC edges and strong bridges) but also to maintain them subject
to edge deletions.

Theorem 4.5.12. Let G be a planar digraph. In O(n log5 n) total time we can maintain the
following when G is subject to edge deletions:

• the strongly connected components of G,

• the set of vertices reachable from some source s ∈ V (G),

• the transitive reduction of G if G is acyclic,

• the maximal 2-edge-strongly-connected subgraphs of G.

The algorithm is Monte-Carlo randomized and correct with high probability.

Proof. Combine Theorem 4.5.7 with Lemmas 4.5.8, 4.5.9, 4.5.10 and 4.5.11.

4.6 Faster Deterministic Decremental Single-Source Reachabil-
ity

By Theorem 4.5.12, the decremental single-source reachability problem on planar graphs can
be solved in O(n log4 n) total time. The algorithm is Monte Carlo randomized.

In this section we show that by exploiting plane graph duality, we can develop a faster
algorithm that is additionally deterministic. Formally, we prove the following theorem.

Theorem 4.6.1. Let G be a planar digraph. Then, in O(n log2 n log logn) total time we can
maintain the sets of intra-SCC edges and strong bridges of G when G is subject to edge deletions.

By combining Theorem 4.6.1 with Lemmas 4.5.8, 4.5.9 and 4.5.11, we obtain the following
result.

Corollary 4.6.2. Let G be a planar digraph. In O(n log2 n log logn) total time we can maintain
the following when G is subject to edge deletions:

• the strongly connected components of G,

• the set of vertices reachable from some source s ∈ V (G),

• the maximal 2-edge-strongly-connected subgraphs of G.

Proof. Recall that the reductions of Lemmas 4.5.8, 4.5.9, and 4.5.11 did not use randomization
and required only O(n log n) additional total time.
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We use the following lemmas.

Lemma 4.6.3 (folklore, see, e.g., [57]). Let G be a plane digraph and e ∈ E(G). Then, e is an
inter-SCC edge of G if and only if e∗ is an intra-SCC edge of G∗.

Lemma 4.6.4. Let G be a plane digraph and let e ∈ E(G) be an intra-SCC edge of G. Then,
e is a strong bridge of G if and only if e∗ is not a 1-cut edge in G∗.

Proof. By Lemma 4.6.3, e∗ = ab is an inter-SCC edge of G∗, or equivalently, there is no path
b→ a in G∗.

Suppose first that e∗ is not a 1-cut edge in G∗. Then there exists a path P = a → b in
G∗ − e∗. If all edges of P are intra-SCC in G∗, then all vertices of P , in particular a and b, are
in the same strongly-connected component of G∗. This contradicts the fact that e∗ is inter-SCC
in G∗. Hence, there exists an inter-SCC edge f = xy on P . However, the edges of P form
a directed cycle in G∗/e∗ so all the edges of P , in particular f , are intra-SCC in G∗/e∗. By
Lemma 4.6.3, we conclude that f is intra-SCC in G, whereas it is inter-SCC in G − e. This
proves that removing e from G breaks some strongly-connected component of G. In other words,
e is a strong bridge.

Now suppose e = uv is a strong bridge of G. Then, there is no path u → v in G − e but
there is a path Q = v → u in G − e. Again, there exists an edge g on Q that is inter-SCC in
G− e as otherwise u and v would be in the same strongly-connected component of G− e. Since
Qe forms a cycle in G, g is intra-SCC in G. Equivalently, by Lemma 4.6.3, g∗ is inter-SCC in
G∗ and intra-SCC in G∗/e∗. We conclude that there exists a simple cycle C in G∗/e∗ that g
lies on. The edges of C, however, do not form a cycle in G∗. Note that this can only happen if
the edges of C form a a→ b path in G∗. But clearly e∗ /∈ E(C) and hence there exists a a→ b
path in G∗ − e∗. The lemma follows.

By Lemmas 4.6.3 and 4.6.4, instead of maintaining intra-SCC edges and strong bridges
of G under edge deletions, we can equivalently maintain inter-SCC and 1-cut edges (that are
simultaneously inter-SCC edges), respectively, in G∗ under contractions. Note that since G∗

undergoes contractions only, any of its edges can never start being an inter-SCC or 1-cut edge;
it can only cease being one.

In the following we forget about the primal and dual graphs and concentrate on maintaining
inter-SCC and 1-cut edges under edge contractions in a non-necessarily simple planar graph G
(note that the dual graph may be not simple even if the primal is simple), i.e., we set G := G∗.

The first step is to handle self-loops and parallel edges separately. A self-loop of G is always
an intra-SCC edge and thus will never become an inter-SCC edge. Hence, we can remove self-
loops from G at the very beginning. As far as parallel edges are concerned, note that an edge
is inter-SCC if and only if all its parallel edges are inter-SCC. Also observe that if an edge has
a parallel edge, it is certainly not a 1-cut edge (and hence it will never start being one). From
each set of pairwise parallel edges we may thus simply remove all but one, keeping in mind that
if we removed at least one, then the edge that we kept is not a 1-cut edge even if our algorithm
designed for simple graphs will say so. From this point on, we assume that G is initially simple.

The next step is to reduce our problem to the case when G has a simple recursive decom-
position. We again apply the same set of reductions as we did in Section 4.4, and in O(n log n)
time obtain a constant-factor larger graph G′ = (V ′, E0∪E′∪E×) that preserves reachability of
G, along with a simple recursive decomposition TG′ . Recall that the first step of the reduction
of Lemma 4.5.1 was to get rid of the edges E× by issuing edge deletions in the initialization
phase. However, we cannot do that safely using edge contractions. Instead, for each H ∈ TG
we simply remove all edges of E(H)∩E× from that piece. Afterwards, the key properties, that
V (H) ∩ V (G−H) ⊆ ∂H and ∂H lies on O(1) simple and pairwise-disjoint separator curves of
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both H and G−H, are preserved (we used the same fact in Section 4.4.2). Clearly, the graph
(V ′, E0 ∪E′) also preserves the reachability of G and the inter-SCC and 1-cut edges that lie in
E′ in this graph correspond to inter-SCC and 1-cut edges in G, even if these graphs undergo
contractions of the corresponding edges. We thus set G := (V ′, E0 ∪ E′) in the following and
assume that we are given a decomposition TG as discussed above.

Now, we further simplify our problem using the following observation.

Lemma 4.6.5. Let G be a digraph and let uv = e ∈ E(G). Let e′ ∈ E(G) and e′ 6= e. Then, e′

is an inter-SCC edge (a 1-cut edge) of G/e if and only if e′ is an inter-SCC edge (a 1-cut edge,
respectively) of G+ vu.

Proof. Note that from the point of view of reachability information in G, contraction of an edge
e = uv, which is effectively a merge of vertices u and v, is equivalent to making u and v strongly
connected. Since uv ∈ E(G), adding the edge vu makes u and v strongly-connected.

By the above lemma, instead of maintaining inter-SCC edges and 1-cut edges of G = (V,E0)
under contractions, we can alternatively track which edges of the initial edge set E0 of G are
inter-SCC and 1-cut under insertions of reverse edges.

We solve this incremental problem with basically the same approach as we used in the
decremental setting in Section 4.5. For all H ∈ TG we also maintain the graphs R(H), In(H)
and Ex(H), and if H is a leaf piece, additionally the graphs Le(H) for each e ∈ E(H)∩E0. These
graphs are defined identically as in Sections 4.4.2 and 4.5 and can be computed inductively using
Lemmas 4.4.9, 4.5.4, and 4.5.5. Whereas in Section 4.5 a deletion of an edge uv = e ∈ E(G) was
handled by deleting it from a unique leaf He that contained it and propagating changes using
the dependencies graph (Figure 4.4), here the insertion of a reverse edge e′ = vu is handled by
adding e′ to He and propagating changes. By Lemma 4.5.6, we can decide which edges of G
are inter-SCC and 1-cut by just looking at appropriate graphs Le(L).

The only difference is that now the graphs R(·), In(·), Ex(·) and Le(·) need to be maintained
under insertions of reverse edges to G, or equivalently, under batches of incremental updates
to the graphs they depend on. To achieve that, we use Theorem 4.3.1 exactly as we used
Theorem 4.3.2 in Sections 4.4.2 and 4.5 for efficiently maintaining all the needed graphs. We
only need to argue why for any H ∈ TG, the graphs H and G − H are both ∂H-incremental
(see the definition of ∂H-incremental at the beginning of Section 4.3).

Recall that G is a subgraph of a graph G′ which had an actual simple recursive decompo-
sition TG′ . Hence, for each edge uv = e ∈ E0 ⊆ E(G′), the unique leaf piece H ′e ∈ TG′ that
contained that edge had a face fe (a non-hole) of G′ on at least one side of e in He (by the fact
that the holes of He were simple and pairwise disjoint). Therefore, fe was actually a face of all
pieces H ′ ∈ TG′ that contained e. Suppose we obtain a graph G′′ from G′ by adding, for each
edge uv = e ∈ E0, a reverse edge e′ = vu to G′ and all pieces H ′ ∈ TG′ such that e ∈ E(H ′),
and embedding it inside fe (so that the added reverse edges embedded in a single face of G′ do
not cross). Then the holes of any piece piece H ′′ ∈ TG′′ are the same as in the corresponding
piece H ′ ∈ TG′ from which H ′′ was obtained. We conclude (by Lemma 4.5.2) that ∂H ′′ lies on
O(1) simple and pairwise-disjoint separator curves of both H ′′ and G′′ −H ′′.

Now, note that by inserting into H ∈ TG a reverse edge e′ for a number of edges e ∈
E0 ∩ E(H), we always maintain an invariant that H ⊆ H ′′ and G − H ⊆ G′′ − H ′′. But
∂H = ∂H ′′ and the holes of H ′′ (equal to the initial holes of H) are separator curves of H and
G−H at all times. Hence, both graphs H and G−H are ∂H-incremental.

Finally, in order to finish the proof of Theorem 4.6.1, observe that the total update time of
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this algorithm is, by Theorem 4.3.1,

O

 ∑
H∈TG

|∂H|2 log n log log n

 = O(n log2 n log log n).

4.7 A Trade-Off for Planar Decremental Transitive Closure

In this section we show how to obtain a decremental transitive closure algorithm for planar
graphs with faster query time, at a cost of slower update time and larger space consumption.
The general approach we use is due to Mozes and Sommer [76] who used it to develop the
so-called cycle-MSSP data structure, which they subsequently leveraged to show a space-time
trade-off for exact distance oracles for planar graphs.

In the following, let t ∈ [1, n] be a parameter. We first apply Lemmas 4.4.4, 4.4.5 and 4.4.6, so
that we can assume that G is simple, connected, plane-embedded, triangulated and of constant
degree.

We start by computing an r-division with few holes of G for r = t. By Theorem 2.3.6, this
can be done in linear time. First, for each piece P separately we build the data structure DP
of Theorem 4.4.1. Each time an edge of G contained initially in P is removed, we issue the
deletion of e to that data structure. This way, given u, v ∈ V (P ), we can check whether there
exists a path u→ v contained entirely in P in O(

√
t log n log logn) time. The total time needed

to maintain all the data structures DP is clearly O(n/t · t log5 n = n log5 n).
Suppose now that we want to check whether there exists a path u→ v in G, where u ∈ V (P ).

Observe that if no such path is contained in P , any u → v path has to go through a vertex
of ∂P lying some hole h out of O(1) holes of P .

For each hole h of P separately, we proceed as follows. Suppose without loss of generality
that h is the unbounded face of P , i.e., that P lies inside h. First, cyc(h) is not necessarily a
simple cycle. To handle this case, we proceed similarly to [58, Section 5.1]. We will modify the
graph G, but let the set ∂P be fixed. Let us set E′h = E. First, we duplicate the edges of h that
appear twice on cyc(h) and include the introduced duplicates in the set E×h . We subsequently
split each vertex v that appears multiple times on cyc(h) (and modify h accordingly) until no
such vertex remains, i.e., until cyc(h) becomes a simple cycle in G. Specifically, while some
vertex v appears on cyc(h) k > 1 times, we choose some occurrence of v on h arbitrarily. Let
e1, . . . , ek be the clockwise edge ring of v. Let ei, ej be the two consecutive edges of cyc(h)
adjacent to that occurrence of v. We split v into vertices v, v′ connected by a pair of directed
edges e′ = vv′, e′′ = v′v (included in the set Eh,0) embedded inside the hole h so that the
new edge ring of v is e′, e′′, ej+1, . . . , ei−1 and the new edge ring of v′ is e′′, e′, ei, . . . , ej . The
edges ei, . . . , ej change one of its endpoints from v to v′ but otherwise preserve their identifiers.
Afterwards, v appears on cyc(h) k − 1 times whereas v′ appears there once.

Note that we do not actually change the edges of h; we might only change some of their
endpoints. Observe that we introduced O(|E(h)|) new vertices (all of them on h) and edges in
this process, and therefore the size of the graph increased by a constant factor only. Moreover,
by the constant degree assumption O(|E(h)|) = O(|V (h)|) and thus h has O(|∂P |) = O(

√
t)

vertices. When the process ends, h is simple. In the following, suppose h is simple.
Let Gh = (V ′h, Eh,0 ∪ E′h ∪ E×h ) be the obtained graph. Denote by S(v) the set of vertices

split out of v. Note that Gh preserves the reachability of G (see Definition 4.4.2): the strongly
connected components of (Vh, Eh,0) are exactly the sets S(v) and for each uv = e ∈ E, there
exists u′v′ = e′ ∈ E′h such that u′ ∈ S(u), v′ ∈ S(v) and id(e′) = id(e).

We again triangulate Gh without adding new vertices, as in Lemma 4.4.6 (the added edges
are directed arbitrarily and included in E×h ).
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Recall that we were originally interested in finding paths in G that go through ∂P ∩ V (h)
when G is subject to edge deletions (here G is the original graph, whereas h is a simple cy-
cle in Gh). Since Gh preserves the reachability of G and

⋃
v∈∂P∩V (h) S(v) = V (h), we can

equivalently look for paths in Gh that go through V (h), when Gh is subject to edge deletions.
Let Gh,1 (Gh,2) be the graph Gh with vertices strictly outside (strictly inside, respectively) h

removed. Observe that Gh,1 is not necessarily of size O(t) (as P was) since there could be other
pieces located both inside h and inside holes of P . Note that both Gh,1 and Gh,2 (seen as
subgraphs of Gh) have at most one hole (bounded by the cycle h; we will also call it h) and are
connected. Clearly, for any x, y ∈ V (G), a path x → y exists in G if and only if a path x → y
exists in Gh,1 ∪Gh,2. Moreover, V (Gh,1) ∩ V (Gh,2) = V (h).

Let us now apply the reduction of Lemma 4.4.7 to Gh,i, for i = 1, 2, with the following small
difference. When decomposing Gh,i, we redefine a hole of a piece H to be a face of H that is
either not a face of Gh,j , or is equal to h. For H ∈ TGh,i , we also redefine ∂H to be equal to
V (H)∩ V (Gh−H) = V (H)∩ (V (Gh,i−H)∪ V (h)) instead of V (H)∩ V (Gh,i−H). Then h is
the only hole of Gh,i and ∂Gh,i = V (h).

Although the construction of Theorem 4.1.4 assumed that the input graph is triangulated,
the recursive decomposition procedure in that construction only required that for any input
piece H to be decomposed:

• H was simple and connected,

• H had O(1) simple and pairwise vertex-disjoint holes,

• all vertices of holes of H were boundary vertices of H,

• all the faces of H that were not holes had size no more than 3.

Clearly, all these requirements are met for Gh,i if we assume our changed definition of boundary
vertices and holes. Moreover, one can easily see that if we use our modified definition of
boundary vertices, Lemma 4.1.2 still holds. So, we can compute the boundary vertices of the
children pieces without any changes. Since h is a hole of Gh,i, for any piece H ∈ TGh,i , the
vertices V (h) ∩ V (H) also lie on holes of H. Therefore, Lemma 2.3.3 remains true. Since
|∂Gh,i| = O(

√
t) = O(

√
n), all the quantitative properties of the boundary vertices sets of a

recursive decomposition (proved in Lemmas 4.1.6, 4.1.11 and 4.1.12) are still satisfied.
This way, in O(n log n) time we can obtain a graph G′h,i that preserves the reachability

of Gh,i and additionally has a simple recursive decomposition TG′h,i . Moreover, the construc-
tion of Theorem 4.1.4 guaranteed that after the decomposition procedure is called on a piece,
its holes (and, as a byproduct, its boundary vertices) are never altered. Therefore, without
loss of generality we may assume that Gh,i has a simple recursive decomposition TGh,i and
simultaneously Gh,i has a hole bounded by the simple cycle h.

Let i ∈ {1, 2}. For each H ∈ TGh,i , we again maintain the graphs In(H) and R(H),
defined as in Section 4.4, under edge deletions issued to Gh,i. For H ∈ TGh,i , let us define
∂∗H = ∂H ∪ V (h).

Lemma 4.7.1. For any H ∈ TGh,i, ∂∗H lies on O(1) disjoint separator curves of both H and
Gh,i −H.

Proof. Let YH = V (h) \ V (H). Since V (h) ∩ V (H) ⊆ ∂H, we actually have ∂∗H = ∂H ∪ YH
and ∂H ∩ YH = ∅.

As proven in Fact 4.2.2 and Lemma 4.5.2, the bounding cycles of the holes of H are all
separator curves of both H and Gh,i −H. Hence, since H has O(1) holes, the set ∂H lies on
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O(1) disjoint separator curves of both H and Gh,i−H. If Yh = ∅, ∂H = ∂∗H and we would be
done at this point.

We now prove that if Yh 6= ∅, then there exists a separator curve C of both H and Gh,i−H,
disjoint with the bounding cycles of the holes of H, such that the vertices YH lie on C. Without
loss of generality assume that i = 1, i.e., Gh,i lies weakly inside the curve h. Since H and
Gh,i − H are both subgraphs of Gh,i, they both lie weakly inside h. Since YH ∩ V (H) = ∅,
no vertex of the holes of H is contained in YH . Set C to be a Jordan curve going through
the vertices of YH (and no other vertices of Gh,i) in the same (cyclic) order as the vertices YH
appear on h and such that each part of C connecting two neighboring vertices of YH in that
order is embedded strictly outside h. Since h is a simple hole of Gh,i and Gh,i is entirely weakly
inside h, such a C indeed exists.

Observe that H and Gh,i −H both lie weakly inside C (since Gh,i lies weakly inside C) so
C is a separator curve of them both. Moreover, C ∩ V (H) = ∅ and thus C is disjoint with the
holes of H.

To conclude, the bounding cycles of the holes of H, together with C, form the sought O(1)
disjoint separator curves of both H and Gh,i −H that ∂∗H lies on.

We call a piece H ∈ TGh,i marked if the inequality |∂H ′|+
√
|V0(H ′)| ≥ |V (h)| holds for all

ancestors H ′ 6= H of H in TGh,i Observe that, by this definition, if a piece H is marked, then
its parent is also marked. Also, since ∂Gh,i = V (h), the root piece Gh,i is clearly marked.

For marked pieces H, we also maintain the graph

Ex∗(H) = (Gh,i −H)+[∂∗H].

Lemma 4.7.2. Let H ∈ TGh,i be a marked piece and let P, S be the parent and the sibling of H
in TGh,i, respectively. Then, Ex∗(H) = (Ex∗(P ) ∪ In(S))+[∂∗H].

Proof. We only need to show that for u, v ∈ ∂∗H there is a path Q = u → v in Gh,i − H if
and only if there is a path u → v in Ex∗(P ) ∪ In(S). The easier “ ⇐= ” direction is handled
analogously as in the proof of Lemma 4.5.4.

To prove the “ =⇒ ” part, recall that Gh,i −H = (Gh,i − P ) ∪ S and split Q into maximal
paths Q1, . . . , Qq fully contained in either Gh,i − P or S. Let Qj go from aj to bj and suppose
Qj is fully contained in S. Then aj is either equal to u if j = 1, and then

aj = u ∈ V (S) ∩ ∂∗H ⊆ V (S) ∩ (V (H) ∪ V (h)) ⊆ V (S) ∩ (V (Gh,i − S) ∪ V (h)) = ∂S,

or aj is the same as the last vertex of Qj−1 and hence

aj ∈ V (Gh,i − P ) ∩ V (S) ⊆ V (Gh − S) ∩ V (S) = ∂S.

Similarly we prove that bj ∈ ∂S. By the definition of In(S), there is an edge ajbj in In(S).
Analogously, for each subpath Qj = ajbj fully contained in Gh,i − P , if j > 1, then

aj ∈ V (Gh,i − P ) ∩ V (S) ⊆ V (Gh − P ) ∩ V (P ) = ∂P ⊆ ∂∗P,

or otherwise aj = a1 = u ∈ V (Gh,i−P )∩ ∂∗H = V (Gh,i−P )∩ (∂H ∪ V (h)). If u ∈ V (h), then
clearly u ∈ ∂∗P . Otherwise, we have

u ∈ V (Gh,i − P ) ∩ ∂H ⊆ V (Gh − P ) ∩ V (H) ⊆ V (Gh − P ) ∩ V (P ) = ∂P ⊆ ∂∗P.

Similarly we prove that bj ∈ ∂∗P . By the definition of Ex∗(P ), there is an edge ajbj in Ex∗(P ).
We conclude that there is a directed path ua2 . . . aqv in Ex∗(P ) ∪ In(S).
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By Lemmas 4.7.1 and 4.7.2, we can maintain the graphs Ex∗(H) for marked pieces H
inductively using Theorem 4.3.2. The total time needed to maintain these graphs is

O


∑

H∈TGh,i
H marked
H=childi(P )
S=child3−i(P )

(|∂∗P |2 + |∂S|2) log4 n


= O


∑

H∈TGh,i
H marked
H=childi(P )

|∂∗P |2 log4 n

+O(n log5 n)

= O


∑

H∈TGh,i
H marked
H=childi(P )

(|∂P |+ |V (h)|)2 log4 n

+O(n log5 n)

= O


∑

H∈TGh,i
H marked
H=childi(P )

(
|∂P |+

√
|V0(P )|

)2
log4 n

+O(n log5 n)

= O

log4 n ·
∑

H∈TGh,i

(|∂H|2 + |V0(H)|)

+O(n log5 n)

= O(n log5 n).

In the last step we used the fact that, by Lemma 4.1.7,
∑

H∈TGh,i

(
|∂H|2 + |V0(H)|

)
= O(n log n).

Similarly as in Section 4.4.2, for H ∈ TGh,i let us define Hh,i,w to be the leftmost leaf piece
in the subtree TGh,i(H) such that w ∈ V (Hh,i,w). For H ∈ TGh,i such that w ∈ V (H), let

Rwh,i(H) = R(Hh,i,w) ∪
⋃

H′∈TGh,i (H)

H′ 6=Hh,i,w
Hh,i,w∈TGh,i (H

′)

In(child1(H ′)) ∪ In(child2(H ′)).

These definitions would actually match the definitions of Hw and Rw(H) of Section 4.4.2 if we
substituted G := Gh,i. Also, by proceeding similarly as in the proof of Lemma 4.4.13 and taking
into account the bound from Lemma 4.1.11, we can easily prove that

|V (Rwh,i(H))| = O
(√
|V0(H)|+ |∂H|

)
.

Analogously as in Section 4.4.2, by Lemma 4.4.11, for w ∈ V (H) and y ∈ ∂H ∪ Sep(H), where
H ∈ TGh,i , a path w → y (y → w) exists in H if and only if a path w → y (y → w, respectively)
exists in Rwh,i(H).

Let us now define the graph Gh,u,v to be a union of certain graphs we maintain. For i = 1, 2,
include in Gh,u,v the following graphs:

• In(Gh,i),

• For w ∈ {u, v}, if w ∈ V (Gh,i), let Ah,i,w be the nearest weak ancestor of Hh,i,w in TGh,i
that is marked. Then, include in Gh,u,v the graphs:

– Rwh,i(Ah,i,w),
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– Ex∗(Ah,i,w).

We now show that the number of vertices of Gh,u,v if O(
√
t). First, recall that ∂Gh,i = O(

√
t).

Since Ah,i,w is the nearest marked ancestor, either Ah,i,w = Hh,i,w or |∂Ah,i,w|+
√
|V0(Ah,i,w)| <

|V (h)| = O(
√
t). In both cases |∂Ah,i,w| = O(

√
t). By that we conclude |∂∗Ah,i,w| ≤ |∂Ah,i,w|+

|V (h)| = O(
√
t) and |V (Rwh,i(Ah,i,w))| = O(

√
t). Hence, we indeed have |V (Gh,u,v)| = O(

√
t).

Lemma 4.7.3. Let u, v ∈ V (Gh). Then the following conditions hold.

1. If v is reachable from u in Gh,u,v, then there is a path u→ v in Gh.

2. If a path u→ v going through a vertex of V (h) exists in G, then there exists a path u→ v
in Gh,u,v.

Proof. Let us first note that a path u → v exists in Gh if and only if it exists in Gh,1 ∪ Gh,2.
Then, the first part is clear as each edge xy of Gh,u,v certifies that a path x→ y exists in some
subgraph of either Gh,1 or Gh,2.

To prove the second part, consider some simple path P = u→ v going through a vertex V (h)
and split it into maximal paths P1, . . . , Pp such that the internal (i.e., non-endpoint) vertices of
each Pj are not contained in V (h). If Pj consists of a single edge, then it is clearly contained in
Gh,1 or Gh,2 (or possibly in both). Otherwise, Pj contains a vertex of V (Gh) \ V (h), and thus
Pj is contained in exactly one of Gh,1 or Gh,2. Moreover, for i ∈ [2, p), Pj has both endpoints
in V (h).

Fix some j and suppose without loss of generality that a path Pj = xj → yj is contained
in Gh,i. If j ∈ [2, p), then {xj , yj} ⊆ V (h) ⊆ ∂Gh,i, and it follows that there is an edge xjyj in
In(Gh,i) ⊆ Gh,u,v.

Now consider j = 1 (the case j = p is symmetric). Then x1 = u. We cannot have
{x1, y1} ∩ V (h) = ∅ since u → v is supposed to pass through a vertex of V (h) and no internal
vertices of P1 belong to V (h). Assume without loss of generality that y1 ∈ V (h) (this is certainly
the case when p ≥ 2, but if p = 1, it might happen that x1 = u ∈ V (h) and y1 /∈ V (h) – then
we follow the symmetric “j = p” proof).

Split P1 into maximal paths Q1, . . . , Qq, where Qk = ak → bk, contained entirely in either
Ah,i,u or Gh,i −Ah,i,u. For any k < q,

bk ∈ V (Ah,i,u) ∩ V (Gh,i −Ah,i,u) ⊆ V (Ah,i,u) ∩ V (Gh −Ah,i,u) = ∂Ah,i,u.

Similarly, we have ak ∈ ∂Ah,i,u for k > 1.
Assume Qk = ak → bk is contained entirely in Ah,i,u. Note that if k = q, then bq ∈

V (h) ∩ V (Ah,i,u) ⊆ ∂Ah,i,u. Consequently, bk ∈ ∂Ah,i,u for all k. Now, if k = 1, then a1 = u
and hence by Lemma 4.4.11 for Ruh,i(Ah,i,u), it follows that there exists a path (u = a1) →
b1 in Ruh,i(Ah,i,u) ⊆ Gh,u,v. If k > 1, then {ak, bk} ∈ ∂Ah,i,u, so there is a path ak → bk
in R(Ah,i,u). Observe that if Ah,i,u is a leaf piece, then Ruh,i(Ah,i,u) = R(Ah,i,u) = Ah,i,u.
Otherwise, since R(Ah,i,u) = (In(child1(Ah,i,u)) ∪ In(child2(Ah,i,u))+, a path ak → bk exists in
In(child1(Ah,i,u))∪ In(child2(Ah,i,u)) ⊆ Ruh,i(Ah,i,u). We conclude that indeed if Qk is contained
entirely in Ah,i,u, then there exists a path ak → bk in Gh,i,u.

Now suppose Qk = ak → bk is contained entirely in Gh,i − Ah,i,u. We show that akbk is an
edge of Ex∗(Ah,i,u) in this case.

First note that if k = 1, then by definition of Hh,i,u we have u ∈ V (Hh,i,u). Thus,

ak = a1 = u ∈ V (Hh,i,u) ∩ V (Gh,i −Ah,i,u) ⊆ V (Ah,i,u) ∩ V (Gh −Ah,i,u) = ∂Ah,i,u.
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So in fact ak ∈ ∂Ah,i,u ⊆ ∂∗Ah,i,u regardless of k. If k = q, then bk ∈ V (h) and we trivially
have bk ∈ ∂Ah,i,u ∪ V (h) = ∂∗Ah,i,u. We conclude that {ak, bk} ⊆ ∂∗Ah,i,u regardless of k, and
therefore akbk is indeed an edge of Ex∗(Ah,i,u) ⊆ Gh,u,v.

Since for each Qk there is a path ak → bk in Gh,u,v, Gh,u,v contains a path u = x1 → y1 as
well. Finally, Gh,u,v contains a path xj → yj for any j = 1, . . . , p, and thus it also contains a
path u→ v.

Recall that in order to answer a general query about a path u → v, where u ∈ V (P ), we
first look for such a path in P , by querying DP , in O(

√
t log n log logn) time. Then, for each

of O(1) holes h of P , we look for a path u → v in Gh,u,v. By Lemma 4.7.3, this is enough to
decide whether u → v exists in the original graph G. Observe that each Gh,u,v is composed
of O(1) edges plus a number of graphs of the form H+[U ], where U lies on O(1) simple and
pairwise-disjoint separator curves of a plane graph H. Hence, by Corollary 4.3.7, we can search
for a u // v path in Gh,u,v in O(

√
t log n log logn) time.

The total time needed to construct each TGh,i and maintain all the needed graphs In(·),
R(·), Ex∗(·), is O

(∑
H∈TGh,i

|∂H|2 log4 n
)

= O(n log5 n). The number of valid pairs (h, i) is

clearly O(n/t) so the total update time (and the required space) of the whole data structure is
O(n2/t · log5 n).

Theorem 4.7.4. For any t ∈ [1, n], there exists a decremental transitive closure algorithm for
planar graphs with O(n2/t · log5 n) total update time and O(

√
t log n log logn) query time.

The algorithm is Monte-Carlo randomized and is correct with high probability.

Corollary 4.7.5. There exists a decremental transitive closure algorithm for planar graphs with
Õ(n1/3) amortized update time and Õ(n1/3) query time.

The algorithm is Monte-Carlo randomized and is correct with high probability.

Proof. Set t = n2/3 and apply Theorem 4.7.4.
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Chapter 5

Improved Algorithm for Shortest
Paths in Dense Distance Graphs

In this chapter we study the problem of computing shortest paths in so-called dense distance
graphs, a basic building block for designing efficient planar graph algorithms.

For i = 1, . . . , q, let Gi be a plane, non-negatively weighted digraph. Let Ui be a subset of
vertices of Gi lying on O(1) faces of Gi. We define a distance clique of Gi, denoted DC(Gi), to
be a complete graph on Ui such that for each uv ∈ E(DC(Gi)), wDC(Gi)(uv) = δG(u, v).

A dense distance graph is a union of possibly many unrelated distance cliques. Let

DDG =

q⋃
i=1

DC(Gi).

We also set V = U1 ∪ . . . ∪ Uq and n = |V |.
Formally, we solve the following abstract problem. Suppose we are given q distance cliques

DC(G1), . . . ,DC(Gq) explicitly. Assume that we are allowed to preprocess each DC(Gi) once in
time asymptotically no more than the time used to construct it, which is clearly Ω(|Ui|2). To
the best of our knowledge, in all known applications when Ui does not necessarily lie on a single
face of Gi this time is Ω((|V (Gi)| + |Ui|2) log |V (Gi)|), which is the time needed to compute
the multiple-source shortest-path data structure [13, 62] for O(1) faces of Gi and compute |Ui|2
pairwise distances using it. After the preprocessing stage we may need to handle multiple
single-source shortest-path computations on DDG. Specifically, given s ∈ V , we are asked to
compute the distances δDDG(s, v) for all v ∈ V .

Note that this problem can be also viewed as a generalization of the problem from Sec-
tion 4.3.2. There, instead of distance cliques, we were given reachability cliques and we also
wanted to compute distances from a single-source in a union of these cliques. We could in fact re-
duce the problem of Section 4.3.2 to computing shortest paths in DDG if we replaced unweighted
edges with 0-weight edges. Then, for each uv ∈ E(DC(Gi)) we would have wDC(Gi)(uv) = 0

if uv ∈ G+
i [Ui] and wDC(Gi)(uv) = ∞ otherwise. However, the special structure of the graphs

G+
i [Ui] allowed us to develop a simpler and faster algorithm for that case in Section 4.3.2

The main goal of this chapter is to prove the following theorem, which is an improvement
over the original algorithm of Fakcharoenphol and Rao [27], so-called FR-Dijkstra.

Theorem 5.0.1. The single-source shortest paths computations in DDG can be performed in
O
(∑q

i=1 |Ui| log2 n
log2 logn

)
time. The required preprocessing time per each Gi is O(|Ui|2) if Ui lies

on a single face of Gi, and O
(
(|V (Gi)|+ |Ui|2) log |V (Gi)|

)
otherwise.
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In the following we will focus on the case when each Ui in fact lies on O(1) simple and
pairwise-disjoint faces of Gi. This is without much loss of generality: for some important
applications (e.g., [7]) this is actually sufficient, whereas for others (e.g., [8, 67]), depending on
the application, we may appropriately extend the graphs (and subgraphs) that we work on, as
we did multiple times in Chapter 4 (see also [58]), so that this condition is eventually satisfied.

Outline. This chapter is organized as follows. In Section 5.1 we introduce the matrix notation
that we use and state some important properties of Monge matrices, a central notion to this
chapter.

Since the main findings of this chapter are technically involved, in Section 5.2 we start
with an overview of our shortest paths algorithm and sketch how it reduces to a certain data-
structural problem about reporting column minima of a staircase Monge matrix in an online
fashion. We also discuss the main ideas behind out improved data structure for this problem.

In Sections 5.3, 5.4, and 5.5, we develop increasingly more powerful data structures for
reporting column minima in online Monge matrices. Each of these data structures is used in a
black-box manner in the following section.

In Section 5.6 we give the details of our shortest paths algorithm. In Section 5.7 we discuss
how the algorithm of Section 5.6 can be useful in the case of arbitrary (i.e., possibly negative)
edge weights.

Section 5.8 covers the most important applications of FR-Dijkstra and discusses how our
result influences these applications.

5.1 Monge Matrices and Their Minima

In this chapter we define a matrix to be a partial function M : R × C → R where R (called
rows) and C (called columns) are some totally ordered finite sets. Set R = {r1, . . . , rk} and
C = {c1, . . . , cl} where r1 ≤ . . . ≤ rk and c1 ≤ . . . ≤ cl. If for ri, rj ∈ R we have ri ≤ rj , we also
say that ri is (weakly) above rj and rj is (weakly) below ri. Similarly, when we have ci < cj ,
we say that ci is to the left of cj and cj is to the right of ci.

For r ∈ R and c ∈ C, we denote by Mr,c an element of M. An element is the value of M
on pair (r, c), if defined.

For R′ ⊆ R and C ′ ⊆ C we defineM(R′, C ′) to be a submatrix ofM. M(R′, C ′) is a partial
function on R′ × C ′ satisfying M(R′, C ′)r,c = Mr,c for any (r, c) ∈ R′ × C ′ such that Mr,c is
defined. We sometimes abuse this notation by writing M(R′, c′) or M(r′, C ′) when R′ or C ′

are single-element, i.e., when R′ = {r′} or C ′ = {c′}.
The minimum of a matrix min{M} is defined as the minimum value of the partial func-

tion M. The column minimum of M in column c is defined as min{M(R, {c})}.
We call a matrix M rectangular if Mr,c is defined for every r ∈ R and c ∈ C. A matrix is

called staircase (flipped staircase) if |R| = |C| and Mri,cj is defined if and only if i ≤ j (i ≥ j
respectively).

Finally, a subrectangle of M is a rectangular matrix M({ra, . . . , rb}, {cx, . . . , cy}) where
1 ≤ a ≤ b ≤ k, 1 ≤ x ≤ y ≤ l. We define a subrow to be a subrectangle with a single row.

For a matrixM and a function d : R→ R, define the offset matrix off(M, d) to be a matrix
M′ such that for all r, c, for which Mr,c is defined, we have M′r,c =Mr,c + d(r).

We say that a matrixM with rows R and columns C is a Monge matrix, if for each r1, r2 ∈ R,
r1 ≤ r2 and c1, c2 ∈ C, c1 ≤ c2, such that all elementsMr1,c1 ,Mr1,c2 ,Mr2,c1 ,Mr2,c2 are defined,
the Monge property holds, i.e., we have

Mr2,c1 +Mr1,c2 ≤Mr1,c1 +Mr2,c2 .
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Figure 5.1: Example 10× 10 Monge matrices: a rectangular one to the left and a staircase one
to the right. The gray cells contain the column minima of the respective columns.

Fact 5.1.1. Let M be a Monge matrix. For any R′ ⊆ R and C ′ ⊆ C, M(R′, C ′) is also a
Monge matrix.

Fact 5.1.2. Let M be a rectangular Monge matrix. Assume that for some c ∈ C and r ∈ R,
Mr,c is a column minimum of c. Then:

1. for each column c− < c, there exists a row r− ≥ r such thatMr−,c− is a column minimum
of c−,

2. for each column c+ > c, there exists a row r+ ≤ r such thatMr+,c+ is a column minimum
of c+.

Proof. We only prove the former claim as the proof of the latter is analogous. Suppose all the
column minima of c− lie in rows above r. Then, by the Monge property, for some r′ < r we
have Mr,c− +Mr′,c ≤Mr′,c− +Mr,c. But Mr′,c− <Mr,c− and Mr,c ≤Mr′,c, so we conclude
Mr,c− +Mr′,c <Mr,c− +Mr′,c, a contradiction.

Fact 5.1.3. Let M be a Monge matrix with rows R and let d : R→ R. Then, off(M, d) is also
a Monge matrix.

Proof. Let r1 ≤ r2 be two rows and let c1 ≤ c2 be two columns such that Mr1,c1 ,Mr1,c2 ,Mr2,c1

and Mr2,c2 are all defined. We have

off(M, d)r2,c1 + off(M, d)r1,c2 =Mr2,c1 +Mr1,c2 + d(r1) + d(r2)

≤Mr1,c1 +Mr2,c2 + d(r1) + d(r2)

= off(M, d)r1,c1 + off(M, d)r2,c2 .

Fact 5.1.4. Let M be a rectangular Monge matrix and assume R is partitioned into disjoint
blocks R = R1, . . . , Ra such that each Ri is a contiguous group of subsequent rows and each Ri
is above Ri+1. Assume also that the set C is partitioned into blocks C = C1, . . . , Cb so that Ci
is to the left of Ci+1. Then, a matrix M′ with rows R and columns C defined as

M′Ri,Cj = min{M(Ri, Cj)},

is also a Monge matrix.
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Proof. Let i1, i2, j1, j2 be such that 1 ≤ i1 ≤ i2 ≤ a and 1 ≤ j1 ≤ j2 ≤ b. We need to prove

M′Ri2 ,Cj1 +M′Ri1 ,Cj2 ≤M
′
Ri1 ,Cj1

+M′Ri2 ,Cj2 .

If i1 = i2 or j1 = j2, then the inequality is trivial so suppose i1 < i2 and j1 < j2.
LetMr1,c1 be any minimum element ofM(Ri1 , Cj1) and letMr2,c2 be any minimum element

of M(Ri2 , Cj2). Since Ri1 is above Ri2 and Cj1 is to the left of Cj2 , r1 < r2 and c1 < c2. By
the Monge property of M and the minimality of the values Mr1,c1 and Mr2,c2 we obtain:

M′Ri2 ,Cj1 +M′Ri1 ,Cj2 = min{M(Ri2 , Cj1)}+ min{M(Ri1 , Cj2)}
≤ Mr2,c1 +Mr1,c2

≤Mr1,c1 +Mr2,c2

= min{M(Ri1 , Cj1)}+ min{M(Ri2 , Cj2)}
=M′Ri1 ,Cj1 +M′Ri2 ,Cj2 .

Fact 5.1.5. Let M be a rectangular Monge matrix. For r ∈ R, define Cr ∈ C to be the set of
columns having one of their column minima in row r. Then:

1. Cr is contiguous, that is, either Cr = ∅ or Cr = {ca, . . . , cb} for some 1 ≤ a ≤ b ≤ l.

2. If r1 > r2 and both Cr1 and Cr2 are non-empty, i.e., Cr1 = {ca1 , . . . , cb1} and Cr2 =
{ca2 , . . . , cb2} for some a1 ≤ b1, a2 ≤ b2, then a1 ≤ a2 and b1 ≤ b2.

Proof. Let us start with the former claim. Suppose the contrary, i.e., that there exist x, y, z,
1 ≤ x < y < z ≤ l such that cx ∈ Cr, cy /∈ Cr and cz ∈ Cr. Let a column minimum of cy lie
in some row r′. If r′ < r, then Mr,cy +Mr′,cz >Mr′,cy +Mr,cz , a contradiction. Otherwise, if
r′ > r, we conclude Mr′,cx +Mr,cy >Mr,cx +Mr′,cy , also a contradiction.

For the latter claim, we only prove a1 ≤ a2 as proving b1 ≤ b2 is analogous. Suppose
the contrary, i.e., a2 < a1. Then, by Mr1,ca2

> Mr1,ca1
and Mr2,ca1

≥ Mr2,ca2
, we get

Mr1,ca2
+Mr2,ca1

>Mr2,ca2
+Mr1,ca1

, a contradiction with the Monge property.

Remark 5.1.6. The statements of Facts 5.1.2 and 5.1.5 could be simplified if we either as-
sumed that the column minima in the considered Monge matrices are unique, or introduced
some tie-breaking rule. However, this would lead to a number of similar assumptions in terms
of priority queue keys and path lengths in the following sections, which in turn would complicate
the description. Thus, we do not use any simplifying assumptions about the column minima.

5.2 Shortest Paths in a Dense Distance Graph: an Overview

The single-source shortest paths in DDG are computed with an optimized implementation of
Dijkstra’s algorithm. Recall that Dijkstra’s algorithm run from the source s grows a set S of
visited vertices of the graph, such that the lengths d(v) of the shortest paths s → v for v ∈ S
are already known. Initially S = {s} and we repeatedly choose a vertex y ∈ V \S such that the
value (a distance estimate) z(y) := minx∈S{d(x) + wDDG(xy) : xy = e ∈ E(DDG)} is smallest.
The vertex y is then added to S with d(y) = z(y). The vertices y ∈ V \ S are typically stored
in a priority queue with keys z(y), which allows to choose the best y efficiently.

Since the vertices of Ui lie on O(1) faces of a planar digraph Gi, we can exploit the fact that
many of the shortest paths represented by DC(Gi) have to cross. Formally, this is captured by
the following lemma proved in Section 5.6.
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Lemma 5.2.1 ([77]). Each DC(Gi) can be decomposed into O(1) (possibly flipped) staircase
Monge matrices Di of at most |Ui| rows and columns. For each u, v ∈ Ui we have:

• for each M∈ Di such that Mu,v is defined, Mu,v ≥ wDC(Gi)(uv).

• there exists M∈ Di such that Mu,v is defined and Mu,v = wDC(Gi)(uv).

The decomposition can be computed in O(|Ui|2) time if Ui lies on a single face of Gi, and in
O((|V (Gi)|+ |Ui|2) log |V (Gi)|) time otherwise.

In other words, the weight matrix of DC(Gi) can be partitioned into a constant number
of staircase Monge matrices. Consequently, a natural approach to maintaining the minimum
distance estimates z(y), for y /∈ S, is to split the work needed to accomplish this task between
the individual matrices M ∈ ⋃q

i=1Di that encode the edges of DDG. Then, it is sufficient
to design a data structure reporting the column minima of the offset matrix off(M, d) in an
online fashion. Specifically, the data structure has to handle row activations intermixed with
extractions of the column minima in non-decreasing order. Once Dijkstra’s algorithm establishes
the distance d(v) to some vertex v, the row of off(M, d) corresponding to v is activated and
becomes available to the data structure. This row contains values d(v) +Mv,w, whereMv,w is,
by Lemma 5.2.1, no less than the length of the edge vw in DDG. Alternatively, a minimum in
some column corresponding to v (in the revealed part of off(M, d)) may be used by Dijkstra’s
algorithm to establish a new distance label z(v) = d(v), even though not all rows of off(M, d)
have been revealed so far. In this case, we can guarantee that all the inactive rows of off(M, d)
contain entries not smaller than d(v), and hence we can safely extract the column minimum of
off(M, d).

Such an approach was also used by Fakcharoenphol and Rao [27] and Mozes et al. [75],
who both dealt with staircase Monge matrices by using a recursive partition into square Monge
matrices, which are easier to handle. In particular, Fakcharoenphol and Rao showed that a
sequence of row activations and column minima extractions can be performed on an m × m
square Monge matrix in O(m logm) time. The recursive partition assigns each row and column
to O(logm) square Monge matrices. As a result, in [27] the total time for handling all the square
matrices is O(m log2m). We provide the details and the pseudocode of the above shortest path
algorithm in Section 5.6.

The Data Structure. An improved data structure reporting the column minima of an online
offset staircase Monge matrix is achieved in three steps, presented in the following three sections
in a bottom-up fashion. Below we sketch the main ideas behind these steps.

Our first component is a refined data structure for handling row activations and column
minima extractions on a rectangular Monge matrix described in Section 5.3. We show a data
structure supporting any sequence of operations on a k × l matrix in O

(
k logm

log logm + l logm
)

total time, where m = max(k, l).
The second step is to relax the requirements posed on a data structure handling rectangular

k × l Monge matrices. It is motivated by the following observation. Let ∆ > 0 be an integer.
Imagine we have found the minima of l/∆ evenly spread pivot columns c1, . . . , cl/∆. Denote
by r1, . . . , rl/∆ the rows containing the corresponding minima. Fact 5.1.2 implies that for any
column c′ lying between ci and ci+1, we only have to look for a minimum of c′ in rows ri, . . . , ri+1.
Thus, the minima in the remaining columns can be found in O(k∆+l) total time. In Section 5.4
we show how to adapt this idea to an online setting that fits our needs. The columns are
partitioned into O(l/∆) blocks of size at most ∆. Each block is conceptually contracted to
a single column: an entry in row r is defined as the minimum in row r over the contracted
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columns. For sufficiently small values of ∆, such a minimum can be computed in O(1) time
using the data structure of [34]. Locating a block minimum can be seen as an introduction
of a new pivot column. We handle the block matrix, which by Fact 5.1.4 is also Monge, with
the data structure of Section 5.3 and prove that the total time needed to correctly report all
the column minima is O

(
k logm

log logm + k∆ + l + l
∆ logm

)
. In particular, for ∆ = log1−εm this

bound becomes O
(
k logm

log logm + l logεm
)

.
Finally, in Section 5.5 we exploit the asymmetry of per-row and per-column costs of the

developed block data structure for rectangular matrices, by using a different partition (than
in [27]) of an m×m staircase Monge matrix. Our partition is biased towards columns, i.e.,
the matrix is split into rectangular (as opposed to square) Monge matrices, each with roughly
poly-logarithmically more columns than rows. Consequently, the total number of rows in these
matrices is O

(
m logm

log logm

)
, whereas the total number of columns is only slightly larger, i.e.,

O
(
m log1+εm

)
. This yields a data structure handling any sequence of row activations and

column minima extractions of an offset staircase Monge matrices in O
(
m log2m

log2 logm

)
total time.

5.3 Online Column Minima of a Rectangular Offset Monge Ma-
trix

LetM0 be a rectangular k× l Monge matrix. Let R = {r1, . . . , rk} and C = {c1, . . . , cl} be the
sets of rows and columns of M0, respectively. Set m = max(k, l).

Let d : R → R be an offset function and set M = off(M0, d). By Fact 5.1.3, M is also a
Monge matrix. Our goal is to design a data structure capable of reporting the column minima
of M in increasing order of their values. However, the function d is not entirely revealed
beforehand, as opposed to the matrix M0. There is an initially empty, growing set R ⊆ R
containing the rows for which d(r) is known. Alternatively, the set R can be seen as “active”
rows of M that can be accessed by the data structure. There is also a set C ⊆ C containing
the remaining columns for which we have not reported the minima yet. Initially, C = C, and
C shrinks over time. We also provide a mechanism to guarantee that the rows that have not
been revealed do not influence the smallest of the column minima of M(R,C).

The exact set of operations we support is the following:

• Activate-Row(r), where r ∈ R \R – add r to the set R.

• Lower-Bound() – compute the number min{M(R,C)}.

• Ensure-Bound-And-Get() – inform the data structure that we indeed have
min{M(R\R,C)} ≥ min{M(R,C)} = Lower-Bound(), that is, the smallest element of
M(R,C) does not depend on the values ofM located in rows R\R. It is the responsibility
of the user to guarantee that this condition is in fact satisfied.

Such claim implies that for some column c ∈ C we have min{M(R, c)} = min{M(R,C)},
which in turn means that we are able to find the minimum element in column c. The
function returns any such c and removes it from the set C.

• Current-Min-Row(c), where c ∈ C – compute r, where r ∈ R is a row such that
min{M(R, c)} =Mr,c. If R = ∅, return nil. Note that c is not necessarily in C.

Additionally, we require Current-Min-Row to have the following property: once the
column c is moved out of C, Current-Min-Row(c) always returns the same row. More-
over, between any two consecutive calls that change either R or C (Activate-Row or
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Ensure-Bound-And-Get), for c1, c2 ∈ C such that c1 < c2 we have

Current-Min-Row(c1) ≥ Current-Min-Row(c2).

Note that Activate-Row increases the size of R and thus cannot be called more than k times.
Analogously, Ensure-Bound-And-Get decreases the size of C so it cannot be called more
than l times. Actually, in order to reveal all the column minima with this data structure, the
operation Ensure-Bound-And-Get has to be called exactly l times.

5.3.1 The Components

Subrow minimum query data structure. Given r ∈ R and a, b, 1 ≤ a ≤ b ≤ l,
a subrow minimum query S(r, a, b) computes a column c ∈ {ca, . . . , cb} such that Mr,c =
min{M(r, {ca, . . . , cb})}. We use the following theorem of Gawrychowski et al. [34].

Theorem 5.3.1 ([34]). Given a k× l rectangular Monge matrixM, a data structure supporting
subrow minimum queries in O(log log (k + l)) time can be constructed in O(l log k) time.

Recall thatM = off(M0, d). Adding the offset d(r) to all the elements in row r ofM0 does
not change the relative order of elements in row r. Hence, the answer to a subrow minimum
query S(r, a, b) in M is the same as the answer to S(r, a, b) in M0.

We build a data structure of Theorem 5.3.1 for M0 and assume that any subrow minimum
query in M can be answered in O(log logm) time.

Column groups. The set C is internally partitioned into disjoint, contiguous column groups
C1, . . . , Cq (where C1 is the leftmost and Cq is the rightmost) so that

⋃
i Ci = C.

As the groups constitute contiguous segments of columns, we can represent the partition
with a subset F ⊆ C containing the first columns of individual groups. Each group is identified
with its leftmost column. We use a dynamic predecessor data structure [93] (see also Section 2.4)
for maintaining the set F . The first column of the group containing column c can be thus found
by calling F.Pred(c) in O(log logm) time. Such representation also allows to split groups and
merge neighboring groups in O(log logm) time.

Potential row sets. For each Ci we store a set P (Ci) ⊆ R called a potential row set. Between
consecutive operations, the potential row sets satisfy the following invariants:

P.1 For any c ∈ Ci there exists a row r ∈ P (Ci) such that min{M(R, c)} =Mr,c.

P.2 The size of any set P (Ci) is less than 2α, where α =
√

logm.

P.3 For any i < j and any r ∈ P (Ci), r′ ∈ P (Cj), we have r ≥ r′.

The sets P (Ci) are stored as balanced binary search trees sorted bottom to top. As by Fact 5.1.1
M(R,C) is a Monge matrix, from Fact 5.1.2 it follows that these invariants can be indeed
satisfied.

Lemma 5.3.2. For any choice of column groups we have
∑

i |P (Ci)| = O(k + l).

Proof. By invariant P.3 we also have |P (Ci) ∩ P (Ci+1)| ≤ 1 and thus the sum of sizes of sets
P (Ci) is O(k + l).
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We also use the following auxiliary data structures. The union of sets P (Ci) is stored in a
dynamic predecessor/successor data structure U . We also have an auxiliary array last mapping
each row r ∈ R to the rightmost column group Ci such that r ∈ P (Ci) (if such group exists).

Lemma 5.3.3. An insertion or deletion of some r to P (Ci) (along with the update of the
auxiliary structures) can be performed in O(logα+ log logm) = O(log logm) time.

Proof. The cost of updating the binary search tree is O(log |P (Ci)|) = O(logα), whereas up-
dating the predecessor structure U takes O(log logm) time. Updating the array last upon
insertion is trivial. When a row r is deleted and last[r] 6= Ci, last[r] does not have to be
updated. Otherwise, we check if r ∈ P (Ci−1) and set last[r] to either Ci−1 or nil.

Special handling of columns with known minima. We require that for each column c
being moved out of C, a row yc such that min{M(R, c)} = Myc,c is computed. In order
to ensure that Current-Min-Row has the described consistent behavior, we guarantee that
starting at the moment of deletion of c from C there exists a group C consisting of a single
element c such that P (C) = {yc}. We call such groups done.

Main priority queue. A priority queue H contains an element c for each c ∈ C. The
queue H satisfies the following invariants between any two operations.

H.1 For each c ∈ C, the key of c in H is greater than or equal to min{M(R, c)}.
H.2 For each group Cj that is not done, there exists such column cj ∈ Cj that the key of cj in H

is equal to min{M(R, cj)} = min
{
M(R, Cj)

}
.

We maintain invariant H.1 implicitly, each time setting the key of a column c to either∞ or
some value Mr,c, where r ∈ R. This is justified by the fact that the value min{M(R, c)} does
not increase over time.

Note that by invariants H.1 and H.2, the key at the top ofH is in fact equal to min{M(R,C)}.
Hence, Lower-Bound can be implemented trivially in O(1) time.

Lemma 5.3.4. We can ensure that the invariant H.2 is satisfied for a single group Cj in
O(α log logm) time.

Proof. We perform O(|P (Cj)|) = O(α) subrow minimum queries on M to compute for each
r ∈ P (Cj) some column c ∈ Cj such that Mr,c = min{M(r, Cj)}. As each subrow minimum
query takes O(log logm) time, this takes O(α log logm) in total. For each computed c, we
decrease the key of c in H to Mr,c in O(1) time. Note that by invariant P.1, some Mr,c is in
fact equal to min{M(R, Cj)}.

5.3.2 Implementing the Operations

Initialization. First, we build the data structure of Theorem 5.3.1 in O(l logm) time. Then,
an element c with key∞ is inserted into H for each c ∈ C. When the first row r is activated, we
create a single group C = C with P (C) = {r}. Using Lemma 5.3.4 we ensure that invariant H.2
is satisfied.

Current-Min-Row. The data structure F is used to identify the group C containing the
column c. If c ∈ C \ C, then the group c is done and we return the only element of P (C).
Otherwise, we spend O(|P (C)|) = O(α) time to find the topmost row of P (C) that contains a
minimum of c. By Fact 5.1.2 and invariant P.3, returning the topmost row of P (C) guarantees
that for c1 ≤ c2, Current-Min-Row(c1) ≥ Current-Min-Row(c2). The total running time
is thus O(α+ log logm) = O(α).
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Ensure-Bound-And-Get. Let ci be the top element of H and let r∗ be the row returned by
Current-Min-Row(ci). Invariant H.2 guarantees that we have

min{M(R,C)} = min{M(R, ci)} =Mr∗,ci = H.Min-Key(),

By the precondition of Ensure-Bound-And-Get, we conclude that in fact

Mr∗,ci = min{M(R,C)}.

By invariant H.2, H.Extract-Min() returns the column ci. With a single query to F , we
find the current group of ci, C = {ca, . . . , ci, . . . , cb}. First, we need to create a single-column
group C∗ = {ci}, mark it done, and set P (C∗) = {r∗}. We thus split C into at most three
groups C− = {ca, . . . , ci−1}, C∗, and C+ = {ci+1, . . . , cb}. By Fact 5.1.2, we can safely set
P (C−) = {r ∈ P (C) : r ≥ r∗} and P (C+) = {r ∈ P (C) : r ≤ r∗}. The split of C re-
quires O(1) operations on F , whereas by Lemma 5.3.3, replacing the set P (C) with the sets
P (C−), P (C∗), P (C+) takes O(α(log logm + logα)) time. The last step is to fix invariant H.2
for the newly created groups. This takes O(α log logm), by Lemma 5.3.4. Thus, taking into
account the O(logm) cost of performing H.Extract-Min, Ensure-Bound-And-Get takes
O(logm+ α(logα+ log logm)) = O(logm) time.

Before we describe how Activate-Row is implemented, we need the following lemma.

Lemma 5.3.5. LetM be a u×v rectangular Monge matrix with rows {r1, . . . , ru} and columns

C = {c1, . . . , cv}. For any i ∈ [1, u], in O
(
u log v

log u

)
time we can find such cs ∈ C that:

1. some minima of columns c1, . . . , cs lie in rows ri+1, . . . , ru,

2. some minima of columns cs+1, . . . , cv lie in rows r1, . . . , ri.

Proof. Let R = {r1, . . . , ru}. Aggarwal et al. [1] proved the following theorem. The algorithm
they found was nicknamed the SMAWK algorithm.

Theorem 5.3.6 ([1]). One can compute the bottommost column minima of a rectangular k× l
Monge matrix in O(k + l) time.

If u ≥ v, we can find the column minima for each column of matrix M using the SMAWK
algorithm in O(u) time. Picking the right cs is straightforward in this case.

Assume u < v. We first pick a set C ′ = {c′1, . . . , c′u} of u evenly spread columns of C, includ-
ing the leftmost and the rightmost column. By Fact 5.1.1, M(R,C ′) is also a Monge matrix.
The SMAWK algorithm is then used to obtain the bottommost rows r′1, . . . , r

′
u containing the

column minima of c′1, . . . , c
′
u in O(u) time. By Fact 5.1.2, we have r′1 ≥ . . . ≥ r′u. We then

find some j such that r′j ≥ ri ≥ r′j+1. The sought column cs can now be found by proceeding
recursively on the matrix

M′ =M(R, {c′j , . . . , c′j+1}).
The matrix M′ has still u rows, but it has only O(v/u) columns.

At each recursive step we divide the size of the column set by Ω(u) so there are at most
logu v = log v

log u steps. Each step takes O(u) time and hence we obtain the desired bound.

Activate-Row. Assume we activate row r. At that point r /∈ P (Ci) for any group Ci. Our
goal is to reorganize the column groups and their potential row sets so that the invariants P.1,
P.2, P.3 and H.2 are again satisfied.

In the following, let us assume for convenience that C0 (Cq+1) is a “sentinel” group that is
done and we have P (C0) = {r+∞} (P (Cq+1) = {r−∞}, respectively). Also, for any r we have
r−∞ < r < r+∞.
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Let us first observe that if there exists a group C∗ = {c∗} that is done and P (C∗) = {r∗},
r∗ > r, then there is no point in updating the potential row sets for groups to the left of C∗.
Indeed, by Fact 5.1.5, for any column c′ to the left of c∗, if c′ has a minimum in row r, then it
also has a minimum in row r∗. Similarly, if r∗ < r, then there is no need to update potential
row sets for groups to the right of C∗. Therefore, the only groups whose potential row sets may
become invalid after the activation of r lie between two consecutive groups that are done.

Denote by Cx, . . . , Cy the unique maximal contiguous set of groups such that:

• none of Cx, . . . , Cy is done,

• Cx−1 is done and r′ > r where r′ is the only element of P (Cx−1),

• Cy+1 is done and r′ < r where r′ is the only element of P (Cy+1).

If this set is empty, then clearly for all columns c, min{M(R ∪ {r}, c)} = min{M(R, c)} and
hence the potential row set do not require any adjustments.

Consider some i, x ≤ i ≤ y. Ci can fall into exactly one of three categories.

C.1 For each c ∈ Ci we have Mr,c ≤ min{M(P (Ci), c)},

C.2 For some two columns c1, c2 ∈ Ci we have Mr,c1 < min{M(P (Ci), c1)} and Mr,c2 >
min{M(P (Ci), c2)}.

C.3 For each c ∈ Ci, we have Mr,c ≥ min{M(P (Ci), c)} and for some c′ ∈ Ci we have Mr,c′ >
min{M(P (Ci), c′)}

Fact 5.1.5 guarantees that row r contains column minima for a (possibly empty) interval of
columns of M(R ∪ {r}, C). As the groups do not overlap, this implies that the groups in
category C.1 form a (possibly empty) interval of groups Ca, . . . , Cb, where x ≤ a ≤ b ≤ y.
Moreover, there can be at most two category C.2 groups, if they exist, namely Ca−1 and/or Cb+1

(in this case a− 1 ≥ x and/or b+ 1 ≤ y, respectively).
Observe that we can decide if Ci falls into category C.1 in O(|P (Ci)|) = O(α) time by

checking, equivalently, if r contains column minima of both the leftmost and the rightmost
columns of Ci. This follows from Fact 5.1.5.

Moreover, if r is below all the rows of P (Ci) or above all the rows of P (Ci), then, by looking
only at the leftmost and rightmost columns of Ci, we can precisely detect the category of Ci in
O(α) time.

Note that, as invariant P.3 holds before the activation of r, there can be at most one group
C+
− of Cx, . . . , Cy, such that P (C+

−) contains rows both above and below r.
Equipped with these observations, we proceed as follows. We first find the rightmost group Ci

such that for some r′ ∈ P (Ci) we have r′ > r. This can be done in O(log logm) time by setting
Ci = last(U.Succ(r)). By Fact 5.1.5, if there is any group C′ in categories C.1 or C.2, then
one of the groups Ci, Ci+1 also falls into C.1 or C.2. We may thus find all groups Ca, . . . , Cb
in category C.1 by moving both to the left and to the right of Ci. The groups Ca, . . . , Cb are
replaced with a single group C∗ spanning all their columns and P (C∗) is set to {r}. If the group
Ca−1 (Cb+1 respectively) exists, we insert r into P (Ca−1) (P (Cb+1)) only if this group is either in
fact C+

− or is in category C.2. After such insertions, both invariants P.2 and P.3 may become
violated.

Invariant P.3 can only be violated if the group C+
− existed, was not in category C.1, and

also there exists some other group with r in its potential row set. Since it is impossible that r
was inserted into potential row sets of groups both to the left and to the right of C+

− , suppose
without loss of generality that some C′ is to the right of C+

− and r ∈ P (C′). In O(α) time we
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r

Ci Ci+1Ca−1 Cb+1

Figure 5.2: Updating the column groups and the corresponding potential row sets after activat-
ing row r. The rectangles conceptually show the potential row sets. The rows of R that are not
contained in any potential row set are omitted in the picture. The dots represent the column
minima. Note that it might happen that P (Ci) contains rows both above and below r.

can check if r contains the column minimum of the rightmost column of C+
− inM(R∪{r}, C+

−).
If so, by Facts 5.1.2 and 5.1.5, we can delete from P (C+

−) all the rows above r (recall that r
contains a column minimum for the leftmost column of C′). Otherwise, by Fact 5.1.5 and since r
contains some column minimum of M(R ∪ {r}, C′), we can safely delete r from P (C+

−). Hence,
we fix invariant P.3 in O(α(log logm+ logα)) time.

Invariant P.2 is violated if |P (Ca−1)| = 2α or |P (Cb+1)| = 2α. In that case algorithm of
Lemma 5.3.5 is used to split the relevant group Cz, for z ∈ {a−1, b+ 1}, into groups C′z, C′′z such
that |P (C′z)| = |P (C′′z )| = α.

We spend O(α(log logm+logα)) = O(α log logm) time on identifying, accessing and updat-
ing each group that falls into categories C.2 or C.3. There are O(1) such groups, as discussed
above. Also, by Lemma 5.3.4, it takes O(α log logm) time to fix invariant H.2 for (possibly
split) groups Ca−1, Cb+1 and C∗.

In order to bound the running time of the remaining steps, i.e., handling the groups of
category C.1 and splitting the groups that break invariant P.2, we introduce two types of
credits for each element inserted into sets P (Ci):

• an O(log logm) identification credit,

• an O
(

logm
logα

)
splitting credit.

The identification credit is used to pay for successfully verifying that some group Ci falls
into category C.1 and deleting all the elements of P (Ci). Indeed, as discussed above, we spend
O(|P (Ci)| logα) = O(|P (Ci)| log logm) time on this. As P (Ci) is not empty, we can charge
the cost of merging Ci with some other group to some arbitrary element of P (Ci). Recall that
merging and splitting groups takes O(log logm) time.

Finally, consider performing a split of P (Ci) of size 2α. As the sets P (Ci) only grow by
inserting single elements, there exist at least α elements of P (Ci) that never took part in any

split. We use the total O
(
α logm

logα

)
total credit of those elements to pay for the split.

To sum up, the time needed to perform k operations Activate-Row is
O
(
kα(log logm) + I(log logm+ logm

logα )
)

, where I is the total number of insertions to the sets
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P (Ci). Since Ensure-Bound-And-Get incurs O(l) insertions in total, I = O(k + l). As we
have previously set α =

√
logm, we obtain the following lemma.

Lemma 5.3.7. Let M be a k× l offset Monge matrix. There exists a data structure initialized
in O(k+ l logm) time, supporting Lower-Bound in O(1) time and both Current-Min-Row
and Ensure-Bound-And-Get in O(logm) time. Additionally, any sequence of operations

Activate-Row can be performed in O
(

(k + l) logm
log logm

)
total time, where m = max(k, l).

5.4 Online Column Minima of a Block Monge Matrix

Let M = off(M0, d), R, C, l, k,m be defined as in Section 5.3. In this section we consider the
problem of reporting the column minima of a rectangular offset Monge matrix but in a slightly
different setting. Again, we are given a fixed rectangular Monge matrix M0 and we also have
an initially empty, growing set of rows R ⊆ R for which the offsets d(·) are known. Let ∆ > 0
be an integral parameter not larger than l. We partition C into a set B = {B1, . . . , Bb} of at
most dl/∆e blocks, each of size at most ∆. The columns in each Bi constitute a contiguous
fragment of c1, . . . , cl, and each block Bi is to the left of Bi+1. We also maintain a shrinking
subset B ⊆ B containing the blocks Bi such that the minima min{M(R,Bi)} are not yet known.
More formally, for each Bi ∈ B\B we have min{M(R,Bi)} = min{M(R,Bi)}. Initially B = B.

For each c ∈ C not contained in the blocks of B, the data structure explicitly maintains the
current minimum, i.e., the value min{M(R, c)}. Moreover, when a new row is activated, we
provide the user with columns of

⋃
(B \ B) for which the current minima have changed.

For blocks B, the data structure only maintains the value min{M(R,
⋃B)}. Once the user

can guarantee that min{M(R,
⋃B)} does not depend on the “hidden offsets” of rows R \ R,

the data structure moves a block Bi ∈ B such that min{M(R,
⋃B)} = min{M(R,Bi)} out

of B and makes it possible to access the current minima of columns of Bi.
More formally, we support the following set of operations:

• Activate-Row(r), where r ∈ R \R – add r to the set R.

• Block-Lower-Bound() – return min{M(R,
⋃B)}.

• Block-Ensure-Bound() – tell the data structure that indeed

min{M(R \R,C)} ≥ Block-Lower-Bound() = min{M(R,Bi)},

for some Bi ∈ B, i.e., that the smallest element of M(R,
⋃B) does not depend on the

entries ofM located in rows R \R. Again, it is the responsibility of the user to guarantee
that this condition is in fact satisfied.

As the minimum of M(R,Bi) can now be computed, Bi is removed from B.

• Current-Min(c), where c ∈ C – for c ∈ ⋃(B \ B), return the explicitly maintained
min{M(R, {c})}. For c ∈ ⋃B, set Current-Min(c) =∞.

Additionally, the data structure provides access to the queue Updates containing the
columns c ∈ ⋃

(B \ B) such that the most recent call to either Activate-Row or
Block-Ensure-Bound resulted in a change (or an initialization, if c ∈ Bi and the last update
was Block-Ensure-Bound which moved Bi out of B) of the value Current-Min(c).

Note that there can be at most k calls to Activate-Row and no more than dl/∆e calls to
Block-Ensure-Bound.
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5.4.1 The Components

Infrastructure for short subrow minimum queries. In this section we assume that for
any r ∈ R and 1 ≤ a, b ≤ l, b − a + 1 ≤ ∆, it is possible to compute an answer to a subrow
minimum query S(r, a, b) (see Section 5.3) on matrix M0 (equivalently: M) in constant time.
We call such a subrow minimum query short.

Block minima matrix. Define a k× b matrixM′ with rows R and columns B, such that for
all ri ∈ R and Bj ∈ B,

M′ri,Bj = min{M(ri, Bj)}.

Lemma 5.4.1. M′ is a Monge matrix and its entries can be accessed in O(1) time.

Proof. As we assume that we can perform short subrow minima queries in O(1) time, and every
block spans at most ∆ columns, we can access the elements of M′ in constant time. Fact 5.1.4
implies that M′ is also a rectangular Monge matrix.

Equipped with Lemma 5.4.1, we build the data structure of Section 5.3 for matrixM′. For
brevity, we identify the matrix M′ and its associated data structure. We use the dot notation
to denote operations acting on specific matrices, e.g., Mi.Lower-Bound.

Exact minima array. For each column c ∈ ⋃(B \ B), the value

cmin(c) = min{M(R, c)}

is stored explicitly. The operation Current-Min(c) simply returns cmin(c).

Rows containing the block minima. For each Bj ∈ (B \ B) we store the value

yj =M′.Current-Min-Row(Bj).

Note that the data structure of Section 5.3 guarantees that for Bi, Bj ∈ (B \B) such that i < j,
we have yi ≥ yj . The set of defined yj ’s grows over time. Additionally, we store this set in a
dynamic predecessor/successor data structure Y .

We also use two auxiliary arrays first and last indexed with the rows of R. first(r)
(last(r)) contains the leftmost (rightmost respectively) block Bj such that yj = r. Updating
these arrays in O(1) time each time B shrinks (i.e., when B \ B grows) is straightforward.

Row candidate sets. Two subsets D0 and D1 of R are maintained. The set Dj for j = 0, 1
contains the rows of R that may still prove useful when computing the initial value of cmin(c)
for c ∈ ⋃{Bi : Bi ∈ B ∧ i mod 2 = q}. More formally, before and after each operation, for each
such c, Dj contains a row r such that min{M(R, c)} =Mr,c.

The sets D0, D1 are also stored in dynamic predecessor structures.

Remark 5.4.2. There is a subtle reason why we keep two row candidate sets D0, D1, responsible
for even and odd blocks respectively, instead of one. Being able to separate two neighboring blocks
of each group with a block from the other group will prove useful in the amortized analysis of
the cost of the operation Block-Ensure-Bound.
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5.4.2 Implementing the Operations

Block-Ensure-Bound. The preconditions of this operation ensure that it is valid to call
M′.Ensure-Bound-And-Get(), which in response returns some Bj . At this point we find the
row yj containing the minimum of M(R,Bj) using M′.Current-Min-Row(Bj). The data
structure Y and the arrays first and last are updated accordingly.

As the block Bj is moved out of B, we need to compute the initial values cmin(c) for c ∈ Bj .
Let y−j be the row returned by M′.Current-Min(Bj−1) if j > 0 and rk otherwise. Similarly,
set y+

j to be the row returned by M′.Current-Min(Bj+1) if j < b and r1 otherwise. Clearly,
y−j ≥ yj ≥ y+

j . First we prove that for each column c ∈ Bj , we have

min{M(R, c)} = min{M(R ∩ {y+
j , . . . , y

−
j }, c)},

that is, the search for the minimum in column c can be limited to rows y+
j through y−j . By the

definition of M′, for some column cj ∈ Bj , the minimum M(R, cj) is located in row yj . Now
assume that c ∈ Bj is to the left of cj . By Fact 5.1.2, some minimum of M(R, c) is located in
the rows of R (weakly) below yj . If j > 0, then for some column c−j ∈ Bj−1 some minimum
of M(R, c−j ) is located in row y−j . By Fact 5.1.2, the minimum of M(R, c) is located in rows
(weakly) above y−j . Analogously we prove that for c ∈ Bj to the right of cj , the minimum is
located in rows y+

j through yj .
We first add the rows y−j , y

+
j to Dj mod 2. By the invariant posed on the set Dj mod 2 before

the operation Block-Ensure-Bound and {y−j , y+
j } ⊆ Dj mod 2, for each column c ∈ Bj it

suffices to only consider the elements Mr,c, where r ∈ Dj mod 2 ∩ {y+
j , . . . , y

−
j }, as potential

minima in column c. All such rows r can be found with O(log logm) overhead per row using
predecessor search on Dj mod 2. Now we prove that after performing this step for all columns
c ∈ Bj , all such rows r except of y−j and y+

j can be safely removed from Dj mod 2. Indeed,
let cz be a column in some block Bz ∈ B such that z ≡ j (mod 2) and z < j. In fact, we have
z < j − 1 and thus cz is to the left of c−j . By Fact 5.1.5, if cz has a minimum in row r, it also
has a minimum in row y−j . Hence removing r from Dj mod 2 does not break the invariant posed
on Dj mod 2 since y−j ∈ Dj mod 2. The proof of the case z > j is analogous.

Let us now bound the total time spent on updating values cmin(c) during the calls
Block-Ensure-Bound. For each column c ∈ Bj , all entries Mr,c, where r ∈ Dj mod 2 ∩
{y+
j , . . . , y

−
j }, are examined as potential column minima. Alternatively, we can say that for

each such row, we try to use it as a candidate for minima of O(∆) columns. However, only
two of these rows are not deleted from Dj mod 2 afterwards. If we assign a credit of ∆ to each
row inserted into Dj mod 2, this credits can be used to pay for considering all the rows except
of y−j and y+

j . Thus, the total time spent on testing candidates for the minima over all calls to
Block-Ensure-Bound can be bounded by O

(
l
∆∆ + I∆

)
, where I is the number of insertions

to either D0 or D1. However, as we will see below, since Activate-Row(r) will only insert r
to both D0 and D1, we have I =

(
k + l

∆

)
and thus the total number of candidates tried by

Block-Ensure-Bound is O(k∆ + l). The total cost spent on maintaining and traversing the
sets D0 and D1 is O

(
(I + l

∆) log logm
)

= O
(
(k + l

∆) log logm
)
.

Activate-Row. Suppose we activate the row r ∈ R \ R. The first step is to call
M′.Activate-Row(r) and add r to the sets D0 and D1. Observe that adding any row from R
to D0 or D1 cannot break the invariants posed on these sets.

The introduction of the row r may change the minima of some columns c ∈ ⋃(B \ B). We
now prove that there can be at most O(∆) such changes. Recall that for each Bi ∈ B \ B,
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for some column ci ∈ Bi the minimum of M(R, ci) is located in row yi. Note that r 6= yi
as r has just been activated. Let u be such that yu > r. Then, for each block Bj ∈ B \ B,
where j < u, Fact 5.1.2 implies that all the columns of Bj have some of their minima in rows
below yu (or exactly at yu) and thus the introduction of row r does not affect their minima.
Analogously, if yv < r, then the introduction of row r does not affect columns in blocks to the
right of Bv. Hence, r can only affect the exact minima in at most two blocks: Bu, Bv where
u = last(Y.Succ(r)) and v = first(Y.Pred(r)). The blocks can be found in O(log logm)
time, whereas updating the values cmin(c) (along with pushing them to the queue Updates)
takes O(∆) time.

Let us bound the total running time of any sequence of operations Activate-Row and
Block-Ensure-Bound. By Lemma 5.3.7, the time spent on executing operations on the data
structureM′ isO

(
k logm

log logm + l
∆ logm

)
, whereas the time spent on maintaining the predecessor

structures and updating the column minima is O
(
k∆ + k log logm+ l + l

∆ log logm
)
. The

following lemma follows.

Lemma 5.4.3. Let M = off(M0, d) be a k × l rectangular offset Monge matrix. Let ∆ be the
block size. Assume we can perform subrow minima queries spanning at most ∆ columns ofM0 in
O(1) time. There exists a data structure initialized in O(k+l+ l

∆ logm) time and supporting both
Block-Lower-Bound and Current-Min in O(1) time. Any sequence of Activate-Row

and Block-Ensure-Bound operations can be performed in O
(
k
(

logm
log logm + ∆

)
+ l + l

∆ logm
)

time, where m = max(k, l).

5.5 Online Column Minima of a Staircase Offset Monge Matrix

In this section we show a data structure supporting a similar set of operations as in Section 5.3,
but in the case when the matrices M0 and M = off(M0, d) are staircase Monge matrices with
m rows R = {r1, . . . , rm} and m columns C = {c1, . . . , cm}. We still aim at reporting the
column minima ofM while the set R of revealed rows is extended and new bounds on the value
min{M(R \R,C)} are given.

In comparison to the data structure of Section 5.3, we loosen a bit the conditions posed on
the operations Lower-Bound and Ensure-Bound-And-Get. Now, Lower-Bound might
return a value smaller than min{M(R,C)} and a single call to Ensure-Bound-And-Get
might not report any new column minimum at all. However, Ensure-Bound-And-Get can
still only be called if min{M(R \R,C)} ≥ Lower-Bound() and the data structure we develop
in this section guarantees that a bounded number of calls to Ensure-Bound-And-Get suffices
to report all the column minima of M. The exact set of supported operations is as follows.

• Activate-Row(r), where r ∈ R \R – add r to the set R.

• Lower-Bound() – return a number v such that min{M(R,C)} ≥ v. If R = ∅ or C = ∅,
return ∞.

• Ensure-Bound-And-Get() – tell the data structure that the inequality

min{M(R \R,C)} ≥ Lower-Bound()
holds. As for previous data structures, it is the responsibility of the user to guarantee
that this condition is in fact satisfied.

With this knowledge, the data structure may report some column c ∈ C such that
min{M(R, c)} is known. However, it’s also valid to not report any new column mini-
mum (in such case nil is returned) and only change the known value of Lower-Bound().

113



bz−1

bz

bz

bz−1

Figure 5.3: Schematic depiction of the biased partition used in Lemma 5.5.1.

• Current-Min(c), where c ∈ C – if c ∈ C \ C, return the known minimum in column c.
Otherwise, return ∞.

5.5.1 Partitioning a Staircase Matrix into Rectangular Matrices

Before we describe the data structure, we prove the following lemma on partitioning staircase
matrices into rectangular matrices.

Lemma 5.5.1. For any ε ∈ (0, 1), a staircase matrix M with m rows and m columns can
be partitioned in O(m logεm) time into O(m logεm) non-overlapping rectangular matrices so

that each row appears in O
(

logm
log logm

)
matrices of the partition, whereas each column appears in

O
(

log1+εm
log logm

)
matrices of the partition.

Proof. Let ε ∈ (0, 1) and set b = blogεmc. For m > 1, we have b ≥ 1.
We first describe the partition for matrices M′ with m′ = bz rows {r′1, . . . , r′m′} and m′

columns {c′1, . . . , c′m′}, where z ≥ 0. Our partition will be recursive. If z = 0, thenM′ is a 1×1
matrix and our partition consists of a single element M′.

Assume z > 0. We partitionM′ into b staircase matricesM′s1 , . . . ,M′sb and b−1 rectangular
matrices M′r1 , . . . ,M′rb−1. For i = 1, . . . , b, we set the i-th staircase matrix to be

M′si =M′({r′(i−1)bz−1+1, . . . , r
′
ibz−1}, {c′(i−1)bz−1+1, . . . , c

′
ibz−1}),

whereas for j = 1, . . . , b− 1, the j-th rectangular matrix is defined as

M′ri =M′({r′(i−1)bz−1+1, . . . , r
′
ibz−1}, {c′ibz−1+1, . . . , c

′
m′}).

See Figure 5.3 for a schematic depiction of such partition.
Each of matrices M′si is of size bz−1 × bz−1 and is then partitioned recursively.
Let us now compute the value rowcnt(z) (colcnt(z)) defined as the maximum number of

matrices in partition that some given row (column respectively) of a staircase matrixM′ of size
bz × bz appears in. Clearly, at the topmost level of recursion each row appears in exactly one
staircase matrix M′si and at most one rectangular matrix M′rj . Thus, we have rowcnt(0) = 1
and rowcnt(z + 1) ≤ rowcnt(z) + 1, which easily implies rowcnt(z) ≤ z + 1.
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Each column appears in exactly one matrix M′si and no more than b − 1 matrices M′rj .
Hence, we have colcnt(0) = 1 and colcnt(z+ 1) ≤ colcnt(z) + b− 1. We can thus conclude that
colcnt(z) ≤ zb− z + 1.

Analogously we can compute the value rectcnt(z) denoting the total number of rectangular
matrices in such a recursive partition. We have rectcnt(0) = 1 and rectcnt(z + 1) ≤ b ·
rectcnt(z) + b− 1. An easy induction argument shows that rectcnt(z) ≤ 2bz − 1.

The partition for an arbitrary matrixM of m is obtained as follows. We find the smallest y
such that by ≥ m. We next find the recursive partition of matrix M∗ which is defined as M
padded so that it has by rows and by columns. The last step is to remove some number of dummy
rightmost columns and bottommost rows from each rectangular matrix of the partition.

Now, each row of M appears in at most

y + 1 = O(logbm) = O

(
logm

log b

)
= O

(
logm

ε log logm

)
= O

(
logm

log logm

)
rectangular matrices of a partition. Each column of M appears in at most

yb− y + 1 ≤ yb+ 1 = O(b logbm) = O

(
b logm

log b

)
= O

(
log1+εm

ε log logm

)
= O

(
log1+εm

log logm

)
matrices of the partition. The partition consists of at most 2by − 1 = O(mb) = O(m logεm)
rectangles. The time needed to compute the row and column intervals constituting the rows
and columns of the individual matrices of the partition is O(rectcnt(y)) = O(m logεm).

5.5.2 The Components

Short subrow minimum queries infrastructure. Let ∆ = dlog1−ε/2me. The following
lemma allows us to use the data structure of Lemma 5.4.3 with block size ∆.

Lemma 5.5.2. The staircase Monge matrix M0 can be preprocessed in O(m∆ logm) time so
that subrow minimum queries on M0 spanning at most ∆ columns take O(1) time.

Proof. We use the following result of [34].

Lemma 5.5.3 ([34, Lemma 3], [35, Lemma 3]). Let y ≤ m and x = O(logm), where m fits in
a single word. Given a y × x rectangular Monge matrix M′, one can construct in O(x logm)
time an O(x)-space data structure supporting subrow minimum queries spanning all columns
of M′ in O(1) time.

Let q be the maximum integer such that 2q < ∆. For j ∈ [0, q] and i ∈ [1,m − 2j + 1],
let Mj

i = M0({r1, . . . , ri}, {ci, . . . , ci+2j−1}), i.e., Mj
i is a rectangular submatrix of M0 with

columns {ci, . . . , ci+2j−1} and all rows that have values defined for these columns. By Fact 5.1.1,
Mj

i is a Monge matrix. For each Mj
i , we build a data structure of Lemma 5.5.3. This takes

O

 q∑
j=0

m−2j+1∑
i=1

2j logm

 = O

 q∑
j=0

2jm logm

 = O(2qm logm) = O(m∆ logm)

time. Now we show how to handle a subrow minimum query S(r, a, b) on M0, where
b− a+ 1 ≤ ∆. Let u be the greatest integer such that 2u ≤ b − a + 1. Then we can cover
our subrow minimum query with two possibly overlapping queries of length 2u. Hence, to an-
swer S(r, a, b) it is enough to find the minimum in row r in Mu

a and the minimum in row r in
Mu

b−2u+1 and return the smaller one. By Lemma 5.5.3, this takes O(1) time.
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The partition of M into rectangular matrices. We partition the staircase Monge ma-
trix M into O(m logε/2m) non-overlapping rectangular Monge matrices M1, . . . ,Mq using
Lemma 5.5.1. Each Mi is a subrectangle of M, and each row r (column c) appears in a

set Wr (W c, respectively) of O
(

logm
log logm

)
(O
(

log1+ε/2m
log logm

)
, respectively) subrectangles. Every

element of M is covered by exactly one matrix Mi. We precompute all the sets Wr and W c

after computing the partition.
We build the block data structure of Section 5.4 for eachMi. For eachMi, we use the same

block size ∆. As eachMi is a subrectangle ofM, Lemma 5.5.2 guarantees that we can perform
subrow minimum queries on Mi spanning at most ∆ columns in O(1) time. For brevity, we
identify the matrix Mi and its associated data structure. We use the dot notation to denote
operations acting on specific matrices, e.g., Mi.Activate-Row.

For each matrix Mi, we use notation analogous as in previous sections: Ri and Ci are the
sets of rows and columns of Mi, respectively. Let ki = |Ri| and li = |Ci|. Denote by Ri the set
of active rows of Mi.

Recall that the blocks of the matrix Mi are partitioned into two sets Bi and
Bi \ Bi. Denote by block(Mi) the submatrix Mi(Ri,

⋃Bi) and by exact(Mi) the submatrix
Mi(Ri,

⋃
(Bi \ Bi)).

Main priority queue H. The core of our data structure is a priority queueH. At any time,H
contains an element c for each column c ∈ C and at most one elementMi for each matrixMi.
Thus the size of H never exceeds O(m logε/2m). We maintain the following invariants after the
initialization and each call Activate-Row or Ensure-Bound-And-Get resulting in C 6= ∅:

H.1 For each c ∈ C, the key of c in H is equal to

min{Mi.Current-Min(c) :Mi ∈W c}.

H.2 For each Mi such that block(Mi) is not empty, the key of Mi in H is equal to

min{block(Mi)} =Mi.Block-Lower-Bound().

Lemma 5.5.4. Assume invariants H.1 and H.2 are satisfied. Then, H.Min-Key() ≤M(R,C).

Proof. Let v = H.Min-Key(). Assume the contrary, that there exists an element Mr,c < v,
where r ∈ R and c ∈ C. Let Mi be the rectangular Monge matrix of the partition containing
the element Mr,c. If c ∈ ⋃Bi, then v >Mr,c ≥ Mi.Block-Lower-Bound(). But then the
key of Mi in H is Mi.Block-Lower-Bound(), a contradiction. Similarly, if c ∈ ⋃(Bi \ Bi),
then Mi.Current-Min(c) ≤Mr,c < v, a contradiction.

5.5.3 Implementing the Operations

Initialization. At the initialization time we first build the short subrow minimum query data
structure of Lemma 5.5.2. Then, the data structure of Lemma 5.4.3 is initialized for each Mi.
The total time needed to initialize these structures is thus

O

(
m∆ logm+ m

log1+ε/2m

log logm
+
m

∆

log2+ε/2m

log logm

)
= O

(
m log2−ε/2m

)
.

Next, we insert into the priority queue H an element c with key ∞ for each c ∈ C and an
elementMi with key∞ for each matrixMi. This takes additional O(m logε/2m) time. Clearly,
invariants H.1 and H.2 are satisfied immediately after the initialization.
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Lower-Bound. By Lemma 5.5.4, the value v = H.Min-Key() is a lower bound on the value
min{M(R,C)}. The function Lower-Bound returns v and thus works in O(1) time.

Activate-Row. The call Activate-Row(r) may require changes to some keys of the entries
of H in order to satisfy invariants H.1 and H.2. However, the activation of r does not alter
what the functions Mi.Current-Min(c) or Mi.Block-Lower-Bound() return for matrices
Mi /∈Wr. For allMi ∈Wr we callMi.Activate-Row(r). By Lemma 5.4.3, the columns cj of
exact(Mi) with changed minima can be read in linear time from Mi.Updates. If cj ∈ C and
the current key of cj in H is greater than Mi.Current-Min(cj), we decrease key of cj in H.
Analogously, the call Activate-Row(r) can incur the change ofMi.Block-Lower-Bound()
and thus we may need to decrease the key of Mi in H. In both cases, as the operation
H.Decrease-Key runs in O(1) time, the time spent on decreasing keys in H is asymptotically
no more than the running time of Mi.Activate-Row(r), and can be neglected.

Ensure-Bound-And-Get. Let v = Lower-Bound() = H.Min-Key(). Recall that the
precondition of Ensure-Bound-And-Get requires

min{M(R \R,C)} ≥ min{M(R \R,C)} ≥ v.

Also, by Lemma 5.5.4, min{M(R,C)} ≥ v so we can conclude that in fact

min{M(R,C)} = min
(
min{M(R,C)},min{M(R \R,C)}

)
≥ v.

We now have two cases. First, if the top element of H is a column c, then from invariant H.1
we know that c ∈ C and for some Mj ∈W c we have:

min{M(R,C)} ≥ v =Mj .Current-Min(c) ≥ min{M(R, c)}.

However, clearly min{M(R, c)} ≥ min{M(R,C)}, so we conclude that the inequalities are
in fact equalities and v is indeed the minimum in column c. In that case c is returned by
Ensure-Bound-And-Get and c is removed from C. It can be easily verified that after calling
H.Extract-Min() invariants H.1 and H.2 still hold. This case arises at most once for each
column of C so the total cost of H.Extract-Min calls for all columns is O(m logm).

The second case is when the top element of H is a matrix Mi. In this case we return nil
and do not alter the set C. As Mi is a subrectangle of M, by the precondition we have

min{Mi(Ri \R,Ci)} ≥ min{M(R \R,C)} ≥ v = Mi.Block-Lower-Bound().

Hence, we can callMi.Block-Ensure-Bound(). Recall that this operation shrinks the set Bi
and thus we need to update H so that invariants H.1 and H.2 are satisfied. First we pop
the entry Mi from H with H.Extract-Min() in O(logm) time. Now, if Bi 6= ∅, we once
again need to insert into H an element Mi with key Mi.Block-Lower-Bound() in order to
satisfy invariant H.2. To satisfy invariant H.1, we decrease key of each cj ∈ Mi.Updates to
Mi.Current-Min(cj) if appropriate. Again, as decreasing a key in H takes constant time, the
time spent on decreasing column keys is asymptotically the same as the cost of the recent call
to Mi.Block-Ensure-Bound.

A call toMi.Block-Ensure-Bound can happen at most O(li/∆) times, so the additional
time spent on updating H incurred by the calls to Mi.Block-Ensure-Bound is O((li/∆) ·
logm). For the same reason, the call Ensure-Bound-And-Get returns nil at mostO (

∑p
i li/∆)

times. The total number of calls to Ensure-Bound-And-Get to compute all the column min-
ima ofM is thus O

(
m logε/2m+

∑p
i li/∆

)
= O (m logεm). The total cost of operations on H

that were not charged to Mi.Block-Ensure-Bound calls is O(m log1+εm).
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Let us now compute the total time spent in the calls Mi.Activate-Row and
Mi.Block-Ensure-Bound. We have:

∑
i

O

(
ki

(
∆ +

logm

log logm

)
+ li +

li
∆

logm

)
= O

(
logm

log logm

∑
i

ki + logε/2m
∑
i

li

)

= O

(
m

(
logm

log logm

)2

+m log1+εm

)

= O

(
m

(
logm

log logm

)2
)
.

Lemma 5.5.5. Let M = off(M0, d) be an m × m offset staircase Monge matrix and let
ε ∈ (0, 1). There exists a data structure that can be initialized in O

(
m log2−εm

)
time, support-

ing both Lower-Bound and Current-Min in O(1) time. Any sequence of Activate-Row

and Ensure-Bound-And-Get operations takes O
(
m log2m

log2 logm

)
total time. All the column

minima are computed after O(m logεm) calls to Ensure-Bound-And-Get.

Remark 5.5.6. Lemma 5.5.5 also holds for flipped staircase matrices.

Proof. A flipped staircase matrix M′ can be seen as a staircase matrix M with both the rows
and columns reversed. Each subrow minimum query onM′ translates easily into a single subrow
minimum query on M.

5.6 Shortest Path in Dense Distance Graphs: Details

First, let us recall the following key lemma.

Lemma 5.2.1 ([77]). Each DC(Gi) can be decomposed into O(1) (possibly flipped) staircase
Monge matrices Di of at most |Ui| rows and columns. For each u, v ∈ Ui we have:

• for each M∈ Di such that Mu,v is defined, Mu,v ≥ wDC(Gi)(uv).

• there exists M∈ Di such that Mu,v is defined and Mu,v = wDC(Gi)(uv).

The decomposition can be computed in O(|Ui|2) time if Ui lies on a single face of Gi, and in
O((|V (Gi)|+ |Ui|2) log |V (Gi)|) time otherwise.

Proof. Let f1, . . . , f`, ` = O(1), be the faces of Gi such that Ui ⊆ V (f1)∪ . . .∪V (f`). We denote
by Ui,j the vertices of Ui ∩ V (fj) 6= ∅ in clockwise order. Moreover, we assume that for each
u, v ∈ Ui there exists a path u→ v in Gi – this is without loss of generality since each graph Gi
could be easily extended with bidirectional copies of edges of Gi with very large weights so that
we can tell if a path actually exists by only looking at the weight of the shortest path.

We now describe the set of (flipped) staircase Monge matrices Di. First, for each j we
add to Di a staircase matrix Mj+ and a flipped staircase matrix Mj− with rows Ui,j and
columns Ui,j . The order imposed on the rows and columns is the clockwise order on the
face fj . For u, v ∈ Ui,j , u ≤ v, we set Mj+

u,v = wDC(Gi)(uv) = δGi(u, v). For u ≥ v, we
set Mj−

u,v = wDC(Gi)(uv) = δGi(u, v). The matrices Mj+ and Mj− represent the distances
between the vertices of Ui,j . We now prove that both Mj+ and Mj− are Monge. Let v, x, y, z
be some nodes of Ui,j in clockwise order.
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Assume Mj+
v,y +Mj+

x,z < Mj+
v,z +Mj+

x,y, or, equivalently, δGi(v, y) + δGi(x, z) < δGi(v, z) +
δGi(x, y). As the vertices of Ui,j lie on a single face of a planar graph Gi, any path v → y in Gi
has to cross each path x→ z in Gi. Specifically, a shortest path P1 = v → y and a shortest path

P2 = x → z have some common vertex u ∈ Gi. Thus, the total length of paths v P1−→ u
P1−→ y

and x
P2−→ u

P2−→ z is δGi(v, y) + δGi(x, z). But the paths v P1−→ u
P2−→ z and x

P2−→ u
P1−→ y

also have the same total length and that length cannot be less than δGi(v, z) + δGi(x, y). This
contradicts δGi(v, y) + δGi(x, z) < δGi(v, z) + δGi(x, y) and thus proves that Mj+ is indeed a
staircase Monge matrix. The proof thatMj− is a flipped staircase Monge matrix is analogous.
Both Mj+ and Mj− are computed in O(|Ui,j |2) time.

Now we describe the matrices of Di representing the distances between vertices of Ui lying
on fj and vertices of Ui lying on fk (for j 6= k). Mozes and Wulff-Nilsen ([77], Section 4.4)
showed that in O((|V (Gi)| + |Ui|2) log |V (Gi)|) time one can compute two rectangular Monge
matrices Mj,k,L and Mj,k,R, with rows Ui,j and columns Ui,k, such that for each u ∈ Ui,j and
v ∈ Ui,k we have wDC(Gi)(uv) = min(Mj,k,L

u,v ,Mj,k,R
u,v ) (for more details about this construction,

see also [58], Section 5.3). Each square Monge matrix can be easily decomposed into a staircase
Monge matrix and a flipped staircase Monge matrix. A rectangular Monge matrix, in turn, can
be padded with either some number of copies of the last row or some number of copies of the
last column in order to make it square. Thus, for each pair (k, l), k 6= l, we add to Di four
(flipped) staircase Monge matrices. In total, the set Di has 2h + 4h(h − 1) = O(1) staircase
Monge matrices, each of size no more than |Ui| × |Ui|.

Our single source shortest paths algorithm on DDG (see Algorithm 4) maintains a growing
subset S ⊆ V of visited vertices and the values d(x) for x ∈ S. Let us define Di so that for each
matrixM∈ Di there is a corresponding offset matrixM′ = off(M, d) in Di with the same rows
and columns. We build a data structure of Lemma 5.5.5 for each matrix in

⋃q
i=1Di. The row

u of M ∈ Di is activated (see Section 5.5) immediately once u is added to S. By Fact 5.1.3,
the matrices of Di are Monge matrices. The matrices Di are never stored explicitly. Each entry
is computed from the corresponding entry in Di and the array d in O(1) time every time it is
accessed.

In comparison to Dijkstra’s algorithm, we relax the invariant posed on the keys in the
priority queue as we cannot afford storing exact values z(y) as keys of the queue entries. Recall
that a distance estimate is defined as z(y) := minx∈S{d(x) + wDDG(xy) : xy = e ∈ E(DDG)}.
Instead, we conceptually maintain a threshold value T so that only the keys of vertices y ∈ V \S
at distance less than T are equal to z(y) and the remaining keys are no less than z(y). The
threshold is gradually increased, which in turn allows to call Ensure-Bound-And-Get on
some matrices M∈ ⋃iDi and obtain better bounds on the values z(y).

Specifically, we have a priority queue H storing an element x for each x ∈ V \S. Denote by
key(e) the key of an element e ∈ H. Let Wr (W c) be the set of all matrices of

⋃
iDi containing

the row r (the column c, respectively). For a data structure M of Lemma 5.5.5, denote by
C∗(M) the set of columns of M for which the minima have been already reported.

In our algorithm, we cannot afford to set key(y) for each y ∈ V \ S to

z(y) = min
x∈S
{min{Mx,y :M∈Wx ∩W y}}

as would Dijkstra’s algorithm do. Instead, for y ∈ V \ S, key(y) satisfies

key(y) = min
x∈S
{min{Mx,y :M∈Wx, y ∈ C∗(M)}} .

Observe that the definition of key(y) implies that if key(y) 6=∞, then key(y) is the length
of some s → y path. Indeed, it is a minimum over some values Mx,y, where M ∈ ⋃iDi, and
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the values in these matrices are always set to some actual lengths of paths from s. Moreover,
we clearly have key(y) ≥ z(y) since the minimum in the definition of key(y) is over a subset of
values for which the minimum in the definition of z(y) is taken.

We also add O(q) special elements {M : M ∈ ⋃q
i=1Di} to our priority queue H. At all

times we have key(M) = M.Lower-Bound(). We also ensure that for each x ∈ S, in every
M∈Wx row x is activated.

Observe that the above invariants imply that for y ∈ V \ S we have

z(y) ≥ min(key(y),min{M.Lower-Bound() :M∈W y}). (5.1)

Indeed, for each x ∈ S and M ∈ Wx ∩ W y such that y /∈ C∗(M), by the definition of
M.Lower-Bound, we have min{Mx,y : y /∈ C∗(M)} ≥ M.Lower-Bound().

Algorithm 4 Pseudocode of our single-source shortest paths algorithm. The function
Dijkstra returns a vector d containing the lengths of the shortest paths from s to all other
vertices of DDG. We assume that each DC(Gi), for i = 1, . . . , q, is preprocessed, so that we can
access the matrices of sets D1, . . . , Dq.
1: function Dijkstra(s)
2: Initialize the data structures of Lemma 5.5.5 for each M∈ ⋃iDi.
3: H := empty priority queue
4: S := ∅
5: procedure Visit(x, val)
6: S := S ∪ {x}
7: d(x) := val
8: for M∈Wx do
9: M.Activate-Row(x)
10: H.Decrease-Key(M,M.Lower-Bound())

11: for x ∈ V \ {s} do
12: d(x) :=∞
13: H.Insert(x,∞)

14: for M∈ ⋃iDi do
15: H.Insert(M,∞)

16: Visit(s, 0)
17: while S 6= V and H.Min-Key() 6=∞ do
18: v := H.Min-Key()
19: Z := H.Extract-Min()
20: if Z is a vertex of DDG then
21: Visit(Z, v)
22: else
23: x := Z.Ensure-Bound-And-Get()
24: if x 6= nil and x /∈ S then
25: H.Decrease-Key(x, Z.Current-Min(x))

26: H.Insert(Z,Z.Lower-Bound())

27: return d

Let un now discuss the correctness of Algorithm 4. One can easily verify that the key
invariants are satisfied before the first iteration of the while loop in line 17.

Assume the element that gets extracted from H in line 19 is some vertex x ∈ V \S. We need
to prove that x has the least value z(x) among all vertices of V \S and that z(x) = key(x). This
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way we will consequently prove that our algorithm simulates Dijkstra’s algorithm and therefore
computes distances from s correctly.

As the keys of H include all keys key(y) where y ∈ V \ S and all keys key(M) for the
O(q) data structures M, by inequality 5.1, for each y ∈ V \ S we have z(y) ≥ key(x). We
conclude z(y) ≥ key(x) ≥ z(x) and in particular z(x) ≥ key(x) ≥ z(x). So, z(x) = key(x).
Consequently, x has the minimal z(x) among all vertices in V \S, and since there exists a path
s → x of length key(x), there exists a s → x path of length z(x). Therefore, x could safely be
the next vertex chosen by Dijkstra’s algorithm. The procedure Visit is used to update the set
S, the array d and all the keys of H affected by inserting x to S.

Sometimes it also may happen that the element extracted from H is some data structure Z.
In this case no vertex is added to S but our algorithm still makes progress, as explained in
the following. Note that we extract some previously unknown column minimum of Z with the
call Z.Ensure-Bound-And-Get(). Recall that for this to be a legal operation on Z, we need
to guarantee that all the rows of Z that are not active at that point contain only values not
less than Z.Lower-Bound(). Notice that after each extraction of an element with key v from
H we update some other keys in H to values not less than v. Thus, each extracted element
has key not less than the previously extracted elements. In particular, we know that for each
y ∈ V \S, d(y) ≥ Z.Lower-Bound(). For eachM∈Wy, the values in row y are not less than
d(y) and hence indeed x = Z.Ensure-Bound-And-Get() can be called. Since for a single
data structure Z, Z.Ensure-Bound-And-Get() can be called only a finite number of times
before Z.Lower-Bound() becomes∞, this situation will happen only a finite number of times
per each data structure Z. Subsequently, if x 6= nil, a column minimum of Z has been found
and the key of x is updated to satisfy the key invariants. Finally, Z is reinserted into H with
the key equal to the new value of Z.Lower-Bound() (possibly ∞).

Let us now bound the running time of the function Dijkstra. By Lemma 5.5.5, the initial-
ization, along with any sequence of operations Activate-Row and Block-Ensure-Bound,

can be performed on M∈ Di in O

(
|Ui|

(
log |Ui|

log log |Ui|

)2
)

= O
(
|Ui| log2 n

log2 logn

)
time.

The time spent on extracting elements from H is O(I log n), where I is the number of
insertions into H. Clearly, H never contains more than O(|V | + q) = O(n) elements. Each
vertex of DDG is inserted into H at most once, and, by Lemma 5.5.5, each data structure
M ∈ Di is inserted into H at most O(|Ui| logε |Ui|) times before it reports all the column
minima and M.Lower-Bound() is set to ∞. Hence, the total time spent on the operations
H.Extract-Min is O (log n

∑
i |Ui| logε n). The operation H.Decrease-Key takes constant

time and thus we can neglect the calls to H.Decrease-Key immediately after Activate-Row
or Block-Lower-Bound. Taking into account the preprocessing of Lemma 5.2.1, we finally
obtain the theorem claimed in the beginning of this chapter.

Theorem 5.0.1. The single-source shortest paths computations in DDG can be performed in
O
(∑q

i=1 |Ui| log2 n
log2 logn

)
time. The required preprocessing time per each Gi is O(|Ui|2) if Ui lies

on a single face of Gi, and O
(
(|V (Gi)|+ |Ui|2) log |V (Gi)|

)
otherwise.

5.7 Price Functions and Supporting Negative Edge Weights

Let G be a weighted digraph with no negative-length cycles. Let φ : V → R be a price function.
It is a well-known fact that for any price function φ adding φ(u)−φ(v) to wG(uv) for each edge
uv ∈ E(G) preserves the shortest paths.

We say that φ is feasible if for any uv ∈ E(G), wG(uv) + φ(u) − φ(v) ≥ 0. It is also a
well-known fact that if a graph G contains no negative cycles, a feasible price function for G
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exists. In fact, it is easy to show that the distances from an arbitrary source vertex in G form a
feasible price function for G. This observation is the basis of the famous O(mn+ n2 log n) all-
pairs shortest paths algorithm of Johnson [56] that first computes a feasible price function using
Bellman-Ford method and then proceeds by running Dijkstra’s algorithm from each source in
order to compute all-pairs shortest paths.

Note that if a feasible price function φ0 for DDG is available at the preprocessing step, the
algorithm of Section 5.6 can support negative edges within the same bounds as in Theorem 5.0.1.
To see that, note that if we set wDC(Gi)(uv) := wDC(Gi)(uv) + φ0(u)− φ0(v), Lemma 5.2.1 still
holds since it only relied on the fact that certain shortest paths cross and those are preserved
after the edge weights’ adjustment, as discussed above.

Moreover, the shortest path algorithm of Theorem 5.0.1 can be run with different feasi-
ble price functions without repeating the costly preprocessing. Recall that this preprocessing
computed the decomposition of Lemma 5.2.1, which, again, only relied on the topology of the
shortest paths in Gi (which is not affected by the price function at all), and not directly on the
exact weights of edges of Gi.

5.8 Implications

The implications of Theorem 5.0.1 are numerous. In this section we mention the most important
results, for which (repeatedly) running FR-Dijkstra is the actual bottleneck.

Maximum Flow. The multiple-source multiple-sink maximum flow algorithm [7], the single-
source all-sinks maximum flow algorithm [67], and min-cut oracles for surface-embedded graphs [5]
are arguably the most advanced applications of FR-Dijkstra to date. All of them use the so-
called flow-balancing procedure developed by Borradaile et al. in [7] (see also [79]).

The very bottleneck of the flow-balancing procedure is the computation of single-source
shortest paths on a graph H with vertex set X which consists of:

• a set of O(|X|) edges P with endpoints in X,

• a dense distance graph DDG = DC(G1) ∪ . . . ∪ DC(Gq) such that q = O(1) and each
Ui ⊆ X lies on a single face of Gi.

However, what is interesting, the weights wH(e) of the edges e ∈ P vary between the
computations. Moreover, neither the edge-weights of DDG nor the weights of edges P need to
be non-negative. Instead, for each computation, one is provided with a feasible price function
φ : X → R for H, which, needless to say, may also be different for different instantiations of
the procedure. Recall that a feasible price function φ satisfies wH(e) + φ(u) − φ(v) ≥ 0 for all
edges uv = e ∈ E(H) and adding φ(u) − φ(v) to wH(e) for each edge e preserves the shortest
paths. As noted in Section 5.7, given a feasible price function one can find shortest paths in a
possibly negatively-weighted graph using Dijkstra’s algorithm.

In [7], the shortest paths computations, as described above, are performed in
Θ(|X| log2 |X|+ |P | log |X|) = Θ(|X| log2 |X|) time using a modification of FR-Dijkstra of [58]
originally designed (among others applications) to extend the fully-dynamic planar exact dis-
tance oracle [27, 62] to also support negative edge weights.

We now show how our algorithm of Section 5.6 can also be adjusted to work in this scenario
and, as a result, improve over [7]. We first note that Lemma 5.2.1 assumed non-negative edge-
weights so it seems we cannot use it. However, observe that in the proof of Lemma 5.2.1 the
decomposition of DC(Gi) such that Ui was a subset of a single face of Gi did not depend on
the edge weights at all, but only on the clockwise order of Ui on that face. As we only deal
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with such sets Ui in the flow-balancing procedure, we are still allowed to compute the staircase
matrix decomposition during the preprocessing as even the time needed to fill the distance
cliques DC(Gi) is clearly Ω

(∑q
i |Ui|2

)
.

Moreover, similarly as we proceeded in Corollary 4.3.7, each edge of P is treated as a distance
clique of size 2. Clearly, this does not violate the requirements posed on a distance clique.

Finally, in Algorithm 4 we replace each M∈ ⋃iDi with M′ defined as

M′u,v =Mu,v + φ(u)− φ(v)

for all relevant pairs (u, v). Such an adjustment clearly preserves the Monge property. We are
not allowed to replace these matrices explicitly, though, as this would be too costly. Instead,
we compute the individual values of each M′ accessed by the data structures of Lemma 5.5.5
on the fly. This only increases the initialization and operation time of these data structures by
a constant factor. Therefore, by Theorem 5.0.1, given the weights of edges P and φ, the total
time needed to compute the single-source shortest paths in H is

O

((
q∑
i=1

|Ui|+ |P |
)

log2 |X|
log2 log |X|

)
= O

(
|X| log2 |X|

log2 log |X|

)
.

Each of the algorithms [5, 7, 67] recursively decomposes the input graph using cycle sep-
arators and runs the flow-balancing procedure at each level of the recursion. Hence, all three
algorithms spend Ω(n log3 n) on these computations. However, only in [7] and [67] the flow-
balancing procedure is the only bottleneck. As a result, we obtain the following.

Corollary 5.8.1. The multiple-source multiple-sink max-flow, the bipartite matching, and the
single-source all-sinks max-flow in a planar digraph can all be computed in O

(
n log3 n

log2 logn

)
time.

Exact Distance Oracles. Mozes and Sommer [76] considered the following problem. Given
a planar digraph G = (V,E) with real edge lengths and space allocation S ∈ [n log log n, n2−ε]
(ε > 0), construct a data structure of size O(S) answering exact distance queries in G as effi-
ciently as possible. Their trade-off data structure is very similar to our trade-off data structure
for decremental transitive closure from Section 4.7, which was in fact heavily inspired by the
distance oracle of Mozes and Sommer. Roughly speaking, it sets S = n2/t and for each piece H
of O(n/t) recursive decompositions it builds distance cliques defined similarly as the graphs
In(H) and Ex∗(H) from Section 4.7.

At the heart of their query algorithm lies the basic version of FR-Dijkstra (without using
price functions), and thus Theorem 5.0.1 implies a faster query algorithm.

Corollary 5.8.2. Given a weighted planar digraph G, an O(S)-space exact distance oracle

answering queries in O
(

n√
S

log2 n

log1/2 logn

)
time can be constructed in O

(
S log3 n

log logn

)
time.

Very recently, a much better space-query trade-off for exact distance oracles for planar
graphs has been shown [36]. However, the oracle of Mozes and Sommer remains the most
efficient solution if we require the preprocessing time to be nearly-linear in S.

Fully-Dynamic Distance and Max-Flow Oracles. In this problem we are given a plane
digraph G with real edge lengths which undergoes embedding-preserving edge insertions and
deletions. A straightforward combination of data structures of [55] and [58] results in a data
structure supporting both edge set updates and queries in O(n2/3 log5/3 n) time even when
negative edge lengths are allowed.
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Computation of single-source shortest paths in a dense distance graph over an r-division
and the recomputation of a dense distance graph using the multiple-source shortest paths data
structure [13, 62] in O(r log r) time constitute the bottlenecks of the update procedure. The

terms O(r log n) and O
(
n√
r

log2 n
log2 logn

)
can be balanced for r = n2/3 log2/3 n

log4/3 logn
.

Corollary 5.8.3. For a planar digraph G, a dynamic distance oracle supporting edge updates
and queries in O

(
n2/3 log5/3 n

log4/3 logn

)
amortized time can be constructed in O

(
n log2 n

log logn

)
time.

As shown in [55], Corollary 5.8.3 also implies an O(log4/3 log n) improvement of the fully
dynamic algorithm for computing maximum s, t-flow values in an undirected plane graph.
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Chapter 6

Open Problems

In Chapter 3 we showed an optimal solution to a certain data-structural problem on planar
graphs. However, for the problems of decremental transitive closure and computing shortest
paths in dense distance graphs, which we considered in Chapters 4 and 5 respectively, there is
no good evidence to believe that our algorithms are even close to optimal.

Specifically, we find the following questions interesting:

1. Does there exist a decremental transitive closure algorithm for planar digraphs with
O(n1−ε) amortized update time and O(polylog n) query time, where ε > 0? Recall that
in our trade-off algorithm of Theorem 4.7.4 we could achieve polylogarithmic query time
by setting t = n, but then the amortized update time would become Ω̃(n).

Note that it is not even clear why a polylogarithmic update/query time decremental
transitive closure should not be possible: for planar graphs there exists a static linear-
space reachability oracle with constant query time. The oracle can be built in optimal
linear time [50]. Hence, in planar graphs, as opposed to general graphs, static reachability
is computationally not harder than connectivity.

2. Does there exists a single-source shortest paths algorithm for dense distance graphs with
O(b log2−ε n) overhead per distance clique with b-vertices, where ε > 0? It seems that
one possible approach to achieve such an algorithm could be to handle staircase Monge
matrices more directly, without reducing them to a number of rectangular Monge matrices.
However, it is not clear how to do it either.

3. Is it possible to obtain a faster algorithm for single-source shortest paths in dense distance
graphs if we assume that the dense distance graph is integer-weighted? Note that in the
case of general digraphs, if the edge weights are integral, it is indeed possible to improve
upon Dijkstra’s algorithm [92].

Such an improved algorithm would imply, for example, a better algorithm for computing
a maximum bipartite matching in a planar graph.
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(extended abstract). In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 752–771, 2017.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, 3rd Edition. MIT Press, 2009.

[20] Camil Demetrescu and Giuseppe F. Italiano. Mantaining dynamic matrices for fully dy-
namic transitive closure. Algorithmica, 51(4):387–427, 2008.

[21] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[22] Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms - ESA
2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
pages 594–604, 2007.

[23] Jack Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, pages 449–467,
1965.

[24] David Eppstein and Michael T. Goodrich. Studying (non-planar) road networks through
an algorithmic lens. In 16th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, ACM-GIS 2008, November 5-7, 2008, Irvine, California,
USA, Proceedings, page 16, 2008.

[25] Jeff Erickson. Maximum flows and parametric shortest paths in planar graphs. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 794–804, 2010.

128



[26] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4,
1981.

[27] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

[28] Greg N. Frederickson. On linear-time algorithms for five-coloring planar graphs. Inf.
Process. Lett., 19(5):219–224, 1984.

[29] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applica-
tions. SIAM J. Comput., 16(6):1004–1022, 1987.

[30] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[31] Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum matching
algorithms. J. Algorithms, 40(2):159–183, 2001.

[32] Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann.

Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n5/3)
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