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Subject of the dissertation

The subject of the dissertation is the study of possible generalizations of the Fraissé theoty,
using the method of forcing. In 1954 Roland Fraissé discovered that many classes of finite
models, like graphs or linear orders, can be canonically assigned certain infinite models.
These infinite models are universal — they contain isomorphic copies of all finite models
from the class — and homogeneous = each isomorphism between finite substructures can be
extended to an automorphism of the whole structure. An infinite structure with these two
propetties is called a Fraissé limir, This correspondence is reversible - given a countable,
homogeneous model, one can recover the class of finite models from which it was built - it
is exactly the class of its finite substructures. The Fraissé theory studies this correspondence.
The Fraissé limit of a class & has a natural connection with the forcing

Fi(w, K.w) = {A € K| F(A) € [w]<“},

where F'(A) denotes the universe of a structute A, and the ordering is given by the reversed
inclusion of substructures, If G € Fn (w, K, w) is a filter intersecting sufficiently many dense
sets, then {_J G is a structure isomorphic to the Frafssé limit of £

This inspires a natural question about structures added in a similar way by the forcings

Fin(S,K.w) = {4 & K| F(4) € 8]},

for uncountable sets §. in particular § = wy. The study of such structures is the topic of
Chapters 4 and 5.

It should be emphasized, that despite the obvious model-theoretic aspect. this is a disserta-
tion about the set theory. The apparatus of model theory is very basic, On the other hand, the
set-theoretic machinery is rather sophisticated, and this refers particularly to foreing-theoretic
arguiments. Although almost all forcing notions appearing in the dissertation are c.¢.e. (and
indeed most of them resemble the Cohen foreing) arguments sometiimes get gite technical
and involved.

Chapter 1

The chapter is a brief survey of the development of the Frafssé theory, its relatives studied in
the past, and their applications.

Chapter 2

The chapter is an introduction to the classical Fraissé theory, with examples. WE describe the
Fraissé limits of the following classes: linear orders, graphs, Boolean algebras, partial orders,
and metric spaces with rational distances.

Chapter 3
We initroduce the Fraissé-Jonsson theory, which is a modification of the classical Frajssé the-

oty, where we do not assume that the models from K are finite. Examples of the uncountable
Fraissé limits we ean obtain this way, are countably saturated models of size 2, in case
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Introduction

The subject of the dissertation is the study of possible generalizations of the Fraissé theory,
using the method of fotcing. In 1954 Roland Fraissé discovered that many classes of finite
models, like graphs or linear orders, can be canonically assigned certain infinite models,
These infinite models are universal = they contain isomorphic copies of all finite models
from the clags = atid honogeneous ~ each isomorphism between finite substructures can be
extended to an automorphism of the whole structure. An infinite structure with these two
properties is called a Fraissé limit. This correspondence is reversible — given a countable,
homogeneous model, one can recover the class of finite models from which it was built - it
is exactly the class of its finite substructures. The Fraissé theory studies this correspondence.
The Frafssé limit of a class K has a natural connection with the foreing

F(w Kw) = {4 € K| F(A) € [w]<“},

where F'(A) denotes the universe of a structure A, and the ordering is given by the reversed
inclusion of substructures. If ¢ € Fn (w. K, w) is a filter intersecting sufficiently many dense
sets, then | J G is a structure isomorphic to the Fraissé limit of K.

This inspires a natural question about structures added in a similar way by the forcings

Fn(8.K,w) = {4 € K| F(A) € [§]<},

ot more generally

Fi (S K. H) = .{A g K| F{A) e [S}<"”}‘

for uncountable sets S, in particular § = wi.

It should be emphasized, that despite the obvious model-theoretic aspect, this is a disserta-
tion about the set theory. The apparatus of model theory is very basic. On the other hand, the
set-theoretic machinery is rather sophisticated, and this refers particularly to forcing-theoretic
arguments, Although almost all foreing notions appearing in the dissertation are c.c.c. (and
indeed most of them resemble the Cohen forcing) arguments sometimies get quite technical
and involved.

In the first chapter 1 sketch the history of the Fraissé theory, and its variants that were
studied in the past. The second chapter is an introduction to the classical Fraissé theory, and
the third = to the Frafssé-Jonsson theory, which is a generalization of the classical Praissé
theory, in which we work with classes of infinite models. The first three chapters are mostly
of introductory nature. The only original results of these chapters are: part of Theorem
3.2.13 (adding the last condition), Theorem 3.2.15, Corollary 3.2.16 and Lemma 3.2.17. The
essential part of the dissertation are results of Chapters 4 and 5.

The Fraissé Theory
By a structure, we always understand a model of some first order theory, By an embedding.

we always understand a homomorphism of structures, that is an isomorphism into its image.

Definition 1. We will say about a class of structures /C that:



The Fraissé-Jonsson Theory

The Frafssé-Jonsson theory is a variant of the classical Fraissé theory, where we do not as-
sume that the models from X are finite. Examples of the uncountable Fraissé limits we can
obtain this way, are countably saturated models of size 2, in case when 2% = wy. Some of
such models admit natural representations, like the Boolean algebra P (w)/Fin,

The Fraissé-Jonsson theory essentially uses assumptions on the cardinal arithimetic, so it
is natural to look for some canonical, saturated models, whose existence is not dependent on
additional axioms of set theory.

Definition 4. A linear order (L. <) is countable saturated if for all pairs of countable subsets
A, B € L such that A « B, there exists 4 point in L strictly between 4 and B (we permit
that 4 or B is empty).

One can check, that the above definition is equivalent to the usual, model-theoretic, defi-
fition of an ws-saturated linear order. An example of such order is the set
Lot e (e [~1, 1% {or € wy : #{e) # 0} £ w},

with the lexicographic ordering, i.e. & < y if and only if w(c) < y(c) for the least coordinate
evo on which z(er) # y(av). Under Continuum Hypothesis, this is a unique countably saturated
linear order of size 2, and this was known already to Hausdorft ([6]),

Definition 5. A linear order L is prime countably saturated if it is countably saturated, and
each countably saturated linear order contains an isomorphic copy of L.

Without any assumptions on the cardinal arithmetic, the following is true.

Theorem 2 (Harzheim [51). Assume that (L. <) is a countably saiurated linear order. The
Jollowing conditions are equivitlent:

o L is prime countably saturated;
o L can be represented ds an incredasing stin U Le: wheve L, doesn’t contain any
< uy
copy of wy or Wi, for any index o < wy (wi is the reversed ordering of wy ).
Theorem 3 (Harzheim, [51). All prime countably saturated linear orders are isomorphic.

The proof of this result relies on the fact, that a certain class of lineat orders has properties
similar to a Fratssé class. [ndeed. L@ is an example of a Fraissé class in some more general
sense, described in [7]. The order 1.** has also a certain homogeneity property.

Theorem 4 (Kostana). Each isomorphism between countable or Dedekind complete subsets
of L van be extended to an automorphism of 141,

Generic Structures
Denote by £O the class of all linear orders. Let us look at the forcing
P=Fu(k LOw) = {(4 )| 4 € [k]<¥, (A, <) is alinear order. },
where k is any cardinal number, and the ordering is given by the relation
(A, <4) < (B, <) &= ADB, <alBxB=<Lpy.

It is easy to check that the following sets are dense in I

e D= {(A.<)lae A},

¢ Dog={(A<)|3n <w nisbetween a and 3}.

If G € Pis therefore a suitable generic filter, then [ G is a separable linear order. In
partictilar, it is isomorphic to (@, <) if £ = w,

This is an instance of a much more general phenomenon. In order to ensure that the fore-
ing does not collapse cardinals, we need to impose some conditions on the class of models.



Generic Structures and Martin’s Axiom

Structures added by the forcings Fn (wq. K, w) are rigid in the corresponding generic exten-
glons, but it seems that this property is more inherent to the specific universe of set theory,
rather than the structures themselves. More specific to the latter ones, is perhaps atother
property, which in the case of linear orders appears already in the work [2].
Definition 7 (Avraham-Shelah, [2]). An uncountable set A € R is increasing if for each
uncountable family of pairwise disjoint n-tuples

{(@f,. . ah)|E <wi} € A
there exist i) £ £ < wq such thatforall i, j=1.... . n

] S u] e o) < al,

Authors of [2] used increasing sets to prove that Martin's Axiom does not guararitee,
that all wy-dense, separable linear orders are isomorphic. The consistency with ZFC' of the
latter statement was proved by Baumgartner in [3], and from his proof easily follows also the
consistency with ZFC + M A + ~CH.

Theorem 8 (Avraham-Shelah, [2]). The following is consistent with ZFC 4+ M A, :
There exists an wy-dense separable linear order A with the property that each uncountable
partial function
FEAXxA
is monotoine on an uncountable set.

From this property of a set A, it follows that A = (A, ) cannot be isomorphic to its
reversed order A* = (A, =). Therefore the conclusion of the Baumgartner’s Theorem does
not hold. What increasing sets have to do with the forcings Fu(S, K, w) is explained by the
next proposition,

Proposition 4. Fn(wy, LO,w) - "(A. <) is an increasing order”,

The usefulness of this notion, as well as its generalizations that we present below, cotes
from the fact, that the existence of an increasing set is consistent with Martin’s Axiom.

Definition 8, Let (X, d) be a metric space.

o We call a pair of tuples ¥ = (1. @) T = (150« s yn) € X" alike if they satisty
the following axioms:

Al Yij=1,.... n(deg, ) = dleg, yy))
A2 Y=L, oo (dlagey) = d(yn )
A3 Vi j=100,m (g ay == deniny) = dag, )

We then write T o 7.

¢ We call (X,d) rectangular if it is uncountable, and for any sequence of pairwise

disjoint tuples {(a5.....a5)|€ < wi} C X", there are £ # 5 < wi. such that
(a,....28) @ (27,....27).

(by "disjoint tuples”, we mean that
{J‘?, v di O el wgl b
whenever £ £ 1.)
Following the ideas of Avraham, Rubin, and Shelah from [2] and [1], we prove a version
of Theorem § for metric spaces.

Theorem 9 (Kostana)., The following is consistent with ZFC 4+ M Ay, :
There exists a separable metric space X of size wy with the property that each uncountable
partial 1<1 function

feXxX
is an isometry on an uncountable set. Moreover, distances between points of the space X are
rational, and X has a dense copy of the rational Urysohn space.
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