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Centrality measures constitute one of the fundamental tools of network analy-
sis [19]. Their role is to assign to every node of a network a value that reflects the
importance of this node. Centrality analysis finds numerous applications in the wide
variety of fields: from social studies [13] and economics [2], through biology [18] and
physics [31], to transportation [14] and computer science [21]. One of the most im-
portant centrality measures is PageRank [25], which was invented to determine the
importance of webpages for Google web search engine, and thus had a great impact on
the way the Internet looks.

However, what it means for a node to be important heavily depends on the con-
text of a particular application. This, along with the ever growing number of proposed
measures, makes the choice of a centrality to use a difficult task. Since different cen-
trality measures return very different results, the problem of choosing an appropriate
measure is of utmost importance. Hence, there is a need for research that will provide
a better understanding of centrality measures and will help decide upon a centrality
measure to use in a specific application.

A method that allows for achieving this goal is axiomatization. In this approach, we
introduce a set of simple properties, called axioms, that characterize a given centrality
measure. Then we formally prove that only this particular measure satisfies all of the
axioms at the same time. In this way, we obtain an intuitive characterization of the
centrality measure. Moreover, if all of axioms are desired in a particular application,
then we know that this centrality measure is well-suited for this application (if any
measure is). Consequently, if one of the axioms is invalid, another measure should be
used instead.

In recent years, the axiomatic approach to centrality measures has been gaining
popularity in the literature [4, 5, 6]. Axiomatic characterizations have been created
for many centrality measures, such as closeness [30], beta measure [10], or attach-
ment [29]. In particular, two axiomatizations were created for Seeley index, also called
simplified PageRank [1, 26]. However, for many centrality measures such character-
izations are still missing. Until recently, PageRank was also a measure without an
axiomatization in the literature.

Against this background, the main contributions of this thesis are as follows: First,
we introduce the first in the literature axiomatic characterization of PageRank. Next,
we create a coherent axiomatization of three centrality measures: decay centrality,
PageRank, and a novel measure—random walk decay centrality. Our analysis shows
that while random walk decay centrality retains a majority of PageRank’s properties, it
may be more desirable than PageRank in some settings. Finally, we generalize our ax-
iomatization of PageRank to create a consistent axiom system for four classic feedback
centralities: eigenvector and Katz centralities, Seeley index, and PageRank.
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1 Graphs and Centrality measures

Mathematical model of a network is a graph. Here, we consider mainly directed multi-
graphs with possible self-loops. Each such multigraph (later called simply a graph) is a
pair, (V ,E), where V is a finite and nonempty set of nodes, and E is a multiset of edges.
For example, in the World Wide Web network, nodes represent pages and the edges
hyperlinks between them (note that there can be multiple hyperlinks from one page to
another). Each edge (u,v) is an outgoing edge of its start, u, and an incoming edge of its
end, v.

Often, we are interested if it is possible to go from node u to node v through edges
of a graph, i.e., if there exists a path from u to v. The length of a shortest such path
is called a distance from u to v and it is denoted by dist(u,v). If there is no path from
u to v, we assume that dist(u,v) = ∞. Otherwise, node u is a predecessor of v and v a
successor of u. Moreover, if dist(u,v) = 1, i.e., (u,v) ∈ E, then u is a direct predecessor
of v and v a direct successor of u. We will denote the set of all direct predecessors of v
by P 1

v (G). If every two nodes in a graph are predecessors and successors of each other,
then the graph is said to be strongly connected.

We also consider node weights that can be used to include additional information
about nodes in a graph. In a context of World Wide Web network, node weights can
model personal preferences of a user [25], how well a page fits into a given topic [16], or
the fact that a page is trusted [15]. If no such information is available, one can assume
uniform weights for all nodes. Formally, a graph with node weights is a pair (G,b)
where G = (V ,E) is a graph and b is a function b : V → R≥0 that assigns non-negative
weight to each node.

A centrality measure is a function, F, that for a given graph, G = (V ,E), node weights
b, and node v ∈ V , returns a real non-negative value Fv(G,b) that represents the impor-
tance of node v in weighted graph (G,b).

1.1 Classic Centrality Measures

The three classic centrality measures are degree, closeness, and betweenness centrali-
ties [12, 24]. In this section, we state their definitions along with decay centrality which
is a popular alternative for closeness centrality [19].

Most of the standard centrality measures were proposed for graphs without node
weights. However, they can usually be easily adapted to this richer setting [22]. We
will call versions of standard centrality measures for node-weighted graphs personal-
ized [36].

Degree centrality [11] simply looks at the number of incoming edges to a node. In a
personalized version instead of taking only the number of incoming edges, we sum the
weights of their starts. Formally,

Dv(G,b) =
∑

(u,v)∈E
b(u) =

∑
u∈P 1

v (G)

b(u) ·µG(u,v),

where µG(u,v) is a multiplicity of edge (u,v), i.e., the number of times edge (u,v) ap-
pears in multiset of edges E.

Closeness centrality [3] looks at the distances to a node from all the other nodes. It is
defined as the reciprocal of the sum of these distances, hence nodes in the center of a
graph have the highest values. In the personalized version, distance from each node is
multiplied by its weight. In this way, the distances from nodes with large weights are
more significant. Formally,

Cv(G,b) =
1∑

u∈V \{v} b(u) · dist(u,v)
.
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Closeness centrality is usually defined for strongly connected graphs. Otherwise, if
there exist nodes from which a node cannot be reached, then its centrality is always
equal to zero.

Decay centrality [19] is a modification of closeness centrality that works for arbitrary
graphs, not necessarily the strongly connected ones. Here, instead of looking at the
sum of distances, each node at distance k contributes its weight multiplied by ak , for
some decay factor a. Formally, for a ∈ [0,1), decay centrality is defined as follows:

Yv(G,β) =
∑
u∈V

b(u) · adist(u,v).

Finally, betweenness centrality [11] captures how often a node is an intermediary
between two other nodes. To this end, for every pair of nodes, s, t, it counts what
percentage of all shortest paths from s to t (we denote their number by σst), are shortest
paths passing through a node in question, v (we denote their number by σst(v)). Then it
multiplies each fraction by node weights of s and t and sums it for all s, t ∈ V . Formally,

Bv(G,β) =
∑

s,t∈V :σst,0

b(s)b(t) · σst(v)
σst

.

1.2 Feedback Centralities

Observe that all classic centrality measures are based on the shortest paths in a graph.
This approach is adequate when the processes that occur in a network follow the short-
est paths, which is the case in transportation or communication networks [9]. However,
for many processes in the real-life networks, this assumption is clearly not adequate.
A user surfing the Internet usually does not know how to reach another site with the
minimal number of links [17]. Similarly, the news traveling through a social network
moves in a complex, seemingly random way [23]. Hence, for these settings we need
another type of centrality measures.

Feedback centralities form an appealing class of centrality measures that are not
based on shortest paths. They assign centrality to a node recursively, based on its
direct predecessors and their centrality.

The simplest feedback centrality is eigenvector centrality [8]. Here, the importance of
each node is proportional to the total importance of its direct predecessors. Formally,
eigenvector centrality is defined by a recursive equation:

EVv(G,b) =
1
λ

∑
u∈P 1

v (G)

µG(u,v) ·EVu(G,b), (1)

where λ is the largest eigenvalue of the adjacency matrix. For every strongly connected
graph, Eq. (1) has a unique solution up to a scalar multiplication. Hence, some addi-
tional normalization condition is usually assumed to make the centrality measure well
defined (e.g., that centralities of all nodes sum up to 1). In this work, we use a normal-
ization that stems from the walk interpretation of eigenvector centrality, which is more
consistent with other feedback centralities. Moreover, it allows us to define eigenvector
centralities also on sums of disjoint strongly connected graphs with the same principal
eigenvalues λ.

Another centrality based on a similar principle is Katz centrality [20]. Here, the
importance of a node is mostly determined by the total importance of its direct pre-
decessors, however an additional basic importance is added to every node, equal to its
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weight. Formally, for a decay factor a ∈ R≥0, Katz centrality is defined as a solution to:

Kav (G,b) = a ·

 ∑
u∈P 1

v (G)

µG(u,v) ·Kau(G,b)

+ b(v). (2)

Adding a basic importance shifts the emphasis from the total importance of the direct
predecessors back to their number. That is why Katz centrality is sometimes seen as a
middle-ground between degree and eigenvector centralities. For a fixed a, Eq. (2) has
the unique solution for all graphs with λ < 1/a.

In both eigenvector and Katz centralities, the whole importance of a node is “copied”
to all of its direct successors. In turn, in Seeley index [28], which is also known as Katz
prestige [19] or simplified PageRank [25], a node splits its importance equally among
its successors. Consequently, the importance of predecessors is divided by their out-
degree. Formally, Seeley index is defined as a solution to the following recursive equa-
tion:

SIv(G,b) =
∑

u∈P 1
v (G)

µG(u,v)
deg+

u(G)
· SIu(G,b). (3)

Similarly to eigenvector centrality, Eq. (3) does not have a unique solution. Again, we
normalize it using the walk interpretation. This allows us to uniquely define Seeley
index for all sums of disjoint strongly connected graphs.

Finally, PageRank [25] modifies Seeley index by adding a basic importance to each
node. In this way, for a decay factor a ∈ [0,1), PageRank is uniquely defined for all
graphs as follows:

P Rav(G,b) = a ·

 ∑
u∈P 1

v (G)

µG(u,v)
deg+

u(G)
· P Rau(G,b)

+ b(v).

Interestingly, each feedback centrality can be alternatively defined using walks on
a graph, i.e., any sequence of nodes such that consecutive nodes are connected by an
edge, including these with repeating nodes [33]. As a result, they are more suitable to
model the importance of nodes in networks in which processes follow chaotic patterns,
like the Internet traffic or news propagation in social media.

2 Axiomatization of PageRank

PageRank, originally proposed by Page et al. (1999) [25] as a measure of webpage
importance, inspired researchers from various fields to use it in their own network
problems. It was applied to indicate the most influential users on social media plat-
forms [35], to assess the prestige of scientific journal in the citation network [7], to find
the key proteins in metabolic networks [18], or even to determine the best tennis play-
ers in the history based on the network of their matches [27]. However, it is not clear
if PageRank is a well-suited method to be used in these applications or whether other
centrality measure would be more suitable.

With this problem in mind, we create the first axiomatic characterization of Page-
Rank. Specifically, we introduce six intuitive axioms, which a centrality measure can
satisfy. Furthermore, we prove that PageRank is the only centrality measure that sat-
isfies all of them at once. In this way, we create new theoretical underpinnings for
PageRank.

First five of our proposed axioms are invariance axioms, i.e., they consider a graph
operation under which the centrality of certain nodes is invariant. The first two such
axioms concern simple operations of removing a node and an edge from a graph:
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Node Deletion: removing an isolated node from a graph does not affect central-
ities of other nodes in the graph.

Edge Deletion: removing an edge from a graph does not affect centralities of
nodes which are not successors of the start of this edge.

In the setting of WWW network, Node Deletion, would mean that a webpage with-
out any links and to which there are no links, e.g., a hidden resource on a server, does
not have any impact on importance of other webpages. In turn, Edge Deletion states
that removing a link from a webpage, A, can affect the importance of only these web-
pages that are reachable from A.

The next two axioms consider manipulations on edges in a graph:

Edge Multiplication: creating additional copies of all of the outgoing edges of
a node does not affect the centrality of any node in the graph.

Edge Swap: swapping the ends of two outgoing edges of nodes with equal cen-
tralities and out-degrees does not affect the centrality of any node in the graph.

Edge Multiplication states that a centrality does not account for absolute number of
outgoing edges. Indeed, if we change the number of outgoing edges of a node, without
affecting the ratio of edges going to particular nodes, the centrality of every node in the
graph remains the same. This is an important property in the WWW network, where
the cost of creating a link is negligible. Edge Swap captures the intuition behind the
feedback centralities: the gain in the centrality that a node receives from an incoming
edge, depends only on the centrality and the out-degree of the start of this edge.

For our next axiom, Node Redirect, consider two webpages with identical contents
and links. The axiom states that if we remove one such webpage and redirect the
Internet traffic that goes through it to the other webpage, then their importance is
summed up and the importance of other webpages is not affected. In terms of graphs,
two nodes with the same outgoing edges are called out-twins. Now, redirecting a node, u,
into its out-twin, v, means removing node u and transferring its weight and incoming
edges to node v.

Node Redirect: redirecting a node into its out-twin sums up their centralities
and does not affect the centrality of other nodes in the graph.

Our first five invariance axioms characterize PageRank up to a scalar multiplication.
To make the characterization unique, we add our last normalization axiom, Baseline.

Baseline: the centrality of an isolated node is equal to its weight.

Our main result of this part of the thesis is as follows:

Theorem 1. A centrality measure satisfies Node Deletion, Edge Deletion, Edge Multiplica-
tion, Edge Swap, Node Redirect, and Baseline if and only if it is PageRank.

Our characterization can help decide whether PageRank should be used in a par-
ticular application. As an example, consider a network of tennis players analyzed by
Radicchi [27]: for every tennis match in which A won with B, there is an edge from
B to A. In such a network, PageRank indicates some node as the most central. Then,
from Edge Multiplication we know that multiplying its outgoing edges 9000 times does
not change the importance of any node in the network. However, this means that this
player, who now lost most of his matches, is still considered the most central. Hence, a
direct consequence of our characterization is the fact that PageRank is not suitable for
such applications.

5



Axiom PageRank Random Walk Decay Decay
Locality + + +
Sink Merging + + +
Directed Leaf Proportionality + + +
One-Node Graph + + +
Random Walk Property + + -
Shortest Paths Property - - +
Lack of Self-Impact - + +
Edge Swap + - -

Table 1: Our axiomatic characterizations of PageRank, random walk decay centrality,
and decay centrality. The plus sign (+) indicates that the centrality measure satisfies
the axiom, whereas the minus sign (-) indicates that the centrality measure violates it.

3 RandomWalk Decay Centrality

PageRank is known for its random walk interpretation. Imagine a surfer that is brows-
ing the Internet in a very schematic way: It starts from the random webpage and then,
at each step of its walk, with probability a it randomly chooses one of the hyperlinks
on a webpage it sees and follows it to the next webpage. At the same time, with proba-
bility 1− a it stops walking altogether. The expected number of times the surfer visits
a webpage is equal to PageRank of this webpage (up to a scalar multiplication). This is
undesirable in settings in which nodes decide upon their outgoing edges (e.g., users on
a social media that decide whom to follow, or webpages that decide upon their links),
as they can manipulate their PageRank by changing their outgoing edges.

Motivated by this observation, we introduce random walk decay centrality. Instead
of the expected number of visits in a node it is equal to the probability that a node is
visited at all (up to a scalar multiplication). This way, the outgoing edges of a node do
not affect its centrality. Next, we create an axiomatic characterization of random walk
decay centrality consistent with characterizations of PageRank and decay centrality.
Our results are summarized in Table 1.

The axioms characterizing random walk decay centrality are as follows:

RandomWalk Property: centrality depends solely on random walks on a graph.

Locality: the centrality of a node depends only on the connected component to
which this node belongs.

Sink Merging: redirecting a sink into another sink without a common predeces-
sor sums up their centralities and does not affect the centrality of other nodes.

Lack of Self-Impact: the centrality of a node does not depend on its outgoing
edges.

Directed Leaf Proportionality: adding an edge from a sink to an isolated node
increases the centrality of this node by the centrality of the sink times a constant
a ∈ [0,1).

One-Node Graph: the centrality of a node with unit weight in a graph without
any edges and other nodes is equal to one.

Theorem 2. A centrality measure satisfies Random Walk Property, Locality, Sink Merging,
Lack of Self-Impact, Directed Leaf Proportionality, and One-Node Graph if and only if it is
random walk decay centrality.
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Figure 1: Example graphs illustrating the meaning of Lack of Self-Impact axiom. We
assume uniform node weights in both G = (V ,E) and G′ = (V ,E∪{(v,u)}), i.e., b(w) = 1,
for every w ∈ V . In graph G, node v has the 5th highest centrality according to both
PageRank and random walk decay centrality (P R0.9

v (G,b) = 9.52 and RWD0.9
v (G,b) =

5.13). In graph G′ , edge (v,u) is added. Since random walk decay centrality satisfies
Lack of Self-Impact, we know that such operation does not affect the centrality of v
(RWD0.9

v (G′ ,b) = 5.13) and in fact it is still ranked as 5th most central node. However,
PageRank does not satisfy Lack of Self-Impact and v has much higher PageRank in G′

than in G (P R0.9
v (G′ ,b) = 14.08). In fact, in G′ , PageRank ranks v as the second most

central node.

If from axiomatic characterization of random walk decay centrality we remove Lack
of Self-Impact and instead add Edge Swap, we obtain a unique characterization of Page-
Rank.

Theorem 3. A centrality measure satisfies Random Walk Property, Locality, Sink Merging,
Edge Swap, Directed Leaf Proportionality, and One-Node Graph if and only if it is PageRank.

Random walk decay centrality retains a majority of PageRank’s properties. The only
differences lie in Lack of Self-Impact and Edge Swap axioms. As we have discussed, the
fact that random walk decay centrality satisfies Lack of Self-Impact, corresponds to its
nonmanipulability (see Figure 1 for an illustrative example). On the other hand, the
fact that random walk decay centrality does not satisfy Edge Swap allows it to take
into account also other aspects of nodes, not only the centralities and out-degrees of its
direct predecessors. As a result, random walk decay centrality is higher for nodes with
direct predecessors belonging to a diverse set of communities in a network.

In a similar way, if in axiomatization of random walk decay centrality we exchange
Random Walk Property for a new axiom, Shortest Paths Property, that states that the
centrality is based on the shortest paths, then such set of axioms uniquely characterizes
standard decay centrality. Lack of Self-Impact is implied by Shortest Paths Property,
therefore it is redundant.

Theorem 4. A centrality measure satisfies Shortest Paths Property, Locality, Sink Merging,
Directed Leaf Proportionality, and One-Node Graph if and only if it is decay centrality.

4 An Axiom System for Feedback Centralities

In the last part of the thesis, we extend our axiomatic characterization of PageRank in
order to create a joint axiom system for all four main feedback centralities: eigenvec-
tor centrality, Katz centrality, Seeley index, and PageRank. To this end, we propose
seven axioms: three general axioms satisfied by all four centralities, two one-node-
modification axioms, and two borderline axioms. We prove that each of the four mea-
sures can be uniquely characterized by a subset of five axioms: three general ones, one
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Centrality General axioms Node-modification axiom Borderline axiom
Eigenvector LOC, ED, NC Edge Compensation Cycle

Katz LOC, ED, NC Edge Compensation Baseline
Seeley index LOC, ED, NC Edge Multiplication Cycle

PageRank LOC, ED, NC Edge Multiplication Baseline

Table 2: Our axiomatic characterizations of eigenvector centrality, Katz centrality, See-
ley index, and PageRank. General axioms are Locality (LOC), Edge Deletion (ED), and
Node Combination (NC).

one-node-modification axiom, and one borderline axiom. Our results are summarized
in Table 2.

To study the axiomatization of the four centrality measures, we generalize the class
of graphs we consider. Instead of multigraphs with node weights, we consider graphs
with both node weights and edge weights. Formally, a weighted graph is a pair, (G,θ),
where G = (V ,E) is a simple graph with set of nodes V and set of edges E ⊆ V × V
and weights are a pair θ = (b,µ), where b : V → R≥0 are node weights and µ : E→ R>0
are edge weights. Observe that multigraphs considered earlier can be seen as weighted
graphs with natural numbers as edge weights only. Note that all centrality measure
definitions still hold, but with µ instead of µG and the out-degree equal to the sum of
weights of outgoing edges, i.e., deg+

u(G) =
∑

(u,v)∈E µ(u,v).
To characterize the centralities in question we consider a system of seven axioms.

We note that among these four measures, only PageRank is well defined on all possible
graphs.1 Hence, in fact, we consider a weaker version of each axiom with an additional
condition that for each graph considered in the axiom, the centrality is well defined.

Three of our axioms are general axioms satisfied by all four measures. The first two
of them, are Edge Deletion and Locality.

For the next axiom, we consider a generalization of node redirection that works
also on nodes that are not necessarily out-twins. To this end, we define proportional
combination of two nodes, which preserves the significance of their outgoing edges. For
centrality F, graph (G,θ), and two nodes u,w, the graph resulting from proportional
combining of u into w is obtained in two steps: scaling weights of the outgoing edges
of u and w proportionally to their centralities; and contracting node u into node w.
What is important, if u and w are out-twins, then, for every centrality F, proportional
combining of u into w reduces to redirecting u into w. Now, Node Combination states
that if u, w, and all of their successors have equal out-degrees, then such an operation
does not affect centralities in a graph.

Node Combination: proportional combining of nodes with equal out-degrees
and equal out-degrees of successors sums up their centralities and does not affect
the centralities of other nodes.

Our next two axioms consider modification of the weights of edges in a graph. The
first axiom is Edge Multiplication from adapted for graphs with edge weights. It states
that multiplying the weights of the outgoing edges of a node by a constant does not
affect the centrality of any node. It is satisfied by PageRank and Seeley index and it is
not satisfied by Katz and eigenvector centralities. For them, we propose a similar ax-
iom, Edge Compensation, emphasizing a different role of edge weights in determining
centrality:

1Eigenvector centrality is defined on sums of disjoint strongly connected graphs with equal principal
eigenvalues, Seeley index on sums of disjoint strongly connected graphs, and Katz centrality with decay
factor a ∈ R≥0 on graphs with principal eigenvalue λ < 1/a.
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Edge Compensation: multiplying the weights of the outgoing edges of a node
by a constant and dividing its weight and the weights of its incoming edges by
the same constant, divides the centrality of this node by the same constant and
does not affect the centralities of the other nodes.

Finally, our last two axioms address borderline cases. The first axiom is Baseline.
It is satisfied by PageRank and Katz centrality. However, eigenvector centrality and
Seeley index are both defined for sums of disjoint strongly connected graphs and there
are no isolated nodes in such graphs. Thus, we propose a new axiom, Cycle, where we
consider the simplest possible strongly connected graph—a cycle with uniform edge
weights:

Cycle: the centrality of a node in a cycle graph with uniform edge weights is the
arithmetic average of the weights of all the nodes in the graph.

The following theorems indicate unique characterizations of each of the centrality
measures in question based on our axiom system.

Theorem 5. A centrality measure defined on sums of disjoint strongly connected graphs
satisfies Locality, Edge Deletion, Node Combination, Edge Multiplication, and Cycle if and
only if it is Seeley index.

Theorem 6. A centrality measure defined on sums of disjoint strongly connected graphs
with equal principal eigenvalues satisfies Locality, Edge Deletion, Node Combination, Edge
Compensation, and Cycle if and only if it is eigenvector centrality.

Theorem 7. A centrality measure satisfies Locality, Edge Deletion, Node Combination, Edge
Multiplication, and Baseline if and only if it is PageRank.

Theorem 8. For every a ∈ R≥0, a centrality measure defined on graphs with principal eigen-
value λ < 1/a satisfies Locality, Edge Deletion, Node Combination, Edge Compensation, and
Baseline if and only if it is Katz centrality.

5 Papers Composing This Thesis

The thesis is based on the following papers:

• Section 2: Axiomatization of the PageRank Centrality, paper co-authored with Os-
kar Skibski, published in the proceedings of the IJCAI-18 conference [34].

• Section 3: Random Walk Decay Centrality, paper co-authored with Talal Rahwan
and Oskar Skibski, published in the proceedings of the AAAI-19 conference [32].

• Section 4: An Axiom System for Feedback Centralities, paper co-authored with Os-
kar Skibski, to be published in the proceedings of the IJCAI-21 conference [33].
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