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1 Introduction
Graph problems are ubiquitous in computer science. Graphs are one of the most natural models that represent
the networks in real-life world and have numerous applications in different disciplines. Computer scientists
are perusing faster algorithms to solve graph problems, both in practice and in theory. On the other side,
there are many graph problems which are resistant to efficient algorithms. NP-completeness theory provides
some clue on these problems [29, 74, 54]. If a problem is shown to be in the class of NP-complete problems,
any efficient or polynomial-time algorithms for this problem imply that every NP-complete problem admits
polynomial-time algorithms. In other words, there are probably no efficient algorithms for this problem.
Although NP-hardness imply strong restrictions of algorithms for problems, people are still interested in
how fast a problem can be solved and where the limitations of algorithms are. Exact algorithms for NP-
hard problems focus mostly on reducing the exponential part of the running time as much as possible [49].
Approximation algorithms for NP-hard (optimization) problems aim to find efficient algorithms, classically
polynomial-time algorithms at the cost of the optimality of the solution. Approximation algorithms try
to find an approximate solution such that the distance between the approximate solution and the optimal
solution is within a provable guarantee [114, 115].

Recently parameterized algorithms for NP-hard problems have received a lot of attention, which focus on
both the input instance and the parameter. More formally, a parameterized problem is a language L ⊆ Σ∗×N,
where Σ is a fixed finite alphabet. An input instance of a parameterized problem is of the form (x, k) ∈ Σ∗×N
and k is called the parameter. If a parameterized problem can be solved in time bounded by f(k)|x|c, where
|x| is the size of the input instance, k is the parameter, f : N → N is a computable function, and c is a
universal constant, then we say this problem is fixed-parameter tractable (FPT). If a parameterized problem
can be solved in time bounded by f(k)|x|f(k), where |x| is the size of the input instance, k is the parameter
and f : N→ N is a computable function, then we say this problem can be solved in XP time. A parameterized
problem admits a kernel of size g(k) for some computable function g if there is a polynomial-time procedure
that reduces an arbitrary instance I of this problem with parameter k to an equivalent instance I ′ with
size and parameter value bounded by g(k). We refer to the following books for a deeper introduction to
parameterized algorithms [41, 48, 30, 51].

In this thesis, we study a few graph problems, mostly concerning connectivity and separation in graphs.

2 Independent Feedback Vertex Set
The first part of this thesis is devoted to the Independent Feedback Vertex Set problem, which is a
variant of the classic Feedback Vertex Set problem. Given a graph G, a feedback vertex set of G is a set
of vertices S ⊆ V (G) such that G\S is a forest. The Feedback Vertex Set problem (FVS) asks to find a
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feedback vertex set of the minimum size. This problem is a classic NP-hard problem which has been studied
extensively in many fields of complexity and algorithms [1]. In the context of parameterized complexity of
the Feedback Vertex Set problem, there is a long line of work improving the upper bound of the FPT
algorithm for the standard parameterization of the solution size [15, 19, 21, 39, 40, 61, 72, 78, 68, 88] (i.e., the
input consists of a graph G and a parameter k, and the goal is to find a feedback vertex set of size at most
k or show that no such set exists). At the same time, many variants of Feedback Vertex Set received
significant attention, including Subset FVS [36, 69, 95], Group FVS [33, 59, 69, 84], or Simultaneous
FVS [104].

In this part, we focus on the parameterized version of the Independent Feedback Vertex Set
problem (IFVS). The formal definition of this problem is as follows.

Independent Feedback Vertex Set (IFVS)
Input: An undirected graph G and an integer k.
Question: Is there a feedback vertex set S of size at most k such that no two vertices of S are adjacent
in G.

Misra et al. gave the first FPT algorithm running in time O(5knO(1)) and an O(k3) kernel for IFVS [103].
Agrawal et al. presented an improved FPT algorithm running in time O∗(4.1481k) for IFVS [3]. In this
part, we propose a faster FPT algorithm.

Theorem 1. The Independent Feedback Vertex Set problem, parameterized by the solution size, can
be solved in O∗((1 + ϕ2)k) ≤ O∗(3.619k) time, where ϕ = 1+

√
5

2 < 1.619 is the golden ratio.

We remark here that the exponential function of the time bound of Theorem 1 matches the one of
the algorithm of Kociumaka and Pilipczuk [78] for the classic Feedback Vertex Set problem. Since
Feedback Vertex Set trivially reduces to Independent Feedback Vertex Set (subdivide each edge
once), any (deterministic) improvement to the base of the exponential function of Theorem 1 would give a
similar improvement for Feedback Vertex Set. Although Iwata and Kobayashi already gave a faster FPT
algorithm for Feedback Vertex Set problem [68], they use a totally different method which is involved
in some sense. We believe it still makes sense if one can show an algorithm for Feedback Vertex Set
which is faster than the algorithm of Kociumaka and Pilipczuk through some method different from the one
of Iwata and Kobayashi.

On the technical side, we follow the standard approach of iterative compression as in [3] to reduce
to a “disjoint” version of the problem. Here, our approach diverges from the one of [3]. We follow a
modified measure for the subsequent branching process, somewhat inspired by the work of Kociumaka and
Pilipczuk [78]. With a number of new notions (generalized W -degree, potential nice vertices and tents) and
some new reduction rules, we get a clean branching algorithm for the “disjoint” version of the problem. This
allows us to get an improved and also simplified algorithm for the Independent Feedback Vertex Set
problem.

3 Multi-budgeted cut
The second part of this thesis is devoted to the Multi-budgeted cut problem and the multi-budgeted
variants of Directed Feedback Arc Set and Skew Multicut. Graph separation problems are impor-
tant topics in both theoretical area and applications. Although the famous minimum cut problem is known
to be polynomial-time solvable, many well-known variants are NP-hard, which are intensively studied from
the point of view of approximation [2, 20, 45, 56, 55, 73] and, what is more relevant here, parameterized
complexity.

The notion of important separators, introduced by Marx [98], turned out to be fundamental for a number
of graph separation problems such as Multiway Cut [98], Directed Feedback Vertex Set [22], or
Almost 2-CNF SAT [108]. Further work, concerning mostly undirected graphs, resulted in a wide range
of involved algorithmic techniques: applications of matroid techniques [86, 85], shadow removal [27, 101],
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randomized contractions [24], LP-guided branching [34, 60, 70, 66], and treewidth reduction [100], among
others.

From the above techniques, only the notion of important separators and the related technique of shadow
removal generalizes to directed graphs, giving FPT algorithms for Directed Feedback Arc Set [22],
Directed Multiway Cut [27], and Directed Subset Feedback Vertex Set [26]. As a result, the
parameterized complexity of a number of important graph separation problems in directed graphs remains
open, and the quest to investigate them has been put on by Marx in a survey from 2012 [99]. Since the
publication of this survey, two negative answers have been obtained. Pilipczuk and Wahlström showed that
Directed Multicut is W[1]-hard even for four terminal pairs (leaving the case of three terminal pairs
open) [106], while Lokshtanov et al. [96] showed intractability of Directed Odd Cycle Transversal.

Saurabh posed the question of parameterized complexity of a weighted variant of Directed Feedback
Arc Set during an open problem session at Recent Advancements in Parameterized Complexity school
(December 2017), where given a directed edge-weighted graph G, an integer k, and a target weight w, the
goal is to find a set X ⊆ E(G) such that G − X is acyclic and X is of cardinality at most k and weight
at most w. Consider a similar problem Weighted st-cut: given a directed graph G with positive edge
weights and two distinguished vertices s, t ∈ V (G), an integer k and a target weight w, decide if G admits
an st-cut of cardinality at most k and weight at most w. The parameterized complexity of this problem
parameterized by k is open even if G is restricted to be acyclic, while with this restriction the problem can
easily be reduced to Directed Feedback Arc Set (add an arc (t, s) of prohibitively large weight).

The Weighted st-cut problem becomes similar to another directed graph cut problem, identified in [25],
namely Chain `-SAT. While this problem is originally formulated in CSP language, the graph formulation
is as follows: given a directed graph G with a partition of edge set E(G) = P1 ] P2 ] . . . ] Pm such that
each Pi is an edge set of a simple path of length at most `, an integer k, and two vertices s, t ∈ V (G), find
an st-cut C ⊆ E(G) such that |{i|C ∩ Pi 6= ∅}| ≤ k. This problem can easily be seen to be equivalent to
minimum st-cut problem (and thus polynomial-time solvable) for ` ≤ 2, but is NP-hard for ` ≥ 3 and its
parameterized complexity (with k as a parameter) remains an open problem.

Although the parameterized complexity of two aforementioned problems: weighted st-cut problem (in
general digraphs, not necessary acyclic ones) and Chain `-SAT are still open, we make some progress
towards answering this question. We define a multi-budgeted variant of a number of cut problems (including
the minimum cut problem) and show its fixed-parameter tractability. In this variant, the edges of the graph
are colored with ` colors, and the input specifies separate budgets for each color. More formally, we primarily
consider the following problem.

Multi-budgeted cut

Input: A directed graph G, two disjoint sets of vertices X,Y ⊆ V (G), an integer `, and for every
i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an integer ki.

Question: Is there a set of arcs C ⊆
⋃`
i=1Ei such that there is no directed X − Y path in G \ C and

for every i ∈ [`], |C ∩ Ei| ≤ ki.

We observe that Multi-budgeted cut for ` = 2 reduces to Weighted st-cut as follows. Let
(G,X, Y,E1, E2, k1, k2) be a Multi-budgeted cut instance for ` = 2. First, observe that we may as-
sume that E1 ∩ E2 = ∅, as we can replace every edge e ∈ E1 ∩ E2 with two copies e1 ∈ E1 \ E2 and
e2 ∈ E2 \ E1. Second, construct an equivalent Weighted st-cut instance (G′, s, t, k, w) as follows. To
construct G′, first add two vertices s, t to G and edges {(s, x)|x ∈ X} and {(y, t)|y ∈ Y } of prohibitively
large weight. Assign also prohibitively large weight to every edge e ∈ E(G) \ (E1 ∪ E2). Assign weight
(k1 + 1)k2 + 1 to every edge e ∈ E1. For every edge e ∈ E2, add k1 + 1 copies of e to G′ of weight 1 each.
Finally, set k := (k1 + 1) · k2 + k1 as the cardinality bound and w := k1((k1 + 1)k2 + 1) + (k1 + 1)k2 as the
target weight. The equivalence of the instances follows from the fact that the cardinality bound allows to
pick in the solution at most k2 bundles of k1 + 1 copies of an edge of E2, while the weight bound allows to
pick only k1 edges of E1.

Thus, Multi-budgeted cut for ` = 2 corresponds to the case of Weighted st-cut where the weights
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are integral and both target cardinality and weight are bounded in parameter.1 This connection was our
primary motivation to study the multi-budgeted variants of the cut problems.

Contrary to the classic minimum cut problem, we note that Multi-budgeted Cut becomes NP-hard
for ` ≥ 2. We show that Multi-budgeted Cut is FPT when parameterized by k = k1 + ...+ k` and `. For
this problem, our branching strategy is as follows. A standard application of the Ford-Fulkerson algorithm
gives a minimum XY -cut C of size λ and λ edge-disjoint X − Y paths P1, P2, . . . , Pλ. If C is a solution,
then we are done. Similarly, if λ > k, then there is no solution. Otherwise, we branch which colors of the
sought solution should appear on each paths Pj ; that is, for every i ∈ [`] and j ∈ [λ], we guess if Pj ∩ Ei
contains an edge of the sought solution, and in each guess assign infinite capacities to the edges of wrong
color. If this change increased the size of a maximum flow from X to Y , then we can charge the branching
step to this increase, as the size of the flow cannot exceed k. The critical insight is that if the size of the
minimum flow does not increase (i.e., P1, . . . , Pλ remains a maximum flow), then a corresponding minimum
cut is necessarily a solution. As a result, we obtain the following.

Theorem 2. Multi-budgeted Cut admits an FPT algorithm with running time bound O(2k
2` ·k·(|V (G)|+

|E(G)|)) where k =
∑`
i=1 ki.

The charging of the branching step to a flow increase appears also in the classic argument for bound of the
number of important separators [22] (see also Chapter 8 of [31]). This motivates us to define multi-budgeted
variants of Directed Feedback Arc Set and Skew Multicut.

The Directed Feedback Arc Set problem is a classic problem that played major role in the develop-
ment of parameterized complexity. In this problem, given a directed graph G and an integer k, the problem
is to decide if there exists an arc set S of size at most k such that G− S has no directed cycles. In a similar
way we define the problem Multi-budgeted Directed Feedback Arc Set as follows.

Multi-budgeted Directed Feedback Arc Set

Input: A directed graph G, an integer `, and for every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an integer
ki.
Question: Is there a set of arcs S ⊆

⋃`
i=1Ei such that there is no directed cycle in G−S and for every

i ∈ [`], |S ∩ Ei| ≤ ki.

The first FPT algorithm for the Directed Feedback Arc Set problem is given by Chen et al. [22].
In their algorithm, they use iterative compression and reduce the Directed Feedback Arc Set com-
pression problem to the Skew Edge Multicut problem. They propose a pushing lemma for Skew Edge
Multicut and solve Skew Edge Multicut through enumerating important cuts. We show that for the
multi-budgeted variant, a similar strategy enumerating multi-budgeted important cuts works. Formally, the
Multi-budgeted Skew Edge Multicut problem is defined as follows.

Multi-budgeted Skew Edge Multicut

Input: A directed graph G, an integer `, for every i ∈ {1, 2, . . . , `} a set Ei ⊆ E(G) and an integer ki,
and a sequence (si, ti)

q
i=1 of terminal pairs.

Question: Is there a set of arcs C ⊆
⋃`
i=1Ei such that there is no directed path from si to tj for any

i ≥ j in G− C and for every i ∈ [`], |C ∩ E(i)| ≤ ki?

We observe that our branching algorithm can be merged with the classical procedure of enumerating
important separators, yielding a bound (as a function of k and `) and enumeration procedure of naturally
defined multi-budgeted important separators. This in turn allows us to generalize our FPT algorithm to
Multi-budgeted Skew Multicut and Multi-budgeted Directed Feedback Arc Set.

1For a reduction in the other direction, replace every arc e of weight ω(e) with one copy of color 1 and ω(e) copies of color
2, and set budgets k1 = k and k2 = w.
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Theorem 3. Multi-budgeted Skew Multicut and Multi-budgeted Directed Feedback Arc Set
admit FPT algorithms with running time bound 2O(k3` log(k`))(|V (G)|+ |E(G)|) where k =

∑`
i=1 ki.

4 Two Disjoint Shortest Paths Problem with transition restrictions
The third part of this thesis is devoted to Two Disjoint Shortest Paths Problem on graphs with
transition restrictions. Finding disjoint paths with specified endpoints in a given graph is a well-known
problem in graph theory and combinatorial optimization. Given a graph G = (V,E) and k vertex pairs
(s1, t1), ..., (sk, tk), the k Disjoint Paths Problem (k-DPP) asks whether there exist k pairwise vertex-
disjoint (or edge-disjoint) paths P1, ...., Pk such that Pi starts from si and ends at ti for i = 1, ..., k. If G
is a digraph, k-DPP is NP-hard even when k = 2 [52]. k-DPP is NP-complete if k is part of the input,
even when G is a planar undirected graph [102]. Robertson and Seymour gave an O(n3)-time algorithm
for k-DPP in general undirected graphs for every constant k [109]. Later Kawarabayashi et al. gave an
O(n2)-time algorithm for the same problem [75]. Chudnovsky et al. showed that there is a polynomial time
algorithm for k-Vertex-Disjoint Paths Problem for every fixed k if G is a semicomplete digraph [28].
Here a digraph is semicomplete if for all distinct vertices u, v, at least one of uv, vu is an edge.

Researchers also studied k-DPP from the view of parameterized complexity [32, 93, 110]. Cygan et al.
gave an FPT algorithm parameterized by k with running time 22

O(k2) ·nO(1) for k-Vertex-Disjoint Paths
Problem when G is a directed planar graph [32]. Given a tree decomposition of width at most w for the
undirected graph G, k-DPP can be solved in time 2O(w logw) using dynamic programming techniques on tree
decompositions [110], and Lokshtanov et al. showed that there is no 2o(w logw) time algorithm for k-DPP
assuming ETH [93].

It is natural to generalize k-DPP to k-DSPP (k-Disjoint Shortest Paths Problem) with an ex-
ceptional requirement that every disjoint path is also a shortest one. More formally, given a directed graph
G = (V,E), a length function w : E → R≥0 and k pairs of vertices ((s1, t1), ..., (sk, tk) in G, the k-Disjoint
Shortest Paths Problem asks to find k disjoint (vertex-disjoint or edge-disjoint) paths P1, ...., Pk in G
such that Pi is a shortest path from si to ti for i = 1, ..., k. Eilam-Tzoreff showed that 2-DSPP in an
undirected graph is polynomial-time solvable [42]. Bérczi and Kobayashi showed that 2-DSPP is NP-hard
in general directed graph but polynomial-time solvable when every directed cycle has positive length [9].

In routing problems on graphs, we sometimes need to express constraints on the permitted walks that
are stronger than what the standard graph model allows for. For example, in a road network, there can be
a crossroad where drivers are not allowed to turn left. In this case, many walks in the underlying graph
would denote routes that a driver is not allowed to use. To overcome this limitation, Kotzig introduced
forbidden-transition graphs in [80]. In a directed graph G, a transition is an ordered pair of adjacent edges
such that the head of the first edge is the tail of the second edge. A transition system T is a set of transitions
in G. We say that a path P is T -compatible if every two consecutive edges of P form a transition of T . For
notational clarity, it is sometimes useful to refer to the transitions T (v) of a specific vertex v ∈ V (G), that
is, T (v) = {{e1, e2} ∈ T | head(e1) = tail(e2) = v}.

In this thesis we generalize the polynomial-time algorithm of Bérczi and Kobayashi to graphs with
transition restrictions. Suppose that a prescribed transition system T = {T (v) | v ∈ V (G)} is given, we
study Directed Two Disjoint Shortest Paths Problem (2-DSPP) with transition restrictions.
The formal definition is as follows.

Directed Two Disjoint Shortest Paths Problem (2-DSPP) with transition restrictions

Input: A directed graph G = (V,E) with transition system T , a length function w : E → R≥0 and two
pairs of vertices (s1, t1),(s2, t2) in G.
Task: Find two disjoint (vertex-disjoint or edge-disjoint) paths P1 and P2 in G such that for both
i = 1, 2, path Pi is a shortest path (even in the graph G with no transition restrictions) from si to ti
and Pi is also T -compatible.
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We show that finding two vertex-disjoint (edge-disjoint) T -compatible paths P1 and P2 in a digraph G
such that Pi is a shortest path (even in the graph G with no transition restrictions) from si to ti for i = 1, 2
can be solved in polynomial time. Roughly speaking, we show that transition restrictions are not a barrier
for using the same strategy as that in [9]. Formally, we show the following theorem.

Theorem 4. If the length of every directed cycle is positive, both edge-disjoint and vertex-disjoint variants
of 2-DSPP with transition restrictions can be solved in polynomial time.

Corollary 1. If the length of every edge is positive, both edge-disjoint and vertex-disjoint variant of 2-DSPP
with transition restrictions can be solved in polynomial time.

On the technical side of this algorithm, we basically follow the strategy of Bérczi and Kobayashi [9],
which reduces the edge-disjoint case of 2-DSPP to finding a path in a graph G constructed from the input
graph G. In the edge-disjoint case of 2-DSPP with transition restrictions, we just need to delete
edges of G which correspond to forbidden transitions of G with respect to T and it suffices to find the path in
the remaining subgraph of G. In graphs without transition restrictions, the vertex-disjoint case of 2-DSPP
can be reduced to the edge-disjoint case of 2-DSPP. However, in graphs with transition restrictions, the
situation is a bit different. By adding parallel edges, we suffices to keep the transition information. By a
careful analysis, we show that the vertex-disjoint case of 2-DSPP with transition restrictions can
also be solved in polynomial time.

5 Cluster Editing parameterized above modification-disjoint P3-packings
The fourth part of this thesis is devoted to Cluster Editing parameterized above modification-
disjoint P3-packings. Correlation clustering is a well-known problem motivated by research in
computational biology [8] and machine learning [5]. This problem aims at partitioning data points into groups
or clusters according to their similarity. In this thesis, we study this problem from the view of graph theory.
A graph H is called a cluster graph if H is a union of vertex-disjoint cliques. Given a graph G = (V,E), the
cluster editing problem asks for a cluster editing set S such that G4S = (V,E4S) is a cluster graph.
Here E4S is the symmetric difference of E and S, i.e. E4S = (E \S)∪(S \E). The optimization version of
cluster editing asks for a cluster editing set of minimum size, which is shown to be NP-hard [111]. Given
a natural number k and a graph G = (V,E), the parameterized version of cluster editing asks if there
exists a cluster editing set S such that |S| ≤ k. A number of results were obtained for the parameterized
version of cluster editing and some of its variants [11, 13, 14, 16, 37, 46, 58, 62, 63, 79, 107, 50]. The
current fastest FPT algorithm runs in time O(1.62k + n + m) [11] and it admits a kernel of 2k vertices
[18, 23].

The interest in Cluster Editing is not merely theoretical. Indeed, parameterized techniques are
implemented in standard clustering tools [105, 116]. Although practitioners report that in particular the
parameterized data-reduction techniques are effective [13, 12], the parameter k is not very small in several
real-world data sets [10, 13, 113]. For instance, Böcker et al. [10, Table 2] considered 26 graphs derived from
biological data with 91 to 100 vertices on which the average number of needed edits is 315, despite noting
that the Cluster Editing model outperformed other clustering models.

A technique to deal with such large parameters is parameterization above lower bounds. Herein, the
parameter is of the form ` = k−h where h is a lower bound on the solution size, usually computable in poly-
nomial time, and ` is the excess of the solution size above the lower bound. Research into parameterizations
above lower bounds has been active and fruitful for several parameterized problems, not only on the theory-
side (see [97, 35, 57, 94, 81], for example) but also in practice, as algorithms based on that approach yielded
quite efficient implementations for Vertex Cover [4] and among the most efficient ones for Feedback
Vertex Set [67, 77]. For Cluster Editing we are aware of only one research work considering pa-
rameterizations above lower bounds: Van Bevern, Froese, and Komusiewicz [113] studied edge-modification
problems parameterized above the lower bound from packings of forbidden induced subgraphs and showed
that Cluster Editing parameterized by the excess above the size of a given packing of vertex-disjoint
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P3s is fixed-parameter tractable. Observe that a graph is a cluster graph if and only if it does not contain
any P3, a path on three vertices, as an induced subgraph. Consequently, one needs to perform at least one
edge deletion or insertion per element of the packing.

As the P3s in the above packing are vertex-disjoint, the value by which the packing can decrease the
parameter is limited. In the previous example with 315 edits, subtracting the resulting lower bound would
reduce the parameter by at most 33. In their conclusion, van Bevern et al. [113] asked whether Clus-
ter Editing is fixed-parameter tractable when parameterized above a stronger lower bound, the size of a
modification-disjoint packing of P3s. Here, a packing H of induced P3s in G is modification-disjoint if every
two P3s in H do not share edges or non-edges, that is, they share at most one vertex. The formal problem
definition is as follows.

Cluster Editing above modification-disjoint P3 packing (CEaMP)
Input: A graph G = (V,E), a packing H of modification-disjoint induced P3s of G, and a non-negative
integer `.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2

)
so that G4S is a union of

disjoint cliques, with |S| − |H| ≤ `?

We also say that a set S as above is a solution.
At Shonan Meeting no. 144 [71] Christian Komusiewicz re-iterated the question of van Bevern et al. [113]

and it was also asked in Vincent Froese’s dissertation [53]. In this thesis, we answer this question negatively
by showing the following.

Theorem 5. Cluster Editing above modification-disjoint P3 packing is NP-hard even for ` = 0
and when each vertex in the input graph is incident with at most 23 P3s of H.

In other words, given a graph G and a packing H of modification-disjoint P3s in G, it is NP-hard to decide
if one can delete or insert exactly one edge per element of H to obtain a cluster graph.

On the technical side, we reduce a 3-SAT instance Φ to an equivalent instance (G,H, 0) of CEaMP in
polynomial time. The intuition of the reduction is to use “cliques” as building blocks and try to connect them
by packed P3s such that we can merge or separate these “cliques” by editing exactly one edge or non-edge
for every packed P3 (thus ensuring that ` = 0). To be more precise, the building blocks are proto-clusters,
which are connected components of the graph obtained by removing the edges of all packed P3s. On the top
level, we design a graph called merging model, which is a guide to show which clusters have the potential to
be merged or separated. On the lower level, we need a number of tricks to “implement” this merging model,
including some algebraic tricks to “pad” the proto-clusters and “P3-repacking” tricks.

Our NP-hardness result implies that CEaMP is probably not FPT or even in XP unless P = NP .
This motivates us to study a more restrictive variant of CEaMP in which every vertex is incident with
at most 2 packed P3s. Call a modification-disjoint P3 packing two-restricted if each vertex is in at most
two packed P3s. The problem Cluster Editing above two-restricted modification-disjoint P3

packing (CEaTMP) is defined in the same way as CEaMP except that the input packing H is two-
restricted.

Cluster Editing above two-restricted modification-disjoint P3 packing (CEaTMP)
Input: A graph G = (V,E), a packing H of modification-disjoint induced P3s of G such that every
vertex v ∈ V (G) is incident with at most 2 P3s of H, and a nonnegative integer `.
Question: Is there a cluster editing set, i.e. a set of vertex pairs S ⊆

(
V
2

)
so that G4S is a union of

disjoint cliques, with |S| − |H| ≤ `?

It turns out that the complexity of the problem indeed drops when making the packing two-restricted.

Theorem 6. Cluster Editing above two-restricted modification-disjoint P3 packing can be
solved in O(n2`+O(1)) time.
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The main ingredient for the XP algorithm is the following theorem.

Theorem 7. Cluster Editing above two-restricted modification-disjoint P3 packing can be
solved in polynomial time when ` = 0.

The basic idea for the polynomial-time algorithm in theorem 7 is as follows. First, we design a few
reduction rules to reduce the size of the proto-clusters. Then we show that the reduced instance is equivalent
to an instance of 2-SAT, which can be solved in polynomial time.

6 Hardness of Metric Dimension in Graphs of Constant Treewidth
The last part of this thesis is devoted to the metric dimension problem on graphs of constant treewidth.
Let G be an unweighted and undirected graph and let S ⊆ V (G). For a vertex v ∈ V (G), the distance
vector from v to S is the assignment S 3 w 7→ distG(v, w), where distG denotes the distance in the graph
G. The set S is resolving if a distance vector to S uniquely determines the source vertex; that is, no two
vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set
of minimum possible size; such a set is sometimes called the metric basis of G. The formal definition of the
decision version of Metric Dimension is as follows.

Metric Dimension
Input: An undirected graph G and an integer k.
Question: Is there a resolving set S ⊆ V (G) such that |S| ≤ k?

Metric Dimension has already been introduced in 1970s [64, 112]. Determining its computational com-
plexity turned out to be quite challenging. It is polynomial-time solvable on trees [64, 112, 76], outerplanar
graphs [38], and chain graphs [47], but NP-hard for example on planar graphs [38] or split graphs [44]. From
the parameterized complexity point of view, the FPT status of the Metric Dimension parameterized by
the solution size has been open for a while and finally resolved in negative by Hartung and Nichterlein [65].
In the search of a tractable structural parameterization, FPT algorithms has been shown for parameters:
treelength plus maximum degree [7], vertex cover number [65], max leaf number [43], and modular-width [7].

The above list misses probably the most important graph width measure, namely treewidth. Determining
the complexity of Metric Dimension, parameterized by treewidth, remained elusive in the last years, and
has been asked a few times [7, 38, 43]. Bonnet and Purohit in a paper presented at IPEC 2019 [17] showed
that the problem is W[1]-hard, even with pathwidth parameterization. In this work we strengthed their
result by proving para-NP-hardness of this parameterization.

Theorem 8. Metric Dimension, restricted to graphs of treewidth at most 24, is NP-hard.

Theorem 8 brings us much closer to closing (unfortunately mostly in negative) the question of the com-
plexity of Metric Dimension in graphs of bounded treewidth. The remaining gap is to determine the
exact treewidth value where the problem becomes hard: note that it is open if Metric Dimension is
polynomial-time solvable on graphs of treewidth 2.

The proof of Theorem 8 starts with a construction of a graph with a separation of order 9 over which a
lot of information on a partial solution to Metric Dimension is transferred. More formally, similarly as
Bonnet and Purohit [17], we use the Multicolored Resolving Set problem as an auxiliary intermediate
problem. In this problem, the input graph is additionally equipped with an integer k, a tuple of k disjoint
vertex sets X1, X2, . . . , Xk, and a set P of vertex pairs. The goal is to choose a set S consisting of exactly
one vertex from each set Xi so that for every {u, v} ∈ P, the pair {u, v} is resolved by S, that is, u and v
have different distance vectors to S. In our construction, the sets Xi are on one side of the said separation
of order 9, while the pairs P are on the second side. The crux of the construction is to make every distance
from a vertex of the separator to a chosen vertex of S count: despite the fact that the separation has constant
size, S is of unbounded size, giving Ω(|S|) distances to work with. Overall, the above gives a relatively clean
reduction giving NP-hardness of Multicolored Resolving Set in graphs of constant treewidth. Then,
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again similarly as in the work of Bonnet and Purohit [17], it takes a lot of effort to turn the above reduction
to Multicolored Resolving Set into a reduction to Metric Dimension. While the toolbox remains
almost the same as in [17], the application is different as the graph we are working with is significantly
different.

7 Articles comprising this thesis
This thesis is based on the following articles and preprints:

• An improved FPT algorithm for Independent Feedback Vertex Set, which is a joint work with Marcin
Pilipczuk, published at Theory Comput. Syst. 2020 [90]. The extended abstract of the publication
was published in the 44th International Workshop on Graph-Theoretic Concepts in Computer Science,
WG, 2018 [89].

• Multi-budgeted Directed Cuts, which is a joint work with Stefan Kratsch,Dániel Marx, Marcin Pilipczuk
and Magnus Wahlström, published at Algorithmica, 2020 [83]. The extended abstract of the publication
was published in 13th International Symposium on Parameterized and Exact Computation, IPEC, 2018
[82].

• The Complexity of Connectivity Problems in Forbidden-Transition Graphs And Edge-Colored Graphs,
which is a joint work with Thomas Bellitto, Karolina Okrasa, Marcin Pilipczuk and Manuel Sorge,
published at 31st International Symposium on Algorithms and Computation, ISAAC, 2020 [6].

• Cluster Editing Parameterized Above Modification-Disjoint P3-Packings, which is a joint work with
Marcin Pilipczuk and Manuel Sorge, published at 38th International Symposium on Theoretical Aspects
of Computer Science, STACS, 2021 [92].

• Hardness of Metric Dimension in Graphs of Constant Treewidth, which is a joint work with Marcin
Pilipczuk, CoRR, 2021 [91].
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