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Game theory is a formal way of examining the situations of conflict and co-
operation. A game is a mathematical tool to describe any situation in which
there are at least two independent decision makers (called players), each of them
has their own aim or objective (mathematically described as a maximization of a
certain function called payoff ), while there is a certain interdependence between
them (mathematically described as dependence of the payoff function on choices
of all the players). Formally it can be defined as

Definition 1. Game with finitely many players
A game in normal form for finitely many players G = {I, {Si}i∈I, {Ji}i∈I} consists
of:

• A set of at least two players I. For finitely many players I = {1, . . . , n}.

• A set of strategies Si that are available to player i. If si ∈ Si denotes
the strategy chosen by player i, then s = (s1, s2 . . . , sn) is called a strategy
profile.

We denote the set of all strategy profiles by Σ = S1 × S2 × · · · × Sn.

• A set of payoff functions J = (J1, J2, . . . , Jn), where Ji : Σ → R is called
the payoff function of player i.

Notational convention:
For brevity of notation we will write [si, s∼i] for a profile of strategies s =
(s1, . . . , sn), where s∼i denotes the strategy of the remaining players. So, for
a strategy σ ∈ Si and a profile s̃ ∈ Σ, the symbol (σ, s̃∼i) denotes the profile s̃
with i-th coordinate replaced by σ.
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If the number of players in a real life game theoretic application is sufficiently
large, they start behaving in such a way that is best described by the games with
a continuum of players. More formally:

Definition 2. Game with continuum of players
A game in normal form G = {I,L, λ, (S,S), {Si}i∈I, {Ji}i∈I} for the continuum
of players consists of:

• The continuum of players is the set of players I = [0, 1] with the Lebesgue
measure λ on the σ-field of its Lebesgue measurable subsets L. Thus, the
space of players is the measure space (I,L, λ) instead of only the set I.

• Sets of available strategies of player i, Si are all subsets of a certain set S on
which σ- field of its measurable subsets S, its measurability is considered,
denoted by S. We assume that Si ∈ S.

For a function s : I→ S with si ∈ Si (for uniformity of notation, we write
si instead of s(i)), we call strategy profiles only such measurable function.

As before, Σ denotes the set of all strategy profiles but now obviously the
definition of profile encompasses measurability.

• Payoff functions of player i, Ji : Σ→ R. In majority of applications Ji are
of specific form:

Ji(s) = Pi (si, u
s) for a measurable function for some Pi : S× ConvS → R̄

and us =
∫
I sjdλ(j), usually called the aggregate of s, where Conv S denotes

the convex hull of a set S.

The most important solution concept of the non-cooperative game theory is
the Nash equilibrium.

Definition 3. A strategy profile s̄ is a Nash equilibrium for n-player game,
iff for every player i ∈ I and for every strategy si ∈ Si of player i,

Ji ([si, s̄∼i]) ≤ Ji ([s̄i, s̄∼i]) .

For continuum of player game, ”every i” is replaced by ”almost every i” and
”some i” by ”i in a set of non-zero measure”.

An important property of a strategy profile, which is rarely fulfilled by Nash
equilibria but considered as one of the most important properties in the case
when it is assumed that the players can make the decision together, is Pareto-
optimality.

Definition 4. A strategy profile s̄ is Pareto-optimal for n-player game, if there
is no profile such that

Ji(s) ≥ Ji(s̄) for all i ∈ I and Ji(s) > Ji(s̄) for some i.

For continuum of player game, ”every i” is replaced by ”almost every i” and
”some i” by ”i in a set of non-zero measure”.
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In the dissertation, we are especially interested in a special Pareto-optimal
profile called the social optimum.

Definition 5. A strategy profile s̄ is the social optimum :
(a) in the n-players game iff

s̄ ∈ Argmax
s∈Σ

n∑
i=1

Ji(s).

(b) in the continuum of player game iff

s̄ ∈ Argmax
s∈Σ

∫
[0,1]

Ji(s) · dλ(i).

Dynamic games are the games of the particular structure with dependence on
time and decision made in multiple time instants. They may be of a very compli-
cated form, and they may be with complete or incomplete information. Dynamic
games are the only appropriate tool to model decision-making problems by inde-
pendent but coupled players in an external environment changing in response to
their decisions.

Dynamic games for finitely many players
A dynamic game with n-players consists of the following:

• A set of finitely many players I = {1, . . . , n}.

• A time set T : either discrete T = {0, 1, . . . , T} for a finite time horizon T
and T = {0, 1, 2, . . . } for the infinite time horizon or continuous T = [0, T ]
for a finite time horizon and T = [0,∞) for the infinite time horizon. We
denote the initial time by t0.

• A set of possible states of the system (state set for short) X ⊆ Rn. A system
is characterized at each time by a state variable x ∈ X.

• A potential trajectory X of the state of the system is defined as X : T∪{T+
1} → X for discrete time with finite time horizon T , X : T→ X otherwise,
with an initial state of the system X(t0) = x0 ∈ X.

• The equivalent of the control parameter in dynamic game is called the de-
cision or action of player i ∈ I at time t and is denoted by si.

• A set of decisions of player i is Di ⊆ Rmi (with strategies being the set of
functions Si : T× X→ Di, to be defined later).

Preliminary set of all decision profiles is denoted by ∆ = D1×D2×· · ·×Dn.
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• There is a state dependent constraint on decisions or actions of player i,
given by the correspondence Di : X ( Di with Di(x) ⊆ Di, called the
correspondence of currently available decisions.

• A decision profile s ∈ ∆ available at state x, with si ∈ Di(x) is defined as
s = (s1, . . . , sn).

Information Structure

Strategies that are available to players may have different information struc-
ture. Unlike in dynamic optimization problems, it is essential to be very
precise about the information structure.

We are interested in the form of strategies Si : T × X → Di that are
measurable in the case of continuous time and fulfil one more condition, to
be defined later. These are called in various papers closed loop, closed loop
no-memory, feedback or Markovian.

In some specific cases, Si : X→ Di, with the same ambiguous terminology.

We use the later form of strategies only in the infinite time horizon case
and when the functions and the correspondences stated in the problem are
not directly dependent on time.

Throughout the dissertation, we will use the term feedback (prevalent in
most recent dynamic games literature).

• Behaviour and evolution of the state variable, given functions Si : T×X→
Di and a strategy profile S = (S1, . . . , Sn) is described by the following
equation:

a first order difference equation in discrete time

X(t+ 1) = φ (t,X(t), S(t,X(t))) ;X(t0) = x0, (1)

for the state transition function φ : T× X×∆→ X.

a differential equation in continuous time

Ẋ(t) = φ (t,X(t), S(t,X(t))) ;X(t0) = x0, (2)

for almost every t and for a state transition function φ : T× X×∆→ Rn.

In continuous time, some regularity assumption is additionally needed for
S (e.g., jointly measurable and Lipschitz in X × ∆ for almost every t),
guaranteeing that

∀ (t0, x0) ∈ T× X ∃ a unique X which fulfils Eq. (2). (3)

The unique trajectory which solves Eq. (1) or Eq. (2) for given S : T×X→
∆ is called the trajectory corresponding to S. If we want to emphasize that
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X is corresponding to S, we write XS. If we also want to emphasize the
dependency on the initial condition we write XS

t0,x0
or XS

x0
.

Generally, it cannot be a priori assumed that S is Lipschitz with respect to
X, since discontinuous strategies may appear at Nash equilibria, so we just
have the condition (4).

• In discrete time, the set of profiles of strategies is of the form Σ = S1 ×
· · · × Sn (Si being the set of functions Si : T × X → Di, called the sets of
strategies of player i) and it is a certain set of functions S : T×X→ ∆ which
fulfil Si(t, x) ∈ Di(x), while in continuous time it is a set of all measurable
function S : T× X→ ∆ which fulfils Si(t, x) ∈ Di(x) and

such that Eq. (2) has a unique absolutely continuous solution on T∩[t0,+∞).
(4)

If Σ fulfils Σ = S1 × · · · × Sn, then the set of trajectories corresponding to
S ∈ Σ is called the set of admissible trajectories and is denoted by X.

• Instantaneous or current payoff is a function P : I×T×X×∆→ R∪{−∞}.
We denote the function P (i, ·, ·, ·) by Pi and it is called the current or
instantaneous payoff of player i.

For a finite time horizon T , we also consider the terminal payoffs G∗i : X→
R ∪ {−∞}.

• We consider the discounting of the payoffs by a discount factor β ∈ (0, 1).
For discrete time, β = 1

1+r
, while for continuous time, β = e−r, for r > 0,

called the interest rate in economics.

• A payoff function Ji : T×X×Σ→ R ∪ {−∞} of player i is equal to his/her
instantaneous payoffs, discounted and summed over time.

For a profile S, the payoff function in discrete time fulfils:

Ji(t0, x0, S) =
T∑

t=t0

βt−t0Pi (t,X(t), S(t,X(t))) + βT+1−t0G∗i (X(T + 1))

(5a)

for the finite time horizon T

Ji(t0, x0, S) =
∞∑

t=t0

βt−t0Pi (t,X(t), S(t,X(t))) (5b)

for the infinite time horizon

for X given by Eq. (1).
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For a profile S, the payoff function in continuous time fulfils:

Ji(t0, x0, S) =

T∫
t=t0

βt−t0Pi (t,X(t), S(t,X(t))) dt+ βT+1−t0G∗i (X(T + 1))

(6a)

for the finite time horizon T

Ji(t0, x0, U) =

∞∫
t=t0

βt−t0Pi (t,X(t), S(t,X(t))) dt (6b)

for the infinite time horizon

for X given by Eq. (2).

We assume that the functions Pi, φ, G∗i are measurable on T× X×∆ and
φ(t, ·, ·) is Lipschitz continuous in X× U.

We do not impose other direct constraints on the sets or the functions
defined before, but we assume that Ji(t0, x0, S) is always well defined.

Dynamic games for the continuum of players
Definition of dynamic games for the continuum of players are similar to Defi-

nition for n-players with the following changes:

• The space of players (I,L, λ) for a set of players I = [0, 1] with a Lebesgue
measure λ on the σ-field of its Lebesgue measurable subsets L.

• The set of decisions of player i, Di is D measurable subsets of a measurable
space (D,D).

• Currently available decisions are Di(x) for Di : X ( Di with Di(x) ∈ D.

• A profile of decisions available at state x is any measurable function s : I→
D with si ∈ Di(x). For uniformity of notation, we write si instead of s(i).
The set of all profiles of decision is denoted by ∆.

• The time set is R+

• Current payoffs Pi(t,X(t), s) are of specific form. They can be written as
Pi(x, si, u

s), for some Pi : X × D × Conv D → R̄, where us =
∫
I sjdλ(j),

usually called the aggregate of s and Conv D denotes the convex hull of the
set D.

• The trajectory of the state variable corresponding to a profile of strategies
S is XS(t + 1) = ϕ(XS(t), uS(t)) for a function ϕ : X × Conv D → X and
uS(t) = uS(X(t)) with the initial condition X(0) = x0.

6



• For a given profile S, the payoff function of player i is

Ji(x0, S) =
∞∑
t=0

βtPi

(
X(t), Si(X(t), uS(t))

)
.

The dynamic game which we mainly considered in the dissertation belongs
to the class of linear-quadratic dynamic games with constraints. The real-life
problems that are solved by using the tools of dynamic games and/or dynamic
optimization in the dissertation are the model of extraction of a shared, renewable
resource.

Extraction or exploitation of shared renewable resources is one of the most
significant problems in society. It encompasses a wide range of various problems
among other things, the phenomenon known as the tragedy of the commons.
Most importantly, the extraction and consumption of common natural renewable
resources have a strong impact on the quality of life and well-being of both,
the current and future generations. From the mathematical point of view, the
only tool to deal with the whole spectrum of phenomena arising in such types
of problems, in which there are at least two independent decision makers in a
common resource extraction problem, are dynamic games, since both dynamic
optimization methods and static games encompass only fractions of aspects of
those problems.
In the dissertation, we propose several models of dynamic games and dynamic
optimization problems, modeling the exploitation of common renewable resources
by taking into account various aspects of the problem:

• Many players in commons. Increasing number of players regarded as de-
composition of the decision making structures. To be more specific, if we
consider the same mass of individuals, decomposed into units of decreasing
size: from consumers, through North and South, actual countries, regions,
etc. and finally actual decision makers.

• Relation between the Nash equilibria and the social optima and ways of
solving the tragedy of the commons by Pigovian taxation or a tax-subsidy
system.

• Taking into account information: feedback form, closed loop, delayed infor-
mation.

• Self-enforcing environmental agreements with a delay in observation of de-
fection.

• Completing and correcting previous results in this research field or finding
counterexamples to common beliefs and methodological simplifications.
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In dynamic games, the strategy of a player is a function which defines his/her
behaviour at each time instant in the time interval considered in the game. There-
fore, calculation of both, the social optima and the Nash equilibria requires solving
the dynamic optimization problems.
However, finding a Nash equilibrium in dynamic games requires solving a set of
dynamic optimization problems, coupled by finding a fixed point of the resulting
best response correspondence in some functional space of the profiles of strate-
gies. Due to this coupling, the problem becomes much more complicated than
the analogous dynamic optimization problems. There are quite a few results in
nonzero-sum dynamic games, and if the constraints appear (which is natural in
real life problems, especially resource extraction problems), then the results are
very rare. Therefore, unexpected behaviour of the solution may appear (irregu-
larity, discontinuity, the nonexistence of equilibria of a certain type, the existence
of many equilibria, lack of convergence). So, we try to fill in the gaps in the sim-
plifications of dynamic games. The dissertation also contains counterexamples
to some methods and hypotheses that are regarded as correct and used to solve
dynamic games.

Firstly, we consider a constrained linear quadratic dynamic game, modeling
the problem of exploitation of a common renewable resource in discrete time with
the infinite time horizon and with increasing number of players. So, we study
a discrete time, infinite horizon, a linear quadratic dynamic game model with
many players and with linear state-dependent constraints on decisions of players.
In this model, players can be regarded as countries or firms. There are either
finitely many players or a continuum of players. To make the model realistic, we
impose the constraints on strategies. As a consequence, calculation of a feedback
Nash equilibrium become complicated. The model has an obvious application
in a common fishery extraction problem where the players sell their catch at a
common market.

We solve the social optimum problem for n-players and for the continuum of
players.
When it comes to the Nash equilibrium problem, we are only able to solve it for the
continuum of players case. For n-players case, we are not able to calculate it for
n ≥ 2, only negative results can be proven: that the Nash equilibrium strategies
and the value functions are not of assumed regularity with respect to the state
variable and showing that presence of even a very simple and apparent constraints
on strategies may result in a very complicated form of the value functions and
the Nash equilibria. We return to this problem in a truncation of the game later
to show the reason that even in a 2-stage truncation such a continuous solution
does not exist.

While looking for a Nash equilibria, the social optima, we have also found a
very simple example that may be treated as a counterexample to correctness of
the undetermined coefficient method or Ansatz method, used for solving the Nash
equilibrium and/or optimal control problems to the correctness of a procedure
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often used in dynamic game theory literature. We also calculate the enforcement
of a social optimum profile by various type of Pigouvian tax or a tax-subsidy
system, both for n-players and for the continuum of players.

Non-existence of a symmetric feedback Nash equilibrium of assumed regularity
in the linear quadratic problem considered before seems to be inherited from
the finite time horizon truncations of the game, so we solve a feedback Nash
equilibrium problem in a very simple 2-stage, 2-player linear-quadratic dynamic
game, a truncation of the model which was studied before with the infinite time
horizon. As a result, we found that the presence of simple linear state-dependent
constraints results in the non-existence of a continuous symmetric feedback Nash
equilibria, whereas the existence of the continuum of discontinuous symmetric
feedback Nash equilibria (discontinuous with respect to the state variable). Our
result is counter-intuitive to the common belief in the continuity of Nash equilibria
for linear-quadratic dynamic games with concave payoffs.

While previous research works deal with the specific value of the discount fac-
tor β, given by the so-called golden rule, now we solve the social optimum problem
considered before for more general class of linear-quadratic dynamic games with
only one player, called social planner and for more general β instead of the golden
rule β. So, we consider a discrete time linear-quadratic dynamic optimization
problem with linear state-dependent constraints. We solve the problem in the
infinite time horizon and its finite horizon truncations. Although it seems simple
in its linear quadratic form, calculation of the optimal control is nontrivial.

Next, we study a general class of dynamic optimization problems. We derive
general rules stating what kind of errors in calculation or computation of the
value function does not lead to errors in calculation or computation of optimal
control. This general result concerns not only errors resulting from using the
numerical methods but also errors resulting from some preliminary assumptions
related to constraints on the value functions. The results are illustrated by a
motivating example of discrete time Fish Wars model, proposed by Levhari and
Mirman, with singularities in payoffs.

Finally, we study a continuous time version of the Fish Wars model with the
infinite time horizon, linear state equation, and state-dependent linear constraints
on controls. We calculate the social optimum and a Nash equilibrium which
always leads to the depletion of the resource even if the social optimum results in
its sustainability. We propose two ways of solving the problems of enforcing social
optimality: either by a tax-subsidy system or by an environmental agreement
even if we assume that it takes time to detect any defection of a player. We
also propose a general algorithm for finding the financial incentives enforcing the
socially optimal profile in a large class of differential games.
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