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The theme of this thesis are three aspects of mathematical modelling of sig-
nalling pathways - space, noise (stochasticity) and information transmission.
All three have been shown on different models known in theoretical biology:
reversible cycles of phosphorylation–dephosphorylation, genetic toggle switch,
and a model of gene activation by another gene, without and with feedback.

Models and mathematical description
In this thesis I present chosen aspects of mathematical modelling of signalling
pathways analyzed on the canvas of models from biochemistry, theoretical biol-
ogy, and biophysics. Their common mathematical core are Markov Chains with
continuous time, moreover other tools such as ordinary differential equations,
stochastic processes, and information theory were used.

The results are split into three parts, accordingly to the title of the chapters.
The chapter “Space” approaches the aspect of spatiality on the example of a
phosphorylation-dephosphorylation cycle. The chapter “Noise” shows the possi-
bilities of benefiting from stochasticity to control a population of cells governed
by the genetic toggle switch. In the chapter “Information”, I optimize mutual
information in a simple regulatory circuit, in which one biological quantity (for
example the concentration of sugar in the cell, or the activity of a gene) affects
another quantity (for example the concentration of the enzyme metabolizing the
sugar, or the activity of another gene), with a feedback or without it.
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Space
The spatial aspect of modelling signalling pathways was investigated in the
model of a cycle of phosphorylation–dephosphorylation reactions. Substrates
are phosphorylated and dephosphorylated by kinzases and phosphotases in the
following way:

K + Su
c−→ K + Sp, (1a)

P + Sp
d−→ P + Su, (1b)

where Su and Sp are unphosphorylated and phosphorylated substrates, respec-
tively. K are the kinases and P – phosphatases. The letters above the arrows
mark respective microscopic intensities of reaction - c for phosphorylation, and
d for dephosphorylation.

We also consider a model, in which dephosphorylation occurs in the following
way:

Sp
d0−→ Su, (2)

and phosphorylation occurs as previously.
Our main task was to find effective macroscopic reaction rate constants: ceff
and deff , that would satisfy the set of ordinary differential equations:

d
dtρSu = −ceffρKρSu + deffρPρSp , (3)

d
dtρSp = ceffρKρSu − deffρPρSp . (4)

Usually, when one considers space in mathematical modelling, the first tool that
comes into one’s mind, are partial differential equations. However, the approach
used in this thesis comprise of probabilitic methods, in particular, we considered
a Markov Chain, whose states are defined by the numbers of substrates and
their location in the space. The mentioned space is a finite, two-dimensional,
triangular (i.e., such that every site has six neighbours) lattice, with no edge.
The intensities of transitions between the states of the Markov Chain correspond
to the microscopic intensities c and d (when an appropriate pair of substrate-
enzyme is in adjacent lattice sites) and the intensity of diffusion, m. We perform
numerical simulations a lot (that use the kinetic Monte Carlo algorithm), but
in parallel, we conduct analytical reasoning for the cases of m = 0 and m =∞.
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In short, we want to compute the effective microscopic reaction rate constants
defined as follows:

ceff = n

ρSuρKV∆t , (5a)

deff = n

ρSpρPV∆t (5b)

where n is the number of reactions that fired in the ∆t time interval, and V is the
number of lattice sites. The densities of kinases, phosphatases and substrates
are marked with ρ with an according subscript: ρK, ρP, ρSu i ρSp . We also
calculated the steady state fractions of phosphorylated and dephosphorylated
substrates: ρSp/ρS i ρSu/ρS.
The mentioned analytical reasoning might be applied in the case of infinite dif-
fusion, i.e., when m = ∞. In this case, effective reaction rate constants are
c∞
eff = 6c and d∞

eff = 6d. The second case in which purely analytical reason-
ing is conducted, is the zero diffusion limit, i.e., when m = 0. After longer
combinatorics derivations, we obtained formulae for this case as well. We then
verified them with numerical simulations. The most “real” case of finite, non-
zero diffusion, is analytically a very challenging problem. In the general case,
we assumed that the effective macroscopic reaction reate constants comprise
of a zero-motility term, c0eff and d0

eff , and a term linearly proportional to the
diffusion coefficient: λ ·m. Then the ordinary differential equation for the time
evolution of the fraction of phosphorylated substrates reads:

d
dtρSp = (λm+ c0eff) ρK ρSu − (λm+ d0

eff) ρP ρSp , (6)

where the coefficient λ had to be established basing on numerical analysis, and
only for the symmetric case of c = d and ρK = ρP. The difficulties come from
the fact that even for the symmetric case, particularly when enzyme densities
are small, the location of molecules on the lattice is nonhomogenous. An un-
phosphorylated substrate can be found rather in the vicinity of a kinase, and
a phosphorylated substrate - near the phosphatase. Consequently, even though
the overall probability that the substrate is phosphorylated is 0.5, the effective
reaction rate constants are lowered, since the enzyme are surrounded by sub-
strates, with which they already reacted.

In the most general case, the effective macroscopic reaction rate constants de-
pend in a complicated manner on both microscopic reaction intensities, the
diffusion coefficient, and the densities of both enzymes. We showed that they
decrease with decreasing diffusion and this dependence is more pronounced for
the less abundant enzyme. Consequently, the steady-state fraction of phospho-
rylated substrates can increase or decrease with diffusion, depending on relative
concentrations of both enzymes. On top of that, we have analyzed the influence
of other factors on the effective macroscopic reaction rate constants:

• the size of the lattice (the number of sites),
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• the molecular crowding (adding to the lattice non-reacting, but moving
molecules),

• formation of transient enzyme-substrate pairs (preceding or following the
reaction).

Feeling some kind of hunger for analytical expressions in the case of finite, non-
zero diffusion, we finally considered a model variant in which an appropriate
enzyme molecules and a substrate molecule enter the same lattice site in order
to react. Thanks to this slight modification we were able to conduct a reasoning
about the mean first passage time and obtain surprisingly good approximations.

Noise
In this chapter I present the results of the research initiated during the Quan-
titative Biology Summer School, that took place in July 2014, in Albuquerque
(New Mexico, USA). The research question raised there was: “can noise be used
to drive one cell out of a population of identical cells to exhibit different phe-
notype (express more proteins) than the other, using a strategy applied equally
to the whole population?”. The strategy was the UV radiation that enhances
protein degradation. In the thesis I used the term “noise”, although it should
be understood as “fluctuations”.

Identical cells in the population are governed by the same genetic mechanism.
In order to use fluctuations to drive one cell to a different behaviour, we had
to consider such a mechanism, that allows the cell to be in two distinct states,
(high and low protein expression). An example of genetic mechanism that leads
to two states is the toggle switch, in which two genes inhibit mutually their
activity (blocking protein synthesis). I present it in panel (a) of Fig. 1. A
simpler model in which the cell ca also attain to different states, is the model of
self-inducing gene (the synthesised protein acts as the activator for its own gene)
- this scheme is shown in panel (b) of Fig. 1. The deterministic description of
the model is one ordinary differential equation for the concentration of proteins
in each cell:

dx
dt = k(x)−R(x), (7)

where k(x) is the production propensity of the form: k(x) = k0+k1x
m/(xm+β),

and R(x) is the degradation propensity: R(x) = (γ+u)x. U is the UV radiation.
For a choice of parameters k0, k1, β, m, γ and function u, this equation admits
three stationary points, for other sets of parameters - only one. An illustration
of these variants is shown in panel (c) of Fig. 1.

If the two cells are identical, i.e., the evolution of protein concentration in both
of them follows the above ODE, and they have the same initial concentration,
then, according to the deterministic prediction they are undistinguishable - at
any time, they will contain the same amount of protein. However, if we take in
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Figure 1: (a) A classical representation of a genetic toggle switch, in which two
protein species repress one another and the degradation rate of one protein is
enhanced by UV radiation. (b) Self-activating gene, in which the two mutually
inhibiting protein dynamics are replaced by a single, self-inducing gene. This is
the simplest model that exhibits bistability. Additionally, mRNA production,
which is responsible for the majority of noise in protein synthesis, is neglected.
Protein degradation can be enhanced by increasing levels of UV radiation. (c)
Production and degradation rates versus the number of proteins, x, in the sim-
plified toggle switch model. The production rate, k(x) = k0 + k1x

2/(x2 + β),
is plotted in green, and the degradation rate, R(x) = (γ + U)x, is plotted
in brown. In a deterministic representation, protein levels evolve according to
ẋ = k(x)−R(x). Intersections where k(x) = R(x) provide the stationary points.
The three panels correspond to cases where UV is low (top, a single high equilib-
rium point), moderate (middle, two stable and one unstable equilibrium points)
or high (bottom, a single low equilibrium point).

to account stochasticity that underlies all processes involving small number of
elements, the number of protein molecules will have to be modelled as a random
variable. Depending on the values admitted by this variable, the whole popula-
tion will be subjected to UV radiation, all cells with the same intensity.

The very first model we considered consisted of one two proteins - one was the
chosen cell, and the other was “the rest of the population”. We succeeded in
building a simple strategy of UV radiation admitting only three values: u1, u2
i u3, depending on the number of protein molecules in the chosen cell and in
the rest of the population. This strategy is depicted in Fig. 2 and described
in details in the caption. The results for the two-cell model were astonishingly
satisfactory - the chosen cell synthesized more proteins than the other cell with
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Figure 2: Preliminary control law for the application of UV radiation based
upon comparison of the protein content for two cells. When both cells contain
little protein (bottom left corner), no UV is applied (u1 = 0). When protein
content is high in cell 1 and low in cell 2 (bottom right corner) moderate UV
is applied (u2 = 0.75). When protein content in cell 2 is above a threshold
(= 12) (upper part), high UV is applied (u3 = 1.75). All parameters for the
gene regulatory circuit (k0 = 5, k1 = 50, β = 20, m = 4 and γ = 0.5) are fixed
and identical for both cells.

probability 0.99. For a population of 30 cells, with the same UV radiation
strategy (UV level was chosen on the basis of protein expression in the chosen
cell and the maximum expression in other cells), the chosen cell was within the
top 20%. Moreover, we considered the following variants and strategies:

• a model, in which time delays in protein synthesis are taken into account

• a model that accounts for noise in protein synthesis (the intensities of
synthesis, k0 and k1, in the cells other than the chosen one were multiplied
by a coefficient - a normal random variable with mean 1 and standard
deviation 0.1. The coefficients k0 and k1 in the chosen cell are equal to
the mean of k0 and k1 in the other cells, or the mean + one standard
deviation or the mean − one standard deviation.)

• strategies, in which UV radiation level is chosen based on other than the
maximum statistics of the protein expression in other cells: their mean,
median, 75the percentile, or based only on the leel of protein in the chosen
cell

• full toggle switch model (with two species of “competing” proteins).
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Information
This interesting aspect of mathematical modelling of signalling pathways in-
trigues not only mathematicians, but largely researches of natural sciences -
biologists, biophysicist and biochemists. My work on information transmitted
in biological circuits were initiated during a doctoral internship in Ecole Normale
Supérieure, under the supervision of Aleksandra Walczak. Were were inspired
by the simple question if and how biological systems “communicate” both inter-
nally, as well as with the environment. The investigated model consists of two
binary random variables, between which I calculate Mutual Information (and
this quantity is interpreted as the information transmitted in the system). I
assume that for information transmission some energy is needed, so a natural
question arises how does an energetic constraint influence the amount of infor-
mation that can be transmitted. Finally I pose a frequently asked question,
whether feedback is beneficial; in this case whether it increases the mutual in-
formation of the considered random variables. The model is presented in Fig. 3.
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Figure 3: Scheme of the possible states and transitions between them for both
models: without feedback (left figure), and with feedback (right figure). Since
there are two binary variables there are four states; transition rates are marked
next to respective arrows. Note the symmetry between the “pure” ((−,−) and
(+,+)) states and the “mixed” states ((−,+) and (+,−)) in both models.

The main task is to find parameters (u, s, r, α, y) - rates of transition between
the states, that maximize mutual information between z0 - input at time 0 and
xt - output at some time t. Formally, we look for the maximum of the function
depending both on the parameters and the time:

I[Xt, Z0] =
∑
xt,z0

p(xt, z0) log p(xt, z0)
p(xt)p(z0) , (8)

where p(xt, z0) is the probability, that variables are in states (−,−), (−,+),
(+,−), (+,+). This is the definition of mutual information, it measures how
the uncertainty we have about one variable is reduced given that we know the
other variable. This definition is equivalent to the more common one, that
uses Entropy of a random variable and conditional entropy of random variables,
I[Xt, Z0] = S(Xt)− S(Xt|Z0).
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The energetic constraint we consider while optimizing mutual information is the
entropy production rate. It is also a function of the parameters and time.:

σ(t) =
∑
i,j

pi(t)wij log pi(t)wij
pj(t)wji

(9)

In the steady state this quantity is:

σ(t) −−−→
t→∞

∑
i,j

pss
i wij log wij

wji
= σss (10)

and this is the main energetic constraint considered. However, we also analyzed
an additional constraint - average dissipation, which is a mean integral of the
entropy production rate, calculated up to some time:

Σavg(τp) = 1
τp

τp∫
0

σ̂(τ)dτ. (11)

We refer to this quantity as the cost of information transmission.

The considered problem is well posed - for a given time, at which we measure
the information about the state of the output, we look for parameters that
return the highest value of I[xτ , z0]. We also investigate the same kind of prob-
lem, assuming that the available energy (steady state entropy production rate,
σss) is limited. We finally calculate the cost of optimal information transmitted.

We considered four models:

• S - without feedback, with steady state initial condition

• F - with feedback, with steady state initial condition

• S̃ - without feedback, and the initial condition subjected to optimization

• F̃ - with feedback, and the initial condition subjected to optimization

The results obtained for the above four models are summarized in Table 1:

Iopt Expense

S, F I(S) < I(F ) E(S) = E(F )

S̃, F̃ I(S̃) ≤ I(F̃ ) E(S̃) > E(F̃ )

Table 1: Comparison between the four models, S, F , S̃, and F̃ in terms of
optimal mutual information, Iopt, and the average dissipation (“expense”), E.
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Steady state initial condition guarantees that the feedback will be more effective
in transmitting information that the no-feedback variant, but the costs in both
cases are the same. Whereas for the system starting out of steady state the
difference in information transmitted is smaller between the no-feedback and
feedback variants, but the cost is significantly higher if there is no feedback.

Papers
The results presented in the dissertation were published in three articles.

The results from the chapter about Space are covered in [3] and [1]. In the
first article I derived analytical expressions for effective macroscopic reaction
rate constants in the limits of zero and infinite motility. For finite, nonzero
motility I conducted a reasoning to estimate EMRRCs for a “symmetric” case.
I performed stochastic simulations, prepared most of the figures used in the
dissertation, and finally wrote the manuscript, which served as a scaffold for the
first chapter of the thesis. In the second paper, jointly with the first author I
derived more accurate estimates for the EMRRCs for the case of nonzero, finite
motility, using the mean first passage time approach. I join hereby authors’
contribution declarations.

The research on the stochastic aspect can be found in [2]. In this article I
prepared theoretical basis for the numerical simulations conducted by the coau-
thors. I am the author of the manuscript and of the conducted mathematical
reasoning. Authors’ contribution declarations are joined.

Finally the chapter on Information transmission contains yet unpublished re-
sults obtained during my doctoral internship under the supervision of Aleksan-
dra Walczak. I conducted analytical reasoning, exact (symbolic) computations
in Mathematica package and numerical optimization of mutual information.
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