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Abstract

Computational and Statistical Methods for Mass Spectrometry Data Analysis

This dissertation covers a series of related topics in the mathematical modelling of
mass spectrometry data. The dissertation opens by a presentation of an optimal al-
gorithm for the generation of the fine isotopic structure. We further show the ap-
plications of that algorithm to the problem of deconvoluting mixed isotopic signals,
in two different ways. We also approach the problem of estimating the deep pa-
rameters of mass detectors, estimating the parameters of a function that relates the
instrument-generated intensities to the numbers of ions. These solutions are applied
to the problem of understanding Electron Driven reactions, whose principal aim is
to induce ion fragmentation and, in that way, enhance the instrument’s identifica-
tion capabilities. Finally, we show how to apply the mathematical theory of reaction
kinetics to estimate the reaction rates of the electron transfer reactions.

Metody obliczeniowe i statystyczne analizy dany ze spektrometrów masowy

Niniejsza rozprawa doktorska dotyczy szeregu tematyk z zakresu matematycznego
modelowaniewidmmasowych. Wpracy przedstawiam algorytm służący obliczeniom
związanym z rozkładami izotopowymi cząsteczek. Algorytm ów wykorzystuję w
problemie dekonwolucji mieszanek sygnałów ze znanych źródeł molekularnych, na
dwa różne sposoby. Przedstawiam również sposób nawyznaczenie zależności pomiędzy
zarejestrowanym sygnałem a liczbą jonów dla różnych detektorów jonów. Powyższe
rozwiązania zostają również wykorzystane w celu dokładniejszego zrozumienia za-
sad działania fragmentacji jonów za pomocą transferu elektronu, która znacząco posz-
erzamożliwości identyfikacji substancji. Pokazuję również sposób nawyestymowanie
parametrów tych reakcji, wykorzystując w tym celu matematyczny model kinetyki
reakcji.
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1
Introduction

“Now this is not the end. It is not even the beginning

of the end. But it is, perhaps, the end of the

beginning.”
—Winston Churchill

Ma Specome is a subfield of the Analytical Chemistry that studies
and develops instruments useful for analysing the molecular content of
samples. The instruments, that are called mass spectrometers, have been
developed by Joseph J. Thomson just before the First World War and used

to study the presence of the isotopes of natural elements (Thomson, ). The output of
a mass spectrometer – a mass spectrum – is a histogram: each bar has its own specific
position in the mass-to-charge domain and height equal to that of the observed intensity.
The intensities are usually assumed to be proportional to the number of ions. Below, we
show how a mass spectrum might look like.

Let us study the case of human insulin, CHNOS, to see how complex can
a signal be, even in case of one single source. the signal even generated by one source





Table .: Masses and Frequencies of isotopes of elements that build up the proteins (Brand et al., ).

Isotope Mass Frequency
H . .
H (D) . .
C . .
C . .
N . .
N . .
O . .
O . .
O . .
 S . .
 S . .
 S . .
 S . .

might be complex. To start with, all atoms in the above formula can assume one of multiple
isotopic variants, from a set that is different for each element. Finding a particular isotope
in nature is largely a random event. This does not mean that it is not predictable: when
together in large numbers, they do follow many well studied patterns. The International
Union for Pure and Applied Chemistry (IUPAC) is performing continuous measurements of
the frequencies of natural isotopes. Table . summarizes a small fraction of their findings
up till year .

From the viewpoint of statistical modelling, the abundances reported in Table . repre-
sent the probabilities of finding a particular isotope for one given atom of a given element.
By far the easiest way to construct a joint probability measure out of these marginals is to
assume that isotopic variants of different atoms are mutually independent. This assumption
dates back to the ‘-ies (Beynon, ). Of course, in certain particular situations, such as
isotopic labelling, one would certainly have to modify that asumption, as these could in
introduce some non-trivial dependence between the isotopic variants. In general, however,
it would be difficult to come up with a theoretical mechanism that could result in a signif-
icant departure from the independence asumption. Experimental findings does not reject
that hypothesis too.

Mass spectrometer does not distinguish compounds with the same number of isotopic
variants. For instance, if one of the  hydrogen atoms of human insuline is deuterium,
then, based on mass spectrum alone, there is no way of telling which particular atom was





the heavier one. The observed signal depends only upon counts of different isotopic vari-
ants. Similarly to how chemical formulas such as CcHhNnOo Ss abstract from spatial com-
position, wemay introduce amore detailed description of the isotopic content of amolecule,
such as

iso = Cc
Cc

Hh
Hh

Nn
Nn

Oo
Oo

Oo
Ss

Ss
Ss

Ss .

Above, c stands for the number of C isotopes within the molecule, c – number of C
isotopes, and so on. This is essentially what we call an isotopologue. This definition coin-
cides with that provided by the International Union of Pure and Applied Chemistry (Mc-
Naught and Wilkinson, ). The independence assumptions suggest that the probability
of observing an isotopologue is that of a product of multinomial distributions, each for one
element, or

piso =

(
c

c0, c1

)
P
(12C)c0P(13C)c1( h

h0, h1

)
P
(1H)h0P

(
D
)h1

(
n

n0, n1

)
P
(14N)n0P

(15N)n1

×
(

o

o0, o1, o2

)
P
(16O)o0P(17O)o1P(18O)o2( o

o0, o1, o2

)
P
(32S)s0P(33S)s1P(34S)s2P(36S)s3 .

The mass of iso is given by mutliplying counts of different isotopes times their masses
(Table .),miso = m(12C)c0 +m(13C)c1 + · · ·+m(36S)s3. The set of all pairs (piso,miso)

that corresponds to one chemical formula CcHhNnOo Ssmakes up the isotopic fine structure.
The isotopic fine structure is typically used directly to model the signal in the instrument.

Isotopic Calculations

Assume that a chemical compound ismade up of elementsE , each occuring asne atomswith
possible ie isotopic variants. Then, especially for bigger molecules with ne ≫ 0, it does not
make any sense to generate the set of all isotopologues, as it comprises

∏
e∈E
(
ne+ie−1

ne

)
ele-

ments. Using the Stirling’s formula, we note that this is an expression of orderO(
∏

e∈E n
ie−1
e ).

For example, the isotopic fine structure of human insulin comprises more than 1014 differ-
ent elements, requiring terabytes of storage. By far, it is also by far not the biggest known
chemical compound. We are also bounded by the instrumental physics, such as detection
thresholds, finite resolution, and limitiations in terms of numbers of ions inside the spec-
trometer. All these factors severly limit the number of observed isotopologues, questioning
the need to perform the above calculations. However, if take into considerations also the
probability distribution, then only   most probable isotopologues represent % of all
the probability mass,   represent .% of probability, and   – .%. This means,
that it is beneficial to search for a smaller set of configurations with a probability coverage
we could control.

Ions have the same charge and repell each other, diverging from their predictable trajectories inside the
mass spectrometer.





Definition. For a given compound, the optimal P -set is the smallest set consisting of the most

probable peaks of the fine isotopic distribution whose joint probability surpasses P . In case of

more than one such set, we choose any representative of that class.

Chapter  describes a particularly efficient and elegant way to quickly generate high
coverage subsets of the isotopic fine structure – the IsoSpec algorithm (Łącki et al., b).
The algorithm makes use of two fundamental features of the multinomial distibution: ()
measure concentration around its mean (Giannopoulos and Milman, ), and () uni-
modality (Finucan, ). Generally speaking, measure concentration implies that relative
few configurations bear most of the probability mass. To define unimodality in the context
of a discrete distribution, we must first define the relationship of neighbourhood between
its configurations. With that at hand, it can be restated in terms of connectedness of the
set of local probability maxima. The unimodality is crucial for the algorithm to work fast
with minimal additional data structures: enumerating configurations of the multinomial
distribution can be carried out by a hill descent. The two above properties do tensorize, i.e.
are retained while considering products of distributions.

In Chapter  we prove that IsoSpec has the optimal, linear time complexity of isotopo-
logues generation. In the proof, we apply the Central Limit eorem to approximate the
number of elements inside an optimal P -set by

M =
qχ2(k)(P )

k
2

C

πk/2

Γ(k/2 + 1)

√√√√∏
e∈E

(
nie−1
e

ie−1∏
j=0

d̃ej

)
.

It results, that the number of elements inside an optimal P -set is of orderO(
√∏

e∈E n
ie−1
e ).

This is half the degree of number of all isotopologues in the fine isotopic structure. What is
more, the implementation of the algorithm significantly outperforms other existing isotopic
calculators. The applications of the ideas that resulted in this algorithm go beyond mass
spectrometry, and their use is now investigated in statistics and stochastic simulation.

Deconvolution of Mass Spectra & Ion Statistics

The isotopic fine structure only describes the isotopic variants of roughly one molecule,
while the intensity observed in amass spectrometer is a function of a relatively high number
of ions. If we assume, that ions reach the detector independently and in large numbers, than
the signal of one substance, normalized by the sum of intensities, should be approximately
proportional to the isotopic distribution we describe, which follows from the law of large

numbers. The above fact is used in many algorithms that perform signal deisotopisation – a
procedure that aims at tracing all isotopologues of one substance in a given mass spectrum.
When the potential sources of signal are known in advance, as while performing a database





search, one can use methods of nonnegative regression (Slawski et al., ) that we will
describe in Chapter .

However, a more detailed approach to the problem, i.e. one that takes into account ran-
domness in ion statistics, can provide interesting insights into the number of observed ions.
It has been theoretically argued that the distribution of the number of ions reaching the
detector should follow a Poisson distribution (Ipsen and Ebbels, ; Ipsen, ). This ar-
gument goes as follows: assumes that ions move independently throughout the instrument
with a limited chance of reaching their final destination. Then, the number of successful
detections is binomial. The probability that a sample ion will ever reach the detector is
very small, so the binomial distribution is well approximated by the Poisson distribution,
which is sometimes reffered to as the law of rare events. Chapter  describes our attempt at
merging the concepts of the isotopic distribution with the Poissonian ion statistics – a tool
we call MassOn.

The model we propose in MassOn also tackles two other important problems in signal
processing: () the deconvolution of a compound signal and () the estimation of the num-
ber of observed ions. The nature of that first problem lies in the limited capability of a mass
spectrometer to resolve close mass-to-charge ratios. In particular, more than one group of
isotopologues can be represented by one peak. This is schematically visualized in Figure ..

m/z

molecular species A molecular species B

Figure .: A schematic representation of the convolution of two isotopic distributions. Each ball represents one ion, either of kind A
or kind B. The above pattern is typically found in problems where two formulas differ by exactly one hydrogen atom, as that difference
shifts the spectrum by around  dalton. If the m

z
is the ratio of the lightest isotope, then other isotopologues tend to cluster around

m+k
z

, where k ∈ N. This can be attributed to the number of protons inside the nucleai of atoms that make up the molecule.

The second problem stems from the fact that most of the instruments record the ion
current that is deemed proportional to the number of passing ions, at least within their
trusted dynamic range. The problem of estimating the above proportionality factor is of
great relevance, as it appears in most of expressions involving the standard deviations of
statistics derived from the theoretical mass spectrum. In particular, if one assumes that
the recorded peak heights truly results from an independent motion of ions close to the





detector, then the standard devation of that peak is a function of the square root of the
overall number of ions. Both Chapters  and  describe other important statistics that rely
on the specification of the recorded number of ions . MassOn tackles both these problems
in a fully Bayesian setting relying on a data augmentated Gibbs sampling scheme.

Understanding Reaction Pathways

Another limitation of any mass spectrometer is the inability to tell apart substances with
the same chemical formula but differing in their D structure. In particular, this is the case
of two post-translationally modified proteins that have the same modification that could
be found on more than one residue. The spatial positioning of a modification is critical for
the folding of the protein, and thus – its function. To position a PTM, one has to use more
specific techniques, fragmentation being one of them. Ions can be fragmented either outside
the instrument, via proteolytic digestion, or inside the instrument. Two prominent ways
of inducing fragmentation inside the instrument are the Collisional Induced Dissociation
(CID) and the Electron Transfer Dissociation (ETD). The first one consists in heating up the
sample cations by exposing them to collisions with some inert gas. This method produces
more noisy spectra, as different parts of the molecule detach due to their increased internal
motion. ETD is much more subtle technique: it consists of an ion-ion reaction between the
sample cations and anions, each carrying a radicals – an electron in a higher energy state.
The meeting between these ions is deemed to result in four possible outcomes:

• the transfer of electron from the anion to the cation resulting in the dissociation of
the cation – the proper ETD

• the transfer of electron that does not result in any dissociation – ETnoD

• the ETD dissociation followed by a subsequent hydrogen transport – HTR

• the proton transfer reaction – PTR

To study the products of these fragmentation, we devised an approach named MassTodon.
Chapter  provides a detailed explanation of the approach we take to study these reac-
tions. The presented workflow can find the products of these reactions in the spectrum.
Furthermore, MassTodon can deconvolute the isotopic distributions of different products
using constrained quadratic programming. It outputs the estimates of joint intensities of
each chemical formula it found from the set of potential reaction products and substrates.

The problem of estimating that number seems also to be a preliminary step to the much more complex
problem of the estimation of the molar content of the molecular species within the sample.

The deconvolution performed by MassTodon is simpler than that presented in MassOn. For this reason,
MassOnwill be described after MassTodon.





It can also estimate the probabilities with which different reactions occured in one exper-
iment. This simplifies the comparison of different mass spectra, offering a possibility to
better study the influence of different instrumental settings upon the sample; finally, it also
simplifies the comparison of different instruments. In particular, MassTodon has already
found its use to study the unfolding of proteins inside a mass spectrometer (Lermyte et al.,
), as one can consider the odds ratio between the probabilities of two reactions taken
into consideration (ETnoD and PTR).

Reaction Kinetics of Electron Transfer Reactions

With the estimates of the intensity of particular molecular species at hand, as provided
by MassTodon, it seems natural to pose more specific questions about the nature of the
chemical process that could result in a similar mass spectrum. In Chapter  (Ciach et al.,
), we follow a natural approach in this context, which is to apply the well developed
mathematical apparatus provided by the theory of reaction kinetics.

We have adapted an approach based on a dynamic stochastic Petri net proposed byGam-
bin and Kluge (). In the particular setting we study, the structure of that net reduces
to a directed acyclic graph. This fact significantly increases the theoretical tractability of
the problem, as the chemical master equations can be directly applied to establish recursive
formulas for the average numbers of ions across the net at a given time. The solution to the
above equations depends on a set of reaction rates, each specific for a different reaction.
By manipulating these parameters, we can thus compute theoretical numbers of ions and
compare them with results obtained by MassTodon. We try to minimize the resulting error
using a gradient-free L-BFGS-B algorithm.

The developed tool, called ETDetective is fully integrated with MassTodon. Both algo-
rithms are available for download for free. We are also completing works on a web-service
that will make the two algorithms available to a larger public.
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2
Isotopic Distribution Calculations

“Computers are useless. ey can only give you

answers.”
— Pablo Picasso

Unil fail ecenl, detection of the fine structure isotopic distribution was
generally beyond the capability of any mass spectrometer. However, as both
FT-ICR MS and Orbitrap instruments continue to be improved, obtaining
higher resolution and sensitivity, the detection of fine structure is becoming

routine (Nikolaev et al., ; G.Marshall et al., ; Michalski et al., ). Asmuch as M
FWHM has already been recorded (Hendrickson et al., ). The rise of high-resolution
(HRMS) and high-throughput mass spectrometry leads to more informative data providing
valuable insights into, e.g., molecular identity. Experiments confirm superior identification
powers of HRMS, enabling, for instance, correct recognition of metabolites (Nagao et al.,
) and lipids (Schwudke et al., ).

However, more information is more data to analyze: a low resolution full scan mass
spectrum of a single molecule consists of only a few peaks, where each peak counts ions
that have roughly the same nominal mass. HRMS can resolve these clusters of ions into
finer ones. Ideally, with high enough resolution, one could resolve individual isotopologues
(McNaught and Wilkinson, ), i.e. molecules with the same isotopic composition. For
instance, using HRMS one can discern water isotopologues HDO and H

O, both with a
nominal mass equal to  Da. In consequence, more peaks need to be interpreted.





Regardless of the resolution reached by modern instruments and its theoretical limits
resulting from thermodynamics (Dittwald et al., ), it is instructive to consider the unre-
alizable case of infinite resolution. In such a setting, the full isotopic distribution of Bovine
Insulin, CHNO S, would be composed of more than . trillion different isotopo-
logues. This number can be massively reduced if one introduces the probabilistic concept
of the chance of finding a given type of isotopologue. Assuming statistical independence
of the isotopic variants of atoms (Kienitz, ),  configurations are enough to represent
around % of the overall probability. This phenomenon is known as probability measure

concentration (Talagrand, ).

Related Resear

To bypass the problem of the rapid increase in the number of isotopologues traditional ap-
proaches to isotope calculations have mostly assumed nominal mass approximation (Rock-
wood, ; Dittwald et al., ; Snider, ; Böcker et al., ), binning isotopologues
with the same mass number; see Valkenborg et al (Valkenborg et al., ). In this approach
isotopologues with the same nominal mass are indistinguishable: the theoretical distribu-
tion is centroided so that highly resolved peaks are represented together with their mass
averaged out. The Fourier transform method proposed by Rockwood et al. () exempts
this rule: it relies on probing the Fourier transform of the mass distribution and offers, in
principle, extremely high levels of resolutions. Still, one cannot expect to know a priori

where to probe the transform and has to resolve to a meticulous search over a grid of mass
values, which raises the task’s computational complexity.

Recently, the interest shifted towards direct calculation of fine isotopic peaks, giving rise
to elegant algorithms, such as ecipex (Ipsen, ) or enviPat (Loos et al., ). ecipex
generalizes the Fourier transform approach investigated by Rockwood to higher dimension.
enviPat has recently bested ecipex in terms of runtime, which can be attributed to direct
inspection of the problem on the level of counts of isotopes and by performing pruning of
the so called transition trees. Both approaches do harness the probability measure concen-

tration we exposed on the Bovine Insulin example. However, they specify their outcome in
terms of heights of the reported peaks. For instance, they let one neglect all peaks below a
given percentage of the highest peak, which is a heuristics first developed by Yergey ().
A different approach to fine structure calculations, presented by Li et al. (a), does not
present such a disadvantage and the user can specify some joint probability p of the fine
structure to be revealed. However, the output of that approach might not be the smallest
possible set of isotopologues that is p probable. Together these peaks might be jointly p

probable, but there are smaller sets of peaks with this quality.
To our best knowledge, the question of how the choice of the peak-height threshold re-





Figure .: Division of isotopic envelope into optimal p-sets, p ∈ {80%, 90%, 95%, 100%}, for a toy molecule. Red peaks correspond to
the smallest set of isotopologues that is at least % probable; in green we show the minimal additional layer of peaks that together with
all previous ones are at least % probable; in cyan – %, in violet - %. IsoSpec finds minimal sets with a given joint probability
without requiring a threshold on peak height, i.e. without a cut-off on the y-axis.

lates to the joint probability of the envelope has not yet been investigated. As demonstrated
in Fig. ., this relation is far from trivial, potentially leading to calculations involving iso-
topologues that are altogether not so important for the analysis. In the case of Bovine In-
sulin, the smallest set that is .% probable contains  isotopologues in addition to the
 contained in the smallest .% probable set. On average, these  isotopologues will
amount to one per mille of all of the observed ions, making it impractical to consider them.
The effect of overrepresenting an improbable set is more pronounced for bigger compounds,
especially with many atoms of elements that have more than one abundant isotope, such
as selenium or sulfur. This underlines the role of precision in the choice of proper pruning
threshold.

Peak-height threshold versus joint-probability threshold

The algorithm presented by Li et al. (a) is the only one that can calculate an isotopic
distribution given a joint-probability coverage. Other isotopic calculators usually require
a simpler peak-height-based threshold, and stop calculations after finding all peaks that
are higher than that value. This threshold can be precised either as an absolute value, or
as (small) percentage of the height of the heighest peak. Compared to the joint-probability
thresholding, the peak-height thresholds are impractical. First of all, the joint-probability is
a directmetric of howmuch of the theoretical spectrum is revealed. Secondly, it is extremely
difficult to predict the joint probability of peaks higher than some peak-height threshold.





If that coverage is too small, then the calculations have to be continued or, more likely,
redone; if it is too high, then a lot of computational time has been wasted. What is more,
a joint probability threshold guarantees that a lower bound for the actual coverage holds
consistently for different chemical formulas. This might not be the case when one fixes
the peak-height threshold to some default value (which is usually the case, as defaults are
seldom changed by anyone).

Fig. . explores that situation, showing that the same peak height thresholds may lead
to large deviations in the joint probability of the revealed spectra. The figure presents re-
sult obtained for chemical formulas of almost  thousand different human proteins. If the
lowest peak is set to be at most  times smaller than the heighest one (red row in Fig. .),
then the spread in the joint probability of the simulated isotopologues might be as big as
%. While studying this figure, one has to bear in mind that proteins are long polymeric
chains. As a result, their atomic content follows an almost linear pattern (Senko et al.,
). In general, when taking into account a bigger range of molecules, such as lipids
or metabolites, the spread might be much wider. Therefore, in addition to not knowing
in advance how much probability will be revealed by an arbitrary choice of a peak height

threshold, one cannot be sure that the selected value will provide consistent coverages for
different molecules. As a result, the preparation of data for a consistent statistical analysis
of e.g. database driven compound identification becomes unnecessarily cumbersome, as it
should involve a procedure that taking under scrutiny each chemical formula and assuring
a minimal coverage is attained. One could argue that setting one low peak-heigh threshold
might solve all the problems with coverage in most cases. Fig. . suggest this is true, as
ultimately points tend to diverge into regions of high coverage (top-right corner). How-
ever, one cannot forget that for these thresholds any calculator will be operating orders of
magnitude longer, as the number of output peak greatly increases.

One might argue that a sensible selection of a peak-height threshold could be carried
out based on the experimental spectrum. Simply: find both the tallest peak and the smallest
peak in an isotopic cluster and divide the height of the first by the height of the latter to
estimate the relative threshold. However, such estimate might be highly erroneous because
of the following reasons:

. the smallest peak can be mistaken for a noise peak – data would have to be deconvo-
luted from noise, which is difficult.

. peaks are not infinitely resolved and what one believes to be one isotopologue peak
in data might be in reality a cluster of many peaks.

. smaller peaks have higher height variability due to low ion presence.

Avoiding () is difficult, as theoretical envelopes do not follow any specific pattern in the





1

10

100

1000

10000

0% 25% 50% 75% 100%
joint probability

tim
es

 h
ig

he
st

 p
ea

k 
is

 la
rg

er
 th

an
 th

e 
m

in
im

al
 a

cc
ep

ta
bl

e 
pe

ak

5000 10000
count

Figure .: Problems resulting from fixing relative peak height threshold at a given value (y-axis) might lead to very different outcomes in
terms of joint probability (x-axis) for different chemical molecules. The above plot summarizes results obtained on a set of  human
protein chemical formulas from UNIPROT, preselected to contain at most  atoms of sulfur. Each distinct row depicts with changing
color (yellow to black) the concentration obtained for the  values. Only when the highest peaks is much taller than the smallest
one can one notice some form of concentration of results. The red row contains results obtained when the top probable isotopologue
is around  times more probable than the lowest acceptable. This threshold could be chosen while trying to generate a spectrum of a
limited coverage, for quickly disqualifying a molecule as potentially identified in an experimental spectrum.





mass domain. The second case might in turn lead to a massive overestimation of the peak
height. Finally, let us present a simplistic statistical argument that motivates ().

Suppose that the total ion count of a given molecular species N follows the Poisson
distribution Ipsen and Ebbels (). The molecules of that species can be further divided
into groups defined by their isotopic variants. The probabilities of these groups can be
obtained with IsoSpec. A subisotopologue group with probability pwill be populated by a
molecules whose count also follow the Poisson law, albeit with intensity equal to λp. The
coefficient of variation of the number of ions in that group equals then

CV =
standard deviation
expected value =

√
λp

λp
= (λp)−0.5.

Suppose we investigate two groups of isotopologues: a highly probable one, H , and an
unlikely one, L. Then, if we compare their coefficients of variation we see that

CVL

CVH

=

√
pH
pL

,

showing that the variation of low probable peaks is higher than that of high probable peaks
as pH should be orders of magnitude higher than pL. However, this is attenuated by the
square root function.

Our approa

In this chapter, we will present an algorithm for retrieving the smallest possible set of iso-
topologues with a given probability that the user wishes to unveil. Our algorithm bridges
the apparent gap between algorithms such as enviPat or ecipex and the recursive ap-
proach developed by Li et al. (a). In contrast to many other approaches, we also analyze
the computational complexity of the presented solutions. We prove that our algorithm is
optimal in terms of time complexity. Finally, we present an implementation of IsoSpec
that is superior to the fastest fine structure calculator to date, enviPat, as tested on a set
of more than , chemical formulas obtained by in silico fragmentation of , human
proteins.

The infinitely resolved spectrum can comprise thousands of peaks for just one molecule.
One could doubt the usefulness of this concept arguing that this is experimentally unachiev-
able. However, isotopologues can be aggregated based on the similarity of their masses so
as tomatch the resolution of the used instrument, see Li et al. (a). Our approach guaran-
tees that this can be achieved quickly and with control over the error of the approximation.

In the rest of this chapter we describe the theoretical gains from any strategy resulting
in optimal pruning. Then, we describe the IsoSpec algorithm. Finally, we compare its

This remark will be heavily used in Chapter .





runtime with the enviPat algorithm. In our presentation we focus on proteins; however,
the implementation and the analysis both apply to any known compounds, even those
containing other elements than carbon, hydrogen, nitrogen, oxygen, and sulfur.

e Complexity of Pruning

Consider a protein with a formula CcHhOoNn Ss, i.e. with c atoms of carbon, h hydrogen,
n nitrogen, o oxygen, and s sulfur. Denote by E the set of the chemical elements the protein
is composed of and by ne the number of atoms of a given element e composing the protein,
i.e. ne ∈ {c,h,n,o,s}. Finally, denote by ie the number of stable isotopes of that element.
The total number of different isotopic variants of CcHhOoNn Ss , i.e. the total number of
its isotopologues (McNaught and Wilkinson, ), equals

∏
e∈E
(
ne+ie−1

ne

)
. Using Stirling’s

approximation of the factorial (Feller, ), one finds that the above is approximately∏
e∈E

eie−1√
2π(ie − 1)

( ne

ie − 1
+ 1
)ie−1

.

Extracting ne we conclude that the total number of isotopologues is asymptotically poly-
nomial in the numbers of atoms, O(

∏
e∈E n

ie−1
e ).

Carbon, nitrogen and hydrogen have two stable isotopes each, resulting roughly in a
linear increase in isotopologues with the number of atoms of these elements. With respec-
tively three and four stable isotopes the relation for oxygen becomes quadratic, and cubic
for sulfur. This quantifies the extent of combinatorial explosion of the direct enumeration
of all isotopologues. We want to avoid calculating unlikely isotopologues. Assuming that
the isotopic variants of atoms composing CcHhOoNn Ss are independent and drawn with
the same abundances across elements (Kienitz, ), one pinpoints the probability of an
isotopologue to be a product of multinomial distributions, equal to∏

e∈E

(
ne

ne0, . . . , ne,ie−1

)
p
ne,0

e,0 . . . p
ne,ie−1

e,ie−1 , (.)

and mass to
∑

e∈E
∑ie−1

i=0 me,ine,i, where nej is the count of element e’s jth isotope, and pej
andmej are respectively its abundance andmass in daltons, both reported by IUPAC (Brand
et al., ). With Eq. (.) at hand, it is natural to search for sets of isotopologues that jointly
surpass some limiting value of probability that is close to %, say p. Many such sets exist,
so it seems reasonable to limit one’s attention to the smallest one. That set must include the
heighest peaks. We call such a set an optimal p-set – Fig. . explores that concept. The p-
set is not necessarily unique. For instance, consider a fictitious monatomic compound with
two equally possible isotopes, I1 and I2. Then there are two possible optimal 50%-sets: that
composed of I1 and that composed of I2. In general, meeting a multitude of optimal p-sets
is highly unlikely.





Figure .: The threshold function obtained for Bovine Insulin. The function relates the choice of peak height threshold τ with the joint
probability p of the resulting set of isotopologues, i.e. the ones with peak height at least τ . It usually happens that there is no peak
with height exactly τ : the effective configuration (in red) is then to be found to the right on the same level. Trimming peaks less than
6%-probable (height below 0.06) one gets a set of  isotopologues (red dots on the blue background) with joint probability 36.7%. Higher
intensity of red in top-left corner indicates that lower thresholds rapidly increase the number of resulting isotopologues.

Observe that the optimal p-sets in Fig. . are separated by horizontal dashed lines up
to configurations with the same probability. To obtain an optimal p-set one can choose
a threshold on peak height and then discard some of the low probable peaks of the same
height. Usually there is only one peak with minimal height, so that the output of both the
enviPat and ecipex algorithms coincides with an optimal p-set, for some joint probability
p. However, to get p one has to establish a set of isotopologues first.

The relationship between the input threshold and the joint probability of the output p
is presented in Fig. . on the example of Bovine Insulin. The resulting threshold function

is locally flat, non-increasing, and right-continuous. The input threshold will usually be
smaller than the actual minimal probability observed in the output p-set: we call isotopo-
logues with that probability effective. They are depicted as red, semitransparent circles in
Fig. ., and correspond to right ends of the intervals that make up the curve. High con-
centration of the effective isotopologues in the top left region suggests high sensitivity of the
number of configurations in the optimal p-set to the choice of the input threshold. The idea
behind the IsoSpec algorithm is to reach the input joint probability p by moving along the
graph of the threshold function, from bottom-right to upper-left.

Before describing in detail the IsoSpec algorithm, let us briefly elaborate on the poten-
tial gains resulting from either peak-height thresholding or joint-probability thresholding.
An isotopologue of CcHhOoNn Ss can be fully described by the numbers of isotopes of dif-





ferent elements that compose it, called subisotopologues (Loos et al., ), as in

Cc
Cc︸ ︷︷ ︸

subisotopologue

Hh
Hh︸ ︷︷ ︸

subisotopologue

Nn
Nn︸ ︷︷ ︸

subisotopologue

Oo
Oo

Oo︸ ︷︷ ︸
subisotopologue

Ss
Ss

Ss
Ss︸ ︷︷ ︸

subisotopologue

A subisotopologue corresponding to element e can be thus represented as a tuple

ne = (ne,0, . . . , ne,ie−1)

of specific isotope counts, where
∑ie−1

j=0 ne,j = ne. The inspection of the probability of an
isotopologue described by equation (.) further reveals that each multinomial distribution
present in the product corresponds to the probability of exactly one subisotopologue. If
e has three isotopes, then one can depict subisotopologues on a ternary plot, as in any
subplot of Fig. .. In general, subisotopologues constitute a discrete grid on the simplex.
With a growing number of atoms of each element in a chemical compound, the multinomial
distributions in Equation (.) can be individually approximated by multivariate Gaussian
distributions with the same mean and covariance matrix.

e Gaussian approximation

It is well known that the mean of a multinomial distribution is equal to µe = nepe, where
pe is the vector of probabilities of individual outcomes and ne is the number of trials. It is
also easy to notice, that its covariance matrix equals Σe = ne(d(pe)− pep

t
e), where by d(p)

we understand a matrix with vector p on the diagonal and zeros elsewhere, and by pepte – a
matrix of a projection on vector pe. MatrixΣe is degenerate and one cannot use the standard
formula for the normal density. This is because the multinomial distribution is itself well
defined in a (ie − 1)-dimensional simplex embedded in a ie-dimensional space of possible
outcomes: any approximation must lie in the same subspace. It is however well defined an
invertible on the space perpendicular to pe. Let us perform the SVD decomposition of Σe,
which by its self-adjointness equals U∆eU

t, where U is unitary and ∆e is diagonal, with
exactly one entry on the diagonal equal to ,

∆e =



de1 0 · · · 0 0

0 de2 · · · 0 0
... ... . . . ... ...
0 0 · · · de,ie−1 0

0 0 · · · 0 0


.

A similar procedure can be applied to the case described by Kaur and O’Connor () in the context of
the estimation of the number of observed ions. There, the condition detΣ = 0 is neglected, which is truly
appauling.





Figure .: The quality of the Gaussian approximation to the optimal p-set for a toy example one element compound with two isotopes.
As predicted by the Central Limit eorem, the shape of the optimal p-set for a one element compound can be well approximated by
an ellipsoid defined by the mean and covariance matrix of the multinomial distribution. The simplices are normalized to the number of
atoms of the toy compound. Notice sublinear growth of the volume of the ellipse: according to approximations, its area should behave
approximately like a square root of n - the number of atoms.

Only one of the columns of U can generate a linear space where Σe degenerate. All the
other columns of U constitute a new coordinate system. Shift that system to µe and there
can one properly define the Gaussian distribution with the covariance matrix equal to the
largest nondegenerate minor of∆ and zero mean. This procedure can be performed for all
elements that have isotopes.

The Central Limit eorem (Kallenberg, ) assures that with the growing number of
atoms, the multinomial distribution converges to the Gaussian distribution with the same
mean vector and covariance matrix. The concept of the optimal p-set in case of a continu-
ous distribution naturally reduces to the notion of a smallest set with a fixed probability p.
For normal distribution, the ellipsoids of confidence match exactly that notion, so we ap-
proximate the original optimal p-sets with ellipsoids containing p probability, see Fig. ..
This figure also shows that the relative quality of approximation increases with the number
of atoms.

To approximate the whole product of multinomial distributions it is enough to approx-
imate each element of the product by the appropriate normal distribution. This leads to a
product of normal distributions. A product of multivariate normal distributions is again a
normal distribution, yet higher dimensional. To be more specific, if the individual normal
distributions had means µe and covariance-matrices Σe, then the joint normal distribution
has mean µ = (µ1, . . . , µ|E|) and covariance matrix

Σ =



Σ1 0 · · · 0 0

0 Σ2 · · · 0 0
... ... . . . ... ...
0 0 · · · Σ|E|−1 0

0 0 · · · 0 Σ|E|


,

where 0 are block matrices of zeros. Similarly to what was described above, we can perform
the SVD decomposition of Σ and perform calculations in the new space, spanned by all the
eigenvectors other than vectors of ones. In that space, one would typically consider an





Figure .: Idea behind the proof of proportionality of the ellipsoid volume to the number of subisotopologues on the simplex. The D
ellipsoid (in blue) contains  subisotopologues (in green). Each subisotopologue is surrounded by a grey area resulting from a Voronoi
diagram partition of the simplex. The more atoms there are, the relatively finer the Voronoi tessellation, and the better gets the Gaussian
approximation.

ellipsoid (x − µ)tΣ−1(x − µ) ≤ R2. In our case, however, Σ is degenerate, and Σ−1 is
meaningless, and should be replaced by a pseudoinverse. We restrict the bilinear form Σ

to a linear subspace that contains all the considered simplices. In the new coordinates,
obtained through SVD, the ellipsoid with radius R equation is simply

ER =
{
x ∈ Rk :

∑
e∈E

ie−1∑
j=0

x2
ej

dej
≤ R2

}
,

where k =
∑

e∈E ie − |E|. The volume of ER equals

Vol(ER) = Rk πk/2

Γ(k/2 + 1)

√√√√∏
e∈E

ie−1∏
j=0

dej,

where Γ is the gamma function, Γ(x) =
∫ +∞
0

tx−1e−td t. The choice of R has to be per-
formed so that the ellipsoid contains exactly p probability. It is widely known, that the
probability of ER equals to the value of the chi-square cumulative distribution function
(Izenman, ) evaluated at R2. Therefore, to get the appropriate value of R one has to
consider the pth quantile of that distribution, so that R2 = qχ2(k)(p).

The volume of an ellipsoid is proportional to the number of isotopologues contained
within it. This can be proved for individual simplices and then the argument extends by
tensorization. For one simplex derived for subisotopologues with  isotopes, the situation
is depicted in Fig. .. It is enough to consider a Voronoi (Okabe et al., ) diagram
partitioning of the simplex: namely, consider a partition into sectors closest to individual





Figure .: Approximate size of the optimal P -set in terms of the size of the optimal %-set (y axis, logarithmic scale) for different joint
thresholds P (x axis).

subisotopologues in the Euclidean distance. The part of this honeycomb structure obtained
by restricting attention only to points inside the ellipse is an approximation to the overall
shape of the ellipse. A limiting argument shows that if one normalizes the simplex to unit
size, then the bigger the number of atoms, the better the approximation.

Let us express the volume of an ellipsoid in terms of the volume of the honeycomb. To
this end, we have to know the volume of one basic unit of the Voronoi tessellation. For a
D simplex, this unit corresponds to an individual hexagon in Fig. .. The idea is simple:
each hexagon is centered at exactly one subisotopologue, so if we knew the volume of the
hexagon then we could reexpress the volume of the ellipsoid in terms of isotopologues.

A D hexagon can be decomposed into l regular simplices with the edge equal to half the
distance between two subisotopologues b. In general, for a simplex of dimension d, l should
be equal to the number of neighbouring subisotopologues, equal to 2

(
d+1
2

)
. This result

comes from the following reasoning: two neighbouring subisotopologues differ on exactly
two coordinates out of d + 1 coordinates. This gives

(
d+1
2

)
possible pairs of coordinates to

change. If we know which coordinates should change, there are only two ways to change
them: by adding one to the first and substracting one to the latter or vice versa. We can
neglect the case where the subisotopologue is to be found on the border of the studied
simplex: it is irrelevant for the study of asymptotics. Also, the euclidean distance b between
two subisotopologues equals

√
2 and does not depend on the dimension.

The overall volume C is a product of the ones obtained for individual subisotopologues,∏
e∈E Ce. For instance, in case of bovine insuline considered above, composed out of three





elements with two stable isotopes, one with  stable isotopes and one with four, we obtain

C =

(
2

√
2

1!

(
2

2

))3

2

√
3

2!

(
3

2

)
2

√
4

3!

(
4

2

)
= 48

√
6.

Otherwise said, dividing the volume of the ellipsoid by this number will result in an ap-
proximate number of covered isotopologues.

Finally, note that since Σe = ne(d(pe) − pep
t
e), then we can extract the ne factor from

dei in ∆e, dei = ned̃ei. Therefore, the total number of isotopologuesM is approximately

M =
qχ2(k)(p)

k
2

C

πk/2

Γ(k/2 + 1)

√√√√∏
e∈E

(
nie−1
e

ie−1∏
j=0

d̃ej

)
. (.)

The above formula can be innaccurate for small ellipses: in such cases the subisotopologues
close to the edge of ellipse can distort the calculation behind the proportionality constantC .

Observe that all values in the above formula can be easily calculated either by a closed
formula, like C , or numerically. Note also, that if one assumes a computational model pre-
scribing the same amount of time to the calculation of each configuration, then the above
formula approximately quantifies the runtime-probability trade-off: namely, it should be-
have as the quantile function of the chi square distribution raised to k/2. Moreover, given
two different joint probability thresholds their relative runtime can be expressed as simple
as (qχ2(k)(P )/qχ2(k)(P

′))k/2. For instance, if k = 8, which is the case for any compound
composed out of carbon, hydrogen, nitrogen, oxygen and sulphur (we take into account
only the stable isotopes) one can plot Fig. ..

Observe, that the optimal 95% and 99% sets are respectively approximately . and 
times larger than the optimal 80% set. By transitivity, the 99%-set should be approximately
2.82 times larger than the 95%-set.

It results from Eq. () that the overall number of isotopologues above a given probability
threshold behaves asymptotically like O

(√∏
e∈E n

ie−1
e

)
. This is roughly a square root of

the order of the total number of isotopologues. Therefore, trimming truly effectively averts
the combinatorial explosion.

e IsoSpec Algorithm

The IsoSpec algorithm consists of four procedures: () the generation of subisotopologues,
() the merger of subisotopologues into sets of isotopologues above a given threshold, ()
the generation of a sequence of consecutive thresholds, and finally () the trimming of the
output into the final shape. The first two steps are interwoven and describe a fully opera-
tional peak height trimming algorithm that we call IsoSpec Thehold. Using these four
procedures, IsoSpecworks as follows: first it generates the top probable subisotopologues.





Figure .: The principle behind the IsoSpec algorithm. Consider a ne = 50 atoms molecule made up entirely out of one fictitious
element with three isotopes. The concepts of subistopologue and isotopologue coincide. Isotope content of isotopologues is represented
as points in the above ternary plots. In general, isotopologues correspond to tuples of points on different simplices. To find the optimal
99.9%-set, one first establishes the most probable isotopologue, like in (a) in red. Then, one finds the first optimal p1-set, as in (b) by
choosing some threshold τ1, like in (b) in grey. One then sums all peaks heights to see that p1 = 99.26%, smaller than 99.9%. One gets
another threshold τ2, establishes new layer of isotopologues, (c) in orange, and finds that p2 = 99.99%. This set is too big and one trims
out the isotopologues in blue in (d). Then, p > 99.99%, but removing more isotopologues would bring joint probability below 99.99%.

Figure .: Merging subisotopologues into isotopologues on a toy example of a two element molecule. The lengths of the edges of
rectangles correspond to probabilities of subisotopologues: these are decreasing for both the red and the blue element, and correspond
to subisotopologues that concentrate around the most probable subisotopologue, as in the ternary plot. Isotopologues are visited lexi-
cographically: first, one travels down the red pathway (column with rectangles a and b) till reaching a dark rectangle with area below
threshold τ . Then, one travels down the orange pathway (column with rectangle c); and so on. Dark rectangles form the fringe: a set of
neighbors of isotopologues more probable than τ . Having obtained another threshold υ < τ , one continues the lexicographic descent
starting from the fringe until first isotopologues less probable than υ are reached, forming a new fringe.

Eq. (.) indicates that together they form the top probable isotopologue. Then, IsoSpec
iteratively produces optimal p-sets of isotopologues, each corresponding to some threshold
τ from the sequence of thresholds. Every time a p-set is obtained, its joint probability p is
established and compared with the target value P. This is repeated until p gets larger than
P. Finally, the last layer of peaks is trimmed leaving the required optimal P-set. Fig. .
visualizes this approach on a simplified molecule composed of exactly one element.

Calculating subsequent subisotopologues corresponds to reporting configurations of
a given multinomial distribution with decreasing probability. This is easy thanks to its
unimodality. To define what we mean by unimodality, we first relate subisotopologues of
element e spatially: let two subisotopologues n1

e and n2
e be neighbors, n1

e ∼ n2
e , iff one

is obtainable from the other by changing the isotopic variant of exactly one atom. For





instance, O∼OO as one atom changed from O to O. However, O ̸∼O
O, as

two atoms would have to change from O to O. Two neighbors are also close on the
simplex in the geometric sense, like dots in Fig. .. A discrete distribution is unimodal, if
and only if the set of global maxima is connected. Consequently, every configuration not
top probable has an equally or more probable a neighbor. The multinomial distribution is
unimodal in that sense (Finucan, ).

Unimodality simplifies the task of reporting subisotopologues sorted by decreasing prob-
ability for a given element e. Algorithm  (by the end of the chapter) precises how to carry
out this task. We call such procedure a subgenerator. A subgenerator starts from top probable
subisotopologue. It gets there by a simple hill climbing algorithm: it starts with a subiso-
topologue close to the mean of the multinomial distribution and follows the direction of
increasing probability until the maximum is reached. By unimodality, it must be a global
one. It then enlists it in an empty priority queue PQ, with priorities set to probabilities of
subisotopologues. Then, it iteratively extracts the top probable element from PQ and in-
serts its yet unvisited neighbors. By unimodality one can only insert subisotopologues less
probable than those popped out. Each configuration has a limited number of neighbors, so
the size of PQ is of the order of the number of already visited subisotopologues, n. Using
the standard heap implementation of the PQ, calculations involving n configurations take
up O(n log(n)) time.

We store the results of previous calls as well as the state of the subgenerator to avoid
unnecessary recomputations. This way the retrieval of the already calculated probability,
e.g. while passing from red pathway to orange pathway in Fig. ., can be done faster.
Multiple visits to subisotopologues can be avoided through hashing. The computational
complexity of operations on subisotopologues is negligible compared to subisotopologue
merger. A subgenerator provides the k-th most probable subisotopologue and its probabil-
ity. To get an isotopologue, one considers a tuple of |E| different subisotopologues, each
obtained with a different subgenerator. The probability of an isotopologue is the product
of probabilities of its constituent subisotopologues. IsoSpec uses a series of thresholds
to obtain layers of isotopologues. It starts by merging the top probable subisotopologues.
Given any isotopologue γ, it uses subgenerators to establish its less probable neighbors –
the successors. A successor of γ has precisely one subisotopologue changed to the next one
in line. For instance, isotopologues b and c are successors of a in Fig. .. To generate iso-
topologues above a threshold τ consists in inserting and popping elements from a queue.
In comparison to subgenerator, sorting elements is redundant, and so a priority queue can
be replaced with a simple FIFO queue (Cormen, ). To avoid repeated visits to the same
configurations, IsoSpec follows a lexicographic visiting schedule, as shown by colored ar-
rows in Fig. .. Each popped out isotopologue qualifies to a given layer if its probability is





Figure .: Adaptive linear approximation to the threshold function. It starts at point (P,P) – the top probable isotopologue, , and aims
at finding the optimal 80%-set, point T. Point  on line -S is where we would get if our approximation using multiplier M was perfect.
Instead, it leads to only % of the joint probability, as indicated by point . Line -S provides another approximation, and suggests point
. In reality, we move to  – already above the target %. The effective isotopologues on the threshold function between points  and T
can to be trimmed.

above τ . Otherwise, it is stored in a so-called fringe, and used in the next iteration with a
new threshold. The procedure is repeated until the joint probability exceeds that required
by the user.

Successive threshold values result from an adaptive linear approximation to the thresh-
old function, see Fig. .. Given the top probable isotopologue with probability P we can
draw a line between point (P, P ) and point S = (0, 1). Point S lies on the threshold func-

tion, as the choice of a  threshold on peak height results in a full set of isotopologues, i.e.
a % probable set. On that line we find a point slightly above the required value P, say
MP whereM > 1 is chosen heuristically. The x coordinate of that point provides the first
threshold, τ1. Applying the previous procedure on τ1 we get the optimal probability p1. A
new line is drawn between point S and (τ1, p1) and the procedure is iteratively repeated
until pk > P, where k is the number of the last iteration. A slight overestimate is needed
for the algorithm to converge.

Finally, the trimming of the last layer of isotopologues can be performed in a linear
time with its size using theickTim algorithm. TheickTim algorithm, as specified
by pseudocode in Algorithm  (by the end of the chapter), is a modified version of the
classicickSelec algorithm. Denote the number of isotopologues in the last layer to be
trimmed by nLL. Then, the algorithm achieves an O(nLL) pessimistic runtime if the Magic
Fives Blum et al. () algorithm is used for pivot selection. In practice, the pivot is selected
at random, resulting in O(n) average runtime, and O(n2) pessimistic runtime.





Before providing results on the overal time complexity of the algorithm, we shall give
brief account on the numerical questions regarding both the calculations of the probabilities
and masses of isotopologues. First of all, we prefer to calculate the logarithms of probabil-
ities over probabilities. The way we perform the calculation of the logarithms of probabil-
ities of individual isotopologues differs from that presented in the literature (Yergey, ;
Li et al., , a). In particular, we do not calculate them recursively, which is prone
to numerical error propagation. Instead, we calculate them seperately for every configura-
tion. The cost of calculating masses is minimal (ie multiplications and ie − 1 additions for
each isotopologue - a fixed costs). To calculate probabilities we have to quickly calculate
the logarithm of Eq. (.),

log
(∏

e∈E

(
ne

ne0, . . . , ne,ie−1

)
p
ne,0

e,0 . . . p
ne,ie−1

e,ie−1

)
.

The logarithm of probabilities can be precomputed. What remains is the logarithm of the
generalised Newton symbol

log(ne!)−
ie−1∑
j=0

lognej!.

Each log-factorial can be calculated using the Stirling approximation, as exposed in http:
//www.johndcook.com/blog/2010/08/16/how-to-compute-log-factorial/. Thisway,
the calculations are exact up to 14 significant numbers. Since we use double precision stan-
dard to represent real numbers, which has a precision of around 16 significant numbers,
we are making an extremely small error. In the approximation we use the approximation

log(n!) ≈ (n–1/2) log(n)–n+ (1/2) log(2π) + 1/(12n),

for n > 256, and use a precomputed value for smaller n. We can further reduce the error
by adding the 1/(360x3) term.

The overall time complexity of the IsoSpec algorithm, as specified by the pseudocode
in Algorithm , is

O
(
M +

∑
e∈E

me log(me)
)
, (.)

where M is the number of isotopologues in the optimal p-set and me is the number of
subisotopologues involved in the calculations. Recall that following Eq. (), asymptotically
O
(√∏

e∈E n
ie−1
e

)
. It also follows that me = O(

√
nie−1
e ). The pending question is, which

of the two terms in Eq. (.) dominates the calculations. In particular, we are interested
when the first term dominates,

O
(
M +

∑
e∈E

me log(me)
)
= O(M),

as this assures that the complexity if optimal, being linear.
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Theprecise answer to this question requires some assumptions on the numbers of atoms
of different elements that can appear in the compound. Observe, that monoisotopic ele-
ments do not influence at all the complexity of the problem, as ie−1 = 1−1 = 0. Thus, we
should consider a chemical compound composed out of |E| ≥ 2 polyisotopic elements. Let
us also focus first on chemical formulas containing more than one element. Let us assume
that the considered counts of atoms ne all grow polynomially with some hidden parameter
n, possibly with different degrees, ne = O(ndege), leading to M = O(n

∑
e∈E dege

ie−1
2 ) and

me log(me) = O(ndege
ie−1

2 logn). Clearly, the degree ofM must then be greater than that
ofmelog(me), as the logarithm grows slower than any function nϵ, with ϵ > 0.

The assumption on the growth of the atomic content of molecules we make is true in
most realistic cases. For instance, consider the averagine – a model of an averaged protein
(Senko et al., ). The averagine is known to well approximate the atomic composition
of any protein, and works reasonably well due to the fact that proteins are just long chains
of amino acids. The chemical formula of an averagine composed of n proteins in chain is
given by

C⌊n×.⌋H⌊n×.⌋N⌊n×.⌋O⌊n×.⌋ S⌊n×.⌋.

Therefore, at least for proteins, dege = 1.
Now, let us consider the case of a molecule built up from atoms of only one polyisotopic

element. As pointed out in themainmanuscript, in that case the notions of subisotopologue
and isotopologue coincide and there is no merger step. However in that case too we can
apply the layered concept exposed in Algorithm , this time directly to the multinomial dis-
tribution. Again, if the number of atoms was m, then generating them would take O(m).
The layered complex cannot be applied in the general context and the estimate given by
Eq. (.). Note that it is crucial for the subisotopologue generator to return subisotopo-
logues in a decreasing order of their probability. The IsoSpec algorithm thus offers a huge
difference compared with the theoretical results obtained for the ecipex algorithm (Ipsen,
).

Theoretical questions aside, the implementation of IsoSpec offers huge time savings
compared to other available software, as shown in the next section.

Experimental Results

We perform runtime analysis on a set of more than   ions’ formulas generated from
a list of  human proteins from Uniprot. This set of formulas contains  precursors
and all derived b and y ions. This computational experiment therefore simulates the spectra
preparation step for a tandem MS database driven identification procedure.

Both enviPat and IsoSpec are implemented in C++. That said, enviPat can only be





Figure .: Comparison of enviPat and IsoSpec Thehold (a,b) and of IsoSpec Thehold with IsoSpec calculating the optimal
% and % sets. Absolute peak height threshold was set to equal one ten-thousandth of the highest peak height (eniPa default).
Fig. (a) shows the absolute runtime as a function of the overall number of calculated configuration. In Fig. (b), we express the relative
runtime of enviPat in the runtime of IsoSpec Thehold, showing how much faster is our approach. Both axis in (a,b) are in
logarithmic scales. Fig. (c) shows how much faster is the calculation of the optimal 99% and 95% sets (with IsoSpec) than obtaining the
set of isotopologues more probable than 10−4 HP (with IoSpechehold). In contrast to (a) and (b), the abscissa states the average
mass of a compound, as the number of configurations (isotopologues) is variable for the different sets. Smooth lines represent fitted
polynomial trend lines in all plots. The analysis is based on , compounds.

Figure .: Comparison of enviPatwith IsoSpec Thehold (a,b) and IsoSpec Theholdwith IsoSpec aiming at joint probability
equal to % and % (c) on fragment identification problem ( compounds). In (a) we see the absolute runtimes of enviPat and
IoSpec Thehold: (b) specifies how much faster is the second approach in terms of the runtimes of the first one. On the x-axis of the
(a,b) plots we show the total number of configurations generated in the tandem MS theoretical simulation for a given protein. Both axes
are in logarithmic scales. In (c) one notices speedup resulting from a search for the optimal % and % sets (IsoSpec) instead of the
set of isotopologues more probable than 10−4 HP (IoSpechehold).

called from R and IsoSpec can be called from C++, C, R and Phon. We have used the
Phon interface in our simulations.

In Fig. . (a,b) we compare runtimes of enviPat and IoSpec Thehold on individ-
ual fragments. Both tools aim at calculating the same set of isotopologues defined by a com-
mon threshold on peak height, equal to one ten-thousandth of the highest peak, 10−4HP for
short. Fig. . (a) reports absolute runtimes in seconds. Fig. . (b) expresses enviPat’s
runtime in that of IoSpec Thehold to show directly howmuch faster is the latter, which
is roughly  to more than  fold, the gap widening with the size of a molecule. The opti-
mal 99% and 95% sets are always smaller than the set of isotopologues more probable than
10−4HP and can be usually obtained faster using IsoSpec, as can be seen in Fig. . (c).
The advantage clearly increases with compound size. This opens way for various rapid scan
procedures that could compare the actual spectrum with a relatively small optimal p-set to
rule out that a given compound is there.

The overall time to compute spectra for a CID identification procedure for a given
substance is the sum of runtimes needed to obtain the spectra of the precursor and all





fragments. We report these total runtimes in Fig. ., which simply aggregates informa-
tion conveyed in Fig. .. In particular, subfigure (a) confirms that a procedure based on
IsoSpec will be at least an order of magnitude faster as compared to enviPat.

IsoSpec can be freely downloaded under a -clause BSD license fromhttp://matteolacki.
github.io/IsoSpec/. It can be also downloaded from Python Package Index.

Further Applications

The concept of the isotopic distribution is used in all of the projects described in the next
chapters. In particular, it is highly useful for signal deconvolution. Potentially, it can be
also used to estimate the natural frequencies of isotopes appearing in the samples. Finally,
we will be using it to estimate the number of observed ions.

The IsoSpec project is continuouslymaintained and developed. The ideas that are being
now implement include:

. getting rid of the queue data structure

. memoization of values of critical mathematical functions

. parallelizing the code

. simplification of the interface

Initial tests show that  and  considerably speed up the calculations. Finally, let us mention
that the project will be included in the OpenMS platform (https://www.openms.de/) as a
low level function.

The IsoSpec has been recently used in the context of drawing identically distributed
random samples. The algorithms offers both theoretical and practical speed ups. For details,
please see Startek ().

Other work in progress include the calcution of the precise value of a hypothesis test,
the Tanimoto index, whose goal is to test for the independence of two binary vectors. This
sort of problem appears naturally in the context of the classification of chemical reactions
described by a set of binary molecular descriptors.
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Algorithms

Algorithm The subgenerator
INPUT:

Multinomial distribution parameters.
OUTPUT:

A sequence of subisotopologues in decreasing order of probability.

PQ = empty max-priority queue
α = the most probable subisotopologue found in hill climb
V = {α} (set implemented as a hash table)
PQ.push(α, priority = P(α))
while PQ is not empty do

β = PQ.pop()
for all neighbors n of β do

if n /∈ V then

V.add(n)
PQ.push(n, priority = P(n))

end if

end for

yield β

end while





Algorithm TheickTim algorithm.
INPUT:

A - array of isotopologues
p - the desired total probability of selected isotopologues

OUTPUT:

A - permuted in-place by the algorithm to minimize k
k - lowest integer such that

∑k
i=0 P(A[i]) ≥ p and ∀i ≤ k ∀j > k P(A[i]) ≥ P(A[j])

sum = 0

start = 0

end = length(A) + 1

while start ̸= end do

idxpivot = SelectPivot(start, end,A)
A[idxpivot] ↔ A[end− 1]

idxlower = start

for i ∈ {start, .., end− 2} do

if P(A[i]) > P(A[end− 1]) then

A[i] ↔ A[idxlower]

idxlower ++

end if

end for

A[idxlower] ↔ A[end− 1]

psum =
∑idxlower

i=start P(A[i])
if psum < p then

start = idxlower + 1

p = p− psum

else

end = idxlower

end if

end while

Return last value of start as k





Algorithm The IsoSpec algorithm.
INPUT:

A molecule consisting of n different elements
Table of isotopic frequencies of elements
p - the target probability

OUTPUT: Optimal P -set.
sum = 0

Si = Initialize subgenerators for each element
α = the most probable isotopologue
layernext = an empty FIFO (or FILO) queue
layernext.append(α)

ret = an empty list
while sum < P do

accepted = an empty list
sumaccept = 0.0

layercurr = layernext

layernext = an empty FIFO/FILO queue
threshold = subsequent threshold
while layercurr is nonempty do

Icurr = layercurr.pop()

if P(curr) < threshold then

layernext.push(Icurr)

else

accepted.append(Icurr)

sumaccept = sumaccept + P(Icurr)
for next ∈ S.successors(Icurr) do

layercurr.push(Icurr)

end for

end if

end while

sum = sum+ sumaccept

if sum ≥ p then

Terminate algorithm.
Return ret +ickTim(accepted).

end if

ret.extend(accepted)

end while







3
Quantifying Electron Transfer Reactions

“Science never solves a problem without creating ten

more.”
— George Bernard Shaw

In ecen ea, there has been growing interest in electron-based dissociation (ExD)
– primarily electron capture (ECD) (Zubarev et al., ) and electron transfer disso-
ciation (ETD) (Syka et al., ) in protein mass spectrometry. These fragmentation
methods allow the cleavage of the backbone of a protein or peptide without sig-

nificantly disrupting other bonds (even preserving noncovalent interactions) and as such,
much effort has gone into the use of ExD methods for top-down sequencing, as well as
the study of labile post-translational modifications and even binding sites of non-covalent
ligands (Garcia et al., ; Håkansson et al., ; Ayaz-Guner et al., ; Ge et al., ;
Tsybin et al., ; Fornelli et al., ; Cournoyer et al., ; Li et al., b; Xie et al.,
; Jackson et al., ; Yin and Loo, ; Göth et al., ). Additionally, considerable
efforts have been made to determine preferential reaction pathways and cleavage sites in
ExD of known precursors, to obtain insight into gas-phase protein/peptide conformation
(Breuker et al., ; Oh et al., ; Skinner et al., , ; Zhang et al., , , ;
Lermyte et al., ; Lermyte and Sobott, ; Zhang et al., ; Lermyte et al., ) as
well as to investigate the reaction mechanism (Tureček, ; Tureček and Syrstad, ;
Chung and Tureček, ). Ideally, reaction products are not only identified, but also quan-





tified in these efforts. Because of the information-rich nature of top-down ExD spectra,
data processing is usually performed with the help of specialized software.

The first, and arguably most critical step in this data processing is usually spectral deiso-
topisation, i.e. reducing the multitude of signals observed in the m/z dimension due to vari-
ous charge states and isotopologues to a minimal set of components and abundances. Most
of the readily available software tools for this – e.g. THRASH (Horn et al., ), MASH (Guner
et al., ; Cai et al., ), DeconMSn (Mayampurath et al., ), Decon2LS (Jaitly et al.,
) – utilize an averagine-scaling approach (Senko et al., ) to determine charge states,
monoisotopic masses, and ion intensities. As this requires resolution of the (aggregated)
isotope peaks, these tools are mostly used to process FTICR or Orbitrap data, particularly
as they can natively process Bruker and/or Thermo data files (in fact, a modified THRASH
algorithm, called SNAP, is built into the Bruker DataAnalysis software).

Observed isotope clusters are often composed of multiple overlapping isotope distribu-
tions (envelopes), each generated by ions whose chemical formulas differ by one (or a few)
hydrogen atoms. These shifts (by an integer number of hydrogen masses) are commonly
observed in ExD spectra and provide information on reaction pathways (Lermyte et al.,
; O’Connor et al., ; Tsybin et al., ). As such, it is desirable to preserve the in-
formation contained in observed isotope distributions during and after the deconvolution
procedure.

Thus, there is a need for software tools which are able to process high-resolution tandem
MS data from a variety of instruments, utilize the high-resolution information (e.g. assign
highly resolved peaks) to perform thorough data analysis, and provide the user with infor-
mation regarding preferred cleavage sites and relative probabilities of competing reaction
pathways. Ideally, this should not require the user to possess extensive expertise regarding
statistics and/or gas-phase ion/ion chemistry. Recently, we have demonstrated the use of
an in-house developed software for deconvoluting complex isotope clusters occurring in
top-down ETD spectra acquired on a Waters Synapt G Q-IM-TOF instrument (Lermyte
et al., a). Furthermore, we have shown how this allows us to infer branching ratios
and how this correlates to collision cross-sections and gas-phase conformations of ubiqui-
tin (Lermyte et al., ). Here, we present in detail the above computational workflow,
together with extensions that shed further light onto the electron transfer driven reactions.
The Python implementation of that workflow, called MassTodonPy, is made publicly avail-
able for download via the Python Package Index.

In the remaining part of this chapter, we shall describe the stages of the proposed work-
flow: () the preprocessing of the spectrum, () the generation of potentially observable
chemical formulas, () the deconvolution of spectra, which involves the estimation of the
intensities of the potential products of the considered set of reactions, () the pairing of





PTR [M + nH]n+ + A•– −−→ [M + (n-) H](n–)+ + AH
ETnoD [M + nH]n+ + A•– −−→ [M + nH](n–)+• + A
ETD [M + nH]n+ + A•– −−→ [c + xH]x+ + [z + (n – x)H](n–x –)+• + A
HTR [c + xH]x+ −−→ [c + (x – )H]x+

[z + (n – x)H](n–x –)+ −−→ [z + (n – x + )H](n–x –)+

Table .: Considered chemical reactions. M stands for either a precursor ion or a fragment ion. The HTR reaction can happen only
after ETD and consists in the transfer of a hydrogen atom from the c to the z fragment.

fragment ions, resulting in estimates of the probabilities of the considered reactions and
fragmentations. The workflow was tested in silico and on around  mass spectra. Finally,
we mention some possible extensions to the workflow.

Materials & Methods

Experimental mass spectra.

Two sets of data were acquired under varying experimental conditions using the Synapt
G and LTQ Orbitrap Velos instruments. In case of the Synapt G, a subset of experimental
settings included  different wave velocities in a range of values between  to  m/s,
while keeping the wave height fixed at . V; another subset consisted of  values of wave
height ranging from  to . V, with wave velocity fixed to  m/s. In case of the LTQ
Orbitrap Velos mass spectrometer, we have collected spectra from a range of different re-
action times (from . to  ms), for two different isolation windows in MS (selecting
+ and + precursor ions), and applying different levels of preactivation and supplemental
activation. For more details, please refer to our previous publication (Lermyte et al., a).

Data Preprocessing

We assume that the input spectrum was already calibrated. The spectrum should not be
centroided, as MassTodon does its own centroiding, as described later in the peak picking
section.

To mitigate the possibility of fitting to noise peaks, some parts of the mass spectrum
need to be trimmed out. We offer two simple ways to do this. The first way focuses on
the intensity of individual peaks and amounts to trimming out peaks with intensity below
a user-provided threshold. The second way retains only the highest peaks whose joint
intensity covers the user-specified percentage of the total intensity in the spectrum. To
make that idea more clear, consider a spectrum comprised of three peaks with intensities
equal to , , and . Also, set the joint threshold at %. The intensity of the first peak





amounts to 1000
1000+990+10

= 50% of the entire intensity in the spectrum. The joint intensity
of the two highest peaks amounts to 1000+990

1000+990+10
= 99.5% of the overall intensity. It is the

smallest set of highest peaks that jointly surpass the required threshold of 99% and so only
these peaks are left, and the third one is trimmed out. Observe that the same effect would
be achieved if we were trimming out peaks with intensities higher than any number higher
than  and smaller or equal to . For each run of the second trimming spectrum we
calculate that implicit cut-off and store it for inspection by the user.

Finally, the mass to charge ratios are adjusted to better match the theoretical spectra, as
described later on.

Generating emical formulas.

MassTodon exhaustively finds the formulas of all molecular species that might be present
in the set of considered reactions. The theoretical envelopes of these molecules are then
fitted to the spectral data at a later stage.

The presented workflow considers a set of known chemical reactions occurring under
ETD conditions, c.f. Table .. The Proton Transfer Reaction (PTR) and the non-dissociative
Electron Transfer Dissociation (ETnoD) do not result in any fragments; they affect the
charge state and the mass of the cation alone. The Electron Transfer Dissociation (ETD),
potentially followed by the transfer of a hydrogen between fragments (HTR), result in c

and z fragments (Roepstorff and Fohlman, ). We assume that PTR and ETnoD may
occur multiple times on the same ions, including the c and z fragments. We assume that
fragments cannot further fragment, as the internal fragments are scarcely ever observed
experimentally in ETD. The number of fragments depends on the charge of the precursor
isolated during MS1, denoted Q, the amino acid sequence and the existing modifications.
We neglect the ordering of reactions within one pathway. Thus, the product of the PTR
reaction followed by the ETnoD reaction is the same as the product of the ETnoD reaction
followed by the PTR reaction. In general, reaction pathways leading to the same product
are indiscernible until the last stage of the algorithm.

Every molecular species is described by its elemental composition and charge q. Each
reaction (except HTR) consumes one charge. During ETnoD, the radical passes from anion
to cation reducing its charge without significantly changing its mass (we neglect the mass
of the electron). This motivates the introduction of an additional quantity, the quenched

charge g, that describes the number of extra hydrogen masses with respect to precursor’s
hydrogen content, see Lermyte et al. (a). An increase in g corresponds to an increase
in one atomic mass unit and does not change the charge state.

To exemplify the above concept, consider triply charged Substance P, with amino acid
sequence RPKPQQFFGLM+. The mass of its monoisotopic isotopologue equals 1347.712 u,





when rounded to the third decimal place. Add the mass of two protons and one quenched
charge and divide it by the two present charges to get 1347.712+3×1.008

2
= 675.368Th. Thus,

the regions of the mass spectrum close to that value can contain ions belonging to that
molecular species. Consider the case of isolating only triply charged precursors during the
MS, i.e. selecting ions with m/z around 450.245Th. One then knows that these ions must
have undergone exactly one ETnoD step. This is because ETnoD reduces their charge by
one,  + −−→  +, and increases the number of quenched charges by one, see Table ..
Further on we show how to infer the number of reactions both from precursor ions and
fragments.

While studying the above example, it is important to note that other sources of ions
can explain the same peak. In particular, consider the second most probable isotopologue
of the precursor ion that underwent the PTR reaction. One of the C carbon atoms in this
isotopologues is exchanged for a heavier isotopic variant, C. These ions are only slightly
less likely to be found in the sample than the monoisotopic ions: on average in 29.6% of
cases for this ion versus 43.1% for the monoisotopic peak. Their mass is 1348.716 u. When
equipedwith two charges, their m/z equals 1348.716+2×1.008

2
= 675.366Th. Most instruments

would not resolve the 0.002 Th difference between the two molecular species. However,
confusing the two ions sources leads to a poor estimate of the relative extent of PTR versus
ETnoD. Based on one peak alone it is impossible to correctly identify the relative propor-
tions of different molecular species. In most cases, it is possible to differentiate between
various molecular species by looking at their isotopic distributions as a whole. This opens
the possibility to evaluate how much of observed intensity can be attributed to particular
ions. Further on we show how this can be achieved.

Observe that the quenched chargemay also be used to record information on a hydrogen
radical transferred during HTR. This is convenient, as there is no real difference between
a quenched charge and a regular hydrogen atom within one molecule. Consider then a
precursor that undergoes a direct HTR reaction: the c fragment must then have a number
of quenched charges equal to -, which we consider a valid possibility. It is also the only
case when this quantity assumes a negative value.

During the fragmentation, the remaining charge and quenched charge (if positive) are
distributed among the fragments. One might expect the charge state of smaller fragments
to be limited, due to Coulomb repulsion. For this reason, MassTodon omits formulas with
too many charges per a given number of amino acids. By default, we assume that each
two charges must be four residues apart. In case of Substance P, this means that we could
not observe a c3 fragment with two charges simply because it is composed out of only
three residues. On the other hand, we assume it might be possible to observe a c5 fragment,
presuminglywith charges placed on its first and last residue. The charge distance parameter
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Figure .: A connected component C of the deconvolution graph G. Experimental peaks are shown in pink. Among the nodes of G we
find the molecules M , their isotopologues I , and experimental groups G. The probability p of meeting I among the M ions decorates
the edge between I and M . Edges between I and G are not plotted for clarity in (a); we do mark however their corresponding flow
variables, x. They denote the amount of experimental intensity attributed to a given isotopologue. The aim of the deconvolution is to
establish total intensities of M1 and M2, denoted respectively as αA and αB . In (b) we show C as a graph. The experimental peaks (in
pink) are depicted only for clarity of the representation and are not actually in G. In (c) we show a moleculeM with scarse experimental
support: meeting an isotopologue paired with an experimental group would occur in one in ten cases only.

can be adjusted by the user.

If one considered only the PTR and ETnoD reactions, the precursor molecule could
result exactly in Q(Q+1)

2
differentmolecular species. Each product can be further fragmented

into pairs of different c and z fragments. The number of such pairs is K − KP , i.e. the
number of amino acids in the provided sequence, minus the number of prolines, that cannot
be fragmented easily by electron transfer due to their ring structure. Then, each fragment
can again undergo several PTR and ETnoD reactions. The number of all fragments is thus
of the order of O(KQ4).

Generating the isotopic distributions. The isotopic distribution of a givenmolecular species
models the expected signal one could register in the mass spectrometer. One would expect
that peaks assigned to one molecular species would follow a pattern similar to the isotopic
distribution, which would imply that observed intensities should follow certain propor-
tions.

Each reaction product is described by its elemental composition, charge q, and quenched
charge g. This information is sufficient to generate the theoretic isotopic distribution using
any isotopic calculator. To perform calculations here, we use the IsoSpec algorithm (Łącki
et al., b), described in Chapter . Given the elemental composition, IsoSpec produces a
series of infinitely resolved isotopologues, represented as tuples (mass, probability). Racall,
that to avoid the combinatorial explosion in their number (Valkenborg et al., ), IsoSpec
reports only the smallest possible set of peaks, such that their cumulative probability does





not fall under some user specified threshold, e.g. 99.9%. The masses of the envelopes are
adjusted according to formula m+q+g

q
to obtain valid mass-over-charge ratios.

Because of the use of infinitely resolved peaks, our workflow can be adapted to model
outcomes of ETD on instruments that offer different degrees of resolution. In particular, to
model low-resolution spectra, one does not need infinitely resolved theoretical envelopes.
Whenever small differences between the m/z ratios cannot be discerned, one can safely
aggregate peaks with similar m/z ratios. This can be advantageous, as a smaller number
of peaks makes the deconvolution problems smaller (as shown later on) and quicker to
solve. On the other hand, by lowering the resolution one introduces additional variance to
the estimates of the total intensities with which the molecular species appear in the spec-
trum. Also, some highly resolved peaks may be specific to a smaller number of substances.
Losing that information by unnecessary aggregation would render the deconvolution con-
siderably more difficult. In the current workflow, we ask the user to provide a measure
of the instrument’s resolution in terms of one parameter alone – the peak’s m/z tolerance
tol. Experimental peaks are deemed to potentially originate from a molecule M if their
m/z ratios are within the tol distance from a theoretical isotopologue I of that molecule.
This is shown in Figure .a. By default, we assume that differences between m/z ratios an
order of magnitude smaller than tol cannot be discerned. This implies a finite granularity of
the spectrum: if tol amounted to . u, then the smallest difference between peaks would
be that of . u. To obtain such spectrum, peaks with the same first three significant
digits are aggregated, i.e. they are represented by one peak with the same rounded m/z
and intensity equal to the total intensity of these peaks. In general, given tolerance tol, we
round the spectrum to the significant digit given by ⌈− log

10
(tol)⌉ and then aggregate it.

By convention, we call the so obtained cluster of isotopologues an isotopologue. The same
operations are performed on the experimental spectrum.

Peak piing. The aim of the peak picking is to assign peaks in the mass spectrum to the
potential molecular species. This is done by comparing the m/z ratios of the experimental
peaks with those of the peaks in the theoretical isotopic envelopes, as described in the
previous section and visualized in Figure .a. Figure .a also shows that finding potential
explanations for a given experimental peaks corresponds to finding all intervals of the form
[m
z
− tol, m

z
+ tol] to which its m/z value belongs. To find these intervals effectively, we

make use of the interval trees data structure (Cormen, ).

Different intervals might overlap, as is the case for isotopologues IA1 and IB0 in Fig-
ure .a. The intersections of these intervals partition the m/z axis into regions that can
be traced back to originate from different sets of molecules and regions that cannot be
explained by any of the products of the considered reactions. Experimental peaks inside
such intersections (there might be more than one) form experimental groupings G. The





total intensity within one such grouping is stored and denoted by Gintensity. After these
operations, the experimental peaks do not play any more role in calculations and can be
deleted.

Considered together, moleculesM , their isotopologues I , and the experimental group-
ings G form nodes of the deconvolution graph, G, as shown in Figures .a and .b. In G,
molecule nodes M are naturally joined with their isotopologue nodes I , that are in their
turn joined with experimental groupingsG they could explain. The graph G is usually com-
posed of several connected components, like the one presented in Figure .a. Note that
higher tol parameter (check previous section) results in a lower number of both theG and
I nodes.

While picking the peaks, one can easily spot moleculesM with poor experimental sup-
port. More precisely, if the sum of probabilities of isotopologues ofM connected to some
G does not exceed some percentual threshold P (by default, 70%), then we can discard it.
For instance, we would discard the molecular species shown in Figure .c, as one would
expect that only in one case in ten would one of its isotopologues ever appear close to an ex-
perimental group. This additional preprocessing eliminates substances that alone could not
explain more than the P percent of the total experimental intensity within the considered
subproblem, and thus makes part of the overall variable selection procedure we consider.

Each connected component of G gives rise to some deconvolution problem, as several
molecules might compete for the explanation of the given range of the mass spectrum.
These problems might be solved independently and simultaneously rather than sequen-
tially. MassTodonPy offers both ways of performing these calculations.

Deconvolution. The problem of deconvoluting the intensities within one connected com-
ponent of graph G is reminiscent of linear regression. Indeed, the goal is to express the
observed signal as a weighted sum of the isotopic envelopes. One weight, denoted by α as
in Figure .a, can be interpreted as the total intensity of a given molecular species in the
entire mass spectrum. In particular, α cannot be negative. This restriction also partially
alleviates some problems with which the ordinary least squares regression would struggle,
such as the collinearity of the predictors. In our setting, the collinearity would correspond
to a high (positive) correlation between the shapes of different isotopic distributions. This
problem is mitigated, because under the nonnegativity constraints there is simply much
less space for linear dependence (Davis, ).

The approach we take is similar to the one proposed by Slawski et al. (). That ap-
proach also relies on non-negative least squares. However, we use a different approach to
model mass inaccuracy itself: instead of assuming that mass inaccuracy follows the gaus-
sian distribution, we assume that mass can be spread around the mass tolerance regions.
Our approach should be better fitted to cases of spectra that are not perfectly calibrated.





In advance, one does not know how to redistribute the intensity of I among the neigh-
boring experimental groupings G. This motivates the introduction of the flows between G

and I , denoted by xI
G, For instance, in Figure .a isotopologue IB0 is linked with exper-

imental intentensities G2 and G3. It absorbs xIB0
G2

of the intensity of G2, and xIB0
G3

of the
intensity of G3. IB0 should contribute xIB0

G2
+ xIB0

G3
to MB . On the other hand, this should

be equal to a fraction pB0 of the total intensity of MB , denoted by αB . In other words,
pB0αB = xIB0

G2
+ xIB0

G3
. In general, the intensities of isotopologues I and molecules M are

related via a set of linear restrictions αMpIM =
∑

G:G↔I x
I
G, where under the sumwe iterate

over all experimental groups G that neighbor isotopologue I .
It is sensible to choose molecular intensities α and isotopologue intensities x to as-

sure a minimal divergence between the observed group intensities Gintensity and the total
outflows of intensity from these nodes towards the isotopologue nodes. The overall decon-
volution problem can thus be formalized as

min
x,α

∑
G

(
Gintensity −

∑
I:G↔I

xI
G

)2 so that

αMpIM =
∑

G:G↔I

xI
G, xI

G ≥ 0

To minimize the risk of numerical instability and perform model selection one can include
in the cost function additional penalty terms (James et al., ),

Lx
1

∑
G↔I

xI
G + Lα

1

∑
M

αM + Lx
2

∑
G↔I

(xI
G)

2 + Lα
2

∑
M

α2
M .

By default, we set Lα
1 , L

α
2 , L

x
1 , and Lx

2 to 0.001. The penalty terms after Lα
1 and Lx

1 should
round small estimates to zero, as in the lasso model selection approach (James et al., ).
The above problem can be efficiently solvedwith quadratic programming. MassTodon relies
on the CVXOPT Python module (Andersen et al., ) that solves quadratic programs with
a path following algorithm.

After each deconvolution, we calculate and report various error statistics. These include
the sum of the absolute values of the errors, the sum of overestimated values, and the sum of
the underestimated values. The above quantities are also divided by the total ion current or
the total intensity within the tolerance regions of any of the theoretically molecular species.

The cost function is minimized simultaneously in xs and αs. Only αs are analyzed in
the next, final stage of the algorithm.
Pairing of the observed ions. Up to this step, the algorithm obtained estimates of inten-
sities of each considered product molecule, uniquely defined by its type (precursor, c or z
fragment), charge q, quenched charge g. It is relatively easy to estimate the probabilities
of PTR and ETnoD reactions alone based solely on the estimates of intensities of precur-
sor ions, without taking into acount the fragments (Lermyte et al., ). These can then
be used to calculate their odds ratio, which is known to chemists as the branching ratios.





Given a non-fragmented molecular species with charge q and quenched charge g, one can
retrieve the numbers of the PTR and ETnoD reactions by solving

q = Q−NPTR −NETnoD, (.)

g = NETnoD, (.)

forNPTR andNETnoD. Eq. (.) states that each reaction reduces the observed charge by one.
Eq. (.) traces the origin of all quenched charges on the precursor molecules solely to the
ETnoD reaction.

PTR

ETnoD

ETnoD

PTR

ETnoD

PTR

I1

I0

I2

I3

I4

I5

Figure .: Simple branching model. I

denotes the estimated intensities.

To estimate the probabilities of ETnoD and PTR we make
use of a simple stochastic model. We make use of a simple
branching process: we assume that each ion can undergo sev-
eral PTR and ETnoD events, as shown in Fig. . Each reaction
happens independently and each ion is also treated indepen-
dently. Denote by Ii the intensity of an i-th group of precursor
ions. Let the number of PTR and ETnoD events for that group
equal N i

PTR and N i
ETnoD respectively. The intensity is known

to relate to the number of observed ions linearly within the
dynamic range of the instrument, so that if the actual number
of ions is denoted by Ni, then Ii = CNi, where C is what
we call the ion-intensity exchange rate. We do not have direct access to C : an attempt to
estimate it will be described in Chapter . We shall now show, that even not knowing C ,
we can still obtain point estimates of the correct branching ratio.

Observe that given the numbers Ni, the assumptions we made result in a likelihood
given by

L =
∏
i

(
p
N i

PTR
PTR p

N i
ETnoD

ETnoD

)Ni

The maximum likelihood estimates then equal

p̌ETnoD =

∑
i N

i
ETnoDNi∑

i(N
i
ETnoD +N i

PTR)Ni

and p̌PTR =

∑
i N

i
PTRNi∑

i(N
i
ETnoD +N i

PTR)Ni

The numerator counts ions that underwent ETnoD, Ii is the estimated intensity of the pre-
cursor with charges (qi, gi). The denominator additionally contains the count of ions under-
going PTR. Given the relationship Ii = CNi, we could plug in Ii instead ofNi and the result
would be the same. This heuristical argument can be made precise assuming independence
of the random quantities Ni and C . This leads finally to

p̂ETnoD =

∑
i N

i
ETnoDIi∑

i(N
i
ETnoD +N i

PTR)Ii
and p̂PTR =

∑
i N

i
PTRIi∑

i(N
i
ETnoD +N i

PTR)Ii
,

and so the branching ratio can be estimated as B̂R =
∑

i N
i
ETnoDIi/

∑
iN

i
PTRIi. The problem

with the above method is that the precise expressions for the standard deviations are not
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Figure .: Two interpretations of observing  c and  z matching fragments: lavish (a) and parsimonious (b). Nodes with dashed edges
symbolize cations that never reach the detector. (a) maximizes the number of missing cations needed to explain the spectrum, while (b)
minimizes that number.

independent of the ion-intensity exchange rate C , and one cannot deal with it without a
more elaborate mathematical apparatus.

The above method cannot be directly generalized to include fragments. This is because
counts of reactions are not directly accessible and only estimates of the overall intensity of
c and z fragments are at hand. To determine the number of fragmentation events, one has
to pair back the matching c and z fragments. Pairing should occur only between match-
ing ions: a ck fragment should be matched only with a zK−k fragment, where K is the
total number of amino acids in a given sequence. Moreover, pairing should include natural
restrictions on the charge states (qc, qz) and quenched charges (gc, gz) of both fragments.

There exists a whole range of possible pairing strategies. The two extremes are: () to
assume that ions come from entirely separate groups of precursors, and () that the observed
fragments are generated by a minimal number of precursors. For instance, Figure . shows
a situation where  c and  z matching fragments were observed (filled circles). It might
be possible that at the beginning of the experiment there were  precursor ions and each
out of them undergone a fragmentation and that for each pair of fragments only one of
them made it to the detector. This is the lavish interpretation, as shown in Figure .a.
The question would remain though, why the other fragments were missing. Assuming that
this was only because they undergone ETnoD and PTR so many times that their entire
charge depleted is possible, but it would also inflate the total number of reactions that must
have occured to produce the observed output. Another interpretation could assume that
only a minimal number of reactions is necessary to explain the observed output, as shown
in Figure .b. Here, a maximal pairing is performed, and only two c fragments have to
be paired with z fragments with a depleted charge (dashed circles). This approach is by
definition parsimonious in terms of reactions needed to explain the experimental results.





The above principle of parsimony is implemented in three different algorithms. The
key differences between them lie in the definition of a molecular species and the applied
optimization scheme, see Figure .. For mathematical and implementational simplicity,
all algorithms do not discern between ETD and an ETD followed by HTR. Including HTR
would complicate the structure of the pairing graph that we introduce below. The two reac-
tions are considered jointly, as if they were one fragmentation reaction. Practical remarks
on the use of algorithms will be provided in the next section.

The basic algorithm assumes that one can safely disregard the differences in molecular
species due to the number of quenched charges they bear. In other words, the estimates of
intensities of the ck fragments with with the same charge qc but different quenched charges
gc are summed. Similarly, we merge the intensities of zK−k fragments with the same charge
qz but different quenched charges gz . We then construct the pairing graph, as shown in
Figure .a. The nodes of the pairing graph correspond to different observed molecular
species and store information on their total estimated intensity. Special dummy nodes are
added to denote the matching co-fragments that had lost all their charge. Our approach
assumes that the only way ions can end up being undetected is solely through the total loss
of charge. Edges are drawn between c and z nodes with complementary sequences if their
total charge plus one (the ETD event neutralizes one charge) does not exceed that of the
precursor selected in the MS stage of the experiment, qc + qz + 1 ≤ Q.

The pairing of fragments corresponds to the redistribution of the estimated intensities I
in the nodes along the edges of the pairing graph. Assigning intensity to an edge diminishes
the intensities in both end nodes by the same amount. All intensity must be assigned to
some edges. Assigning intensity comes at a cost reflecting the number of reactions the
pair of ions underwent during the whole experiment. In the basic approach, fragments
with charges (qc, qz) together underwent Q− 1− qc − qz reactions. The optimization task
we are about to set up lets us ignore the extra fragmentation count, fixing these costs at
Q − qc − qz , equal to the total number of ETnoD and PTR reactions that both fragments
underwent, N cz

ETnoD + N cz
PTR. Note that this equation holds also for pairings involving co-

fragments that entirely disappeared due to the loss of all charge.

The pairing problem turns into an optimization problem where one wants to minimize

Algorithm charge 
quenched 
charge

network 
algorithm

rounding small 
estimates to 0

Basic

Intemediate

Advanced

Figure .: Summary of the proposed pairing algorithms.
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Figure .: A pairing graph (a) and it representation as a max flow optimization problem (b). Nodes with dashed edges correspond to
ions that lost their charge; other nodes correspond to observed fragments. In (a), charges are shown as red plus signs. Gray edges mark
possible pairings. Red dashed line between c3 and z2 marks an impossible pairing: if combined, both fragments must have originated
from a + precursor, which was not possible. The task is to redistribute the intensity in nodes along the edges. This comes at a cost
Q− qc − qz . To turn (a) into (b), one has to: () remove unobserved ion nodes () direct remaining edges from c to z () add sink S and
terminal T () add edges directed from S to c nodes and from z nodes to T and add capacities equal to observed ion intensities () add
edges from S to z fragments and edges from c fragments to T: these correspond to pairings with unobserved ions. This representation is
possible for basic and intermediate pairing algorithms.

the total number of reactions that could have produced the observed c and z fragments.
More specifically, we face a constrained linear optimization task:

min
Icz : c∈AC , z∈AZ

∑
c ∈ AC

z ∈ AZ

(N cz
ETnoD +N cz

PTR)Icz (.)

∀c∈OC
Ic =

∑
z∈AZ

Icz, ∀z∈OZ
Iz =

∑
c∈AC

Icz. (.)

Above, OC and OZ denote sets of observed c and z nodes, and AC and AZ additionally
contain the unobserved co-fragments.

The above simplifies to amax flow problem: subtract flows between observed fragments
from both sides of equalities in (.) and what results are the expressions for flows between
observed fragments and their unobserved co-fragments. Plugging these into Eq. (.) and
some simple algebra results in

max
Icz : c∈AC , z∈AZ

∑
c ∈ OC

z ∈ OZ

Icz s.t.

∀c∈OC
Ic ≥

∑
z∈OZ

Icz, ∀z∈OZ
Iz ≥

∑
c∈OC

Icz.

Of course, all flows Icz are non-negative. To solve the max flow problem we use the
Edmonds-Karp algorithm (Edmonds andKarp, ) as implemented in the NetworkX Python
module (Hagberg et al., ).

The solution to the above problem provides us with estimates of the total intensities
of ions undergoing a specific type of fragmentation. In particular, this lets us estimate the
probabilities of fragmentation along the protein. It also lets us estimate the probability with
which the precursor will fragment. However, this setting does not offer any possibility to





estimate the number of ETnoD and PTR reactions undergone by fragments. These might
become important in case of experiments where bigger and more charged substances are
studied, or when much of the precursor ions reacted away, mostly through fragmentation.

To provide a solution to the above problems, we have developed another algorithm –
the intermediate approach. In this approach, we do not aggregate the intensities of observed
ions with different quenched charges. As a result, the pairing graph contains more nodes,
both observed and dummy ones. Had we followed the previous approach, then each ob-
served fragment could match several unobserved co-fragments, all amounting to the same
overall number of reactions but differing in specific numbers of ETnoD and PTR. Unfortu-
nately, the existence of many unobservable co-fragments would prevent us from reducing
the problem to a max flow optimization, making it impossible to derive equations for all
flows between observed and unobserved fragments. To solve this problem, we reduce the
number of potential dummy nodes by combining them together.

The edges between existing fragments now convey information necessary to tell how
many PTR and ETnoD reactions happened on both fragments throughout their history,
including the period before any fragmentation occurred. Similarly to equations (.) and
(.), the numbers of PTR and ETnoD reactions on a given pair of fragments characterized
by charges (qc, qz) and quenched charges (gc, gz) follow equations

NPTR = Q− 1− qc − qz − gc − gz

NETnoD = qc + qz.

Note that due to aggregation, the same cannot be said about edges between the observed
and unobserved ions. Otherwise said, if a mass spectrum does not contain pairable frag-
ments, then the only source of information on the numbers of ETnoD and PTR reactions
can be obtained solely from the precursor products.

Finally, we investigated a third solution to the pairing problem, the advanced approach.
It includes the introduction of additional penalty terms to the cost function,

λ1

∑
c ∈ AC

z ∈ AZ

Icz + λ2

∑
c ∈ AC

z ∈ AZ

I2cz.

Above, λ1 corresponds to a lasso-type penalty and λ2 - a ridge penalty. This approach was
investigated mainly for its ability to automatically round the estimates of small flows to
zero. The above problem cannot be cast into the max flow setting because of the quadratic
terms in the cost function. For this reason, we use yet again the general purpose CVXOPT
solver.
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Figure .: Error rates of the deconvolution procedure on in silico data for different numbers of initial precursor ions (N =  ,  ,
 ) and under three different levels of noise in the mass/charge values (as measured by the standard deviation σ plotted on the x
axis). The tolerance interval in MassTodon was set to 0.05 Th. To measure error we sum the absolute differences of peak heights and
normalize the result to the number of the precursor ions (the result does not need to sum to %).

Results & Discussion

In Silico results. In order to test the entire workflow, we conducted in silico experiments.
A chemical process was simulated using a tailored Gillespie algorithm (Gillespie, a), as
described in Algorithm . Briefly, the process generates a random series of three chemical
reactions (PTR, ETnoD, and ETD; HTR is neglected) occurring in particular moments of
time. The length of time intervals between reaction events is random and depends upon
the number of charged ions at particular charge state, followingMcLuckey and Stephenson
().

MassTodon was tested in various conditions: we checked all the combinations of set-
tings of different initial numbers of precursors, N = 1000, 10000, or 100000 ions, initial
precursor charges Q = 3, 6, 9, and 12, three levels of noise in the mass/charge values (as
measured by standard deviation σ), and 12 different sets of probabilities of reactions.

The deconvolution procedures implemented in MassTodon fail in case of extremely
noisy spectra, by which we understand either spectra with extremely low ion content or
poor resolution, as seen in Figure .. The algorithm works best when there are enough
ions to form a well sampled isotopic distribution (in case of our simulations –   ions).
In case of high-resolution mass data, when thousands of isotopologue peaks are present in
the mass spectrum, it is advisable to combine spectra from several runs of the instrument
to assure that there are enough ions to correctly identify the relative proportions of peaks.
It is also vital not to underestimate the size of the tolerance interval. Of course, the above
remarks are intrinsic to any peak assigning procedure that uses peak intensities, rather than





Molecules: 1000 Molecules: 10000 Molecules: 100000

0.0198 0.0346 0.0739 0.0198 0.0346 0.0739 0.0198 0.0346 0.0739

100%

80%

60%

40%

20%

0%

20%

40%

60%

80%

100%

Standard Deviation of Mass Imprecision [Da]

E
st

im
at

io
n 

E
rr

or
Algorithm Advanced Basic Intermediate

Figure .: The distribution of distance between the estimates (p̂ETnoD, p̂PTR) and the true values (pETnoD, pPTR) for different approaches
we take, measured by the euclidean distance normalized to the maximal distance

√
2. Estimates in the blue regions favor PTR, while

those in the yellow - ETnoD. The distributions are conditional on the number of initial precursor ions (N =  ,  ,  ) and
different level of mass inaccuracy σ (on x axis).

relying solely on their mass-over-charge ratios.
While running simulation described by Algorithm  we store the numbers of each

moleculeM drawn in the process. We have compared these numbers with the estimates of
MassTodon to check the quality of the applied deconvolution procedures. Figure . reports
the obtained error rates.

Interestingly, the number of ions in the sample is of limited importance if one is inter-
ested in the estimation of the probabilities of ETnoD and PTR reactions, as shown in Fig-
ure .. We note, that the parsimonious approach we have taken on average only slightly
overestimates values of the true parameters, showing a preference towards the PTR reac-
tion. Note also, that the basic approach to the pairing problem seems to offer estimates
with the smallest variance.

The above results indicate that it is best to use the basic approach to obtain estimates
of PTR and ETnoD reactions, and to use either the intermediate or advanced approaches in
cases when the joint intensity of fragments greatly surpasses that of the non-fragmented
ions. We would like to mention also, that running all of the above algorithms is fast and
takes only a small fraction of the entire workflow’s runtime.
Experimental results. Mass spectra have been acquired for purified Substance P and ubiq-
uitin as described in detail in the previous publications (Lermyte et al., a,b).

The outcomes of MassTodon can be used to more easily compare mass spectra gathered
at different instrumental settings. Figures . and . explore the differences and simi-
larities of the information conveyed in different mass spectra, including their percentual
content of products of all studied reactions, the probabilities of fragmentation, and intensi-
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Figure .: MassTodonPy runtime distribution. The analysis contains all the stages of the algorithm, including running all three pairing
algorithms. The + precursors correspond to Substance P spectra; other results are obtained for ubiquitin. Usually, it takes more time to
process a spectrum randomly reshuffled by bootstrap than the original version. Runtimes were obtained using the sequential version of
the algorithm, which solves the deconvolution problems one after another. It is possible to reduce this time for larger problems using the
multiprocessing option.

ties and probabilities of the ETnoD and PTR reactions.

MassTodon provides point estimates of the above parameters. Given that the analysis
of one spectrum is reasonably fast (see Figure .) we decided to rely on bootstrap proce-
dures (Efron and Tibshirani, ; Wasserman, ) to estimate the standard deviations of
the above parameters. In particular, each mass spectrum was randomly reshuffled multiple
times. We assume that each bootstrap spectrum is composed out ofN ions. The m/z ratios
of these ions were then independently drawn among the original ratios, with probabilities
equal to the heights of the corresponding peaks, normalized to the total ion current. The
number of observed ions in the spectrum N is not truly known in advance. In our simula-
tions, we assumed that the whole spectrum consists of around   ions. We draw 
random spectra for each real one and run MassTodon on each one of them.

Figure .a shows the overall fitting quality in case of the Substance P spectra. On
average, the products of the considered reactions on average account for all but  to %
of the mass spectrum. Shifting our attention only to those regions of the mass spectrum
which fall within the range of any potential product, the error estimates drops in a range
between  to %. Note that for spectra gather at wave height fixed at . V and wave
velocity between  to  m/s the errors grow significantly.

Figure .b presents the estimates of probabilities of fragmentation for Substance P.
Interestingly, the probabilities are almost constant across different experimental settings.
They are also almost uniformly distributed along the possible fragmentation sites (proline
not being one of them). This is what would be expected of a small molecule, like Substance





P, with a trivial tertiary structure. Again, significant departures from this pattern emerge
in the same region of wave velocity.

Figure .c seems to shed some light on the nature of these anomalies. It presents the
estimates of the intensity of ions that underwent ETnoD and PTR, which is a proxy for
the number of these events to happen on the ions of Substance P within the sample. In
particular, it can be noted that the range of wave velocity between  to  m/s contains
a particularly small amount of ions that could have been assigned to ETnoD or PTR. By
comparison, all estimates where these intensities were above   show a much smaller
amount of variance. Note also, that Figure .c suggests that the relative ratios of ETnoD
and PTR remain stable under most experimental settings, with the exception of small wave
velocities. These ratios can be interpreted as relative probabilities of the ETnoD and PTR
reactions, conditional on one of the reactions happening.

Interestingly, a similar pattern re-emerges in mass spectra of ubiquitin, as shown in
Figure .. In spectra where the isolated precursor ion was bearing  charges, the ETnoD
vastly dominates over PTR. In one of our previous papers (Lermyte et al., a) we show,
that this might be related to the relatively compact gas-phase conformation of the + pro-
tein. In other words, the fragmentation cannot happen because the two fragments remain
bound by non-covalent interactions, giving rise to a higher percentage of the ETnoD prod-
ucts.

Conclusions

As high-performance mass spectrometers and the use of ExDmethods become more preva-
lent, there will be an increasing demand for software methods to assist in processing the
resulting, considerable amounts of data. Here, we have presented a user-friendly software
package to analyze high-resolution ETD data, deconvolute isotope distributions, and infer
information about various competing reaction pathways occurring under ETD conditions.

Chapter  casts more light on how to fit parts of the entire framework into a Bayesian
setting, in order to provide the user with a better understanding of the uncertainties of the
estimates and potential correlations of results. In particular, the user might be interested
in the some ranges of the spectrum could be alternatively explained by other substances.
Obtaining such information could be done by looking at the joint distribution of the counts
of molecules that compete for the explanation of a given part of the spectrum.

Moreover, it would be interesting to free the user from the need to specify the tolerance
parameter. This should be obtained automatically and potentially vary for different mass-
to-charge ratios.

The implementation of the MassTodon algorithm is freely available for downloads from





the Python Package Index. Installation instructions and documentation can be found at
readthedocs. Sourceh code is available for download from github. The software is dis-
tributed under the terms of the GNU AGPL V public license.



http://masstodonpy.readthedocs.io
https://matteolacki.github.io/MassTodonPy/


Algorithms

Algorithm  In silico spectra generator
INPUT:

A list I comprising N precursor ions with a given charge Q and sequence F .
Probabilities of reactions pPTR, pETnoD, pETD.
Overall intensity I of the process.
Standard deviation of mass inaccuracy σ.

OUTPUT: A mass spectrum.
Draw the placements of charges q along the fasta sequence.
Set experiment time to zero, T = 0.
while T <  do

Increase T by a random time interval sampled from
the exponential distribution with intensity I

∑
i Niq

2
i .

Extract ionM from I with probability prop. to Niq
2
i .

Draw R from PTR, ETnoD, and PTR,
with probabilities pPTR, pETnoD, pETD.

if R = ETD then

if fragmentation occurred twice then

Discard ion M.
else

Draw the fragmentation spot.
Add fragments with q > 0 to I .

end if

else

Reduce charge by one.
Adjust the quenched charge.
AddM to list I .

end if

end while

for all M in I do

Randomly choose the isotopic variant ofM .
Blur its mass with Gaussian noise.

end for

Bin the spectrum
return spectrum
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Figure .: Selected results of the MassTodon as run on Substance P spectra. Data were acquired on the Synapt G mass spectrometer.
The instrumental settings were obtained for two strips of settings in the two-dimensional space comprising wave height and velocity:
one strip was obtained by fixing wave height to . V, the other by fixing the wave velocity to  m/s. Results in (a) and (b) show
bootstrap estimates ( repetitions). Results in (c) contain additional lines linking together the estimates obtained for the actual mass
spectra. Figure (a) shows estimates of the mismatch error and the fitting error. Both are calculated using the normalized l1 distance,
E(p, q) =

∑
k |pk−qk|∑

k pk+
∑

k qk
, where p and q are maps with keys k (different m/z ranges) and values pk and qk (i.e. real intensities

and their estimates). In case of the mismatch error, we compare in this way the estimated spectrum versus the whole experimental
mass spectruversus the whole experimental mass spectrumm, which includes peaks that are not among the studied reaction products.
The fit error restricts this comparison to the regions of the mass spectrum that actually could be explained by a theoretical reaction
product. Figure (b) shows estimates of the probabilities of fragmentation along the backbone of Substance P, whose amino sequence is
RPKPQQFFGLM. Fragmentation on prolines (P) is impossible due to the ring structure of this amino acid. The vertical orange dashed
lines correspond to probability equal to 1/9, which would be attained assuming a fully uniform probability of fragmentation. Figure (c)
shows the estimates of the intensity of the ETnoD and PTR reactions. Values of intensities in the y axis have been transformed by a
square root scaling in order to expose the behavior of the lower estimates.
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Figure .: Estimates of the probabilities of ETnoD and PTR conditional on one of these events happening obtained for ubiquitin.
Data were collected using LTQ Orbitrap Velos. Red dots correspond to estimates performed on real data. The black box plots, mostly
extremely narrow, correspond to  sample bootstrap estimates. Precursor charge Q is shown in top-left parts of the panels. Each
panel is subdivided into subpanels corresponding to different experimental settings. Nota bene: left panels correspond to different levels
of pre-activations. For Q = 9 the energy of preactivation was set to , while for Q = 6 to . The x axis shows the retention time
RT, while the y axis shows the percentual content of the ETnoD and PTR reactions. For the spectrum gathered atQ = 9 and RT = ,
without pre-activation and without the supplementary activation, there were no ions found that could undergo ETnoD or PTR in the
real spectrum under the given threshold on the intensity (results contain the 95% of the highest peak in that spectrum), so the red dot is
missing.





4
Estimating Reaction Kinetics of Electron

Transfer Reactions

“”Excellent! I cried. ”Elementary,” said he.”

— Dr Watson

Ma pecome is an analytical technique of measuring the ratio of
mass to charge (m/z) of molecular compounds. Ionized molecules are
separated in an electromagnetic field. The intensity of the detected signal
is plotted against the corresponding m/z values on a mass spectrum. In

most of its range, the signal intensity is proportional to the number of the detected parti-
cles (Housecroft and Constable, ).

Among many of its applications, mass spectrometry can be used for identifying com-
pounds in biological samples. In the case of proteins, however, the mass of the whole
molecule provides little information about its amino acidic sequence, and even less so on
its tertiary structure. In particular, any permutation of amino acids in the sequence results
in the same signal in the spectrum. One can gain much more insight into the structure of
sample molecules by inducing their fragmentation and recording the resulting signal. In
particular, knowing the masses of all consecutive fragments can reveal the protein’s se-
quence.

There are two main approaches to protein fragmentation: bottom-up and top-down. In





bottom-up proteomics the protein is partially digested by a proteolytic enzyme and mass
spectrometry is used tomeasure them/z ratios of the fragments. In the top-down approach,
sample proteins are subject to fragmentation only inside the mass spectrometer, without
the use of any proteases.

One of the fragmentation methods used in top-down mass spectrometry is Electron
Transfer Dissociation (ETD). This ion-ion technique exploits the naturally occurring inter-
action between the multi charged, non-radical protein/peptide cation on one side, and the
radical reagent anion on the other (Syka et al., ; Zhurov et al., ). However, while
this method is becoming evermore ubiquitous in theMS-based proteomics analyses, impor-
tant questions remain regarding the precise reaction mechanism, fragmentation patterns,
and the level(s) of protein structure that can be probed using ETD (Sohn et al., , ).
Shedding more light on the nature of ETD can thus lead to optimization of the instrumen-
tal settings and the overall improvement of the identification of peptide sequences and the
post-translational modifications.

There are several other fragmentation techniques used in the top-down approach, most
importantly the Collision-Induced Dissociation (CID), where the cleavage is induced by col-
liding ions with nonreactive gas molecules (Mitchell Wells and McLuckey, ). A major
disadvantage of the CID compared to ETD is that it often leads to loss of posttranslational
modifications, particularly phosphorylation (Kim and Pandey, ). Electron Transfer Dis-
sociation has also been found to providemore uniform fragmentation than CID, which pref-
erentially cleaves the weakest bonds (Kim and Pandey, ; Zhurov et al., ). However,
a notable amount of work has been devoted to analyzing and mathematically modeling the
CID process (Zhang, , ;Wysocki et al., ), while ETD has received less attention.

The fragmentation in ETD is induced by the transfer of an electron from a radical anion
to the sample peptide/protein cation the after a series of electron rearrangements results in
a cleavage of one of the peptides (N–Cα) bonds. The sample cations are positively charged
during the electrospray ionization (ESI) step (Fenn et al., ), leading to the formation
of [M+nH]n+ ions, i.e. adding both charge and mass to the analyte molecule M.

Apart from ETD, other reactions occur concurrently adding their products to the signal
observed in the mass spectrometer. Figure . presents the considered set of reactions.
Unlike in ETD, during PTR the proton gets transferred from the protein’s backbone to the
anion. The mechanism of ETnoD closely resembles that of ETD, with the difference that
the protein fails to fragment into the c and z. The appearance of the ETnoD fragments in
the experimental data can be traced to the folding of proteins: although backbone cleavage
occurs, noncovalent interactions keep the resulting fragments from separating. The ETnoD
can also be caused by accommodation of an electron, e.g. in an aromatic side chain (Lermyte
et al., ; Lermyte and Sobott, ). It is assumed that, regardless of the precise reaction





mechanism, the electron obtained by ETnoD causes neutralization of one ESI-generated
proton (Lermyte et al., a), referred to as the quenched proton further on. In all of the
reactions described above, one charge is neutralized.

PTR [M + nH]n+ + A•– −−→ [M+(n-) H](n–)+ + AH
ETnoD [M + nH]n+ + A•– −−→ [M+nH](n–)+• + A
ETD [M + nH]n+ + A•– −−→ [C+xH]x+ + [Z+(n-x)H](n–x –)+• + A

Table .: Chemical reactions considered by the ETDetective. M stands for a precursor or a fragment ion, C and Z stand for fragment
ions. Observe that compared to the table presented in Chapter , we do not consider the HTR reaction.

A single cation can undergo several reaction events, being approached multiple times
by different anions. However, the so-called internal fragments of proteins, i.e. resulting
from two backbone cleavage events, are usually not observed, suggesting that double ETD
scarcely ever occurs. On the other hand, there is a lot of evidence that one analyte molecule
can undergomultiple ETnoD and PTR (Lermyte et al., c). Note that onlymolecules with
non-zero charge are observed in the mass spectrometer: after a sufficiently large number
of reactions molecules simply disappear.

The isotope distributions of reaction products show considerable overlap, especially for
large molecules, as illustrated in Fig. .. In particular, the products of PTR and ETnoD
reactions on the same substrate differ only by Da mass (the mass of the electron can be
neglected, falling beyond the resolving power of most modern instruments).
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EXPERIMENTAL = 48% PTR + 52% ETnoD

Figure .: The deconvolution of the observed isotopic envelopes performed by MaTodon. The observed signal (in red) is represented
as a combination of two theoretical isotopic patterns (orange and blue).

The peptide bond cleavage induced by ETD is believed to be fairly uniform (Li et al.,
). A notable exception from this rule is the peptide bond of proline: due to the ring
structure of this amino acid, the c- and z-ions are held together even after the N–Cα bond
cleavage.

A specific type of N–Cα bond cleavage occurs on the N-terminus, leading to a loss of
one ammonia molecule. The precise mechanism of this reaction is not yet known. Here,
we assume this reaction to be an instance of ETD and treat the ammonia molecule as a c





fragment. Therefore, the number of considered ETD cleavage sites is equal to the number
of amino acids other than proline in the protein/peptide sequence.

Our contribution. We propose a formal model of the electron-driven reactions occur-
ring inside the mass spectrometer. We follow a modeling strategy first developed by Gam-
bin and Kluge () to study the degradation of proteins by proteolytic enzymes. The
model of ETD reaction can be obtained conceptually in the same way: the stochastic de-
scription of the reaction, based on a Markov Jump Process (MJP), is transformed to a pop-
ulational description of a large number of molecules based on a system of Ordinary Differ-
ential Equations (ODEs). Given the intensities of transitions in the process, we solve the
ODEs numerically with a recursive algorithm to obtain the expected number of molecules.
The space of possible intensities is then searched for the best possible set of parameters by
solving an optimization problem.

The model we propose lets us express the mass spectrum in terms of parameters such
as the total intensity of reactions and the probabilities of the three studied reactions: ETD,
PTR, and ETnoD. A process described by a handful of parameters can be easily visualized
and thus easily understood. Also, the comparison of different spectra, e.g. coming from
different instrument settings, is highly simplified.

We apply our method to mass spectra gathered in controlled experiments, obtained for
highly purified compounds. The identity of the precursor ion and all fragments obtained
given a set of possible reactions is known and the quantities of these fragments can be
established using our in-house developed identification tool called MaTodon (Lermyte
et al., a, ; Łącki et al., a). Given a mass spectrum and a precursor molecule,
MaTodon outputs a list of reaction products together with their estimated intensities
(that are usually assumed to be proportional to the actual number of ions). It performs
deisotopisation and deconvolution of the spectrum, i.e. reports total intensities of chemical
compounds in possibly overlapping isotope clusters (see Figure .).

The model and the fitting procedure have been implemented in Python. The software
tool, called ETDetective, is designed as an extension to MaTodon workflow, see https:
//matteolacki.github.io/MassTodonPy/. The control flow of the whole process from
obtaining a spectrum to obtaining the reaction rates and fragmentation patterns has been
depicted on Figure .. ETDetective together with example data is available to download
at https://github.com/mciach/ETDetective under the -clause BSD license.

Related resear. Various approaches have been taken to model different protein frag-
mentation techniques (Breuker et al., ; Simons, ; Zhurov et al., ; Tureček and
Julian, ). A somewhat similar approach to the one taken by us was presented by Zhang
(, ) to study CID fragmentation, who uses a kinetic model to study fragmenta-
tion. Zhang () adapts the model to model mass spectra obtained with the use of ETD.



https://matteolacki.github.io/MassTodonPy/
https://matteolacki.github.io/MassTodonPy/
https://github.com/mciach/ETDetective
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Figure .: The process of mass spectrum interpretation with MaTodon and ETDetective.

The model uses  parameters and its derivation is grounded in the theory of statistical
mechanics. The model was fitted to a training data set consisting of more than  ETD
spectra simultaneously.

There are important differences between that approach and ours. Zhang’s model is de-
rived from the first principles of statistical physics, whereas the one we propose is more
phenomenological. In our approach, the physics of the phenomenon dictates only the po-
tential states and the transitions between them. We then cast the problem into the well-
studied setting of continuous time Markov Jump Processes. Our current approach also
builds upon the approach for parameter estimation introduced previously in theMassTodon
paper. MassTodon used a heuristical approach to estimate some of the deep parameters of
the process, relying on the idea of parsimony. The approach we present here is theory
driven. That said, ETDetective can use some of the estimates provided by MassTodon and
not optimize them. This can greatly reduce the number of existing parameters, as one can
skip the estimation of the fragmentation probabilities. In contrast, parameters described
by Zhang are fairly complex, making it more difficult to limit their number. Limiting the
number of parameters also reduces the risk of model’s unidentifibility. Finally, one can
use the results obtained using our model as an input for another model that, similarly to
Zhang, includes more of the underlying physical principles. For instance, the reaction rates
we provide appear in the Arrhenius equations.

Apart from these mostly theoretical considerations, the ability to fit to individual mass
spectra also simplifies the process of comparing results obtained with different instruments.
This is an important step in experiment design, see (Lermyte et al., a).

A notable amount of literature has been built up around the idea of purely data-driven
prediction of the intensity of peptides in tandem MS experiments (Elias et al., ; Arnold
et al., ; Degroeve et al., ). A more exploratory approach targeted at studying frag-
mentation patterns was taken by Li et al. (). That said, the above approaches have been
applied mainly to study CID.

Organization of the apter. First, we introduce the theoretical considerations behind
our model. Then, we describe the procedures used to obtain our data sets (experimental
and in silico). Then, we assess the performance of the model. Finally, we discuss existing
problems and possible extensions.





Kinetic Model of ETD

Statement of the model

Following the ideas outlined in Gambin and Kluge (), we model ETD and its side re-
actions as a continuous time Markov Jump Process (MJP), which is a well-established ap-
proach to modeling chemical reactions. Below, we describe the state space of our model
and provide elementary lemmas on its size and properties. Next, we define the transition
intensities of our MJP.

Our model can be described by a Petri net, in which places correspond to molecular
species, transitions to reactions, and tokens to molecules of a given species (Figure .).

All molecules that cannot be observed, e.g. the internal fragments or ions in which all
charges have been neutralized, are merged into the cemetery—a unique place without any
outgoing transitions. Note, however, that the reactions which yield such molecules are still
present in the graph. We will refer to this net as the reaction graph.

Definition . A reaction graph is a bipartite, directed, connected graph ⟨M,R,F⟩, in which

• M is a set of vertices called molecular species or places,

• R is a set of vertices called reactions or transitions,

• F ⊂ (M×R) ∪ (R×M) is a set of edges connecting species and reactions, and

• W : M → N is a function denoting the number of molecules or tokens of a molecular

species.

Eachmolecular species u ∈ M is described by the sequence of amino acids s, the charge
of the cation q, and the number of quenched protons g, so that u = (s, q, g). Note that we
do not model the positions of the charges, i.e. we assume to know only the numbers of
protons on the backbone. We denote the charge of u as qu. The sequence and number of
quenched protons are denoted accordingly as su and gu.

The precursor or root of the reaction graph, denoted r = (s, q0, 0), is the unique molec-
ular species with no incoming transitions (i.e. the root of the reaction graph).Based on
the description of the set of molecular species, we can approximate the size of this set as
follows:

Lemma . e number of the places in a reaction graph corresponding to a precursor molecule

r = (s, q0, 0) is O(Lq20), where L is the length of s.

Proof. Since in the reaction graph we do not include the internal fragments (i.e. infixes of
the amino acid sequence), there areO(L) possible sequences of molecular species. Further-
more, for each molecular species u = (su, qu, gu), we have qu + gu ≤ q. ■
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Figure .: A model of the ETD reaction. (a) A fragment of the reaction graph for a triply charged precursor. The molecular species are
depicted in orange the reactions in blue. The pink skull represents the cemetery. The reaction graph serves as a board for tokens that
represent the numbers of molecules of a given species, depicted as red circles. Only one ETD transition has been shown for clarity of the
image. Tokens reach cemetary when they lose all their charge and are depicted in pink (for eternity). (b) During each reaction, a token
disappears on the substrate side and product tokens appear: one in the case of ETnoD and PTR, two in the case of ETD.

For two molecular species u and v, we write u → v if v can be reached from u by a
single reaction. We write u ≥ v if there exist molecular species m1,m2, . . . ,mn such that
u = m1 → m2 → · · · → mn = v. Note that u ≥ u. We also write u > v if u ≥ v and
u ̸= v. In this case, u is referred to as the ancestor or ancestral molecule of v.

For a reaction R ∈ R, all molecules u such that (u,R) ∈ F are called substrates of
R. Similarly, all molecules v such that (R, v) ∈ F are called products of R. If u is the
substrate of reaction R ∈ R and v1, v2, . . . , vm are its products, then we denote R as u →
v1 + v2 + · · · + vm. Species vi are referred to as the daughter species of ui’s, and ui’s are
called parent species of vi’s.

Note that in our model, any reaction can be uniquely identified by its substrate and one
of the products. Therefore, wewill write u → v1 or u → v2 to denote a reaction u → v1+v2.
We will also write u → v to indicate the existence of a reaction for which u is a substrate
and v is a product.

We assume that at the onset, before any reaction occurred, positive charges are attached
randomly to basic amino acids of the molecules, i.e. on lysines, arginines, and histidines, at
most one charge per site. This restricts the number of protons on a molecular species: for
any molecule,m, qm + gm ≤ Bm must hold, where Bm is the number of basic amino acids
in its sequence.

If one does not know the position of charges before ETD than one cannot know how
many protons should appear on the fragment ions. Therefore, a single fragmentation reac-





tion at a given residue gives rise to several different outcomes. This leads to the following
lemma. We have the following lemma.

Lemma . Assume a random placement of charges and quenched protons on basic amino acids

of a molecule m = (s, q, g). Let cl be the l-th prefix of the sequence, and let zL−l be the l-th

suffix. Let Bc be the number of basic amino acids in the backbone of cl, and Bz be the number

of basic amino acids on the backbone of the corresponding zL−l fragment. en, the probability

of observing qc charges and gc quenched protons on cl aer ETD cleavage on l-th amino acid

is equal to

Pl(qc, gc) =

(
Bc

qc

)(
Bz

q−1−qc

)(
Bc+Bz

q−1

) (
Bc−qc

gc

)(
Bz−q+qc+1

g−gc

)(
Bc+Bz−q+1

g

) ,

and also equal to the probability of observing qz = q−1−qc charges and gz = g−gc quenched

protons on zL−l.

Proof. Since one charge gets neutralized during the reaction, both fragments have q − 1

charges and g quenched protons in total. As each charge is placed randomly and inde-
pendently of other charges on the unoccupied basic sites, the probability of observing qc

charges on cl is equal to the probability of choosing qc out of Bc basic amino acids and
q − 1 − qc out of Bz basic amino acids randomly and without replacement. After placing
the charges on the sequence, there areBc+Bz−q+1 unoccupied basic sites. The probabil-
ity of observing gc quenched protons on cl, given qc charges, is then equal to the probability
of choosing gc out of Bc − qc basic amino acids and g − gc out of Bz − (q − 1 − qc) basic
amino acids. ■

The outcomes of the PTR and ETnoD reactions are unique. It follows that the number of
outgoing transitions for a molecular species other than the cemetery is equal to the number
of ETD transitions plus two side reactions:

2 +
L∑
l=1

(
Bcl +BzL−l

q − 1

)(
Bcl +BzL−l

− q + 1

g

)
.

However, many transitions lead directly to the cemetery. This is especially the case for any
molecule with a single charge or any ETD reaction of a molecular species which has already
undergone an ETD.

The rate of a reaction R = u → v is denoted λuv. We assume that this rate can be
factorized into a product of base reaction intensity, I , squared charge of the substrate, qu,
and reaction probability PR, so that

λuv = Iq2uPR for R = u → v,





where

PR =


PPTR for R = (s, q, g) → (s, q − 1, g),

PETnoD for R = (s, q, g) → (s, q − 1, g + 1),

PETDl
Pl(qc, gc) for R = (s, q, g) → (cl, qc, gc) + (zL−l, qz, gz)

for qz = q − 1− qc, gz = g − gc.

In the above definition, PETDl
is the probability of ETD reaction on the l-th amino acid,

regardless of the distribution of charge among product fragments. Note that the rates u →
cl and u → zL−l are equal, as they correspond to the same reaction. The assumption that
the microscopic intensity of a given reaction is proportional to squared substrate charge is
motivated by the kinetics of ion reactions (McLuckey and Stephenson, ).

We further define the outflow rate, λuu, as λuu = −
∑

v:u→v λuv. Since the probabilities
of reactions sum to 1, λuu can be expressed by a simple closed formula:

λuu = −Iq2u.

We then construct a Markov Jump Process (MJP) to describe the flow of molecules across
the reaction graph. Denote the number of tokens at placem in time t byXm(t). The state of
the MJP, denoted asX(t), is defined as a collection of all token counts at a given moment in
time, so thatX(t) = (Xm(t))m∈M. We assume that at time 0, only the precursor molecules
are observed. Throughout this work, we assume the state X(0) to be fixed. It follows
that the state space of the process, say E, is a finite subset of NM = {x = (xm)m∈M :

∀m∈Mxm ∈ N}.
From a given state x ∈ NM, the system can evolve to another state following one of the

reactions in Figure .. We denote the change in token numbers induced by the transition
R ∈ R as a vector δR = (δRm)m∈M, so that

δRm =


−1 if (m,R) ∈ F
1 if (R,m) ∈ F
0 otherwise.

We assume that the anion radicals do not deplete in time, and the spatial interactions
are negligible, so that each molecule (i.e. each token) reacts independently of the other
ones. This shows that process X(t) is in fact a sum of independent, time-uniform Markov
processes describing individual molecules. Consider two neighbouring states, x and y =

x+δR. Let u be the substrate molecular species ofR and v be one of it’s products. With the
aforementioned assumptions, the intensity of transition from x to y is the sum of reaction
rates λuv of molecules on u. The transition intensity Qxy for x ̸= y then equals

Qxy =

{
xuλuv if y = x+ δu→v,

0 otherwise.





Such form of Qxy results from an assumption that each molecule (i.e. each token) reacts
independently of the other molecules with rate λuv. We also define the outflow intensity,
Qxx, as Qxx = −

∑
y∈NM Qxy. Similarly to λuu, Qxx can be expressed in a simple form:

Qxx(t) =
∑
u∈M

xuλuu = −
∑
u∈M

xuIq
2
u.

The above equations fully describe our model. The model has L + 3 parameters: L proba-
bilities of ETD (including cleavage of the N-terminal amino group),  probabilities of side
reactions, and the base intensity.

Analytical results

We now describe theoretical results concerning the dynamics of the substrates and prod-
ucts of some of the molecular species. In particular, we provide a full description of the
initial precursor’s dynamics, the description of the dynamics of the expected evolution of
all molecular species and results on the dynamics of some of the second moments. Finally,
we show when one should expect the reaction to get totally depleted. The above results are
vital for narrowing down the space of parameters for the fitting procedure.

The following lemma will be used in proofs:

Lemma . If u > v, then λuu < λvv .

Proof. Since u > v, there exists a set of transitions by which v can be obtained from u. As
each transition leads to a loss of at least one charge (exactly one in case of PTR and ETnoD),
we have qu > qv; Since by definition I > 0, it follows that −Iq2u < −Iq2v . ■

The following theorem fully describes the dynamics of the initial precursor.

eorem . Let Xr(t) be the number of precursor molecules, r = (s, q0, 0), at time t, and let

N = Xr(0). en, Xr(t) has a binomial distribution with N trials and probability of success

equal exp(−Iq2ot):

P(Xr(t) = n) =

(
N

n

)
exp(−nIq20t)(1− exp(−Iq20t))

N−n.

Corollary . Let Xr(t) be the number of precursor molecules r = (s, q0, 0) at time t, and let

N = Xr(0). en,

EXr(t) = N exp (−Iq20t),

VarXr(t) = N exp (−Iq20t)−N exp (−2Iq20t).





Proof. Consider a single token of the precursor molecular species. Let τ be the first time of
any reaction of such token. By construction of the process, τ has an exponential distribution
with parameter Iq20 . It follows that

P(τ < t) = 1− exp(λrrt) = 1− exp(−Iq20t).

The probability that the considered token is on the precursor molecular species at time t is
equal to the probability that the first reaction occured after time t. Since the tokens react
independently, the total number of precursor molecules realizes a binomial scheme withN
trials and the probability of success equal to exp(−Iq20t). ■

In general, due to the complicated structure of the reaction graph and the fact that the
ETD reactions have more than one product, it is difficult to obtain distributions of all molec-
ular species. However, we can obtain a relatively simple system of ordinary differential
equations for the expected number and variance of molecules, and solve them recursively
by a numerical procedure:

eorem . Let u, v ∈ M be two neighbouring molecular species (i.e. u → v or v → u). Let

EXu(t) and VarXu(t) denote the expected number and variance of the number of umolecules,

and let Cov(Xu(t), Xv(t)) denote the covariance between the numbers of u and v molecules.

en, we have

∂

∂t
EXu(t) =

∑
w : w→u

λwuEXw(t) + λuuEXu(t) (.)

∂

∂t
VarXu(t) =

∑
w : w→u

2λwuCov(Xu(t), Xw(t)) + 2λuuVarXu(t)

+
∑

w : w→u

λwuEXw(t)− λuuEXu(t). (.)

∂

∂t
Cov(Xu(t), Xv(t)) =

∑
w : w→u

λwuCov(Xw(t), Xu(t))

+
∑

w : w→v

λwvCov(Xw(t), Xv(t))

+ (λuu + λvv)Cov(Xu(t), Xv(t))

− λuvEXu − λvuEXu. (.)

Proof. Let [t, t + h] be a time interval short enough that only one reaction can occur. In
such interval, the number of u molecules can either increase by , decrease by , or stay
unchanged. Consider the expected number of umolecules at time t+h conditioned on the
state of the process at time t. From the definition of the expected value and construction of





the reaction graph, we have

EXu(t+ h)|X(t) = (Xu(t) + 1)P(Xu(t+ h) = Xu(t) + 1|X(t))

+ (Xu(t)− 1)P(Xu(t+ h) = Xu(t)− 1|X(t))

+Xu(t)P(Xu(t+ h) = Xu(t)|X(t)).

Consider X(t) = x. From the definition of transition intensity, we have

P(Xu(t+ h) = Xu(t)+ 1|X(t) = x) =
∑

y:yu=xu+1

(Qxyh+ o(h)) =
∑

w : w→u

(xwλwuh+ o(h)).

Since the state space is finite, we have
∑

w : w→u(xwλwuh+o(h)) =
∑

w : w→u(xwλwuh)+

o(h). By similar reasoning for the other terms, we get

EXu(t+ h)|X(t) = (Xu(t) + 1)
∑

w : w→u

Xw(t)λwuh+ (Xu(t)− 1)
∑

w : u→w

Xu(t)λuwh

+Xu(t)

(
1−

∑
w : w→u

Xw(t)λwuh−
∑

w : u→w

Xu(t)λuwh

)
+ o(h).

After basic algebraic manipulations, we get

EXu(t+ h)|X(t) =
∑

w : w→u

Xw(t)λwuh−
∑

w : u→w

Xu(t)λuwh+Xu(t) + o(h).

By taking expectation with respect to X(t), we obtain

EXu(t+ h) =
∑

w : w→u

EXw(t)λwuh−
∑

w : u→w

EXu(t)λuwh+ EXu(t) + o(h).

Now, after subtracting EXu(t) from both sides, dividing by h and taking a limit h → 0,
we arrive at

∂

∂t
EXu(t) =

∑
w : w→u

EXw(t)λwu −
∑

w : u→w

EXu(t)λuw =
∑

w : w→u

EXw(t)λwu + λuuEXu(t),

which proves Equation (.).
Now, consider the second moment of the number of molecules of species u, EX2

u(t).
We have

EX2
u(t+ h)|X(t) = X2

u(t)P(Xu(t+ h) = Xu(t)|X(t))

+ (Xu(t) + 1)2P(Xu(t+ h) = Xu(t) + 1|X(t))

+ (Xu(t)− 1)2P(Xu(t+ h) = Xu(t)− 1|X(t)).

Substituting for the probabilities, we get





EX2
u(t+ h)|X(t) = X2

u(t)

(
1−

∑
w : w→u

λwuXw(t)h−
∑

w : u→w

λuwXu(t)h

)
+ (Xu(t) + 1)2

∑
w : w→u

λwuXw(t)h

+ (Xu(t)− 1)2
∑

w : u→w

λuwXu(t)h+ o(h).

After grouping terms and averaging overX(t), we get

EX2
u(t+ h) =

∑
w : w→u

2λwuEXu(t)Xw(t)h+
∑

w : w→u

λwuEXw(t)h

+
∑

w : u→w

λuwEXu(t)h−
∑

w : u→w

2λuwEX2
u(t)h+ EX2

u(t),

which, after performing simple algebraic manipulations and taking a limit h → 0, yields

∂

∂t
EX2

u =
∑

w : w→u

2λwuEXu(t)Xw(t) +
∑

w : w→u

λwuEXw(t)

+
∑

w : u→w

λuwEXu(t)−
∑

w : u→w

2λuwEX2
u(t).

Now, from the fact that VarXu(t) = EX2
u(t)− E2Xu(t), we have

∂

∂t
VarXu(t) =

∂

∂t
EX2

u(t)− 2EXu(t)
∂

∂t
EXu(t).

Substituting for the time derivative of the expected value, we get Equation (.).
Now, assume that u → v, and consider the mixed moment, E(Xu(t)Xv(t)). In the time

interval [t, t+ h], we have the following possibilities:

• The number of u molecules increases,

• The number of v molecules increases due to reaction other than u → v,

• The number of u molecules decreases due to reaction other than u → v,

• The number of v molecules decreases,

• The number of u molecules decreases by , and the number of v molecules increases
by , due to reaction u → v,

• Their numbers stay unchanged.





E(Xu(t+ h)Xv(t+ h)|X(t)) = (Xu(t) + 1)Xv(t)
∑

w : w→u

λwuXwh

+Xu(t)(Xv(t) + 1)
∑

w : w→u,w ̸=u

λwuXwh

+ (Xu(t)− 1)Xv(t)
∑

w : u→w,w ̸=v

λuwXuh

+Xu(t)(Xv(t)− 1)
∑

w : v→w

λwuXvh

+ (Xu(t)− 1)(Xv(t) + 1)λuvXuh

+Xu(t)Xv(t)(1− c) + o(h),

where c = 1− P(Xu(t+ h) = Xu(t), Xv(t+ h) = Xv(t)|X(t)), equal to

c =
∑

w : w→u

λwuXwh+
∑

w : w→u,w ̸=u

λwuXwh+
∑

w : u→w,w ̸=v

λuwXuh

+
∑

w : v→w

λwuXvh+ λuvXuh.

By proceeding as before and using the identity Cov(Xu(t)Xv(t)) = EXu(t)Xv(t) −
EXu(t)EXv(t), we obtain

∂

∂t
Cov(Xu(t), Xv(t)) =

∑
w : w→v

λwuCov(Xw(t), Xu(t))

+
∑

w : w→u

λwvCov(Xw(t), Xv(t))

+ (λuu + λvv)Cov(Xu(t), Xv(t))

− λuvEXu.

Finally, note that for any twomolecular species u and v, if λuv ̸= 0, then λvu = 0. Therefore,
we may freely add the term −λvuEXv to make the formula symmetric with respect to Xu

and Xv, and obtain Equation (.). ■

Since we have defined λuv to be zero when u ̸→ v, Equation (.) can be also used for
most other molecular species. One important caveat is the case when both u and v are prod-
ucts of the same ETD reaction, in which case their numbers can increase simultaneously
and the formula requires an additional term to account for that possibility.

Theorem  allows us to obtain the analytical equations for mean number and variance
of the numbers of molecules of species connected to the precursor by a single reaction.

Lemma . Let r = (s, q0, 0) be the precursor molecular species, and let N = Xr(0). Let u be

a daughter molecular species of r aer reaction R (either PTR, ETnoD or an ETD at a given

residue with a given distribution of charges and quenched protons among fragments). en,

EXu(t) = NPR
q20

q20 − q2u
(exp(−Iq2ut)− exp(−Iq20t)) (.)





VarXu(t) = EXu(t)− (EXu(t))
2/N = N

EXu(t)

N

(
1− EXu(t)

N

)
(.)

Proof. Since u is a daughter species of r, it has only one incoming reaction, r → u. From
Theorem , we get a differential equation for the mean value:

∂

∂t
EXu(t) = λruEXr(t) + λuuEXu(t).

The solution to this equation with boundary condition EXu(0) = 0 is

EXu(t) = N
λru

λrr − λuu

(exp(λrr)− exp(λuu)),

which, after substituting for λrr, λuu and λru, gives Equation (.).
The equation for covariance between Xr and Xu from Theorem  is

∂

∂t
Cov(Xr(t), Xu(t)) = λruCov(Xr(t), Xr(t))− λruEXr(t)

+ (λrr + λuu)Cov(Xr(t), Xu(t)).

By the identity Cov(Xr(t), Xr(t)) = VarXr(t), we can use Corollary  to substitute for
Cov(Xr(t), Xr(t)) and EXr(t). The differential equation for covariance can now be solved
to get

Cov(Xr(t), Xu(t)) = N
λru

λrr − λuu

exp(λrrt)(exp(λuut)− exp(λrrt)).

FromTheorem , the equation for variance of Xr(t) is

∂

∂t
VarXu(t) = 2λruCov(Xr(t), Xu(t)) + 2λuuVarXu(t) + λruEXr(t)− λuuEXu(t).

After substituting and solving the above equation, we arrive at

VarXu(t) = −N
λ2
ru

(λrr − λuu)2
exp(2λuut) + 2N

λ2
ru

(λrr − λuu)2
exp((λrr + λuu)t)

−N
λ2
ru

(λrr − λuu)2
exp(2λrrt) +N

λru

λrr − 2λuu

exp(λrrt)

−N
λruλuu

(λrr − λuu)(λrr − 2λuu)
exp(λrr)−N

λru

λrr − λuu

exp(λuut),

which, after grouping terms, simplifies to

N
λru

λrr − λuu

(exp(λrrt)− exp(λuut))−N
λ2
ru

(λrr − λuu)2
(exp(λuut− λrrt)

2,

equal to EXu(t)− (EXu(t))
2/N . ■

We end this section with an interesting result on the boundaries of reasonable reaction
times. The result is also useful to specify boundaries inwhich to search for the base intensity
when fitting the model to data.





Proposition . Let TEND be the expected reaction time in which all molecules lose all their

charges (i.e. become unobservable). en,

q0
I

≥ TEND ≥ 1

I

q0∑
i=1

1

i2
.

Proof. Consider a single precursor molecule. Since each reaction leads to a neutralization
of one charge, there are exactly q0 reactions needed to fully neutralize all of it’s charges.
Let τ1 be the first reaction time and let τi be the time between i−1’th and i’th reaction. We
have TEND = τ1 + τ2 + · · ·+ τq0 .

From the construction of the process, τ1 follows an exponential distribution with pa-
rameter −λrr = Iq20 . Therefore,

Eτ1 = (Iq20)
−1.

If q0 = 1, then the above equation proves the proposition. Assume that q0 > 1. We now
have two scenarios:

• The first reaction was either a PTR or ETnoD. Then, τ2 follows an exponential distri-
bution with parameter I(q0 − 1)2, and it’s expected value is (I(q0 − 1)2)−1.

• The first reaction was an ETD. Then, since both fragments now react independently,
τ2 follows an exponential distribution with parameter I(q2c + q2z), where qc and qz are
the fragment charges, and it’s expected value is (I(q2c + q2z))

−1

Now, since q2c + q2z ≤ (qc + qz)
2 = (q0 − 1)2, in both scenarios we have

Eτ2 ≥ (I(q0 − 1)2)−1.

Note also that since q0 − 1 > 0, we have Eτi ≤ I−1 for i = 1, 2. Iterating the above
reasoning, we get that

q0
I

≥
q0∑
i=1

Eτi ≥
1

I

q0−1∑
i=0

1

(q0 − i)2
,

which, after changing the summation index, proves the result. ■

Fitting the model to data

Here, we describe how to fit our model to the observed data. The input for ETDetective con-
sists of a mass spectrum parsed by the MaTodon software. Given a mass spectrum and
the precursor’s sequence and charge, MaTodon outputs a list of intensities of observed
molecular species (Ou)u∈M. We normalize this list so that the intensities sum to 1 and look
for a set of model parameters that will best predict the observed molecule proportions. The
homogeneity of the considered MJP implies that reaction time and base reaction intensity





are exchangeable, and therefore only one of them can be identified. We thus set the time
of reaction to be equal to 1.

For the purposes of numerical stability, we reparametrize our model by the following
transformation of the original parameters:

θ =
(
log(IPPTR), log(IPETnoD), log(IPETD1), log(IPETD2), . . . , log(IPETDL

)
)
,

where L is the length of the precursor’s sequence, and PETDl
is the probability of cleavage

between l−1-th and l-th amino acid, including dissociation of the N-terminal amino group
as PETD1 . The new parameters are therefore in RL+2.

The general scheme of fitting the model is as follows: for a given starting point θ0
(obtained using the estimates from MassTodon), we calculate the expected number of all
molecular species in the reaction graph, normalize it, and compare to the observedmolecule
proportions. Next, we iteratively update θ to minimize the discrepancy between the pre-
diction and observation and obtain the optimal vector of parameters θ̂.

The loss function is the sum of squared differences between predicted and observed
proportions, with an optional penalty term for dechargedmolecules which are not observed
in the spectrum, ∑

u∈M\{c}

[
EXu(1)−Ou

]2
+ ρ
[
EXc(1)

]2
,

where c is the cemetery. In our numerical experiments we analyze the cases of ρ = 0

and ρ = 1. To minimize the loss function, we use the L-BFGS-B algorithm with gradient
approximation (Nocedal, ).

Obtaining analytical formulas for expected numbers of molecules is complicated be-
cause of the complex structure of the reaction graph. However, we can state the general
form of a solution, and use it in numerical procedures.

The general form of solutions for Equation (.) is

EXu(t) =
nu∑
i=1

Au
i exp(Bu

i t), (.)

where Au
i and Bu

i are coefficients constant in time, but dependent on the reaction rates.
Their overall number, nu, depends on the position of u in the reaction graph. From Corol-
lary  it follows that the coefficients for the precursor molecular species are nu = 1,
Ar

1 = Xr(0) and B = −Iq20 .

Proof. Proceed by induction. For the root molecule, the Equation (.) follows from Corol-
lary . Now, consider a non-precursor molecular species u, and assume that the Equa-
tion (.) is true for all molecular species v such that v > u. From Theorem , we have

∂

∂t
EXu(t) =

∑
w : w→u

λwuEXw(t) + λuuEXu(t).





Since in the above equation we have w > u, we can use the induction hypothesis to obtain

∂

∂t
EXu(t) =

∑
w : w→u

nw∑
i=1

λwuA
w
i exp(Bw

i t) + λuuEXu(t). (.)

Note that it follows that Bw
i = λvv for some w ≥ v. The corresponding homogeneous

equation is ∂
∂t
EXu(t) = λuuEXu(t), which implies that the solution to Equation . is

EXu(t) = c(t) exp(λuut).

By differentiating and substituting again into (.), we get

∂c

∂t
(t) =

∑
w : w→u

nw∑
i=1

Aw
i λwu exp((Bw

i − λuu)t).

Since w > u and Bw
i = λvv for some v ≥ w, we have Bw

i ̸= λuu (Lemma ). It follows that,
for some constant c, we have

c(t) = c+
∑

w : w→u

nw∑
i=1

Aw
i

λwu

Bw
i − λuu

exp(Bw
i − λuu),

EXu(t) = c exp(λuut) +
∑

w : w→u

nw∑
i=1

Aw
i

λwu

Bw
i − λuu

exp(Bw
i t).

Since u is not the precursor molecule, we have EXu(0) = Xu(0) = 0, which implies that

c = −
∑

w : w→u

nw∑
i=1

Aw
i

λwu

Bw
i − λuu

,

and therefore

EXu(t) =
∑

w : w→u

nw∑
i=1

Aw
i

λwu

Bw
i − λuu

(exp(Bw
i t)− exp(λuut)) .

■

It follows from above, that the coefficients for the other molecules satisfy a recursive
dependence,

nu = 1 +
∑

w : w→u

nw,

{(Au
i , B

u
i ) : i = 1, . . . , nu − 1} =

p∪
j=1

{(
A

wj

k

λwj

B
wj

k − λuu

, Bk
wj

)
: k = 1, . . . , nwj

}
,

(Au
nu
, Bu

nu
) =

( ∑
w : w→u

nw∑
i=1

Aw
i

−λwu

Bw
i − λuu

, λuu

)
, (.)

which allows us to compute them by a numerical procedure. Starting from the precursor
molecule, we proceed downwards and compute the coefficients using the above recursive





formulas. The algorithm uses memoization to reduce the computational time by storing
coefficients of the already visited nodes. Note that the number nu grows exponentially with
the depth of the reaction graph. However, the number of distinct Bu

i values is bounded by
the number of molecules in the graph. SummingAu

i coefficients corresponding to the same
Bu

i values allows to substantially limit the space complexity of the algorithm.
This leads to the following theorem.

eorem . e time complexity of Algorithm  in Figure . is O(L2q40).

Proof. Observe that the algorithm is amodifiedDFS search, and over all the recursive calls of
the algorithm the loop in Line  will run once for each parent-daughter molecular species
pair.

Recall from Lemma  that there are O(Lq20) molecular species in graph G. Moreover,
we have assumed that the secondary fragments are unobserved; therefore, there are only
O(q20) species that have O(L) daughters other than the cemetery (the ones corresponding
to the non-fragmented species), while all the other species have only two children other
than the cemetery. As such, the number of parent-daughter pairs is linear with respect the
number of vertices. It follows that the loop in Line  in Algorithm  will runO(Lq20) times.

Because of the grouping step in Line , the size of list L for a given parent of u is
bounded by the number of its ancestors, which is O(Lq20). The updating of a single coeffi-
cient is performed in constant time. It follows that the time complexity of one run of the
loop in Line  in Algorithm  is O(Lq20), and the time complexity of the whole procedure
is O(L2q40). ■

Validation & Results

We have applied our model to both in silico and on experimental data for Substance P, an
 amino acid neuropeptide with sequence RPKPQQFFGLM.

Numerical simulations.

Numerical simulations of ETD process were performed to assess the quality of the fitting
procedure under fully controlled conditions. The simulation was performed as follows:
we start with a given number of Substance P precursor cations. We then simulate the
electrospray ionization by placing a given number of protons on randomly chosen basic
amino acids. Then, we simulate the Markov Jump Process using standard simulation tech-
niques (Gillespie, b), noting that our process can be simulated as if the cations reacted
independently of each other. Ions that find themselves in the same state at the end of the
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Figure .: Relative errors of the fitting procedure on in silico Substance P data. The known true values of parameters are respectively
PETD = 30%, PETnoD = 25%, PPTR = 45%. Cleavage probabilities were assumed to be uniform (proline being the obvious exception).
Each boxplot summarizes the results of 100 independent simulations: whiskers denote the first and ninth decile and the box lids - the
first and third quartiles. The left panel presents the response of the relative error of the estimates to the increasing amount of noise in
the intensities reported by MaTodon. On the right panel, we study the impact of the random removal of information on the molecular
species, both in noiseless conditions and with a modest amount of noise (standard deviation set to 20% of the intensity of the simulated
molecule).

simulation are aggregated. The resulting counts of ions simulate results obtainable with
MaTodon.

We have also analyzed the robustness of the fitting procedure to noisy or missing data.
The random noise is modeled by adding Gaussian noise to the counts, with zero mean and
standard deviation expressed as a given percentage of the count. Missing data is modeled
by randomly removing a given proportion of the peaks. Finally, the counts obtained in this
way are normalized to sum to one. Altogether, the simulation was repeated 100 times for
20 different values of data distortion parameters, see Figure ..

The fitting procedure turned out to be fairly robust toward amoderate noise andmissing
data, see Figure .. The results of the fitting procedure are unbiased. On noiseless data and
data with a moderate amount of noise (up to 50% of variation in simulated intensities),
the model was able to predict the reaction intensities with very high accuracy (only after
introducing more than 25% of peak variation do the estimates start to surpass the limit of
50% relative error in more than  percent of cases).

Application to the experimental data.

Mass spectra have been acquired for purified Substance P. The precise experimental setting
is described in detail by Lermyte et al. (b). The model has been fitted to 53 Substance P
spectra, obtained at various travelling-wave height/velocity combinations (the design of the
instrument and physical meaning of these parameters are described in detail by Lermyte
et al. (b)). After fitting the model to the data, the validity of the model was further
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investigated by computing the percentage of the experimental spectrum accounted for by
the theoretically predicted spectrum. We call this value the Explanation Percentage (EP)
and define it to be the common part of the theoretical and experimental spectrum. Since
both spectra are normalized so that they sum to one, the Explanation Percentage can be
expressed in a simple formula,

EP =
∑
u

min{yu, enormu }.

Note that because of normalization of spectra, 0 ≤ EP ≤ 1. The Explanation Percentage
calculated for considered data sets is presented in Figure .: the values are between 50%
and 98%, mostly around 60% for discharged-penalized loss function (ρ = 1) and 80% for
non-penalized loss function (ρ = 0).

The predicted total intensity of all reactions, I , was found between 10−3 and 10 in the
unconstrained case and between 10−3 and 10−1 in penalized case (data not shown). How-
ever, for reaction intensities above 0.6, the unreacted precursor molecules constitute less
than 1% of the predicted spectrum, and most molecules in the spectrum are reaction prod-
ucts; therefore, the loss function becomes flat in this region, as further increase of base
intensity causes little change in molecule proportions. This explains the large deviation
between the two approaches in this case.

In regions of low reaction intensity, the explanation percentage approaches 100%; how-
ever, in these conditions, the mass spectra contain mostly unreacted precursors, and so the
fitting is relatively easy to perform. In regions of high reaction intensity (wave height be-
tween 0 and 0.3, wave velocity between 10 and 20 or between 1750 and 6000) the spectra
are much more informative and even then the model can explain around 70% of the input
information. Similar results are obtained for different values of wave velocity. In the re-
gions of high intensity (wave velocity above 1750) the model explains around 75% of the
input.
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Figure .: The distribution of the runtime of ETDetective, both for the unconstrained (ρ = 0, in cyan) and the penalized (ρ = 1, in red)
versions of the fitting procedure.

A notable source of discrepancy between the observations and our predictions is the ab-
sence of doubly-charged precursor (i.e. product of one PTR or ETnoD), which we observe in
many mass spectra. This phenomenon of missing products has been described in chemical
literature by Schnier et al. (). However, the reason for this is currently unknown. As
for now, our model does not account for such possibility.

In Figure . we present the results of fitting our model to the data. For different values
of wave velocity, in regions of relatively high reaction intensity, we have obtained stable
proportions of reaction probabilities. The proportions start to differ considerably in the
region between 100 and 1250. However, in this region there are almost no reactions (less
than 1% of reaction products), so the spectrum contains very little information. On the
contrary, for different values of Wave Height, we have noticed a major change in reaction
proportions in the regions of high reaction intensity. For Wave Height between 0.3 and
0.4, ETD is by far the most probable reaction. For higher Wave Heights, the side reactions
contribute more to the spectrum. Overall, both parameters influence the reaction intensity,
but only the Wave Height seems to influence the proportion of ETD to side reactions.

Finally, Figure . show that the actual runtime of ETDetective is fairly limited on the
considered Substance P results.

Discussion & Conclusions

In this chapter, we have presented a kinetic model of the electron transfer driven reactions.
The obtained results are promising for future work, as the model can explain around 80%
of the observed intensities of the molecular species. The model is based on stochastic foun-
dations and so the estimated parameters have a probabilistic interpretation, such as the
probability of a given cleavage or reaction.

Due to its simplicity, the model described here can be used in further fundamental re-
search into the ETD mechanism, as a discrepancy between experimental observations and
the model predictions is expected to have a relatively straightforward physical interpreta-
tion. For instance, the underestimation of the asymmetry of corresponding c and z fragment
intensity in the current results might indicate that a more sophisticated model of protona-
tion sites should be used (e.g. one that accounts for electrostatic repulsion, see (Morri-





son and Brodbelt, )). Similarly, using the MaTodon software, it has been recently
shown (Lermyte et al., ) that the observed ratio of PTR to ETnoD depends on protein
conformation for intermediate charge states of ubiquitin and, thus, on the reaction his-
tory. A more detailed analysis could be easily performed (and similar dependencies thus
revealed) using ETDetective.

A natural way for this work to proceed is to explain the influence of the instrumental
settings and experimental conditions on the reaction intensity and cleavage preferences.
This can be investigated using the statistical methodology, like the generalized linear mod-
els, Dirichlet regression in particular.
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Algorithms

Algorithm 1 Computation of expected numbers of molecules

1: Input: Reaction graph G, time t
2: Output: Expected numbers of molecules at time t

3: Procedure get_coefficients(G, u): /decorates G with Eq. (6) coefficients/
4: If u = root(G):
5: Let u.coef_list := [(Ar

1, Br
1)] /list of precursor coefficients/

6: Return u.coef_list
7: Else If exists u.coef_list: /if u was already visited, return the result/
8: Return u.coef_list
9: Else :

10: Initialize empty list C /list to store and update Au
i , Bu

i coefficients/
11: For w in parents(u):
12: Let L := get_coefficients(G, w)
13: Update coefficients Aw

i according to Eq. (7)
14: Append L to C
15: Group and sum Ai coefficients
16: Let u.coef_list := C
17: Return u.coef_list

18: Let c := cemetery(G)
19: get_coefficients(G, c) /compute coefficients for all species in graph/
20: For u in G:
21: Compute expected number of u molecules using u.coef_list (Eq. 6)

graph. Summing Au

i

coefficients corresponding to the same Bu

i

values allows to

substantially limit the space complexity of the algorithm.

This leads to the following theorem.

Theorem 3. The time complexity of Algorithm 1 is O(L2q40).

3 Validation & Results

We have applied our model to both in silico and on experimental data for Sub-

stance P, an 11 amino acid neuropeptide with sequence RPKPQQFFGLM.

3.1 Numerical simulations.

Numerical simulations of ETD process were performed to assess the quality

of the fitting procedure under fully controlled conditions. The simulation was

performed as follows: we start with a given number of Substance P precursor

cations. We then simulate the electrospray ionization by placing a given number

of protons on randomly chosen basic amino acids. Then, we simulate the Markov

Jump Process using standard simulation techniques (Gillespie, 1977), noting that

our process can be simulated as if the cations reacted independently of each

other. Ions that find themselves in the same state at the end of the simulation

13

Figure .: Computation of expected numbers of molecules.







5
Deconvolution of Mass Spectra & Ion

Statistics

“I am not confused. I’m just well mixed.”

— Robert Frost

The deconolion of signals originating from different molecular species is an
important problem in mass spectrometry. As shown in previous sections, it is
crucial for the proper understanding of what is the content of the introduced
samples. In Chapter  we have presented an approach to deconvolution that is

using constrained quadratic programming. This approach directly generalized the approach
taken by Slawski et al. (), making it more robust to small shifts of spectra in the mass-
to-charge ratios that can appear due to poor calibration.

Here, we present more general models of signal deconvolution. These models

• can be derived from the first principles.

• offer the possibility to estimate the how different estimates of numbers of molecular
species depend between themselves. In particular, it offers means to pinpoint signals
that cannot be told apart easily.

• can estimate the ion-intensity exchange rate – the constant that quantifies the amount
of intensity that can be attributed to only one ion.





In order to achieve these tasks, we are using a data augmentation methods to solve the
problem.

Deriving a model from the first principles means that the model takes into account the
existing theory of themass spec signal that asserts, that the overall number of ions observed
in the instrument should approximately follow the Poisson distribution (Ipsen and Ebbels,
; Ipsen, ). As we shall see, the Poisson distribution neatly inscribes in the overall
deconvolution problem, extending the existing theory to a more general setting, naturally
and without contradictions.

This work is not the first attempt to apply Bayesian reasoning to the problem of the
deconvolution of mass spectrometry signals. For instance, Marty et al. () tried to apply
Bayesian deconvolution to ion mobility spectra. However, the recursive Richardson-Lucy
algorithm (Lucy, ; Richardson, ) applied there is not fit for our needs, as it does not
offer enough flexibility to model all the aspects of the problem we face.

Also, the problem of the estimation of the ion-intensity exchange rate has been ap-
proached, in a maximum-likelihood setting (Kaur and O’Connor, ). The model consid-
ers only the case of pure isotopic distributions, excluding any possibilities of a convoluted
signal coming from several ion sources. The model assumes that ions are independent is
based on the multinomial distribution. The model does not formally introduce the notion
of the ion-intensity exchange rate; however, it is easy to obtain an equivalent model that
would actually use that notion.

Data Preprocessing

Although we do believe that our model can be easily adjusted to model any type of mass
spectrometry data, we do think it is necessary to show how such a preprocessing could
be achieved on one example of data. Let us, therefore, consider data acquired with LTQ
Orbitrap Velos instrument (Thermo Fisher Scientific, Bremen, Germany).

As can be noticed in Figure ., even raw data from the exported mzXML files is already
initially preprocessed. This is particularly noticeable if we consider the incredible quality
of the Gaussian fit in Figure .a. Therefore, it definitely does not make sense to model each
particular peak in that mass spectrum. Instead, we process that signal so as to obtain in the
end a mapping A → IA, where A is some range in the mass domain, and IA denotes the
total intensity in that range. Let us enumerate the ranges we look at, (Ai)

W
i=1. Then, we will

also write Ii instead of IAi
, as shown in Figure ..
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Figure .: LTQOrbitrap Velos data acquired for Ubiquitin (as described in detail by Lermyte et al. (a)), as exported by the instrument
in the mzXML format. Observe the repeating bitonic patterns of the consecutive intensity peaks in .a. A closer examination of the
. Da centered peak in .b shows, that the observed data very closely resembles Gaussian distribution (naïvely fitted with the
method of moments). This shows, that the raw data that Orbitrap outputs must be already subject to some form of preprocessing.

Data Generation Model

We assume that the input for the problem consists of a mapping A → IA, a function A →
IA, where A are some ranges in the mass-to-charge ratio and IA is the observed intensity
within that range.

It is natural to assume, that the total number of ions generated by the mth molecular
species in the spectrum, denoted byN·m, follows the Poisson distribution (Ipsen and Ebbels,
; Ipsen, ). The theoretical argument behind this is as follows: the number of ions
that actually make it to the detector is very limited. If one assumes that ions move inde-
pendently throughout the instrument, with some chance of reaching their final destination,
then the number of successful detections is directly modeled by the binomial distribution.
That distribution is usually well approximated by the Poisson distribution, which is some-
times referred to as the distribution of rare events. Denote by Λm the intensity of N·m.
Otherwise said, it is the expected number of ions of the molecular speciesm. It is natural
to choose that Λm follows the gamma distribution, as it is the conjugate distribution to the
Poisson distribution (Wasserman, ). The gamma distribution has density γa,b(x) pro-
portional to xα−1e−βx. It depends upon two hyper-parameters that need to be chosen in
advance. It is natural to assume α = 1, as this results in an a priori distribution with a mode
at , as we should expect a priori that a molecular species is absent.

For each molecular species m we consider an independent Poisson process Xm. Each
process is characterized by an intensity measure µm. The process Xm should spread the
Λm ions along the mass-to-charge half-line. Otherwise said, conditionally on Λm (drawn
itself from the gamma distribution), µ

(
[0,∞)

)
= Λm. A self-imposing way to define how

that measure spreads over [0,∞) is to assume that it is proportional to the fine isotopic
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Figure .: Orbitrap Preprocessing Strategy. We divide peaks into clusters so that each cluster contains intensities that form a bitonic
sequence, going first up and then down. The precise division into clusters can be achieved in many ways, without any major impact on
the overall calculations. The intensities of peaks in each cluster are aggregated.

structure. However, that distribution alone cannot be used, as it is atomic and the intensity
measure of a Poisson process has to be absolutely continuous with respect to the Lebesgue
measure (Kingman, ). In the context of the high-resolution FT-ICR instruments, ions
scatter around their expected mass to charge ratios following a mass precision distribution.
The usual choices for that distribution are either Gaussian or Lorentzian (Posener, ;
G. Marshall et al., ). For now, we do assume the distribution to be centered at zero.
Equivalently, we assume the spectra to be well calibrated. In actual implementation, it
is better to use truncated distributions, so as to attack different deconvolution problems
independently and – potentially – in parallel. Therefore, the natural intensity measure
amounts to a mixture of normal distributions, multiplied by the average number of ions.

µm(B|Λm) = Λm

∑
mz∈MZm

pmzG(B − mz), (.)

where B is some probing range on the m/z half line, and G is the chosen mass precision
distribution. The peaks are assumed to be identifiable uniquely by their m/z ratio mz and
that all these values form a molecule specific set MZm

. To make the calculations manage-
able, instead of using full isotopic distribution, we use an optimalP -set instead, as provided
by the IsoSpec algorithm. The probabilities in that distribution are divided by 1 − P , so
that the new measure remains probabilistic. Observe that by trimming, we do assume to
concentrate our attention only to the information contained in ranges (Aw)

W
w=1, so that the

For certain values of the parameters of the multinomial distribution, it might be possible that more than
one isotopologue can be identified by precisely the same mass-to-charge ratio. In that cases, we do sum them
up to form one peak instead.





resulting variables Λm and Nm·, in fact, describe only quantities of molecular species in
that sets. In particular, we do not integrate out with respect to the unobserved data outside
these ranges, which would be difficult and would not significantly affect the outcomes.

Let us choose some mass range A. For instance, it is natural to choose a set defining a
bin as obtained in the previous section for the Orbitrap instrument. Given that the sum of
independent Poisson random variable is also a Poisson variable, the overall number of ions
observed in setA should also follow the Poisson law, with intensity equal to the sum of the
constituent intensities,

NA ∼ Poisson
( M∑

m=1

Λm

∑
mz∈MZm

pmzG(A− mz)
)
. (.)

What follows from the properties of the process, if some ranges A and B do not intersect,
then variables NA and NB are also independent.

Apart from considering different isotopic envelopes, we still need more control over
how the intensity is created from the actual ion count NA. The problem of how the num-
ber of ions is reflected in the mass spectrometer is complex and boils down to different
technologies being used at the detection step. De Hoffmann and Stroobant () enumer-
ate at least two big classes of detectors: () ion counters, and () array collectors. The ion
counters can detect one ion during some given time lapse (but they fail to record two and
more). On the other hand, the array collectors can record multiple mass-to-charge ratios
simultaneously. There is little research that aims at quantifying the precise relationship
between the actual number of ionsNA and the recorded intensity IA. It is mostly assumed,
that for some of the array collectors that dependence is linear (Koppenaal et al., ), at
least within the dynamic range of the detector. This is also tacitly assumed by some of the
existing statistical research on the topic (Kaur and O’Connor, ); however, this research
has been carried out on an FT-ICR instrument. The LTQ Orbitrap Velos is paired with a
patented dual conversion dynode detector, two off-axis continuous dynode electron multi-
pliers with extended dynamic range, and a digital electronic noise discrimination system.
The nature of the intensity-ion count relationship is not known in advance here. Here, we
will follow a simple approach that assumes that the data has been indeed gathered at the
dynamic range of the detector. Therefore, we will assume that

Iw = CNw + ϵw,

where C > 0 is the intensity-ion count exchange rate and ϵw is the measurement error. In
particular, the above specification abstracts from detector overfill, as limNw→∞ Iw = ∞.

For mathematical convenience, we choose a truncated Gaussian distribution as a prior
As advertised in that company’s leaflet.





for C . We truncate it to the positive halfline (0,∞), and set the mode to 1 and set unit
variance so that its density is given by

f(c) =
1[0,∞)

[1− Φ(0|1, 1)]
√
2π

exp
(
− (c− 1)2

2

)
,

where Φ(0|m,σ2) is the cumulative distribution function of the normal distribution with
mean m and variance σ2. The truncation is a natural requirement, as the dependence be-
tween the observed intensity and the number of ions should be positive.

Also, we assume that the error of ϵw follows a normal distribution with mean ξ and
variance ν2. Also, coordinates of vector ϵ = (ϵw)

W
w=1 are assumed mutually independent

given (ξ, ν2). Whenever necessary, we will denote the density of the Gaussian r.v. with
mean m and variance σ2 at point x by gm,σ2(x). We put a Gaussian prior on ξ, with mean
zero and unit variance, so that its density is g0,1(ξ). Finally, we assume that 1

ν2
follows the

gamma distribution with both parameters set to one.

Notation

From now on, we will denote eα αk

k!
by poiss(k|α). Also, Λ = (Λm)

M
m=1, a = (am)

M
m=1,

b = (bm)
M
m=1, and I = (Iw)

W
w=1.

By Nm· we already denote the total number of ions of the mth molecular species. This
number is divided into parts appearing in different mass ranges Aw. We arrange all these
counts into a matrix N. We also denote by Nm− the mth row of N, assuming that it is a
standing vector. It contains all counts generated by the mth molecular species. By N|w we
denote the wth column of N. It is also a standing vector and contains different components
of the overall number of ions found in the wth mass-to-charge range, Aw. Altogether,

N =


N11 . . . N1W

... . . . ...
NM1 . . . NMW

 =


Nt
1−
...

Nt
M−

 =
[
N|1 . . . N|W

]
, (.)

where Nt
m− denotes the transposition of Nm−. Denote by Nrowsums the vector of sums of the row

entries of N and by Ncolsums the vector of sums of the column entries of N,

and Nrowsums =
W∑
w=1

N|w =


N1·
...

Nm·

 , Ncolsums =
M∑

m=1

Nm− =


N·1
...

N·W

 .

So that the exchange rate is believed to be equal to one. This Gaussian choice is motivated by the ease
of drawing from the conjugate distribution. That choice, of course, gives more probability to the region right
to the mode than left to the mode. An alternative specification results from parametrizingC as cotan(α) and
putting a uniform prior on α. This leads to the Cauchy distribution.





LetDmw =
∑

mz∈MZm pmzG(Aw − mz). We can collect allDmw in a matrix D calculated at the
onset of the algorithm. Denote the columns and rows of D similarly to the notation used
for N in Eq. (.),

D =
[( ∑

mz∈MZm

pmzG(Aw − mz)
)
mw

]
=


D11 . . . D1W

... . . . ...
DM1 . . . DMW

 =


Dt
1−
...

Dt
M−

 =
[
D|1 . . . D|W

]
.

and Drowsums =
W∑
w=1

D|w =


D1·
...

Dm·

 , Dcolsums =
M∑

m=1

Dm− =


D·1
...

D·W

 .

As mentioned before, the mass precision distribution G is either a truncated Gaussian or
Lorentzian. In particular, most evaluations of G(Aw − mz) are zero, reducing the number of
integral evaluations fromW×M to a much smaller number of all generated isotopologues.
Thus, matrix D will be sparse. What is more, the calculations necessary to establish D natu-
rally parallelize. Evaluating G could be avoided altogether, if we assumed, similarly to what
was done in the MassTodon project, that we cannot tell apart mass-to-charge ratios in small
mass ranges; however, we will not follow this approach here, as we want to present a more
general scheme.

e Posterior Distributions

The joint density p of a list (C,Λ, I, Ncolsums, ξ, ν
−2) given hyperparameters Ξ = (D, a, b) can

be written as

p
(
C,Λ, I, Ncolsums, ξ, ν

−2|Ξ
)
∝

prior distribution︷ ︸︸ ︷
f(C)g0,1(ξ)γ1,1(ν

−2)
M∏

m=1

γam,bm(Λm) (.)

×
W∏
w=1

poiss
(
N·w

∣∣∣ΛtD|w

)
(.)

×
W∏
w=1

exp
(
− (Iw − ξ − CN·w)

2

2ν2

)
. (.)

We are ultimately interested in generating samples from p(C,Λ, ξ, ν−2|I,Ξ), which is pro-
portional to the function described above but integrated out over all possible values of the
unobservable Ncolsums,

p(C,Λ, ξ, ν−2, |I,Ξ) ∝
∑
ncolsums

p
(
C,Λ, I, ncolsums, ξ, ν

−2|Ξ
)
.

We will not distinguish between continuous and discrete random variables in the naming convention.
Thus, a probability distribution function will be referred to as density.





The problem is too difficult to solve using paper and pencil methods, given that it
involves complicated summations. We thus apply Markov Chain Monte Carlo methods,
MCMC. Given that we have to integrate out one set of variables, we have to resolve to
special data augmentation techniques.

Bayesian Calculations

To solve the problem in a fully Bayesian way we consider data augmentation (Tanner and
Wong, ; Van Dyk and Meng, ). The general idea behind data augmentation is the
following: denote byX a random variable that describes the outcomes, and by Y a random
variable that describes the parameters. Also, assume that there exists a dummy variable
Z , such that it is easier to draw from Y |X,Z then it is from Y |X alone, and such that
it is possible (and easy) to draw Z|X,Y is possible. Also, the distribution of Z must be
consistent with that of Y |X , in the sense that the marginal distribution of Y |X,Z must be
equal to Y |X , P(Y |X) =

∫
P(Y |X,Z)dP(Z). If that is the case, then one can consider a

Gibbs-like algorithm that alternates between conditional distributions Y |X,Z and Z|X,Y

(Geman and Geman, ). To be more specific, one produces a Markov Chain (Y [n], Z [n]),
such that (Y [0], Z [0]) can be drawn from any distribution, and Y [n] is drawn from given
(X,Z [n−1]), Y [n]|X,Z [n−1], and Z [n] is drawn given (X,Y [n]), Z [n]|X,Y [n]. The first coor-
dinate of the chain, (Y [n])∞n=0, can then be shown to converge in distribution to Y |X with
the standard MCMC theory (Geyer, ; Gilks et al., ). The data augmentation ap-
proach then boils down to drawing at random the quantities we miss, albeit with care, so
as not to change the distribution we ultimately want to draw from. In the current setting,
we slightly departure from the scheme presented above. However, we will now show that
finding the appropriate set of augmenting variables is easy and natural.

In order to perform the Gibbs algorithm, we need to know how to drawC given that all
other variables are fixed, and Λ given that all other variables are fixed, and so on, for all the
remaining variables ξ, ν−2. Observe, that if we knew howmany ions of each substance was
there in every mass range, then all the necessary calculations would be easy. Otherwise
said, we want to augment the problem by considering matrix N. Figure . presents the
dependence structure of the augmented problem in form of a Bayesian net.

Drawing matrix N corresponds to disaggregating the middle part of the overall joint
density p, i.e. that given by Eq. (.). Specifically,

poiss
(
N·w

∣∣∣ΛtD|w

)
=

∑
N1w+···+NMw=N·w

M∏
m=1

poiss
(
Nmw

∣∣ΛmDmw

)
.

So, after the deaggregation we substitute each poiss
(
N·w

∣∣∣ΛtD|w

)
by the corresponding





product
∏M

m=1 poiss
(
Nmw

∣∣Λmδmw

)
, so that the overall density amounts to

prior(Λ, C, ξ, ν−2)
W∏
w=1

M∏
m=1

poiss
(
Nmw

∣∣ΛmDmw

) w∏
w=1

exp
(
− (Iw − ξ − CN·w)

2

2ν2

)
. (.)

Above, we keep N·w to ease the notation. Similarly, we will retain Nm·. Given N, these
values are entirely deterministic and they don’t add up to the complexity of the problem.
Otherwise said, the distribution of Ncolsums is entirely replaced by that of N.

Generating Λ from conditional distribution

Note that the distribution ofΛm depends only upon the values of Nm− and their correspond-
ing intensities Dm−: if we collect all the terms containing Λm in Eq. (.), i.e. consider its
Markov blanket (Hasman, ), we end up with expression proportional to

Λam−1
m e−bmΛm

W∏
w=1

e−ΛmDmw
(ΛmDmw)

Nmw

Nmw!
∝ Λam+Nm·−1

m e−(bm+Dm·)Λm ,

so that the posterior distribution of Λm is gamma with parameters a′m = am + Nm· and
b′m = bm + Dm·. Also, different Λm are conditionally independent. Therefore, we now
know how to draw vector Λ.

Generating N from conditional distribution

Next, let us consider how to draw matrix N. For simplicity, we will draw this matrix in a
two-step procedure, amounting to

. drawing the sums of columns Ncolsums = (N·1, . . . , N·W )

. drawing the columns entries N|w given the appropriate sum N·w drawn in step .

First, we will describe how to perform the second step. Observe, that the conditional dis-
tribution of N depends only upon Ncolsums (numbers of ions in each mass-to-charge range), D,
and Λ. When we pull out part of formula Eq.(.) that is proportional to the entries of N,
we end up with

W∏
w=1

1{N1w+···+NMw=N·w}(N|w)
M∏

m=1

poiss
(
Nmw

∣∣ΛmDmw

)
.

Above, we added the characteristic functions of eventsN1w+· · ·+NMw = N·w to underline
that the sums of columns are fixed to certain values. In particular, note that the columns
of matrix N are conditionally independent, as the above expression in product form. Each
vector N|w can be seen to originate from a different multinomial distribution, as shown
below.
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Figure .: Bayesian net representation of the data augmented deconvolution problem attacked by MassOn. In top-left we put the
expected numbers of ions inside the instrument, denoted by Λ1 to ΛM . Each Λm corresponds to a different source of ions. Ions in
group m can be found in different mass ranges Aw (bottom), where intensity Iw has been observed. The number of ions the m ions
in group w is denoted by Nmw . This number depends on the probability of finding ions of species m in that group, denoted by pwm.
These probabilities can be calculated as presented in Chapter  and are conditionally independent of all other variables given the values
of the matrix of ion counts N = [Nmw]. Sums of columns Ncolsums = (N·1, . . . , N·W ) and sums of rows Nrowsums = (N1·, . . . , NM·) are
deterministic functions of N and are shown only for convenience, i.e. they do not introduce any randomness to the problem. Numbers
N·w are not directly observed; we observe the intensity they induce, which is assumed to follow equation Iw = N·w × C + ϵw .

Lemma. Suppose thatXk ∼ Poisson(λk) are a sequence ofK independent random variables.

en, (X1, . . . , XK)|
∑K

k=1Xk is multinomial,

Multi
( K∑

k=1

Xk;
λ1∑K
k=1 λk

, . . . ,
λK∑K
k=1 λk

)
.

An easy proof is given byKingman (). In our case, variables in columnw are Poisson
distributedwith intensities equal toΛmDmw, so that we can draw each column from amulti-
nomial distribution with marginal probabilities proportional to (ΛmDmw)

M
m=1. The above

vector can be concisely written using the Hadamard’s pointwise product operator⊙. Given
vectors v = (v1, . . . , vk) and w = (w1, . . . , wk), by definition v ⊙ w = (v1w1, . . . , vkwk).
Then,

N =
[
N|1 . . . N|W

]
∼ ⊗W

w=1Multi
(
N·w;

Λ⊙ D|w

Λt D|w

)
.

It is possible that some Dmw = 0. In that case, we reduce the dimension of the multi-
nomial distribution fromM to that of the number of nonzero entries of the vector Dw, ne-





glecting the zero probabilities (as surely these coordinates amount to zero counts). Finally,
we do not deconvolve peaks outside of the support of any of the intensity measures µm and
treat these peaks as not explainable. Therefore, it cannot happen that vector D|w consists
only of zeros. However, even that is easy to cope with, as then N|w = 0 with probability .

We now pass to the problem of drawing new values of counts of ions in eachmass range,
or Ncolsums. In that stage, the values of the matrix N are not yet drawn (in fact, we are in the
middle of drawing them), so that theMarkov blanket of Ncolsums does actually include all other
variables. The joint conditional density of these variables is proportional to

W∏
w=1

{
poiss

(
N·w
∣∣ΛtD|w

)
exp

(
−(Iw − ξ − CN·w)

2

2ν2

)}
.

It follows that different that ion counts in different mass-to-charge ranges are independent.
The conditional distribution for each givenw is certainly not any known distribution, given
that its pdf is proportional to

P(n|a, b, c2) ∝ an

n!
exp

(
−(n− b)2

2c2

)
= A(n), (.)

where n ∈ N ∪ {0}, a, b, c2 > 0. We have to invent a method of drawing random variables
P(n|a, b, c). To this end, we could have used the Metropolis-Hastings algorithm, result-
ing in an overall Metropolis-within-Gibbs setting. However, the straightforward form of
P(n|a, b, c) suggests using a conceptually simpler rejection algorithm. What we need, is
a function B(n) that dominates A(n) that is proportional to a pdf we know how to draw
random samples from. In particular, consider Stirling’s lower bound approximation of the
factorial (Nemes, ),

n! ≥
√
2πnn+0.5e−n,

valid for all positive integers. Using it, we can estimate A(n) from above in the following
way:

A(n) ≤
an

√
2πnn+0.5e−n

exp
(
−
(n− b)2

2c2

)
= (2π)−0.5 exp

(
−
(n− b)2

2c2
+ n log(a)− (n+ 0.5) log(n) + n

)
≤

(2π)−0.5 exp
(
−
(n− b)2

2c2
+ n log(a)− (n+ 0.5) log(2) + n

)
=

√
2 exp

(
m2

B

2c2

)
(2π)−0.5 exp

(
−
(n−mB)2

2c2

)
= B(n),

wheremB = b+ c2(log a− log 2+ 1)The above estimate works for n ≥ 2. Otherwise, we
set B(0) = A(0) and B(1) = A(1). To draw from a pdf proportional to B(n), we consider
the scheme presented in Figure .. We note, that any distribution proportional to B(n)

on {2, 3, . . . } can be naturally extended to a distribution that is continuous w.r.t. Lebesgue
measure by considering an infinite mixture of uniform random variables defined over the
natural grid [n, n + 1). That measure is dominated by a Gaussian density with mean mB

In that approach, instead of drawing directly from the conditional distribution, one performs a step of
the Metropolis-Hastings algorithm.
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Figure .: The rejection algorithm for drawing from density proportional toB(n). The idea is to apply another rejection from a mix of
a continuous distribution defined over [2,∞) and over a set of atoms {−1, 0, 1}. The−1 value is mapped to n+3, which is the global
maximum of theB(n) function on {2, 3, 4, . . . }. The natural candidate for the dominating distribution is the Gaussian with parameters
mB and c2B .

and variance c2. To assure that the above density always dominates B(n), we have to take
out the rectangle corresponding to the maximum of B. We can then map all rectangles
right to the mode to the numbers next in line. For example, in Figure . any draw X left
from n + 3 corresponds ultimately to integer ⌊X⌋, and any draw X right from n + 3 to
⌈X⌉.

Recall that by Φ(x|m,σ2) we denote the cumulative distribution function of the nor-
mal distribution with mean m and variance σ2, and that its density is denoted by gm,c2 .
Also, denote by N (mB, c

2)|[2,∞ the normal distribution truncated to half-line [2,∞). The
actual computation can be performed with the code snippet described in Algorithm . Ob-
serve that the inner while loop is called the less, the bigger is the chunk of probability
we managed to get out in form of the atomic component of the distribution. This moti-
vates a further improvement of the idea, which is similar in nature to one presented in the
IsoSpec algorithm, which amounts to calculating a bigger set of configurations directly
from A and use the above estimate for drawing from the tails of the distributions, that we
would approximate from above with Gaussian tails. This can be achieved, as clearly the
distribution P(n|a, b, c2) in question is at most bimodal, being proportional to a Poisson
distribution with intensity a and a normal distribution discretized over an equally spaced
grid.

Ultimately, to restate the result in terms of other parameters of the model, the condi-
tional distribution of the sums of columns of N can be seen to follow

Ncolsums = (N·1, . . . , N·W ) ∼ ⊗W
w=1P

(
◦
∣∣∣ΛtD|w,

Iw − ξ

C
,
ν2

C2

)
,





from which we can draw using Algorithm .W times independently.

Generating C from conditional distribution

Let us now focus on the function proportional to the conditional density of intensity-ion
count exchange rate C ,

1[0,∞)

[1− Φ(0|1, 1)]
√
2π

exp
(
− (C − 1)2

2

) W∏
w=1

exp
(
− (Iw − ξ − CN·w)

2

2ν2

)
.

The above distribution is proportional to another truncated normal distribution, with den-
sity

1[0,∞)(c)

[1− Φ(0|mC , σ2
C)]

√
2π

exp
(
− (c−mC)

2

2σ2
C

)
,

with parameters

mC =
ν2 +

∑W
w=1N·w(Iw − ξ)

ν2 +
∑W

w=1 N
2
·w

and σ2
C =

ν2

ν2 +
∑W

w=1N
2
·w
.

Both parameters can be easily retrieved by collecting terms of a binomial.

Generating ξ from conditional distribution

The function of ξ proportional to its conditional density is the following

exp
(
− ξ2

2

) W∏
w=1

exp
(
− (ξ − (Iw − CN·w))

2

2ν2

)
.

Again, by collecting terms of a binomial, we see that the distribution of ξ given all other
parameters is Gaussian with meanmξ and variance σ2

ξ given by

mξ =

∑W
w=1(Iw = CN·w)

ν2 +W
and σ2

ξ =
ν2

ν2 +W
.

Generating ν−2 from conditional distribution

The function of ν−2 proportional to its conditional density is the following

exp
(
−ν−1

) W∏
w=1

√
ν−2 exp

(
− (Iw − ξ − CN·w)

2

2ν2

)
=

(ν−2)
W
2
+1−1 exp

(
ν−1
[
1 +

W∑
w=1

(Iw − ξ − CN·w)
])

,

so that we see that we can generate ν−2 conditional on other variables from a gamma
distribution with parameters

aξ =
W

2
+ 1 and bξ = 1 +

W∑
w=1

(Iw − ξ − CN·w).





Figure .: Results of Bayesian deconvolution. The plots shows the results of an attempt to estimate the content of three different
molecular species based on four observed mass ranges. The original quantities were equal to 200, 100, and 0. Note that the computed
approximations to the a posteriori distributions do concentrate around these values.

That was the last variable in the presented scheme. Algorithm  formalizes entire proposed
scheme in a pseudo code.

Validation

A prototype of the approach has been implemented in Python. The prototype includes only
the stage performing the deconvolution of the signal and currently does not perform infer-
ence of the parameters of the intensity-ion count dependence. We have tested the principles
of the deconvolution on a toy example consisting of three convoluted spectra,m1,m2,m3.
The measurements were assumed to be gathered at four different mass-to-charge ratio bins.
We assumed, that m1 appears in reach bin with probabilities equal to 20%, 70%, 0%, and
10% respectively; m2 with 40%, 60%, 0%, and 0%; and, finally, m3 with 0%, 30%, 70%, and
0%respectively. The initial number of ions were fixed at 200, 100, and 0. Given the above
setting, we have generated in silico. Fig. . presents the results of the deconvolution. Note
how different substances compete to explain the results. More test will be carried out soon.

Similar Approaes & Extensions

It is not the first time that Gibbs algorithm was used for deconvolution, albeit with an
entirely different context and independently of this line of research. Koronacki et al. ()





have used the same approach to deconvolve the signal obtained with positron emission
tomography. This line of research investigated and implemented the deconvolution of the
Poisson signal and did not extend this approach towards applications in mass spectrometry
data signal processing.

It remains to note, that the same approach can be trivially generalized to continuous
positive signals. In particular, consider non-negative least squares problem (Lawson and
Hanson, ),

argminb
{
||y −Xb||2 : ∀I

i=1bi ≥ 0
}
,

where X is a data matrix and, y is the response vector, and b is the vector of non-negative
coefficients. In mathematical terms, the problem reduces to finding the coefficients of a
projection unto a cone

∑I
i=1R+X

i spanned by the columns ofX , so that it minimizes the
Euclidean distance to y (Davis, ).

Consider now a special subcase of this problem, where all entries of the matrix X are
non-negative too,X ≥ 0. The problem can be cast into a fully Bayesian setting analogously
to the problem of Poisson deconvolution. In particular, parameters b play the role of Λ, ma-
trix X replaces the matrix D, and the observation y replaces counts (Nw)Ww=1. It is enough
to replace all the Poisson distributions by the Gamma distribution and the multinomial dis-
tribution by the Dirichlet distribution. The only significant modification is required why
considering the distribution of y, because the gamma distribution does not have a natural
conjugate distribution. In that case, we can choose any distributions on the gamma param-
eters that make sense and perform all the calculations using the Metropolis-within-Gibbs

update.
Also, note that the presented scheme can be generalized to model the detector in more

details. In particular, we could model regions outside the dynamic range of the detector by
introducing nonlinear functions. In particular, detector overfill could be modeled by using
some sigma-shaped function.





Algorithms

Algorithm  Generating ion numbers in different mass ranges from P(◦|a, b, c).
Compute p−1 := B(⌈b⌉), p0 := B(0), p1 := B(1), and p2 := 1− Φ(2).
Generate I ∼ pI .
if I > 1 then

repeat

Generate X ∼ N (mB, c
2)|[2,∞)

Generate U ∼ U(0, 1)
I := ⌊X⌋
if X > b then

I := I + 1

end if

until A(I)p2 ≥ U
√
2 exp

(
m2

B

2c2

)
gm,c2(X)

end if

if I = −1 then

I := ⌈b⌉
end if

return I





Algorithm  Data-augmented Gibbs generator of the average quantities of the convoluted
molecular species Λ and the coefficients of the intensity-ion count dependence: C, ξ, ν−2.
INPUT:

Data: (Iw)Ww=1

Hyperparameters: a, b, D
Initial values: Λ, C, ξ, ν−2

n = 
while n < N do

for w ∈ {1, . . . ,W} do

Generate N·w ∼ P
(
◦
∣∣∣ΛtD|w,

Iw−ξ
C

, ν2

C2

)
,

end for

for w ∈ {1, . . . ,W} do
Generate N|w ∼ Multi(N·w;

Λ⊙D|w
Λt D|w

)

end for

form ∈ {1, . . . ,M} do
Generate Λm ∼ Γ(am +

∑W
w=1 Nmw, bm +

∑W
w=1Dmw)

end for

Generate C ∼ N
(

ν2+
∑W

w=1 N·w(Iw−ξ)

ν2+
∑W

w=1 N
2
·w

, ν2

ν2+
∑W

w=1 N
2
·w

) ∣∣∣
[0,∞)

Generate ξ ∼ N
(∑W

w=1(Iw=CN·w)

ν2+W
, σ2

ξ = ν2

ν2+W

)
Generate ν−2 ∼ Gamma(W

2
− 1, 1 +

∑
w=1W (Iw − ξ − CN·w))

yield: Λ, C, ξ, ν2

n++
end while







6
Conclusions and Future Research

“Hej młody Junaku

Smutek zwalcz i strach.

Przecież na tym piachu już za kilka lat

Przebiegnie, być może,

Jasna, długa, prosta,

Szeroka jak morze, Trasa Łazienkowska.

I z brzegiem zepnie drugi brzeg,

Na którym twój ojciec legł.”
— Stanisław Bareja lub Stanisław Tym. Wszystko
jedno – wszak wszystkie Staśki to fajne chłopaki.

In this dissertation several related topics in mass spectrometry have been approached.
In particular, we have presented how to perform calculations involving fine isotopic
structure with the IsoSpec algorithm. These results have been then applied to find
products of reactions that can be found in ETD spectra, with the MassTodon work-

flow. What is more, while introducing the MassTodon workflow, we have also tumbled
upon the problem of spectral deconvolution. The problem has been studied in detail in the
MassOn project that, similarly to the non-negative-regression-like approach of MassTodon,
is heavily relying on the IsoSpec algorithm. Finally, to study the ETD reactions in detail,
we have shown how to use the ETDetective tool to estimate the reaction rates based on
the results provided by the MassTodon.





As was surely noticed by the reader, the presented line of research was concerned more
on fundamentals of the functioning of the mass spectrometry instruments, rather than on
pure applications. In particular, it is true that the main applications of mass spectrometry
prominently involve the use of Collision Induced Dissociation to study proteins, rather than
ETD. What is more, most of the existing technology simply does not provide the necessary
resolution to use the concept of the fine isotopic structure to the full. Finally, surely most of
the mass spec community is typically not concerned with problems such as estimating the
number of the observed ions. As pointed out by Alexey Nesvizhskii during the Bioinformat-
ics for Protein Identification workshop during the th Conference on Mass Spectrometry
and Applied Topics in San Antonio,

Mass spectrometry is generally devoid of proper statistical reasonings.

So, is there any reason to actually continue this line of research? There are more and
more high resolution mass spectrometers available on the market. These instruments will
surely rely on data base searches and spectrum matches. Therefore, there will be an appar-
ent need for tools such as IsoSpec. Even today, attempts are made by the developers of
the popular OpenMS software to include fine structure calculators in their suite.
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