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My dissertation is devoted to estimates of norms of some natural classes of random
vectors in Rn. Dimension-free bounds are of most interest, since they may be generalised
to infinitely-dimensional spaces. However, if the dependence on the dimension is nontrivial
(especially if an estimate depends only on the logarithm of the dimension), a bound is
useful too and gives us a better understanding of the behaviour of the class of random
vectors we investigate. Let us describe three types of estimates we are dealing with in
this thesis.

1. Comparison of weak and strong moments

In convex geometry the class of log-concave vectors is often investigated. One of the
fundamental property of this class is the Paouris inequality from [15], which in a version
from [1] states that for a log-concave vector X in Rn,

(1.1) (E‖X‖p2)
1/p ≤ C1

(
(E‖X‖22)1/2 + σX(p)

)
for p ≥ 1,

where

σX(p) := sup
‖t‖2≤1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

is the Euclidean weak p-th moment of X. We call the quantity (E‖X‖p2)1/p the p-th
strong moment of X (with respect to the Euclidean norm). Since a bound reverse to (1.1)
holds trivially, the Paouris inequality states in fact, that weak and strong moments of the
Euclidean norm of a log-concave vector are comparable.

It is natural to ask whether inequality (1.1) may be generalized to non-Euclidean norms.
In [8] Latała formulated and discussed the following conjecture.

Conjecture 1.1. There exists a universal constant C such that for any log-concave vector
X with values in a finite dimensional normed space (F, ‖ ‖),

(1.2) (E‖X‖p)1/p ≤ C
(
E‖X‖+ sup

ϕ∈F ∗,‖ϕ‖∗≤1
(E|ϕ(X)|p)1/p

)
for p ≥ 1.

Today we only know that Conjecture 1.1 holds in some special cases, and we do not
know any possible counterexample. Therefore even some partial results in this matter
deepen our understanding of log-concave vectors.

It is also interesting to find more general assumptions than log-concavity under which
(1.2) holds in some special cases. Latała and Tkocz proved in [12, Theorem 2.3] that for
vectors with independent coordinates we may indeed assume less then the log-concavity



2 MARTA STRZELECKA

for (1.2) to hold. This weaker assumption is the α-regularity of growth of moments of
coordinates of X (then the constant C depends on α). However, in the case of dependent
coordinates the α-regularity of growth of moments of 〈t,X〉 (for all t ∈ Rn) does not
imply (1.2) even for the Euclidean norm.

1.1. Comparison of moments for `r-norms. The first main result of the dissertation
states that an analogue of the Paouris inequality holds with the `r-norm of any log-concave
vector, with a constant depending linearly on r. It comes from the joint work with Rafał
Latała [10]. This result may be easily generalised to the analogue estimate for spaces that
may be isometrically embedded in `r for some r ≥ 1.

Theorem 1.2. Let X be a log-concave vector with values in a normed space (F, ‖ ‖)
which may be isometrically embedded in `r for some r ∈ [1,∞). Then for p ≥ 1,

(E‖X‖p)1/p ≤ Cr

(
E‖X‖+ sup

ϕ∈F ∗,‖ϕ‖∗≤1
(E|ϕ(X)|p)1/p

)
.

This theorem implies the following deviation inequality for ‖X‖.

Corollary 1.3. Let X and F be as above. Then

P(‖X‖ ≥ 2eCrtE‖X‖) ≤ exp
(
−σ−1‖·‖,X(tE‖X‖)

)
for t ≥ 1.

We may take C as in Theorem 1.2.

To show the above theorem we follow the approach from [9] and establish the following
cut version of the above inequality.

Theorem 1.4. Suppose that r ∈ [1,∞) and X is a log-concave n-dimensional random
vector. Let

(1.3) di := (EX2
i )1/2, d :=

(
n∑
i=1

dri

)1/r

.

Then for p ≥ r,

(1.4) E

(
n∑
i=1

|Xi|r1{|Xi|≥tdi}

)p/r
≤ (C2rσr,X(p))p for t ≥ C3r log

(
d

σr,X(p)

)
,

where

σr,X(p) := sup
‖t‖r′≤1

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

.

Remark 1.5. Any finite dimensional space embeds isometrically in `∞, so to show Con-
jecture 1.1 it is enough to establish Theorem 1.2 (with a universal constant in place of
Cr) for r =∞. It is known that such an estimate holds for isotropic log-concave vectors.
However a linear image of an isotropic vector does not have to be isotropic, so to establish
the conjecture we need to consider either isotropic vectors and an arbitrary norm or
vectors with a general covariance structure and the standard `∞-norm.
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Remark 1.6. An n-dimensional space embeds isometrically in `N∞, whereN ∼ en. Moreover,
in RN we have e−1‖ · ‖logN ≤ ‖ · ‖∞ ≤ ‖ · ‖logN . Therefore Theorem 1.2 implies (1.2)
with C ∼ logN ∼ n. If Theorem 1.2 held with Crγ instead of Cr, then (1.2) would hold
with C ∼ nγ , what is unknown for any γ < 1

2 .

1.2. Comparison of moments in the independent case. Let us now present results
obtained in another joint work with Rafał Latała [11]. We may look at the comparison of
moments in a slightly different way than the one presented before. For an n-dimensional
random vector X instead of taking the moments of norms of X we may considering
the moments of supt∈T

∣∣∑n
i=1 tiXi

∣∣ – if T is a unit ball of the dual norm of ‖ · ‖, then
this quantity coincides with ‖X‖. This approach is useful in the proof of our second
main result concerning the comparison of weak and strong moments, which generalise
the aforementioned result of [12, Theorem 2.3] for vectors with independent regular
coordinates.

Theorem 1.7. Let X1, . . . , Xn be independent mean zero random variables with finite
moments such that

(1.5) ‖Xi‖2p ≤ α‖Xi‖p for every p ≥ 2 and i = 1, . . . , n,

where α is a finite positive constant. Then for every p ≥ 1 and every nonempty set
T ⊂ Rn we have

(1.6)
(
E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ C(α)

[
E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
,

where C(α) is a constant which depends only on α.

It turns out that Theorem 1.7 may be reversed in the i.i.d. case (see the theorem
below). Therefore one cannot weaken assumption 1.5 in Theorem 1.7.

Theorem 1.8. Let X1, X2, . . . be i.i.d. random variables. Assume that there exists a
constant L such that for every p ≥ 1, every n and every nonempty set T ⊂ Rn we have

(1.7)
(
E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ L

[
E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣+ sup
t∈T

(
E
∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p
]
.

Then

(1.8) ‖X1‖2p ≤ α(L)‖X1‖p for p ≥ 2,

where α(L) is a constant which depends only on L ≥ 1.

It is clear from the proof of Theorem 1.8 that it suffices to assume (1.7) for T = {±ej :
j ∈ {1, . . . , n}} only, where {e1, . . . , en} is the canonical basis of Rn.

The comparison of weak and strong moments (1.6) yields also a deviation inequality
for supt∈T |

∑n
i=1 tiXi|.

Corollary 1.9. Assume X1, X2, . . . satisfy the assumptions of Theorem 1.7. Then for
any u ≥ 0 and any nonempty set T in Rn,

(1.9) P
(

sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣ ≥ C1(α)

[
u+ E sup

t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣]) ≤ C2(α) sup
t∈T

P
(∣∣∣ n∑

i=1

tiXi

∣∣∣ ≥ u),
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where constants C1(α) and C2(α) depend only on the constant α in (1.5).

Another consequence of Theorem 1.8 is the following Khintchine-Kahane type inequality.

Corollary 1.10. Assume Xi, 1 ≤ i ≤ n satisfy the assumptions of Theorem 1.7. Then
for any p ≥ q ≥ 2 and any nonempty set T in Rn we have,(

E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣p)1/p

≤ C(α)

(
p

q

)max{1/2,log2 α}(
E sup
t∈T

∣∣∣ n∑
i=1

tiXi

∣∣∣q)1/q

where a constant C(α) depends only on the constant α in (1.5). Moreover, the exponent
max{1/2, log2 α} is optimal.

2. Convex infimum convolution ineqality

The results presented in this section comes from the joint work with Michał Strzelecki
and Tomasz Tkocz [19].

Let X be a random vector with values in Rn and let ϕ : Rn → [0,∞] be a measurable
function. We say that the pair (X,ϕ) satisfies the infimum convolution inequality (ICI
for short) if for every bounded measurable function f : Rn → R,

(2.1) E ef�ϕ(X) E e−f(X) ≤ 1,

where f�ϕ denotes the infimum convolution of f and ϕ defined as f�ϕ(x) = inf{f(y) +
ϕ(x− y) : y ∈ Rn} for x ∈ Rn. The function ϕ is called a cost function and f is called a
test function. We also say that the pair (X,ϕ) satisfies the convex infimum convolution
inequality if (2.1) holds for every convex function f : Rn → R bounded from below.

The recent works [5] and [4] enable to view the ICI from a different perspective. In [5]
Gozlan, Roberto, Samson, and Tetali introduce weak transport-entropy inequalities and
establish their dual formulations. The dual formulations are exactly the convex ICIs. In
[4] Gozlan, Roberto, Samson, Shu and Tetali investigate extensively the weak transport
cost inequalities on the real line, obtaining a characterisation for arbitrary cost functions
which are convex and quadratic near zero, thus providing a tool for studying the convex
ICI. Around the same time, the convex ICI for the quadratic-linear cost function was
fully understood by Feldheim, Marsiglietti, and Nayar in [3].

Using the aforementioned novel tools from [4], we show that product measures with
symmetric marginals having log-concave tails satisfy the optimal convex ICI, which
complements Latała and Wojtaszczyk’s result about log-concave product measures. This
has applications to concentration and moment comparison. We also offer an example
showing that the assumption of log-concave tails cannot be weakened substantially.

Let us explain what the optimal convex ICI is. For a random vector X in Rn we define

Λ∗X(x) := LΛX(x) := sup
y∈Rn
{〈x, y〉 − lnE e〈y,X〉},

which is the Legendre transform of the cumulant-generating function

ΛX(x) := lnE e〈x,X〉, x ∈ Rn.

If X is symmetric and the pair (X,ϕ) satisfies the convex ICI, then ϕ(x) ≤ Λ∗X(x) for
every x ∈ Rn. In other words, Λ∗X is the optimal cost function ϕ for which the convex
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ICI can hold. We say that X satisfies (convex) IC(β) if the pair (X,Λ∗X(·/β)) satisfies
the (convex) ICI.

We are ready to present our first main result.

Theorem 2.1. There exists a universal constant β ≤ 1680e such that every symmetric
random variable with log-concave tails satisfies convex IC(β).

The convex ICI tensorises, thus we have the following corollary.

Corollary 2.2. Let X be a symmetric random vector with values in Rn and independent
coordinates with log-concave tails. Then X satisfies convex IC(β) with a universal constant
β ≤ 1680e.

Note that the class of distributions from Theorem 2.1 is wider than the class of
symmetric log-concave product distributions considered by Latała and Wojtaszczyk in
[14]. Among others, it contains measures which do not have a connected support, e.g. a
symmetric Bernoulli random variable.

Recall that variables with log-concave tails are 1-regular. However, the assumption
of log-concave tails in Theorem 2.1 cannot be replaced by a weaker one of α-regularity
of moments (an example is given both in the dissertation and in [19]). Thus it seems
that the assumptions of Theorem 2.1 are not far from necessary conditions for the convex
ICI to hold with an optimal cost function (random variables with moments growing
regularly are akin to random variables with log-concave tails as the former can essentially
be sandwiched between the latter, see (4.6) in [12]).

Another corollary to Theorem 2.1 is the comparison of weak and strong moments.

Corollary 2.3. Let X be a symmetric random vector with values in Rn and with inde-
pendent coordinates which have log-concave tails. Then for every norm ‖ · ‖ on Rn and
every p ≥ 2 we have

(2.2)
(
E ‖X‖p

)1/p ≤ E ‖X‖+Dσ‖·‖,X(p),

where D is a universal constant (one can take D = 6720
√

2e2 < 70223).

Note that the constant standing at E ‖X‖ is equal to 1. If we only assume that the
coordinates of X are independent and their moments grow α-regularly, then (2.2) does
not always hold, so also in the corollary the assumption about log-concave tails is not far
from the optimal one.

3. Estimates of norms of log-concave matrices

A special type of norms are operator norms of matrices (an (mn)-dimensional vector
may be treated as an m × n matrix). We are interested in estimating the expected
value of the operator norm from `np to `mq of random matrices. Most results concerning
this quantity deal with the spectral norm only (i.e. the operator norm from `n2 to `m2 ).
Moreover, in all known results one has to assume the independence of entries of the
matrix. The part of the thesis devoted to estimates of norms of random matrices comes
from a work in progress [18] by the author.

A classical result regarding spectra of random matrices is Wigner’s Semicircle Law,
which describes the limit of empirical spectral measures of a random matrix with inde-
pendent centred entries with equal variance. Theorems of this type say nothing about



6 MARTA STRZELECKA

the largest eigenvalue (i.e. the operator norm from `2 to `2). However, Seginer proved in
[17] that for a random matrix X with i.i.d. symmetric entries E‖X‖2,21 is of the same
order as the expectation of the maximum Euclidean norm of rows and columns of X. The
same holds true for the structured Gaussian matrices (i.e. when Xij = aijgij and gij are
i.i.d. standard Gaussian variables), as was recently shown in [13], and up to a logarithmic
factor for any X with independent centred entries, see [16]. The advance of the two latest
results is that they do not require that the entries of X are equally distributed.

Another upper bound for E‖X‖2,2 also does not require equal distributions but only
the independence of entries: by [7] we know that

E‖X‖2,2 . max
i

√∑
j

EX2
ij + max

j

√∑
i

EX2
ij + 4

√∑
i,j

EX4
ij .

This bound is dimension free, but in some cases is worse than the one from [16].
Upper bounds for the expectation of other operator norms were investigated in [2] in

the case of independent centred entries bounded by 1. For q ≥ 2 and m× n matrices the
authors proved that E‖X‖2,q . max{m1/q,

√
n}. In [6] Guédon, Hinrichs, Litvak, and

Prochno proved that for a structured Gaussian matrix X = (aijXij)i≤m,j≤n and p, q ≥ 2,

E‖X‖p′,q ≤ C(p, q)

[(
logm

)1/q
max
1≤i≤m

( n∑
j=1

|aij |p
)1/p

+ max
1≤j≤n

( m∑
i=1

|aij |q
)1/q

+
(
logm

)1/qE max
1≤i≤m
1≤j≤n

|Xij |
]
.

It is easy to see that this estimate is optimal up to logarithmic terms. Note that in the
case (p, q) 6= (2, 2) moment methods fails in estimating E‖X‖p′,q (as they give information
only on the spectrum of X).

All the mentioned results require the independence of entries of X. We generalise the
main result of [6] to a wide class of random matrices with independent log-concave rows,
following the scheme of proof of the original theorem from [6]. Our estimate is optimal
(for fixed p, q ≥ 2) up to a factor depending logarithmically on the dimension. Let us
stress that we do not require the rows of X to have independent, but only uncorrelated
coordinates (and to be log-concave). In the proof we use results from other parts of the
dissertation.

To make the notation more clear, if A = (Aij)i≤m,j≤n is an m× n matrix, we denote
by Ai ∈ Rn its i-th row and by A(j) ∈ Rm we denote its j-th column.

Theorem 3.1. Let m ≥ 2, let Y1, . . . , Ym be i.i.d. isotropic log-concave vectors in Rn,
and let A = (Aij) be an m× n (deterministic) matrix. Consider a random matrix X with
entries Xij = AijYij for i ≤ m, j ≤ n, where Yij is the j’th coordinate of Yi. Then for

1‖ · ‖p,q stands for the operator norm from `p to `q.
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every p, q ≥ 2 we have

E‖X‖p′,q

(3.1)

≤ C(p, q)
[(

logm
)1/q

max
1≤i≤m

∥∥Ai∥∥p + max
1≤j≤n

∥∥A(j)
∥∥
q

+
(
logm

)1/q+1E max
1≤i≤m
1≤j≤n

|Xij |
]
,

where C(p, q) depends only on p and q.

The next corollary is a version of Theorem 3.1 in the spirit of the aforementioned
results from [17, 13, 16].

Corollary 3.2. Under the assumptions of Theorem 3.1 we have

E‖X‖p′,q ≤ C(p, q)(logm)1+1/q

(
E max

1≤i≤m

( n∑
j=1

|Xij |p
)1/p

+ E max
1≤j≤n

( m∑
i=1

|Xij |q
)1/q)

We may also use the main theorem to get an analogue bound for random matrices,
which rows are Gaussian mixtures.

Corollary 3.3. Let m,n ≥ 2, and let G = (Gij)i≤m,j≤n be a matrix which entries are
i.i.d. standard Gaussian variables. Let Xij = RijBijGij, where R is a log-concave and
isotropic random matrix2 independent of G. Then for every p, q ≥ 2 we have

E‖X‖p′,q ≤ C(p, q)

((
logm

)1/q+1
[

max
1≤i≤m

∥∥Bi∥∥p + E max
1≤i≤m
1≤j≤n

|Xij |
]

+ log n max
1≤j≤n

∥∥B(j)
∥∥
q

)
.
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