Rozprawa doktorska pt.

Algorytmy numeryczne w spektralnej analizie Coxetera bigrafów

Autoreferat

Mariusz Felisiak

Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu

W całej rozprawie stosujemy następujące oznaczenia. Symbolem \mathbb{N} oznaczamy zbiór liczb naturalnych, symbolem \mathbb{Z} pierścień liczb całkowitych, symbolami $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$, odpowiednio ciało liczb wymiernych, rzeczywistych i zespolonych. Dla liczby naturalnej $n \ge 1$, symbolami

$$\mathbb{Z}^n := \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_n, \mathbb{Q}^n := \underbrace{\mathbb{Q} \times \cdots \times \mathbb{Q}}_n, \mathbb{R}^n := \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_n, \text{ oraz } \mathbb{C}^n := \underbrace{\mathbb{C} \times \cdots \times \mathbb{C}}_n,$$

oznaczamy produkty kartezjańskie n egzemplarzy zbiorów \mathbb{Z} , \mathbb{Q} , \mathbb{R} oraz \mathbb{C} . Bazą standardową grupy wolnej \mathbb{Z}^n nazywać będziemy wektory e_1, \ldots, e_n , gdzie $e_i = [0, \ldots, 0, \underset{i}{1}, 0, \ldots, 0] \in \mathbb{Z}^n$. Przez $\mathbb{M}_n(\mathbb{Z})$ oznaczać będziemy pierścień $n \times n$ macierzy $A = [a_{ij}]_{i,j \leq n}$ stopnia n o współczynnikach $a_{ij} \in \mathbb{Z}$ w pierścieniu \mathbb{Z} , przez $E \in \mathbb{M}_n(\mathbb{Z})$ macierz identycznościową, natomiast przez $\mathrm{Gl}(n, \mathbb{Z}) := \{A \in \mathbb{M}_n(\mathbb{Z}); \det A = \pm 1\} \subset \mathbb{M}_n(\mathbb{Z})$ grupę wszystkich \mathbb{Z} -odwracalnych $n \times n$ macierzy $A = [a_{ij}]_{i,j \leq n}$ o współczynnikach $a_{ij} \in \mathbb{Z}$. Macierz transponowaną do A oznaczamy symbolem A^{tr} .

Rozprawa jest poświęcona klasie problemów algorytmiczno-obliczeniowych występujących w klasyfikacji Coxetera-Grama spójnych dodatnich prostych **grafów oznakowanych** $\Delta = (\Delta_0, \Delta_1, \sigma)$ o skończonym zbiorze wierzchołków $\Delta_0 = \{a_1, \ldots a_n\}$ oraz skończonym zbiorze krawędzi Δ_1 , z których każda krawędź $\beta \in \Delta_1$ jest oznakowana symbolem $\sigma(\beta) \in \{-1, +1\}$ z dwuelementowego zbioru $\{-1, +1\}$. Grafy oznakowane (Δ, σ) będziemy traktowali jako grafy krawędziowo-dwudzielne $\Delta = (\Delta_0, \Delta_1)$ bez pętli (w skrócie, **bigrafy**) (zdefiniowane w pracy [13] oraz rozdziale 2.1).

Jednym z głównych celów rozprawy jest zbudowanie pakietu algorytmów służących do rozwiązywania wybranych problemów spektralnej klasyfikacji Coxetera dodatnich prostych grafów oznakowanych $\Delta = (\Delta_0, \Delta_1, \sigma)$ oraz klasy nieujemnych grafów krawędziowo-dwudzielnych Δ bez pętli. Problemy te zostały sformułowane na seminariach doktoranckich prowadzonych przez promotora w latach 2010-2015, a także w jego publikacjach [12]–[19] oraz w publikacjach [9]–[11] wspólnych z S. Kasjanem. Formułujemy je w dalszej części autoreferatu, w podrozdziale 2.3 jako problemy A–D oraz w rozdziale 6 jako hipotezę spektralną 6.0.1, problem 6.0.2 oraz problem 6.2.1. Krótkie wprowadzenie do spektralnej analizy Coxetera grafów oznakowanych $\Delta = (\Delta_0, \Delta_1, \sigma)$ oraz klasy nieujemnych grafów krawędziowo-dwudzielnych Δ bez pętli przedstawiamy w rozdziałach 1 oraz 2, gdzie również podajemy motywacje do badań nad problemami spektralnej klasyfikacji Coxetera skończonych bigrafów, zobacz podrozdział 2.2.

Przypomnijmy, że w analizie spektralnej Coxetera bigrafów stosuje się następujący schemat. Z dowolnym prostym grafem oznakowanym $\Delta = (\Delta_0, \Delta_1, \sigma)$ (lub ogólniej: z dowolnym bigrafem Δ bez pętli), o skończonym zbiorze ponumerowanych wierzchołków $\Delta_0 = \{a_1, \ldots, a_n\}$, stowarzysza się jego **niesymetryczną macierz Grama** $\check{G}_{\Delta} \in \mathbb{M}_n(\mathbb{Z})$, **symetryczną macierz Grama** $G_{\Delta} := \frac{1}{2}[\check{G}_{\Delta} + \check{G}_{\Delta}^{tr}] \in \mathbb{M}_n(\mathbb{Q})$, Z-odwracalną macierz Coxetera $\operatorname{Cox}_{\Delta} := -\check{G}_{\Delta} \cdot \check{G}_{\Delta}^{-tr}$ oraz jej zespolone spektrum $\operatorname{specc}_{\Delta} \subseteq \mathbb{C}$, zwane spektrum Coxetera bigrafu Δ (zobacz podrozdział 2.2). Macierz $\check{G}_{\Delta} \in \mathbb{M}_n(\mathbb{Z})$ wyznacza bigraf Δ jednoznacznie, z dokładnością do numeracji jego wierzchołków. Jednym z problemów jakimi zajmuje się spektralna analiza Coxetera jest:

PROBLEM 1°. Kiedy spektrum Coxetera $\operatorname{specc}_{\Delta} \subseteq \mathbb{C}$ wyznacza spójny bigraf Δ' bez pętli jednoznacznie z dokładnością do silnej Z-kongruencji Grama $\Delta \approx_{\mathbb{Z}} \Delta'$ zdefiniowanej w pracy [13] następująco:

 $\Delta \approx_{\mathbb{Z}} \Delta' \qquad \Longleftrightarrow \quad \check{G}_{\Delta'} = B^{tr} \cdot \check{G}_{\Delta} \cdot B, \ dla \ pewnej \ macierzy \ B \in \mathrm{Gl}(n, \mathbb{Z}).$

Ponieważ wiadomo, że istnienie silnej Z-kongruencji Grama $\Delta \approx_{\mathbb{Z}} \Delta'$ implikuje równość spektrów Coxetera $\operatorname{specc}_{\Delta'} = \operatorname{specc}_{\Delta'}$ (zobacz lemat 2.3.1), więc problem 1° jest pytaniem o prawdziwość implikacji przeciwnej.

Jednym z głównych osiągnięć tej rozprawy jest dowód tej implikacji (a tym samym rozwiązanie problemu 1°) dla wszystkich dodatnich spójnych prostych grafów oznakowanych Δ o co najwyżej 9-ciu wierzchołkach. W tym wypadku uzyskujemy w twierdzeniu 4.1.2 pełną klasyfikację takich bigrafów z dokładnością do silnej Z-kongruencji Grama $\Delta \approx_{\mathbb{Z}} \Delta'$ podając pełną listę takich dodatnich bigrafów klasyfikujących składającą się z 26 bigrafów opisanych w tabeli 4.1.1.

Innym trudnym problemem spektralnej analizy Coxetera jest:

PROBLEM 2°. Zbudować algorytmy konstruujące, dla pary spójnych dodatnich bigrafów Δ, Δ' bez pętli o $n \ge 2$ wierzchołkach spełniających relację $\Delta \approx_{\mathbb{Z}} \Delta'$ (a w szczególności równość $\operatorname{specc}_{\Delta} = \operatorname{specc}_{\Delta'}$), pewną macierz $B \in \mathbb{M}_n(\mathbb{Z})$ definiującą \mathbb{Z} -kongruencję Grama $\Delta \approx_{\mathbb{Z}} \Delta'$, tzn. macierz $B \in \mathbb{M}_n(\mathbb{Z})$ taką, że det $B = \pm 1$ oraz $\check{G}_{\Delta'} = B^{tr} \cdot \check{G}_{\Delta} \cdot B$.

Rozwiązanie problemu 2° dla szerokiej klasy bigrafów Δ podajemy w rozdziałach 6 oraz 7, gdzie również opisujemy metodę stosowania tzw. algorytmu toroidalno-oczkowego w wypadku ogólnym.

Jednym z ważniejszych narzędzi redukcyjnych zastosowanych w rozdziałach 3, 6 oraz 7 do rozwiązania problemów 1° oraz 2° jest zdefiniowana w artykułach [13, 14, 15, 18, 19] redukcja do badania analogicznych problemów dla skończonego zbioru $\mathbf{Mor}_D \subseteq \mathbb{M}_n(\mathbb{Z})$ wszystkich morsyfikacji macierzowych A (w sensie definicji 1) jednorodnych diagramów Dynkina D przedstawionych w następującej tabeli. Tabela 1. Jednorodne diagramy Dynkina.

DEFINICJA 1. Niech D będzie jednym z jednorodnych diagramów Dynkina $\mathbb{A}_n, n \ge 1, \mathbb{D}_n, n \ge 4, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8$ o $n \ge 1$ wierzchołkach, rozważanym jako prosty graf oznakowany (lub bigraf) w zbiorze $\mathcal{UB}igr_n$, gdzie symbolem $\mathcal{UB}igr_n$ oznaczamy zbiór wszystkich spójnych, krawędziowo-dwudzielnych grafów bez pętli o n wierzchołkach. Niech $G_D \in \mathbb{M}_n(\mathbb{Z})$ będzie symetryczna macierzą Grama bigrafu D.

- (a) Całkowitą (odp. wymierną) morsyfikacją macierzową diagramu D nazywamy dowolną nieosobliwą macierz $A \in \mathbb{M}_n(\mathbb{Z})$ (odp. $A \in \mathbb{M}_n(\mathbb{Q})$) spełniającą następujące dwa warunki:
 - wszystkie współczynniki **macierzy Coxetera** $\operatorname{Cox}_A \in \operatorname{M}_n(\mathbb{Q})$ macierzy A zdefiniowanej wzorem $\operatorname{Cox}_A := -A \cdot A^{-tr}$ są całkowite, gdzie $A^{-tr} = (A^{-1})^{tr} = (A^{-tr})^{-1}$,
 - $A + A^{tr} = 2G_{\Delta}$.

W dużym uproszczeniu, metoda ta polega na stowarzyszeniu $\Delta \mapsto D\Delta$ (zobacz tw. 2.0.6, dodatek A.1), z każdym spójnym dodatnim bigrafem Δ bez pętli o $n \ge 2$ wierzchołkach, diagramu Dynkina $D\Delta$, który jest słabo Z-kongruentny z Δ względem słabej Z-kongruencji Grama $\Delta \sim_{\mathbb{Z}} \Delta'$ zdefiniowanej w pracy [13] następująco:

$$\Delta \sim_{\mathbb{Z}} \Delta' \qquad \iff \quad G_{\Delta'} = B^{tr} \cdot G_{\Delta} \cdot B, \text{ dla pewnej macierzy } B \in \operatorname{Gl}(n, \mathbb{Z})$$

Dla danego diagramu Dynkina $D \in \{\mathbb{A}_n, n \ge 1, \mathbb{D}_n, n \ge 4, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8\}$ definiuje się zbiór $\mathcal{UB}igr_D$ wszystkich spójnych bigrafów dodatnich Δ bez pętli, które są słabo \mathbb{Z} -kongruentne z D oraz definiuje się funkcję redukującą (zobacz 3.0.3)

$$\phi_D : \mathcal{UB}igr_D \to \mathbf{Mor}_D \subset \mathbb{M}_n(\mathbb{Z}).$$

Na podstawie twierdzenia 3.1.9, istnieje silna Z-kongruencja Grama $\Delta \approx_{\mathbb{Z}} \Delta' \le \mathcal{UB}igr_D$ wtedy i tylko wtedy, gdy macierzowe morsyfikacje $\phi_D(\Delta), \phi_D(\Delta') \in \mathbf{Mor}_D \subset \mathbb{M}_n(\mathbb{Z})$ leżą w jednej $\mathrm{Gl}(n, \mathbb{Z})_D$ -orbicie prawego działania

$$*: \mathbf{Mor}_D \times \mathrm{Gl}(n, \mathbb{Z})_D \to \mathbf{Mor}_D, \quad (A, B) \mapsto A * B := B^{tr} \cdot A \cdot B,$$

skończonej grupy izotropii $\operatorname{Gl}(n, \mathbb{Z})_D := \{B \in \mathbb{M}_n(\mathbb{Z}); G_D * B = G_D\}$ diagramu D na skończonym zbiorze Mor_D . Zatem funkcja ϕ_D redukuje problemy 1° oraz 2° do analogicznych problemów klasyfikacji i obliczania $\operatorname{Gl}(n, \mathbb{Z})_D$ -orbit skończonego zbioru $\operatorname{Mor}_D \subset \mathbb{M}_n(\mathbb{Z})$ macierzy \mathbb{Z} -odwracalnych, dla ustalonego diagramu Dynkina D. Stosując tę redukcję zredukowaliśmy problem klasyfikacyjny 2° do budowania tzw. algorytmów toroidalno-oczkowych dokładnie opisanych w rozdziałach 6 oraz 7.

W drugiej uzupełnionej wersji rozprawy dodaliśmy rozdział 8, w którym szacujemy złożoność obliczeniową stosowanych algorytmów.

Większość z najważniejszych wyników tej rozprawy została opublikowana:

- w czterech artykułach naukowych [1], [3], [7], [8] w czasopismach specjalistycznych: Fund. Inform. 2013, Discrete Math. 2013, J. Comp. Appl. Math. 2014 oraz Discrete Appl. Math. 2015, oraz
- w czterech artykułach pokonferencyjnych [2], [4], [5] oraz [6].

Znaczącą część tych wyników autor przedstawił w referatach na następujących międzynarodowych konferencjach naukowych:

- Experiences in computing mesh root systems for Dynkin diagrams using Maple and C++, wygłoszony podczas: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing - SYNASC11, 26.09–29.09.2011r. Timisoara, Rumunia,
- On Coxeter Spectral Study of Edge-Bipartite Graphs, Matrix Morsifications and Mesh Root Systems for Dynkin Diagrams, wygłoszony podczas: Cologne - Twente Workshop on Graphs and Combinatorial Optimization - CTW, 29.05–31.05.2012r. Monachium, Niemcy,
- On computing mesh root systems and the isotropy group for simply-laced Dynkin diagrams, wygłoszony podczas: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing - SYNASC12, 26.09–29.09.2012r. Timisoara, Rumunia,
- On Coxeter type classification of loop-free edge-bipartite graphs and matrix morsifications, wygłoszony podczas: International Symposium on Symbolic and Numeric Algorithms for Scientific Computing - SYNASC13, 23.09–26.09.2013r. Timisoara, Rumunia.

Spis cytowanej literatury

- R. Bocian, M. Felisiak and D. Simson, Numeric and mesh algorithms for the Coxeter spectral study of positive edge-bipartite graphs and their isotropy groups, J. Comp. Appl. Math. 259 (2014), 815–827.
- [2] R. Bocian, M. Felisiak and D. Simson, On Coxeter type classification of loop-free edgebipartite graphs and matrix morsifications, 15th Intern. Symp. on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC13, Timisoara, September 2013, IEEE CPS, Tokyo, 2013, 115–118.
- [3] M. Felisiak, Computer algebra technique for Coxeter spectral study of edge-bipartite graphs and matrix morsifications of Dynkin type \mathbb{A}_n , Fund. Inform. 125 (2013), 21–49.
- [4] M. Felisiak and D. Simson, Experiences in computing mesh root systems for Dynkin diagrams using Maple and C++, 13th Intern. Symp. on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC11, Timisoara, September 2011, IEEE CPS, Tokyo, 2011, 83–86.
- [5] M. Felisiak and D. Simson, On computing mesh root systems and the isotropy group for simply-laced Dynkin diagrams, 14th Intern. Symp. on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC12, Timisoara, September 2012, IEEE CPS, Tokyo, 2012, 91–97.
- [6] M. Felisiak and D. Simson, On Coxeter spectral study of edge-bipartite graphs in relation with Dynkin diagrams, 11th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, CTW 2012, Munich, Germany, May 29–31, 125–129.
- [7] M. Felisiak and D. Simson, On combinatorial algorithms computing mesh root systems and matrix morsifications for the Dynkin diagram A_n , Discrete Math. 313 (2013), 1358–1367.
- [8] M. Felisiak and D. Simson, Applications of matrix morsifications to Coxeter spectral study of loop-free edge-bipartite graphs, *Discrete Appl. Math.* 192 (2015), 49–64.
- [9] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems, *Fund. Inform.* 139 (2015), 153–184.
- [10] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, II. Application to Coxeter spectral analysis, *Fund. Inform.* 139 (2015), 185–209.
- [11] S. Kasjan and D. Simson, Algorithms for isotropy groups of Cox-regular edge-bipartite graphs, *Fund. Inform.* 139 (2015), 249–275.
- [12] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra, 215 (2011), 13–34.

- [13] D. Simson, A Coxeter-Gram classification of positive simply-laced edge-bipartite graphs, SIAM J. Discrete Math. 27 (2013), 827–854.
- [14] D. Simson, Algorithms determing matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, *Fund. Inform.* 123 (2013), 447–490.
- [15] D. Simson, A framework for Coxeter spectral analysis of loop-free edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, *Fund. Inform.* 124 (2013), 309–338.
- [16] D. Simson, Toroidal algorithms for mesh geometries of root orbits of the Dynkin diagram \mathbb{D}_4 , Fund. Inform. 124 (2013), 339–364.
- [17] D. Simson, Tame-wild Birkhoff type problems for nilpotent linear operators, J. Algebra, 424 (2015), 254–293.
- [18] D. Simson, Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs, I. A Gram classification, *Fund. Inform.* 145 (2016), 19–48.
- [19] D. Simson, Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs, II. Isotropy mini-groups, *Fund. Inform.* 145 (2016), 49–80.