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Abstract

We study a class of games introduced by Mio to capture the probabilistic µ-calculi called

branching games. They are a subclass of stochastic two-player zero-sum turn-based infi-

nite-time games of imperfect information. Branching games extend Gale-Stewart games

by allowing players to split the execution of a play into new concurrent sub-games that

continue their execution independently. In consequence, the play of a branching game has

a tree-like structure, as opposed to linearly structured plays of Gale-Stewart games.

In this thesis, we focus our attention on regular branching games. Those are the branching

games whose pay-off functions are the indicator functions of regular sets of infinite trees,

i.e. the sets recognisable by finite tree automata. We study the problems of determinacy,

game value computability, and the related problem of computing a measure of a regular set

of infinite trees.

Determinacy is a property of a game that guarantees that none of the players gains

or loses an advantage by revealing their strategy at the start of the game. In general,

branching games are not determined: not even under mixed strategies nor when the winning

sets are topologically simple. On the positive side, we show that regular branching games

with open winning sets are determined under mixed strategies. Moreover, we show that

game automata definable winning sets guarantee a stronger version of determinacy – the

determinacy under pure strategies. Both results are accompanied by examples showing the

limits of used techniques.

We give an answer to the problem of computing a value of a regular branching game.

We show that a mixed value of a non-stochastic branching game is uncomputable and that

a pure value of a stochastic branching game is also uncomputable. On the other hand,

we provide an algorithm that computes all pure values of a given non-stochastic regular

branching game.

We make a step towards a solution of the problem of computing measures of regular sets

of trees. We provide an algorithm that computes the uniform measure of a regular winning

set in two cases. Either when it is defined by a first-order formula with no descendant

relation or when it is defined by a Boolean combination of conjunctive queries.

Finally, we use real-life data to show how to incorporate game-theoretic techniques

in practice. We propose a general procedure that given a time series of data extracts a reac-

tive model that can be used to predict the evolution of the system and advise on the strategies

to achieve predefined goals. We use the procedure to create a game based on Markov decision

processes that is used to predict and control level of pest in a tropical fruit farm.
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Introduction

From its very beginning game theory has been used to discover, understand, model, and pre-

dict the behaviour of naturally occurring systems. Game theory is especially useful when the

systems in question are defined by an interaction of a number of agents that, not necessarily

in cooperation, try to achieve their individual goals, e.g. a group of processes in an operating

system competing for resources, a group of investment bankers trading shares, or a pack

of predators hunting prey. Systems like those can be found in almost every branch of mod-

ern computer science, economy, or natural sciences. In computer science, games are used

in semantics, verification, logic, and automata theory, to name a few, where they are used

to define and formalise the notions of interaction. In economics, game theory is often associ-

ated with the rational choice in which we assume that the agents behave rationally. Lastly,

in natural sciences games are often used to model complex events and ecosystems, where a

number of competing parties try to achieve the best possible outcome, e.g. predator-prey

equilibria.

Games The games considered in this thesis are an extension of the so-called games on graphs.

Games on graphs are played on possibly infinite graphs with vertices distributed between

the players. The players move a token, initially placed in one of the vertices, along the

edges of the graph and in accordance to the ownership of the vertices. If a vertex is owned

by a single player, then this player decides where to move the token. If a vertex is shared,

then the players simultaneously and independently choose an action each; the chosen tuple

of actions indicates the next placement of the token. The outcome of the game, called a play,

is the trace of the token. After the game is played, every player achieves a score defined

by a specific to the player pay-off function.

Games on graphs are often enhanced with probability. Such games, called stochastic

games, introduce the uncertainty with a new type of vertices, called random vertices, in which

the next position of the token is not decided by the players, but by the value of an associated

random variable. The addition of random vertices is often encoded as an additional, fictitious,

player that chooses its moves at random. This player is often referred to as Nature. In the

case of stochastic games the score is the expected value of the pay-off function over the

set of possible outcomes. Games with no random vertices are called non-stochastic or pure

games.

The abundance of possible applications and areas of relevance of game theory gave birth

to many classes of games which are often defined by some of their properties and require
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different tools to be analysed efficiently. The properties defining those classes include, but

are not limited to, the duration of the game, the progress of time, the number of the play-

ers, the shape of the arena, the presence of uncertainties, players knowledge, and the form

of the objectives. Considering duration of the game we can distinguish one-shot games,

e.g. the matrix games, matching pennies, rock-paper-scissors; finite time games, e.g. chess,

tic-tac-toe; and (potentially) infinite time games, like reachability games, system-user in-

teraction, or Gale-Stewart games [6]. Note that from the technical point of view, one-shot

games can be seen as (in)finite time games, and (in)finite time games can be seen as one-shot

games. Indeed, we can either add some inconsequential moves or demand that players declare

all their future decisions at the start of the game.

The progress of time leads to distinction between turn based games, which are played

in rounds, and continuous time games, see e.g. [1]. In discrete time setting, we have concur-

rent games, where some vertices can be shared, e.g. Blackwell games [10], and turn-based

games, where every vertex has at most one owner, e.g. Gale-Stewart games [6], or parity

games [13, 4]. The objectives of games are usually given by families of pay-off functions, one

for each player. An important class of games are zero-sum games, where the pay-off func-

tions are chosen so that the sum of individual scores is zero. A game has a winning set if the

possible scores are binary: win or loose. We say that a game is regular if it has a regular

winning set, i.e. the inverse image of win is a regular set. By regular set we understand a set

recognised by an alternating automaton on finite or infinite words or trees, see e.g. [21] for

details.

Determinacy One of the most important notions in game theory is determinacy. Intu-

itively, a game is determined if no player gains an advantage knowing the strategies of the

other players.

The exact definition of determinacy depends on the type of the game and the class

of allowed strategies, e.g. in concurrent games or in matrix games with real valued pay-off

functions the determinacy is defined in terms of equilibria, while in zero-sum turn-based

games with winning sets, like Gale-Stewart games, in terms of winning strategies.

The celebrated result of Martin [9] states that Gale-Stewart games with Borel winning

sets are determined under pure strategies. On the other hand, since the seminal work of Gale

and Stewart [6], we know that not every game is determined under pure strategies. Therefore,

broader classes of strategies are considered.

Nash theorem [14] states that in one-shot games with finitely many strategies, there exists

at least one point of equilibrium of mixed strategies. A mixed strategy is a probability distri-
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Figure 1: An example of a branching board and a play on this board. We denote Eve’s,
Adam’s, Nature’s, and branching vertices by diamonds, squares, circles, and triangles respec-
tively. Nature’s vertices are equipped with a probability distribution over the successors. The
initial vertex is the only vertex with an arrow not having a source vertex. The successors
R and L are drawn in the clockwise order, i.e. R moves to the right and is drawn first in the
clockwise order.

butions on the set of pure strategies. Nash theorem is an extension of the works of von Neu-

mann and Morgenstern [22], who have shown the determinacy of two-payer zero-sum games,

and was later improved by Glicksberg [7] who showed that in two-player zero-sum games

the equilibrium exists if the space of possibly infinite number of strategies is compact and

the pay-off function is semi-continuous. A similar result by Martin [10] states that Blackwell

games, a class of infinite-time turn-based concurrent games with a finite number of possible

actions per turn, are determined under mixed strategies. Note that both results by Martin

hold in the stochastic set-up, see [10] for details.

Branching games In this thesis we study a special extension of stochastic two-player

zero-sum turn-based games on graphs called branching games [11]. The novel addition

of branching games [11] is yet another kind of vertices, as opposed to players’ vertices and

random vertices, called branching vertices. A token placed in one of those vertices is split

into a number of indistinguishable new copies of the token. The copies are placed in the

successor vertices of the node, one in each, and moved with no information on whereabouts

of the other copies. This new type of vertices can be seen as a delegation process, where the

players delegate the resolution of the rest of the game to independent parties that cannot

communicate. Note that branching games are games of imperfect information: we assume

that when players decide where to move a copy of the token, they are unaware of the positions

of the other copies. An example of a branching board is presented in Figure 1.

5



Complexities of games The main theoretical focus of this thesis is placed on the compu-

tational complexity of computing the values of the regular branching games. This can be seen

a natural extension of the work of Mio, who introduced branching games [12] and studied

some of their properties [11].

We are interested in this family of games for two reasons:

• regular sets are a robust class with strongly developed theory and many good proper-

ties, e.g. closure properties, effective representations, and many decision procedures;

• regular sets are complex enough to not trivialise the problems and showcase interesting

properties of branching games, e.g. lack of perfect information or perfect recall; for the

definition of perfect recall see e.g. [8].

Considering the scope and the theme of the theoretical part of this thesis, we continue

the work of Mio by considering branching games with regular winning sets and studying

their computational complexity. In a grater scope, this research inscribes itself into a rich

literature describing the complexity of ω-regular games, for a survey see e.g. [2].

Applications As we mentioned at the start, using games to model complex ecosystems

has always been an important motivation in the development of game theory. We con-

tribute to this part of the research by creating a framework that allows an easy incorporation

of game-theoretic methods. We propose a general procedure that given a time series of data,

extracts a reactive model that can be used to predict the evolution of the system and advise

on the strategies to achieve the predefined goals.

This is a case study, in which we were presented a data set to work with. Due to the

nature of the data, we have decided to use Markov decision processes as our models of choice

and Baum-Welch procedure to teach our models. Nevertheless, the described procedure

is general and, if the data would allow, both the model and the teaching procedure can

be replaced effortlessly.

Organisation of the thesis and main results

The main theoretical work of this thesis consist in the studies of branching games with

regular winning objectives. The secondary achievement of this thesis shows how game the-

ory in conjunction with machine learning can be used in real-life applications in modern

agriculture.
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Before we proceed, we need to fix some notation. Let B denote the branching vertices and

the symbols E,A,N denote the players Eve, Adam, Nature, respectively. If for the player’s

vertices we use the symbols of the players, then for a set S ⊆ {E,A,N ,B} we say that game

is S-branching if the symbols of vertices present in its board belong to the set S. By val
XP
G

we denote the value that player P ∈ {E,A} can enforce in game G using only pure (ε),

behavioural (B), or mixed (M)
1
. For instance, val

E
G is the value that Eve can enforce using

only pure strategies and val
MA
G is the value that Adam can enforce using mixed strategies.

Pure branching games

Pure branching games are the family of branching games with no stochastic elements,

i.e. games with no random vertices. Moreover, when considering pure branching games

we allow pure strategies only.

For those games the notion of a winning strategy can be defined. This allows to associate

the pure values of the game and the determinacy with the existence of a winning strategy:

the values belong to a binary set and the game is determined if and only if one of the players

has a winning strategy.

Pure branching games are not necessarily determined under pure strategies [11]. Thus,

we discuss the complexity of computing the values of a game and deciding the determinacy.

We start the discussion with the case of single-player games, which are necessarily deter-

mined under pure strategies.

Theorem 1. Let G = ⟨B, L⟩ be a finitary branching game. If the game is {E,B}-branching

then deciding whether Eve has a winning strategy

• is in UP∩co-UP, if L is given by a non-deterministic automaton,

• is EXP-complete, if L is given by an alternating automaton.

If the game is {A,B}-branching then deciding whether Eve has a winning strategy

• can be done in UP∩co-UP, if L is given by a game automaton,

• is EXP-complete, if L is given by a non-deterministic or an alternating automaton.

In the case of finite two-player games, we show that the sets of pure winning strategies

are regular sets of trees. From this we conclude that there is an algorithm that computes

pure partial values.

1
If the game is clear form context, we often drop if from the subscript.
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Theorem 2. Let G be a {A,E,B}-branching game with winning set given by an alternating

automaton on trees and val ∈ {val
E
, val

A}. Then, the value val problem is 2-EXP-complete.

In consequence, we can decide whether a given game is determined under pure strategies.

Corollary 3. Let G be a {A,E,B}-branching game with winning set given by an alternating

tree automaton. Then, there is an algorith that in doubly exponential time decides whether

game G is determined.

We also provide an alternative proof of the existence of an undetermined branching game.

The proof is based purely on computational complexity and is an immediate consequence

of the following theorem.

Theorem 4. Let G be an {A,E,B}-branching game with a winning set given by a non-de-

terministic automaton. Then, the value val
E

problem is 2-EXP-complete, and the value val
A

problem is EXP-complete.

Finally, we present an interesting properties of the branching games: the dealternation

of the winning set.

Lemma 5. There exists a polynomial time reduction that inputs a {A,E,B}-branching

game G with the winning condition given as an alternating tree automaton and constructs

a {A,E,B}-branching game G
′

with the winning condition given by a non-deterministic tree

automaton, such that val
E
G = val

E
G′.

Because of complexity reasons, such an operation is impossible without branching ele-

ments of the arena, recall that in ω-regular games on graphs an exponential blow-up is un-

avoidable.

The above results were published in [17, 19].

Stochastic branching games

We now lift the restrictions on the types of vertices and the type of strategies. Here we study

the branching games with stochastic elements, i.e. we allow random vertices, and both be-

havioural and mixed strategies.

We show that branching games with regular objectives are not necessarily determined

even under mixed strategies.

Theorem 6. There is an {A,E,B}-branching game with the winning set being a difference

of two open sets that is not determined under mixed strategies.
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On the other hand, we show that if the winning objective is topologically, relatively,

simple, i.e. is an open (or a closed) set, then the game is determined under mixed strategies.

Theorem 7. Branching games with closed (resp. open) regular objectives are determined

under mixed strategies.

Contrary to the pure branching games, the computational complexity of deciding the

value of a branching game with a regular winning set is intractable. We show that even

in the single-player case there is no algorithm that can compute a value of an arbitrary

branching game. In particular, we show that deciding whether a value of a branching game

with effectively encoded regular winning set is strictly greater than a certain threshold is un-

decidable.

Theorem 8. The value V problem of a regular branching game G = ⟨B, L⟩ is undecidable for

every partial value V ∈ {val
A
, val

BA
, val

MA
, val

ME
, val

BE
, val

E}. The problem is undecidable

even for a fixed single player board.

Finally, we present another interesting property of the branching games: the derandomi-

sation property. We show that we can modify in polynomial space both the board and the

winning set so that the mixed values remain unchanged and the new game is regular and

has no random vertices.

Lemma 9. There exists a polynomial space procedure that inputs a branching game G =

⟨B,L(A)⟩ with a regular winning set given by an alternating tree automaton and outputs

a non-stochastic {A,E,B}-branching game G
′
= ⟨B′,L(C)⟩ with the winning set given by an al-

ternating tree automaton C such that for every partial value V from the set {val
BA
, val

MA
,

val
ME

, val
BE} we have that VG = VG′.

In consequence, we obtain another undecidability result.

Corollary 10. For every V ∈ {val
BA
, val

MA
, val

ME
, val

BE}, the value V problem of a regular

{E,A,B}-branching game is undecidable.

Game automata winning sets

An interesting class of branching games are regular branching games with winning sets given

by the so-called game automata. Game automata are a syntactic restriction of the alternating

automata on trees, see [3] for details. We show that those games reduce in polynomial time

to stochastic meta-parity games introduced by Mio [12].

9



Theorem 11. There exists a logarithmic space procedure using an UP∩co-UP oracle that

inputs a finitary branching game G = ⟨B,L(A)⟩ with a regular winning set given by a game

automaton A and outputs a stochastic meta-parity game G
′

such that val
E
G′ = val

E
G and

val
A
G′ = val

A
G. Moreover, if S ⊆ {E,A,N ,B} and G is S-branching then G

′
, as a branching

game, is also S-branching.

Since stochastic meta-parity games are determined [11] and their value is computable

(an unpublished result by Mio), branching games with winning conditions given by game

automata are determined under pure strategies and their value is computable.

Corollary 12. Let G = ⟨B,L(A)⟩ be a finitary branching game with a regular winning set

given by a game automaton A. Then, the game is determined under pure strategies and the

value problem is decidable.

Additionally, if the game has no stochastic vertices, then we can prove an even stronger

reduction.

Corollary 13. Let S ⊆ {A,E,B}. Then, there exists a logarithmic space procedure using

an UP∩co-UP oracle that inputs a non-stochastic S-branching game G = ⟨B,L(A)⟩ with

a regular winning set given by a game automaton A and outputs a parity game G
′

such that

val
E
G′ = val

E
G and val

A
G′ = val

A
G.

Measures

We also attack the problem of computing the uniform measure of a regular set of trees. This

problem can be seen as a special case of computing a value of a given half-player game,

i.e. a game with only branching and random vertices. It turns out that, in some restricted

classes of first-order definable sets of trees, we can use Gaifman locality to show that the

measure of a set of trees is rational and computable.

Theorem 14. Let ϕ be a first-order sentence over the signature Γ ∪ {root, sL, sR, s}. Then,

the measure µ
∗(L(ϕ)) is rational and computable in three-fold exponential space.

Theorem 15. Let q be a conjunctive query over the signature Γ∪ {ε, sL, sR, s,⋤}. Then, the

measure of the language L(q) is rational and computable in exponential space.

We leave the general problem unsolved, but we give an example, inspired by Potthoff’s

example [16], of a first-order definable set of trees with irrational, but algebraic, measure.

Moreover, we conjecture that the measures of regular sets of trees are algebraic.

Those results have been partially published in [18].
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Plantation game

We show how game theory, and stochastic games in particular, can be used to support

modern agriculture. We propose a plantation game framework, where we show how using

time series of data describing a plantation one can create a tool that can model and predict

the behaviour of the plantation and advise the owner on the best actions. This is a case

study, where we take a time series describing a real fruit plantation and, using machine

learning methods, create a model and, later, a game that can represent the interactions

between the different elements of the fruit farm. Then, we show how the game can be used

to predict the evolution of the system and how to use the game to create an artificial advisor,

connecting the theory with real life applications.

Conclusions and future work

In the theoretical part of the thesis we study the properties of regular branching games.

We can differentiate three groups of results. The first one concerns the determinacy of branch-

ing games, the second one the computational complexity of computing game values, and the

last one the computational complexity of computing the measures of regular sets of trees.

Determinacy In the case of determinacy we have shown that regular branching games with

open (closed) sets are determined under mixed strategies, see Theorem 7. This is the limit

in the terms of topological hierarchy of sets: we provide an example of a regular branching

game that has a winning set that is a difference of two open sets, but which is not determined

under mixed strategies.

In the case of both pure and behavioural strategies even clopen sets or sets of trees

of bounded depth do not guarantee determinacy. This is showcased in an example that

combines the classic game of “Matching Pennies” with the observation of Mio, see [11,

Example 4.1.18]. This example stays contrary to Nash-like results in the perfect-information

games with perfect recall, which state that finite duration games with finite set of actions

are determined under behavioural strategies.

Still, those results do not characterise the classes of winning sets that guarantee determi-

nation. Indeed, we show that branching games with game automata definable winning sets

are determined under pure strategies, see Corollary 12. The game automata recognisable

sets can be of big topological complexity, for details see e.g. [5, 15]. Therefore, we think that

it would be interesting to find new families of winning sets that guarantee determinacy.
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Computing game values We have solved the general problem of computing values of reg-

ular branching games. In particular, we have shown that

• there is no algorithm that given a branching game with an arbitrary regular winning

set computes any of the game’s partial values, see Theorem 8;

• there is no algorithm that given a non-stochastic branching game with an arbitrary

regular winning set computes any of the behavioural or mixed values, see Corollary 10;

• there is an algorithm that given a non-stochastic branching game with a regular winning

set computes all of the pure values, see Theorem 2.

The exact computational complexity of the algorithm in the last bullet depends on the

kinds of vertices on the board and the representation of the winning set.

The negative results are not necessarily surprising: endowing systems of imperfect infor-

mation with probability often leads to undecidability, e.g. probabilistic automata [20].

While the above results answer the question of computability in the general case nega-

tively, the positive results give hope that a smart restriction on the set of possible winning

sets may yield a class of branching games with computable values. An example of such

a class are branching games with winning sets defined by game automata, for which the

values coincide and are computable, see Corollary 12. Another promising class of regular

winning sets may arise not from syntactic restrictions on automata, but by putting restric-

tions on the expressive power of monadic second-order logic. The class of special interest are

the Boolean combinations of conjunctive queries, for the reason mentioned in the following

paragraph.

Measures We have tackled the problem of computing the coin-flipping measure of a given

regular set of trees. We have shown that

• there is an algorithm that given a first-order formula ϕ not using the descendant

relation computes the uniform measure of the set L(ϕ), see Theorem 14;

• there is an algorithm that given a Boolean combination of conjunctive queries ϕ com-

putes the uniform measure of the set L(ϕ), see Theorem 15.

The involved techniques use the notion of locality and cannot be extended to the full

power of monadic second-order logic. Even the full first order-logic is not captured in the

scope of those results.

An obvious direction of future research is to try to find algorithms computing the measure

of any arbitrary regular set or at least for a set definable by some logic subsumed by monadic
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second-order logic, e.g. CTL
∗
, weak monadic second-order logic, or alternation free µ-calculus.

A less obvious direction of research would be to extend the techniques presented in this thesis

to arbitrary measures generated by graphs.

Applications We have also presented a generic way of using machine learning methods

and game theory to create a simple advisor taught on a time series describing a closed

ecosystem. The presented approach is simple yet robust, allowing easy exchange of used

tools and techniques.

In this particular case we have used Markov decision processes and the Baum-Welch

procedure to create a stochastic two-player game that represents a fruit farm. This game

can be used to predict the presence of pests, in the form of fruit flies and to plan chemical

treatments that will help with the management of the population of the flies.

The provided data did not allow us to use the rich theory we have developed in the study

of branching games. Still, we think that designing and developing tools which incorporate

branching games would be an interesting direction of future research. In our opinion, the sys-

tems that would benefit the most from the branching games representation are those, where

two adversaries oversee a number of independent, non-communicating agents: e.g. virus

outbreak, or breeding bacteria.
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