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In the dissertation we study the Coxeter spectral classification of finite partially
ordered sets (posets) introduced in [17, 21]. Our research is motivated by certain
results known in the representation theory of finite groups and finite-dimensional
algebras, and on the other hand, is inspired by spectral graph theory [4]. Due to
the significant use of algorithmic tools and calculation methods, these research
can be viewed as a part of Scientific Computing, which is an interdisciplinary field
of scientific research, in which the possibility of using computational results to
solve complex theoretical problems is examined.

Motivation

In the spectral graph theory, certain graph properties are studied by means
of algebraic tools. More precisely, with any graph there is uniquely associated
matrix (e.g. adjacency, Laplace or Seidl, see [5]) and based on the spectrum of this
matrix, various structural characterizations of a given graph are obtained. For
example, as the following theorem shows, the spectrum of the adjacency matrix
of the graph encodes information of its regularity.

Theorem 1. [3, Theorem 1.3.13] Let 𝐺 be a simple graph and 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛
be the eigenvalues of the adjacency matrix Ad𝐺 ∈ 𝕄𝑛(ℤ). The graph 𝐺 is regular if
and only if ∑𝑛

𝑖=1 𝜆2
𝑖 = 𝑛 ⋅ 𝜆1.

One of the inspirations to use algebraic methods in graph theory was an
attempt to find such an invariant of the graph that determines it uniquely, up to
the isomorphism [3, 4]. Assume that 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are simple
graphs, where 𝑉1 = 𝑉2 = {1, … , 𝑛}. The graphs 𝐺1, 𝐺2 are isomorphic if and
only if, there exists a permutation matrix 𝐵 ∈ 𝕄𝑛(ℤ), such that

Ad𝐺1
= 𝐵𝑡𝑟 ⋅ Ad𝐺2

⋅ 𝐵. (∗)

From the equality (∗) it follows that the spectra of the adjacency matrices of
isomorphic graphs coincide. The converse implication does not hold in general: a
counterexample can be found in among the graphs with 5 vertices [4, 5]. Hence,
the other (additional) invariants that characterise uniquely (up to isomorphism)
broad classes of graphs are studied [3].

In the dissertation we study the classification problem of finite partially
ordered sets (posets) up to the two equivalences: ∼ℤ and ≈ℤ, introduced in [17,
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19] that are analogous to (∗). With every poset 𝐼 = ({1, … , 𝑛}, ⪯𝐼) we associate the
incidence matrix 𝐶𝐼 = [𝑐𝑖𝑗] ∈ 𝕄𝑛(ℤ), where 𝑐𝑖𝑗 = 1 if 𝑖 ⪯𝐼 𝑗 and 𝑐𝑖𝑗 = 0 otherwise
(see [17, 21]), and the symmetric Gram matrix 𝐺𝐼 ∶= 1

2 (𝐶𝐼 + 𝐶𝑡𝑟
𝐼 ) ∈ 𝕄𝑛(1

2ℤ).
The posets 𝐼 and 𝐽 are called:

• quadratic ℤ-equivalent (𝐼 ∼ℤ 𝐽), if 𝐺𝐼 = 𝐵𝑡𝑟 ⋅ 𝐺𝐽 ⋅ 𝐵,

• bilinear ℤ-equivalent (𝐼 ≈ℤ 𝐽), if 𝐶𝐼 = 𝐵𝑡𝑟 ⋅ 𝐶𝐽 ⋅ 𝐵,

where 𝐵 ∈ 𝕄𝑛(ℤ) is such a matrix that det 𝐵 = ±1.
Moreover, following [17], with every finite poset 𝐼 we associate:

• the Coxeter matrix Cox𝐼 ∶= −𝐶𝐼 ⋅ (𝐶𝑡𝑟
𝐼 )−1 ∈ 𝕄𝑛(ℤ),

• the Coxeter spectrum specc𝐼 ∶= {𝑡 ∈ ℂ; det(𝑡 ⋅ 𝐸 − Cox𝐼) = 0} ⊆ ℂ.

Note that the equivalences ≈ℤ and ∼ℤ are more general than the isomorphism,
because the posets isomorphism 𝐼 ≃ 𝐽 implies the equivalences 𝐼 ≈ℤ 𝐽 and 𝐼 ∼ℤ 𝐽,
but the converse implication does not hold in general.

It is shown in [18, 19], that the equivalence 𝐼 ≈ℤ 𝐽 implies the equality of
Coxeter spectra specc𝐼 = specc𝐽 and the equality 𝐼 ∼ℤ 𝐽. The main problem
considered in the Coxeter spectral analysis of posets is to describe a broad class
of connected nonnegative posets 𝐼 that are determined by the Coxeter spectrum
specc𝐼 ⊆ ℂ uniquely, up to the relation ≈ℤ.

The Coxeter spectral classification of finite partially ordered sets can be viewed
as a special case of edge-bipartite graphs classification [19–21] and it often uses the
methods developed there. On the other hand, it is inspired by the representation
theory of finite-dimensional algebras [1] and matrix representations of finite
posets [7, 16]. Therefore, the main applications of the results presented in the
dissertation are in these areas and are discussed in the articles [17–19], see also [7,
Remark 5.12], and [14] oraz [13].

The aim and the main results

The aim of the research presented in the dissertation is the classification
of the finite partially ordered sets with the symmetric Gram matrix positive
semidefinite (i.e. nonnegative posets), up to the equivalences ∼ℤ and ≈ℤ. The
dissertation contains partial solutions to the following four problems formulated
in the articles [17, 19, 20].

• Classify all finite posets up to the relation ≈ℤ.

• Classify all finite posets up to the relation ∼ℤ.

• Define a minimal set of spectral invariants that determines a broad class of
partially ordered sets uniquely, up to the relation ≈ℤ.

• Construct efficient algorithms for spectral analysis of non-negative posets.
In particular, the algorithms that:
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– determine a corank of a finite poset,
– generate all, up to the isomorphism, nonnegative posets of a given

corank,
– compute the set of roots,
– determine the Dynkin type of a non-negative poset,
– construct an ℤ-invertible matrix 𝐵 ∈ 𝕄𝑛(ℤ) that defines the ≈ℤ rela-

tion between connected nonnegative posets 𝐼 and 𝐽.

In the dissertation we consider finite nonnegative posets 𝐼 of corank crk𝐼 ∈
{0, 1, 2} of 𝑛 elements, i.e. with the symmetric Gram matrix 𝐺𝐼 ∈ 𝕄𝑛(1

2ℤ) positive
semidefined of rank rz 𝐺𝐼 = 𝑛 − crk𝐼 ∈ {𝑛, 𝑛 − 1, 𝑛 − 2}.

In addition to the Coxeter spectrum specc𝐼 ⊆ ℂ, in considered cases, an
effective classification tool is the Dynkin type, i.e. unlabelled Dynkin diagram
Dyn𝐼 ∈ {A𝑛,D𝑛, E6, E7, E8}. We recall from [2], that the simply laced Dynkin
diagrams are the following simple graphs.

𝔸𝑛 ∶ 1 2 𝑛−1 𝑛
(𝑛 ≥ 1);

𝔻𝑛 ∶ 1

2

3 𝑛−1 𝑛
(𝑛 ≥ 4); 𝔼6 ∶ 1 2 3

4

5 6

𝔼7 ∶ 1 2 3

4

5 6 7 𝔼8 ∶ 1 2 3

4

5 6 7 8

The most important theoretical results presented in the dissertation are as
follows.

(a) Classification of connected posets 𝐼 of corank crk𝐼 = 0, that are one-peak
(i.e. have exactly one maximal element) or |𝐼| ≤ 14:

• up to the relations ∼ℤ and ≈ℤ, 𝐼 is one of the Dynkin posets 𝔸I𝑛, 𝔻I𝑛, 𝔼I6,
𝔼I7, 𝔼I8:

𝔸I𝑛 ∶ 1 2 𝑛−1 𝑛
(𝑛 ≥ 1);

𝔻I𝑛 ∶ 2

1

3 𝑛−1 𝑛
(𝑛 ≥ 4); 𝔼I6 ∶ 2 3 4

1

5 6

𝔼I7 ∶ 2 3 4

1

5 6 7 𝔼I8 ∶ 2 3 4

1

5 6 7 8 ;

• the following equivalences hold:

𝐼 ≈ℤ 𝐽 ⇔ 𝐼 ∼ℤ 𝐽 ⇔ specc𝐼 = specc𝐽 ⇔ Dyn𝐼 = Dyn𝐽;

• all one-peak posets 𝐼, up to the isomorphism are described by four infinite
series and 193 Hasse quvers with 6, 7, 8 vertices.

(b) Classification of connected posets 𝐼 with crk𝐼 = 1, that are one-peak or
|𝐼| ≤ 15:
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• up to the relation ∼ℤ (and ≈ℤ, if 𝐼 is a one-peak poset) 𝐼 is one of the
Euclidean posets 𝔸

∼
I𝑛, 𝔻

∼
I𝑛, 𝔼

∼
I6, 𝔼

∼
I7, 𝔼

∼
I8:

𝔸
∼

I𝑛 ∶ 2 3

1

𝑛−1 𝑛
𝑛+1

(𝑛 ≥ 1);

𝔻
∼

I𝑛 ∶ 3

1

4

2

𝑛 𝑛+1
(𝑛 ≥ 4); 𝔼

∼
I6 ∶ 3 4 5

2

1

6 7

𝔼
∼

I7 ∶ 2 3 4 5

1

6 7 8 𝔼
∼

I8 ∶ 2 3 4

1

5 6 7 8 9 ;
• the following equivalence holds:

𝐼 ≈ℤ 𝐽 ⇔ (specc𝐼, Dyn𝐼)=(specc𝐽, Dyn𝐽);

• all one-peak posets 𝐼, up to the isomorphism are described by seven infinite
series and 422 Hasse quvers with 7, 8, 9 vertices;

• if 𝐼 is a one peak poset, then the following equivalences hold:

𝐼 ≈ℤ 𝐽 ⇔ 𝐼 ∼ℤ 𝐽 ⇔ specc𝐼 = specc𝐽 ⇔ Dyn𝐼 = Dyn𝐽.

(c) Classification of connected posets 𝐼 of corank crk𝐼 = 2, that are one-peak
or |𝐼| ≤ 15:

• up to the relation ∼ℤ, 𝐼 is one of the Euclidean posets of corank two 𝔻
≈

I𝑛,
𝔼
≈

I6, 𝔼
≈

I7, 𝔼
≈

I8:

𝔻
≈

I𝑛 ∶
1

2

3

4

5

6

7 𝑛+2
(𝑛 ≥ 4);

𝔼
≈

I6 ∶ 1

2

3
4

5

6

7

8 𝔼
≈

I7 ∶ 1

2

3

4

5

6

7

8

9 𝔼
≈

I8 ∶ 1

2
3 4 5

6 7

8

9

10 ,

• the following equivalence holds:

𝐼 ≈ℤ 𝐽 ⇔ (specc𝐼, Dyn𝐼)=(specc𝐽, Dyn𝐽),

in particular, if |𝐼| ∉ {9, 10} /∋ |𝐽|, then the following equivalences hold:

specc𝐼 = specc𝐽 ⇔ 𝐼 ≈ℤ 𝐽 ⇔ 𝐼 ∼ℤ 𝐽 ⇔ Dyn𝐼 = Dyn𝐽;

• all one-peak posets 𝐼, up to the isomorphism are described by 14 series
and 426 incidence matrices;

• up to the relation ≈ℤ a one-peak poset 𝐼 is one of the Euclidean poset of
corank two 𝔻

≈
I𝑛, 𝔼

≈
I6, 𝔼

≈
I7, 𝔼

≈
I8 and of Dynkin type Dyn𝐼 ∈ {D|𝐼|−2, E6, E7, E8};

• if 𝐼 and 𝐽 are one-peak, then the following equivalences hold:

𝐼 ≈ℤ 𝐽 ⇔ 𝐼 ∼ℤ 𝐽 ⇔ specc𝐼 = specc𝐽 ⇔ Dyn𝐼 = Dyn𝐽.
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The most important combinatorial algorithms presented in the dissertation
are the following two algorithms of exponential running time. They allow to
construct an ℤ-invertible matrix 𝐵 ∈ 𝕄𝑛(ℤ) that defines the equivalence ≈ℤ
between a pair of finite posets 𝐼 and 𝐽.

(a) Exhaustive search algorithm for the case crk𝐼 = 0 = crk𝐽. This algorithm
guarantees to find a requested matrix, thus allows deterministic verifica-
tion of the bilinear ℤ-equivalence. In the dissertation we discuss a simple
modification of the algorithm that guarantees the computation of all matri-
ces defining the ≈ℤ equivalence.

(b) Heuristic algorithm for the case crk𝐼, crk𝐽 ∈ {1, 2}. This algorithm is sensi-
tive to input data and does not guarantee the determination of a requested
matrix.

In addition, in the dissertation we discuss our implementation of a package
of algorithms for Coxeter spectral analysis of non-negative partially ordered sets,
including the discussion of their computational complexity. These algorithms
are a basic tool in proofs of the majority of theoretical results presented in the
dissertation.

One of the applications of the Coxeter spectral classification of one-peak
positive posets presented in the dissertation is the proof of the existence of only
a finite number of Tits-sincere positive posets. We apply it in an alternative proof
of the theorem on the existence of a finite number of almost TP-critical posets,
significantly simpler than presented in [15].

Algorithmic and theoretical tools

Symbolic and combinatorial algorithms play a crucial rôle in the dissertation.
They are a basis of the presented experimental results and are an integral part of
the classification proofs. Due to the nature of the calculations, the emphasis in
the design of algorithms was placed on the correctness of the obtained results.
The issue of minimizing the running time of algorithms is of secondary priority,
because the most time-consuming algorithms are required to be run only once.

In the dissertation we use not only newly developed algorithms, but also
our original implementations of known numerical algorithms (eg Sylvester’s
algorithm), dedicated symbolic algorithms as well as publicly accessible pro-
gramming libraries (for the needs of solving the graph isomorphism problems
or integer linear programming).

One of the most important theoretical tools used in the dissertation are the
abstract root systems in the sense of [2]. Using them, with any finite connected
partially ordered set 𝐼 of 𝑚 elements of corank crk𝐼 = 𝑟 ∈ {0, 1, 2} we uniqly
associate the simply laced Dynkin diagram Dyn𝐼 ∈ {A𝑚−𝑟,D𝑚−𝑟, E6, E7, E8},
which (in some cases) defines 𝐼 uniqly, up to the equivalence ≈ℤ. The Dynkin
diagram Dyn𝐼 ∈ {A𝑚−𝑟,D𝑚−𝑟, E6, E7, E8} in fact is a Coxeter graph of the root
system R𝐽 = {𝑣 ∈ ℤ𝑚−𝑟; 𝑣 ⋅ 𝐺𝐽 ⋅ 𝑣𝑡𝑟 = 1} ⊆ ℤ𝑚−𝑟 determined by positive poset
𝐽 ⊆ 𝐼 of 𝑚 − 𝑟 elements.

A very important tool in the Coxeter spectral analysis of finite partially ordered
sets is also the 𝛷𝐼-mesh root system 𝛤(R𝐼, 𝛷𝐼) in the sense of [18].
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The set R𝐼 ⊆ ℤ𝑛 of roots of unity of the poset 𝐼 of corank crk𝐼 ∈ {0, 1, 2} plays
a crucial rôle in the construction of algorithms presented in the dissertation.
The main reason of that is the fact that the columns of any ℤ-invertible matrix
𝐵 ∈ 𝕄𝑛(ℤ) that defines the equivalence 𝐼 ≈ℤ 𝐽 between posets of 𝑛-elements
belong to the set R𝐽 ⊆ ℤ𝑛.

Publications

Some of the results presented in the dissertation has been supported by
NCN grant 2011/03/B/ST1/00824 and published in the following international
journals:

• Linear Algebra and its Applications [7, 10, 11],

• European Journal of Combinatorics [9],

• Fundamenta Informaticae [12],

• Colloquium Mathematicum [6],

• Algebra and Discrete Mathematics [8].
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