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Symmetries of mathematical objects were studied since antiquity. In the nineteenth century Ga-
lois et al. formalized symmetries by introducing the concept of group actions. Since then rigorous
study of actions of groups proved to be extremely effective in algebra, combinatorics, geometry,
topology and in other branches of mathematics. In this thesis we are interested in symmetries
given by polynomial mappings over some field k. Such symmetries are encapsulated by the no-
tion of an action of an algebraic group. An algebraic group is an algebraic variety equipped with
the group structure such that its multiplication and inverse are morphisms of varieties. Struc-
tural properties of algebraic groups were studied in detail ([DG70], [Jan03], [Mil17]). If G is an
algebraic group and X is a variety (or a scheme) over k, then an action of G on X is a morphism
a ∶ G ×k X → X such that a(1, x) = x and

a(g1, a(g2, x)) = a(g1g2, x)
for any points g1, g2 of G and every point x of X. This makes a variety X into a space on which
polynomial symmetries described by G act. The subfield of algebraic geometry which concerns
properties of actions of algebraic groups on varieties (and schemes) is a vast and classical domain
of research ([MFK94]). Similarly to algebraic groups one can consider algebraic monoids and their
actions. The structure and properties of algebraic monoids were extensively studied since 1980s
([Ren06], [CLSW14]).
Consider an algebraic group G and suppose that M is an algebraic monoid which contains G
as its group of invertible elements. Suppose that X is a k-scheme with an action of G. In this
dissertation we are concerned with constructing a space X+ which consists of points x in X such
that the canonical orbit map

G ∋ g ↦ gx ∈ X
can be extended to a G-equivariant map

M → X

For G = Gm, M = A1
k and a smooth variety X the space X+ was studied in the celebrated paper of

Białynicki-Birula [BB73, Theorem 4.3]. In this thesis we generalize his results.

1. HISTORICAL BACKGROUND AND MAIN RESULTS

1.1. Classical Białynicki-Birula decomposition. We explain the Białynicki-Birula results over
complex number field C for simplicity (Białynicki-Birula worked over arbitrary algebraically
closed field). Consider a complex smooth projective variety X with an action of C∗. We may
view X as a projective manifold and for each x in X we define

x0 = lim
t→0

t ⋅ x

Note that this limit exists for every point x in X according to the fact that X is projective. More-
over, x0 is a fixed point of the C∗-action. Classically the fixed point locus XC∗ of X is a disjoint
union F1, F2, ..., Fn of smooth, closed subvarieties of X. For each i we define

X+

i = {x ∈ X ∣ lim
t→0

t ⋅ x ∈ Fi}

Białynicki-Birula proved the following result.

Theorem. In the situation described above the following assertions hold.
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(1) X+

i ∩X+

j = ∅ for i ≠ j.

(2) The map X+

i ↪ X is a locally closed immersion of algebraic varieties for every i.

(3) The canonical map
X+

i ∋ x ↦ lim
t→0

t ⋅ x ∈ Fi

is a morphism of algebraic varieties and moreover, it is a Zariski locally trivial fibration with fiber
Cni for some ni ∈ N. This holds for every i.

The Theorem above (and its generalizations to singular varieties) has profound applications in
algebraic geometry. [BBCM13, II, 4.2] contains a survey of classical applications to Betti numbers
and homology. Here we give a sample of recent developments which were based on this result.
Brosnan ([Bro05]) applied Białynicki-Birula decomposition to obtain decomposition of motives of
isotropic smooth homogeneous projective varieties. Results due to Jelisiejew on Hilbert schemes
([Jel19a], [Jel19b]) used generalized version of the decomposition as their main tool. There are
applications to cell decompositions of quiver varieties ([RW19], [Sau17]), localization formulas in
equivariant cohomology ([Web17]) and mirror theorem for toric varieties ([Iri17]).

1.2. Drinfeld’s result. In [Dri13] Drinfeld proposed the following functorial generalization of
the classical Białynicki-Birula result. Let k be a field and let X be an arbitrary algebraic space over
k with an action of Gm. Consider the functor DX on the category of k-schemes defined by the
formula

Schk ∋ Y ↦ {γ ∶ A1
k ×k Y → X ∣γ is Gm-equivariant} ∈ Set

There are canonical morphisms of functors

DX X

XGm

iX

rXsX

which we define now. For this let γ ∈ DX(Y) for some k-scheme Y. We define

iX(γ) = γ
∣{1}×kY, rX(γ) = γ

∣{0}×kY

where 1 ∶ Spec k →A1
k is the inclusion of 1 and 0 ∶ Spec k →A1

k is the inclusion of the zero. Next if
f ∶ Y → X is a morphism which factors through XGm , then we define

sX( f ) = f ⋅ prY

where prY ∶ A1
k ×k Y → Y is the projection. The definition of DX is a functorial reformulation of

the limiting procedure discussed above. In order to provide intuitive justification of this claim let
us make some observations.

● Consider a k-scheme Y and let f ∶ Y → X be a morphism. Then f is a Y-point of X and the
morphism

Gm ×k Y ∋ (t, y) ↦ t ⋅ f (y) ∈ X
is the orbit of Y-point f with respect to the Gm-action. A limiting procedure may be
interpreted as the existence of the extension of the morphism above to a Gm-equivariant
morphism A1

k ×k Y → X. This is the motivation for the definition of DX .

● Under this interpretation one may view rX as the morphism sending each Y-point to its
limit Y-point provided that the latter exists.

● Similarly iX can be considered as the inclusion of the space of points that admit limit into
X and sX can be considered as the inclusion of fixed points into the space of points that
have limits.
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The following theorem is one of main results of Drinfeld’s article [Dri13, Theorem 1.4.3].

Theorem. Let X be an algebraic space of finite type over k with an action of Gm. Then

(1) DX is representable by an algebraic space of finite type over k.

(2) The morphism rX is affine.

1.3. The research questions. Note that the scheme A1
k is a monoid k-scheme with respect to the

canonical operation that makes the set of its k-points into the abstract monoid k×. Then 0 ∈ k
defines the zero of the monoid k-scheme A1

k . Moreover, the group of units of this monoid k-
scheme can be identified with Gm via canonical open immersion Gm ↪ A1

k . This suggests that
one can generalize Drinfeld’s functorial formulation as follows. Consider a monoid k-scheme M
with a zero o. Let G be its group of units. Then G is a group k-scheme. For every k-scheme (or
algebraic space) X with an action of G define the functor DX by the formula

Schk ∋ Y ↦ {γ ∶ M ×k Y → X ∣γ is G-equivariant} ∈ Set

on the category of k-schemes. Clearly one can define morphisms rX , sX and iX of functors as
above. The goal of this work is to provide answers to the following questions.

Question. Is DX representable?

Question. Suppose that DX is representable and smooth over XG. Is rX a locally trivial fibration with
affine spaces as fibers?

1.4. The results. Originally Jelisiejew and the author were interested in answering these ques-
tions for reductive monoids. It turns out that both our questions have affirmative answers if X is a
scheme locally of finite type over k and M is a reductive monoid over an arbitrary field k. There is
even wider class of Kempf monoids for which this is the case. Precisely the following two theorems
are the main results of this thesis.

Theorem A. Let G be a group k-scheme and let M be a Kempf monoid having G as a group of units.
Suppose that X is a scheme locally of finite type over k with an action of G. Then DX is representable by a
scheme X+ and rX ∶ X+ → XG is affine and of finite type.

Theorem B. Let G be a group k-scheme and let M be a Kempf monoid having G as a group of units. Let
X be a scheme locally of finite type over k with an action of G. Suppose that x is a point of XG such that
the morphism rX ∶ X+ → XG is smooth at sX(x). Then there exist an open neighborhood V of x in XG

and an isomorphism φ ∶ r−1
X (V) →An

V of k-schemes such that the triangle

r−1
X (V) An

V

V

φ

the restriction of rX prV

is commutative, where prV is the projection. Moreover, if G is linearly reductive, then one can choose φ to
be M-equivariant with respect to some action of M on An

V .

Note that Theorem A is a generalization of the Drinfeld’s result mentioned above (Subsection
1.2). Theorem B shows that the essential feature of the classical Białynicki-Birula decomposition
– that is the fact that the canonical morphism X+ → XG is a Zariski locally trivial fibration with
affine spaces as fibers – holds also for this much more general setup.
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2. MAIN IDEAS INVOLVED IN THE PROOF OF THEOREM A

In this and next section we give sketches of proofs of Theorems A and B.
In this section we start by discussing algebraic monoids. Next we introduce formal version of
the Białynicki-Birula functor D̂X and explain briefly the proof of its representability. In the last
subsection we outline how representability of this functor combined with coherent completeness
and tannakian formalism imply that the canonically defined morphism DX → D̂X is an isomor-
phism. Theorem A (i.e. representability of DX) is a consequence of the fact that DX → D̂X is an
isomorphism and representability of D̂X .

2.1. Kempf monoids. Let us first delve a little into the theory of algebraic monoids. The category
of algebraic monoids is a rich and beautiful extension of the category of algebraic groups. There
are whole monographs ([Ren06], [CLSW14]) devoted to this subject. In particular, (similarly to
the case of algebraic groups) researchers and pioneers in the field of algebraic monoids concen-
trate they efforts on studying reductive monoids. An algebraic monoid M over k is reductive if the
group G of units of M is a reductive algebraic group. Renner in [Ren06, Theorem 5.4] classifies
normal reductive monoids over algebraically closed fields in terms of pairs (G, Tmax) consisting
of a reductive group G and a normal toric monoid Tmax with maximal torus Tmax of G as the
group of units. He proves that if the action of the Weyl group of Tmax ↪ G extends to Tmax, then
there exists a unique (up to an isomorphism) normal reductive monoid M with G as the group
of units such that the closure of Tmax in M is Tmax. Moreover, if Tmax is a monoid with zero, then
also M is a monoid with zero.
It turns out, and this is the result due to Rittatore in [Rit98], that the class of reductive monoids
with zero is contained in a larger class of Kempf monoids. By definition a geometrically integral
algebraic monoid M with zero o is a Kempf monoid if there exists a central torus T inside the group
of units of M such that its closure cl(T) in M contains o. Representations of M are more tractable
due to existence of the central torus T, which is linearly reductive and hence admits semisimple
category of representations. Moreover, M is determined by the formal neighborhood of its zero.
In the remaining part of this section and in the next section we fix a Kempf monoid M and its
group of units G. For every n ∈ N let Mn ↪ M be an n-th infinitesimal neighborhood of the zero
o in M.

2.2. Formal Białynicki-Birula functor. Let X be a k-scheme equipped with an action of G. For
every k-scheme Y we define

D̂X(Y) = {{γn ∶ Mn ×k Y → X}n∈N ∣ ∀n∈N γn is G-equivariant and γn+1∣Mn×kY = γn}

This gives rise to a functor D̂X , which may be intuitively viewed as a formal-geometric version
of DX . It turns out that the representability of D̂X reduces easily to the algebraization in formal
M-equivariant geometry. Namely we consider formal M-schemes, i.e., formal schemes ([FGI05,
8.1.3.2])

Z0 Z1 ... Zn Zn+1 ...

such that each Zn is equipped with action of a monoid k-scheme M, all closed immersions Zn ↪
Zn+1 are M-equivariant and ZM

n = Z0 for every n ∈ N. For every k-scheme Z with an action of M
the sequence of infinitesimal neighborhoods Ẑ of fixed points ZM in Z is an example of a formal
M-scheme. It turns out that every formal M-scheme is of this form. This result takes form of an
equivalence of categories and is a consequence of the fact mentioned above that M is determined
by {Mn}n∈N. As a consequence we obtain that D̂X is representable and affine over XG.

2.3. Coherent completeness and tannakian formalism. The functors DX and D̂X are related by
a canonical morphism DX → D̂X . It is not difficult to prove that this map is a monomorphism
of functors. However, its surjectivity turn out to be a more subtle problem, since it is not clear
how to recover topologically an element DX out of a given element of D̂X . In order to explain
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this let us inspect the surjectivity of DX(Spec k) → D̂X(Spec k). A k-point of D̂X is a sequence of
morphisms {Mn → X}n∈N. All these morphisms have their images contained in the infinitesimal
neighborhood of XG and hence they contain information on the infinitesimal neighborhood of
XG. If the map DX(Spec k) → D̂X(Spec k) is surjective, then the family {Mn → X}n∈N can be
lifted to a morphism M → X, which existence depends on the topology of X and this a priori is
not encapsulated by the infinitesimal neighborhood of XG. We prove that DX → D̂X is surjective
by the two step argument. Let Z be a scheme representing D̂X . Then Z is a locally noetherian
scheme with an action of M such that Z can be covered by open affine M-stable subschemes. It
follows that for such Z the category of coherent G-sheaves on Z is canonically equivalent with
appropriately defined category of coherent G-sheaves on a formal M-scheme Ẑ consisting of
the sequence of formal neighborhoods of fixed points ZM of Z. This type of phenomenon is
called coherent completeness in [AHR20] and it resembles the celebrated Grothendieck’s existence
theorem ([FGI05, Theorem 8.4.2]). We derive from it that there exists a functor

CohG(X) → CohG(Z)
Secondly, according to the result due to Hall and Rydh ([HR19, Theorem 1.1] or by preprint by
Jelisiejew and the author [JS20, Theorem A.1]) there exists a canonical G-equivariant morphism
Z → X which induces the functor discussed above on categories of coherent G-sheaves. Results
of this type, which reconstruct a morphism of schemes f ∶ X → Y (stacks, algebraic spaces) out
of a certain monoidal functors F ∶ Coh(Y) → Coh(X) in such a way that f ∗ ≅ F in the category
of functors, are called tannakian formalisms in this work. This is justified by the fact that classi-
cal Tannaka duality ([Mil17, Note 9.4]) can be interpreted as the reconstruction of an algebraic
group G from its category of linear representations considered as a monoidal category over vec-
tor spaces. From the existence of this G-equivariant morphism Z → X (or in other words the
morphism D̂X → X) one can deduce that each family {γn ∶ Mn ×k Y → X}n∈N of compatible
G-equivariant morphisms can be extended to a G-equivariant morphism M ×k Y → X. This is
equivalent with the fact that the natural transformation DX → D̂X is surjective on every level and
from this Theorem A is inferred.

3. MAIN IDEAS INVOLVED IN THE PROOF OF THEOREM B

Theorem B is less demanding and its proof can be explained by referring to the notion of tubular
neighborhoods. A tubular neighborhood in differential topology ([BJ82, Definition 12.10]) is a
certain differentiable map from the normal bundle of a submanifold to the ambient manifold,
which induces a diffeomorphism of the normal bundle with the neighborhood of the submani-
fold. For differentiable manifolds tubular neighborhoods always exist ([BJ82, Theorem 12.11]). In
the world of schemes they exists affine locally under some additional smoothness assumptions.
Now if rX ∶ X+ → XG is a smooth morphism at sX(x), then in some affine neighborhood of sX(x)
there exists a morphism from the normal bundle of the closed subscheme sX ∶ XG ↪ X+ to X+.
This morphism is étale (it is an analogon of a tubular neighborhood). Moreover, one can con-
struct this morphism as equivariant with respect to some toric submonoid of M. Then by some
result from formal M-geometry one can prove that this morphism is an isomorphism and hence
rX is locally isomorphic to vector bundle, which is what Theorem B asserts.

4. RELATION OF THIS THESIS TO JOINT WORKS OF JELISIEJEW AND THE AUTHOR

Theorems A and B are fruits of the collaboration of Jelisiejew and the author ([JS19], [JS20]). Let
us now explain how approach presented in this thesis deviates from the content of these two
papers.
In [JS19] there is some stress on the notion of the formal M-scheme, but formal geometry is not
studied (due to the usual brevity of research papers) in a systematic way. In particular, that work
does not contain coherent completeness. This lack is filled in the second paper [JS20], but coher-
ent completeness is studied there somewhat out of the context of formal geometry. Substantial
part of the thesis is an exhaustive and unified exposition of the theory of the formal M-schemes
for a Kempf monoid M.
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There is also a minor technical difference between coherent completeness studied in [JS20] and in
this thesis. Here we get rid of the notion and usage of Serre subcategories. The reader may judge,
if this makes our presentation clearer than that of [JS20].
Moreover, there is a key difference between [JS19] and this work. The first relies on affine étale
G-equivariant neighborhoods obtained via the result of Alper, Hall and Rydh ([AHR20, Theorem
2.6]. This restricts the scope of generality of that paper to linearly reductive monoids. Here this
was eliminated thanks to coherent completeness, tannakian formalism and properties of Kempf
monoids. This makes Theorem A more general with respect to the class of algebraic monoids for
which it holds than its counterpart [JS19, Theorem 6.17].
Thanks to an additional work we were able to obtain a slightly stronger result than [JS20, Theo-
rem 1.1]. Namely Theorem A is derived for schemes locally of finite type over k and this can be
further refined to locally noetherian case if one accepts unpublished result ([JS20, Theorem A.1]).
In contrast [JS20, Theorem 1.1] is restricted to the quasi-compact case. Here representability is
formulated as the isomorphism between D̂X and DX , which is the original approach of [JS19]
and seems natural, but is not expressed explicitly in [JS20] (again due to brevity).
The proof (in the present thesis) of Theorem B relies on formal geometry and the concept of the
tubular neighborhood known from differential geometry. This is significantly different from the
original approach of [JS19], which was based on affine étale G-equivariant neighborhoods, and
[JS20], which does not refer to any results in formal geometry.

5. EXAMPLE

Actions of Gm are significantly less complex than actions of the higher dimensional tori. One
instance of this phenomenom is [BBS85] which is entirely devoted to answering certain question
concerning C∗ ×C∗-actions. The answer is much simpler in the case of C∗ and is provided by the
earlier work [BBS83]. Here we give an example of an application of the generalized Białynicki-
Birula decomposition for higher dimensional tori. Interestingly, the case of two dimensional tori
is used in order to relate two commuting actions of Gm.

Example 5.1. Let X be a smooth, quasi-projective scheme over k. Suppose that Gm acts on X with
finitely many fixed points. Then Theorems A and B imply that X+ (defined for Gm ⊆ A1

k) is a
disjoint sum of finitely many affine spaces (often called cells) corresponding to fixed points of the
action. This also follows from classical Białynicki-Birula result ([BB73, Theorem 4.3]).
Assume now that X is equipped with two commuting actions of Gm. Denote them by ai for i =
1, 2. Suppose that a1 and a2 admit the same fixed point locus F ⊆ X which consists of finitely many
points. Let x0 be a point of F. Next suppose that Wi for i = 1, 2 is a cell over x0 of the Białynicki-
Birula decomposition (defined for Gm ⊆ A1

k) with respect to ai. Then as we noted above Wi is
isomorphic (as k-scheme) with an affine space. According to [JS19, Proposition 7.6] we may view
Wi as a locally closed subscheme of X. We are going to prove that the intersection W1 ∩W2 is also
isomorphic to an affine space. For this consider the action a ∶ Gm ×k Gm → X induced by a1, a2
and apply the Białynicki-Birula decomposition with respect to the monoid A2

k which contains
(in a canonical way) Gm ×k Gm as its group of units. Let W be a cell of this Białynicki-Birula
decomposition corresponding to fixed point x0 of Gm ×k Gm. Similarly as above, from Theorems
A and B we deduce that W is an affine space. Therefore, it suffices to prove that

W = W1 ∩W2

By definition W represents the functor

D1(Y) = {γ ∶ A2 ×k Y → X ∣γ is Gm ×k Gm-equivariant and γ ({(0, 0)} ×k Y) = {x0}}

Moreover note that W1 ∩W2 = W1 ×X W2 and hence W1 ∩W2 represents the functor

D2(Y) = {γ ∶ (A2 ∖ {(0, 0)}) ×k Y → X ∣ γ is Gm ×k Gm-equivariant and
γ({(0, 1)} ×k Y) = {x0} = γ({(1, 0)} ×k Y) }
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Consider γ ∈ D2(Y). Let U be an open affine and Gm ×k Gm-stable neighborhood of x0 (it exists
according to the classical result of Sumihiro [CLS11, Theorem 3.1.7]). Since γ({0} ×k A1

k ×k Y) =
{x0} = γ(A1

k ×k {0} ×k Y), we deduce that γ factors through U. Next we have a cocartesian
(pushout) square

Gm ×k Gm A1
k ×k Gm

Gm ×k A1
k A2

k

in the category of affine k-schemes with actions of Gm ×k Gm. Hence we can extend γ uniquely
to a morphism γ ∶ A2

k ×k Y → U. Thus there exists the unique morphism γ̃ ∶ A2
k ×k Y → X which

extends γ. This proves that functors D1 and D2 are isomorphic over X. Thus W = W1 ∩W2.
Note that the assumption that the cells W1 and W2 correspond to the same fixed point is essential.
Indeed, consider the projective line P1

k with two actions of Gm given by formulas a1(t, [x0, x1]) =
[tx0, x1] and a2(t, [x0, x1]) = [t−1x0, x1]. These two actions commute and their schemes of fixed
points coincide. Then the cells for a1 are

A1
k ≅ {[x0, x1] ∈ P1

k ∣ x1 ≠ 0}, {[1, 0]}

and the cells for a2 are
A1

k ≅ {[x0, x1] ∈ P1
k ∣ x0 ≠ 0}, {[0, 1]}

The intersection of an a1-cell {[x0, x1] ∈ P1
k ∣ x1 ≠ 0} corresponding to [0, 1] and an a2-cell {[x0, x1] ∈

P1
k ∣ x0 ≠ 0} corresponding to [1, 0] is isomorphic to Gm as a k-scheme. Hence it is not an affine

space.

This example is extracted from [JS19, Example 7.9], where we investigate structural properties
of decompositions induced by monomial orderings on Hilbert schemes; the conclusion of the
example was not known even in that special case.
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