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Self-report

1 General description of the research problem

Let us start with an explanation of the term clustering. In data analysis it is an operation
of distinguishing heterogeneous subgroups in the given dataset. In other words, clustering
is the task of finding a proper partition of the dataset. In two-dimensional setting clus-
tering can be done even by a simple visual assessment. This becomes impossible as the
dimensionality of the problem increases – hence the need of an algorithmic approach.

The approach of the dissertation is Bayesian, meaning that we put a probability distribu-
tion (called prior) on the space of all possible partitions. For every partition we assign (in a
natural way) a conditional probability distribution of data given this partition. This allows
us, using Bayes Rule, to inverse the conditionality and compute the conditional probability
distribution on the space of partitions given the data (this is the posterior) that encap-
sulates all the information about the partition structure that we can (in our model) infer
from the data. This is easily said, but the computation of the exact probability weight
is practically impossible as it requires summing over the whole space of partitions, which
is intractable. Thanks to Markov Chain Monte Carlo algorithms, it is however possible
to sample from the approximation of the posterior distribution, hence this approach to
clustering is of interest also for practitioners. We also restrict our attention to priors on
the partition space that are obtained from some probability distribution on the infinitely
dimensional space of label probabilities. We call such models Bayesian Mixture Models
(BMMs).

If a concrete estimate of the partition structure is needed (which is a standard case in appli-
cations), a natural solution is to pick the partition that maximises the posterior probability
(i.e. the most probable partition given the data, and the model of course). Such partition
is called the Maximum a Posteriori, or MAP, partition. This is also a computationally
convenient choice since in order to find the maximiser it is enough to know the posterior
probability weights up to the problematic norming constant, and such quantity is easily
obtained via the product rule. Still the partition space is too large for exhaustive search,
but at least we can easily compare two different partitions in terms of this ‘posterior score’.

In the dissertation, we limit our attention to conjugate exponential families as a mechanism
of generating the data within clusters. Conjugate exponential family is a general and
important class of distributions widely used in Bayesian analysis. A popular example is
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the situation in which the data within every cluster has a multivariate normal distribution
in which the mean itself is also sampled from multivariate normal distribution; we will call
it the Normal-Normal case. We also put some special attention to a model in which the
data within clusters is normally distributed, but not only the cluster mean is random and
distributed normally, but also the covariance matrix is random and distributed according
to the Inverse-Wishart distribution. We call this situation the Normal-Inverse-Wishart
case.

The MAP partition is the main object of our interest. We prove that in the conjugate
exponential BMM the clusters of the MAP partition must be separated by the contour
surfaces of linear functionals of the sufficient statistics. In other words, if we use the
sufficients statistics instead of the original data, the clusters become linearly separated,
i.e. their convex hulls are disjoint. In this sense the clusters in the MAP partition can
be thought as being defined by a decent partition of the observation space (where ‘being
defined’ means that the data placed in the same chunk of the observation space are clustered
together and ‘decent’ means that the chunks are counterimages of convex polytopes under
the sufficient statistic). Of course, the partition of the observation space that defines
the MAP clustering can change as the number of observations increases. Nevertheless it
seems interesting to analyse the posterior probability of clusterings that are defined by
a fixed partition of the observation space (we call such clusterings induced clusterings).
We derive the formula for the asymptotic limit (up to a constant) of the logarithm of
the posterior probability of an induced partition in conjugate exponential BMM, when
the data is an independent sample from some probability distribution P , called the input
distribution. Interestingly, the limit does not depend on the prior probability on mixture
weights, provided the latter has a full support on an infinitely dimensional simplex. The
aforementioned asymptotic limit is a function of the partition of the observation space
– we call it the ∆ function, since it is a difference of two functions that increase their
values whenever two chunks of the partitions are merged and therefore the maximisation
of this function represents a trade-off between two tendencies: fine partitions adjust well
to the data but at the same time they are penalized by the prior. A natural idea there
is that perhaps the MAP clusterings are somehow bound to the maximisers of the ∆

function. This line of research was pursued in Rajkowski (2019), where the positive result
was proved for a very specific example of an conjugate exponential BMM, namely the
Normal-Normal BMM (we later call a Normal-Normal BMM) with the so called Chinese
Restaurant prior, explained later in this report. These findings are also presented in details
in the dissertation.

The fixed covariance model clearly imposes severe limitations on the covariance structure
within clusters, rarely met in the real world situations. Models that differences between the
covariance structures of the clusters should perform better when clusters do have different
covariance structures. We attempt to deal with this in the Normal-Inverse-Wishart model.
At the same time, we observed some undesired behaviour of the ∆P function for this
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model. For example when the input distribution is uniform on a segment, in which case
every partition into subsegments gives the same ∆P score. This is why we also consider an
adjusted Normal-Inverse-Wishart model, where the concentration parameter of the prior
on the covariance structure is increasing linearly with the number of observations. It
turns out that with this model, we can rewrite some of the results from Rajkowski (2019).
Finally, in this case as a limit we obtain a family of ∆P functions that depend on the
linear coefficient in the concentration parameter. We can translate this ∆P functions to
their empirical counterparts and hence obtain a convenient family of score function the
measure the performance of data clustering. This, or rather its empirical equivalent, can
be used for scoring candidates for partitions proposed by some more ad-hoc methods, like
the k-means. This approach is investigated in numerical simulations, presented towards
the end of the dissertation.

2 Mathematical setting

2.1 General Framework for BMMs

We start with the description of Bayesian Mixture Models. Let Θ ⊂ Rp be the parameter
space for a single cluster distributions and {Gθ : θ ∈ Θ} be a family of probability measures
on the observation space Rd and assume that Gθ has a density gθ with respect to the
Lebesgue measure. Those are the component measures, responsible for randomness within
clusters. Consider a prior distribution ϑ on Θ (we will call it the base measure, defining how
the parameters of the components are spread). Let π be a prior probability distribution on
them-dimensional simplex4m = {p = (pi)

m
i=1 :

∑m
i=1 pi = 1 and pi ≥ 0 for i ≤ m} (where

m ∈ N ∪ {∞}). The observations x1, . . . , xn ∈ Rd are modelled by

p = (pi)
m
i=1 ∼ π

θ = (θi)
m
i=1

iid∼ ϑ

x = (x1, . . . , xn) |p,θ iid∼
∑m

i=1 piGθi .

(1)

This is a Bayesian Mixture Model. If m < ∞ we call the model finite, otherwise it is
(obviously) infinite. In this dissertation we concentrate on the infinite case.

The focus of this dissertation is applying Bayesian Mixture Models to detect clusters within
data. Indeed, formula (1) can be used to model data clustering; clusters are defined by
deciding which distribution Gθi generated a given data point. This can be easily formalized
as a probability distribution Pπ,n on the space of all partitions of [n] := {1, 2, . . . , n}. We
can now formulate (1) as follows: firstly we generate the partition of observations into
clusters according to Pπ,n, and then for each cluster we sample actual observations from
the relevant marginal distribution on the data. To formalise this description succinctly, we
introduce some additional notation. If x = (xi)

n
i=1 is a sequence and I ⊆ [n], then xI =

(xi)i∈I is a subsequence of x consisting of the terms at coordinates belonging to I. The
distribution Gϑ,k (k ∈ N) is the marginal distribution of the k-tuple whose coordinates are,
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conditionally on θ ∼ ϑ, independently and identically distributed by Gθ. More specifically,
for θ ∼ ϑ, k ∈ N and u = (u1, . . . , uk) | θ

iid∼ Gθ, we denote by Gϑ,k the marginal distribution
of u. Its density is given by

gϑ,k(u1, . . . , uk) :=

∫
Θ

k∏
i=1

gθ(ui)dϑ(θ). (2)

Now, (1) is equivalent to

I ∼ Pπ,n
xI := (xi)i∈I | I ∼ Gϑ,|I| for all I ∈ I

(3)

Using the within cluster conditional independence, we can write the density of x condi-
tionally on I:

gϑ,n(x | I) :=
∏
I∈I

gϑ,|I|(xI). (4)

Finally, for further convenience, let

Q(x, I) = Pπ,n(I) · gϑ,n(x | I) (5)

be the joint density of the partition and the observation. By Bayes rule, the expression in
(5) is also proportional to the posterior probability Pπ,n(I |x) of the partition I given the
observation x.

The expression in Formula (5) is proportional to the posterior distribution on the space of
partitions. Therefore, the maximiser of this expression gives the Maximum A Posteriori
clustering and this is what we use as an estimator of the clustering structure.

Definition 2.1. TheMaximum A Posteriori (MAP) partition of [n] given x = (x1, x2, . . . , xn)

in a given Bayesian Mixture Model of the form (3) is any partition Î of [n] that max-
imises Q(x, I) given by (5). In other words, the set of the MAP partitions is given by
argmaxI Q(x, I).

A classical choice for the partition prior Pπ,n is so called Chinese Restaurant Process. The
construction goes as follows: imagine that elements of [n] are the clients waiting in front
of a Chinese Restaurant, in which there is potentially infinitely many tables. Customer 1
chooses any table she wants. Customer 2 chooses another table with probability propor-
tional to α or joins Customer 1 with probability proportional to 1; thus those probabilities
are α

α+1 and 1
α+1 respectively. In general, the n-th customer chooses an empty table with

probability proportional to α or joins a nonempty table with probability proportional to
the number of other customers sitting there. This description is readily transformed into
the following probability function on the space of all partitions of [n]:

Pπ,n(I) =
α|I|

α(n)

∏
I∈I

(|I| − 1)!, (6)

4



where α(n) = α(α+ 1) . . . (α+ n− 1).

Now we briefly present a natural and computationally convenient candidates for distribu-
tions ν and Gθ (the base and the component measures), namely conjugate exponential
families. Let X ⊆ Rd be the observation space and let Θ ⊆ Rp be the parameter space. A
family of distributions {Gθ : θ ∈ Θ} on X is called p-dimensional exponential family if for
every θ the probability Gθ has the following density with respect to the Lebesgue measure:

gθ(x) = h(x) · exp
{
T (x)>η(θ)− B(θ)

}
, (7)

where T : X → Rp is a p-dimensional statistic (called natural sufficient statistic) and
h : X → R, B : Θ→ R and η : Θ→ Rp are some functions.

If we let the model be indexed by η = η(θ) rather than θ we obtain the canonical p-
parameter exponential family generated by T and h, in which the density of G′η = Gθ is
given by

g′η(x) = h(x) · exp
{
T (x)>η − A(η)

}
, (8)

where
A(η) = log

∫
X
h(x) · exp

{
T (x)>η

}
dx (9)

is called the log-partition function. In this case the set

E = {η ∈ Rp : A(η) <∞} (10)

is called the natural parameter space. If the natural parameter space is a nonempty open
subset of Rp, we say that the canonical exponential family is regular. Moreover we will use
the term regular for an exponential family {gθ : θ ∈ Θ} (where gθ is given by (7)) when
the corresponding canonical form is regular and θ : Θ→ E is a bijection.

Now we introduce a conjugate exponential family, i.e. an exponential family of distributions
such that if we consider a Bayesian model in which the prior distribution on the parameter
θ comes from this family and the likelihood is given by (7), then the posterior distribution
θ |x also belongs to this family.

Suppose that in (7) we can write B(θ) as B(θ) = a>B(θ) where a ∈ Rq and B(θ) =

[B1(θ), . . . ,Bq(θ)]
>. Consider a canonical exponential family on Θ, where the densities are

given by

γτ,ζ(θ) := ψ(θ) · exp

{
[η(θ)>,−B(θ)>]

[
τ

ζ

]
− C(τ, ζ)

}
, (11)

where τ ∈ Rp and ζ ∈ Rq are the hyperparameters and C(τ, ζ) is the log-partition function.
It follows that if θ ∼ ϑ, where ϑ has density γτ0,ζ0 and x = (x1, . . . , xk) | θ

iid∼ gθ then
θ |x ∼ γτx,ζk , where τx := τ0 +

∑k
i=1 T (xi) and ζk := ζ0 + ka. Moreover, the marginal

density of x is

x ∼ gϑ,k(x) =
k∏
i=1

h(xi) · exp {C(τx, ζk)− C(τ0, ζ0)} (12)
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Convexity assumption. It is a well known property of the exponential families that
a>B

(
θ(η)

)
= B

(
θ(η)

)
= A(η) is a convex function on E . In some of our results we will

assume that also

for any (τ0, ζ0) ∈ Ω the function ζ0
>B
(
θ(η)

)
is a convex function on E . (13)

We call this assumption a convexity assumption; it is satisfied by all multivariate conjugate
Normal models presented in the dissertation.

Definition 2.2. Canonical Exponential Family Bayesian Mixture Model is a Bayesian
Mixture Model in which the component density is given by (7) and the base density is (11)
for some (τ0, ζ0) ∈ Ω.

2.2 Example: Conjugate Normal Families

As an example of conjugate exponential family that is commonly used in practice (in the
context of mixture models) we consider Normal Conjugate Families in which the component
distributions Gθ are multivariate Normal. This corresponds to the data being normally
distributed within clusters, which is a rather standard assumption.

Normal-Normal (NN). Here the component covariance matrix is assumed to be known
a priori; the component mean is unknown and this is the parameter on which the prior
distribution is set, i.e. θ = µ, Θ = Rd and x |µ ∼ N (µ,Σ0), where Σ0 is known. The base
measure is

µ ∼ N (µ0,Ψ0). (14)

Normal-Inverse-Wishart (NIW). In this case both the mean and the covariance matrix
are unknown. The parameter space is therefore equal to Θ = Rd × Sd+, where Sd+ is the
space of all positive definite, d× d matrices, that can serve as convariance structures. For
θ = (µ,Λ) ∈ Θ the component distribution is x | θ ∼ N (µ,Λ) and the base measure ϑ on
(µ,Λ) is defined by the following conditional structure

Λ ∼ W−1(ν0 + d+ 1, ν0Σ0)

µ |Λ ∼ N (µ0,Λ/κ0),
(15)

where W−1 is the Inverse-Wishart distribution.

3 Statement of the results

3.1 Geometric separability

The first important result of the dissertation concerns the separation of clusters in the
MAP partition. In Rajkowski (2019, Proposition 1) it was proved that for the Gaussian
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fixed covariance BMM model (with the Chinese Restaurant prior on the space of parti-
tions), the convex hulls of the clusters in the MAP partition are disjoint. In other words,
every two clusters are separated by a hyperplane or linear affine subspace. Theorem 3.3
generalises that result to the conjugate exponential BMMs and shows how the separability
property of clusters relates to the sufficient statistic T (x) in the conjugate exponential
family. More precisely, in the general case the separation surfaces are the contour lines of
linear functionals of the sufficient statistic.

We start this section by defining what we mean by T -linear separation of clusters.

Definition 3.1. Let Z be a family of subsets of Rd and L a family of real functions
on Rd. We say that Z is separated by L if for every A,B ∈ Z, A 6= B, there exists
LA,B ∈ L such that LA,B(x) ≥ 0 and LA,B(y) < 0 for all x ∈ A, y ∈ B. Moreover,
if L = {a>T (x) + b : a ∈ Rp, b ∈ R} for some function T : Rd → Rp, we say that Z is
T -linearly separated. If T (x) = x, we use the term linear separability for short.

Note 3.2. If a family Z of subsets of Rd is linearly separable, then every pair of elements
of Z is separated (in standard, geometric sense) by a hyperplane.

(a) This family is linearly
separable.

(b) This family is
quadratically (T (x) =

[diag(xx>), low(xx>), x])
separable. It is not
linearly separable.

(c) This family is not
quadratically separable.

Figure 1: Illustration of the different types of separability. The family Z in each picture consists
of four sets: stars, sqares, triangles and circles (distinguished also by color).

Theorem 3.3. Let x1, . . . , xn ∈ Rd be pairwise distinct and let Î be the MAP partition of
x1, . . . , xn in the conjugate exponential Bayesian Mixture Model, where the hyperparameter
is identifiable. Then the family {xI : I ∈ Î} is T -linearly separable.

This separation result for the clusters of the MAP partition implies, loosely speaking, that
the MAP clusters are contained within some decent ‘chunks’ of the observation space.
This motivates us to ‘reverse the optics’ and consider clusterings (that we call induced)
of the data that are defined by an a’priori fixed partition A of the observation space. We
derive the asymptotic limit of the logarithm of the posterior probability (up to a norming
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constant) of such induced clusterings, when the data are sampled independently from some
given probability P (we call it the input probability). The result clearly depends on A and
P . The limit is denoted by ∆MP (A), whereM represents the conjugate exponential family
used to build the model. The limit does not depend on the exact specification of the prior
distribution π on the component probabilities (cf. (1)), provided that π has a full support
on the infinitely dimensional simplex 4∞.

3.2 Induced partitions and the limit formula

In this section we assume that the data is an independent sample from some fixed prob-
ability distribution P on Rd, which we will call the input distribution. With the partition
of the observation space fixed, this gives a random sequence of the clustering of indices,
which in turn can be scored by the ‘posterior score’ (5). In the following we derive the
asymptotic behaviour of the score. Note that, in the derivation of the model, the observa-
tions are not produced by an (unconditionally) i.i.d. sampling. This (of course) does not
imply any ‘mis-specification’ if we derive asymptotic formulae by considering X1, X2, . . .

as i.i.d. P random vectors; if Pn is the empirical distribution where n observations are
generated using the scheme of the previous section, then Pn

n→∞−→(d) P for some P and, for
asymptotic results, the Strong Law of Large Numbers gives that the same asymptotics will
hold for X1, X2, . . . i.i.d. P .

Of course, only a small class of distributions P can be generated according to the sampling
scheme; these will necessarily be infinite mixtures of exponential distributions (and the
mixture will have an infinite number of components). We do not limit ourselves to P

that can be generated in this way and we consider more general input distributions in our
analysis of the performance of the classifier.

Definition 3.4. Let P be a probability distribution on Rd. We say that a family A of
P -measurable subsets of Rd is a P -partition if

• P (A) > 0 for all A ∈ A,

• P
(⋃

A∈AA
)

= 1,

• P (A ∩B) = 0 for all A,B ∈ A, A 6= B.

Notation. Let x = (x1, . . . , xn) be a sequence of vectors in Rd. Let A be a countable
collection of subsets of Rd. We denote IAn (x) := {JAn : A ∈ A} where JAn = {i ≤ n : Xi ∈
A} (if JAn = ∅, we do not include it in IAn ). If every xi belongs to exactly one A ∈ A then
IAn (x) is a partition of [n]. We say that it is induced by A. The argument x is often clear
from the context and therefore it is sometimes omitted.

Remark 3.5. It is clear by the definition of the P partition that if A is P -partition and
X1, X2 . . .

iid∼ P then almost surely IAn (X1, . . . , Xn) is a partition of [n] for every n ∈ N.
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X1

X2

X4

X6

X7 X8
X9

X5

X10 X3

Figure 2: In this picture the observation space
X is the rectangle and the partition A is de-
fined by the blue separation curves. The points
X1, . . . , X10 are drawn uniformly from X . The
random partition of {1, 2, . . . , 10} induced by A
is {

{1, 3, 5, 8}, {2, 10}, {4, 9}, {6}, {7}
}
.

According to Remark 3.5, partitions induced by a P -partition on a random sample from
P are almost surely partitions, and hence we can analyse their posterior probability in the
conjugate exponential Bayesian Mixture models. We investigate the asymptotic limit of
the logarithm of the joint probability given by (5). In order to specify the limit, we recall
the notion of convex conjugate.

Definition 3.6. If f is a real function on Rd then the convex conjugate of f is the function
f∗ : Rd → R ∪ {∞}, given by f∗(z) = supx∈Rd

(
z>x− f(x)

)
.

Theorem 3.7. Consider the infinite conjugate exponential Bayesian Mixture Model, in
which the component measures are given by (7) and the base measure is given by (11).
Suppose that the exponential family is regular and that the convexity assumption (13) holds.
Let P be a probability distribution on Rd, A be a finite P -partition of Rd and X ∼ P .
Assume that EP log h(X) <∞, EP ‖T (X)‖ <∞ and

(i) A∗
(
EP (T (X) |X ∈ A)

)
< ∞, where A∗ is the convex conjugate of the log-partition

function A, given by (9),

(ii)
(
rEP (T (X) |X ∈ A), ra

)
∈ int Ω for some r ∈ N, where Ω is the natural hyperpa-

rameter space.

Let Q be the joint probability function given by (5), in which gϑ,k is given by (12). Let
X1, X2, . . .

iid∼ P and X1:n = (X1, . . . , Xn). Then

lim
n→∞

1

n
logQ

(
X1:n,JAn (X1:n)

) a.s.
= EP log h(X) + ∆P (A) (16)

where
∆P (A) =

∑
A∈A

P (A) · A∗
(
EP (T (X) |X ∈ A)

)
+
∑
A∈A

P (A) logP (A). (17)

From this it can be deduced that the asymptotic formula for the Normal-Normal model
has the form

∆NN
P (A) =

1

2

∑
A∈A

P (A) · ‖EP (RX |X ∈ A)‖2 +H(A). (18)
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and the asymptotic formula for the Normal-Inverse-Wishart is

∆NIW
P (A) = −d

2
− 1

2

∑
A∈A

P (A) · log |VP (X |X ∈ A)|+H(A). (19)

Let us point out an obvious consequence of Theorem 3.7.

Corollary 3.8. Let A1 and A2 be two finite P -partitions of Rd such that ∆P (A1) >

∆P (A2). Let X1, X2, . . .
iid∼ P and let X1:n = (X1, . . . , Xn). With the assumptions of

Theorem 3.7 almost surely there exists N such that

Q
(
X1:n,JA1

n (X1:n)
)
> Q

(
X1:n,JA1

n (X1:n)
)

for n > N (20)

Hence, as long as the induced partitions are concerned, the ∆P function is an indicator
of which of these partitions gives larger posterior score given by (5), when our data is an
independent sample from the probability distribution P . In this sense we can hope that
∆P relates somehow to the search of the MAP clustering. Clearly, the MAP clustering is
not an induced one, but since the clusters in this case can be separated by some regular
surfaces (cf. Theorem 3.3), we can hope that in the limit the MAP clustering can manifest
some ‘induced’ behaviour. This idea is successfully applied in Rajkowski (2019) in a very
specific setting of Normal-Normal model and the Chinese Restaurant prior on the space of
partitions. This is described in more detail in the folowing subsection.

3.3 Asymptotic results for the Normal-Normal model

Consider the Normal-Normal BMM and let P be some input distribution with a bounded
support, continuous with respect to the Lebesgue measure. Let X1, X2 . . . ∼ P , În be the
MAP partition of X1, . . . , Xn and let Ân =

{
conv{Xj : j ∈ I} : I ∈ În

}
, where convA

is the convex hull of the set A. Let M∆ be the set of all P -partitions that maximise the
∆NN
P function. Let dP be the symmetric difference metric (i.e. for two P -measurable sets

A,B we have dP (A,B) = (A \ B) ∪ (B \ A)) and let dP be its natural extension to finite
P -partitions.

The aforementioned limit result can be expressed in the following

Proposition 3.9. Assume that P has bounded support and is continuous with respect to
Lebesgue measure. Then M∆ 6= ∅ and almost surely infM∈M∆

dP (Ân,M)→ 0.

It can be shown that as the norm of the within group covariance matrix tends to 0, the
variance of the conditional expected value gains larger importance in maximising the func-
tion ∆NN

P in formula (18) and this variance increases as the number of clusters increases.
Therefore by manipulating the within group covariance parameter, when the input distri-
bution is bounded it is possible to obtain an arbitrarily large (but fixed) number of clusters
in the MAP partition as n→∞, as Theorem 3.10 states. This is also an indication of the
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inconsistency of the procedure used since it implies that when the input comes from a finite
mixture of distributions with bounded support, then setting the Σ parameter too small
leads to an overestimation of the number of clusters. This corresponds to some extent to
the starting point of our research, which was the inconsistency result for the number of
clusters of Miller and Harrison (2014).

Theorem 3.10. Assume that P has bounded support and is continuous with respect to
Lebesgue measure and let X1, X2, . . .

iid∼ P . Then almost surely for every K ∈ N there
exists an ε > 0 and n0 ∈ N such that if ‖Σ0‖ < ε and n > n0 then |În(X1:n)| > K.

4 The adjusted Normal-Inverse-Wishart model

In the dissertation we consider the ’uniform input distribution’ case and establish what
partitions of the [0, 1] segments maximise the ∆P function for the Normal-Normal and
Normal-Inverse-Wishart model (given by (18)) and (19)) when the input distribution P

is uniform on [0, 1]. In the Normal-Normal case the within-cluster covariance is strongly
influenced by the prior covariance parameter; the maximiser is unique and it is a division
into segments of equal length, that make the within cluster covariance as close as possible
to the value of the parameter (cf. Proposition 2.30 in the dissertation). When in the
‘real’ clustering the covariance is not the same for each cluster, or if the ‘correct’ hyper
parameter value is not known in advance, then this model performs poorly; Proposition
3.24 illustrates that under hyperparameter misspecification, the model can behave very
poorly.

To circumvent this, we place an Inverse Wishart prior over the within-cluster covariance
parameter, but the naive application of such a prior produces a model which, when applied
to a uniform input distribution, gives the same maximising value for the objective for
any division of [0, 1] into connected pieces. The problem is that the parameter space for
this non-parametric Bayes model is too large. Hence, we investigate priors which have a
regularising effect; to obtain a suitable objective as an asymptotic limit, we consider prior
distributions which depend on the number of observations.

It turns out that the only dependence on n which gives the regularising effect that we
require is the Normal-Inverse-Wishart model with ν0 = α + λn for parameters α and
λ, while keeping the expected within cluster covariance fixed as Σ0. More explicitly, we
consider the asymptotic limit when, for a sample size n, the prior is

Λ ∼W−1
(
α+ λn+ d+ 1, (α+ λn)Σ0

)
µ |Λ ∼ N

(
µ0,

1

κ0
Λ
)
. (21)

This leads to a parametrised family of objectives, which depend on the parameter λ. For
fixed Σ0 letting λ range between 0 and +∞ gives a whole range of objectives, where
λ = +∞ corresponds to the situation of the previous chapter, where the within-cluster
covariance is fixed as Σ0. When λ > 0 (inequality strict), we can adapt the methods from
Rajkowski (2019) (with fixed within-cluster covariance) and prove corresponding results.
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By introducing a linear dependence of the concentration parameter in the Normal-Inverse-
Wishart model on the number of observation we allowed to pass more prior knowledge
about then within-cluster covariance structure into the model. In this setting we are able
to show that in the MAP clustering for an infinite and bounded sequence of data, the
size of clusters grows proportionally with the number of observations and, in turn, the
number of clusters is bounded (Proposition 4.6 and Corollary 4.7 in the dissertation). We
also compute the asymptotic limit of the posterior of an induced partition (an analogue of
(19)) and we establish some properties of the limit (like monotonicity with respect to the λ
parameter, cf. Lemma 4.4 in the dissertation). Finally, we suggest how to use the empirical
of the limit to choose among various clustering proposals, which can be of interest to the
practitioner. We finish the dissertation with the experimental analysis of this approach.
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