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The aim of this dissertation is the classification up to the Gram congruences ∼ℤ
and ≈ℤ and Coxeter spectral classification of non-negative loop-free edge-bipartite
graphs (bigraphs) 𝛥 = (𝛥0, 𝛥1) (defined in [22]) with finite set of vertices 𝛥0 =
{𝑎1, … 𝑎𝑚} and a finite set of edges 𝛥1 (labelled with symbols from the two-element set
{−1, +1}), as well as the construction of algorithmic tools to perform this classification.

In particular, we present combinatorial and graphical algorithms allowing Gram
classification and Coxeter spectral classification of loop-free edge-bipartite graphs of
two corank two.

Main results and their applications

The main result of the classification up to the Gram congruences ∼ℤ and ≈ℤ
and Coxeter spectral classification presented in this dissertation is a classification of
non-negative loop-free edge-bipartite graphs of corank two. We say that a bigraph
𝛥 = (𝛥0, 𝛥1) with 𝑚 ≥ 1 vertices is non-negative of corank 0 ≤ 𝑟 ≤ 𝑚 − 1, if the
symmetric Gram matrix 𝐺𝛥 ∶= 1

2[ ̌𝐺𝛥 + ̌𝐺𝑡𝑟
𝛥 ] ∈ 𝕄𝑚(ℚ) is positive semidefinite of

rank 𝑚 − 𝑟, where ̌𝐺𝛥 ∈ 𝕄𝑚(ℤ) is the non-symmetric Gram matrix viewed as a
modified signed graph adjacency matrix.

non-negative loop-free edge-bipartite graphs 𝛥 with 𝑚 ≥ 1 vertices are studied
up to two Gram ℤ-congruences: weak 𝛥 ∼ℤ 𝛥′ and strong 𝛥 ≈ℤ 𝛥′, where

𝛥 ∼ℤ 𝛥′ ⇔ 𝐺𝛥′ = 𝐵𝑡𝑟 ⋅ 𝐺𝛥 ⋅ 𝐵, for some 𝐵 ∈ 𝕄𝑚(ℤ), det 𝐵 = ±1,
𝛥 ≈ℤ 𝛥′ ⇔ ̌𝐺𝛥′ = 𝐵𝑡𝑟 ⋅ ̌𝐺𝛥 ⋅ 𝐵, for some 𝐵 ∈ 𝕄𝑚(ℤ), det 𝐵 = ±1.

One of the most important results of this dissertation is the construction of the
following family of extended Euclidean bigraphs �̃�2
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that classify all connected non-negative loop-free edge-bipartite graphs up to the
weak Gram ℤ-congruence ∼ℤ.

The main classification results of this dissertation are as follows.
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(I) We prove that, up to the weak Gram ℤ-congruence ∼ℤ, every connected loop-
free non-negative edge-bipartite graph of corank two is one of the extended
Euclidean bigraphs �̃�2
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6, �̃�2
7, �̃�2

8.
(II) We show that, up to the strong Gram ℤ-congruence ≈ℤ, every connected loop-

free non-negative edge-bipartite graph of corank two with at most six vertices is
one of the following 13 bigraphs �̃�2
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(III) For bigraphs with a small number of vertices we reduce the classification (up
to the strong Gram ℤ-congruence) of connected loop-free bigraphs of corank
two to the classification of 𝛷𝛥-mesh geometry of roots (up to the isomorphism
of 𝛷𝛥, 𝛷𝛥′-quivers, i.e. digraphs with “additional structure”). In a case of
connected non-negative edge-bipartite graphs 𝛥 of corank two without loops
with at most 𝑛+2 ≤ 6 vertices we construct the infinite set R ⊂ ℤ𝑛+2 consisting
of 𝛷𝛥-orbits of all roots R𝛥 ∶= {𝑣 ∈ ℤ𝑛+2; 𝑣 ⋅ 𝐺𝛥 ⋅ 𝑣𝑡𝑟 =1} of bigraph 𝛥 and 𝛷𝛥-
orbits of certain vectors from the kernel Ker 𝑞𝛥 ∶= {𝑣 ∈ ℤ𝑛+2; 𝑣 ⋅ 𝐺𝛥 ⋅ 𝑣𝑡𝑟 =0}
with a structure of the 𝛷𝛥-mesh geometry. It is an infinite sum of:

(i) infinite (up and down) rank 2 and 3 sand-glass tubes:

(ii) finite tori of rank 3, 4, 5 and 6, including the following glued torus:

(iii) planar quivers, that are infinite in every direction as follows:
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(IV) We build an algorithm (so-called inflation algorithm), that calculates in a poly-
nomial time some matrix 𝐵 ∈ 𝕄𝑛+2(ℤ) that defines weak Gram ℤ-congruence
𝛥 ∼ℤ �̃�2

𝑛 between a connected loop-free non-negative bigraph 𝛥 = (𝛥0, 𝛥1) of
corank two and 𝑛 + 2≥3 vertices of Dynkin type 𝐷𝑛, and extended Euclidean
bigraph �̃�2

𝑛 ∈ {�̃�2
𝑛, 𝑛 ≥ 1, �̃�2

𝑛, 𝑛 ≥ 4, �̃�2
6, �̃�2

7, �̃�2
8}. This matrix is described by

the composite inflation operator t−
• ∶= t−

𝑎𝑘𝑏𝑘
∘ … ∘ t−

𝑎1𝑏1
the reduces a bigraph 𝛥

to the bigraph �̃�2
𝑛:

𝛥 ↦ t−
𝑎1𝑏1

𝛥 ↦ t−
𝑎2𝑏2

(t−
𝑎1𝑏1

𝛥) ↦ ⋯ ↦ t−
• 𝛥 = �̃�2

𝑛.
(V) We construct efficient combinatorial and graphical algorithms calculating the

matrix defining the strong Gram ℤ-congruence between connected loop-free
non-negative eddge-bipartite graphs 𝛥, 𝛥′ of corank two and at most six vertices.

One of the results of this dissertation is the package of algorithms suitable for
combinatorial analysis of bigraphs by means of computational tools. Our implemen-
tations of the algorithms described in the dissertation can be used for further exper-
imental research, i.e. the verification of complex hypotheses for which theoretical
proofs are not known, as well as for computer-assisted proofs. As a consequence, we
extend by new algorithms the available computational tools for analysing problems
in spectral classification of bigraphs.

The results of the dissertation have a significant applications in the Coxeter
spectral analysis of connected loop-free non-negative edge-bipartite graphs 𝛥 =
(𝛥0, 𝛥1). In particular:

(a) classification of certain classes of non-negative integer unit quadratic forms
can be reduced to the classification of connected loop-free non-negative edge-
bipartite graphs of corank two

(b) our tools and combinatorial and graphical algorithms:
• reduce the problem of existence of the strong Gram ℤ-congruence between

connected loop-free non-negative bigraphs of corank two with at most 6
vertices to the existence of the isomorphism between 𝛷-mesh geometries
of roots;

• build combinatorial and graphical description of integer solutions of
certain quadratic Diophantine equations 𝑞(𝑥1, … , 𝑥𝑚) = 𝑑 (in connection
with X Hilbert’s problem, cf. [20, 21]);

(c) presented results of Coxeter spectral analysis of non-negative loop-free edge-
bipartite graphs have applications in the Coxeter spectral analysis of non-
negative partially ordered sets and their matrix representations, see [9, 10,
24].
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Motivation

One of the inspirations for the study of spectral invariants of edge-bipartite
graphs (discussed extensively in the articles [20–22]) were the problems of Coxeter
spectral classification of finite dimension algebras over a field 𝐾 and their relationship
with the so-called derive equivalence of algebras studied since the early 1980s, see
the works of Gabriel-Roiter [5], Lenzing-Peña [16], Mróz [18], Mróz-Peña [19] and
Simson [21].

Another important inspiration were problems close to the Hilbert X problem:
construction of algorithms (preferably graphical ones) that describe geometrically
the set of all integer solutions 𝑣 = (𝑣1, … , 𝑣𝑚) ∈ ℤ𝑚 of Diophantine equations
𝑞(𝑥1, … , 𝑥𝑚) = 𝑑, where 𝑑 ∈ ℤ is an integer and 𝑞(𝑥1, … , 𝑥𝑚) ∈ ℤ[𝑥1, … , 𝑥𝑚] is a
unit integer quadratic form, see [20, 21]. These problems are intensively studied by
many authors, see [1, 2, 9, 10, 14, 15, 19, 20, 23, 24, 26].

A very important area of inspiration for this research are also classical problems
and methods of spectral theory of graphs and finite signed graphs. They are used,
among others, to describe and study various processes occurring in nature, the
analysis of electrical networks, and even the analysis of phenomena studied in social
sociology, including conflicts of social groups, see [3, 4, 13, 27].

We note that the results presented in the dissertation may have applications
(beyond the main subject area discussed in the dissertation) in the classification of
derived categories D𝑏(mod 𝑅). In particular, in the study of the dependencies of the
tubular structure of Auslander-Reiten quivers (directed graphs) in the relation to
the cyclotomic factors of the Coxeter polynomials cox𝑅(𝑡) ∈ ℤ[𝑡]. The results of this
type are presented in [18, 19, 21].

The main results presented in this dissertation have been published in the fol-
lowing scientific journals:

• Linear Algebra and its Applications [10, 11, 25],
• European Journal of Combinatorics [9],
• Fundamenta Informaticae [12, 26],
• Algebra and Discrete Mathematics [8],
• International Journal of Mathematics and Mathematical Sciences [24].
The results of the dissertation were presented at the following international

scientific conferences and published in peer-reviewed conference materials:
• Combinatorics 2012, Perugia [23],
• International Symposium on Symbolic and Numeric Algorithms for Scientific Com-

puting, Timișoara, SYNASC 2012 [6], SYNASC 2013 [17] oraz SYNASC 2014 [7].
Some of the results presented in the dissertation has been supported by NCN

grant 2011/03/B/ST1/00824.
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