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1 Introduction

Obtaining provably efficient algorithms for the most basic graph problems like finding (shortest)
paths or computing maximum matchings, fast enough to handle real-world-scale graphs (i.e.,
consisting of millions of vertices and edges), is a very challenging task. For example, in a very
general regime of strongly-polynomial algorithms (see, e.g., [65]), we still do not know how
to compute shortest paths in a real-weighted sparse directed graph significantly faster than in
quadratic time, using the classical, but somewhat simple-minded, Bellman-Ford method.

One way to circumvent this problem is to consider more restricted computation models for
graph algorithms. If, for example, we restrict ourselves to graphs with integral edge weights, we
can improve upon the Bellman-Ford algorithm [14, 31]. Although these results are very deep
algorithmically, their theoretical efficiency is still very far from the only known trivial linear
lower bound on the actual time complexity of the negatively-weighted shortest path problem.

Another approach is to develop algorithms specialized for certain graph classes that appear
in practice. Planar graphs constitute one of the most important and well-studied such classes.
Many of the real-world networks can be drawn on a plane with no or few edge crossings. The
examples include not very complex road networks and graphs considered in the domain of VLSI
design. Complex road networks, although far from being planar, share with planar graphs some
useful properties, like the existence of small separators [20]. Special cases of planar graphs, such
as grids, appear often in the area of image processing (e.g., [7]).

And indeed, if we restrict ourselves to planar graphs, many of the classical polynomial-time
graph problems, in particular computing shortest paths [35, 58] and maximum flows [4, 5, 21]
in real-weighted graphs, can be solved either optimally or in nearly-linear time. The very
rich combinatorial structure of planar graphs often allows breaking barriers that appear in
the respective problems for general graphs by using techniques from computational geometry
(e.g., [27]), or by applying sophisticated data structures, such as dynamic trees [4, 10, 21, 66].

In this thesis, we focus on the data-structural aspect of planar graph algorithmics. By this,
we mean that rather than concentrating on particular planar graph problems, we study more
abstract, “low-level” problems. Efficient algorithms for these problems can be used in a black-
box manner to design algorithms for multiple specific problems at once. Such an approach
allows us to improve upon many known complexity upper bounds for different planar graph
problems simultaneously, without going into the specifics of these problems.

We also study dynamic algorithms for planar graphs, i.e., algorithms that maintain certain
information about a dynamically changing graph (such as “is the graph connected?”) much more
efficiently than by recomputing this information from scratch after each update. We consider
the edge-update model where the input graph can be modified only by adding or removing
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single edges. A graph algorithm is called fully-dynamic if it supports both edge insertions and
edge deletions, and partially dynamic if it supports either only edge insertions (then we call it
incremental) or only edge deletions (then it is called decremental).

When designing dynamic graph algorithms, we care about the update time, i.e., the time
needed by the algorithm to adapt to an elementary change of the graph, and query time, i.e., the
time needed by the algorithm to recompute the requested portion of the maintained information.
Sometimes, especially in partially dynamic settings, it is more convenient to measure the total
update time, i.e., the total time needed by the algorithm to process any possible sequence
of updates. For some dynamic problems, it is worth focusing on a more restricted explicit
maintenance model where the entire maintained information is explicitly updated (so that the
user is notified about the update) after each change. In this model the query procedure is trivial
and thus we only care about the update time.

Note that there is actually no clear distinction between dynamic graph algorithms and graph
data structures, since dynamic algorithms are often used as black-boxes to obtain efficient static
algorithms (e.g., [26]). For example, the incremental connectivity problem, where one needs to
process queries about the existence of a path between given vertices, while the input undirected
graph undergoes edge insertions, is actually equivalent to the disjoint-set data structure problem,
also called the union-find data structure problem (see, e.g., [15]).

We concentrate mostly on the decremental model and obtain very efficient decremental
algorithms for problems on unweighted planar graphs related to reachability and connectivity.
We also apply our dynamic algorithms to static problems, thus confirming once again the data-
structural character of these results.

In the following, let G = (V,E) denote the input planar graph with n vertices. For clarity
of this summary, assume G is a simple graph. Then, by planarity, it has O(n) edges. When we
talk about general graphs, we denote by m the number of edges of the graph.

2 Contracting a Planar Graph

The first part of the thesis is devoted to the data-structural aspect of contracting edges in planar
graphs. Edge contraction is one of the fundamental graph operations. Given an undirected
graph and its edge e, contracting the edge e consists in removing it from the graph and merging
its endpoints. The notion of contraction has been used to describe a number of prominent graph
algorithms, including Edmonds’ algorithm for computing maximum matchings [19], or Karger’s
minimum cut algorithm [44].

Edge contractions are of particular interest in planar graphs, as a number of planar graph
properties can be described using contractions. For example, it is well-known that a graph
is planar precisely when it cannot be transformed into K5 or K3,3 by contracting edges, or
removing vertices or edges (see e.g., [17]). Moreover, contracting an edge preserves planarity.

We would like to have at our disposal a data structure that performs contractions on the
input planar graph and still provides access to the most basic information about our graph,
such as the sizes of neighbors sets of individual vertices and the adjacency relation. While
contraction operation is conceptually very simple, its efficient implementation is challenging.
This is because it is not clear how to represent individual vertices’ adjacency lists so that
adjacency list merges, adjacency queries, and neighborhood size queries are all efficient. By
using standard data structures (e.g., balanced binary search trees), one can maintain adjacency
lists of a graph subject to contractions in polylogarithmic amortized time. However, in many
planar graph algorithms this becomes a bottleneck.

As an example, consider the problem of computing a 5-coloring of a planar graph. There
exists a very simple algorithm based on contractions [53] that only relies on a folklore fact that
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a planar graph has a vertex of degree no more than 5. However, linear-time algorithms solving
this problem use some more involved planar graph properties [23, 53, 60]. For example, the
algorithm by Matula et al. [53] uses the fact that every planar graph has either a vertex of
degree at most 4 or a vertex of degree 5 adjacent to at least four vertices, each having degree
at most 11. Similarly, although there exists a very simple algorithm for computing a minimum
spanning tree of a planar graph based on edge contractions, various different methods have been
used to implement it efficiently [23, 51, 52].

The problem of maintaining a planar graph under contractions has been studied before. In
their book, Klein and Mozes [46] showed that there exists a (a bit more general) data structure
maintaining a planar graph under edge contractions and deletions, and answering adjacency
queries in O(1) worst-case time. The update time is O(log n). This result is based on the work
of Brodal and Fagerberg [8], who showed how to maintain a bounded-outdegree orientation of
a dynamic planar graph so that the edge set updates are supported in O(log n) amortized time.

Gustedt [32] showed an optimal solution to the union-find problem in the case when at any
time the actual subsets form disjoint and connected subgraphs of a given planar graph G. In
other words, in this problem the allowed unions correspond to the edges of a planar graph and
the execution of a union operation can be seen as a contraction of the respective edge.

Our Results

We show a data structure that can efficiently maintain a planar graph subject to edge contrac-
tions in linear total time, assuming the standard word-RAM model with word size Ω(log n). It
can report groups of parallel edges and self-loops that emerge. It also supports constant-time
adjacency queries and maintains the neighbor lists and degrees explicitly. The data structure
can be used as a black-box to implement planar graph algorithms that use contractions.

As an example, our data structure can be used to give clean and conceptually simple linear-
time implementations of algorithms for computing 5-coloring or minimum spanning tree.

More importantly, by using our data structure, we give improved algorithms for a few
problems in planar graphs. In particular, we obtain optimal algorithms for decremental 2-edge-
connectivity (see, e.g., [30]), finding a unique perfect matching [26], and computing maximal
3-edge-connected subgraphs [12].

In order to obtain our result, we first partition the graph into small pieces of roughly loga-
rithmic size (using so-called r-divisions [24]). Then we solve our problem recursively for each
of the pieces, and separately using a simple-minded approach for the subgraph induced by o(n)
vertices contained in multiple pieces (the so-called boundary vertices). Such an approach proved
successful in obtaining optimal data structures for the planar union-find problem [32] and decre-
mental connectivity [50]. In fact, our data-structural problem can be seen as a generalization
of the former problem. However, maintaining the status of each edge e of the initial graph G
(i.e., whether e has become a self-loop or a parallel edge) subject to edge contractions, and
supporting constant-time adjacency queries without resorting to randomization, turn out to be
serious technical challenges. Overcoming these difficulties is our main contribution of this part
of the thesis.

3 Decremental Reachability

The second part of this thesis is devoted to dynamic reachability problems in planar graphs. In
the dynamic reachability problem we are given a (directed) graph G subject to edge updates and
the goal is to design a data structure that would allow answering queries about the existence of
a path between a pair of query vertices u, v ∈ V .
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Two variants of dynamic reachability are studied most often. In the all-pairs variant, our
data structure has to support queries between arbitrary pairs of vertices. This variant is also
called the dynamic transitive closure problem, since a path u → v exists in G if uv is an edge
of the transitive closure of G.

In the single-source reachability problem, a source vertex s ∈ V is fixed from the very
beginning and the only allowed queries are about the existence of a path s→ v, where v ∈ V .

If we work with undirected graphs, the dynamic reachability problem is called the dynamic
connectivity problem. Note that in the undirected case a path u→ v exists in G if and only if
a path v → u exists in G.

State of the Art

Dynamic reachability in general directed graphs turns out to be a very challenging problem.
First of all, it is computationally much more demanding than its undirected counterpart. For
undirected graphs, fully-dynamic all-pairs algorithms with polylogarithmic amortized update
and query bounds are known [36, 38, 71]. For directed graphs, on the other hand, in most
settings (either single-source or all-pairs, either incremental, decremental or fully-dynamic) the
best known algorithm has either polynomial update time or polynomial query time. The only
exception is the incremental single-source reachability problem, for which a trivial extension of
depth-first search [68] achieves O(1) amortized update time.

One of the possible reasons behind such a big gap between the undirected and directed
settings is that one needs only linear time to compute the connected components of an undirected
graph, and thus there exists a O(n)-space static data structure that can answer connectivity
queries in undirected graphs in O(1) time. On the other hand, the best known algorithm for
computing the transitive closure runs in Õ(min(nω, nm)) = Õ(n2)1 time [11, 59].

So far, the best known bounds for fully-dynamic reachability are as follows. For dynamic
transitive closure, there exist a number of algorithms with O(n2) update time and O(1) query
time [16, 61, 64]. These algorithms, in fact, maintain the transitive closure explicitly. There also
exist a few fully-dynamic algorithms that are better for sparse graphs, each of which has Ω(n)
amortized update time and query time which is o(n) but still polynomial in n [62, 63, 64]. For
the single-source variant, the only known non-trivial (i.e., other than recompute-from-scratch)
algorithm has O(n1.53) update time and O(1) query time [64].

Algorithms with O(nm) total update time are known for both incremental [39] and decre-
mental [48, 62] transitive closure. Note that for sparse graphs this bound is only poly-logarithmic
factors away from the best known static transitive closure upper bound [11].

All the known partially-dynamic single-source reachability algorithms work in the explicit
maintenance model. As mentioned before, for incremental single-source reachability, an optimal
(in the amortized sense) algorithm is known. Interestingly, the first algorithms with O(mn1−ε)
total update time (where ε > 0) have been obtained only recently [33, 34]. The best known
algorithm to date has Õ(m

√
n) total update time and is due to Chechik et al. [13].

Dynamic reachability has also been previously studied for planar graphs. Diks and Sankowski
[18] showed a fully-dynamic transitive closure algorithm with Õ(

√
n) update and query times,

which works under the assumption that the graph is plane embedded and the inserted edges
can only connect vertices sharing some adjacent face. Łącki [48] showed that one can maintain
the strongly connected components of a planar graph under edge deletions in O(n

√
n) total

time. By known reductions, it follows that there exists a decremental single-source reachability
algorithm for planar graphs with O(n

√
n) total update time. Note that this bound matches the

recent best known bound for general graphs [13] up to polylogarithmic factors.

1We denote by Õ(f(n)) the order O(f(n) polylogn).
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Our Results

We show new decremental reachability algorithms for planar digraphs.
For decremental single-source reachability, we obtain an almost optimal (up to polyloga-

rithmic factors) algorithm explicitly maintaining the set of vertices reachable from the source.
Our algorithm processes any online sequence of edge deletions in O(n log2 n log logn) total time.
This seems to be the first dynamic algorithm with polylogarithmic amortized update time on
general directed planar graphs that solves a non-trivial reachability-type problem for which only
polynomial bounds are known in general graphs.

For decremental transitive closure, we obtain a randomized trade-off algorithm. For any
chosen t ∈ [1, n], our algorithm has Õ(n2/t) total update time and Õ(

√
t) query time. In

particular, for t = n, our algorithm has polylogarithmic amortized update time and Õ(
√
n)

time. For t = n2/3, we obtain an algorithm with Õ(n1/3) update and query time. To the best
of our knowledge, this is the first dynamic algorithm for general planar digraphs answering
arbitrary point-to-point queries with O(n1/2−ε) update and query bounds.

As a byproduct, we also obtain nearly-linear time planar algorithms for a few static and
decremental reachability-related problems that have been previously studied only for general
graphs, and for which no nearly-linear algorithms have been known. These include computing
maximal 2-edge-connected subgraphs of a directed graph [12] and decremental maintenance of
the set of so-called strong bridges of the graph [29].

Technical Overview

In all our reachability-related algorithms we first construct a recursive decomposition of the
initial graph G. A recursive decomposition is a tree-like hierarchy of subgraphs of a graph
G (pieces) built by recursively partitioning G with O(

√
n)-size cycle separators [54]. Such

decompositions proved very useful in obtaining nearly-linear time static algorithms for planar
graphs (e.g., [3, 6, 49]), as well as dynamic planar graph algorithms (e.g., [18]).

Subsequently, for each piece H of the decomposition, we explicitly maintain only a certain
part of the transitive closure of subgraph H, induced by its boundary vertices ∂H. These are
defined as the vertices that H shares with the remaining part G−H of G. This way, the total
amount of information we store is nearly-linear in n. We prove that these parts of transitive
closures can be computed inductively based on the transitive closures stored in the child pieces
of H. Therefore, the needed information can be maintained inductively using a decremental
transitive closure algorithm run on the corresponding data accompanying the child pieces of H.

In order to obtain an efficient algorithm maintaining the needed reachability information dy-
namically, as described above, we analyze and exploit the structural properties of a reachability
matrix of a set of vertices2 that, roughly speaking, lie on a constant number of faces of a plane
graph (which is a property satisfied by vertices ∂H of each piece H in our decomposition). The
matrix viewpoint allows us to obtain properties that are algorithmically useful and otherwise
not easy to capture using the previously used separating path approach to reachability in planar
digraphs [18, 67, 69]. Subsequently, we show that these properties can be used to simulate the
randomized decremental transitive closure algorithm of Bernstein [2] very efficiently, so that the
total update time of our recursive data structure is still nearly-linear in n.

Finally, we show that the maintained reachability information is sufficient to support reach-
ability queries in Õ(

√
n) time and explicitly maintain the strongly-connected components of G

under edge deletions. By known black-box reductions, this is sufficient to solve decremental

2A reachability matrix of a set S is a submatrix of the transitive closure matrix consisting of rows and columns
corresponding to vertices belonging to S.
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single-source reachability in nearly-linear time. Using a technique of [57], we can reduce the
point-to-point query time to Õ(

√
t) at the cost of increasing the total update time to Õ(n2/t).

Note that this way we obtain randomized algorithms. We also show that by using plane
duality we can, in a sense, turn the decremental strongly-connected components problem into a
certain incremental reachability problem, where the edges of a graph (fixed from the beginning)
are switched-on in an online manner. This problem is solved using an analogous recursive data
structure, but now the reachability information between the boundary vertices of individual
pieces has to be maintained incrementally. As a result, we can replace Bernstein’s decremental
transitive closure algorithm with a conceptually simpler, “folklore” incremental algorithm which
is more efficient and deterministic at the same time. Consequently, we obtain a deterministic
decremental single-source reachability algorithm with O(n log2 n log log n) total update time.

4 Shortest Paths in Dense Distance Graphs

Finally, we consider the problem of computing shortest paths in so-called dense distance graphs,
a basic building block for designing efficient planar graph algorithms.

In their breakthrough paper [22], Fakcharoenphol and Rao introduced the general concept
of a dense distance graph. Let G be a non-negatively-weighted plane digraph and let U denote
some subset of its “boundary” vertices lying on some O(1) faces of G. Such graphs with a
topologically nice boundary typically emerge after decomposing a plane graph using a cycle
separator. For example, by using a cycle separator of Miller [54], one can decompose any n-
vertex triangulated plane graphH into two subgraphsHin andHout such that (i)Hin∪Hout = H;
(ii) Hin and Hout are smaller than H by a constant factor; (iii) the set U = V (Hin) ∩ V (Hout)
has size O(

√
n), and lies both on a single face of Hin and on a single face of Hout.

We define a distance clique of G, denoted DC(G), to be a complete graph on U such that
the weight of an edge uv is equal to the length of the shortest path from u to v in G. A dense
distance graph is a union of possibly many unrelated distance cliques DC(G1), . . . ,DC(Gq).

Fakcharoenphol and Rao [22] proposed an efficient implementation of Dijkstra’s algorithm
(later called FR-Dijkstra) computing single-source shortest paths in a dense distance graph.
Their algorithm spends O(b log2 n) time per distance clique with b vertices, even though a
clique has b2 edges. Here, n is the total number of vertices of the dense distance graph. Whereas
Dijkstra’s algorithm uses a priority queue to maintain its distance labels and extract a non-
visited vertex with minimum label, a much more sophisticated data structure is used in FR-
Dijkstra. This data structure is capable of relaxing many edges in a single step by leveraging
the fact that certain submatrices of the weight matrix of a distance clique constitute so-called
Monge matrices [70].

Fakcharoenphol and Rao originally employed FR-Dijkstra to construct their dense distance
graph recursively, and consequently solve the real-weighted single-source shortest paths prob-
lem on planar graphs in nearly-linear time. However, the applications of FR-Dijkstra proved
much broader. As a result, it has become an important planar graph primitive used to obtain
numerous breakthrough results in recent years. We briefly cover the most important of these
results below.

The dense distance graphs and FR-Dijksta have been used to break the long-standing
O(n log n) barrier for computing minimal s, t-cuts [41] in undirected planar graphs and global
min-cuts in both undirected [47] and directed [55] planar graphs. Borradaile et al. [6] devel-
oped an oracle answering arbitrary min s, t-cut queries in a weighted undirected planar graph
after only nearly-linear preprocessing. This result has been later generalized to bounded-genus
graphs [3], thus proving the usefulness of FR-Dijkstra in more general graph classes.

The most sophisticated applications of FR-Dijkstra to date are probably those related to
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computing maximum flow in directed planar graphs. Borradaile et al. [5] gave a nearly-linear
time max-flow algorithm for the case of multiple sources and multiple sinks, and consequently,
a nearly-linear algorithm for maximum bipartite matching. Later, Łącki et al. [49] gave a
nearly-linear time algorithm computing the maximum flow values between a specified source
and all possible sinks.

Most recently, Asathulla et al. [1] used FR-Dijkstra to break through the O(n3/2) barrier
for the planar assignment problem with integer weights. Cabello [9] showed the first truly
subquadratic algorithm for computing a diameter of a weighted planar graph. Even though
it mainly builds on a new concept of additively-weighted Voronoi diagrams for planar graphs,
dense distance graphs and FR-Dijkstra are still used extensively in his work.

Last but not least, FR-Dijkstra has been instrumental in obtaining virtually all sublinear
update/query time exact dynamic algorithms for shortest paths, maximum flows and minimum
cuts in planar graphs [22, 41, 42, 45, 47].

Dense distance graphs are pivotal in designing efficient planar graph algorithms, and there-
fore obtaining fine-grained bounds for computing and manipulating them is an important re-
search direction. Although a better algorithm (in comparison to the recursive method of [22]),
running in O((|V | + |U |2) log n) time, has been proposed for computing a distance clique [45],
improving FR-Dijkstra itself proved very challenging and no progress over [22] has been made
in the most general setting so far.3

Our Results

We show an algorithm for computing single-source shortest paths in a dense distance graph
with O

(
b log2 n
log2 logn

)
time overhead per distance clique with b vertices.

Our result implies an immediate improvement by a factor of O(log2 log n) in the time com-
plexity for a number of planar digraph problems such as multiple-source multiple-sink max-
imum flows, maximum bipartite matching [5], single-source all-sinks maximum flows [49] for
which the best known time bounds were O(n log3 n), i.e., already nearly-linear. It also yields
polylog-logarithmic speed-ups to both preprocessing and query/update algorithms of dynamic
algorithms for shortest paths and max-flows [41, 42, 45]. More generally, we make polylog-
logarithmic improvements to all previous results (such as [1]), for which the bottleneck of the
best known algorithm is computing shortest paths in a dense distance graph.

Technical Overview

We treat the problem of computing shortest paths in a dense distance graph from a purely
data-structural perspective. At a high level, instead of developing an entirely new shortest
paths algorithm, we propose a new data structure for maintaining distance labels and extracting
minimum labeled vertices in amortized O

(
log2 b

log2 log b

)
time, as opposed to O(log2 b) time in [22].

In [22], a distance clique is first partitioned into square Monge matrices, each handling a
subset of the clique’s edges. For any such matrix, a separate data structure is used for relaxing
the corresponding edges and extracting the labels possibly induced by these edge relaxations.
Recall that in the case of Dijkstra’s algorithm, the improvement from O(m log n) to O(m +
n log n) time is obtained by noticing that relaxing edges is cheaper than extracting minimum
labeled vertices. Consequently, one can use a Fibonacci heap [25] in place of a binary heap.
We show that in the case of the data structure originally used in [22] for handling Monge
matrices the situation is in a sense the opposite: label extractions can be made cheaper than

3A slightly better time bound has been showed only for a certain special case [56].
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edge relaxations. We make use of this fact by proposing a different than in [22], biased scheme of
partitioning distance cliques into rectangular (as opposed to square) Monge matrices. Whereas
in [22] the partition follows from a very natural idea of splitting a face boundary into halves,
our partition is tailored to exploit this asymmetry between the cost of processing a row and the
cost of processing a column.

5 Articles Comprising This Thesis

The preliminary versions of the contents of this thesis have been included in the following
conference papers.

• Contracting a Planar Graph Efficiently, joint work with Jacob Holm, Giuseppe F. Italiano,
Jakub Łącki, Eva Rotenberg, and Piotr Sankowski, published at ESA 2017 [37].

• Decremental Single-Source Reachability in Planar Digraphs, joint work with Giuseppe F.
Italiano, Jakub Łącki, and Piotr Sankowski, published at STOC 2017 [40].

• Decremental Transitive Closure and Shortest Paths for Planar Digraphs and Beyond, pub-
lished at SODA 2018 [43].

• Improved Bounds for Shortest Paths in Dense Distance Graphs, joint work with Paweł
Gawrychowski, published at ICALP 2018 [28].
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