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Report of PhDThesis of Ramazan Yozgyur

Pedro Vaz

Summary

Originating from M. Khovanov’s influential 1999 paper' [Duke Math. J.], the categorification of topological
invariants has become a highly competitive and rapidly evolving field of mathematical research. Following
the introduction of Khovanov homology, M. Khovanov and L. Rozansky constructed, in 2004, a link homology
theory categorifying the so-called s[y-polynomial of links. Since then, a plethora of link homology theories
have been developed. Notably, Khovanov homology coincides with Khovanov-Rozansky homology for NV = 2.

Like any suitable homology theory, Khovanov-Rozansky homology defines a functor - specifically, from a
category of links and cobordisms to a category of bigraded abelian groups. As a result, it encodes 4-dimensional
information. For instance, in 2018, L. Piccirillo used Khovanov homology to prove a longstanding conjecture
about the sliceness of the Conway knot, a statement in 4-dimensional topology [Ann. of Math.].

Like knot theory itself, link homology lies at the intersection of various fields beyond topology, including
representation theory, symplectic geometry, algebraic geometry, physics, and combinatorics, for example. This
multidisciplinary nature has fostered rich and fruitful interactions across disciplines.

This thesis investigates the structure of Khovanov-Rozansky slx-homology for a class of links known as
periodic links. Diagrams of periodic links (with period m € N) naturally admit an action of the cyclic group
Z.y,. This work explores an equivariant version of Khovanov-Rozansky homology tailored to this class of links.
Equivariant Khovanov homology for periodic links was introduced by W. Politarczyk in 2015 [Michigan Math. J.]
and later studied further by M. Borodzik and W. Politarczyk [Indiana Univ. Math. J.].

This thesis is based on a collaboration [Math. Res. Lett., to appear] between the candidate and M. Borodzik
and W. Politarczyk, both of whom are supervisors. The introduction of the dissertation states that “the thesis
is an expanded version of the paper”. In the remainder of this report, | will refer to this article by the candidate
and the supervisors as “the paper”.

Main results and structure of the thesis

This thesis employs the theory of webs and foams to construct an equivariant version of Khovanov-Rozansky
sl-homology for periodic links. It further investigates its structure and explores some implications for its
decategorification, known as the Reshetikhin-Turaev sl invariant.

Following a one-page introduction, the thesis includes a section summarizing knot theory, Khovanov ho-
mology (the N = 2 case of Khovanov-Rozansky homology), and homological algebra.

Section 3 summarizes periodic links and its basic properties.

Section 4 summarizes the theory of webs and foams, along with several associated categories. It also in-
troduces the definition of the Sy -equivariant Khovanov-Rozansky complex, where Sy denotes the ring of
symmetric polynomials in IV variables with integer coefficients — an object in the bounded homotopy cat-
egory of an additive category. The topological invariance of the homotopy class of the Sy-equivariant Kho-
vanov-Rozansky complex is explicitly proved. By applying a certain functor to an abelian category, the Sy-
equivariant Khovanov-Rozansky homology is then defined. Although this homology is a topological invariant,
this fact is not explicitly stated in the thesis.

In Section 5, the specializations of the Sy-equivariant Khovanov-Rozansky complex and, subsequently, of
the S x-equivariant Khovanov-Rozansky homology are studied. This is achieved by passing to the field of com-
plex numbers as the ground field of the theory and specializing the elements of S to N-tuples of elements of
C. Itis proved that the specialization is functorial, and this property is used to recover the Khovanov-Rozansky
homology, the Lee homology, as well as the well-known spectral sequence connecting them.

Then, the study of m-periodic links begins. From this point onward, all links are assumed to be m-periodic.
An action of Z,,, on the Khovanov-Rozansky complex is constructed, and it is proved that this action descends

"Here and below, dates refer to the preprint on the arXiv.



to an action of C[Z,,,] on the Khovanov-Rozansky homology. This gives rise to a Z,,,-equivariant version of the
Khovanov-Rozansky sl-homology. A Z,,-equivariant Lee homology is defined similarly.

It is further proved that the Z,,-equivariant homologies (both Khovanov-Rozansky and Lee) decompose
further, revealing a finer structure. This finer structure appears to be nonexistent (as far as | can tell) for knots
that are not m-periodic.

Section 6 is devoted to the proof of topological invariance of the Z,,-equivariant Khovanov-Rozansky com-
plex.

Section 7 constructs several spectral sequences involving Z,,,-equivariant Khovanov-Rozansky homology.

Section 8 studies the invariant polynomials arising from the link homologies of periodic links, including the
Poincaré polynomial (referred to as the Khovanov-Rozansky polynomial, or the Lee polynomial) and its spe-
cialization at ¢ = —1, which corresponds to the Euler characteristic and coincides with the Reshetikhin-Turaev
invariant. Formulas for the Khovanov-Rozansky polynomial of m-periodic links in terms of the Lee polynomial
(along with a family of polynomials with nonnegative coefficients, whose explicit form requires other methods
for computation) are provided, revealing the structure of these polynomial invariants

Fixing m as a power of a prime number p, a skein relation for the Euler characteristic of the Z,,,- equivariant
theory is also constructed. Additionally, more is proven about the structure of the Khovanov-Rozansky poly-
nomials: they can be expressed as a linear combination of other polynomials with non-negative coefficients,
which satisfy a congruence relation (depending on p). Precise formulas are provided for m = 3 and m = 4.

Conclusion

Although the mathematical statements are correct, the thesis is not well written and falls short of the expected
standard for a doctoral dissertation. The use of undefined or incorrectly defined notions invalidates the math-
ematical proofs, and such issues are present throughout the thesis. For example,

e Several notions are used without being properly defined or explained, e.g. what is the s( K, ') appearing
in the statement of Theorem 3.13.?

e It contains several mathematical errors, evenin proofs that are correct in the paper, e.g. what is a rotation
from Z,,, to Z,,, as mentioned in the proof of Proposition 5.1.?

e Some important parts of the text have been omitted in the transition from the paper to the thesis. For
example, important explanations about group actions are missing in the beginning of section 5.6.1. and
they are present in the paper (section 4.1 there). Example 6.13 ends up with “we only prove that”

e Some parts are copied from the paper and rephrased in a somewhat cryptic manner, e.g. in section 7.1
what is the content of the phrase starting with “This can be unique; otherwise g; will be g;"? This short
section is written in a clear way in the paper, so why modify it?

I have the impression that the thesis was written hastily, with parts copied separately from the paper with-
out ensuring the overall coherence and consistency of the text.

In light of the above | recommend that the thesis undergo several corrections before proceeding (see at-
tached file).
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ABSTRACT ~ of Wi ?
The main goal of this dissertation is to construct equivariant sl homology for periodic links.

For this purpose, we use the approach to sl homology via webs and foams. The action/on webs

and foams allows us to define equivariant Khovanov-Rozansky homology for periodic links.
Following this definition, we deal with Reshetikhin-Turaev polynomials for the newly con-

structed equivariant homology via the newly defined difference polynomials.
In the end, we provide a periodicity criterion originating from equivariant Khovanov-Rozansky

sl homology.
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1. INTRODUCTION

Let L c S2 be a link. For m > 2, we say that L is m-periodic if it is invariant under a semi-free
Zom-action on S% and L is disjoint from the fixed point set. For a periodic link, we have a
question: how is the symmetry of the link reflected in link invariants? As an example, we have
the Murasugi formula [18] recalled in Theorem 3.5. Besides giving a useful periodicity crite-
rion, it also estabhshes the relation between the Alexander polynomial of L and the Alexander
polynomial of 1t{uotlent, > whvide cpelieid 7

Equivariant Khovanov homology for periodic links was defined in [21]. The group action on
S3 induces a well-defined group action on the Khovanov homology modules Kh(L; R). The sly-
homology for links was introduced in [10,11] by Khovanov and Rozansky as a generalization of
Khovanov homology. The first method to construct sly-homology was matrix via factorization®
Over the years, other methods were constructed, see [5,23,25]. In this thesis, the combinatorial wl b
definition approach sketched in Section 4 turns out to be well-suited for studying periodic links. — 7 S ?
Basically, in this approach, for any link diagram D we define a cochain complex [D]] liyiﬂ‘gfl N
a suitably defined foam category. To get sl homology, we pass to the category odules.
For this, we need the\Eyaluation functor F which takes webs and sends them to Sy-modules.
The goal of this thesis is to generalize the result of [15,21] in the case of sly-homology. We
Show that the_action of the symmetry group Z,, of the periodic link induces a Z,, action on its
. Precisely, we have the following theorem.

eial —~ T N Q\mﬁm%‘g/
- ( Theorem (see Propositierr 5.21). Suppose D is a labelled periodic link diagram. Then, there is
“an action of Z,, on([[D induced by rotating resolution diagrams of D.
By using the evaluation functor F , we obtain a chain complex of Sy-modules F([[D]]). By

Proposition 5.23, F commutes with the Z,, action. The Z,, action on [D]] givesa Sy[Z,]-
module structure on the chain complex F([D]]). We prove the following result.

Theorem (see Theorem 5.24). Suppose L is a Zp,-periodic link and D and D’ are Z,,-equivalent
m—periodic link diagrams of L then we have an induced quasi isomorphism between F([[D]])
and F([[D']) in the category of Sy[Z;,] modules. whts o, T D

Theorem 5.24 is stated and proved only for links whose labels are equal to 1, that is, for
usual links. Next, we establish a skein spectral sequence for a change of an orbit of crossings in
s[y-homology. An analogous skein spectral sequence was considered in [21] for the Khovanov
homology of a periodic link. The skein spectral sequence gives a relation between the so-called
difference sly-polynomials after a change of an orbit of crossings. Refer to Section 8 for details.

The graded Euler characteristic of the Khovanov homology is the Jones polynomial. In the
presence of a Z,¢-action (with p prime) there is a refinement of the Jones polynomial, called

“f?\ S the@erenca Jones polLomlals\; They essentially appear as the graded Euler characteristic
associated with the eigenspaces of the action of Z p¢ on the Khovanov homology.

Similarly, the Euler characteristic of s - homology gives a well-known polynomial, the Reshetikin-
Turaev polynomial, also known as the sly-polynomial. For a periodic link, we define analogs of
difference Jones polynomials in sly-homology. We call them difference sly-polynomials. We use
the skein spectral sequence to study these polynomials for the link and its mirror. Moreover,
we show that if a link where all labels are equal to 1, is p'-periodic, then the Poincaré polyno-
mial of its sly-homology admits a decomposition into a sum of polynomials with non-negative
coefficients and satisfying specific congruence relations; see Theorem 8.17. The new periodicity
criterion cannot distinguish 3 and 4 periodic links, -

The thesis is an expanded version of the pape [4]



2. KHOVANOV HOMOLOGY

In this chapter, we define Khovanov homology. To define it, we first introduce some basic
concepts from knot theory and some concepts from homological algebra.

2.1. Short introduction to knot theory.

2.1.1. Introduction. This subsection is based on [27] and [3]. To understand the definition of
the Khovanov homology, we need some basic definitions and facts about knots and links.

Definition 2.1. A knot is an embedding of a circle S* in the 3-dimensional Euclidean space or
in the 3-dimensional sphere S°.

If we embed more than one circle, we call the image a link. Generally, we are interested
in regular projections of knots (links) onto a 2-dimensional Euclidean subspace, meaning that
the projection is injective everywhere except at finitely many points, called the crossing points,
where the knot projection crosses itself once. We will call the projection diagram where we have
an over-strand and under-strand a knot (link) diagram.

Example 2.2. We have some well-known knot diagrams below

Right-handed Left-handed Figure eight knot
trefoil trefoil

& & @

A link can be given an orientation. For these intersections of over-strand and under-strand,
we have a specific name. We call these intersections positive crossing and negative crossing.
Changing the orientation of one component of a link, might affect positivity of the crossings;
however if we change the orientation of every component of the link, the positivity of all cross-
ings is preserved. We will denote n, for the total number of positive crossings and n_ for the
total number of negative crossings in a diagram.

A X

positive negative
crossing crossing
For these two crossing we have 0 and 1 resolution of crossings. For crossing X we have 0
resolution X and for 1 resolution we have ) (. Furthermore, if we change under and over strand
we swap the 0- and the 1-resolutions.

Definition 2.3. The writhe w(D) of a diagram D of an oriented knot or link is the difference
between the numbers of positive and negative crossings, i.e.,

w(D)=ny—n_

Definition 2.4. The reverse r K of an oriented knot K is simply the same knot with the opposite
orientation.

Definition 2.5. Change all crossing points from positive to negative and from negative to
positive crossing. The final diagram will be called the mirror image m(K) of a knot K. In
other words, The mirror image of a knot diagram is obtained by reflecting the knot diagram
with respect to a line R in the plane.



We consider the following equivalence relation between knots. It applies also for links.

Definition 2.6. Two knots K; and K; are ambient isotopic if there is a smooth map F' :
53 % [0,1] - S2 such that F, = Flgsy(zy is a diffeomorphism for each z € [0, 1], Figs,o @ and
F1\S3><1(K1) = Kos. = OS =S

We want to understand if two knots are isotopic. The best way to understand this is by
studying knot diagrams. We have an important theorem about equivalence in knot diagrams,
but before this theorem, we need some definitions.

Definition 2.7. @otopy of a knot projection is a continuous deformation of a plane in which
the knot projection is drawn.

Definition 2.8. There are three local moves that are called Reidemeister moves for knot diagram
equivalence.

First Reidemeister move:

0 -

Second Reidemeister move:

Third Reidemeister move:

N / v
- 2K

The following result was first proved by Reidemeister.

Theorem 2.9. Two links are ambiently isotopic if and only if they are related by a finite number
of Reidemeister moves and planar isotopies.

A knot invariant is a property of a knot diagram that does not change under Reidemeister
moves. For example, the writhe depends on the knot diagram, so it is not a knot invariant.
A knot invariant only depends on the knot. Later, we will define the Jones polynomial and
Khovanov homology. We will see that these are knot invariants.

2.2. Jones Polynomial. In this section, we will define the Jones polynomial. The Jones poly-
nomial will be important for Khovanov homology. The definition of the Jones polynomial and
its relation to Khovanov homology will be crucial to understanding concepts discussed in the
following sections. We will start with the definition of the Kauffman bracket.

Definition 2.10. (see [3]) The Kauffman bracket is a function from the set of unoriented link
diagrams in the plane to the ring of Laurent polynomials in variable ¢ with integer coefficients.
We denote by (D) € Z[q,q '] the Kauffman bracket of D. The Kauffman bracket is determined
by the following three properties:



Ned S Er (s
onekkion Ao B Rk |
(1) (@) =1
(2) (DuO) = (¢! +q)(D) I
(3) (X)=(xX)-a0) |

where D is a diagram, @ is an empty diagram, and (D) is a Laurent polynomial.

The Kauffman bracket is invariant under RII and RIIT moves. To make this definition in
variant under the Reidemeister 1 move, we have to multiply (D) by (-1)"-¢™* 2"~ where(n
is the number of positive crossings and @ is the number of negative crossings. The resulting
polynomial is a knot invariant. ~—

Definition 2.11. (see [3]) The unnormalized Jones polynomial of a link L is defimed as
R L orentsd €
J(D) = (-1)""¢"*"~(D),
where D is a diagram of L.
In addition, we define the normalized Jones polynomial

J(D)=J(D)(g+q¢ )"

We generally use the unnormalized version in this paper. We assign numbers to each crossing
by 1,...,n. By applying 0 or 1 resolution to each crossing we get 2" diagrams that we can
index with the sequence which has 0 and 1. We call such a diagram a smoothing. With these
2" smoothings D, where o € {0,1}", we have an n-dimensional cube. When we resolve all
crossings, we get a union of circles. To compute the unnormalized Jones polynomial, we replace
each union of k-circles with a term (=1)"ag"+=2"=*7a (g + g~ 1)ka,

J(D) _ Z (_1)7’aqn+—2n_+ra(q+q—l)ka T/QU& /\,Bwq/j S R@W ‘LQ"-L

ae{0,1}n SOy ~ VoA G T WL%/
ro = Number of 1s in « S ' A )
. s vy exphetowdl
ko = Number of circles in the D,,

We will define Khovanov homology, but for that, we need some homological algebra.

2.3. Introduction to Homological Algebra. In this section, we use [28] for the most defini-
tions for some basic concepts of homological algebra that will be important for us

Definition 2.12. A chain complex (C,,d,) is a sequence of modules ---,C_5,C_1,Cp, C1,Co, -
connected by homomorphisms d,, : C;, > Cy,—1 where d,,—10d,, =0. We call (C},d.) a subcomplex
of (Ce,d,), if C! is a submodule of C; and d,(C},) c C),_;.

Definition 2.13. A cochain complex is a dual notion to a chain complex, it is a (C.,ds)
sequence of modules ---,C_o,C_1,Cp,C1,Cs, -+ connected by homomorphism d,, : C,, - Chpi1
where d,,+1 o d, = 0.

We define maps between chain complexes.

Definition 2.14. Assume we have (C,,ds) and (C.,d,) chain complexes. A chain map F :
C. — C} is a sequence of maps {F, : C,, > C/} such that F,,_1 od, =d,, o F,,. In the diagram,
we see that as below

Crn = Cy

Fnl l/anl
U

d
G, —— Chy
Maps between cochain complexes can be defined similarly.

Definition 2.15. Assume we have a chain complex (C,,d,), the homology of this sequence is
ker(d,,)/im(dy+1) and denoted by H,(Cl).



Similarly, we define cohomology.

Definition 2.16. Assume we have a cochain complex

BN i o" = ...
The cohomology of this sequence is ker(d")/im(d" ') and denoted by H*(C*).

Proposition 2.17. A chain map F : Cs — C} induces a homomorphism between the homology
groups of these two complexes.

Between two chain homotopy maps, we have equivalence also.

Definition 2.18. Suppose we have chain maps f and g between (C,,ds) and (C},d.,). A
chain homotopy ¢ between f and g is a sequence of morphisms ¢, : C,, - C; ., such that
fn=0gn =d, .10 ¢n+ ¢p_10dy,. We call f and g chain-homotopic chain maps and denote this
relation f ~g.

We can define equivalence between two chain complexes.

Definition 2.19. We say chain complexes A and B are homotopy equivalent if and only if we
have chain maps f : (As,de) = (Be,d.) and g : (B.,d,) — (As,ds) such that fog ~idg, and
go f=ida,.

Chain maps induce homomorphisms between the homology groups of chain complexes. Do we
have any relation between the induced maps f, and g. where chain maps are chain-homotopic?
The next proposition shows us this relation.

Proposition 2.20. If we have f and g chain-homotopic chain maps, their induced maps f. and
g« are the same on homology groups (i.e., f.=g.).

Definition 2.21. Suppose M;, My, --, M,, are modules over the fixed ring R, and P, P»,--, P,
are module homomorphisms. We say that

My 25y B a2
is an exact sequence if im(P,_1) = ker(P,).
Definition 2.22. Suppose A, B,C are modules over the fixed ring R. We say that
0>A5>BE 00
is a short exact sequence if ¢ is a monomorphism, p is an epimorphism, and im(7) = ker(p).
Furthermore, we define a short exact sequence in the category of chain complexes.

Definition 2.23. Suppose A, B,C are chain complexes, and ¢ and p are chain maps. We say
that the sequence

0—-A 4 BL oS0
is a short exact sequence if the induced sequence of maps
0 A, 2 By 25 Cp >0
is a short exact sequence of modules.

Similarly, we define a long exact sequence for modules, and from the short exact sequence,
we get a long exact sequence of homology groups.

Theorem 2.24. Suppose A, B,C are chain complezxes, and we have a short eract sequence of
complezes given by:

0>A5BL 050
then we obtain a long homology sequence of homology groups

e Hy(A) 2> Hy(B) 25 Hy(C) S Hy oy (A) 25 Hy 1 (B) 25 Hy i (C) S -



Proof. See [9, Theorem 2.16]. O

We have the same theory for cochain complexes
Theorem 2.25. Suppose A,B and C are cochain complexes, and we have a short exact sequence
of complexes given by . '

0-A5%BL 00
then we obtain a long cohomology sequence of cohomology groups
HMWA) 5 HYB) 2 HYC) S B A) s g Y(B) B il o) S

Definition 2.26. (see 1.5.1 [28]) Assume we have E and F' be graded cochain complexes and

E ER F' a chain map that preserves gradings. The mapping cone is a chain complex given in a
degree k by

Cone(f)r = Ex @ Fr
with differential

8Cone(f) = ( _?E aOF ) : COHe(f)k - Cone(f)k+1.

We have the following lemma.

Lemma 2.27. We have a short exact sequence which includes Cone( f)

0 F[1] % Cone(f) 2 E > 0

where F[1], = Fy—1 , i(a) = (0,a) for a€ F and p(e’,a’) = —€’, so we get a long exact sequence
by Theorem 2.25

= 1(E) 22 Hi(F) B g(Cone(f)) 2> H(E) -
Definition 2.28. Let C be an Abelian category. A homologically graded spectral sequence is a

family of objects with differentials dj, , : £}, , - E}_, ., 4 which satisty the rule d" od” = 0 where
p,q,r € Z. Moreover, for E’”r1 and Ej, , for any r we have

Er+1 ( ) = ker(dr q)/Im(dr—r q+r—1)

For a fixed r, the family Ej  is called the page of the spectral sequence. Here we can think
spectral sequences as a book When we turn next page it means we increase r by 1 and take
homology of the old page.

Definition 2.29. Let H,, be a collection of objects in category C.
o We say spectral sequence weakly converges to H, if there is a filtration
..¢F, . H,cF,H,cFy,1H,c...c H,
and isomorphism
Bpq: Epg = FpHpiq/ Fp1Hpig

pa =
o We say spectral sequence approaches to H, if it weakly converges to H, and

H, =\JF,H, and (\F,H, =0
e We say sequence converges to H, if it approaches to H, and
H, = Iiin(Hn/FpHn)
Convergence is denoted by E,, == Hp.,

Definition 2.30. A first quadrant spectral sequence is a type of spectral sequence where all
the information or data contained in its pages is confined or concentrated within the region of
the (p,q)-plane where

p<0org<0 = EPI=0.
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Proposition 2.31. If the r-th page is confined to the first quadrant, then the (r+1)st page will
also be so. Therefore, if the first one is, then all subsequent pages will be as well.

Proposition 2.32. For every first quadrant spectral sequence, convergence occurs at position
(p, q) starting from the r-th term where r is greater than the maximum of p and q + 1.

d — P4
maz(p,g+1)+1 ~ 1

Proposition 2.33. If a first quadrant spectral sequence converges
Ef’q — [JP*4
then each H™ has a filtration of length n + 1
0=F"'H"c F"H"c...F'H"c F°H" = H"
We also have
o F"H" » EX°
o H"/F'H" =« ES"

2.4. Introduction to the Khovanov homology. In this paper, our main goal is to define
sly homology via web and foams. For n = 2, s[y homology is called Khovanov homology. In this
subsection, we will define Khovanov homology in a basic way that will help us to understand
sly homology. We need the Khovanov bracket definition to define Khovanov homology. The
definition is similar to the Kaufmann bracket definition. In this section we generally use papers

(3] and [27].

Definition 2.34. We say that the vector space V is a graded vector space, if V' can be decom-
posed into the direct sum of the form V = &,nV,, where V,, is a vector space for any n. Elements
of V,, are called homogeneous element of degree n.

Definition 2.35 (see [3, Definition 3.1]). The ¢ dimension for this new vector space is
qdim(V') =" ¢"dim(V;,)
m

Example 2.36. Suppose we have field F' and we have graded vector space F_; @ F; then
qdim(F.i® F))=q+q "

In this section we use vector space V =< v,,v_ > where degv, = 1 and degv, = —1. The
qdim(V) =q+q'.

Definition 2.37 (see [3]). Khovanov bracket of a diagram D of a link L, denoted [D]], is a
cochain complex of graded Z-vector spaces. It is characterized by the following properties:

(1) [@]=0->Z -0
(2) [OuD]=Ve[D]

3) [X] - Cone(O L1 paay - o)

Here, the {1} operator is the degree shift operation V{i},, = V,,_;.

The first axiom is about empty diagram, bracket sends empty diagram to cochain complex
with 0 and Z. The second axiom says that if we have diagram D which can be written as a
disjoint sum of a circle and a diagram D’, then to calculate [ D] we need to calculate only [D']).
The third axiom gives a recipe how to find the Khovanov bracket of a general link diagram. If
we have a link diagram D, the third axiom allows us to write

C™*(D) = C**(Dy) + CH*(D1){1}

where Dy and D; are the diagrams which we get them by resolving a fixed crossing by 0 and
1 respectively on the diagram D. In other words,the third axiom says that for a link diagram
D, C**(D) is the mapping cone of C**(Dy) and C*~1*(Dy) with the map d between C%*(Dy)
and C*"5*(Dy), the map d will be defined in 2.42.
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Now we define the modules that we use in the definition of Khovanov homology, see [27,
Chapter 1.3]. We begin with the definition of the space V.

Vo= V®alr, +ny —2n_},
ekt
where a € {0,1}", and: \J\//Qxxg Do vmrno U g/k

ko = the number of circles in the diagram D, avd ot A

7o = the number of 1’s in a,

n, = number of positive crossings in L, K@x:ﬂf G ’Q"@}C‘
n_ = number of negative crossings in L.

_obuy Gaecket !

We define our module now.

C*(D)= D Va
qe{O,l}"

1=ra—n—

Example 2.38. (see figure 4 [27]) For the negative Hopf link ). 1t is easy to see that n, =0

and n_ = 2. In particular, the cube of resolutions has the following form:
V{-3}

_2’* _1,* OI*

C C C

2.5. Definition of boundary map for Khovanov homology. Have defined the modules
underlying the Khovanov chain complex, we need to describe the boundary map. Consider a
cube where nodes are diagrams which we get by different resolutions and we have edges between
nodes. We define a map for the edge between two nodes which we get from different specific
resolutions. We define the map d. where € is the edge of our cube that lies between two resolutions
that differ at one crossing. This edge can be labeled by sequences in {0, 1, *} where the height of
the e is denoted by |e| and is defined by the number of ’1” in the domain of the d.. We turn edges
into arrows by the rule * = 0 gives the tail and * = 1 gives the head. For instance, the edge
between resolutions 001 and 011 is 0% 1 and the map between them is dy.;. Prior to defining d,
we need to describe some elementary maps, from which d. is constructed. It might be helpful
to remind here that V is vector space which is generated by v, and v_ where deg(vy) = 1 and
deg(v-) =-1.
First, we define a map m that corresponds to merging two circles to one circle. Namely:
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Definition 2.39. The multiplication map m:V V' — V is defined as:
vy ® Uy Uy
Vy ® U_ > v
V- ® Uy > U
v-®@vu_ — 0.
We extend it linearly to V@ V.

In addition to that, we define a map corresponding to splitting one circle into two circles:

Definition 2.40. The comultiplication map A:V -V ® V is defined as:
Uy P U QU_+U_ ® Uy
V- V- QU

and it can be extended linearly on V.
We define the map d..

Definition 2.41. We define d. as the identity on the tensor factors associated to circles which
stay the same after i'{mé’é)thiné;_‘; If two circles merge into one circle, d. is the map m on tensor
factors associated to these two circles, see Definition 2.39. Another case is when we divide one
circle into two circles, d. is the linear map A on this circle, see Definition 2.42.

We are ready to define the Khovanov differentials d’ : C**(D) - C*1*(D)
Definition 2.42. For v eV, c C%*(D)
di(v) = Z sign(€e)de(v)
c
tail(e)=a
— (=1 )number of I's to the left of the change place

where sign(e)
see Chapter 1 of [27].

For example, suppose we have e the edge between 010 and 011, then sign(e) is —1 because
there is just one 1 before the change from 0 to 1 in the edge.

It can be shown that m and A preserve the quantum grading, and since d. is the sum of them,
we say that d. preserve the ¢g-grading.

With this definition, we have a lemma below:

Lemma 2.43 (see [27]). d"od" ! =0.

The above lemma shows that d is indeed a boundary map.
We defined the chain complex, so we define Khovanov homology on this chain complex.

Definition 2.44 (see [27]). Kh**(D) = H(C**(D),d) where Kh stands for Khovanov homol-
ogy.
The graded Euler characteristic of C**(L) for a link diagram L is

S (-1)iqdim(C* (D))

This is equal to the unnormalized Jones polynomial of the knot diagram (D) of a link L. See [27].

In order to say that this definition gives a well-defined link invariant, we need to show that
if we have two different diagrams Dy and Dy of the same link L, we have H(D1) ~ H(D3). In
particular, we need to check if homology will be the same after we apply Reidemeister move to
link diagram. (See [3, Theorem 2])

Theorem 2.45. Assume we have two diagrams D1 and Dy which are connected to each other
with a;s_z',r%gl,e Reidemeister move, then H(D1) ~ H(D2).

Ll peprimee of
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Theorem 2.45 has in fact three parts, each corresponding to a different Reidemeister move.
There exist pairs of links where they have the same Jones polynomials but have different
Khovanov homologies. This shows us that Khovanov homology is a stronger invariant.

Example 2.46 ([27, Example 3.2]). Two knots 5; and 10132 are the knots with the same Jones
polynomial but different Khovanov homology. For the unnormalized Jones polynomial, we have
N'@'&' J(10132) = J(51) = ¢ 2+ q° + ¢"" + ¢~ ' whereas we have different Khovanov homology.

Lo o (IO & Kh(51) = Q(o,-3) + Q(o,-5) + Q=2,-7) + Q(=3,-11) + Q(a,-11) + Q(5,-15)

W @ Kh(1013) = Qo,-1) + Qo,-3) + (Q® Q) (_2,-5) + Q(_3-5) + Q(3-9) + Q(_4,-7) + Q(_4,—9)+
\@@‘;R’“ﬁ Qs,-11) + Qo6,-11) + Q(7,-15);
k where Q; ; means at the ¢ and j th degree we have a copy of Q. Conld ray srs - Zeo 0~ €U
3. PERIODIC LINKS )

Definition 3.1. Consider a link L in S® and/semi-free L, icpioi on::qf“ We say L is m-periodic
for the semi-free Z,, rotation action of order m on S3, if the set of fixed points f of action is
disjoint with L and L is invariant under the Z,, action.

Similarly, we define an action for a link diagram.

Definition 3.2. We say that the link diagram D c R? of an m-periodic link L is m-periodic if
it is invariant under the rotation action of R? of order m, and D is disjoint from the set of fixed
points of the action. In other words, an m-periodic link diagram is a diagram that is carried to
itself by a rotation of (360/m)° about the origin.

Every m-periodic link admits an m-periodic link diagram.
Example 3.3. The trefoil knot is a 3-periodic knot.

Remark 3.4. Smith’s conjecture states that a fixed point set of Z,, on S® cannot be a nontrivial
knot.

To check whether a link is periodic, one may apply one of the following cri@éria.

Theorem 3.5 (Murasugi Conditions, see [18]). Suppose we have K c S a q = p"-periodic
knot with prime p, A the Alexander polynomial of K, and A" the Alexander polynomial of the
quotient knot K [Z,. Furthermore, we have | the absolute value of the linking number of K with
the symmetry axis. Then
(1) A'A
(2) A= (A1 +t+...+t71)7! (mod p)
Example 3.6. The left-handed trefoil knot has period 3; the quotient knot is the unknot, and
the linking number [ is 2.
e It is obvious that the first condition is satisfied, which means 1]|A.
e The Alexander polynomial of the trefoil knot is t? =t + 1. So we have
3+ = (1+8)? =t —t+1 (mod 3).
This means the second condition is satisfied.

Example 3.7. For the figure eight knot, the Alexander polynomial is —t™* + 3 — ¢. Since
A(t) = —t71 + 3 -t is irreducible and since A’(1)|A(1) we deduce A’ = 1.
We have

143 -t=Q+t+...+t"HP (mod 3).
We know that the Alexander polynomial is well-defined up to multiplication by powers of t. So
we take Alexander polynomial here A(t) = -1 + 3t — t2. Hence the polynomial on the right-hand
side should have the same degree with the polynomial on the left-hand side. Hence we should
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have (I-1)(p—-1) =2.. We have two cases. Either [=3,p=2orl=2,p=3. Forl=2,p=3 on
the right-hand side. We have (1 +¢)% =1+ 2t +#2 but

1+3t-t>+1+2t+t> (mod 3).
On the other hand, we have

1+3t-t>#1+t+t> (mod 2).
This shows that figure eight knot is not p-periodic for p > 3.

Theorem 3.8 (Edmonds’ Criterion, see [1]). Assume we have K, a periodic knot of period g,
and K, the quotient knot of K. Then there are nonnegative integers gz and o such that
(¢-1)(o-1)

9(K) = agic + =20,

where g(K) and gj is the Seifert genus.

Example 3.9. For a trefoil knot K, K is the unknot. The trefoil knot has genus 1, and the
unknot has genus 0. If we take o =2, then we have 1=3-0+2- %

Theorem 3.10 (Naik’s Criterion, see [19]). Suppose K c S3 is a p-periodic knot with p a prime
and let k > 1 whereas we denote K for quotient knot of K. For ¥™(K) the m-fold branched
cover of K suppose that Hi(X™(K)) has nontrivial q-torsion part, for some prime q + p, and
let Iy to be the least positive integer such that gl = £1 (mod p). Then there exist non-negative
integers by, bo, ... such that

Hy (5" (K); Z) o[ Hi (5™ (K); Z)g = Zg " @ 2237 @ -+

Theorem 3.11 (HOMFLYPT Criterion, see [22]). Assume we have the unital subring R in
1

Z[a*, z*] where R = {a,a™, %,z). If a knot is p-periodic and P(a,z) is its HOMFLYPT
polynomial, then
P(a,z)=P(at,2) (mod <p,z">),

where < p, zP > is the ideal generated by p and zP in R.

We have Borodzik-Politarczyk criterion for periodic knots. Before going to it, we need to give

a remark. T &m L7

Remark 3.12. The ﬁhoy,_agov pc_)lynomizil\;is equal to the Jones polynomial where we have ¢ = —1.

In other words, We have the equation @(K, -1,q) = J(K).

Theorem 3.13 (Borodzik-Politarczyk Criterion, see [15, Theorem 1.1]). Assume we have a
p"-periodic knot K, where p is an odd prime. Suppose that F=Q or F =T, for a prime r where
7+ p and r has the mazimal order in Z,. Here since gcd(r,p) = 1 any prime r # p will have
maximal order p". Take c=1 if F =Fy and c =2 otherwise. Then

KhP(K,t,q) = Py + i(pj - P,
n=1

Where Py, P, ..., P, € Z[q,q",t,t7'] are Laurent polynomials such that

) /W@(q +q )+ re(1 +t¢*7)So;(t,q), and the polynomials So; have non-negative
N @rX = coefficients; ‘
(2) P, =Y32(1+ tq*7)Sk;(t,q) and the polynomials Sk; have non-negative coefficients for
K Qwo\, 1<k<n,

(3) Pk‘(_LQ) - Pk+1(_1,Q) = Pk(_lvq_l) - Pk+1(_17q_1) (mOd qp”_’“ - q—p"_k);

The criterion is rather specific, easier to implement on a computer,(, than to solve by hand.
The following example is discussed in [15].
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Example 3.14. Take the knot 15n1335221. This knot satisfies all periodicity criteria for p =5
we discussed in the thesis. In particular, it satisfies the HOMFLYPT criterion for p = 5. It has
the Khovanov polynomial
g+ A+t TP+ 3 B g+ 3t w30 4 32T+t O
+ 315_1q_3 + q_?’ +q 1 +3tg+ t2q3 + 3t3q3 + t4q5 + 3t5q7 + t6q9 + 4(75_5(]_11 + t_4q_9 + 2t_3q_7 + 2t_2q_5
+t g T g 2t + T T R 2t 20+ 363 + H10P)).
We write KhP = ¢+ ¢ 71 + (1 +t¢*)Sh; +4(1 +tg*)S]; where
Sh =t g 43t O 3t 73 + 3672 T + 17 g O
+ ?)t_lq_3 + q_3 + q_1 + 3tq + t2q3 + 3153q3 + t4q5 + 3155(17 + t6q9
and
S{l = t_5q_11 + t_4q_9 + 2t_3q_7 + 2t_2q_5 + t_lq_5 + t_lq_3 + 2tq_1 + q_3 + q_1 +2t'2q + t3q3 + t4q5
According to Theorem 3.13(3), A(q) = ¢ +q ' + (1 +t¢*)S},(t,q) — (1 +t¢*)S],(t,q) and we
have A := (A(q) - A(¢"')) mod ¢® - ¢7°. So we have A = —10q + 5¢® - 5¢7 + 10¢°. Since A # 0,
we need to change S, and S7;. We need to satisfy Theorem 3.13(1) and (2). We must have
1, = S11 -6 and S{; - S}, +44. Here it is important that we must have non-negative coefficients
for S7; and S();. We have only finitely many possibilities for §. In order to reduce the number of
possibilities, we use the following argument. Take § = at’¢’. Then, after changing Sop and S1q,
we have A - A +aTjj, where Tj; = (=1)5(-¢ 7™ + ¢ — ¢/ + ¢'**) mod (¢° - ¢°). We deduce
that T;; = (-1)R;» with j' = j mod 10 and
Ri=Rs=5(q-q"),
Ry =10(¢* - ¢"),
Rr=Ry=5(-¢-¢’+q" +¢°).
For different §, A will change by —a;R; — agR3 — ayR7. Note that coefficients change based on
conditions that S]; — ¢ must have non-negative coefficients. We must have coefficients
ay €{-1,0,1,2,3,4,5,6},
as € {-3,-2,-1,0},
ar € {-4,-3,-2,-1,0,1,2}.

With these conditions, it is not possible to have A = 0. We deduce that a knot 1511335221 is
not 5-periodic.

4. WEBS, FOAMS AND CATEGORIES

We have already studied Khovanov homology. Now, we want to define sl homology. Actually,
Khovanov homology is sls homology, but for sl homology, we have to use a more formalized
approach. We will use webs and foams.

4.1. Webs and foams.

Definition 4.1. A trivalent graph I is a closed one-dimensional cell complex where three edges
meet at each vertex.

Definition 4.2. In an oriented graph, the source vertex is a vertex that has zero indegree. In
other words, it is a vertex where the number of incoming edges is 0. Similarly, a sink vertex is
a vertex that has zero outdegree. In other words, it is a vertex where the number of outgoing
edges is 0.
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FI1GURE 1. The flow condition of Definition 4.3

Definition 4.3 (web). A closed web is a finite oriented trivalent graph V' without sources and
sinks properly embedded in R?. Each edge is labeled by numbers 0,..., N. An edge with the 0
label can be deleted from the web, so in some papers, edge labeling starts from 1. The labelings
of edges should satisfy an important condition called the flow condition; see Figure 1:

o If two edges with labels a and b enter a vertex, then the outgoing edge has label a + b.
We call a vertex a merge vertex when the vertex has two incoming edges.

o If two edges with labels a and b exit from a vertex, then the incoming edge has label
a + b. Similarly, we call a vertex a split vertex when the vertex has two outgoing edges.

In Figure 1, the web on the left has a split vertex, and the web on the right has a merge
vertex.

Remark 4.4. An empty web is just a web with no vertices and no edges.
Assume that we have two webs Wy and W7 in R2. Think of Wy in R?x {0} and W in R?x {1}.

Definition 4.5 (foam). Assume we have two webs Wy and W;. An N-undecorated foam F: Wy —
W) is a compact, finite 2-dimensional CW-complex properly embedded in R? x [0, 1] such that:

o If z € F'~ (Wyu W), then there exists a neighborhood U of z in F' homeomorphic to
one of the following three models:
— a smooth point: U is homeomorphic to a disk in R?;
— a Y-shaped point (codimension 1 singularity): U is homeomorphic to the union of
three distinct rays stemming out of a common point, times (0, 1);
— a cone over a l-skeleton of a tetrahedron (codimension 2 singularity), when z is a
triple point. Compare Figure 2.
e Every facet F; of F, i.e., a connected component of the set of smooth points, carries an
orientation and a label by an integer O, ..., N;
e a binding: compact oriented 1 dimensional manifolds. Each binding has
— an orientation that agrees with the orientation of facets with labels a and b whereas
disagrees with the orientation of facet with label a + b.
— cycling ordering of the three facets around binding: when foam embedded in R? this
ordering must be compatible with the left-hand rule with respect to its orientation.
o Every seam C;, which is a connected component of the set of Y-shaped points of F,
carries an orientation;
e The orientation of every seam agrees with the orientation of precisely two adjacent facets;
if these two facets are labeled by a and b, then the third facet has the label a + b;
e The bottom boundary of each facet F;, that is F; n (R? x {0}), is an edge of Wy with the
same label and the orientation opposite to the orientation induced by Fj;
e The top boundary of each facet I}, that is F; n (R? x {1}), is an edge of W with the
same label and the orientation agreeing with the orientation induced by Fj;
A foam is a map between webs. We define the composition of foams.
AL P e,
Definition 4.6. Assume we have webs Wy, W7 and Ws. Furthermore, we have foams Fy;
between Wy and Wy, Fis between Wy and W5, We define composition Fyo of Fy1 and Fio as the
union of Fy; and Fyy along W) where we can think of Fy; as a subset of R? x [0,1/2] and F2 as
a subset of R? x [1/2,1].
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F1GURE 2. Codimension 1 and 2 singular points of a foam.

In our case, closed foams are crucial for us:
Example 4.7. A closed foam is the map from an empty web to an empty web.

4.2. Coloring and decorations. On webs and foams, we might have some extra structures,
namely colorings and decorations. The coloring of a web is similar to the labeling.

Definition 4.8 (coloring of a web). Let W be a web. A coloring is an assignment of a subset
Ae of P={1,2,..., N} to every edge e such that |A.| = labeling of the edge. In other words, for
every edge, we assign a subset of {1,2,..., N}. This assignment should satisfy two conditions:

o We have two edges with colorings A and B enter a vertex, then the outgoing edge should
have coloring A U B where in particular we have An B = @&.

e We have two edges with colorings A and B exiting from a vertex, then the incoming
edge should have coloring Au B.

The colorings of foams are similar.

Definition 4.9 (coloring of a foam). Assume we have a foam F. A coloring is an assignment of
a subset ¢(f) of {1,2,..., N} to a face f such that |c(f)| = labeling of the foam. This assignment
should be compatible with the composition of two foams. In other words, near each seam, the
set of variables at one adjacent face is a disjoint sum of a set of variables assigned to the two
other adjacent edges.

A colored foam is a foam with a coloring.

In addition to this structure on webs and foams, we have decorations of foams.

Definition 4.10.

e Assume we have a colored foam (F,c). We define surface F;(c) as a union of all the
facets that contain i € P. The restriction on orientations of facets ensures that Fj(c) is
also oriented.

o Assume we have a colored foam (F,c). We define surface Fj;(c) as a union of all the
facets which contain 7 or j but not both at the same time in their colors. The restriction
on orientations of facets ensures that Fj;(c) is also oriented.

Definition 4.11. Assume we have a colored foam (F,c) and we have i < j. A circle in F;(C)n
F;(C)n Fy;(C) is positive (respectively negative) with respect to (4,7) if it consists of positive
(respectively negative) bindings. We denote the number of positive (respectively negative) by
0;;(c)F (vespectively 0;:(c)r). Furthermore, we have 0;;(c) = 6;;(c) + 0;;(c).

4.3. Decorations, degrees and evaluations.

Definition 4.12 (Degree of an undecorated foam). The degree d""(F') for a foam F' is the sum
of the following items.

e For a face f we have d(f) = a(N — a)x(f) where a is the face label and x is Euler
characteristic;

e For seam 7 which is not a circle and is surrounded by faces with labels a, b, a + b we have
d(i)=ab+ (a+b)(N —a-b);



18

Fi2

For

________

FiGure 3. Rule for gluing decorated foams.

e For a singular point p surrounded by faces with label a,b,c,a+b,b+ c,a + b+ ¢ we have
d(p) = ab+be+ em +ma+ ac+bm, where m=N-a—-b—c.
e At the final stage we have the formula

dy(F)=- % d(f)+ » d(i)- > d(p)

f facet i seam p singular points

Another important definition for foams is the decoration.

Definition 4.13 (Decoration of a foam). Assume we have a foam F' and a face f with labeling
a. A decoration is an assignement of a symmetric homogeneous polynomial p; in a variables to
the face f.

A decorated foam is a foam together with a decoration of each face. We have the composition
of foams when decoration on foams respects composition rule also. Namely, assume we have two
foams Fy; and Fio with decoration Py; on face fi of Fy; and Pjo on face fy of Fio. Assume that
composition happens on faces f; and fs. Then the new face should have decoration Py - Pis.

Remark 4.14. We fix our variables for polynomials as X1, Xo,..., Xy, and we declare that each
variable X; has degree 2.

Definition 4.15 (Degree of decorated foam). The degree of a decorated foam F is equal to
d“"(F) + 2% rdeg(Py), where the sum runs over all faces f of the foam.

Definition 4.16 (Evaluation of a foam). The evaluation of a foam involves assigning a polyno-
mial to the foam. Assume we have a colored decorated foam (F,c). We have contributions:

N (e
s(F,c)z§i(@)+ Z QZ(F’C)

1<i<j<N
P(Fe)= I Pre(f))
f face of F
(X(Fij(c)))
Q(Fe)= [ (Xi-X)\ 2
1<i<j<N
_(_ s(F,c)P(Fac)
<F,C)—( 1) Q(ch)

Assume we have a decorated foam F', we define the evaluation of a foam F":

(F)=2(F,c),

Cc

where the sum runs over all colorings of F'.

It is proved in [25] that (F') is a symmetric polynomial. The next observation is made in [25];
it follows promptly from the definition of (F')F.

Lemma 4.17. If we have two isotopic foams Fy and Fy in R? x [0,1], then (Fy) = (F3).
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4.4. Foam categories. We want to define sl homology. For this, it is convenient to package
webs and foams into a category theory language.

Definition 4.18. Foam) category is a category with N-webs as objects, and morphisms be-
tween two webs W1 and Wy are foams from Wi to Ws. Wi o /@)‘th—, At MO ant o ﬂf;&\wv

The next category we want to have is the SFoam); category. We use the notation Sy :=

Sym[ X7, Xo,..., Xn] as the graded ring of symmetric polynomials with integer coefficients.
%@b& @ﬁ that the Varlables X; have degree 2. LT, @ Grstae 2o P

WQL,Q/U ) Definition 4.19 (SFoam)). The category SFoamy is the Sy linear, Z-graded category with
e Objects as formal shifts ¢*V, where V is a web, ¢ is a formal variable, and k € Z is
grading.
e Morphisms as Sy linear combinations of decorated foams. Foams are in the form of
F:q¢°V - ¢™W. Here, F has degree m —w. For p € Sy, pF has degree deg(p) + deg(F).

We defined the SFoam}); category. To understand it better, we define the evaluation functor
from SFoam?, to the category Symj of Sy projective modules. 7
N BOLY DYy OLON PTOJectlve MO es., —, Croded— 7
T s Definition 4.20 (Naive evaluation functor). We have functor F : SFoamy — Sym}

e For any shifted web ¢®V, we have :
o~ Q‘/\w \'r\? CP\A /Q}‘e. 6o - &J/‘/\”‘

FqV)= Sn{dn(G)} —
C‘lm j&p\({ L/_/,—\—/(Q/L/GEHomSchz}ev(@,an) N{ N( )} :( Z(D’U\ g&)“{— ’{\ &&

( p_\rWQ‘t’V\ w g
= © E e For a morphism F : ¢*V — ¢"W, we have the map “S o g’ﬁ“‘”‘?
Con Bt 00 F(F)(-)=Fe(-) b accont

@’Homgpoaml*v(g, an) HOH]SFoam*N(Q, qu)
Recall that Homgpoam?, (2,¢*V) is an Sy module. — Howwr 7 wlet i 0w seodole %m7

In our assignment for a web V', we took all foams, but it is logical to expect isotopic foams
as defining the same objects, respectively the same morphisms. To overcome this problem, we
need to take a suitable quotient using foam evaluation.

Suppose we have a web V and F’ € Homgpoam?, (V, @), define

Qpr HomSFoam}*\, (®7 V) - SN
¢p/(F) =(F'oF)

Now we define

I(V) = m ker¢pr

F'eHomSFoam}ev (V@)

Actually, I(V') consists of all Sy linear combinations of foams from @ to V' that evaluate to zero
when capped with any foam from V to @.

As closed isotopic foams evaluate to the same polynomial, we have the following observation,
which we record for a future use.

Lemma 4.21. For any two isotopic foams F and F'" from @ to V, F — F' is in I(V).

Definition 4.22 (Evaluation functor). We define a new evaluation functor F which is similar
to the naive evaluation functor F.

e For any web ¢®V, we have F(q®V) = F(¢*V)/I(¢*V) = Homgpoamy, (2, ¢"V)/I(V).

e For morphism G :V — W, we have the map

F(G)(-)=Go(-)
HomSFoam}’\, (Qv V)/I(V) - HomSFoam]*V (@, W)/I(W)
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FIGURE 4. The resolution of a crossing. Here z = b(IN - b) and ¢ denotes the
quantum grading shift. The first term is at homological degree zero.

Now we define a new category where any two isotopic foams between two webs will be in the
same class.

Definition 4.23. The category of SFoamy has the same objects as SFoam};, but for mor-
phisms, it is different: Homspoam, (V, W) := Homgpoams, (V, W)/ ker F.

We need a bracket definition, and for this, we need to define a new category.

Definition 4.24 (Kom(SFoamy) category). The category Kom(SFoamy) is defined as fol-
lows:

e objects are cochain complexes of finitely generated Sy modules generated by objects in
the SFoamy category;
e morphisms are formal linear combinations of morphisms in the SFoamy category.

4.5. Sy-equivariant sly-homology. We need to define the bracket [ D]] € Kom(SFoamy) for
any labeled link diagram D. For this, we just need to define the bracket for a straight strand,
positive and negative crossing. For any diagram, we will take the tensor product of these three
diagrams.

)
Definition 4.25 (Bracket definition, see [5, Définition 3.3]).

e For a strand a bracket maps it to the corresponding web in homological degree zero.

e The bracket maps a positive crossing with a as an overstrand label and b as an under-
strand label, denoted as a > b, to the chain complex as in Figure 4. The differentials d}
are given by the foams in Figure 6.

e The bracket maps a positive crossing when we have b as an overstrand and a as an
understrand to the complex obtained by taking mirror images of webs and foams along
the vertical axis and swapping the a and b.

e For a negative crossing, the bracket sends it to the complex where we can obtain it from
positive crossing by inverting the g-degrees and homological degrees, and reflecting the
differential foam in a horizontal plane; see Figure 5.

\,’\I,Q\ﬁjt - A QPW//V\VLQC’Q’{%& E\MVQQ &«'Q-TWMA)

Remark 4.26. For arl unlabelled link diagranpof D, we declare all strands as labelled 1.

We create a cube of resolutions to better understand the bracket definition. Let D be a
diagram with n crossings, enumerated from 1 to n. At each crossing, we have labels a; and b;.
We define ¢; as the minimum of these two labels and set C; = {0,...,¢;} for the i-th positive
crossings and C; = {-¢;,...,0} for the i-th negative crossings. Similarly, we define SCy = [0, ¢;]
and SC; = [-¢;,0]. Moreover, we consider SC; to be a CW-complex where 0O-cells are the
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FIGURE 6. The foam that is the differential d;; of the complex in Figure 4. It is
decorated by constant polynomial equal 1.

integral points, and 1-cells are the intervals. Define Cube(D) = []; C; and SCube(D) =[], SC;
where SCube carries a concrete CW-complex structure.

Definition 4.27 (Immediate successor). For I, I’ € Cube(D), we say I’ is an immediate suc-
cessor of I if I and I’ agree on all coordinates except one, and this one coordinate is one larger
than that of I.

Definition 4.28 (Sign assignment). A sign assignment 3 is an assignment of (I, ") € Fy for
any pair I and I’ such that I’ is an immediate successor of I.

We want 3 to satisfy the following chain condition for I, I, Is, and I15 where I # Is, I; and
I, are the immediate successors of I, and I;5 is the immediate successor of I1 and Iy. We have

.ﬁ([,[l) +J(I,IQ) +d(]1,[12) + .ﬁ([g,[lg) =1le ]FQ

Remark 4.29. Algebraically, we think of 4 as a cellular 1-cochain in the cellular cochain complex
C!,,(SCube; Fs) WhereQd is a 2-cochain with a constant value of 1.

Lemma 4.30. For ang} diagram D, there exists a sign assignment 4. For any two assignments
3 and 3', there is a coboundary such that 3—3" = §t where t is a cellular 0-cochain on SCube(D).
Moreover, t is uniquely determined if it fizes its value on (0,...,0).

Proof. For a c € Cfell(SCube;IFg) where ¢ is a constant cochain with a value of 1, we have
d(c) = 0 because the cube has an even number of rectangles. Since we take the sum of an even
number of 1’s, we get 0 in Fy. Since the cube SCube(D) is contractible, we have a 1-cochain
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I

F1GURE 7. Reidemeister one move. To the left: the source and the target of
the map ¢. To the right: the foam realizing this map (it is a product foam
everywhere except near the crossing).

e € C! ,(SCube;Fy) such that §(e) = c. We have e as a sign assignment J. Assume that we
have two sign assignments 4 and s’. We have §(s —4") =0(4) -0(s")=1-1=0,s0 53" is a
1-cocycle. Again, since the cube SCube(D) is contractible, we have ¢ such that 0(t) =4 — 4’ If
we have another ¢’ such that §(¢') = s — 4’, then we have §(¢ —t') = 0, which means ¢t —¢' is a
cellular O-cocycle. This implies that (¢ —¢")(a) = (¢t —t')(b) = 0 for any point a,b that belongs
to any interval I. This means that for any points in the cube, ¢t —t' is equal to zero, so t —t' is
constant. g

Theorem 4.31. For any diagrams D and D' of the link L, we have [D] ~ [D']]. In other
words, the complexes for these two diagrams are homotopy equivalent in Kom(SFoamy ).

Proof. The statement is well-known to the experts, with a few known proofs. To show how sign
assignements work, we provide a proof in two special cases. Namely, if D’ differs from D by a
single Reidemeister move, and

e The case of a Reidemeister 1 move for general labelings.
e The case of a Reidemeister 2 move for diagrams with all labels equal to 1.

In this proof, the main issue will be clarifying signs. Namely, we will show how to relate sign
assignments on D with sign assignments on D’. In the case of non-periodic links, we do not have
a sign assignment problem, Koszul’s sign rule being sufficient. We have proof of this theorem in
[5, Theorem 3.5]. We will imitate [16, Section 7.

We denote the diagram obtained from D via a single Reidemeister 1 move with a positive
crossing by D(p). We assume that the strand at which the Reidemeister move is done is labeled
by a > 0. We denote partial resolutions of D{p) as D()e), D(JD1),..., D{f0,_1), and D(D). Here,
by putting i we mean we label the loop which is next to the diagram by i. We can write [D]|
as the following bicomplex

dd dy dt
(4.32) 0~ [Dfo)] = [Dfo1)] — ... = [D(P)] -0,
Here d! is the identity except near the relevant crossing. The foam near the crossing is given
by Figure 6. We have a chain map between [D]] and [D{J0)]] given by

~N
~
@)
~
o

0 > [D]] > 0
N
s ... —s [DP)] — 0,

(4.33) J
0 —— [D@e)] —— [D{o1)]

~

Here ¢ is the union of the identity foams and the cup foam. It is the identity foam away from
the crossing, and the cup foam when we have a resolution for an extra crossing. In general,
we can say that the map between [D] and [D(0)] is given by (-1)*D¢;, where d(I) is a
choice of a sign. The main issue with choosing appropriate sign assignments is to show that
the choice d(I) = 0 is consistent. That is, for the rest of the proof, we will deal with sign
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assignments on Cube(D) and on Cube(D(p)) so that ¢ is the chain homotopy map. We know
that Cube(D(p)) = Cube(D)x{0,¢,2¢,...,ae}. The following lemma will show us how to extend
sign assignment from Cube(D) to Cube(D’) where Cube(D’) = Cube(D)x{0, ¢, 2€, ..., ae} where
€ is the sign of the new crossing.

Lemma 4.34. Suppose we have a sign assignment 3 for the diagram D. Assume we have
the diagram D' with one more crossing compared to D, so we have Cube(D’) = Cube(D) x
{0,¢€,2¢,...,ae} where € is the sign of an additional crossing. There exists a unique sign assign-
ment 3" for D' satisfying the following conditions.

e The new sign assignment should be compatible with the old one, so to say for I,I' €
Cube(D) where I' is the immediate successor of I, we have

5,((170)7 (Ilvo)) = J(LI,)

e For I € Cube(D)
j,((laj%(laj + 1)) =0
for all j, i.e., for positive crossing j =0,...,a—1 and for negative crossing j = —a,...,—1.
Furthermore, suppose 31,39 are two sign assignments on D and 31— 32 = 6(t), denote 3]

and 3% extensions of 31 and 5. Now define the cellular 1-cochain t' on SCube(D’) by
t'(1,z) =t(I) for any (I,x) € Cube(D). Then 3| — 35 = dt’.

Proof. We will prove it only for a positive added crossing; the proof for the negative crossing is
similar. We need to address the case of elements of the cube with the same last coordinate. We
set

(4.35) ST 4). (T ) = 3(1I') + {1 J odd

0 7 even.

To show that the choice gives actually a sign assignement, we need to check the cochain condition.
We check each case separately:

e For I', 11,15, 1], € Cube(D’) where these all have 0 as their last coordinate, we have
3'(I',17) + "I Iy) + 3" (I1, I19) + 5" (15, I1y)
= J(I,Il) + d([,[g) + 3(11,112) + 4(12,112) =1.
e For I', 17,1}, I], € Cube(D’) where these all have j with the condition j # 0 as their last
coordinate, either we have 1 or 0 in the definition 4.35. We have
S'(I'17) + 3" (I’ Iy) + o' (I1, I1p) + 3" (I3, I,)
=1+ J(I,Il) +1+ 5([,[2) +1+ J(Il,flg) +1+ 3(12,112) =1 in Fs.
e For I,I; € Cube(D) where I; is the immediate successor of I, we have I' = (I,5),1] =
(I1,9),15=(1,j+1),I5, = (I1,j + 1). For these, we have
3'(I', I7) + 3" (I', Iy) + 3" (11, Ip) + 8" (13, I1,)
=43(I,1)+0/1+0+0+3([,I;)+1/0=1 in Fa.
Now, we prove the second part. Suppose we have sign assignments 4; and 49 for Cube(D).
For I and I" where I’ is the immediate successor of I, we have 31(I,1") - 39(I,1") = t(I) - t(I").

Now we consider I7, I, € Cube(D x {0,€, 2€, ..., ae}) such that I} is the immediate successor of
I7. We have three cases:

o I{=(I1,7) and I} = (I2,7). For j is even, we have
(11, 13) = 35(11, I3) = 91(11, I2) = 32(I1, I2) = t(I1) - t(I2) = t'(11) = t'(13).
o I{=(I1,5) and I}, = (I2,7). For j is odd, we have
51(11, I5) = 95(11, I5) = 1+ 31 (11, o) = 1 = 35(I1, I2) = t(11) — t(I2) = t'(1]) = t'(13).
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e In this case, we have I{ = (1,j) and I, = (I,j + 1), then we have
31 (11, 13) = 35(11, I3) = 0 =t(I) - t(I) = t'(1}) - t'(I3).
O
With the sign assignment from Lemma 4.34, we have the following corollary:

Corollary 4.36. For any I € Cube(D), the I-th component of the map ¢ : [ D, 3] - [D{)e), 4]
is gien by ¢r: Di — D oy without any sign correction.

Proof. Let I € Cube(D) and Is be an immediate successor of I;. We chose I = (I1,0) and
I} = (I2,0). The map d' o ¢y, is the composition of the foams ¢, and 6'(I{, ;) with the sign
(—l)d(h)”,(li’%). On the other hand, we have another map which is a composition of the foams
6(I1,15) and ¢y, with the sign (-1)?U2)+(12) - By Lemma 4.34, 5(I1, 1) = 4'(11,I5) and we
took d(I) = 0 for any I € Cube(D), this implies ¢ is commutative with differential for any
I € Cube(D). O

In [16], it is proved that the map ¢ is indeed a chain homotopy equivalence. In fact, there
exist explicit foams giving the inverse map. As the sign choice for D and for D(Jo) is the same
there is no extra sign correction needed for the inverse maps either.

We will now sketch the proof of the Reidemeister 2a move which means the move O

does not change homotopy type of [ D]]. Recall that we have 1 for all labels here. Furthermore
we assume that the left crossing of D’ is first new crossing and right crossing is the second one.
We have Cube(D’) = Cube(D) x {0,1} x {-1,0}. We have sign assignment 4 of D. We can
extend this sign assignment on D’ by firstly extending it on Cube(D) x {0,1} by 4.34 and later
on Cube(D") = Cube(D) x {0,1} x {-1,0} by 4.34. We have the following observation.

Lemma 4.37. The sign assignment 3" on Cube(D) x {1} x {-1} agrees with 3.

Proof. Let I, I' € Cube(D) with I’ an immediate successor of I. By (4.35), we have 41((Z,1), (I',1)) =

1+ 3(I1,I'). Again by (4.35) , we obtain #/((I,1,-1),(I’,1,-1)) = 1 + 3,((1,1),(I".1)) =
3(1,1"). O

We define the following cochain map

0 y = > 0

In the figure, we have the local cochain complex of [D]] at the bottom and at the top we
have the local cochain complex of [[D']]. Here I is the identity foam with the sign +1 and by
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FIGURE 8. The map ® for the Reidemeister 2a move in the proof of Theo-
rem 4.31. The dashed part is the seam singularity on the foam.

- -

FIGURE 9. Reidemeister 2b move.

Lemma 4.37, ® is a cochain map between the complex [[ D]] and the subcomplex of D’ obtained
by a (-1,1)-resolution of the crossing created in the Reidemeister 2a move. In [16] it can be
seen that I ® ® is a chain map, the description of the inverse map and that I & ®:[[D] — [D’]]
is a cochain homotopy equivalence.

Proof. The description of sign assignments for the Reidemeister 2b move, drawn in Figure 9, is
the same. For the Reidemeister 3 move, we do not encounter problems with sign assignment,
because the move preserves the crossings. The sign assignment on D induces a natural sign
assignment for D’.
This implies that [D] ~ [D'].
O

By Theorem 4.31, we know that we define the bracket independently of the diagram of a link.

Definition 4.38. (Khovanov-Rozansky homology) For any diagram D of a link L, we define
the Sy-valued Khovanov-Rozansky homology as the homology of the chain complex F([[D]]).
—
2T wes dbfamad o v 75 5. SPECIALIZATION
Recall hat we have Sy, the ring of symmetric polynomials in fixed N > 0 variables with
coefhicienit® We know that Sy is naturally isomorphic to the ring of polynomials in N
variables.

Theorem 5.1 (Quillen—Suslin, see [2,24]). Every finitely generated projective module over a
polynomial ring is a free module. ¢ 0. D o

5.1. Algebraic Specialization of Modules.( Recall that Symp is the category of graded F‘;ng .
projective Sy-modules. An object of Symy is a direct sum of finite copies of Sy{¢*}. A
morphism in this category is a matrix of symmetric polynomials. 5

Assume we have ¥, an (unordered) N-tuple of points in C, not necessarily distinct. We/denote
P(X) as the evaluation of P € Sy at X. Then, ¥ specifies a left Sy-module structure oy C, via
Pz=P(X)z, for PeSy and z € C.

N

EV?QG-&M Ao Dn
(/{AS/V‘-P*U’QV& W was SR}J
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Definition 5.2. (Specialization functor) We have a functor
ev> : Symy — Vect(C)
given by ev>(M) - M ®s, C and for a morphism
F:M—-N
ev(F): M ®s, C - N &g, C

ev > (F)(m®c)=F(m)®c
We call this a specialization functor. If 3 consists of pairwise distinct complex numbers, then
the functor is called a generic specialization functor. On the other hand, if ¥ = (0,...,0), then
the functor is called a singular specialization functor.

5.2. Algebraic Specialization of Cochain Complexes. Let M be a symmetric finitely

graded free Sy module. - A fup‘/g Ao
M =@ Sn{g"}
j=1

where ¢*™ denotes the grading shift with a,, as an integer. Between two modules Sy{q¢*"} and
Sn{q**}, we have a morphism ¢. We say that ¢ is a degree k morphism, when it is a map
Sy = Sy with degree k + b —a. Therefore ¢ is a multiplication by a homogenous polynomial of
degree (k+an, —am)/2.

Note that we have degree 2 for variables X1, ..., X. Recall that the graded cochain complex is
the complex that has differentials with degree zero. Assume we have the graded cochain complex
C, with graded, free Sy modules. Now we form two cochain complexes.

Definition 5.3 (Generic and Singular Specialization of Complexes).
e For ¥ =(0,...,0), we have the singular specialization C?, which is obtained by applying

ev™ to C,.
e For ¥ with the set of pairwise distinct complex numbers, we have a generic specialization
C9°" which is obtained by applying ev> to C,. 2 W“Q“g 7

If we have C; = @, Sy {q® }, then €0 = C¥°" = @, C{q"} becaus@ The bound-
ary maps dg and dfe" are equal to ev>(d), where d is the boundary map in C; = @?zil Sn{q%i}.

Assume we have a chain complex C; = 69;‘;1 Sn{q%i}, the differential map d' : C; - Cjyq
is the sum of the maps d;x : Sy{q**} — Sn{g****}. The map having the degree 0 is the
multiplication of a homogeneous polynomial of degree (a1, —a;)/2. The singular evaluation
of any homogeneous polynomial of degree at (a;.1,;—a;)/2 can be non-zero only if a;,1 ;—a; 1 =0
when we apply ev™ for ¥ = (0,...,0). We can deduce that with the ev™ functor, the differential
dé of the complex C’é keeps grading.

On the other hand, for the cochain complex (C%, ZE), the situation is different. Homogeneous

polynomials can be nonzero when evaluated at ¥ when a;.1; - a; > 0. This means (Ct ,diE) is
filtered.

Proposition 5.4. There exists a spectral sequence, whose first page is H*(C?) and whose ho-
mology is H*(CI™™).

Proof. The differentials d’: C* - C**! can be decomposed as a sum d°+d'! +. .., where d** is given
by a matrix of homogeneous polynomials of degree s. After performing a generic specialization,
d® becomes the map d’  increasing the grading by 2s. That is, d',, = d +d' +.... The

gen gen gen gen
20

;en is equal to dgg,,.
Specialization of d** with all variables zero gives the zero map, unless s = 0. That is, d} = d%o.

The non-zero map déo is equal to dgoen because a degree-zero polynomial is necessarily constant.

Therefore, the graded part of d’_, is equal to the differential dé.

gen

graded part of d
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gens d;en) is a filtered cochain complex, whose graded part is dj. A classical
argument shows the existence of the spectral sequence. O

Summarizing, (C;,

5.3. Geometric Specialization. For > ¢ C", we have the evaluation for any foam F', de-
noted by (F)y, which is obtained by evaluating the polynomial (F) at ¥. For any G €

HomSFoam}’\, (Vvv Q)a we have N (> Argr A '-éﬂ

Do F(V) > C,8q,0(F) =AG o F)s. s (o Fedp 7

Based on this construction, we define the Y¥Foamy category.

R~

Definition 5.5. For the category YFoam, the objéects are the same as the objects of SFoamy.

1

In other wor CCS are=wers igned quantum grading. The morphisms
are given by Homsroam (V, W) := Homyroam, (V. W)Mx(V), where I (V') = nker @¢ 5.

We have a functor Fy, from the category XFoamy to the category of vector spaces.

Definition 5.6. Fx (V) = Homspoamy (&, V) and for a map f : V - W, we have Fx(f) :
HomZFoamN (®7 V) - HomEFoamN (®7 W)

For a specific 3, we have special cases. For example, for ¥ = (0,...,0), we have the 0Foam y
category. For other ¥ = ¥/, we call it X’Foamy category.

5.4. Geometric versus Algebraic Specialization. We know that both ¥Foam  and SFoam y
are quotient categories of SFoamy,;, but the kernel is larger in ¥Foamy compared to the kernel
in SFoamy. This is because for SFoam},, in the kernel, we have foams F such that (F) is zero,
but on the other hand, for ¥Foamy, we have (F') which is zero when evaluated on ¥. We have
the following diagram of functors.

SFoam y L) Sym

| o

YFoamy ﬁ) Vectc
Here, Vectc is a category of graded vector spaces over C.
Proposition 5.7. The diagram above is commutative.
Proof. This is the statement of [25, Proposition 4.1]. O
Based on these definitions, we define Khovanov-Rozansky sly-homology and Lee s{x-homology.

Definition 5.8. For ¥ = (0,...,0) we have a chain complex Fy[[D]] for a link diagram D of
L. We define Khovanov-Rozansky sly-homology as the cohomology space H*(ev® o F([D])) =
HY(F[D]) = KRI;\}T(L) of L where k is the homological grading and r is the quantum grading.
Furthermore, by 5.7 we know that algebraic and geometric specialization give the same result
so we can define Khovanov-Rozansky sy homology on the c%chain complex (Céo,...,o)’ déow70)).

Definition 5.9. For X being a set of pairwise distinct corﬁplex numbers, we have a chain
complex Fx[[D] for a link diagram D of L. We define Lee sly-homology as the cohomology
space H*(ev™ oF([D])) = H*¥(F=[[D]) = Leek (L) of L where k is the homological grading.
Similarly, we can define Lee sly homology on the cochain (C,dy,) for generic X.

Theorem 5.10 (Lee-Gornik spectral sequence). Let D be a link diagram. There is a spectral
sequence whose first page is KR];\’,T(L) abutting to Leeﬂ“v(L).

Proof. Here take C, = F([D]]) over Sy. The cochain C? = Fo([D]) and CI" = Fo([D])) are
the specialization of C,. The statement follows from 5.4. O

Now assume we have a link L and its mirror L'. For Khovanov homology we have Kh/ (L)
Kh™77(L"). For Khovanov-Rozansky homology we have a similar relation.
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Proposition 5.11. For Khovanov-Rozansky sl homology we have an isomorphism KRI;\}T(L) =
—k»=r/17
KR (L).

Proof. Assume we have a diagram D of link L with n crossings. Enumerate Cr(D) = {1,...,n}.
For each vertex I, we associate Fo(Dy). Now assume we have a mirror diagram D’. For
I € Cube(D), I = (i1,...,iy), denote by I’ the dual resolution (-iy,...,—%,) € Cube(D’). The

webs D7, and Dy are isomorphic because D and D' are mirrors to each other. We have a map
i: Fo([D]) = Fo([D']). In other words, we have i : Fo([Dr]]) = Fo([ D} ).

The differentials in the mirror complex are dualized. For example, if we have a differential from
Fo(IDr, 1) to Fo([Dr,]]) then for the mirror complex we have a differential from fo([[D’é]])

to fo([[D,{]]); and if the first differential is given by matrix A, then the second differential in

the mirror complex is given by AT. Now fix the basis of Fo([D]]). We have just showed that
Fo([[D]]) and Fo([[D']]) have the same basis. If we send the basis of Fo([D']]) to its dual basis,
that is, the basis of Homc(Fo([[D]]),C) we get an isomorphism between Home (Fo([D]]),C)
and Fo([[D]]). In other words, we have

Fo([D'T) = Home(Fo([D]),C)
with underlying gradings reversed. By the universal coefficient theorem, since we work over the
field C, we obtain
H™5"(Home (Fo([D]), €)) = H" (Fo([D]))
so we get
H* ([D]) = 57 ([D'D)
O

5.5. Computation of Lee-Gornik homology. Recall that the decoration of a foam F' is an
assignment of a symmetric polynomial to every face of a foam F according to specific rules.

Definition 5.12 (Algebra of decorations). Let F' be a foam and f be its face. The algebra of
decorations Ay is an algebra that is generated by all possible decorations on the face f modulo
all decorations that make F' a zero map in ¥'Foamy.

Theorem 5.13. Let f be the foam facet with label a. The algebra of decorations is the direct sum
of one-dimensional algebras indexed by the subsets of ¥ with cardinality a. In each summand,
we have a generator 14, which is an idempotent in Ay.

Proof. [26, Lemma 4.2], [5, Lemma 2.28]
]

We define an algebra associated to a foam F. Assume we have a web W and a foam F' from
W to W. Then the algebra Ap is generated by all possible decorations on the foam F modulo
the decorations that evaluate to zero under Fx..

Theorem 5.14. The algebra Ap can be written as a direct sum of one-dimensional summands.
The summands are in bijection with colorings of all facets by a subset of 3 as in Theorem 5.13,
satisfying the admissibility condition. Wi a M‘“’V& p@x%%&_ ?
Definition 5.15 (Karoubi envelope). Assume we have a category C. The Karoubi envelope of C'
is the category obtained by formally splitting all idempotents of C'. More precisely, the category
Kar(C) has objects as pairs (O, e) where O is an object in C' and e: O — O is an idempotent.
A morphism between (O,e) and (O’,¢e") is a map f € Mor(O,O") such that foe=¢'o f.

Consider the category Y'Foampy and consider the identity foam F on W. As mentioned in
Theorem 5.14, a decoration on F' induces a coloring on W.

Definition 5.16. The category Kar?(X/Foamy ) is the full subcategory of the Karoubi envelope
of ¥'Foampy whose ol)je_qfcsi_ are webs decorated by X'.
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Example 5.17. We depict any web W in KarO(E’ Foamy ) as a direct sum of its decorations:
W =>%(W,D)
D

where D runs through all admissible decorations.

Theorem 5.18. Let D be a diagram of a link with chain complez [ D]y, in Kar’(X'Foamy). In
the category KarO(E' Foamy ), the complex is isomorphic to the complex with trivial differentials.
Locally, we write:

o9 VARE AR -

|Al=a |BNA|=k
|B|=b

Proof. [5, Lemma 3.13], and [25, Lemma 5.9]

O

As we know, when we apply Fsy to [D]y,, we get the sl Lee homology. Therefore, we can
compute the Lee homology of labeled links with this formula.

Theorem 5.20. Let L be a link with labels equal to 1. The Lee homology of L is isomorphic to

CN*, Furthermore, for each map ® : {components of L} — {1,..., N}, we can assign a class

Ly € Leen(L) of homological degree
deg({y) = > k(¢ (a), 07 (b)) -

a#+b,a,be{l,....,n}
These classes generate Leen(L).

Proof. [8, Theorem 2] O

5.6. sly-homology for periodic links. In this section, we study group action on homology.

") For that, we take G = Z,,. We have a group action on R?xR by rotating about the axis (0,0) xR.
nyw ow

\ssume L ig a link in R? preserved by@ and disjoint from the rotation axis, and D is a periodic
i fagram of L. Y e S A s s /@"DWV“

5.6.1. Group actions on [D]]. We want to construct the Z,,-equivariant sly-homology of a
periodic link. For this, we need to prove:

e Existence of an action on [D]
e Equivariance of the evaluation functor F, implying the existence of a Z,,-action on
F([DT)

e Independence of the action on the diagram.

&
Eeﬁ]@ﬁ@m& Proposition 5.21. Assume we have a link diagram D. We have an action of Zn, on [D] by

fP/L(mL 1 (_(,“‘5

rotating resolution diagrams.

Proof. Fix a generator g € Z,,. For this generator g, we deﬁne@as a rotation . p o 7
- cobordism. We have the action of Z,, on D, and this action induces an action on Cube(D) '

enoted (g,I) — gI. Furthermore, we can define an action for D;; We have gD; = Dy, where}

g acts on Dy by rotation. Let pg;: Dy - Dy denote the foam realizing the rotation. We
need a sign assignment to construct an action on [[D]. The sign assignment needs to satisfy
some invariance property. We define the action of g on sign assignments via 4 — g4, where
g3(gl,gI") = 3(I,1"). The sign assignment g3 does not need to be equal to 5. But we must have
g3 — 3 = 0t for some 0-cochain t. Define G, 1 = (—1)t(1)pg’1 for any I € Cube(D). The map G
depends on ¢, but by Lemma 4.30, we know that for two different ¢; and to, we have t; =t3 +a
where a is constant. There are two options. Either we fix ¢ by requiring that ¢(0,...,0) =0, or
we emphasize the dependence of ¢ by writing G, = [[pg,t]]. Unless specified explicitly otherwise,
we adopt the first convention.

4
Vo

!
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We need to prove that if d is a differential on [D]], then dG, = G,d. Take resolutions I, 1’ €
Cube(D) such that I’ is an immediate successor of I. Let us have ¢ as the foam which gives
the component of the differential from Dy to D}. We have the following diagram:

7 7

COprpr ATt |

_1)?()
D[ ( ) pg,[ Dg[

(_1)"(1’1,)% (-1)7" l(_l)a(glygﬂ)gd)
_ P
Dy ——5 Dypr.

Here the vertical maps are differentials, and the horizontal maps are given by G, r and G, .
The foams p, 17 o ¢ and gopg 1 are isotopic. By the property 6t = g4 — 4, the diagram commutes.
This means G, is a chain map in Kom(SFoamy). Lastly, we need to prove that G, generates
an action of G. In other words, we need to show that (G,)™ = Id. For m = 2, we have

(Gg)*(Dy) = (—1)t(1)+t(91)pg,gl o pg.1- Now for general m, we have

)+ m-1y
g;n(DI) _ (_1)t( )+-+t(g ),Og7gm—11°Pg,gI°ng
pg,1 is basically rotation so when we apply this m times we will get the identity map.
i ocion Pggm=11© -0 Pggl © Pg.1 =1d-

Define t'(I) = t(I) +---+t(¢g"™ 1I). We have §(t') = §(t) +(tg) +---6(t(¢™ 1)) = gs -3+ g?s—gs +
-+ ¢™5 - g™ 5 = 0 by telescope sum. Since §(¢') = 0, we deduce that ¢’ is a constant function.
For I =(0,...,0), we have t/(I) = t(I) +---+t(g™ 1), but since (0,...,0) is fixed in any action,
we have t'(I) =0+--+0=0. As a result, we have G*(Dy) = Id. O

Remark 5.22. The proof that G, is the identity uses the fact that t(0,...,0) = 0. Another
choice, if m is odd, leads to an action such that ggg is minus the identity.

Proposition 5.23. Suppose D is a periodic diagram; then, the functor F extends to a Zy,-
equivariant functor with values in the category of graded Sy|[Zmy,]-modules that are free as Sy
modules.

Proof. Assume we have a web V and g € Z,,. We want to show that gF[[V] = F[[¢V] for that
firstly we show gF[[V] = F[gV]]. The web gW is obtained by rotating the web V. We have

JFIVl-) D SN{dN@}f\G D SN{dy@G)} Mo K <P

EHomSFoam}*V (Q’V)

For the functor F, since the degree is preserved by the group a

Te Mo gFIV]= Sn{dn(9G)} = D
- GeHomSFoam}rV (2,V) GeHomSFoam}«V (2,V)

s oedl
W(?Qah Mj O /e.\vu. 0,‘ 4@\[‘7 M\ZIQ"J’ 7 . . e g
Cotsaans, Sw{dn(G)) = ®  Snldv(g9G) P
GeHomSFoam?V(Q,V) GeHomSFoam;V(Q,V) 1 O CK'@M:ﬁ
Set A = gG, we have T
Sn{dn (g '9G)} = D Sn{dn(g7'A)}
GEHomSFoam}*v (in) AEHomSFoam}*V (@,gV)
) Sn{dn (g7 A)} = D Sn{dn(A)} = F[gV]

AEHomSFoam}fV (2,9V) AeHomSFoam}«V (2,9V)

— whidh o = T
By this equation, we conclude that F is Z,-equivariant:>For functor F, we need to show that
‘\ gI(V) = I(gV) for a web V. For F*and F, we have

/ Ggr(9F) = (gF 0 gF) = (F' o F) = ¢ (F)

bw 993/,&*’7 ’D\I\,D'bf wlbiod  ob-oot EL N Enla—
Onnl j/w,\{,\b;,w-—,, ?
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This means that gker¢p = ker ¢pgpr which implies gI(V') = I(gV). As we know, F(V) =
F(V)/I(V), since F is G-equivariant and gI(V) = I(gV) we deduce that F is G-equivariant

also. -~ OJ

im-equivariant diagrams of the same periodic link. By [21], they can
f equivariant Reidemeister moves, that is by moves that affect
example, an equivariant Reidemeister 1 move creates or destroys an

Suppose D1, Dy are tw.
be connected by a )
a Zpy-orbit of places.
orbit of loops.

Theorem 5.24. Suppose we have two different Z.,-equivalent m—periodic link diagrams D and
D’ of an m—periodic link L, then there is a chain homotopy equivalence between [[D]] and [D']]
in the category Kom(SFoamy) and induced quasi-isomorphism between F([D]) and F([D'])

in the category of Kom(Sn)[Zy,] modules. )
— — = (.U e e DQ/

Proof. We know that D and D’ are connected by equivariant Reidemeister moves. We need to
use the theorem below to prove Theorem 5.24. O

Theorem 5.25. Suppose we can obtain D' from D by a single equivariant Reidemeister move.
Then there exists a map ¢ : [D] — [D']] and a map F(¢) : F([D])) = F([D']]) where ¢ is
SN|[Zm,]-equivariant chain homotopy map and f(gzﬁ) is a_quasi-isomorphism_in the category of
complexes of SN[Zy,] modules.

[ S e ~ . At i %AKS’O
\‘3);(«!@."\ 2 N

Proof. We will prove this theorem later in Section 6 O

My
5.7. Equivariant sly-homology. As shown in Theorem 5.24, we have t e chain ¢
for Z(LD]) and F([D']]). We define the cohomology of F([D]) as a Sy[Zp,]-module and

denote this cohomology by RgN[Zm](L).

Proposition 5.26. The Sy[Z,]-module structure on KRS (L) induces a CN[Zpm]-module

structure on KRN (L) and Leey(L). The Lee-Gornik spectml sequence exists in the category of
finitely generated C[Z,,]-modules.

Proof. Suppose D and D’ are m-periodic link diagrams of L. We know that D and D’ are

related to each other with a sequence of equivariant Reidemeister moves. Hence, we have a

chain homotopy equivalence h : [D]] - [D']] in the category of complexes Sy-modules. By

Theorem 5.24, we have a quasi-isomorphism F(h) between F( [[D]]) and F([D']), and this
i —equivariant. ) Moo Ao we Mo - 7

Now choose ¥ a set of N complex numbers. We apply the ev™ evaluation functor. The

map hy, = ev>(h) is a chain homotopy equivalence between ev>(F([D])) and evZ(F([D'])).

Specifically, hy induces an isomorphism between cohomology spaces of evZ(F([D])) and

evz(}"([[D' Bt
Sincecev™ commutes with the Z,, action) hy is Z _equivariant. Hence [hx] is Zp, equivariant.
We deduce that the Z,, equivarian 1somopprh”§m of vector spaces is an isomorphism of C[Z,, ]

modules. In other words, hg s a qu351-1somorphlsm in the category of C[Z,,] modules.
Since we have a Z, action on F[D]), we have Zp-action on ev=(F([D'])). For any g € Zp,,
gev=(F([D'] = ev®(gF([D'])). This shows that we have a C[Z,,] structure on KR} (L) and

on Leey (L). 0. Lilg- Dﬁ QFL Q% oo Z - ecotmlat ] oplaa \,\m@w,é( O
Definition 5.27. Assume we have an m-periodic link. The equivariant Khovanov-Rozansky
sly-homology EKR?\}T is the group which inherits its C[Z,,] module structure from the action

of Zy, on KRy(L). Similarly, the equivariant Lee s[x- homology ELee’fV is the group Lee* with
its C[Zy,] module structure which comes from Z,, action on Leey (L).

We have a mirror property in link diagrams at this equivariant homologies also.

7, Alun

o Co-sec
D(V Yoo ao
S-S enaa?
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Proposition 5.28. Suppose L is the m-periodic link with its periodic link diagram D, and
suppose L' is the mirror image of L. Then for any k,r, there is a map of C[Z,]-modules

EKRY (L)  EKR™(L) /j%%]t@gy;@m
Proof. We already set an isomorphism in@{t’t}he level of vector spaces over C. Now we
need to show this isomorphism is Z,-equivariant. We have a Z,, action on Cube(D) and on Y ex [L@mw\
Cube(D'"). For g € Z,, we have (gI)" = gI'. Furthermore, taking a nirror of resolution"commutes
with the action. We have gD; = Dg; and gD}, = D/ 7. We define i : Fo([D]) - Fo([D']),
i(Fo(Dy)) = Fo(D%,). Now we show that ¢ map commutes with the group action. For g € Z,,

9i(Fo(Dr)) = Fo(Dy) = FolgDp) = Fo(Dyry)

Fo(Diyry) = Fo(Diyry) = i(Fo(Dgr)) = i(Fog(Dr)) = i(9Fo(Dr))
We have Fo([[D]]) as C[Z,]- module. Then obviously Fo([[D']]) has the same basis. On this
basis, we can write
®: Fo([D'])) » Homgyz, 1 (Fo([L]), ClZm])
where ® sends the basis of Fo([D']) to the dual basis of Fo([[D]]). This is an isomorphism.

With the choice of basis, the differential in the chain complex Fy([[D']]) is the transpose of
the differential on Fo([D]]). Actually, Homc(z,,1(Fo([D]), C[Zy]) has the same differential

as Fo([[D']]) so @ is actually an isomorphism of chain complexes. O

5.8. Decomposition of s[y-homology. We note that EKR?}T and ELeelj{[ are C[Z, ]-modules,
and we aim to decompose these modules.
Since the group algebra C[Z,,] is semisimple, we have a decomposition:

m—1

where (ngn denotes the §¥‘n—eigenspace of C[Zy,], and &, = exp(%) for j=0,1,...,m-1. We

express this decomposition using pairwise orthogonal idempotents, denoted as eg, e, ..., €m-1,
_ . el o
where eje, = d;pe;. Moreover, we have g.ej = {pe;, and
m—1
1= Z ej.
J=0

Similarly, we can decompose any C[Z,,] module M:
m—1
M = @ M&-’v;n,
1=0
where Mﬁ% :=¢; M is the ﬁn—eigenspace of M fori=0,1,...,m-1.

Theorem 5.29. For any finitely generated C|[Zy,]-module M, we have
HOH@Zm](Mggn’ M&@n) =0 I, WQ\W;Q- -
) o

unless j = k. — -

c

Proof. Assume we have a homomorphism & : M, e = M. .Then, for any morphism A: M — M,
we have

A
Mg » Mg

[= ]
Mg, —* Mg

AP = PA, e, AD = ¢, PA, orep® = e PA, 01, P = e, PA, 03P = PA, 0, P = Poj, from here
we deduce o, = 0, which means k£ = j. We write the third equality above because we have
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Aey, = ope;, and for the fourth equation e behaves like Id because the projection of M, i to itself
is an identity. Similarly, for the fifth equation, e is again an identity. For the smth equatlon
we know A behaves like multiplication on the eigenspace ng , S0 we can write o; instead of
A. O

Similarly, we can apply this decomposition to Sy[Z,], as Sy is a ring of complex polynomials.
For a chosen generator g, we have:

L] = EBSN,g;'n, SN,g;'n = ;SN[ Zm],

where Sy is the ideal consisting of ¢ . Consequently, for any finitely generated Sy[Z,,]
module M, we have the decomposition:

m—1
M = @ Mfl 5
=0 "
where My; :=e;M. Moreover, for any finitely generated Sy[Z;,] module M, we have:

HOmc[Zm](ng ’Mffn) =0
unless j = k.
Now assume we have an m-periodic link diagram D. The Sy-equivariant Khovanov-Rozansky

homology of D admits a decomposition into the eigenspaces of the action Z,,:
m—1
r k,r
HS(F([P])) = EI% He (F(IPT))-
In particular, we have a decomposition at the level of the cochain complex:
m—1
F(p1) = EI%(Q%([[D]]))-

We can continue the decomposition by grouping ¢ < m such that we will have another com-
position. Namely, for any d dividing m, we define

M, = @ Mei = GB Mg; )
gcd(g,s;r;)im/d gcdofz,(ggzl

According to this decomposition, we can write

(5.30) EKRY" (L) = @ EKRY" (L, d).
dlm

Here also, we have a definition for every d dM r—(/@/{\ﬂ Q@@Mﬂ R

EKRy *@7 HomC{—(/(C[ mla EKRY (L)) 2 H** (Homg(z, 1(C[Zm]4, Cy ™ (L)) - %)::\);,m
L i

We have this isomorphism because C[Z,,] is semisimple, and so Ex‘c(C (M, N) =0 for i >0 for 4 o

any C[Z,,]-modules M, N. We write a similar decomposition for Lee homology We know that

LeeX (L) depends only on the linking numbers of components of L. Since ELee%; (L) depends art”

on the action on LeelfV(L), we need to understand the action on components of L. O (; 5“39 ;
Recall that Lee]fV(L) was generated by classes [, where 9 : {components of L} - {1,...,N}

is any coloring. Z,, acts on S% preserving L and acts on the components of L. Specifically, there

exists an action g € Z,, on the set of all colorings of components of L. We denote this action

(g,1) - g1p. We call an order of coloring the minimum number i such that g’y = 4 for all g. We

denote the order of coloring as 6(1)). We can see I, as a vector, and we can see ELeek; (L,0(1))

as an eigenspace which is generated by the coloring with the order (). As a result, we have
the decomposition:

ELeeh (L) = @ ELeek (L, d).
dlm
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Lemma 5.31. Suppose the group Z,, acts trivially on the components of an unlabeled L. Then,
ELeeX (L, d) is trivial unless d =1.

Proof. Since d =1, there are no other components in the decomposition. O

6. PROOF OF

@ Thooreen .25 7

Proof. In this proof, we have G = Z,,, which acts on R? by rotating the angle e2™/™. Without = A‘g’zt
loss of generality, we assume that D’ has no fewer crossings than D. We construct ¢ as a family 2% ="
of foams ¢r ; for (I,.J) c Cube(D) x Cube(D’) and signs #(I,J) so that the component of ¢

from ¢ to ¢ s is (—1)‘5(17‘])(;517}
We need to deal with two problems: a geometric one and an algebraic one.

Q;(?&{M,\.\, o Geometrical problem: The group G acts on Cube(D) and on Cube(D’). The action is
/——’i—fhe permutation of crossings.“We need to form foams ¢ 1,7 such that ¢4 4 is isotopic to
Wiy Mt foam g¢; ; between gD and gD .
2 e Algebraical problem: We need to show that the sign assignment on D to a
@%Q&M . good sign assignment on D’. Specifically, we need to show that the following diagram
commutes.

_1)?(H)
_D[ ( ) pg,I Dg[

(6.1) (_1)¢(1,J)¢ul l/(—l)d(gl’g‘])q)gl,gJ
(_1){’(J)p/ J
4 9, A

where t is the cochain on SCube(D) defined by the property dt = 5 — gs. We give a proof in
three steps:

o We prove all details for a positive Reidemeister 1 move for G = Zo;
o We prove the algebra part of the Reidemeister 1 move for G = Zy,;
o We discuss the algebra part of a Reidemeister 2a move and G = Zg; —> wﬂwé/ mek Z,

The cases Reidemeister 2b and negative Reidemeister 1 move are direct consequences of what we
prove. Regarding the Reidemeister 3 move, it is the easiest one because the number of crossings

does not change, and the sign assignment on D induces the same assignment on D' [
OMDJ,\' % v & A -

7 i 6.1. Positive Reidemeister move, Z,, action for general/fWe have a diagram D', which
. is the diagram obtained by applying two times Reidemeister 1 moves to diagram D, denoted

by D’ = D{pp). Furthermore, we have [[D]] = D()7) and the diagram D with one Reidemeister
move applied to one crossing is denoted by D(J) and for the other crossing, it is denoted by
D(p?Y). We want to prove that [D']] ~ [D].

For the cochain complex [D({p7)] we have

[D@))] = {0~ [DG))] > [DE))] - 0},

and for [D()%)] we have
[DGP)] = {0~ [D0%e)] > [DOP)] — 0},

In terms of Cube notation, we have relations

(6.2) Cube(D({0%)) = Cube(D()))) x {0,1}?
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Cube(D)) = U Cube(DOT)) x {(0,4)}
Cube(D))) = U Cube(DI))) x (2. 0)).

Here on the right side of the equation, we label extra crossing points by {0,1} and {0,z}, {z,0}.
We split the cochain complex [D{p)]. Namely, we have

/[[D(DM]]
0 —— [D))] /[[DOD?)H] —0
[DOP)]
We have the following maps corresponding to the non-equivariant Reidemeister move:
¢-:[DON)] - [DOP)] ¢*:[DOP)] ~ [D{P)]
¢*:[DON] ~ (D)) ]] ¢":[Do))] - [D{op)]
With these maps, we have the following diagram in Kom(SFoam y)
0)
(DO
% \ﬁ
D g
(6:3) [DOP)] ’ [DGN)]
¢2
\ %
(D601, | Lo ot o
§ 0 eardlows
g -

Here the blue arrows mean g actio e cochain complex. For example, the blue arrow in
the middle means a (80-degree rotation of diagram D(){). In order to understand this diagram
better, we specify to a single resolution I of D.

Lemma 6.4. For any I € Cube(D), the diagram below is commutative in SFoamy .

DOY)1 o Zinnnny DO Vgr

lczs} lqs?

Pg,(1,0)

(6.5) D(P) 10y ~~~ D)) (g1,0)

lﬁm) l‘i’?z,t))

Pg,(I,0,
D{pP) (1,00 28D DR (g1,0,0)-

In this diagram, the map pg s is the foam from the diagram with resolution in I to the diagram
with resolution in gI. We have a similar definition for p, (o) and py (1,0,0)-
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Proof. For the above square, we have pg (1) © d)}. This foam arises from py (1) when we €
the upper side of it. On the other hand, for qb?} o pg,1 we have the foam where firstly we rotate
the lower part of ¢} and apply gb? These foams are isotopic rel boundary, so they are equivalent
in the SFoampy category. The second square is similar, which means that the big square is
commutative. This proves the geometric part of our proof. O

For th@we fix the sign assignment 5 on D and take g € Zo as a generator
from Zy. By Lemma 4.30, we have g4 = 5 + §t where ¢ is the 0-cochain on SCube(D) with the
property t(0,...,0) = 0. We can extend s to the diagram D({}) in two ways. The first one is
extending 4 on the diagram D(){) and then to D{jo). The second one is extending s on the
diagram D(0)) and then to D({p). We have a relation between these sign assignments. We
have s on D and 41 on D()0)). Write 42 = g41, J2 is the sign assignment on D()jo). We extend
31 on D{pY) by Lemma 4.34 we denote the new sign assignment 43. Similarly, we can extend 4
on D(OP), and denote this new sign assignment 44. We have two sign assignments on D{Jop).
For these two assignments, there exists 7’ such that we have 33(I,1") — 34(I1,I") =t'(I) - t'(I")
for any 1,1’ € Cube(D(pp)) where I’ is an immediate successor of I.

Lemma 6.6. (a) We have g33 = 34.
(b) If ¢ is a O-cochain on SCube(D) such that 3 — g3 = 07, then the 0-cochain 7' on
SCube(D({Op)) defined by

2'((1,2,y)) =2y +¢(I) € Fy,
satisfies 33 — 34 = 0Z'.

Proof. Let I{, I, € Cube(D(o0)), where I} is an immediate successor of I{. The action of g
switches the last two crossings. We write I} = (I, z,yx) for k = 1,2 with I € Cube(D),

Tk, Yk € {07 1}
For the action g, we have gI, = (gIk, yx, xx). By Lemma 4.34, we extend 43 and have

0 if ya=1y1 +1
33((L1,21,y1), (L2, 22,y2)) = .
( h ) {41((11,$1),(I2,$2))+y1 if y1 = y2.
Similarly,

0 ifl‘gzl‘l-i-l

J I ) Ia ) = :
(21,01, (2, 22,92)) {dz((h,yl),(b,yz)ﬂxl if 21 = 2.

More precisely,

0 Yy2=y1+1

(6.7) 33((I1,21,91), (T2, 72, 92)) = {11 y1 =y2 and z9 = 21 + 1
s(I1,I)+x1+y1 y1 =y and 1 = 29.

and
0 To=x1+1

(6.8) 3a((I1,21,51), (I2,22,92)) = { 1 x1=r2 and yp = y1 +1
g3(I1, 1) +x1+y1 y1 =y2 and 21 = x9.

By equations 6.7 and 6.8, we have g43 = 44. [l

For the second part of the proof, we observe
33((I1,z1,91), (12,2, 92)) = 34((J1, 21, 91), (I2, 22, y2)) =
(6.9) T r1 =22 and ya =y + 1

=\Y1 y1=y2 and x2 =x1 +1

3(I1,12) —gs(11,I2) x1 =22, y1 =Y.
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In this equation, we think of possible variation. Namely, we cannot have the case xo = x1 + 1
and y2 = y1 + 1. In addition to this equation with the definition Z'(I,z,y) = Z(I) + xy, we have:

(6.10) 6" =¢' (I, z1,01) — 4" (L2, 22, y2) = 21y1 + x2y2 + £(11) — £(L2).

We want to show 43 — 94 = z1y1 + oy + Z(I[1) — Z(I3). We have two cases

H+

e First case I} = Iy: Note that I} is an immediate successor of I. Since we have I
I}, we cannot have z; = zo and y; = y2 so we can have (z1,y1) = (0,0), (22, y2)
(071)7 (Jfl’yl) = (070)7('7;271/2) = (170)7 (331>y1) = (071)7('%'273/2) = (171) or ($1,y1)
(1,0), (z2,y2) = (1,1). For the cases where we have (x2,y2) = (1,1), 43— 344 = 1 and
x1y1 + x2y2 + £ (I1) — ¢(I2) = 1. For the cases where we have (x1,y1) = (0,0), 43 -34=0
and T1Y1 + T2y2 + f([l) - ‘f(]g) =0.
e [1 # I: Note that we study in Z,. In this case, we have x1 = 22 and y; = y2 because
I is an immediate successor of I]. We have 43— 34 = 3 — g3 = 6t = t(I1) - t(l2) =
T1Y1 +X2Yo + f(]l) - Z‘(IQ).
Continuing the proof of the algebraic part, we claim that the following diagram is commutative
in Kom(SFoamy).

[D0)), 5]~~~y D@9y, ]

e s
(6.11) [DO®), 1] [D(0)), 4]
l¢2 l¢4
[[pg:?']
[D(0), 33]] ~~~Fnrnns [D{O), 4]
Note that py, ¢ are the same as defined in Lemma 6.4. For any I € Cr(D), we show in Lemma 6.4
that the diagram is commutative in SFoam. We can generalize it in Kom(SFoam) without a
sign. We just need to show the sign that makes no problem for commutativity. By the definition
of G, 1, the sign we get from Dy starting with $? o0 ¢! and then through (pg,2") is (-1)? ((1,0,0)),
Similarly, when we start with [pg,Z] and then by #* o ¢® gives the sign of (-1)?(D). By the
definition of ¢/, (1) ((1.0.0)) = (_1)?()), O

Lemma 6.12. The compositions ¢* o $3 and ¢* o ¢! are equal as maps in Kom(SFoamy).

Proof. For any I € Cr(D), the map qb‘} ° gb? is given by the foams that start with a Reidemeister
move for the first crossing and then for the second crossing, i.e.,)) - %) —%%. Similarly, the
other foam d)? o gb} is given by the foams that start with a Reidemeister move for the second
crossing and then for the first crossing, i.e.,)) =% —%J. All the foams ¢1,...,¢7 are product
foams of the identity except for the relevant crossings. O

Denote ¢ as the composition (;5‘} o qﬁ? = gZ)% o d)}. It is induced by a composition of individ-
ual, non-equivariant Reidemeister moves. Specifically, ¢ is a (nonequivariant) chain homotopy
equivalence. The horizontal maps in 6.11 are group actions on [D]] and [D{P)]. The com-
mutativity of 6.11 implies that ¢ commutes with the group action. This proves the first part of
5.25 for the specific case of Reidemeister move 1 and Zs.

For the proof of the second part, we apply the evaluation functor F from the category
Kom(SFoamy) to the category Kom(Symy ). The map F(¢): F([D]) - F([D']) is a chain
homotopy equivalence. More specifically, it is a quasi-isomorphism in Kom(Sym ). By Propo-
sition 5.23, Z,, acts on F([[D]]) and on F([D’]). By 6.11 and 6.12, F(¢) commutes with the
Ly action. A Zp-equivariant quasi-isomorphism is a quasi-isomorphism in Kom(Symy[Z,]).

Remark 6.13. If ¢ is a chain homotopy equivalence, then ¢ — Id = dh + hd for some map h.
However, even if ¢ is equivariant, we cannot claim that h is equivariant. We only prove that , ..

/CGW_ M‘m‘m%, 7
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6.2. Positive Reidemeister one move, Z,, action for general m. This step is similar to
the previous one. Let D be a periodic link diagram, and D’ be the link diagram obtained by
applying the Reidemesiter one move. We again identify Cube(D’) = Cube(D) x {0,1}". For
any I € Cr(D) and a generator g € Z,,, with x1,22,...,2, € {0,1}, we have

g(I,x1, 29, ..., xm) = (9, 22,23, ..., T, T1)

We define two maps cb? and quB, qﬁ‘f‘ =¢T o <;5§”‘1 0-+0 (ﬁ} where (ﬁ is the foam that realizes the
i-th Reidemeister move as in Figure 7. For any I € Cr(D), we have the following diagram.

Do.'.7>I—MA/\AMAAA/\/\//)\g/’\£\A/WWWV\A/V>D<')_._l)>gI
(6.14) lqg;* lwf
Pg.(1,0,...,
D(‘Z) ...7\))([’0,_“70) LS Dcp "'%)(gI,O,...,O)a

This diagram is a generalization of the diagram (6.5). We prove the geometric part of this
step as in the proof of step 1. We omit details. We pass to the algebraic part directly. Take
4 sign assignment for the diagram D, and let ¢ be such that s — gs = 6Z. We get the sign
assignment s’ on Cube(D’) by Lemma 4.34.

Lemma 6.15. Assume Ij,I; € Cube(D") and I; is an immediate successor of I]. Write I] =
(I, 21, yxm), I = (11,91, - - -, Ym) where Iy, Iy € Cube(D). If xy # yy for some k, then
3'(I1,15) = Tpyy + -+ + Ty,
If xp. = yi for all k, then
é’(]{,[é) =1+ -+ Ty + d([l,lg).

Proof. Define the sign assignment 4; on diagram D], which is the sign assignment obtained after
the first [ Reidemeister moves. Assume xj, # y for some k. By 4.34, we have:

d;c((Ilvxlv" .,.’L'k), (I27y17” 7yk))) = 0.

We continue to apply inductively for j =k +1,...,m, and by either 4.34 (if z; = 0) or (4.35) (if
zj=1), we get

J%((Il,xl, RN l’k), (Ig,yl, ey yk))) =Tpyl t o+ 5
This leads to the result 4'(I{,I}) = g1 + -+ + &y, Similarly, if we take 1 = y1,...,Zm = Ym,
then we can again apply induction. If x; = y; = 0 by 4.34, we have the result; if x; = y; = 1, then
by (4.35), we have the result. O

We have a generalization of Lemma 6.6.

Lemma 6.16. Assume 3—g3 = 6Z. Define the 0-cochain on'S Cube(D') defined by Z'(I,21,...,2Zm) =

£(I) +x1(xg + -+ + x4, ). Then for any I, 15 € Cube(D") where I is an immediate successor of
I, we have

(6.17) 3'(I1,13) - ' (g11, 915) = ' (11) - Z(I3).
Proof. We have two cases:
e Suppose I1 = Iy and z; = y; except for k, 1 =0, and y; = 1. By Lemma 6.15, we have
(I, 1)) = Tpypr + o + 2.
In addition to that, we have
3'(g1, 913) = g1+ + T,
Thus,

T1 k>1

5'(I1,15) - 8" (g1}, gI}) =
(11, I3) (911, 913) {x2+---+$m k=1.
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On the other hand, for k > 1, we have
/(1) - 2" () =2(I]) + 21 (2o + -+ 2) = (Z(15) + @1 (22 + + + Ty + 1)) = 7.
For k=1, we have
/(1) - 2"(Iy) = 2(I]) + 21 (2o + -+ ) = (Z(I5) + (w1 + 1) (22 + -+ Typ)) = T + o+ + Ty
e Suppose [1 # I, then x; =y for all k. Thus, we have
3'(I1,13) = 9" (911, 913) = 3(I1, I2) - 3(g11, gI2).
3(I1, I2) = 3(gl, gl2) = Z(11) - 2 (12)
(1)) =z (2o + -+ 20 — (2 (1) =21 (w2 + -+ 1)) = 2" (I7) = 2/ (13).

The remaining part of the step is similar to part m = 2. In short, we repeat the proof of Lemma
6.12 to show that (bfl and (b? induce the same map

®&:[DY,... )] > [Dfo, ... n)].

The corresponding diagram of 6.11 is

[I:DO,...J),&]] 'MA/\/\[/[\[/)\g\;{/]\]/VVW-} [I:D()?"'?l))?'j]]

o e
[[,0( 7{,]]
[[DC]‘)? cet 7?‘)7 él)]] M [[D<7‘)a s 7?\)>,gd’]].
The same argument as in the previous step implies that this diagram is commutative. Specif-
ically, F(¢) induces a Z,,-equivariant chain homotopy equivalence, which means F(¢) is a
quasi-isomorphism in the category Kom(Symy[Z,]). O

6.3. Step 3: Reidemeister 2a move, Zy action. Let D be a periodic link diagram, and D’
be the link diagram obtained by applying the equivariant Reidemesiter 2a move. We have the
identification
Cube(D") = Cube(D) x {0,1} x {-1,0} x {0,1} x {-1,0}.
For I € Cr(D), denote
I =(1,0,0,0,0), Iy=(1,1,-1,0,0), I5=(I[,0,0,1,-1), Iy=(I,1,-1,1,-1).

There are four different foams for Iy, I}, I5, Ij. These foams are part of the I-th component of
the map ¢:[[D] - [D']], where we define ¢y := ¢ 1+ dpro+dr3+ ¢ra.
These four foams are as follows:
e ¢;,1 is the identity foam;
e @1 is the foam from Figure 8 at the first place where the Reidemeister move is applied,
followed by the identity foam;
e ¢;3 is the identity foam followed by the foam from Figure 8 for the second Reidemeister
move;
e ¢r4 is the foam from Figure 8 for the first Reidemeister 2a move, followed by the foam
from Figure 8 for the second move.

We have g € Zs, where the action involves switching pairs of points. For example, gl = I3
because g sends (1,-1) to (0,0) and (0,0) to (1,-1). Therefore, we have

(6.18) 9P11 = Pg1,1, 9P1.2 = Gg1.3, 9PI1,3 = P12, JP1.4 = Pyl .4-

This implies g¢; = ¢gr. Thus, g commutes with ®:[D]] - [D’']] up to sign. This proves the
geometric part of step 3.

Let s be a sign assignment on diagram D. We extend 4 to a sign assignment 4’ on D’ by
adding crossings and applying Lemma 4.34. We add z, then x2 and z3,z4. The analogy of
Lemma 6.6 is as follows:
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Lemma 6.19. Assume 3 — g3 = 0¢. Define the 0-cochain on SCube(D") as ¢'(I,x1,...,24) =
Z(I)+ (z1 +x2)(x3 +x4). Then, 3" —gs' =90¢'.

Proof. Take I7, I}, € Cube(D") such that I} is an immediate successor of I]. Write I = (15, x1s, T2s, X35, T4s)-
By Lemma 6.15, we have

Tiz11+ -+ Ti1 * T
Iz 7+1,1 41 71 72
3'(I1, 1) :{

3(1,I5) xj1 = xjo for all j.
We know that if I’ = (I,x1,...,24)) € Cube(D’), then gI’ = (gI,x3,24,21,22). Thus, we have

31 +T41 T11 F T12 O X21 # T22
! /A /4 14 /4 !
3'(I1,13) = 3" (gly, 913) = Y x11 + 221 x31 # T32 O T41 * T42
{(Il)—{(fg) l’jlzl’jg fOI‘ all j

The proof is the same as in Lemma 6.16. In order to finish the proof of 5.25 at step 3, consider
the diagram:

D] 220y (D, 4]

o o
2
[[D, j’]] -MW} [[D7gj,]]
We have already showed that the diagram above is commutative up to sign, and now by
Lemma 6.19, we conclude that this diagram is commutative. This shows that ® is Z,,-equivariant.
By Theorem 4.31, we know that @ is a chain homotopy equivalence. Similarly to Steps 1 and 2,
we conclude that F(®) is a quasi-isomorphism in the Kom(Sym y[Z,,]) category. O

g 4 W, The proofs of the Reidemeister move _w@nd the Reidemeister move 2b are anal-

ogous, so we do not provide them again. For the_case of the Reidemeister 3 move, we have a
&/%yu natural bijection between crossings of D and D’, so we do not need to extend our sign assignment.
Only a geometric part is needed, but it is similar to Step 1; we omit the details.

7. THE SKEIN SPECTRAL SEQUENCE

7.1. Review of the Ind and Res Functors. We review the Ind and Res functors before
constructing the spectral sequence. For a finite group G, we denote BG as the category with
a single object * and Hompg(*,*) = G. If B is an additive category, we denote by B[G] =
Fun(BG, B) the category of G-objects in B. For a subgroup H of G, we have a canonical
inclusion of categories BH ¢ BG, leading to the restriction functor Res%:B[G] —» B[H]. We
also have the functor Ind%: B[H] — B[G], the biadjoint functor of Res$. For C' € B[H] and
D € B[G], we have

(7.1) Hompg)(Indf;(C), D) = Homg4)(C, Resf (D)),

Hompg((C, nd% (D)) = Hompy (Res% (C), D).

Assuming G/H = {g1H, g2H, ..., g H}, then Ind% (C) can be written as the direct sum

k
(7.2) - nd(C) = S

;

For g € G, we can write g = g;h. Thig can/be unique; otherwise, g; will be g;. We have
g-(=):9;C > giC, x> (h'g; hg;) - =,

where gy, = g; - gj - h', with A’ € H and g, representing the coset of g; - g;.
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FI1GURE 10. The k-smoothing of a positive crossing, for 0 < k < b < a. In order
to obtain the k-smoothing of a negative crossing, reflect the above picture about
the vertical line and switch labels.

7.2. Construction of the Spectral Sequence. The initial construction will be done for the
general link diagram, and later, we will focus on periodic link diagrams. Let D be a labeled link
diagram, where each link component is labeled by c € {1,2,... N}. Recall that Cr(D) is the set
of crossings. S>uwhket o a;, by 7 el it

We define the extended cube of re_soT(ions Cube® (D). For a crossing i € Cr(D), we have
C; = {0,...,¢;} where ¢; = min(ay,b;) if the crossing is positive, and C; = {-¢;,...0} if the
crossing is negative. We extend Cj by the definition C; = C; U {}. Cube*(D) is the product of
the éz

For I € Cube*(D), we define the resolution diagram D;. 1If the i-th crossing in I is equal
to *, we do not resolve the crossing. Otherwise, we resolve the crossing as in the standard
case. The resolutions are depicted in Figure 10, see also the skein relation in Figure 4. For
I € Cube*, we define supp I to be the set of crossings i € Cr(D) where I(3) # *. If I,.J € Cube*
and supp In supp J = @, we define I U J to be the resolution such that

I(i) iesupp T
(Tv ) (i)=4{J() iesupp J

* otherwise.

For I with support X, we define [D7] as a cochain complex generated by those D; for which I
and I coincide on X. Furthermore, the differential is given by foams of Figure 6 with the sign

assignment 47 inherited from the sign assignment s on D. We also define the degree for I as

degT = > I().

iesupp T
For a subset X c Cr(D), we let
A(X) = {T e Cube™(D):supp T = X}, Ap(X) = {T € A(X):degT = k}

Let X c Cr(D) be a subset of positive crossings (for negative subset discussion will be similar).
Set Y = Cr(D) - X. We let Cube(X), Cube(Y) be the cubes of resolution for X and Y.
In other words, we have Cube(X) = [l;ex Ci, Cube(Y) = [y Ci- For Cube(D) we have
Cube(D) = Cube(X)xCube(Y'). For I € Cube(D), we denote Ix, Iy its projections on Cube(X)
and on Cube(Y') respectively.

We introduce one more piece of notation. Assume we have I € Cube(D). Let I € Cube® (D)
be gained by taking Iy and extending it by putting * for all crossings in Y. This means that

crossings in X are already resolved so D; has a set of crossings Y. This means (D;)r, = Dy.
We can write [[D]] as the following bicomplex.

(7.3) 0> @ [D{g VI 20 @y [D{gtNV-DIXy 2
TeAo(X) TeA:(X)

Here ¢ is the grading shift. The differentials d; are defined as follows. For I, J € Cube(D)
where J is an immediate successor of I. We have two cases
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e Assume Iy = Jx, the part of the differential on [D]] from I to J contributes to the
differential on [D;]]. It goes from (D})r, to (D;)y, with the sign (-1)*5D) | We call
this differential part the internal differential or horizontal differential.

e Assume Iy = Jy, we set s = degT the part of the differential on [D] that contributes
to the differential dy going from [Dz] to [D7]. In particular, it goes from (D;)r,
to (Dj)j, with sign 4(7,.J). We call this differential part the external differential or
vertical differential.

The sum of these two differentials is equal to the differential on [D]. Therefore, we have the
following result.

Lemma 7.4. The total complex (7.3) is equal to [ D]].

In general, a bicomplex leads to a spectral sequence. To apply this@e, we apply
functor F' to (7.3) to work in an Abelian category. To be more precise, we define the triply

graded bicomplex
M(D,X)" = @ F([DA) LN,
TeAR(X)
Here ¢ is the homology grading and ¢ is the quantum grading. If X is a subset of negative
crossings, we define

M(D, XM= @ F(IDD{a .
In the bicomplex M (D, X)*%", we have an internal (horizontal) differential and the external
(vertical) differential going from M (D, X)**" to M(D, X)L,

Lemma 7.5. The cohomology of the total complex Tot™ "M (D, X) = @®p.o-r M (D, X)FE s the
Sy -valued Khovanov-Rozansky homology of the link.

Proof. Firstly, focus on the horizontal differentials; if we do not consider grading shifts, the
cohomology of the complex M (D, X )k 4l s equal to the sum of Khovanov- Rozansky homologies
of webs D;. We can say that by 7.4 we have a spectral sequence, Whose E! page is the cohomol-

homology of D. 0

Assume that D is a Z,, periodic link diagram. Our primary focus will be on the case when
X is an orbit of crossings. In this case, Z,, acts on Cr(D) and it preserves X. For any k, this
action can be induced on Ay(X). For I € Ai(X), define the isotropy group of I Iso(T) = {g €
Zm:Tog=T}. For any djm define

(7.6) ANX) = {Te Ap(X):Iso(T) = Zg}

and denote by EZ(X) the quotient of A¢(X) by the action of Z,. Notice that for Ie AY(X), the
diagram Dy is d-periodic. Furthermore, for any g € G with the group action on [D]], we have a
map G, 7 [ Dz, 371 = [D,7 3,7, where 37 and 3 7 denote restrictions of the sign assignment 3
on Cube(D) to Cube(D7) and Cube(D ), respectively.

Lemma 7.4 can be generalized for an equivariant setting. Assume X is a set of crossings in
which either all crossings in X are positive or all crossings in X are negative and where X is
Ly, invariant. Note that D; is d-periodic diagram for any Ie Ag(X ). We have the natural
Zg-action on [D7]] and F([D7]]) as defined in Proposition 5.21. We define the equivariant
version of the bicomplex M (D, X)**" by
(7.7)

Dk O~
Dk O+

Ind%;” (—7:( [D7I){g X014k} @ Cs(m,d,f)) X is positive,
Ind%’d" (f([[DT]]){qu\b(N—b)—k} ® Cs(m,d,f)) X is negative.

EM(D,X)k’l’. _ TeAl 1(X)

TeAL(X)

Oy ]
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where s(m,d, T) € Fa:
(7.8) s(m,d, T) =2(Ip) +Z(glp) + -+ i‘(gm/d_llg)

Here, we take the tensor product over the ring C[Z4] and we think Sym y[Zg]-module F([IH]) as
a right C[Z4]-module with the standard action of C on Symp. On the one-dimensional complex
vector space C;, Zg acts either trivially if j = 0 or it acts as the sign action, i.e., the generator of Zg

acts on C by multiplication by -1, if j = 1. Lately here, Iy = Tv Jy for Jo = (0,...,0) € Cube(D7)
and Z a 0-cochain on SCube(D) satisfying g4 — 4 = 97, £((0,...,0)) = 0.
Lemma 7.9. We have an isomorphism EM(D, X) 2 M (D, X) as complexes of Sn-modules.

Proof. Since we need to show they are isomorphic as S y-modules, we do not care about the action
of C(,, 47)- Enough to show that both sides have the same F/( [D+]). For any I € Aj(X), this

T must be in one of A%(X) for dk. Furthermore, we can get this T from J € ﬁZ(X ) such that
g7 =T where g € Zy,/Zq. For any T for T € Ap(X), we have F([D7] = F([D,71) for J EZZ(X)
and for g € Zy,[Zq. O

Lemma 7.10. We have an isomorphism between the total complexr of EM(D,X) = M(D, X)
as complexes of SN[Zm ]-modules.

Proof. By Lemma 7.9, we need to show that the isomorphism between EM(D, X) and F([D]])
as Sy-modules is Zp,-equivariant. Recall that we have g as a generator of Z,, acting on the
plane by rotation by the angle %r Fix a sign assignment s on D, and let Z be the 0-cochain
satisfying 0¢ = g3 — 4, ¢((0,...,0)) = 0. For a divisor d of m set h = g™ to be a generator
of Zg € Zy,. Take T € ZZ(X ) and consider the partial resolution D7. Define 4 to be the sign
assignment on Cube(Dz), defined as 44(J, J') = 3(TvJ,TvJ"). Since Dz is a d-periodic diagram,
by Proposition 5.21 we can define an action of Z; on [D7]]. Specifically, we let Z7 be the 0-
cochain on Cube(D7) such that hs;— s7= 77 and Z240,...,0) = 0. Corresponding to the action
of h (i.e. rotation by the angle 27“) we have the map Hy: [D7]] - [D7])-

There are two maps that are induced by the action of h on [ D7]]. The external one is (G,)™/,
where G, is the action constructed in Proposition 5.21 for [D]]. The other map is Hjy. Since
these two maps are obtained from the same sets of foams, these two maps are actually equal up
to a sign choice. To complete the proof of Lemma 7.10, we need to compare Z+(.J) and 7 (T v )
for J € Cube(D7). We know for any two 0-cochains 71,73 such that hs;—37= 071 = 0Z2. We can
say J = 73(J) and J — ¢ (Tv J) are either equal or differ by an overall sign. To understand this
sign issue, let Jo = (0,...,0) € Cube(D7), set Iy = JovI. Suppose that pg: D1, = Dy, is the foam
realizing the rotation of Dy, by g € Z, i.e., the Ip-th component of G, is equal to (—1){(10);)9.
Let Ph = pgm/d—llo O =0 0gly © PIy and fh(Io) = f(]o) + {(glo) + e+ f(gm/d_lf[)), then the I[)—th
component of Hy, is equal to (-1)?10) p, - By the proof of Proposition 5.21, 77(0,...,0) =0. In
other words, the Jy-th component of Hy, is equal to pp. Therefore s(m,d, T) =¢p. We conclude
by (7.8). O

Proposition 7.11 (Skein spectral sequence). Let D be an m = pt-periodic labeled link diagram,
with p an odd prime and ¢ > 1. Let X c Cr(D) be an orbit of crossings between an a-labeled
overstrand and a b-labeled understrand, where a > b. If 0 < u < € and X is a set of positive
crossings, we obtain, for any 1< s <|X|b, a spectral sequence with

(7.12) EYU(D.Xp ™) =@ @ BKRY (D s(u,s)) el XTI
PPk TeA; (D, X)
with 0 < k < p'b and
1 > f—u >
H(U,S):{ ) U_S, A('LL,S) :{(b(p )7 U_S,

p*~",  otherwise, pts, u< s,
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converging to EKR;\’;(D,pz_“). On the other hand, if X is the set of negative crossings, we
obtain a spectral sequence with

Ef:l,O(D’ X’pf—u) _ @ @ EKR;\’;(DT, IQ(U, S))El))\(u,s)tkq\X|b(N—b)—k7
Pk TeA ., (D, X)

where —p’b < k < 0.

Proof. We prove this proposition only in the positive case. Note that the total complex of
EM(D, X) is the complex of F([D]]) by Lemma 7.10. We will denote the singular specialization
of EM(D,X) by EMg(D,X). We fix 0 < u < ¢ and consider the bicomplex derived from
EM(D, X):
* — k,l,*
EMEL* (D, X, pt%) = Homeyz, ,1(C[Zye] -0, EMg ™" (D, X)).
On considering separately the internal (vertical) and the external (horizontal) differentials in
EM(D, X,p'~*), we obtain a spectral sequence of C[Z,, ]-modules converging to EKR (D, pi),
whose Fi-page is given by
EPY(D, X, p ") = HS (EMG" (D, X, p'™"), dvert)
= HomC[Zpg] (C[pr]pe‘% Hk’* (EMS7Z7*(D7 X)7 dvert))'

i.e., we take the vertical homology of EM(D, X, p*~*). The aim of the proof is to show that this
page is isomorphic to (7.12). Consider the decomposition of the group algebra C[Z,.]. Recall

from Section 5.8 that
(C[Zpl]plfu = @ (Cé-ze .
Osi<pz p
ged(i,pt)=p*
Observe that for any 0 < s < £ we have

Z Cq, s<u,
Resy. (Co, )=Co =~ =\C, | s>u
p gpsfu
Therefore,
P(p*")

z C <u,

(7.13) Res,” (C[Zy ) =1 L o, °="

» (C[Zps]zs_u, 5> u.

By the definition of EMy(D, X ), we obtain
Ey'*(D, X, p™") = Homgyg, ,)(C[Zye Ly, HY (EMG™ (D, X), dvert))
z _ _
=@ @ Homepg, (C[sz]pefu,lndzzi EKR(Dy)tk g X ”>+’f) :
p°lk TeA; (D, X)
Consider the right-hand side of the above equation:
Z _ _
Homgz ,| (C[Zpg]pe,u,lndz; EKR(Dy)tk g X0 b>+’f)

(7.1) Z ~ B
= Homgygz,,) (RGSZZi((C[sz]pe-u),EKR(DT)tkq [ XJb(N b>+k)

(7.13) | Homg(z z]((cgf(pé_u)’EKR(DT)tkq_|X|b(N_b)+k), s<u,
= p —s
Homegz ,1(C[Zp: P, EKR(D)trq XIPN-0tk) 55
P

_ [EKR**(D7, 1)@¢>(p£‘“)tkq7|X\b(N—b)+k, s<u
- EKR*’*(DTE ps—u)6!31!)473tk:q—|X|b(N—b)+k’7 s>

= EKR"" (D7 k(u, s))/\(u,s)tkq—|X|b(N—b)+k_
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The proposition follows. O

8. POLYNOMIAL INVARIANTS

8.1. Poincare polynomials of sly and Lee homology. First, we remind a common con-
struction.

Definition 8.1. Let L be a link. The LeeP  polynomial is

LeePy (L) = " dim¢ Gr" Leek (L)t*q",
k,r

where Gr" is the r-th graded part of the filtered Leey homology, and the Khovanov-Rozansky
polynomial KRP y(K) is the Poincaré polynomial of s[y-homology:

KRPy (L) = 3 t*¢" dime KRY (L).
k,r

For an m-periodic link, we modify the definition above and generalize the approach of [20].

Definition 8.2. Assume we have an m-periodic link L and let dlm. The equivariant Khovanov—
Rozansky polynomial, for sly-homology, is

(8.3) KRPy (L) = 3 t*¢" dime, EKRY " (L).
k,r
The equivariant Lee polynomial is:
LeePy (L) = > dimc, Gr" ELeef\}d(L)tqu,
k,r

We have the following relation between the Khovanov-Rozansky polynomial and the equi-
variant Khovanov-Rozansky polynomial.
(8.4) KRPx(L) = ) ¢(d) KRPy 4(L),

dlm

where ¢(d) = #{1 <i <d:ged(i,d) = 1} is Euler’s totient function.
We can compute Lee homology from Proposition 5.20. For the precise formula for the knot,
we refer to [12, Proposition 2.6]. Other references include [8,13,14,26,29].

Lemma 8.5. For any knot K, we have LeeP y(K) = q‘(”N(K)(q‘N+1 +q VB 1 N, where
sN(K) is the Lewark’s sy-invariant; see [12].

We have the following statement as a consequence of Lemma 5.31.

Lemma 8.6. If the action of Z,, on the components of L is trivial, then LeePy g4 is equal to
LeePy if d =1, and LeePy 4 is equal to 0 otherwise.

The following proposition shows the relation between polynomials KRP and LeeP. Its proof
is the same as in the Khovanov case, see [15, Proposition 2.17]. See also [6, Theorem 5.1]
and [12, Proposition 5.2].

Proposition 8.7. For a link L, there are polynomials Ry, Ra, ... with non-negative coefficients
such that

KRPy(L) = LeePn(L) + (1 + t¢*" )Ry + (1 + t¢g"™ )Ry + ... ..

Furthermore, for an m-periodic link L where djm, we have
KRPy4(L) = LeePy (L) + (1 +t¢*V)R{ + (1 + tg*" )Ry + . ..

for polynomials le, Rg, ... with non-negative coefficients.
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8.2. The Reshetikhin-Turaev RTy polynomials. We recall that for a link L, the HOM-
FLYPT polynomial X (a,b) is defined by its value on the unknot and skein relation.

(8.8) aXp,(a,b) —a ' Xp_(a,b) =bXp,(a,b),

where Lg is the 0 resolution, L, is the positive crossing, and L_ is the negative crossing.
Reshetikhin-Turaev is a specific case of the HOMFLYPT polynomial. For N > 0 Reshetikhin-
Turaev is

(8.9) RTn(q) = X(¢",q-q ")
The normalization of this polynomial is

N_ _-N
RT y (unknot) = q q_l .
q-4q

For N = 0, RTp is the Alexander polynomial, and for N = 1, RT} = 1, and for N = 2, we
have the Jones polynomial which categorifies Khovanov homology. For N > 2, we call these

polynomials as sly polynomials of L. In [10,11] it was proved that sly homology categorifies
the sl polynomial.

Lemma 8.10. For a link L and for KRﬁ}T(L) its sl -homology, we have

RTy(L) = Y (-1)F¢" dim KR (L) = KRPy |=—1.
k,r

The skein relation for RTN polynomial is a particular version of the skein relation of the HOM-
FLYPT polynomial.

(8.11) qNX—q‘NX:(q—Q‘I)j <

8.3. Difference polynomials. Fix m = p' for a prime p, and let D be an m-periodic diagram
of an m-periodic link L. The sl homology of L decomposes as in (5.30). We have

RTn,; = KRPy i |t=—1,

where KRPy 4 is as in (8.3).
We have the corollary that will be used in the future.

Corollary 8.12. Assume L is a p"™ periodic link for the prime p, and assume L' is its mirror;
then RTn,;(L)(q) = RTn;(L') (¢ 7).

Proof. We know from Proposition 5.28 we have an isomorphism of C-vector spaces EKRF™™ (L) =
EKR ™% (L'). Thus, by (8.3), we have the statement. 77 fereen Maoie 'm0 s vad O

o ﬁ“ﬁ?a’&mL{

For Reshetikhin-Turaev, we have difference sly polynomials.

RTy i (D) =RTy i1 (D) 0<j<?

Definition 8.13. DRTy ;(D) = {
7 RTN,pZ(D) j=4.

Proposition 8.14. DRTy ;(D) polynomials have the following relations between each other.
(1) For j =0 we have

"™ DRTNo(Ls+) - ¢ ™ DRTno(L-) = (¢7™ - ¢"™) DIno(Lo).
(2) For any 0<j <, we have

¢"VDRT N (L) = ¢ ™ DRT N -j(L-) = (¢7™ - ¢"™) DIn-j(Lo) (mod ¢ - q’pj),
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Proof. We use [20, Theorem 3.6]. Assume that {E;"",d,},>1 is a spectral sequence of graded
finite-dimensional C-vector spaces which converge to a double-graded C-vector space H**.
Moreover, assume the spectral sequence collapses at a finite stage. Consider the Poincaré poly-
nomials of the page F,":
P(E*) =3 " qdimg B2
i,
For a graded C-vector space V*, we have

qdime V™ = Z ¢ dime V7.

By [17, Exercise 1.7], we conclude that for any r > 1,
(8.15) P(E)(~1,q) = P(E3")(-1,9) = (-1 qdimg H™.
Z"j
For a fixed p'-periodic diagram D we apply (8.15) to spectral sequences constructed in Propo-
sition 7.11. We get

P(ET"(0"")(-1,4) = P(E%")(-1,q) = RTx-u(D).

Recall that F;*(p™") is the first page of the homology of a diagram which is invariant under
the action of a subgroup of order p’ for ¢ < £ — u smaller order. The description of E7 (ptw)
implies that P(E,"*)(~1,q) is a linear combination of polynomials RT y ;( D7), where T € A(X)
and appropriate j. Consequently,

DPyy-w(D)=RTN-u(D) - RT N p-us1(D) =

= P(E7" (0" ") (-L,q) = P(E}" (0" ")) (- L,q).
we apply formula (8.16) to DPy ¢—(L+) and DPy ¢—,(L+). We get

(8.16)

p° 4 ,
DPye (L) =325 Y (-1)fg? NV *DPy (D7),
k=0s=uTeAs (LX)

0 / e .
DPyeyu(L)= 3 > > ()7 Dk Dpy (DY)
k=—pt s=u TeA;hk(L-,X)

By Ag(L+, X) = Ape (L, X), we get

Pt ¢
4 _ 0l 0_ _l
¢ VDPy (L) =g PV DPy (L) =% Y (DM@ =g DPy (D7),
k=0s=uTeAs (Ly,X)

We know Aj (L4, X) is empty unless p® divides k. In the above equation observe that for k£ =0
we have qpe - q’pZ)DRT N,-u(Lo) and for k = p’ the sum is zero Hence we have

L)

4 _nt A _nl
PNDRT N (L) = q P Y DRT N o (L-) = (¢* —q P )DRTn-u(Lo) =

‘-1

l_ L
Y Y (DR -7 ) DRIy s-u(Dp).
k=1 s=uTeAs (L.,X)

3

For u = /¢, since s = u and u = £ we have £ = s which implies k < p®* — 1 so p® can not divide k.
Hence the right-hand side is zero. We have

A _nt V4 b
" NDPno(Ly) -~ q P VDPyno(L-) = (¢" ~q 7 )DPyo(Lo),

as we want.
For 0 <u < ¢ and for u < s < ¢ and k divisible by p*, we write k = k'p®.

pf —k :pf_klps :p3(péfs _k/)
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Set p'=* — k' = A. We have

Z*k‘ 7€k.
¢ g P =g qg? % =gq

Since ¢*" —¢P" =0 ( mod ¢*" —¢P" ), we have ¢°*" =1 (mod ¢”" — ¢?" ) Hence

p’A _ _-p°A 7psA(q2pSA _ 1)
Z_k _Zk S A _pSA _pSA S A _ U )
¢ g =g P = (P - 1) = 0(modg?” - g7
We deduce by the above equations
0_ _nl U )
(¢* k_gP +]“)DRTMS_U(DT) =0 (mod ¢’ —q?).
Consequently,

qpr DRT N o(L+) - quzN DRT no(L-)

A _nl (7 _nu
(" =¢” )DRTNpo(Lo) (modg” —q).
O
8.4. Periodicity criterion. The result in this section ports the periodicity criterion of [15] to
the case of sly-homology. T kil e T8 a cuwGauon AR
Theorem 8.17. Assume L is an m = p' periodic knot with p a prime. Then, there exist Lo o bt

polynomials Py, P1,... such that wone. Dlce o

e . .
KRPy =Py + Y. (¢ -/ )P;. FJropertsy -
j=1
In this equation Py, ... are Laurent polynomials in t,q such that

(P-1) The Laurent polynomial Py can be presented as

Po=g" VP (@ + Nk gV (11N Syt q),
j=1

while the Laurent polynomials Py, k >0, can be presented as

Pe=>(1+ tq"7)Sy;(t,q).
=1

(P-2) The Laurent polynomials Syj, k>0, from item (P-1) have non-negative coefficients.
(P-3) The polynomials Py, k >0, satisfy the following congruence relation:

-k

Pr(-1,9) = Pror(-1,¢) = Pe(~1,¢7") = Praa(-1,¢7") (mod ¢ " —¢7™").

Proof. For integral k,r, we have KRS (L) = EKRY"(L) as vector spaces. The latter have
decomposition as in (5.30):
k, k,rd
EKRY (L) = @EKRY™(L).
dm
We have m = p’, and we have Pj = Py s as the Poincaré polynomial of EKR;\’;’p g (L). By the
(8.4), we have

KRPy (L) = i(zﬂ - P,
j=0

where p/ —p/~! is the Euler’s totient function for p’. In this equation, Pj is equal to the KRP y 4
in Proposition 8.7. The sum above is finite because E; page has modules of finite dimension
over C. Since F} is a finite spectral sequence that degenerates in a finite page, so the Poincaré
polynomial of the page gets zero. Hence, write Sj, = Rﬁj we have

oo

Pj=LeePy i (L) + > (1 +tg*"" ) S
k=1
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By Proposition 8.7, we know &jj is non-negative. The computation of ELee in Lemma 8.6,
together with Lemma 8.5, gives

LeePNpo(L) _ qu(L)(q—N+1 +q—N+3 +_”+qN—1)7
while LeeP y ,; (L) = 0 for j > 0. This proves (P-1) and (P-2).
For (P-3), we use Proposition 8.14. Specifically, we have
(Pj = Pjs1)li=-1 = DRT N
where DRTy ; is a difference polynomial. Proposition 8.14 implies that changing an orbit of

crossings on a diagram does not affect DRT  ; modulo the ideal generated by ¢ g We
get a mirror of the link by changing all orbits of crossings. Since changing the orbit of crossing
does not affect DRT y ; modulo the ideal generated by ¢ —q ", we stay in the same relation
after the first change, i.e., changing the orbit of the first crossing. By Corollary 8.12, we get the
result. O

8.5. Periodicity 3 and 4. Now we will show that the periodicity criteria cannot hinder a knot
from being 3 or 4 periodic. We begin with the following result.

Theorem 8.18 ([7]). If K is a knot and X is its HOMFLY-PT polynomial, then X (a,b)
T(a,b)q(a,b) + 1, where q(a,b) is a Laurent polynomial with integer coefficients and T'(a,b)
a* = 2a% + 1 - a®v? is the HOMFLY-PT polynomial for the trefoil.

The following result @gﬂowgdby Theorem 8.18 and (8.9). {oflorn— 7
Corollary 8.19. For a knot K, the RT  polynomial has the form
RTn(q) = A(Q) (¢ - 24" +1-¢*M (g -q7")*) +1,
where A(q) is a Laurent polynomial with integer coefficients, and de e
Ty = ¢V =22 +1-@N(g-q )2 Rl T S
Lemma 8.20. o A @% l

e If (s is a root of unity of order 6, then Tn((g) =0 unless 3|N;
e If (g is a root of unity of order 8 and N is odd, then Tn((g) = 0.

Proof. Firstly, we prove the first part for N =1 (mod 3) and N =2 (mod 3).
For N =1, we have

Tn=q"-2¢"+1-¢*(¢-q")*
=(-1)*-(-a)(g-qa")
= (@ -1)(?-1-¢*+1)=0
For N =1 (mod 3), we write N =3k + 1. We have
Ty = gAGF1) _9g26k+1) L q _ q2(3k+1)(q _g 12
= g gt Z2g8% g2 11— B2 (q - g 1)
Since ((5)® = 0, we have
T (Ge) = (¢6)* = 2(C6)* + 1= (¢6)*((C6) - (G6)™)* =0,
For N =2, we have
Ty =¢*-2¢"+1-q"(¢-q7")".
Since ((s)® = 0, we have
T (Ge) = (G6)% = 2(G6)* + 1= (¢6)*((¢6) - (G6)™)?
=(¢6)* - 2(¢)" +1- () ((G6)* -2+ (¢6) ™)
= (G6)" =2(¢6) +1-1+2(G)" - (¢6)* =0
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For N =2 (mod 3), we write N =3k + 2. We have
TN(Cﬁ) _ (C6)4(3k+2) _ 2(<6)2(3k+2) +1- (C6)2(3k+2)((<6) _ (Cﬁ)_1)2
= (C6) " (C6)® - 2(¢6) ™ (G6)* + 1= (¢6) ™ (¢6)* ((C6) - (G6) 1)

Since ({)% = 0, we have

= (¢6)® = 2(¢6)* + 1= (¢6)*((¢6) = (G6)™M)* =0
For the second part, we do the same. Firstly, we show for NV =1 and later for N =2k+1. O

Corollary 8.21. For any knot K, we have the congruences RT y(q)-RTn(g™') = 0 mod ¢3¢ 73,
RTxn(q) -RTn(¢™") =0mod ¢* —¢™*.

Proof. We start with the first part. This congruence is the same as saying that for any root of
unity (g of order 6, it satisfies RT y((s) ~RTn((5") = 0. We have two cases here. The first case,
suppose that N is not a multiple of 3. By Corollary 8.19 and Lemma 8.20, we have RTn((s) = 1,
so RTn(¢s) ~ RTn(¢51) = 0. The second case, suppose 3|N. We write the Khovanov-Rozansky
polynomial as follows, see Proposition 8.7.

KRPn(t,q) =" (¢ + ¢V 4+ ¢V + (14 6> Ry (1, ).

j
and we have RT v (¢) = KRPyn(-1,¢). For the term (1 +t¢*N7) for t = -1 and ¢ = (g is equal to
zero because ((g)® = 0. At the same time, we have
N _gN

ql—N+q3—N+“_+qN—1:q—_1'
q9-q

The latter expression is zero when evaluated at a root of unity of order dividing 2INV. That is to
say
RTxN () = KRPN(-1,¢s) = 0.
For the second part, first assume that N is odd. Then, RTx({g) = 1 by the same argument
combining. Again, we have RTn((g) =1 and

RTn(¢s) = KRPn(-1,(s) = 0.
Now assume N is even. Assume that 4|V then as the same argument above we have
RTn(¢s) = KRPn(-1,(s) = 0.

We have only one case, namely when N = 4k + 2. Assume we split this case into two cases.
For some k we can write NV =4k + 2 = 8m + 2, and for some k we can write N =4k + 2 =8m — 2.
For N =8k + 2, take (g such that ¢§ = 1. From the formula of HOMFLYPT polynomial X (a,b)
we have RTn(q) = X (¢",¢-¢7"). Since ¢§ = 1, RTn(¢s) = X (G2, G- G5 = X(G G -¢1) =
RT3 (Cs)-

Now, RT3 is the Jones polynomial. It was proved in [15, Section 4.6] that RT2({s)-RT2((gh) =
0. The same proof is valid for when Cgl = —1. The remaining case is when N =8k -2 and Cgl =-1.
Write X (a,b) = ¥ ai;ja’t’. Since RTn(q) = X (¢",q-¢7"), we have

RTN(CGs) - RTN(G) =D i (G - &1 - N (¢ + G5 1) =
2o (G2 = 8¢ - G51) = —~RT2(Cs) + RT2(¢5 ™).

After all, RTy is the Jones polynomial. It was proved in [15, Section 4.6] that RT5((g) —
RT2(¢g!) = 0. The same proof is valid for when (g = 1. O

Corollary 8.22. Assume K is a knot. Set Py = KRPy, So; = Rj, where R; is as in Proposi-
tion 8.7. Then So;, Po satisfy the statement of Theorem 8.17 regardless of whether or not K is
3 or 4-periodic.



Ur\iﬂbi

<

‘C

51

Proof. We prove this corollary just for 3-periodic knots. The proof for 4-periodic knots is similar.
Item (P-1) is satisfied by definition. By Proposition 8.7, Sp; has non-negative coefficients. The
congruence (P-3) is a direct consequence of Corollary 8.21. O
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