Laboratoire de l'Informatique du Parallélisme
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n° 5668
Ecole Normale Supérieure de Lyon, site Monod, 46 Allée d’Ttalie, Lyon,

Report on the thesis of Pawel Zuk

Resource allocation methods for serverless computing platforms

Severless computing, also known as Function as a Service (or FaaS) has appeared as an
interesting alternative to classical Cloud computing paradigm to ease the use of distributed
resources. Programmers do not need to worry anymore about scaling the platform to
the incoming load and about the deployment of new nodes; they just declare stateless
functions that will be called when new requests are issued: the system takes care of
providing a dedicated environnement for each function call and of scaling the platform
as needed. This also leaves more optimization opportunities to the system, in particular
when mapping and scheduling functions. Optimizing the operation of such systems by
taking into account specificities in the FaaS workload is the subject of the thesis of Pawel
Zuk, which proposes both theoretical contributions and practical implementations of some
of the proposed strategies.

The thesis starts with a clear Introduction (chapter 1, 10 pages) of the subject. It
presents the specificities of the FaaS abstraction, the literature covering various works
around Faa$S and related mapping and scheduling problems, and the outline of the thesis.
It is followed by a short chapter on Preliminaries (chapter 2, 4 pages) that presents
common definitions as well as the architecture of OpenWhisk, the FaaS system chosen for
the practical contributions.

Chapter 3 (25 pages) explains the first contribution of the thesis on scheduling for
functions with dependencies. FaaS allows to compose functions: after a specific event,
such as an HTTP request, a function is called, followed by another one, etc. Pawel Zuk
notices that for now, only chains of functions are common, but anticipates the use of more
complex patterns, forming general Directed Acyclic Graphs. He accurately notices that
knowing in advance the structure of composite functions allows to optimise the scheduling
of such functions. This chapter presents a model of the problem, taking into account
the limited memory of the machines and the size of the function environnements. He

2R versie — m —
@ DE LYON ENS DE LYON

then proposes a number of scheduling heuristics, starting from the classical strategies and
incorporating interesting ideas in order to well reuse existing environnements, to avoid the
cost of deploying new environments. These heuristics are tested through a wide simulation
campaign, using a simulator written by Pawel Zuk, both on synthetic data and on data
from an existing trace of a FaaS system. The simulator is first validated by comparing
its results to a real execution, which is remarkable. The simulations show that some
of the heuristics proposed in the chapter lead to a large improvement in response time
compared to existing strategies, especially the ones taking into account the knowledge of
composition and thus some of the future function calls. The chapter concludes on the
ability to benefit from information on future load in case of composite functions, and on
how the proposed strategies could be implemented in real Faa$S systems.

In Chapter 4, Pawel Zuk concentrates on the allocation of applications to machines to
cope with the incoming load and under memory constraints: as each application is in
charge of many incoming requests, one may distribute its execution over several machines
to cope with a larger load. However, this requires to deploy the applications and thus
takes up memory on several machines. Pawel Zuk proposes a simple theoretical model
and outlines two problems: (i) minimizing the maximum load on a given set of machines,
under memory constraint, and (ii) minimizing the number of used machines, under both
memory and load constraint. He carefully studies the complexity of each problem, by
proposing optimal polynomial algorithms for the homogeneous case and by proving that
adding heterogeneity on either the memory size or the load of applications renders the
problem NP-complete. For the second problem, he also shows that using several instances
for each application potentially reduces the number of applications by a factor 2. Then, the
chapter proposes several low-cost heuristics based on existing strategies for bin packing,
which are adapted to take into account specificities of the present problem, such as the use
of several instances for an application. These heuristics are compared through simulation
on instances of FaaS functions coming from an existing dataset. The simulations show
that using several instances allows to fulfill the load of each application while reducing
the number of required machines.

Chapter 5 (22 pages) focuses on the problem of scheduling applications on a single ma-
chine (assuming the allocation of applications to machine has already been done earlier).
The objective is to improve the response time in case of a burst of requests, as platforms
are currently largely over-provisioned in order to cope with such short bursts: deploy-
ing new environments on available machines is usually too long. Pawel Zuk proposes a
classical model of the problem, based on non-clairvoyant online scheduling. The novelty
comes from the fact that all requests target a limited number of functions. This allows

to predict the running time of a request based on the previous execution of the same
function. Pawel Zuk thus proposes to adapt classical clairvoyant scheduling heuristics,
such as Shortest Processing Time (SP'T) or Shortest Remaining Processing Time (SRPT)
in the case of preemptive scheduling, by using the expected (remaining) processing time.
He also designs two additional heuristics focusing on fairness among functions in addi-
tion to performance. The proposed strategies are compared to classical ones (FIFO for
non-preemptive scheduling, Round-Robin for preemptive scheduling) in a large simulation
campaign using trace of an actual Faa$ system. Pawel Zuk carefully analyse the results
and show that (i) simple running-time predictions are sufficient to help with scheduling
and (ii) prediction-aware scheduling heuristics largely outperform classical strategies.

The good behavior of the strategies proposed in Chapter 5 motivates their implementation
in a real FaaS system, which is the goal of Chapter 6 (20 pages). Pawet Zuk opts for
an open-source FaaS, OpenWhisk, and adapts it in order to include some of the new
heuristics of the previous chapter, namely Shortest Expected Processing Time (SEPT)
and Fair Choice (FC), as well as two other heuristics based on a similar intuition but
with an additional guarantee that no starvation can happen (all requests are eventually
processed). This requires a significant implementation effort in OpenWhisk, among other
in order to include the use of prediction for scheduling and to avoid preemption as much
as possible (as the chosen scheduling strategies are designed for the non-preemptive case).
Experiments are conducted using the SeBS benchmark of FaaS systems. A short burst is
obtained by generating many requests in one minute. The obtained results are interesting,
well presented and analysed. They first show that SEPT and FC are able to largely reduce
the flow-time and stretch in all scenarios. Heuristics guaranteed against starvation are
a bit less efficient, but still better than system-oriented strategy (FIFO). FC gives good
performance even among very different functions. Finally, in a multi-node execution, the
experiments show that the proposed strategies are able to reduce the average response
time, which would allow to decrease the size of the platform without loosing on the quality
of service.

The thesis ends on a Conclusion (3 pages) that summarized the problem that was
adressed as well as the contributions.

In conclusion, this thesis concentrates on a new and timely scheduling problem and makes
very relevant contributions. Pawel Zuk is able to take into account specificities of the prob-
lem (such as semi-flexible bin-packing, possible use of running time predictions) to design
innovative and interesting mapping and scheduling heuristics. The description of the
proposed strategies is clear and guided with well-described intuitions. Theoretical contri-

butions also include a complete complexity study of the semi-flexible mapping problem,
with NP-completeness results and optimal polynomial algorithms for simpler cases. It has
to be noted that the thesis also includes a large “practical” contribution: many simulation
results, mostly based on actual traces or datasets to validate the proposed strategies, the
validation of one of the simulators by a comparison with real executions, and last but not
least, the implementation of some scheduling heuristics in a real systems. Given this large
implementation effort, it would have been interesting for the community to make the code
publicly available, which is currently not the case and limits the reproducibility of the
results, even if the usage of traces and the generation of instances is well documented in
the thesis.

In all his thesis, Pawel Zuk has demonstrated its ability to cover all parts of scheduling
research, from theory to practice. Therefore, I firmly believe that Pawel Zuk meets all

the requirements to defend his thesis.
M

Loris Marchal,
Senior researcher, CNRS.
Loris.Marchal@ens-1lyon.fr

UNIWERSYTET WARSZAWSK
BIURO RAD NALKOWYCH

LI TR R

WELEYNELO,
Laz Auks. Podpis. T

