You are not logged in | log in

Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego

  • Skala szarości
  • Wysoki kontrast
  • Negatyw
  • Podkreślenie linków
  • Reset

Link do kanału youtube: https://www.youtube.com/channel/UCnHfrrAKk9Jaaw8oC2s_dSQ

Zoom platform link: https://us02web.zoom.us/j/83662713532?pwd=MFpVS1NlQkt4THVtMGdYNTR2Ym93UT09

Meeting ID: 836 6271 3532 Passcode: 764579


Coordinator

  • Paul F. Baum
  • Francesco D'Andrea
  • Ludwik Dąbrowski
  • Søren Eilers
  • Piotr M. Hajac
  • Frédéric Latrémolière
  • Ryszard Nest
  • Marc A. Rieffel
  • Andrzej Sitarz
  • Wojciech Szymański
  • Adam Wegert

Room

List of talks

  • 2020-12-09, 17:15,

    XIAO HAN (IMPAN)

    ON HOPF-GALOIS EXTENSIONS AND THE GAUGE GROUP OF GALOIS OBJECTS

    For starters, we will recall the fundamental concept of a Hopf-Galois extension, and instantiate it through quantum principal SU(2)-bundles with noncommutative seven-spheres as total spaces and noncommutative four-spheres as base spaces. Then we will recall the construction of the Ehresman...

  • 2020-12-02, 17:15,

    FRANCESCO D'ANDREA (Università degli Studi di Napoli Federico II)

    ON THE NOTION OF A NONCOMMUTATIVE SUBMANIFOLD

    T. Masson, motivated by the derivation-based differential calculus of M. Dubois-Violette and P. W. Michor, introduced in the 90's the notion of a submanifold algebra as a way to extend to the noncommutative realm the concept of a closed embedded submanifold&nbs...

  • 2020-11-25, 17:15,

    CHRISTIAN VOIGT (University of Glasgow)

    QUANTUM CUNTZ-KRIEGER ALGEBRAS

    The notion of a quantum graph, a concept going back to the work of Erdos-Katavolos-Shulman and Weaver, provides a noncommutative generalisation of finite graphs. Quantum graphs play an intriguing role in the analysis of quantum symmetries of graphs, and naturally appear also in quantum information t...

  • 2020-11-18, 17:15,

    ALEXANDER FREI (Københavns Universitet)

    THE GAUGE-INVARIANT UNIQUENESS THEOREMFOR RELATIVE CUNTZ-PIMSNER ALGEBRAS

    We present a new proof of the gauge-invariant uniqueness theorem for C*-correspondences that is conceptual and simplifies earlier arguments. The proof is based on a reasoning due to Evgenios Kakariadis, and treats all relative Cuntz-Pimsner algebras on equal f...

  • 2020-11-04, 17:15,

    MARIUSZ TOBOLSKI (Uniwersytet Wrocławski)

    THE BORSUK-ULAM THEOREM FOR LOCALLY TRIVIAL COMPACT G-SPACES

    The Borsuk-Ulam-type conjecture of Baum, Dąbrowski, and Hajac states that, given a free action of a non-trivial compact Hausdorff group G on a compact Hausdorff space X, there is no continuous G-equivariant map from the join X*G to X. The ...

  • 2020-10-28, 17:15,

    DEVARSHI MUKHERJEE (Universität Göttingen)

    ANALYTIC CYCLIC HOMOLOGY IN POSITIVE CHARACTERISTIC

    We define a homology theory for complete torsion-free bornological algebras over a complete discrete valuation ring. The theory satisfies homotopy invariance, Morita invariance and excision. We use these properties to compute our theory for Leavitt path algebras. For coordinate rings ...

  • 2020-10-21, 17:15,

    JACEK KRAJCZOK (IMPAN)

    COAMENABILITY OF TYPE-I LOCALLY COMPACT QUANTUM GROUPS VIA CONVOLUTION OPERATORS

    We say that a locally compact quantum group is type I if its universal C*-algebra (which is the universal version of the C*-algebra of continuous functions vanishing at infinity on the dual quantum group) is type I. This class of quantum&nb...

Pages