Nie jesteś zalogowany | zaloguj się

Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego

  • Skala szarości
  • Wysoki kontrast
  • Negatyw
  • Podkreślenie linków
  • Reset

Aktualności — Wydarzenia

Sem. Równań Fiz. Mat.

 

"Eigenvalue bounds for the magnetic Laplacians and Schroedinger operators"


Prelegent: Diana Barseghyan

2018-11-22 12:30

We are going to derive spectral estimates for several classes of magnetic Lapla-cians. They include the magnetic Laplacian on three-dimensional regions with Dirichlet boundary conditions as well as the magnetic Laplacian de ned in R3 with the local change of the magnetic eld. We establish two-dimensional Berezin- Li-Yau and Lieb-Thirring-type bounds in the presence of constant magnetic elds and, using them, get three-dimensional estimates for the eigenvalue moments of the corresponding magnetic Laplacians. Also we derive separately the Lieb-Thirring bounds for the magnetic Schroeodinger operators de ned on two dimensional circle with radially symmetric magnetic eld and electric potentials.