47-th Mathematical Olympiad in Poland

Third Round, March 29-30, 1996

First Day

1. Determine all pairs (n, r), where n is a positive integer, and r is real, for which the polynomial $(x+1)^{n}-r$ is divisible by $2 x^{2}+2 x+1$.
2. Inside given triangle $A B C$ there is chosen point P satisfying the conditions:

$$
\angle P B C=\angle P C A<\angle P A B .
$$

The line $B P$ intersects the circumcircle of triangle $A B C$ at points B and E. The circumcircle of triangle $A P E$ intersects the line $C E$ at points E and F. Prove that the points A, P, E, F are the consecutive vertices of a quadrilateral and that the ratio of the areas of the quadrilateral $A P E F$ and the triangle $A B P$ does not depend on the choice of the point P.
3. Given an integer $n \geq 2$ and positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ with the sum equal to 1 .
(a) Prove that for any positive numbers $x_{1}, x_{2}, \ldots, x_{n}$ with the sum equal to 1 , holds the following inequality:

$$
2 \sum_{i<j} x_{i} x_{j} \leq \frac{n-2}{n-1}+\sum_{i=1}^{n} \frac{a_{i} x_{i}^{2}}{1-a_{i}} .
$$

(b) Determine all numbers $x_{1}, x_{2}, \ldots, x_{n}$ for which the above inequality turns into the equality.

Second Day

4. In a tetrahedron $A B C D$ hold the following equalities:

$$
\angle B A C=\angle A C D \quad \text { and } \quad \angle A B D=\angle B D C .
$$

Prove that the edges $A B$ and $C D$ have the same length.
5. For a natural number $k \geq 1$ denote by $p(k)$ the least prime number which is not a divisor of k. If $p(k)>2$, then we define $q(k)$ to be the product of all primes less than $p(k)$; if $p(k)=2$, we put $q(k)=1$. Define the sequence $\left(x_{n}\right)$ by the formulas

$$
x_{0}=1, \quad x_{n+1}=\frac{x_{n} p\left(x_{n}\right)}{q\left(x_{n}\right)} \quad \text { for } n=0,1,2, \ldots
$$

Determine all positive integers n with $x_{n}=111111$.
6. From a collection of all permutations f of the set $\{1,2, \ldots, n\}$ satisfying the condition

$$
f(i) \geq i-1 \quad \text { for } \quad i=1,2, \ldots, n
$$

we choose one at random. Let p_{n} be the probability that the chosen permutation satisfies

$$
f(i) \leq i+1 \quad \text { for } \quad i=1,2, \ldots, n
$$

Determine all positive integers n with $p_{n}>1 / 3$.

