46-th Mathematical Olympiad in Poland

Final Round, Gdynia, March 31 - April 1, 1995

First Day

1. Determine the number of the subsets of $\{1,2, \ldots, 2 n\}$, in which the equation $x+y=2 n+1$ has no solutions.
2. The diagonals of a convex pentagon cut it into a pentagon and ten triangles. What is the largest number of the obtained triangles which may have an equal area?
3. Given is a prime $p>3$; set $q=p^{3}$. Define the sequence $\left(a_{n}\right)$ by:

$$
a_{n}= \begin{cases}n & \text { for } n=0,1,2, \ldots, p-1, \\ a_{n-1}+a_{n-p} & \text { for } n>p-1\end{cases}
$$

Determine the remainder when a_{q} is divided by p.

Second Day

4. Numbers $x_{1}, x_{2}, \ldots, x_{n}$ are positive with the harmonic mean equal to 1 . Determine the smallest value of

$$
x_{1}+\frac{x_{2}^{2}}{2}+\frac{x_{3}^{3}}{3}+\ldots+\frac{x_{n}^{n}}{n} .
$$

5. In the urn there are n sheets of paper labelled $1,2, \ldots, n$. We draw the sheets one by one without putting them into the urn again. When we obtain a sheet with a number divisible by k, we stop the drawing. For a fixed n, determine all values of k for which the expected value of the number of the drawn sheets is equal to k.
6. Given three rays k, l, m in the space with a common beginning P and a point A, distinct from P, belonging to k. Prove that there exists exactly one pair of the points B and C belonging to l and m respectively, such that

$$
P A+A B=P C+C B \quad \text { and } \quad P B+B C=P A+A C .
$$

