47-th Mathematical Olympiad in Poland

Second Round, February 23-24, 1996

First Day

1. Can every polynomial with integer coefficients be expressed as a sum of cubes of polynomials with integer coefficients?
2. A circle with center O inscribed in a convex quadrilateral $A B C D$ is tangent to the lines $A B, B C, C D, D A$ at points K, L, M, N respectively. Assume that the lines $K L$ and $M N$ are not parallel and intersect at the point S. Prove that $B D \perp O S$.
3. Prove that if $a, b, c \geq-3 / 4$ and $a+b+c=1$, then

$$
\frac{a}{a^{2}+1}+\frac{b}{b^{2}+1}+\frac{c}{c^{2}+1} \leq \frac{9}{10} .
$$

Second Day

4. Given a sequence $a_{1}, a_{2}, \ldots, a_{99}$ of one-digit numbers with the poperty that if for some n we have $a_{n}=1$, then $a_{n+1} \neq 2$; and if for some n we have $a_{n}=3$, then $a_{n+1} \neq 4$. Prove that there exist two numbers $k, l \in\{1,2, \ldots, 98\}$ such that $a_{k}=a_{l}$ and $a_{k+1}=a_{l+1}$.
5. Find all integer solutions to the equation

$$
x^{2}(y-1)+y^{2}(x-1)=1 .
$$

6. Prove that each interior point of a parallelepiped with edges a, b, c is at most

$$
\frac{1}{2} \sqrt{a^{2}+b^{2}+c^{2}}
$$

distance off some vertex of the parallelepiped.

