46-th Mathematical Olympiad in Poland

Second Round, February 17-18, 1995

First Day

1. Given is a polynomial P with integer coefficients; 2 divides $P(5), 5$ divides $P(2)$; show that 10 divides $P(7)$.
2. Given is a convex hexagon $A B C D E F$ with $A B=B C, C D=D E, E F=F A$. Prove that the lines containing the altitudes of the triangles $B C D, D E F$ and $F A B$ taken from the vertices C, E and A respectively, are concurrent.
3. Given are positive irrational numbers a, b, c, d with $a+b=1$. Prove that $c+d=1$ if and only if for all positive integers n

$$
[n a]+[n b]=[n c]+[n d] .
$$

Note: $[x]$ is the greatest integer not greater than x.

Second Day

4. Positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$ satisfy the condition

$$
\sum_{i=1}^{n} x_{i} \leq \sum_{i=1}^{n} x_{i}^{2}
$$

Prove that for all real numbers $t>1$ the inequality

$$
\sum_{i=1}^{n} x_{i}^{t} \leq \sum_{i=1}^{n} x_{i}^{t+1}
$$

holds.
5. The incircles of the faces $A B C$ and $A B D$ of a tetrahedron $A B C D$ are tangent to the edge $A B$ in the same point. Prove that the points of tangency of these incircles to the edges $A C, B C, A D$, $B D$ are concyclic.
6. Determine all positive integers n for which the square $n \times n$ can be cut into squares 2×2 and 3×3 (with the sides parallel to the sides of the big $n \times n$ square).

