44-th Mathematical Olympiad in Poland

Second Round, February, 1993

First Day

1. Prove that for any positive numbers x, y, u, v the inequality

$$
\frac{x y+x v+u y+u v}{x+y+u+v} \geq \frac{x y}{x+y}+\frac{u v}{u+v}
$$

holds.
2. Given is a circle with center O and a point P lying outside of this circle. Let l be a line passing through the point P and cutting the given circle at points A and B. Let C be the symmetric point to A with respect to the line $O P$ and let m be the line connecting the points B and C. Prove that all the lines m, determined by the various lines l, have a common point.
3. On the edge $O A_{1}$ of a tetrahedron $O A_{1} B_{1} C_{1}$ there are chosen points A_{2}, A_{3}, such that $O A_{1}>$ $O A_{2}>O A_{3}>0$. Let B_{2}, B_{3} be the points of the edge $O B_{1}$, and C_{2}, C_{3} - the points of the edge $O C_{1}$ such that the planes $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ are parallel. Let $V_{i}(i=1,2,3)$ be the volume of the tetrahedron $O A_{i} B_{i} C_{i}$ and V be the volume of the tetrahedron $O A_{1} B_{2} C_{3}$. Prove that

$$
V_{1}+V_{2}+V_{3} \geq 3 V .
$$

Second Day

4. Let $\left(x_{n}\right)$ be the sequence of natural numbers such that:

$$
x_{1}=1 \quad \text { and } \quad x_{n}<x_{n+1} \leq 2 n \quad \text { for } n=1,2,3 \ldots
$$

Prove that for every natural number k, there exist the subscripts r and s, such that $x_{r}-x_{s}=k$.
5. On the sides $B C, C A, A B$ of a triangle $A B C$ there are chosen points D, E, F (respectively), such that inradii of the triangles $A E F, B F D, C D E$ are all equal to r_{1}. Inradii of the triangles $D E F$ and $A B C$ are equal to r_{2} and r respectively. Prove that $r_{1}+r_{2}=r$.
6. Given is a continuous function $f: \mathbf{R} \longrightarrow \mathbf{R}$ satisfying the condition:

$$
f(1000)=999, \quad f(x) \cdot f(f(x))=1 \quad \text { for } x \in \mathbf{R} .
$$

Find $f(500)$.

