45-th Mathematical Olympiad in Poland

First Round, September-December, 1993

1. Prove that the system of equations

$$
\left\{\begin{array}{l}
a^{2}-b=c^{2} \\
b^{2}-a=d^{2}
\end{array}\right.
$$

has no integer solutions a, b, c, d.
2. The sequence of functions $f_{0}, f_{1}, f_{2}, \ldots$ is given by the conditions:

$$
\begin{aligned}
f_{0}(x) & =|x| \quad \text { for all } \quad x \in \mathbf{R} \\
f_{n+1}(x) & =\left|f_{n}(x)-2\right| \quad \text { for } n=0,1,2, \ldots \quad \text { and all } x \in \mathbf{R} .
\end{aligned}
$$

For each positive integer n, solve the equation $f_{n}(x)=1$.
3. Prove that if a, b, c are the lengths of the sides of a triangle, then

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{1}{a+b-c}+\frac{1}{c+a-b}+\frac{1}{b+c-a} .
$$

4. Given is a circle with center O, point A inside the circle and a chord $P Q$ which is not a diameter and passing through A. The lines p and q are tangent to the given circle at P and Q respectively. The line ℓ passing through A and perpendicular to $O A$ intersects the lines p and q at K and L respectively. Prove that $|A K|=|A L|$.
5. Prove that if the polynomial $x^{3}+a x^{2}+b x+c$ has three distinct real roots, so does the polynomial

$$
x^{3}+a x^{2}+\frac{1}{4}\left(a^{2}+b\right) x+\frac{1}{8}(a b-c) .
$$

6. The function $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous. Prove that if for every real number x, there exists a positive integer n, such that

$$
(\underbrace{f \circ f \circ \ldots \circ f}_{n})(x)=1,
$$

then $f(1)=1$.
7. Given convex quadrilateral $A B C D$. We construct the similar triangles $A P B, B Q C, C R D, D S A$ outside $A B C D$ so that

$$
\angle P A B=\angle Q B C=\angle R C D=\angle S D A, \quad \angle P B A=\angle Q C B=\angle R D C=\angle S A D
$$

Prove that if $P Q R S$ is a parallelogram, so is $A B C D$.
8. Given positive integers a, b, c such that a^{3} is divisible by b, b^{3} is divisible by c, c^{3} is divisible by a. Prove that $(a+b+c)^{13}$ is divisible by $a b c$.
9. In a conference $2 n$ personalities take part. Each person has at least n acquaintaces among the others. Prove that it is possible to quarter the participants into two-person rooms, so that each participant would share the room with his/her acquaintace.
10. Given positive real numbers p, q with $p+q=1$. Prove that for all positive integers m, n the following inequality holds

$$
\left(1-p^{m}\right)^{n}+\left(1-q^{n}\right)^{m} \geq 1
$$

11. A triangle with perimeter $2 p$ is inscribed in a circle of radius R and also circumscribed on a circle of radius r. Prove that $p<2(R+r)$.
12. Prove that the sums of the opposite dihedral angles of a tetrahedron are equal if and only if the sums of the the opposite edges of this tetrahedron are equal.
