Parameterized WQOs, downward closures, and separability problems

Georg Zetzsche¹

Laboratoire Spécification et Vérification, ENS Paris-Saclay

Separability Problems July 14, 2017

¹Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD) and by Labex DigiCosme, ENS Paris-Saclay, project VERICONISS.

Georg Zetzsche (LSV, ENS Paris-Saclay)

The (scattered) subword relation:

abba ≤ abracadabra verification ≤ oversimplification

Notation

$$L \downarrow = \{ u \in \Sigma^* \mid \exists v \in L : u \le v \}$$
$$L \uparrow = \{ u \in \Sigma^* \mid \exists v \in L : v \le u \}$$

Georg Zetzsche (LSV, ENS Paris-Saclay)

Parametrized WQOs

July 14, 2017 2 / 15

The (scattered) subword relation:

abba ≤ abracadabra verification ≤ oversimplification

Notation

$$L \downarrow = \{ u \in \Sigma^* \mid \exists v \in L : u \le v \}$$
$$L \uparrow = \{ u \in \Sigma^* \mid \exists v \in L : v \le u \}$$

Georg Zetzsche (LSV, ENS Paris-Saclay)

Parametrized WQOs

July 14, 2017 2 / 15

Example (Transducer)

Example (Transducer)

 $R(T) = \{(x, u \# v \# w) \mid u, v, w, x \in \{0, 1\}^*, v \le x\}$

Example (Transducer)

$$R(T) = \{(x, u \# v \# w) \mid u, v, w, x \in \{0, 1\}^*, v \le x\}$$

Definition

- *Rational transduction*: set of pairs given by a finite state transducer.
- For rational transduction $R \subseteq \Sigma^* \times \Gamma^*$ and language $L \subseteq \Sigma^*$, let

$$LR = \{ y \in \Gamma^* \mid \exists x \in L : (x, y) \in R \}$$

• A language class C is a *full trio* if $L \in C$ implies $LR \in C$ for such R.

The simultaneous unboundedness problem (SUP) for C is the following:

Given A language $L \subseteq a_1^* \cdots a_n^*$ from C. Question Does $L \downarrow = a_1^* \cdots a_n^*$? In other words: $\forall k \ge 0$: $a_1^{\ge k} \cdots a_n^{\ge k} \cap L \ne \emptyset$?

The simultaneous unboundedness problem (SUP) for C is the following: Given A language $L \subseteq a_1^* \cdots a_n^*$ from C. Question Does $L \downarrow = a_1^* \cdots a_n^*$? In other words: $\forall k \ge 0$: $a_1^{\ge k} \cdots a_n^{\ge k} \cap L \ne \emptyset$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015) For each full trio C, the following are equivalent:

- *PTL-separability is decidable for C*.
- The SUP is decidable for C.

The simultaneous unboundedness problem (SUP) for C is the following: Given A language $L \subseteq a_1^* \cdots a_n^*$ from C. Question Does $L \downarrow = a_1^* \cdots a_n^*$? In other words: $\forall k \ge 0$: $a_1^{\ge k} \cdots a_n^{\ge k} \cap L \ne \emptyset$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015) For each full trio C, the following are equivalent:

- *PTL-separability is decidable for C*.
- The SUP is decidable for C.

SUP decidable for very powerful models:

The simultaneous unboundedness problem (SUP) for C is the following: Given A language $L \subseteq a_1^* \cdots a_n^*$ from C. Question Does $L \downarrow = a_1^* \cdots a_n^*$? In other words: $\forall k \ge 0$: $a_1^{\ge k} \cdots a_n^{\ge k} \cap L \ne \emptyset$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015) For each full trio C, the following are equivalent:

- PTL-separability is decidable for C.
- The SUP is decidable for C.

SUP decidable for very powerful models:

• VASS reachability languages (Habermehl, Meyer, Wimmel 2010)

The simultaneous unboundedness problem (SUP) for C is the following: Given A language $L \subseteq a_1^* \cdots a_n^*$ from C. Question Does $L \downarrow = a_1^* \cdots a_n^*$? In other words: $\forall k \ge 0$: $a_1^{\ge k} \cdots a_n^{\ge k} \cap L \ne \emptyset$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015) For each full trio C, the following are equivalent:

- PTL-separability is decidable for C.
- The SUP is decidable for C.

SUP decidable for very powerful models:

- VASS reachability languages (Habermehl, Meyer, Wimmel 2010)
- Higher-order pushdown automata (Hague, Kochems, Ong 2016)

The simultaneous unboundedness problem (SUP) for C is the following: Given A language $L \subseteq a_1^* \cdots a_n^*$ from C. Question Does $L \downarrow = a_1^* \cdots a_n^*$? In other words: $\forall k \ge 0$: $a_1^{\ge k} \cdots a_n^{\ge k} \cap L \ne \emptyset$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015) For each full trio *C*, the following are equivalent:

- PTL-separability is decidable for C.
- The SUP is decidable for C.

SUP decidable for very powerful models:

- VASS reachability languages (Habermehl, Meyer, Wimmel 2010)
- Higher-order pushdown automata (Hague, Kochems, Ong 2016)
- Higher-order recursion schemes (Clemente, Parys, Salvati, Walukiewicz 2016)

Theorem (Goubault-Larrecq, Schmitz 2016)

In any wqo (X, \leq) with effective ideals:

• PTL-separability reduces to adherence membership.

For the subword ordering, adherence membership reduces to SUP.

Theorem (Goubault-Larrecq, Schmitz 2016)

In any wqo (X, \leq) with effective ideals:

• PTL-separability reduces to adherence membership.

For the subword ordering, adherence membership reduces to SUP.

Consequence

If (Σ^*,\leqslant) is a wqo with

- effective ideals and
- adherence membership reduces to the SUP,

then for most language classes:

● <-PTL-separability is decidable.

New wqos on words

Simple observation

If (Y, \leq) is a wqo and $f: X \to Y$, then

$$x \leq_f y \iff f(x) \leq f(y)$$

defines a wqo on X.

New wqos on words

Simple observation

If (Y, \leq) is a wqo and $f: X \to Y$, then

$$x \leq_f y \iff f(x) \leq f(y)$$

defines a wqo on X.

Via transducers

A transducer is *total unambiguous* if every input word induces exactly one accepting run. It thus defines a function $T: \Sigma^* \to \Gamma^*$. Let

$$x \leq_T y \iff T(x) \leq T(y).$$

New wqos on words

Simple observation

If (Y, \leq) is a wqo and $f: X \to Y$, then

$$x \leq_f y \iff f(x) \leq f(y)$$

defines a wqo on X.

Via transducers

A transducer is *total unambiguous* if every input word induces exactly one accepting run. It thus defines a function $T: \Sigma^* \to \Gamma^*$. Let

$$x \leq_T y \iff T(x) \leq T(y).$$

Conjunction

Given wqos \leq_1, \ldots, \leq_n on X, their *conjunction* is:

$$x \leqslant y \quad \Longleftrightarrow \quad \forall i \colon x \leqslant_i y.$$

Georg Zetzsche (LSV, ENS Paris-Saclay)

• An order collection is a finite family $(\leq_s)_{s \in S}$, where each \leq_s is a conjunction of transducer-defined wqos.

- An order collection is a finite family $(\leq_s)_{s\in S}$, where each \leq_s is a conjunction of transducer-defined wqos.
- An *S*-*PTL* is a boolean combination of sets $\{w\}\uparrow_{\leqslant s}$ for $s \in S$, $w \in \Sigma^*$.

- An order collection is a finite family $(\leq_s)_{s\in S}$, where each \leq_s is a conjunction of transducer-defined wqos.
- An *S*-*PTL* is a boolean combination of sets $\{w\}\uparrow_{\leqslant s}$ for $s \in S$, $w \in \Sigma^*$.

Theorem

For each full trio C, the following are equivalent:

- S-PTL separability is decidable for C for every order collection S.
- The SUP is decidable.

UFA-defined wqos

Suppose A is a unambiguous and accepts Σ^* . Define:

 $u \leq_{\mathcal{A}} v \iff u$ is obtained from v by "cutting loops"

In other words, $v = u_0 v_1 u_1 \cdots v_n u_n$, such that the run of \mathcal{A} on v loops on each v_i and $u = u_0 \cdots u_n$.

UFA-defined wqos

Suppose A is a unambiguous and accepts Σ^* . Define:

 $u \leq_{\mathcal{A}} v \iff u$ is obtained from v by "cutting loops"

In other words, $v = u_0 v_1 u_1 \cdots v_n u_n$, such that the run of \mathcal{A} on v loops on each v_i and $u = u_0 \cdots u_n$.

Every regular language is a $\leq_{\mathcal{A}}$ -PTL for a suitable \mathcal{A} !

UFA-defined wqos

Suppose A is a unambiguous and accepts Σ^* . Define:

 $u \leq_{\mathcal{A}} v \iff u$ is obtained from v by "cutting loops"

In other words, $v = u_0 v_1 u_1 \cdots v_n u_n$, such that the run of \mathcal{A} on v loops on each v_i and $u = u_0 \cdots u_n$.

Every regular language is a $\leq_{\mathcal{A}}$ -PTL for a suitable \mathcal{A} ! Suppose \mathcal{A} has initial states I, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

UFA-defined wqos

Suppose A is a unambiguous and accepts Σ^* . Define:

 $u \leq_{\mathcal{A}} v \iff u$ is obtained from v by "cutting loops"

In other words, $v = u_0 v_1 u_1 \cdots v_n u_n$, such that the run of \mathcal{A} on v loops on each v_i and $u = u_0 \cdots u_n$.

Every regular language is a $\leq_{\mathcal{A}}$ -PTL for a suitable \mathcal{A} ! Suppose \mathcal{A} has initial states I, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

• Let $T: \Sigma^* \to \Delta^*$ map each word to its run.

UFA-defined wqos

Suppose A is a unambiguous and accepts Σ^* . Define:

 $u \leq_{\mathcal{A}} v \iff u$ is obtained from v by "cutting loops"

In other words, $v = u_0 v_1 u_1 \cdots v_n u_n$, such that the run of \mathcal{A} on v loops on each v_i and $u = u_0 \cdots u_n$.

Every regular language is a $\leq_{\mathcal{A}}$ -PTL for a suitable \mathcal{A} ! Suppose \mathcal{A} has initial states I, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

• Let $T: \Sigma^* \to \Delta^*$ map each word to its run.

• Let $T_I: \Sigma^* \to I$, $T_F: \Sigma^* \to F$ yield initial and final state of run.

UFA-defined wqos

Suppose A is a unambiguous and accepts Σ^* . Define:

 $u \leq_{\mathcal{A}} v \iff u$ is obtained from v by "cutting loops"

In other words, $v = u_0 v_1 u_1 \cdots v_n u_n$, such that the run of \mathcal{A} on v loops on each v_i and $u = u_0 \cdots u_n$.

Every regular language is a $\leq_{\mathcal{A}}$ -PTL for a suitable \mathcal{A} ! Suppose \mathcal{A} has initial states I, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

- Let $T: \Sigma^* \to \Delta^*$ map each word to its run.
- Let $T_I: \Sigma^* \to I$, $T_F: \Sigma^* \to F$ yield initial and final state of run.
- $\leq_{\mathcal{A}}$ is the conjunction of $\leq_{\mathcal{T}}$ and $\leq_{\mathcal{T}_{I}}$, and $\leq_{\mathcal{T}_{F}}$.

Regular queries

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, \mathcal{P}_i, \mathcal{R}_j, \mathcal{R}_j^{\mathsf{pref}}, \mathcal{R}_j^{\mathsf{suf}})$$

Regular queries

$$\mathcal{M}_{w} = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

•
$$R_j$$
 is true if $w = a_1 \cdots a_n \in R_j$.

Regular queries

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

•
$$R_j$$
 is true if $w = a_1 \cdots a_n \in R_j$.
• R_j^{pref} is true at p if $a_1 \cdots a_p \in R_j$.

Regular queries

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

•
$$R_j$$
 is true if $w = a_1 \cdots a_n \in R_j$.
• R_j^{pref} is true at p if $a_1 \cdots a_p \in R_j$.
• R_j^{suf} is true at p if $a_p \cdots a_n \in R_j$.

Regular queries

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

Regular queries

Let $R_1, \ldots, R_k \subseteq \Sigma^*$ be regular. To $w = a_1 \cdots a_n$, we associate the structure

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

 \sqsubseteq -PTL is equivalent to $\mathcal{B}\Sigma_1[<, R_j, R_j^{\text{pref}}, R_j^{\text{suf}}]$ (Goubault-L. & Schmitz).

Regular queries

Let $R_1, \ldots, R_k \subseteq \Sigma^*$ be regular. To $w = a_1 \cdots a_n$, we associate the structure

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

•
$$R_j$$
 is true if $w = a_1 \cdots a_n \in R_j$.
• R_j^{pref} is true at p if $a_1 \cdots a_p \in R_j$.
• R_j^{suf} is true at p if $a_p \cdots a_n \in R_j$.
Define:

$$u \sqsubseteq v \iff \mathcal{M}_u$$
 embeds into \mathcal{M}_v

 \sqsubseteq -PTL is equivalent to $\mathcal{B}\Sigma_1[<, R_j, R_j^{\text{pref}}, R_j^{\text{suf}}]$ (Goubault-L. & Schmitz). • Let $T: \Sigma^* \to (\Sigma \times \Theta)^*$ decorate each position with $\Theta = 2^{\{1,...,k\}^3}$.

Regular queries

Let $R_1, \ldots, R_k \subseteq \Sigma^*$ be regular. To $w = a_1 \cdots a_n$, we associate the structure

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

$$u \sqsubseteq v \iff \mathcal{M}_u$$
 embeds into \mathcal{M}_v

 \sqsubseteq -PTL is equivalent to $\mathcal{B}\Sigma_1[<, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}}]$ (Goubault-L. & Schmitz).

- Let $T: \Sigma^* \to (\Sigma \times \Theta)^*$ decorate each position with $\Theta = 2^{\{1,...,k\}^3}$.
- Then \leq_T is \sqsubseteq .

Regular queries

Let $R_1, \ldots, R_k \subseteq \Sigma^*$ be regular. To $w = a_1 \cdots a_n$, we associate the structure

$$\mathcal{M}_w = (\{1, \ldots, n\}, <, P_i, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}})$$

$$u \sqsubseteq v \iff \mathcal{M}_u$$
 embeds into \mathcal{M}_v

 \sqsubseteq -PTL is equivalent to $\mathcal{B}\Sigma_1[<, R_j, R_j^{\mathsf{pref}}, R_j^{\mathsf{suf}}]$ (Goubault-L. & Schmitz).

- Let $T: \Sigma^* \to (\Sigma \times \Theta)^*$ decorate each position with $\Theta = 2^{\{1,\dots,k\}^3}$.
- Then \leq_T is \sqsubseteq .

Example: $\mathcal{B}\Sigma_1[<, \text{mod}_d]$ for fixed $d \in \mathbb{N}$.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leqslant k}$, let

```
occ_w(u) = number of positions in u at which w starts,
```

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leq k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0,

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leq k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leq k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leq k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

• Let S consist of
$$\sqsubseteq_{occ,w}$$
, $\sqsubseteq_{pref,w}$, $\sqsubseteq_{suf,w}$ for all $w \in \Sigma^{\leqslant k}$.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leqslant k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

- Let S consist of $\sqsubseteq_{occ,w}$, $\sqsubseteq_{pref,w}$, $\sqsubseteq_{suf,w}$ for all $w \in \Sigma^{\leqslant k}$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_k.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leq k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

• Let $u \sqsubseteq_{occ,w} v$ if $occ_w(u) \leq occ_w(v)$. Analogous for $\sqsubseteq_{pref,w}$, $\sqsubseteq_{suf,w}$.

- Let S consist of $\sqsubseteq_{occ,w}$, $\sqsubseteq_{pref,w}$, $\sqsubseteq_{suf,w}$ for all $w \in \Sigma^{\leq k}$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_k.

• For $\sqsubseteq_{occ,w}$, use transducer $T: \Sigma^* \rightarrow a^*$ that counts *w*-occurrences.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leq k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

- Let S consist of $\sqsubseteq_{occ,w}$, $\sqsubseteq_{pref,w}$, $\sqsubseteq_{suf,w}$ for all $w \in \Sigma^{\leq k}$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_k.
- For $\sqsubseteq_{occ,w}$, use transducer $T: \Sigma^* \to a^*$ that counts *w*-occurrences.
- Hence, separability by LTT_k decidable if SUP decidable.

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma^{\leqslant k}$, let

 $occ_w(u) = number of positions in u at which w starts,$ $pref_w(u) = 1$ if $u \in w\Sigma^*$, otherwise 0, $suf_w(u) = 1$ if $u \in \Sigma^* w$, otherwise 0.

- Let S consist of $\sqsubseteq_{occ,w}$, $\sqsubseteq_{pref,w}$, $\sqsubseteq_{suf,w}$ for all $w \in \Sigma^{\leqslant k}$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_k.
- For $\sqsubseteq_{occ,w}$, use transducer $T: \Sigma^* \rightarrow a^*$ that counts *w*-occurrences.
- Hence, separability by LTT_k decidable if SUP decidable.
- For CFL, shown by Place, van Rooijen, Zeitoun in 2013 using Presburger arithmetic.

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

• Ideals are a recursively enumerable set of regular languages.

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal *I*, we can construct a transducer *T* such that *I* ∈ Adh(*L*) iff *LT*↓ = a₁^{*} ··· a_n^{*}.

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal *I*, we can construct a transducer *T* such that *I* ∈ Adh(*L*) iff *LT*↓ = a₁^{*} ··· a_n^{*}.

Ideal representations

Consider a wqo (Y, \leq) and $f: X \to Y$ and the wqo (X, \leq_f) . A subset $J \subseteq X$ is an ideal of (X, \leq_f) if and only if $J = f^{-1}(I)$ for some ideal I of (Y, \leq) such that $f(f^{-1}(I)) \downarrow = I$.

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal *I*, we can construct a transducer *T* such that *I* ∈ Adh(*L*) iff *LT*↓ = a₁^{*} ··· a_n^{*}.

Ideal representations

Consider a wqo (Y, \leq) and $f: X \to Y$ and the wqo (X, \leq_f) . A subset $J \subseteq X$ is an ideal of (X, \leq_f) if and only if $J = f^{-1}(I)$ for some ideal I of (Y, \leq) such that $f(f^{-1}(I)) \downarrow = I$.

• Note that in our case, f, f^{-1} , and $\cdot \downarrow$ preserve regularity, so $f(f^{-1}(I))\downarrow = I$ can be checked.

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal *I*, we can construct a transducer *T* such that *I* ∈ Adh(*L*) iff *LT*↓ = a₁^{*} ··· a_n^{*}.

Ideal representations

Consider a wqo (Y, \leq) and $f: X \to Y$ and the wqo (X, \leq_f) . A subset $J \subseteq X$ is an ideal of (X, \leq_f) if and only if $J = f^{-1}(I)$ for some ideal I of (Y, \leq) such that $f(f^{-1}(I)) \downarrow = I$.

• Note that in our case, f, f^{-1} , and $\cdot \downarrow$ preserve regularity, so $f(f^{-1}(I))\downarrow = I$ can be checked.

• We can therefore use ideals of (Γ^*, \leq) to represent ideals of $(\Sigma^*, \leq_{\mathcal{T}})!$

To prove

What do we need to apply result of Goubault-Larrecq & Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal *I*, we can construct a transducer *T* such that *I* ∈ Adh(*L*) iff *LT*↓ = a₁^{*} ··· a_n^{*}.

Ideal representations

Consider a wqo (Y, \leq) and $f: X \to Y$ and the wqo (X, \leq_f) . A subset $J \subseteq X$ is an ideal of (X, \leq_f) if and only if $J = f^{-1}(I)$ for some ideal I of (Y, \leq) such that $f(f^{-1}(I)) \downarrow = I$.

- Note that in our case, f, f^{-1} , and $\cdot \downarrow$ preserve regularity, so $f(f^{-1}(I)) \downarrow = I$ can be checked.
- We can therefore use ideals of (Γ^*, \leq) to represent ideals of $(\Sigma^*, \leq_{\mathcal{T}})!$
- Ideals of (Γ^*, \leq) are of the shape $X_0^*\{x_1, \varepsilon\}X_1^* \cdots \{x_n, \varepsilon\}X_n^*$.

Adherence membership

If $I \subseteq Y$ is an ideal with $f(f^{-1}(I)) \downarrow = I$, then

 $f^{-1}(I) \in \operatorname{Adh}(L)$ if and only if $I \in \operatorname{Adh}(f(L))$.

Adherence membership

If $I \subseteq Y$ is an ideal with $f(f^{-1}(I)) \downarrow = I$, then

 $f^{-1}(I) \in Adh(L)$ if and only if $I \in Adh(f(L))$.

Again, since f is realized by a transducer and we deal with full trios, we can decide adherence membership of I in $f(L) \in C$!

Adherence membership

If $I \subseteq Y$ is an ideal with $f(f^{-1}(I)) \downarrow = I$, then

 $f^{-1}(I) \in Adh(L)$ if and only if $I \in Adh(f(L))$.

Again, since f is realized by a transducer and we deal with full trios, we can decide adherence membership of I in $f(L) \in C$!

Extended adherence membership

If $(\leq_s)_{s\in S}$ is a finite family of wqos, then $Adh_S(L)$ is the set of those families $(I_s)_{s\in S}$ of ideals such that there is a directed $D \subseteq L$ with $I_s = D \downarrow_{\leq_s}$.

Adherence membership

If $I \subseteq Y$ is an ideal with $f(f^{-1}(I)) \downarrow = I$, then

 $f^{-1}(I) \in Adh(L)$ if and only if $I \in Adh(f(L))$.

Again, since f is realized by a transducer and we deal with full trios, we can decide adherence membership of I in $f(L) \in C$!

Extended adherence membership

If $(\leq_s)_{s\in S}$ is a finite family of wqos, then $Adh_S(L)$ is the set of those families $(I_s)_{s\in S}$ of ideals such that there is a directed $D \subseteq L$ with $I_s = D \downarrow_{\leq_s}$.

If adherence membership for each \leq_s reduces to SUP, then this is true for the extended adherence membership problem (product construction).

Ideal representations for conjunctions

Let $(\leq_s)_{s\in S}$ be a finite family of wqos. Let \leq be the conjunction of the \leq_s . Then $I \subseteq X$ is an \leq -ideal if and only if there is a family of ideals $(I_s)_{s\in S}$ such that $I = \bigcap_{s\in S} I_s$ and $(I_s)_{s\in S}$ belongs to $Adh_S(I)$.

Ideal representations for conjunctions

Let $(\leq_s)_{s\in S}$ be a finite family of wqos. Let \leq be the conjunction of the \leq_s . Then $I \subseteq X$ is an \leq -ideal if and only if there is a family of ideals $(I_s)_{s\in S}$ such that $I = \bigcap_{s\in S} I_s$ and $(I_s)_{s\in S}$ belongs to $Adh_S(I)$.

Thus, ideals of \leq can be represented by tuples $(I_s)_{s \in S}$.

Ideal representations for conjunctions

Let $(\leq_s)_{s\in S}$ be a finite family of wqos. Let \leq be the conjunction of the \leq_s . Then $I \subseteq X$ is an \leq -ideal if and only if there is a family of ideals $(I_s)_{s\in S}$ such that $I = \bigcap_{s\in S} I_s$ and $(I_s)_{s\in S}$ belongs to $Adh_S(I)$.

Thus, ideals of \leq can be represented by tuples $(I_s)_{s \in S}$.

Adherence membership for conjunctions

If $I = \bigcap_{s \in S} I_s$ as above, then $I \in Adh(L)$ if and only if $(I_s)_{s \in S}$ belongs to $Adh_S(L)$.

Ideal representations for conjunctions

Let $(\leq_s)_{s\in S}$ be a finite family of wqos. Let \leq be the conjunction of the \leq_s . Then $I \subseteq X$ is an \leq -ideal if and only if there is a family of ideals $(I_s)_{s\in S}$ such that $I = \bigcap_{s\in S} I_s$ and $(I_s)_{s\in S}$ belongs to $Adh_S(I)$.

Thus, ideals of \leq can be represented by tuples $(I_s)_{s \in S}$.

Adherence membership for conjunctions

If $I = \bigcap_{s \in S} I_s$ as above, then $I \in Adh(L)$ if and only if $(I_s)_{s \in S}$ belongs to $Adh_S(L)$.

Hence, we can again reduce adherence membership to the SUP.

What about *S*-PTL?

Goubault-Larrecq & Schmitz's result only applies to \leq -PTL for a single \leq .

What about *S*-PTL?

Goubault-Larrecq & Schmitz's result only applies to \leqslant -PTL for a single \leqslant .

Observation

Let $(\leq_s)_{s\in S}$ be a finite family of woos and let \leq be the conjunction of the \leq_s . Then a language is an *S*-PTL if and only if it is a \leq -PTL.

More powerful separators

 $\mathcal{B}\Sigma_1[<,\mathsf{mod}]:$ $\mathcal{B}\Sigma_1$ fragment with predicates:

More powerful separators

- $\mathcal{B}\Sigma_1[<,\mathsf{mod}]:$ $\mathcal{B}\Sigma_1$ fragment with predicates:
 - P_i for letters, < on positions

More powerful separators

- $\mathcal{B}\Sigma_1[<,mod]:$ $\mathcal{B}\Sigma_1$ fragment with predicates:
 - P_i for letters, < on positions
 - For all $i, d \in \mathbb{N}$: mod_{*i*,*d*} true at position *p* if $p \equiv i \pmod{d}$.

More powerful separators

 $\mathcal{B}\Sigma_1[<,mod]:$ $\mathcal{B}\Sigma_1$ fragment with predicates:

- P_i for letters, < on positions
- For all $i, d \in \mathbb{N}$: mod_{*i*,*d*} true at position *p* if $p \equiv i \pmod{d}$.
- For all $i, d \in \mathbb{N}$: $mod'_{i,d}$ true if word length is $\equiv i \pmod{d}$.

More powerful separators

 $\mathcal{B}\Sigma_1[<,mod]:$ $\mathcal{B}\Sigma_1$ fragment with predicates:

- P_i for letters, < on positions
- For all $i, d \in \mathbb{N}$: mod_{*i*,*d*} true at position *p* if $p \equiv i \pmod{d}$.
- For all $i, d \in \mathbb{N}$: $mod'_{i,d}$ true if word length is $\equiv i \pmod{d}$.

Theorem (Chaubard, Pin, Straubing, LICS 2006)

For regular languages, definability in $\mathcal{B}\Sigma_1[<,\mathsf{mod}]$ is decidable.

More powerful separators

 $\mathcal{B}\Sigma_1[<,\mathsf{mod}]:$ $\mathcal{B}\Sigma_1$ fragment with predicates:

- P_i for letters, < on positions
- For all $i, d \in \mathbb{N}$: $mod_{i,d}$ true at position p if $p \equiv i \pmod{d}$.
- For all $i, d \in \mathbb{N}$: $mod'_{i,d}$ true if word length is $\equiv i \pmod{d}$.

Theorem (Chaubard, Pin, Straubing, LICS 2006)

For regular languages, definability in $\mathcal{B}\Sigma_1[<,\mathsf{mod}]$ is decidable.

Theojecture

For regular languages, separability by $\mathcal{B}\Sigma_1[<,mod]$ is decidable.

More powerful separators

 $\mathcal{B}\Sigma_1[<, mod]$: $\mathcal{B}\Sigma_1$ fragment with predicates:

- P_i for letters, < on positions
- For all $i, d \in \mathbb{N}$: $mod_{i,d}$ true at position p if $p \equiv i \pmod{d}$.
- For all $i, d \in \mathbb{N}$: $mod'_{i,d}$ true if word length is $\equiv i \pmod{d}$.

Theorem (Chaubard, Pin, Straubing, LICS 2006)

For regular languages, definability in $\mathcal{B}\Sigma_1[<,mod]$ is decidable.

Theojecture

For regular languages, separability by $\mathcal{B}\Sigma_1[<,mod]$ is decidable.

Theorem

For order-2 pushdown languages, separability by $\mathcal{B}\Sigma_1[<,mod]$ is undecidable.

Georg Zetzsche (LSV, ENS Paris-Saclay)