Parameterized WQOs, downward closures, and separability problems

Georg Zetzsche ${ }^{1}$
Laboratoire Spécification et Vérification, ENS Paris-Saclay

Separability Problems
July 14, 2017

[^0]The (scattered) subword relation:

$$
\begin{aligned}
\text { abba } & \leq \text { abracadabra } \\
\text { verification } & \leq \text { oversimplification }
\end{aligned}
$$

Notation

$$
\begin{aligned}
& L \downarrow=\left\{u \in \Sigma^{*} \mid \exists v \in L: u \leq v\right\} \\
& L \uparrow=\left\{u \in \Sigma^{*} \mid \exists v \in L: v \leq u\right\}
\end{aligned}
$$

The (scattered) subword relation:

$$
\begin{aligned}
\text { abba } & \leq \text { abracadabra } \\
\text { verification } & \leq \text { oversimplification }
\end{aligned}
$$

Notation

$$
\begin{aligned}
& L \downarrow=\left\{u \in \Sigma^{*} \mid \exists v \in L: u \leq v\right\} \\
& L \uparrow=\left\{u \in \Sigma^{*} \mid \exists v \in L: v \leq u\right\}
\end{aligned}
$$

Example (Transducer)

Example (Transducer)

$$
R(T)=\left\{(x, u \# v \# w) \mid u, v, w, x \in\{0,1\}^{*}, v \leq x\right\}
$$

Example (Transducer)

$$
R(T)=\left\{(x, u \# v \# w) \mid u, v, w, x \in\{0,1\}^{*}, v \leq x\right\}
$$

Definition

- Rational transduction: set of pairs given by a finite state transducer.
- For rational transduction $R \subseteq \Sigma^{*} \times \Gamma^{*}$ and language $L \subseteq \Sigma^{*}$, let

$$
L R=\left\{y \in \Gamma^{*} \mid \exists x \in L:(x, y) \in R\right\}
$$

- A language class \mathcal{C} is a full trio if $L \in \mathcal{C}$ implies $L R \in \mathcal{C}$ for such R.

Definition

The simultaneous unboundedness problem (SUP) for \mathcal{C} is the following:
Given A language $L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ from \mathcal{C}. Question Does $L \downarrow=a_{1}^{*} \cdots a_{n}^{*}$?
In other words: $\forall k \geqslant 0: a_{1}^{\geqslant k} \cdots a_{n}^{\geqslant k} \cap L \neq \varnothing$?

Definition

The simultaneous unboundedness problem (SUP) for \mathcal{C} is the following:
Given A language $L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ from \mathcal{C}.
Question Does $L \downarrow=a_{1}^{*} \cdots a_{n}^{*}$?
In other words: $\forall k \geqslant 0: a_{1}^{\geqslant k} \cdots a_{n}^{\geqslant k} \cap L \neq \varnothing$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015)
For each full trio \mathcal{C}, the following are equivalent:

- PTL-separability is decidable for \mathcal{C}.
- The SUP is decidable for \mathcal{C}.

Definition

The simultaneous unboundedness problem (SUP) for \mathcal{C} is the following:
Given A language $L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ from \mathcal{C}.
Question Does $L \downarrow=a_{1}^{*} \cdots a_{n}^{*}$?
In other words: $\forall k \geqslant 0: a_{1}^{\geqslant k} \cdots a_{n}^{\geqslant k} \cap L \neq \varnothing$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015)
For each full trio \mathcal{C}, the following are equivalent:

- PTL-separability is decidable for \mathcal{C}.
- The SUP is decidable for \mathcal{C}.

SUP decidable for very powerful models:

Definition

The simultaneous unboundedness problem (SUP) for \mathcal{C} is the following:
Given A language $L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ from \mathcal{C}.
Question Does $L \downarrow=a_{1}^{*} \cdots a_{n}^{*}$?
In other words: $\forall k \geqslant 0: a_{1}^{\geqslant k} \cdots a_{n}^{\geqslant k} \cap L \neq \varnothing$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015)
For each full trio \mathcal{C}, the following are equivalent:

- PTL-separability is decidable for \mathcal{C}.
- The SUP is decidable for \mathcal{C}.

SUP decidable for very powerful models:

- VASS reachability languages (Habermehl, Meyer, Wimmel 2010)

Definition

The simultaneous unboundedness problem (SUP) for \mathcal{C} is the following:
Given A language $L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ from \mathcal{C}.
Question Does $L \downarrow=a_{1}^{*} \cdots a_{n}^{*}$?
In other words: $\forall k \geqslant 0: a_{1}^{\geqslant k} \cdots a_{n}^{\geqslant k} \cap L \neq \varnothing$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015)
For each full trio \mathcal{C}, the following are equivalent:

- PTL-separability is decidable for \mathcal{C}.
- The SUP is decidable for \mathcal{C}.

SUP decidable for very powerful models:

- VASS reachability languages (Habermehl, Meyer, Wimmel 2010)
- Higher-order pushdown automata (Hague, Kochems, Ong 2016)

Definition

The simultaneous unboundedness problem (SUP) for \mathcal{C} is the following:
Given A language $L \subseteq a_{1}^{*} \cdots a_{n}^{*}$ from \mathcal{C}.
Question Does $L \downarrow=a_{1}^{*} \cdots a_{n}^{*}$?
In other words: $\forall k \geqslant 0: a_{1}^{\geqslant k} \cdots a_{n}^{\geqslant k} \cap L \neq \varnothing$?

Theorem (Czerwiński, Martens, van Rooijen, Zeitoun, Z. 2015)

For each full trio \mathcal{C}, the following are equivalent:

- PTL-separability is decidable for \mathcal{C}.
- The SUP is decidable for \mathcal{C}.

SUP decidable for very powerful models:

- VASS reachability languages (Habermehl, Meyer, Wimmel 2010)
- Higher-order pushdown automata (Hague, Kochems, Ong 2016)
- Higher-order recursion schemes (Clemente, Parys, Salvati, Walukiewicz 2016)

Theorem (Goubault-Larrecq, Schmitz 2016)

In any wqo (X, \leqslant) with effective ideals:

- PTL-separability reduces to adherence membership.

For the subword ordering, adherence membership reduces to SUP.

Theorem (Goubault-Larrecq, Schmitz 2016)
In any wqo (X, \leqslant) with effective ideals:

- PTL-separability reduces to adherence membership.

For the subword ordering, adherence membership reduces to SUP.

Consequence

If $\left(\Sigma^{*}, \leqslant\right)$ is a wqo with

- effective ideals and
- adherence membership reduces to the SUP,
then for most language classes:
- $\leqslant-\mathrm{PTL}$-separability is decidable.

New wqos on words

Simple observation
If (Y, \leqslant) is a wqo and $f: X \rightarrow Y$, then

$$
x \leqslant f y \quad \Longleftrightarrow \quad f(x) \leqslant f(y)
$$

defines a wqo on X.

New wqos on words

Simple observation
If (Y, \leqslant) is a wqo and $f: X \rightarrow Y$, then

$$
x \leqslant f y \quad \Longleftrightarrow \quad f(x) \leqslant f(y)
$$

defines a wqo on X.
Via transducers
A transducer is total unambiguous if every input word induces exactly one accepting run. It thus defines a function $T: \Sigma^{*} \rightarrow \Gamma^{*}$. Let

$$
x \leq T y \quad \Longleftrightarrow \quad T(x) \leq T(y) .
$$

New wqos on words

Simple observation
If (Y, \leqslant) is a wqo and $f: X \rightarrow Y$, then

$$
x \leqslant f y \quad \Longleftrightarrow \quad f(x) \leqslant f(y)
$$

defines a wqo on X.

Via transducers

A transducer is total unambiguous if every input word induces exactly one accepting run. It thus defines a function $T: \Sigma^{*} \rightarrow \Gamma^{*}$. Let

$$
x \leq T y \quad \Longleftrightarrow \quad T(x) \leq T(y) .
$$

Conjunction

Given wqos $\leqslant_{1}, \ldots, \leqslant_{n}$ on X, their conjunction is:

$$
x \leqslant y \quad \Longleftrightarrow \quad \forall i: x \leqslant i y .
$$

Definition

- An order collection is a finite family $\left(\leqslant_{s}\right)_{s \in S}$, where each \leqslant_{s} is a conjunction of transducer-defined wqos.

Definition

- An order collection is a finite family $\left(\leqslant_{s}\right)_{s \in S}$, where each \leqslant_{s} is a conjunction of transducer-defined wqos.
- An $S-P T L$ is a boolean combination of sets $\{w\} \uparrow_{\leqslant_{s}}$ for $s \in S, w \in \Sigma^{*}$.

Definition

- An order collection is a finite family $\left(\leqslant_{s}\right)_{s \in S}$, where each \leqslant_{s} is a conjunction of transducer-defined wqos.
- An $S-P T L$ is a boolean combination of sets $\{w\} \uparrow_{\leqslant_{s}}$ for $s \in S, w \in \Sigma^{*}$.

Theorem

For each full trio \mathcal{C}, the following are equivalent:

- S-PTL separability is decidable for \mathcal{C} for every order collection S.
- The SUP is decidable.

Example orders I

UFA-defined wqos

Suppose \mathcal{A} is a unambiguous and accepts Σ^{*}. Define:

$$
u \leq_{\mathcal{A}} v \Longleftrightarrow u \text { is obtained from } v \text { by "cutting loops" }
$$

In other words, $v=u_{0} v_{1} u_{1} \cdots v_{n} u_{n}$, such that the run of \mathcal{A} on v loops on each v_{i} and $u=u_{0} \cdots u_{n}$.

Example orders I

UFA-defined wqos

Suppose \mathcal{A} is a unambiguous and accepts Σ^{*}. Define:

$$
u \leq_{\mathcal{A}} v \Longleftrightarrow u \text { is obtained from } v \text { by "cutting loops" }
$$

In other words, $v=u_{0} v_{1} u_{1} \cdots v_{n} u_{n}$, such that the run of \mathcal{A} on v loops on each v_{i} and $u=u_{0} \cdots u_{n}$.

Every regular language is a $\leq_{\mathcal{A}}$ - PTL for a suitable \mathcal{A} !

Example orders I

UFA-defined wqos

Suppose \mathcal{A} is a unambiguous and accepts Σ^{*}. Define:

$$
u \leq_{\mathcal{A}} v \Longleftrightarrow u \text { is obtained from } v \text { by "cutting loops" }
$$

In other words, $v=u_{0} v_{1} u_{1} \cdots v_{n} u_{n}$, such that the run of \mathcal{A} on v loops on each v_{i} and $u=u_{0} \cdots u_{n}$.

Every regular language is a $\leq_{\mathcal{A}}$-PTL for a suitable \mathcal{A} !
Suppose \mathcal{A} has initial states I, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

Example orders I

UFA-defined wqos

Suppose \mathcal{A} is a unambiguous and accepts Σ^{*}. Define:

$$
u \leq_{\mathcal{A}} v \Longleftrightarrow u \text { is obtained from } v \text { by "cutting loops" }
$$

In other words, $v=u_{0} v_{1} u_{1} \cdots v_{n} u_{n}$, such that the run of \mathcal{A} on v loops on each v_{i} and $u=u_{0} \cdots u_{n}$.

Every regular language is a $\leq_{\mathcal{A}}-\mathrm{PTL}$ for a suitable \mathcal{A} !
Suppose \mathcal{A} has initial states l, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

- Let $T: \Sigma^{*} \rightarrow \Delta^{*}$ map each word to its run.

Example orders I

UFA-defined wqos

Suppose \mathcal{A} is a unambiguous and accepts Σ^{*}. Define:

$$
u \leq_{\mathcal{A}} v \Longleftrightarrow u \text { is obtained from } v \text { by "cutting loops" }
$$

In other words, $v=u_{0} v_{1} u_{1} \cdots v_{n} u_{n}$, such that the run of \mathcal{A} on v loops on each v_{i} and $u=u_{0} \cdots u_{n}$.

Every regular language is a $\leq_{\mathcal{A}}$ - PTL for a suitable \mathcal{A} !
Suppose \mathcal{A} has initial states l, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

- Let $T: \Sigma^{*} \rightarrow \Delta^{*}$ map each word to its run.
- Let $T_{I}: \Sigma^{*} \rightarrow I, T_{F}: \Sigma^{*} \rightarrow F$ yield initial and final state of run.

Example orders I

UFA-defined wqos

Suppose \mathcal{A} is a unambiguous and accepts Σ^{*}. Define:

$$
u \leq_{\mathcal{A}} v \Longleftrightarrow u \text { is obtained from } v \text { by "cutting loops" }
$$

In other words, $v=u_{0} v_{1} u_{1} \cdots v_{n} u_{n}$, such that the run of \mathcal{A} on v loops on each v_{i} and $u=u_{0} \cdots u_{n}$.

Every regular language is a $\leq_{\mathcal{A}}$ - PTL for a suitable \mathcal{A} !
Suppose \mathcal{A} has initial states I, final states F, and edges $\Delta \subseteq Q \times \Sigma \times Q$.

- Let $T: \Sigma^{*} \rightarrow \Delta^{*}$ map each word to its run.
- Let $T_{I}: \Sigma^{*} \rightarrow I, T_{F}: \Sigma^{*} \rightarrow F$ yield initial and final state of run.
- $\leq_{\mathcal{A}}$ is the conjunction of $\leq T$ and $\leq T_{l}$, and $\leq T_{F}$.

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.
- $R_{j}^{\text {suf }}$ is true at p if $a_{p} \cdots a_{n} \in R_{j}$.

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.
- $R_{j}^{\text {suf }}$ is true at p if $a_{p} \cdots a_{n} \in R_{j}$.

Define:

$$
u \sqsubseteq v \Leftrightarrow \mathcal{M}_{u} \text { embeds into } \mathcal{M}_{v}
$$

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.
- $R_{j}^{\text {suf }}$ is true at p if $a_{p} \cdots a_{n} \in R_{j}$.

Define:

$$
u \sqsubseteq v \Leftrightarrow \mathcal{M}_{u} \text { embeds into } \mathcal{M}_{v}
$$

$\sqsubseteq-\mathrm{PTL}$ is equivalent to $\mathcal{B} \Sigma_{1}\left[<, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right]$ (Goubault-L. \& Schmitz).

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.
- $R_{j}^{\text {suf }}$ is true at p if $a_{p} \cdots a_{n} \in R_{j}$.

Define:

$$
u \sqsubseteq v \Leftrightarrow \mathcal{M}_{u} \text { embeds into } \mathcal{M}_{v}
$$

$\sqsubseteq-\mathrm{PTL}$ is equivalent to $\mathcal{B} \Sigma_{1}\left[<, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right]$ (Goubault-L. \& Schmitz).

- Let $T: \Sigma^{*} \rightarrow(\Sigma \times \Theta)^{*}$ decorate each position with $\Theta=2^{\{1, \ldots, k\}^{3}}$.

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.
- $R_{j}^{\text {suf }}$ is true at p if $a_{p} \cdots a_{n} \in R_{j}$.

Define:

$$
u \sqsubseteq v \Leftrightarrow \mathcal{M}_{u} \text { embeds into } \mathcal{M}_{v}
$$

$\sqsubseteq-\mathrm{PTL}$ is equivalent to $\mathcal{B} \Sigma_{1}\left[<, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right]$ (Goubault-L. \& Schmitz).

- Let $T: \Sigma^{*} \rightarrow(\Sigma \times \Theta)^{*}$ decorate each position with $\Theta=2^{\{1, \ldots, k\}^{3}}$.
- Then \leq_{T} is \sqsubseteq.

Example orders II

Regular queries

Let $R_{1}, \ldots, R_{k} \subseteq \Sigma^{*}$ be regular. To $w=a_{1} \cdots a_{n}$, we associate the structure

$$
\mathcal{M}_{w}=\left(\{1, \ldots, n\},<, P_{i}, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suf }}\right)
$$

- R_{j} is true if $w=a_{1} \cdots a_{n} \in R_{j}$.
- $R_{j}^{\text {pref }}$ is true at p if $a_{1} \cdots a_{p} \in R_{j}$.
- $R_{j}^{\text {suf }}$ is true at p if $a_{p} \cdots a_{n} \in R_{j}$.

Define:

$$
u \sqsubseteq v \Leftrightarrow \mathcal{M}_{u} \text { embeds into } \mathcal{M}_{v}
$$

$\sqsubseteq-\mathrm{PTL}$ is equivalent to $\mathcal{B} \Sigma_{1}\left[<, R_{j}, R_{j}^{\text {pref }}, R_{j}^{\text {suff }}\right]$ (Goubault-L. \& Schmitz).

- Let $T: \Sigma^{*} \rightarrow(\Sigma \times \Theta)^{*}$ decorate each position with $\Theta=2^{\{1, \ldots, k\}^{3}}$.
- Then \leq_{T} is \subseteq.

Example: $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ for fixed $d \in \mathbb{N}$.

Example orders III

Counting-defined wqos
Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\operatorname{occ}_{w}(u)=\text { number of positions in } u \text { at which } w \text { starts, }
$$

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0,
\end{aligned}
$$

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0
\end{aligned}
$$

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0 .
\end{aligned}
$$

- Let $u \sqsubseteq_{\text {occ, } w} v$ if $\operatorname{occ}_{w}(u) \leqslant \operatorname{occ}_{w}(v)$. Analogous for $\sqsubseteq_{\text {pref }, w} \sqsubseteq_{\text {suf }, w}$.

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0 .
\end{aligned}
$$

- Let $u \sqsubseteq_{\text {occ }, w} v$ if $\operatorname{occ}_{w}(u) \leqslant \operatorname{occ}_{w}(v)$. Analogous for $\sqsubseteq_{\text {pref }, w}$, $\sqsubseteq_{\text {suf }, w}$.
- Let S consist of $\sqsubseteq_{\text {occ }, w}, \sqsubseteq_{\text {pref }, w}$, $\sqsubseteq_{\text {suf }, w}$ for all $w \in \Sigma \leqslant k$.

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0 .
\end{aligned}
$$

- Let $u \sqsubseteq_{\text {occ }, w} v$ if $\operatorname{occ}_{w}(u) \leqslant \operatorname{occ}_{w}(v)$. Analogous for $\sqsubseteq_{\text {pref }, w}$, $\sqsubseteq_{\text {suf }, w}$.
- Let S consist of $\sqsubseteq_{\text {occ }, w}$, $\sqsubseteq_{\text {pref }, w}, \sqsubseteq_{\text {suf }, w}$ for all $w \in \Sigma \leqslant k$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_{k}.

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0 .
\end{aligned}
$$

- Let $u \sqsubseteq_{\text {occ }, w} v$ if $\operatorname{occ}_{w}(u) \leqslant \operatorname{occ}_{w}(v)$. Analogous for $\sqsubseteq_{\text {pref }, w}$, $\sqsubseteq_{\text {suf }, w}$.
- Let S consist of $\sqsubseteq_{\text {occ }, w}$, $\sqsubseteq_{\text {pref }, w}$, $\sqsubseteq_{\text {suf }, w}$ for all $w \in \Sigma \leqslant k$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_{k}.
- For $\sqsubseteq_{\text {occ, }, w}$, use transducer $T: \Sigma^{*} \rightarrow a^{*}$ that counts w-occurrences.

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0 .
\end{aligned}
$$

- Let $u \sqsubseteq_{\text {occ }, w} v$ if $\operatorname{occ}_{w}(u) \leqslant \operatorname{occ}_{w}(v)$. Analogous for $\sqsubseteq_{\text {pref }, w} \sqsubseteq_{\text {suf }, w}$.
- Let S consist of $\sqsubseteq_{\text {occ, } w}, \sqsubseteq_{\text {pref }, w}, \sqsubseteq_{\text {suf }, w}$ for all $w \in \Sigma \leqslant k$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_{k}.
- For $\sqsubseteq_{\text {occ, } w}$, use transducer $T: \Sigma^{*} \rightarrow a^{*}$ that counts w-occurrences.
- Hence, separability by LTT $_{k}$ decidable if SUP decidable.

Example orders III

Counting-defined wqos

Fix $k \in \mathbb{N}$ and for each $w \in \Sigma \leqslant k$, let

$$
\begin{aligned}
\operatorname{occ}_{w}(u) & =\text { number of positions in } u \text { at which } w \text { starts, } \\
\operatorname{pref}_{w}(u) & =1 \text { if } u \in w \Sigma^{*}, \text { otherwise } 0 \\
\operatorname{suf}_{w}(u) & =1 \text { if } u \in \Sigma^{*} w, \text { otherwise } 0 .
\end{aligned}
$$

- Let $u \sqsubseteq_{\text {occ }, w} v$ if $\operatorname{occ}_{w}(u) \leqslant \operatorname{occ}_{w}(v)$. Analogous for $\sqsubseteq_{\text {pref }, w}$, $\sqsubseteq_{\text {suf }, w}$.
- Let S consist of $\sqsubseteq_{\text {occ, } w}, \sqsubseteq_{\text {pref }, w}, \sqsubseteq_{\text {suf }, w}$ for all $w \in \Sigma \leqslant k$.
- Then, S-PTL are also known as the k-locally-threshold-testable languages, LTT_{k}.
- For $\sqsubseteq_{\text {occ, } w}$, use transducer $T: \Sigma^{*} \rightarrow a^{*}$ that counts w-occurrences.
- Hence, separability by LTT_{k} decidable if SUP decidable.
- For CFL, shown by Place, van Rooijen, Zeitoun in 2013 using Presburger arithmetic.

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

- Ideals are a recursively enumerable set of regular languages.

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal I, we can construct a transducer T such that $I \in \operatorname{Adh}(L)$ iff $L T \downarrow=a_{1}^{*} \cdots a_{n}^{*}$.

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal I, we can construct a transducer T such that $I \in \operatorname{Adh}(L)$ iff $L T \downarrow=a_{1}^{*} \cdots a_{n}^{*}$.

Ideal representations

Consider a wqo (Y, \leqslant) and $f: X \rightarrow Y$ and the wqo $\left(X, \leqslant_{f}\right)$. A subset $J \subseteq X$ is an ideal of $\left(X, \leqslant_{f}\right)$ if and only if $J=f^{-1}(I)$ for some ideal I of (Y, \leqslant) such that $f\left(f^{-1}(I)\right) \downarrow=I$.

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal I, we can construct a transducer T such that $I \in \operatorname{Adh}(L)$ iff $L T \downarrow=a_{1}^{*} \cdots a_{n}^{*}$.

Ideal representations

Consider a wqo (Y, \leqslant) and $f: X \rightarrow Y$ and the wqo $\left(X, \leqslant_{f}\right)$. A subset $J \subseteq X$ is an ideal of $\left(X, \leqslant_{f}\right)$ if and only if $J=f^{-1}(I)$ for some ideal I of (Y, \leqslant) such that $f\left(f^{-1}(I)\right) \downarrow=I$.

- Note that in our case, f, f^{-1}, and $\downarrow \downarrow$ preserve regularity, so $f\left(f^{-1}(I)\right) \downarrow=I$ can be checked.

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal I, we can construct a transducer T such that $I \in \operatorname{Adh}(L)$ iff $L T \downarrow=a_{1}^{*} \cdots a_{n}^{*}$.

Ideal representations

Consider a wqo (Y, \leqslant) and $f: X \rightarrow Y$ and the wqo $\left(X, \leqslant_{f}\right)$. A subset $J \subseteq X$ is an ideal of $\left(X, \leqslant_{f}\right)$ if and only if $J=f^{-1}(I)$ for some ideal I of (Y, \leqslant) such that $f\left(f^{-1}(I)\right) \downarrow=I$.

- Note that in our case, f, f^{-1}, and $\downarrow \downarrow$ preserve regularity, so $f\left(f^{-1}(I)\right) \downarrow=I$ can be checked.
- We can therefore use ideals of $\left(\Gamma^{*}, \leq\right)$ to represent ideals of $\left(\Sigma^{*}, \leq T\right)$!

Proof sketch, part I

To prove
What do we need to apply result of Goubault-Larrecq \& Schmitz?

- Ideals are a recursively enumerable set of regular languages.
- Adherence membership reduces to SUP: Given an ideal I, we can construct a transducer T such that $I \in \operatorname{Adh}(L)$ iff $L T \downarrow=a_{1}^{*} \cdots a_{n}^{*}$.

Ideal representations

Consider a wqo (Y, \leqslant) and $f: X \rightarrow Y$ and the wqo $\left(X, \leqslant_{f}\right)$. A subset $J \subseteq X$ is an ideal of $\left(X, \leqslant_{f}\right)$ if and only if $J=f^{-1}(I)$ for some ideal I of (Y, \leqslant) such that $f\left(f^{-1}(I)\right) \downarrow=I$.

- Note that in our case, f, f^{-1}, and $\cdot \downarrow$ preserve regularity, so $f\left(f^{-1}(I)\right) \downarrow=I$ can be checked.
- We can therefore use ideals of $\left(\Gamma^{*}, \leq\right)$ to represent ideals of $\left(\Sigma^{*}, \leq T\right)$!
- Ideals of $\left(\Gamma^{*}, \leq\right)$ are of the shape $X_{0}^{*}\left\{x_{1}, \varepsilon\right\} X_{1}^{*} \cdots\left\{x_{n}, \varepsilon\right\} X_{n}^{*}$.

Proof sketch, part II

Adherence membership
If $I \subseteq Y$ is an ideal with $f\left(f^{-1}(I)\right) \downarrow=I$, then

$$
f^{-1}(I) \in \operatorname{Adh}(L) \text { if and only if } I \in \operatorname{Adh}(f(L)) \text {. }
$$

Proof sketch, part II

Adherence membership

If $I \subseteq Y$ is an ideal with $f\left(f^{-1}(I)\right) \downarrow=I$, then

$$
f^{-1}(I) \in \operatorname{Adh}(L) \text { if and only if } I \in \operatorname{Adh}(f(L)) \text {. }
$$

Again, since f is realized by a transducer and we deal with full trios, we can decide adherence membership of I in $f(L) \in \mathcal{C}$!

Proof sketch, part II

Adherence membership

If $I \subseteq Y$ is an ideal with $f\left(f^{-1}(I)\right) \downarrow=I$, then

$$
f^{-1}(I) \in \operatorname{Adh}(L) \text { if and only if } I \in \operatorname{Adh}(f(L)) .
$$

Again, since f is realized by a transducer and we deal with full trios, we can decide adherence membership of I in $f(L) \in \mathcal{C}$!

Extended adherence membership

If $\left(\leqslant_{s}\right)_{s \in S}$ is a finite family of wqos, then $\operatorname{Adh}_{S}(L)$ is the set of those families $\left(I_{s}\right)_{s \in S}$ of ideals such that there is a directed $D \subseteq L$ with $I_{s}=D \downarrow_{\leqslant s}$.

Proof sketch, part II

Adherence membership

If $I \subseteq Y$ is an ideal with $f\left(f^{-1}(I)\right) \downarrow=I$, then

$$
f^{-1}(I) \in \operatorname{Adh}(L) \text { if and only if } I \in \operatorname{Adh}(f(L)) .
$$

Again, since f is realized by a transducer and we deal with full trios, we can decide adherence membership of I in $f(L) \in \mathcal{C}$!

Extended adherence membership

If $\left(\leqslant_{s}\right)_{s \in S}$ is a finite family of wqos, then $\operatorname{Adh}_{S}(L)$ is the set of those families $\left(I_{s}\right)_{s \in S}$ of ideals such that there is a directed $D \subseteq L$ with $I_{s}=D \downarrow_{\leqslant s}$.

If adherence membership for each \leqslant_{s} reduces to SUP, then this is true for the extended adherence membership problem (product construction).

Proof sketch, part III

Ideal representations for conjunctions
Let $\left(\leqslant_{s}\right)_{s \in S}$ be a finite family of wqos. Let \leqslant be the conjunction of the $\leqslant s$. Then $I \subseteq X$ is an \leqslant-ideal if and only if there is a family of ideals $\left(I_{s}\right)_{s \in S}$ such that $I=\bigcap_{s \in S} I_{s}$ and $\left(I_{s}\right)_{s \in S}$ belongs to $\operatorname{Adh}_{S}(I)$.

Proof sketch, part III

Ideal representations for conjunctions
Let $\left(\leqslant_{s}\right)_{s \in S}$ be a finite family of wqos. Let \leqslant be the conjunction of the $\leqslant s$. Then $I \subseteq X$ is an \leqslant-ideal if and only if there is a family of ideals $\left(I_{s}\right)_{s \in S}$ such that $I=\bigcap_{s \in S} I_{s}$ and $\left(I_{s}\right)_{s \in S}$ belongs to $\operatorname{Adh}_{S}(I)$.

Thus, ideals of \leqslant can be represented by tuples $\left(I_{s}\right)_{s \in S}$.

Proof sketch, part III

Ideal representations for conjunctions
Let $\left(\leqslant_{s}\right)_{s \in S}$ be a finite family of wqos. Let \leqslant be the conjunction of the \leqslant_{s}. Then $I \subseteq X$ is an \leqslant-ideal if and only if there is a family of ideals $\left(I_{s}\right)_{s \in S}$ such that $I=\bigcap_{s \in S} I_{s}$ and $\left(I_{s}\right)_{s \in S}$ belongs to $\operatorname{Adh}_{S}(I)$.

Thus, ideals of \leqslant can be represented by tuples $\left(I_{s}\right)_{s \in S}$.
Adherence membership for conjunctions
If $I=\bigcap_{s \in S} I_{s}$ as above, then $I \in \operatorname{Adh}(L)$ if and only if $\left(I_{s}\right)_{s \in S}$ belongs to $\operatorname{Adh}_{S}(L)$.

Proof sketch, part III

Ideal representations for conjunctions
Let $\left(\leqslant_{s}\right)_{s \in S}$ be a finite family of wqos. Let \leqslant be the conjunction of the \leqslant_{s}. Then $I \subseteq X$ is an \leqslant-ideal if and only if there is a family of ideals $\left(I_{s}\right)_{s \in S}$ such that $I=\bigcap_{s \in S} I_{s}$ and $\left(I_{s}\right)_{s \in S}$ belongs to $\operatorname{Adh}_{S}(I)$.

Thus, ideals of \leqslant can be represented by tuples $\left(I_{s}\right)_{s \in S}$.
Adherence membership for conjunctions
If $I=\bigcap_{s \in S} I_{s}$ as above, then $I \in \operatorname{Adh}(L)$ if and only if $\left(I_{s}\right)_{s \in S}$ belongs to $\operatorname{Adh}_{S}(L)$.

Hence, we can again reduce adherence membership to the SUP.

Proof sketch, part IV

What about S-PTL?

Goubault-Larrecq \& Schmitz's result only applies to $\leqslant-$ PTL for a single \leqslant.

Proof sketch, part IV

What about S-PTL?

Goubault-Larrecq \& Schmitz's result only applies to $\leqslant-$ PTL for a single \leqslant.

Observation

Let $\left(\leqslant_{s}\right)_{s \in S}$ be a finite family of wqos and let \leqslant be the conjunction of the \leqslant_{s}. Then a language is an S-PTL if and only if it is a $\leqslant-\mathrm{PTL}$.

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

- P_{i} for letters, < on positions

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

- P_{i} for letters, < on positions
- For all $i, d \in \mathbb{N}: \bmod _{i, d}$ true at position p if $p \equiv i(\bmod d)$.

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

- P_{i} for letters, < on positions
- For all $i, d \in \mathbb{N}: \bmod _{i, d}$ true at position p if $p \equiv i(\bmod d)$.
- For all $i, d \in \mathbb{N}: \bmod _{i, d}^{\prime}$ true if word length is $\equiv i(\bmod d)$.

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

- P_{i} for letters, < on positions
- For all $i, d \in \mathbb{N}: \bmod _{i, d}$ true at position p if $p \equiv i(\bmod d)$.
- For all $i, d \in \mathbb{N}: \bmod _{i, d}^{\prime}$ true if word length is $\equiv i(\bmod d)$.

Theorem (Chaubard, Pin, Straubing, LICS 2006)
For regular languages, definability in $\mathcal{B} \Sigma_{1}[<$, mod $]$ is decidable.

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

- P_{i} for letters, < on positions
- For all $i, d \in \mathbb{N}: \bmod _{i, d}$ true at position p if $p \equiv i(\bmod d)$.
- For all $i, d \in \mathbb{N}: \bmod _{i, d}^{\prime}$ true if word length is $\equiv i(\bmod d)$.

Theorem (Chaubard, Pin, Straubing, LICS 2006)
For regular languages, definability in $\mathcal{B} \Sigma_{1}[<$, mod $]$ is decidable.

Theojecture

For regular languages, separability by $\mathcal{B} \Sigma_{1}[<$, mod $]$ is decidable.

Recall: Separability by $\mathcal{B} \Sigma_{1}\left[<, \bmod _{d}\right]$ decidable for fixed $d \in \mathbb{N}$.

More powerful separators

$\mathcal{B} \Sigma_{1}[<, \bmod]: \mathcal{B} \Sigma_{1}$ fragment with predicates:

- P_{i} for letters, < on positions
- For all $i, d \in \mathbb{N}: \bmod _{i, d}$ true at position p if $p \equiv i(\bmod d)$.
- For all $i, d \in \mathbb{N}: \bmod _{i, d}^{\prime}$ true if word length is $\equiv i(\bmod d)$.

Theorem (Chaubard, Pin, Straubing, LICS 2006)
For regular languages, definability in $\mathcal{B} \Sigma_{1}[<$, mod $]$ is decidable.

Theojecture

For regular languages, separability by $\mathcal{B} \Sigma_{1}[<$, mod $]$ is decidable.

Theorem

For order-2 pushdown languages, separability by $\mathcal{B} \Sigma_{1}[<$, mod $]$ is undecidable.

[^0]: ${ }^{1}$ Supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD) and by Labex DigiCosme, ENS Paris-Saclay, project VERICONISS.

