Separation and Concatenations (2)

Marc Zeitoun Joint work with Thomas Place

LaBRI, Bordeaux University

July 16, 2017

Everything we know is captured by only four generic results:

1. C finite $\Rightarrow Pol(C)$ -separation decidable.

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite \Rightarrow BPol(C)-separation decidable.

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite $\Rightarrow BPol(C)$ -separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite $\Rightarrow BPol(C)$ -separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C, C-separation decidable \Rightarrow Pol(C)-membership decidable.

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite $\Rightarrow BPol(C)$ -separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C, C-separation decidable \Rightarrow Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite $\Rightarrow BPol(C)$ -separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C, C-separation decidable $\Rightarrow Pol(C)$ -membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on $BPol(\mathbb{C})$ -separation.

Separation for $BPol(\mathfrak{C})$ when \mathfrak{C} is finite

 $BPol(\mathcal{C})$ -separation: Three main steps

 $BPol(\mathcal{C})$ -separation: Three main steps

Our two closure operations have different properties:

▶ $Pol(\mathcal{C})$ closed under \cup , \cap and marked concatenation.

.

Our two closure operations have different properties:

- ▶ $Pol(\mathcal{C})$ closed under \cup , \cap and marked concatenation.
- Bool(C) closed under all Boolean operations but
 NOt marked concatenation.

Our two closure operations have different properties:

- ▶ $Pol(\mathcal{C})$ closed under \cup , \cap and marked concatenation.
- Bool(C) closed under all Boolean operations but
 NOt marked concatenation.

Our techniques rely heavily on concatenation:

 \Rightarrow we like $Pol(\mathfrak{C})$ and hate $BPol(\mathfrak{C})$.

Our two closure operations have different properties:

- ▶ $Pol(\mathcal{C})$ closed under \cup , \cap and marked concatenation.
- Bool(C) closed under all Boolean operations but
 NOt marked concatenation.

Our techniques rely heavily on concatenation:

 \Rightarrow we like $Pol(\mathcal{C})$ and hate $BPol(\mathcal{C})$.

Consequence

Even if our goal is $BPol(\mathcal{C})$ -separation, we prefer working with $Pol(\mathcal{C})$.

Meta argument for investigating separation

Learn more on $\mathcal C$ to investigate classes built on top of $\mathcal C$.

"C-separation decidable \Rightarrow Pol(C)-membership decidable."

Meta argument for investigating separation

Learn more on \mathcal{C} to investigate classes built on top of \mathcal{C} .

"C-separation decidable \Rightarrow Pol(C)-membership decidable."

Recycle this idea to get rid Boolean closure.

New Goal Reduce $BPol(\mathbb{C})$ -separation to a problem for $Pol(\mathbb{C})$.

$BPol(\mathbb{C})$ -separation: Three main steps (1)

► We generalize the notion of separability to **tuples of languages**.

▶ We generalize the notion of separability to **tuples of languages**.

 $(L_1, L_2, \ldots, L_n) \cap K \stackrel{\text{def}}{=} (L_1 \cap K, L_2 \cap K, \ldots, L_n \cap K)$

▶ We generalize the notion of separability to tuples of languages.

 $(L_1, L_2, \ldots, L_n) \cap K \stackrel{\text{def}}{=} (L_1 \cap K, L_2 \cap K, \ldots, L_n \cap K)$

Tuple \mathcal{D} -separability: inductive definition (L_1, \ldots, L_n) is \mathcal{D} -separable iff:

▶ We generalize the notion of separability to tuples of languages.

$$(L_1, L_2, \ldots, L_n) \cap K \stackrel{\text{def}}{=} (L_1 \cap K, L_2 \cap K, \ldots, L_n \cap K)$$

Tuple \mathcal{D} -separability: inductive definition (L_1, \ldots, L_n) is \mathcal{D} -separable iff: $\blacktriangleright n = 1$ and $L_1 = \emptyset$ or,

▶ We generalize the notion of separability to **tuples of languages**.

$$(L_1, L_2, \ldots, L_n) \cap K \stackrel{\text{def}}{=} (L_1 \cap K, L_2 \cap K, \ldots, L_n \cap K)$$

Tuple \mathcal{D} -separability: inductive definition (L_1 , L_2) is \mathcal{D} -separable iff:

$$(L_1,\ldots,L_n)$$
 is \mathcal{D} -separable iff

•
$$n = 1$$
 and $L_1 = \emptyset$ or,

▶ $n \ge 2$ and there exists $K \in \mathcal{D}$ such that

 $L_1 \subseteq K$ and $(L_2, \ldots, L_n) \cap K$ is \mathcal{D} -separable

▶ We generalize the notion of separability to tuples of languages.

$$(L_1, L_2, \ldots, L_n) \cap K \stackrel{\text{def}}{=} (L_1 \cap K, L_2 \cap K, \ldots, L_n \cap K)$$

Tuple $\operatorname{\mathcal{D}\text{-separability:}}$ inductive definition

$$(L_1,\ldots,L_n)$$
 is \mathcal{D} -separable iff:

•
$$n = 1$$
 and $L_1 = \emptyset$ or,

• $n \geq 2$ and there exists $K \in \mathcal{D}$ such that

 $L_1 \subseteq K$ and $(L_2, \ldots, L_n) \cap K$ is \mathcal{D} -separable

Remarks

- When n = 2, we recover the classical notion.
- The longer, the easier to separate.

Boolean closure theorem

$$(L_1, L_2)^k \stackrel{\text{def}}{=} \underbrace{(L_1, L_2, \dots, L_1, L_2)}_{\text{length } 2k}$$

Boolean closure theorem

$$(L_1, L_2)^k \stackrel{\text{def}}{=} \underbrace{(L_1, L_2, \dots, L_1, L_2)}_{\text{length } 2k}$$

$Bool(\mathcal{D})$ -separation theorem

Given a lattice \mathcal{D} and two languages L_1, L_2 , **TFAE**:

- 1. L_1 is $Bool(\mathcal{D})$ -separable from L_2 .
- 2. There exists $k \ge 1$ s.t. $(L_1, L_2)^k$ is \mathcal{D} -separable.

Boolean closure theorem

$$(L_1, L_2)^k \stackrel{\text{def}}{=} \underbrace{(L_1, L_2, \dots, L_1, L_2)}_{\text{length } 2k}$$

$Bool(\mathcal{D})$ -separation theorem

Given a lattice \mathcal{D} and two languages L_1, L_2 , **TFAE**:

- 1. L_1 is $Bool(\mathcal{D})$ -separable from L_2 .
- 2. There exists $k \ge 1$ s.t. $(L_1, L_2)^k$ is \mathcal{D} -separable.

Mission accomplished!

 $\mathcal{D} = Pol(\mathcal{C})$: reduction from $BPol(\mathcal{C})$ -separation to a problem for $Pol(\mathcal{C})$.

• $(L_2, (L_1, L_2)^{k-1}) \cap K$ is \mathcal{D} -separable

• $(L_2, (L_1, L_2)^{k-1}) \cap K$ is \mathcal{D} -separable • $(L_1, L_2)^{k-1} \cap K \cap H$ is \mathcal{D} -separable

• $(L_2, (L_1, L_2)^{k-1}) \cap K$ is \mathcal{D} -separable

• $(L_1, L_2)^{k-1} \cap K \cap H$ is \mathcal{D} -separable

Induction \Rightarrow $G \in Bool(\mathcal{D})$ separates $L_1 \cap K \cap H$ from $L_2 \cap K \cap H$

 $(G \cap K) \cup (K \setminus H) \in Bool(\mathcal{D})$ separates L_1 from L_2

$BPol(\mathbb{C})$ -separation: Three main steps (2)

Getting rid of Boolean closure

$BPol(\mathbb{C})$ -separation: Three main steps (2)

Getting rid of Boolean closure

$$(L_1, L_2) \ BPol(\mathbb{C})$$
-separable
iff
 $\exists k \ (L_1, L_2)^k \ Pol(\mathbb{C})$ -separable

$BPol(\mathbb{C})$ -separation: Three main steps (2)

Getting rid of Boolean closure

$$(L_1, L_2) \ BPol(\mathbb{C})$$
-separable
iff
 $\mathbb{E}k \ (L_1, L_2)^k \ Pol(\mathbb{C})$ -separable

Solving tuple
$$Pol(\mathcal{C})$$
-separation:
Input: (L_1, \dots, L_n)
Output: ls (L_1, \dots, L_n) $Pol(\mathcal{C})$ -separable?
Our input (L_1, \ldots, L_n) is a tuple of *n* regular languages.

We do not work directly with these languages.

Our input (L_1, \ldots, L_n) is a tuple of *n* regular languages.

We do not work directly with these languages.

Rule #1 for separation-like problems:

One always looks at several inputs simultaneously.

Our input (L_1, \ldots, L_n) is a tuple of *n* regular languages.

We do not work directly with these languages.

Rule #1 for separation-like problems:

One always looks at several inputs simultaneously.

We use a set of inputs which has a special structure.

Tuple $Pol(\mathbb{C})$ -separation: Approach (2) Input (L_1, \ldots, L_n) is a tuple of n regular languages.

Tuple $Pol(\mathcal{C})$ -separation: Approach (2) Input (L_1, \dots, L_n) is a tuple of n regular languages.

We work with a set of languages L containing all languages

$$L_{p,q} = \{ w \mid p \xrightarrow{w} q \} \quad (p,q \text{ two states of these NFAs})$$

Tuple $Pol(\mathbb{C})$ -separation: Approach (2) Input (L_1, \dots, L_n) is a tuple of n regular languages.

We work with a set of languages L containing all languages

$$L_{p,q} = \{ w \mid p \xrightarrow{w} q \} \quad (p,q \text{ two states of these NFAs})$$

Given $n \ge 1$, we compute the set $\mathfrak{T}^n[\mathbf{L}] \subseteq \mathbf{L}^n$ of all tuples $\overline{L} \in \mathbf{L}^n$ which are **not** $Pol(\mathfrak{C})$ -separable.

Answer for (L_1, \ldots, L_n) can then be extracted from this information.

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are not $Pol(\mathfrak{C})$ -separable.

The algorithm uses two hypotheses on L:

It has an algebraic structure (given by the NFAs).

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are **not** $Pol(\mathfrak{C})$ -separable.

The algorithm uses two hypotheses on L:

- It has an algebraic structure (given by the NFAs).
- ► It is C-compatible:
 - \mathcal{C} is finite \Rightarrow exists finest partition of A^* into languages of \mathcal{C} :

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are **not** $Pol(\mathfrak{C})$ -separable.

The algorithm uses two hypotheses on L:

- It has an algebraic structure (given by the NFAs).
- ▶ It is C-compatible:
 - \mathcal{C} is finite \Rightarrow exists finest partition of A^* into languages of \mathcal{C} :

Any $H \in \mathbf{L}$ must be included in a class of this partition.

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are **not** $Pol(\mathfrak{C})$ -separable.

The algorithm uses two hypotheses on L:

- It has an algebraic structure (given by the NFAs).
- ► It is C-compatible:
 - \mathcal{C} is finite \Rightarrow exists finest partition of A^* into languages of \mathcal{C} :

Any $H \in \mathbf{L}$ must be included in a class of this partition.

Tuple $Pol(\mathbb{C})$ -separation: \mathbb{C} -compatibility

Any $H \in \mathbf{L}$ must be included in a class of this partition.

We can refine the initial input set to fulfill this condition.

Answer for the original input can be recovered from the refinement.

Least fixpoint computation of $\mathfrak{T}^n[\mathbf{L}]$

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are **not** $Pol(\mathfrak{C})$ -separable.

 $\mathfrak{T}^{n}[\mathbf{L}]$ is computed by induction on n:

▶ $\mathfrak{T}^1[\mathbf{L}] \subseteq \mathbf{L}$ is the set of **nonempty** languages in \mathbf{L} .

Least fixpoint computation of $\mathfrak{T}^n[\mathbf{L}]$

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are not $Pol(\mathfrak{C})$ -separable.

 $\mathfrak{T}^{n}[\mathbf{L}]$ is computed by induction on n:

- ▶ $\mathfrak{T}^1[\mathbf{L}] \subseteq \mathbf{L}$ is the set of **nonempty** languages in \mathbf{L} .
- For $n \geq 2$, one first computes $\mathfrak{T}^{n-1}[\mathbf{L}]$, and

Least fixpoint computation of $\mathfrak{T}^n[\mathbf{L}]$

Given $n \ge 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\overline{L} \in \mathbf{L}^{n}$ which are not $Pol(\mathfrak{C})$ -separable.

 $\mathfrak{T}^{n}[\mathbf{L}]$ is computed by induction on n:

- ▶ $\mathfrak{T}^1[\mathbf{L}] \subseteq \mathbf{L}$ is the set of **nonempty** languages in \mathbf{L} .
- For $n \ge 2$, one first computes $\mathfrak{T}^{n-1}[\mathbf{L}]$, and

- Computes $\mathfrak{T}^n[\mathbf{L}]$ from a subset of trivial tuples
- Adds more with operations until a fixpoint is reached.
- Requires having $\mathfrak{T}^{n-1}[\mathbf{L}]$ in hand.

$BPol(\mathbb{C})$ -separation: Three main steps (3)

Getting rid of Boolean closure

$$(L_1, L_2) \ BPol(\mathcal{C})$$
-separable
iff
 $\exists k \ (L_1, L_2)^k \ Pol(\mathcal{C})$ -separable

Solving tuple $Pol(\mathcal{C})$ -separation: **Input:** (L_1, \ldots, L_n) (regular) **Output:** Is (L_1, \ldots, L_n) $Pol(\mathcal{C})$ -separable?

$BPol(\mathbb{C})$ -separation: Three main steps (3)

Getting rid of Boolean closure

$$(L_1, L_2) \ BPol(\mathcal{C})$$
-separable
iff
 $\exists k \ (L_1, L_2)^k \ Pol(\mathcal{C})$ -separable

Solving tuple $Pol(\mathcal{C})$ -separation: Input: (L_1, \ldots, L_n) (regular) Output: ls (L_1, \ldots, L_n) $Pol(\mathcal{C})$ -separable?

Reuse Step 2 as a subprocedure in our $BPol(\mathbb{C})$ algorithm

$BPol(\mathcal{C})$ -separation - General approach

We continue to work with a set of languages ${f L}$ with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^2$ of pairs $(K, L) \in \mathbf{L}^2$ which are **not** $BPol(\mathbb{C})$ -separable.

$BPol(\mathfrak{C})$ -separation - General approach

We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^2$ of pairs $(K, L) \in \mathbf{L}^2$ which are **not** $BPol(\mathbb{C})$ -separable.

By the previous steps

Given two languages L_1, L_2 , **TFAE**:

- 1. $L_1 BPol(\mathcal{C})$ -separable from L_2 .
- 2. There exists $k \ge 1$ s.t. $(L_1, L_2)^k$ is $Pol(\mathcal{C})$ -separable.

$BPol(\mathcal{C})$ -separation - General approach

We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^2$ of pairs $(K, L) \in \mathbf{L}^2$ which are **not** $BPol(\mathbb{C})$ -separable.

By the previous steps

Given two languages L_1, L_2 , **TFAE**:

- 1. L_1 is **not** $BPol(\mathcal{C})$ -separable from L_2 .
- 2. For all $k \ge 1$, $(L_1, L_2)^k$ is not $Pol(\mathcal{C})$ -separable.

$BPol(\mathfrak{C})$ -separation - General approach

We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^2$ of pairs $(K, L) \in \mathbf{L}^2$ which are **not** $BPol(\mathbb{C})$ -separable.

By the previous steps

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
- 2. For all $k \ge 1$, $(K, L)^k$ not $Pol(\mathcal{C})$ -separable, i.e. $(K, L)^k \in \mathbb{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathfrak{I}^2[\mathbf{L}]$. Greatest fixpoint: From $\mathfrak{I}^2[\mathbf{L}]$, remove elements with an operation until fixpoint.

 $\mathbf{T}_0=\mathbb{T}^2[\mathbf{L}]$

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathfrak{T}^2[\mathbf{L}]$. Greatest fixpoint: From $\mathfrak{T}^2[\mathbf{L}]$, remove elements with an operation until fixpoint.

Least fixpoint

$$\begin{split} \mathbf{T}_0 &= \mathcal{T}^2[\mathbf{L}] \\ \cup & \\ \mathbf{T}_1 \end{split}$$

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Given two languages $K, L \in \mathbf{L}$, **TFAE**:

- 1. $(K, L) \in \mathcal{A}[\mathbf{L}].$
- 2. For all $k \ge 1$, $(K, L)^k \in \mathfrak{T}^{2k}[\mathbf{L}]$.

Conclusion

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite \Rightarrow BPol(C)-separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C,

 \mathcal{C} -separation decidable \Rightarrow $Pol(\mathcal{C})$ -membership decidable.

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite \Rightarrow BPol(C)-separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C,

C-separation decidable \Rightarrow Pol(C)-membership decidable.

Bonus corresponding to enrichment with successor

For any \mathcal{C} , \mathcal{C} -separation decidable $\Rightarrow \mathcal{C}^+$ -separation decidable.

Everything we know is captured by only four generic results:

- 1. C finite \Rightarrow Pol(C)-separation decidable.
- 2. C finite \Rightarrow BPol(C)-separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C,

 $\texttt{C-separation decidable} \Rightarrow \mathit{Pol}(\texttt{C})\text{-membership decidable}.$

Bonus corresponding to enrichment with successor

For any \mathcal{C} , \mathcal{C} -separation decidable $\Rightarrow \mathcal{C}^+$ -separation decidable.

Some words about **complexity**:

- 1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).
- 2. *Pol*(AT) and *BPol*(AT) are **PSpace**(-complete).

Everything we know is captured by only four generic results:

- 1. C finite $\Rightarrow Pol(C)$ -separation decidable.
- 2. C finite $\Rightarrow BPol(C)$ -separation decidable.
- 3. C finite $\Rightarrow Pol(BPol(C))$ -separation decidable.
- 4. For any C,

 $\texttt{C}\text{-separation decidable} \Rightarrow \mathit{Pol}(\texttt{C})\text{-membership decidable}.$

Bonus corresponding to enrichment with successor

For any \mathcal{C} , \mathcal{C} -separation decidable $\Rightarrow \mathcal{C}^+$ -separation decidable.

Some words about **complexity**:

- 1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).
- 2. *Pol*(AT) and *BPol*(AT) are **PSpace**(-complete).
- 3. If the alphabet is fixed, or $|\mathfrak{C}|$ is constant,

 $Pol(\mathcal{C})$ -separation and $BPol(\mathcal{C})$ -separation are in **PTime**

Future work

We have the result,

► For any C,

 \mathcal{C} -separation decidable \Rightarrow $Pol(\mathcal{C})$ -membership decidable.
Conclusion (2)

Future work

We have the result,

▶ For any C,

 ${\mathfrak C}\text{-separation decidable} \Rightarrow {\it Pol}({\mathfrak C})\text{-membership decidable}.$

A nontrivial corollary of the $BPol(\mathbb{C})$ -algorithm is as follows:

► For any C, C-"something" decidable ⇒ BPol(C)-membership decidable.

Conclusion (2)

Future work

We have the result,

▶ For any C,

 \mathcal{C} -separation decidable \Rightarrow $Pol(\mathcal{C})$ -membership decidable.

A nontrivial corollary of the $BPol(\mathcal{C})$ -algorithm is as follows:

► For any C,

 ${\mathfrak C}\text{-``something''}$ decidable \Rightarrow $BPol({\mathfrak C})\text{-membership}$ decidable.

 $\mathcal{B}\Sigma_2(<)$ -"something" seems to be decidable which would yield a membership algorithm for $\mathcal{B}\Sigma_3(<)$.

Thank You