
Separation and Concatenations (2)

Marc Zeitoun
Joint work with Thomas Place

LaBRI, Bordeaux University

July 16, 2017

1 / 23

Summary of Part 1

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on BPol(C)-separation.

2 / 23

Summary of Part 1

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on BPol(C)-separation.

2 / 23

Summary of Part 1

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on BPol(C)-separation.

2 / 23

Summary of Part 1

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on BPol(C)-separation.

2 / 23

Summary of Part 1

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on BPol(C)-separation.

2 / 23

Summary of Part 1

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on BPol(C)-separation.

2 / 23

Separation for BPol(C) when C is finite

3 / 23

BPol(C)-separation: Three main steps

Step 1

Step 2

Step 3

The algorithm is based on three main steps.

I We explain their purpose at a high level.

4 / 23

BPol(C)-separation: Three main steps

Step 1

Step 2

Step 3

The algorithm is based on three main steps.

I We explain their purpose at a high level.

4 / 23

First step - preliminary remark

Our two closure operations have different properties:

I Pol(C) closed under ∪, ∩ and marked concatenation.

I Bool(C) closed under all Boolean operations but

not marked concatenation.
.

Our techniques rely heavily on concatenation:

⇒ we like Pol(C) and hate BPol(C).

Consequence
Even if our goal is BPol(C)-separation, we prefer working with Pol(C).

5 / 23

First step - preliminary remark

Our two closure operations have different properties:

I Pol(C) closed under ∪, ∩ and marked concatenation.
I Bool(C) closed under all Boolean operations but

not marked concatenation.
.

Our techniques rely heavily on concatenation:

⇒ we like Pol(C) and hate BPol(C).

Consequence
Even if our goal is BPol(C)-separation, we prefer working with Pol(C).

5 / 23

First step - preliminary remark

Our two closure operations have different properties:

I Pol(C) closed under ∪, ∩ and marked concatenation.
I Bool(C) closed under all Boolean operations but

not marked concatenation.
.

Our techniques rely heavily on concatenation:

⇒ we like Pol(C) and hate BPol(C).

Consequence
Even if our goal is BPol(C)-separation, we prefer working with Pol(C).

5 / 23

First step - preliminary remark

Our two closure operations have different properties:

I Pol(C) closed under ∪, ∩ and marked concatenation.
I Bool(C) closed under all Boolean operations but

not marked concatenation.
.

Our techniques rely heavily on concatenation:

⇒ we like Pol(C) and hate BPol(C).

Consequence
Even if our goal is BPol(C)-separation, we prefer working with Pol(C).

5 / 23

First step - preliminary remark

Meta argument for investigating separation
Learn more on C to investigate classes built on top of C.

“C-separation decidable ⇒ Pol(C)-membership decidable.”

Recycle this idea to get rid Boolean closure.

New Goal
Reduce BPol(C)-separation to a problem for Pol(C).

6 / 23

First step - preliminary remark

Meta argument for investigating separation
Learn more on C to investigate classes built on top of C.

“C-separation decidable ⇒ Pol(C)-membership decidable.”

Recycle this idea to get rid Boolean closure.

New Goal
Reduce BPol(C)-separation to a problem for Pol(C).

6 / 23

BPol(C)-separation: Three main steps (1)

Step 1

Step 2

Step 3

Getting rid of Boolean closure

7 / 23

Bool(D)-separation ⇒ tuple separation for D

I We generalize the notion of separability to tuples of languages.

(L1, L2, . . . , Ln) ∩K
def
= (L1 ∩K,L2 ∩K, . . . , Ln ∩K)

Tuple D-separability: inductive definition
(L1, . . . , Ln) is D-separable iff:

I n = 1 and L1 = ∅ or,
I n ≥ 2 and there exists K ∈ D such that

L1 ⊆ K and (L2, . . . , Ln) ∩K is D-separable

Remarks
I When n = 2, we recover the classical notion.
I The longer, the easier to separate.

8 / 23

Bool(D)-separation ⇒ tuple separation for D

I We generalize the notion of separability to tuples of languages.

(L1, L2, . . . , Ln) ∩K
def
= (L1 ∩K,L2 ∩K, . . . , Ln ∩K)

Tuple D-separability: inductive definition
(L1, . . . , Ln) is D-separable iff:

I n = 1 and L1 = ∅ or,
I n ≥ 2 and there exists K ∈ D such that

L1 ⊆ K and (L2, . . . , Ln) ∩K is D-separable

Remarks
I When n = 2, we recover the classical notion.
I The longer, the easier to separate.

8 / 23

Bool(D)-separation ⇒ tuple separation for D

I We generalize the notion of separability to tuples of languages.

(L1, L2, . . . , Ln) ∩K
def
= (L1 ∩K,L2 ∩K, . . . , Ln ∩K)

Tuple D-separability: inductive definition
(L1, . . . , Ln) is D-separable iff:

I n = 1 and L1 = ∅ or,
I n ≥ 2 and there exists K ∈ D such that

L1 ⊆ K and (L2, . . . , Ln) ∩K is D-separable

Remarks
I When n = 2, we recover the classical notion.
I The longer, the easier to separate.

8 / 23

Bool(D)-separation ⇒ tuple separation for D

I We generalize the notion of separability to tuples of languages.

(L1, L2, . . . , Ln) ∩K
def
= (L1 ∩K,L2 ∩K, . . . , Ln ∩K)

Tuple D-separability: inductive definition
(L1, . . . , Ln) is D-separable iff:

I n = 1 and L1 = ∅ or,

I n ≥ 2 and there exists K ∈ D such that
L1 ⊆ K and (L2, . . . , Ln) ∩K is D-separable

Remarks
I When n = 2, we recover the classical notion.
I The longer, the easier to separate.

8 / 23

Bool(D)-separation ⇒ tuple separation for D

I We generalize the notion of separability to tuples of languages.

(L1, L2, . . . , Ln) ∩K
def
= (L1 ∩K,L2 ∩K, . . . , Ln ∩K)

Tuple D-separability: inductive definition
(L1, . . . , Ln) is D-separable iff:

I n = 1 and L1 = ∅ or,
I n ≥ 2 and there exists K ∈ D such that

L1 ⊆ K and (L2, . . . , Ln) ∩K is D-separable

Remarks
I When n = 2, we recover the classical notion.
I The longer, the easier to separate.

8 / 23

Bool(D)-separation ⇒ tuple separation for D

I We generalize the notion of separability to tuples of languages.

(L1, L2, . . . , Ln) ∩K
def
= (L1 ∩K,L2 ∩K, . . . , Ln ∩K)

Tuple D-separability: inductive definition
(L1, . . . , Ln) is D-separable iff:

I n = 1 and L1 = ∅ or,
I n ≥ 2 and there exists K ∈ D such that

L1 ⊆ K and (L2, . . . , Ln) ∩K is D-separable

Remarks
I When n = 2, we recover the classical notion.
I The longer, the easier to separate.

8 / 23

Boolean closure theorem

(L1, L2)k
def
=

(L1, L2, . . . , L1, L2)

length 2k

Bool(D)-separation theorem
Given a lattice D and two languages L1, L2, TFAE:
1. L1 is Bool(D)-separable from L2.
2. There exists k ≥ 1 s.t. (L1, L2)k is D-separable.

Mission accomplished!
D = Pol(C): reduction from BPol(C)-separation to a problem for Pol(C).

9 / 23

Boolean closure theorem

(L1, L2)k
def
=

(L1, L2, . . . , L1, L2)

length 2k

Bool(D)-separation theorem
Given a lattice D and two languages L1, L2, TFAE:
1. L1 is Bool(D)-separable from L2.
2. There exists k ≥ 1 s.t. (L1, L2)k is D-separable.

Mission accomplished!
D = Pol(C): reduction from BPol(C)-separation to a problem for Pol(C).

9 / 23

Boolean closure theorem

(L1, L2)k
def
=

(L1, L2, . . . , L1, L2)

length 2k

Bool(D)-separation theorem
Given a lattice D and two languages L1, L2, TFAE:
1. L1 is Bool(D)-separable from L2.
2. There exists k ≥ 1 s.t. (L1, L2)k is D-separable.

Mission accomplished!
D = Pol(C): reduction from BPol(C)-separation to a problem for Pol(C).

9 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

HG

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable
• (L1, L2)k−1 ∩K ∩H is D-separable

Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

HG

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable
• (L1, L2)k−1 ∩K ∩H is D-separable

Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

HG

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable

• (L1, L2)k−1 ∩K ∩H is D-separable
Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

H

G

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable
• (L1, L2)k−1 ∩K ∩H is D-separable

Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

H

G

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable
• (L1, L2)k−1 ∩K ∩H is D-separable

Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

HG

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable
• (L1, L2)k−1 ∩K ∩H is D-separable

Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

Boolean closure theorem: proof of 2⇒ 1
Induction on k: (L1, L2)k D-separable ⇒ L1 Bool(D)-separable from L2.

K

HG

L1 L2

• (L2, (L1, L2)k−1) ∩K is D-separable
• (L1, L2)k−1 ∩K ∩H is D-separable

Induction ⇒ G ∈ Bool(D) separates L1 ∩K ∩H from L2 ∩K ∩H

(G ∩K) ∪ (K \H) ∈ Bool(D) separates L1 from L2

10 / 23

BPol(C)-separation: Three main steps (2)

Step 1

Step 2

Step 3

Getting rid of Boolean closure

(L1, L2) BPol(C)-separable
iff

∃k (L1, L2)k Pol(C)-separable

Solving tuple Pol(C)-separation:
Input: (L1, . . . , Ln)
Output: Is (L1, . . . , Ln) Pol(C)-separable?

11 / 23

BPol(C)-separation: Three main steps (2)

Step 1

Step 2

Step 3

Getting rid of Boolean closure

(L1, L2) BPol(C)-separable
iff

∃k (L1, L2)k Pol(C)-separable

Solving tuple Pol(C)-separation:
Input: (L1, . . . , Ln)
Output: Is (L1, . . . , Ln) Pol(C)-separable?

11 / 23

BPol(C)-separation: Three main steps (2)

Step 1

Step 2

Step 3

Getting rid of Boolean closure

(L1, L2) BPol(C)-separable
iff

∃k (L1, L2)k Pol(C)-separable

Solving tuple Pol(C)-separation:
Input: (L1, . . . , Ln)
Output: Is (L1, . . . , Ln) Pol(C)-separable?

11 / 23

Tuple Pol(C)-separation: Approach (1)

Our input (L1, . . . , Ln) is a tuple of n regular languages.

We do not work directly with these languages.

Rule #1 for separation-like problems:

One always looks at several inputs simultaneously.

We use a set of inputs which has a special structure.

12 / 23

Tuple Pol(C)-separation: Approach (1)

Our input (L1, . . . , Ln) is a tuple of n regular languages.

We do not work directly with these languages.

Rule #1 for separation-like problems:

One always looks at several inputs simultaneously.

We use a set of inputs which has a special structure.

12 / 23

Tuple Pol(C)-separation: Approach (1)

Our input (L1, . . . , Ln) is a tuple of n regular languages.

We do not work directly with these languages.

Rule #1 for separation-like problems:

One always looks at several inputs simultaneously.

We use a set of inputs which has a special structure.

12 / 23

Tuple Pol(C)-separation: Approach (2)
Input (L1, . . . , Ln) is a tuple of n regular languages.

⇒ We have NFAs for these languages:

Ln

c

a

b

b
b

b

c

a

a

a b b b

a

L1

We work with a set of languages L containing all languages

Lp,q = {w | p w−−−−→ q} (p, q two states of these NFAs)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

Answer for (L1, . . . , Ln) can then be extracted from this information.

13 / 23

Tuple Pol(C)-separation: Approach (2)
Input (L1, . . . , Ln) is a tuple of n regular languages.

⇒ We have NFAs for these languages:

Ln

c

a

b

b
b

b

c

a

a

a b b b

a

L1

We work with a set of languages L containing all languages

Lp,q = {w | p w−−−−→ q} (p, q two states of these NFAs)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

Answer for (L1, . . . , Ln) can then be extracted from this information.

13 / 23

Tuple Pol(C)-separation: Approach (2)
Input (L1, . . . , Ln) is a tuple of n regular languages.

⇒ We have NFAs for these languages:

Ln

c

a

b

b
b

b

c

a

a

a b b b

a

L1

We work with a set of languages L containing all languages

Lp,q = {w | p w−−−−→ q} (p, q two states of these NFAs)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

Answer for (L1, . . . , Ln) can then be extracted from this information.

13 / 23

Tuple Pol(C)-separation: Approach (3)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

The algorithm uses two hypotheses on L:

I It has an algebraic structure (given by the NFAs).

I It is C-compatible:
C is finite ⇒ exists finest partition of A∗ into languages of C:

A∗

H1

H2

H3 H4

Can be assumed without loss of generality
Only place where the algorithm depends on C

Any H ∈ L must be included in a class of this partition.

14 / 23

Tuple Pol(C)-separation: Approach (3)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

The algorithm uses two hypotheses on L:

I It has an algebraic structure (given by the NFAs).
I It is C-compatible:

C is finite ⇒ exists finest partition of A∗ into languages of C:

A∗

H1

H2

H3 H4

Can be assumed without loss of generality
Only place where the algorithm depends on C

Any H ∈ L must be included in a class of this partition.

14 / 23

Tuple Pol(C)-separation: Approach (3)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

The algorithm uses two hypotheses on L:

I It has an algebraic structure (given by the NFAs).
I It is C-compatible:

C is finite ⇒ exists finest partition of A∗ into languages of C:

A∗

H1

H2

H3 H4

Can be assumed without loss of generality
Only place where the algorithm depends on C

Any H ∈ L must be included in a class of this partition.
14 / 23

Tuple Pol(C)-separation: Approach (3)

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

The algorithm uses two hypotheses on L:

I It has an algebraic structure (given by the NFAs).
I It is C-compatible:

C is finite ⇒ exists finest partition of A∗ into languages of C:

A∗

H1

H2

H3 H4

Can be assumed without loss of generality
Only place where the algorithm depends on C

Any H ∈ L must be included in a class of this partition.
14 / 23

Tuple Pol(C)-separation: C-compatibility

A∗

H1

H2

H3 H4

Any H ∈ L must be included in a class of this partition.

We can refine the initial input set to fulfill this condition.

Answer for the original input can be recovered from the refinement.

15 / 23

Least fixpoint computation of Tn[L]

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

Tn[L] is computed by induction on n:

I T1[L] ⊆ L is the set of nonempty languages in L.

I For n ≥ 2, one first computes Tn−1[L], and

Least fixpoint

Tn−1[L] Tn[L]

I Computes Tn[L] from a subset of trivial tuples
I Adds more with operations until a fixpoint is reached.
I Requires having Tn−1[L] in hand.

16 / 23

Least fixpoint computation of Tn[L]

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

Tn[L] is computed by induction on n:

I T1[L] ⊆ L is the set of nonempty languages in L.
I For n ≥ 2, one first computes Tn−1[L], and

Least fixpoint

Tn−1[L] Tn[L]

I Computes Tn[L] from a subset of trivial tuples
I Adds more with operations until a fixpoint is reached.
I Requires having Tn−1[L] in hand.

16 / 23

Least fixpoint computation of Tn[L]

Given n ≥ 1, we compute the set Tn[L] ⊆ Ln of all tuples L ∈ Ln which
are not Pol(C)-separable.

Tn[L] is computed by induction on n:

I T1[L] ⊆ L is the set of nonempty languages in L.
I For n ≥ 2, one first computes Tn−1[L], and

Least fixpoint

Tn−1[L] Tn[L]

I Computes Tn[L] from a subset of trivial tuples
I Adds more with operations until a fixpoint is reached.
I Requires having Tn−1[L] in hand.

16 / 23

BPol(C)-separation: Three main steps (3)

Step 1

Step 2

Step 3

Getting rid of Boolean closure

(L1, L2) BPol(C)-separable
iff

∃k (L1, L2)k Pol(C)-separable

Solving tuple Pol(C)-separation:
Input: (L1, . . . , Ln) (regular)
Output: Is (L1, . . . , Ln) Pol(C)-separable?

Reuse Step 2 as a subprocedure
in our BPol(C) algorithm

17 / 23

BPol(C)-separation: Three main steps (3)

Step 1

Step 2

Step 3

Getting rid of Boolean closure

(L1, L2) BPol(C)-separable
iff

∃k (L1, L2)k Pol(C)-separable

Solving tuple Pol(C)-separation:
Input: (L1, . . . , Ln) (regular)
Output: Is (L1, . . . , Ln) Pol(C)-separable?

Reuse Step 2 as a subprocedure
in our BPol(C) algorithm

17 / 23

BPol(C)-separation - General approach

We continue to work with a set of languages L with appropriate properties.

We compute the set A[L] ⊆ L2 of pairs (K,L) ∈ L2 which are
not BPol(C)-separable.

By the previous steps
1.
2.

18 / 23

BPol(C)-separation - General approach

We continue to work with a set of languages L with appropriate properties.

We compute the set A[L] ⊆ L2 of pairs (K,L) ∈ L2 which are
not BPol(C)-separable.

By the previous steps
Given two languages L1, L2, TFAE:
1. L1 BPol(C)-separable from L2.
2. There exists k ≥ 1 s.t. (L1, L2)k is Pol(C)-separable.

18 / 23

BPol(C)-separation - General approach

We continue to work with a set of languages L with appropriate properties.

We compute the set A[L] ⊆ L2 of pairs (K,L) ∈ L2 which are
not BPol(C)-separable.

By the previous steps
Given two languages L1, L2, TFAE:
1. L1 is not BPol(C)-separable from L2.
2. For all k ≥ 1, (L1, L2)k is not Pol(C)-separable.

18 / 23

BPol(C)-separation - General approach

We continue to work with a set of languages L with appropriate properties.

We compute the set A[L] ⊆ L2 of pairs (K,L) ∈ L2 which are
not BPol(C)-separable.

By the previous steps
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k not Pol(C)-separable, i.e. (K,L)k ∈ T2k[L].

18 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint

T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

BPol(C)-separation - Greatest fixpoint
Given two languages K,L ∈ L, TFAE:
1. (K,L) ∈ A[L].
2. For all k ≥ 1, (K,L)k ∈ T2k[L].

In particular, A[L] ⊆ T2[L]. Greatest fixpoint:
From T2[L], remove elements with an operation until fixpoint.

Least fixpoint
T0 = T2[L]

R ⊆ L3

(R = T3[L])

T1 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

T1

⊆

T2

R ⊆ L3

T2 = {(K,L) | (K,L,K) ∈ R} ⊆ L2

⊆

Tn Eventually, a fixpoint is reached, Tn = Tn+1 = A[L]

The BPol(C)-algorithm is a greatest fixpoint
whose operation is a least fixpoint

19 / 23

Conclusion

20 / 23

Conclusion (1)
Everything we know is captured by only four generic results:
1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Bonus corresponding to enrichment with successor
For any C, C-separation decidable ⇒ C+-separation decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).
2. Pol(AT) and BPol(AT) are PSpace(-complete).
3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime

21 / 23

Conclusion (1)
Everything we know is captured by only four generic results:
1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Bonus corresponding to enrichment with successor
For any C, C-separation decidable ⇒ C+-separation decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).

2. Pol(AT) and BPol(AT) are PSpace(-complete).
3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime

21 / 23

Conclusion (1)
Everything we know is captured by only four generic results:
1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Bonus corresponding to enrichment with successor
For any C, C-separation decidable ⇒ C+-separation decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).
2. Pol(AT) and BPol(AT) are PSpace(-complete).

3. If the alphabet is fixed, or |C| is constant,
Pol(C)-separation and BPol(C)-separation are in PTime

21 / 23

Conclusion (1)
Everything we know is captured by only four generic results:
1. C finite ⇒ Pol(C)-separation decidable.
2. C finite ⇒ BPol(C)-separation decidable.
3. C finite ⇒ Pol(BPol(C))-separation decidable.
4. For any C,

C-separation decidable ⇒ Pol(C)-membership decidable.

Bonus corresponding to enrichment with successor
For any C, C-separation decidable ⇒ C+-separation decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).
2. Pol(AT) and BPol(AT) are PSpace(-complete).
3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime
21 / 23

Conclusion (2)

Future work
We have the result,

I For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

A nontrivial corollary of the BPol(C)-algorithm is as follows:
I For any C,

C-“something” decidable ⇒ BPol(C)-membership decidable.
BΣ2(<)-“something” seems to be decidable which would yield a
membership algorithm for BΣ3(<).

22 / 23

Conclusion (2)

Future work
We have the result,

I For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

A nontrivial corollary of the BPol(C)-algorithm is as follows:
I For any C,

C-“something” decidable ⇒ BPol(C)-membership decidable.

BΣ2(<)-“something” seems to be decidable which would yield a
membership algorithm for BΣ3(<).

22 / 23

Conclusion (2)

Future work
We have the result,

I For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

A nontrivial corollary of the BPol(C)-algorithm is as follows:
I For any C,

C-“something” decidable ⇒ BPol(C)-membership decidable.
BΣ2(<)-“something” seems to be decidable which would yield a
membership algorithm for BΣ3(<).

22 / 23

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

Schützenberger’65
McNaughton-Papert’71

Henckell’88
Place,Z.’14

Simon’75

Almeida,Z.’97
Czerwinski,Martens,Masopust’13

Place,Van Rooijen,Z.’13

Place,Z.’14
Arfi’87

Pin, Weil’95

Place,Z.’14 Place,Z.’17 Place’15

Place’15

Thank You
23 / 23

	Boolean Combinations
	Conclusion

