Separation and Concatenations (2)

Marc Zeitoun
Joint work with Thomas Place
LaBRI, Bordeaux University

July 16, 2017

Summary of Part 1

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.

Summary of Part 1

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.

Summary of Part 1

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.

Summary of Part 1

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Summary of Part 1

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Negation is hard, one negation can be circumvented.

Summary of Part 1

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Negation is hard, one negation can be circumvented.

This talk: We focus on $B P o l(\mathcal{C})$-separation.

Separation for $\operatorname{BPol}(\mathcal{C})$ when \mathcal{C} is finite

BPol(C)-separation: Three main steps

```
Step 1
Step 2
Step 3
```

The algorithm is based on three main steps.

BPol(C)-separation: Three main steps

Step 1

The algorithm is based on three main steps.

First step - preliminary remark

Our two closure operations have different properties:

- $\operatorname{Pol}(\mathcal{C})$ closed under \cup, \cap and marked concatenation.

First step - preliminary remark

Our two closure operations have different properties:

- $\operatorname{Pol}(\mathcal{C})$ closed under \cup, \cap and marked concatenation.
- Bool(C) closed under all Boolean operations but nOt marked concatenation.

First step - preliminary remark

Our two closure operations have different properties:

- $\operatorname{Pol}(\mathcal{C})$ closed under \cup, \cap and marked concatenation.
- Bool(C) closed under all Boolean operations but nOt marked concatenation.

Our techniques rely heavily on concatenation:
\Rightarrow we like $\operatorname{Pol}(\mathrm{C})$ and hate $\operatorname{BPol}(\mathrm{C})$.

First step - preliminary remark

Our two closure operations have different properties:

- $\operatorname{Pol}(\mathcal{C})$ closed under \cup, \cap and marked concatenation.
- Bool(C) closed under all Boolean operations but not marked concatenation.

Our techniques rely heavily on concatenation:
\Rightarrow we like $\operatorname{Pol}(\mathrm{C})$ and hate $\operatorname{BPol}(\mathrm{C})$.

Consequence

Even if our goal is $\operatorname{BPol}(\mathcal{C})$-separation, we prefer working with $\operatorname{Pol}(\mathcal{C})$.

First step - preliminary remark

Meta argument for investigating separation
Learn more on \mathcal{C} to investigate classes built on top of \mathcal{C}.
" C -separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable."

First step - preliminary remark

Meta argument for investigating separation
Learn more on \mathcal{C} to investigate classes built on top of \mathcal{C}.
" C -separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable."

Recycle this idea to get rid Boolean closure.

New Goal
Reduce $B \operatorname{Pol}(\mathcal{C})$-separation to a problem for $\operatorname{Pol}(\mathcal{C})$.

BPol(C)-separation: Three main steps (1)

Getting rid of Boolean closure

$\operatorname{Bool}(\mathcal{D})$-separation \Rightarrow tuple separation for \mathcal{D}

- We generalize the notion of separability to tuples of languages.

Bool(D)-separation \Rightarrow tuple separation for \mathcal{D}

- We generalize the notion of separability to tuples of languages.

$$
\left(L_{1}, L_{2}, \ldots, L_{n}\right) \cap K \quad \stackrel{\text { def }}{=} \quad\left(L_{1} \cap K, L_{2} \cap K, \ldots, L_{n} \cap K\right)
$$

$\operatorname{Bool}(\mathcal{D})$-separation \Rightarrow tuple separation for \mathcal{D}

- We generalize the notion of separability to tuples of languages.

$$
\left(L_{1}, L_{2}, \ldots, L_{n}\right) \cap K \quad \stackrel{\text { def }}{=} \quad\left(L_{1} \cap K, L_{2} \cap K, \ldots, L_{n} \cap K\right)
$$

Tuple \mathcal{D}-separability: inductive definition
$\left(L_{1}, \ldots, L_{n}\right)$ is \mathcal{D}-separable iff:

Bool(D)-separation \Rightarrow tuple separation for \mathcal{D}

- We generalize the notion of separability to tuples of languages.

$$
\left(L_{1}, L_{2}, \ldots, L_{n}\right) \cap K \quad \stackrel{\text { def }}{=} \quad\left(L_{1} \cap K, L_{2} \cap K, \ldots, L_{n} \cap K\right)
$$

Tuple \mathcal{D}-separability: inductive definition
$\left(L_{1}, \ldots, L_{n}\right)$ is \mathcal{D}-separable iff:

- $n=1$ and $L_{1}=\emptyset$ or,

Bool(D)-separation \Rightarrow tuple separation for \mathcal{D}

- We generalize the notion of separability to tuples of languages.

$$
\left(L_{1}, L_{2}, \ldots, L_{n}\right) \cap K \quad \stackrel{\text { def }}{=} \quad\left(L_{1} \cap K, L_{2} \cap K, \ldots, L_{n} \cap K\right)
$$

Tuple \mathcal{D}-separability: inductive definition
$\left(L_{1}, \ldots, L_{n}\right)$ is \mathcal{D}-separable iff:

- $n=1$ and $L_{1}=\emptyset$ or,
- $n \geq 2$ and there exists $K \in \mathcal{D}$ such that

$$
L_{1} \subseteq K \quad \text { and } \quad\left(L_{2}, \ldots, L_{n}\right) \cap K \text { is } \mathcal{D} \text {-separable }
$$

Bool(D)-separation \Rightarrow tuple separation for \mathcal{D}

- We generalize the notion of separability to tuples of languages.

$$
\left(L_{1}, L_{2}, \ldots, L_{n}\right) \cap K \quad \stackrel{\text { def }}{=} \quad\left(L_{1} \cap K, L_{2} \cap K, \ldots, L_{n} \cap K\right)
$$

Tuple \mathcal{D}-separability: inductive definition
$\left(L_{1}, \ldots, L_{n}\right)$ is \mathcal{D}-separable iff:

- $n=1$ and $L_{1}=\emptyset$ or,
- $n \geq 2$ and there exists $K \in \mathcal{D}$ such that

$$
L_{1} \subseteq K \quad \text { and } \quad\left(L_{2}, \ldots, L_{n}\right) \cap K \text { is } \mathcal{D} \text {-separable }
$$

Remarks

- When $n=2$, we recover the classical notion.
- The longer, the easier to separate.

Boolean closure theorem

$$
\left(L_{1}, L_{2}\right)^{k} \stackrel{\text { def }}{=} \underbrace{\left(L_{1}, L_{2}, \ldots, L_{1}, L_{2}\right)}_{\text {length } 2 k}
$$

Boolean closure theorem

$$
\left(L_{1}, L_{2}\right)^{k} \stackrel{\text { def }}{=} \underbrace{\left(L_{1}, L_{2}, \ldots, L_{1}, L_{2}\right)}_{\text {length } 2 k}
$$

$\operatorname{Bool}(D)$-separation theorem

Given a lattice \mathcal{D} and two languages L_{1}, L_{2}, TFAE:

1. L_{1} is $\operatorname{Bool}(\mathcal{D})$-separable from L_{2}.
2. There exists $k \geq 1$ s.t. $\left(L_{1}, L_{2}\right)^{k}$ is \mathcal{D}-separable.

Boolean closure theorem

$$
\left(L_{1}, L_{2}\right)^{k} \stackrel{\text { def }}{=} \underbrace{\left(L_{1}, L_{2}, \ldots, L_{1}, L_{2}\right)}_{\text {length } 2 k}
$$

$\operatorname{Bool}(D)$-separation theorem

Given a lattice \mathcal{D} and two languages L_{1}, L_{2}, TFAE:

1. L_{1} is $\operatorname{Bool}(\mathcal{D})$-separable from L_{2}.
2. There exists $k \geq 1$ s.t. $\left(L_{1}, L_{2}\right)^{k}$ is \mathcal{D}-separable.

Mission accomplished!
$\mathcal{D}=\operatorname{Pol}(\mathcal{C}):$ reduction from $\operatorname{BPol}(\mathcal{C})$-separation to a problem for $\operatorname{Pol}(\mathcal{C})$.

Boolean closure theorem: proof of $2 \Rightarrow 1$
Induction on k : $\left(L_{1}, L_{2}\right)^{k} \mathcal{D}$-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

Boolean closure theorem: proof of $2 \Rightarrow 1$ Induction on k : $\left(L_{1}, L_{2}\right)^{k} \mathcal{D}$-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

Boolean closure theorem: proof of $2 \Rightarrow 1$
Induction on $k:\left(L_{1}, L_{2}\right)^{k} \mathcal{D}$-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

- $\left(L_{2},\left(L_{1}, L_{2}\right)^{k-1}\right) \cap K$ is \mathcal{D}-separable

Boolean closure theorem: proof of $2 \Rightarrow 1$
Induction on $k:\left(L_{1}, L_{2}\right)^{k}$ D-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

- $\left(L_{2},\left(L_{1}, L_{2}\right)^{k-1}\right) \cap K$ is \mathcal{D}-separable
- $\left(L_{1}, L_{2}\right)^{k-1} \cap K \cap H$ is \mathcal{D}-separable

Boolean closure theorem: proof of $2 \Rightarrow 1$
Induction on $k:\left(L_{1}, L_{2}\right)^{k} \mathcal{D}$-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

- $\left(L_{2},\left(L_{1}, L_{2}\right)^{k-1}\right) \cap K$ is \mathcal{D}-separable
- $\left(L_{1}, L_{2}\right)^{k-1} \cap K \cap H$ is \mathcal{D}-separable

Induction $\Rightarrow G \in \operatorname{Bool}(\mathcal{D})$ separates $L_{1} \cap K \cap H$ from $L_{2} \cap K \cap H$

Boolean closure theorem: proof of $2 \Rightarrow 1$ Induction on $k:\left(L_{1}, L_{2}\right)^{k} \mathcal{D}$-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

- $\left(L_{2},\left(L_{1}, L_{2}\right)^{k-1}\right) \cap K$ is \mathcal{D}-separable
- $\left(L_{1}, L_{2}\right)^{k-1} \cap K \cap H$ is \mathcal{D}-separable

Induction $\Rightarrow G \in \operatorname{Bool}(\mathcal{D})$ separates $L_{1} \cap K \cap H$ from $L_{2} \cap K \cap H$

Boolean closure theorem: proof of $2 \Rightarrow 1$ Induction on $k:\left(L_{1}, L_{2}\right)^{k} \mathcal{D}$-separable $\Rightarrow L_{1} \operatorname{Bool}(\mathcal{D})$-separable from L_{2}.

- $\left(L_{2},\left(L_{1}, L_{2}\right)^{k-1}\right) \cap K$ is D-separable
- $\left(L_{1}, L_{2}\right)^{k-1} \cap K \cap H$ is \mathcal{D}-separable

Induction $\Rightarrow G \in \operatorname{Bool}(\mathcal{D})$ separates $L_{1} \cap K \cap H$ from $L_{2} \cap K \cap H$

$$
(G \cap K) \cup(K \backslash H) \in \operatorname{Bool}(\mathcal{D}) \text { separates } L_{1} \text { from } L_{2}
$$

BPol(C)-separation: Three main steps (2)
Getting rid of Boolean closure

BPol(C)-separation: Three main steps (2)
Getting rid of Boolean closure

$$
\begin{gathered}
\left(L_{1}, L_{2}\right) B \operatorname{Pol}(\mathcal{C}) \text {-separable } \\
\text { iff } \\
\exists k\left(L_{1}, L_{2}\right)^{k} \operatorname{Pol}(\mathcal{C}) \text {-separable }
\end{gathered}
$$

BPol(C)-separation: Three main steps (2)
Getting rid of Boolean closure

$$
\begin{gathered}
\left(L_{1}, L_{2}\right) B P o l(\mathcal{C}) \text {-separable } \\
\text { iff } \\
\exists k\left(L_{1}, L_{2}\right)^{k} \operatorname{Pol}(\mathcal{C}) \text {-separable }
\end{gathered}
$$

Solving tuple $\operatorname{Pol}(\mathcal{C})$-separation:
Input: $\left(L_{1}, \ldots, L_{n}\right)$
Output: Is $\left(L_{1}, \ldots, L_{n}\right) \operatorname{Pol}(\mathcal{C})$-separable?

Tuple Pol(C)-separation: Approach (1)

Our input $\left(L_{1}, \ldots, L_{n}\right)$ is a tuple of n regular languages.
We do not work directly with these languages.

Tuple Pol(C)-separation: Approach (1)

Our input $\left(L_{1}, \ldots, L_{n}\right)$ is a tuple of n regular languages.
We do not work directly with these languages.

Rule \#1 for separation-like problems:
One always looks at several inputs simultaneously.

Tuple Pol(C)-separation: Approach (1)

Our input $\left(L_{1}, \ldots, L_{n}\right)$ is a tuple of n regular languages.
We do not work directly with these languages.

Rule \#1 for separation-like problems:
One always looks at several inputs simultaneously.

We use a set of inputs which has a special structure.

Tuple Pol(C)-separation: Approach (2)

Input $\left(L_{1}, \ldots, L_{n}\right)$ is a tuple of n regular languages.
\Rightarrow We have NFAs for these languages:

L_{1}

Tuple Pol(C)-separation: Approach (2)
Input $\left(L_{1}, \ldots, L_{n}\right)$ is a tuple of n regular languages.
\Rightarrow We have NFAs for these languages:

L_{1}

We work with a set of languages L containing all languages

$$
L_{p, q}=\{w \mid p \xrightarrow{w} q\} \quad \text { (} p, q \text { two states of these NFAs) }
$$

Tuple Pol(C)-separation: Approach (2) Input $\left(L_{1}, \ldots, L_{n}\right)$ is a tuple of n regular languages.
\Rightarrow We have NFAs for these languages:

L_{1}

L_{n}

We work with a set of languages L containing all languages

$$
L_{p, q}=\{w \mid p \xrightarrow{w} q\} \quad(p, q \text { two states of these NFAs) }
$$

Given $n \geq 1$, we compute the set $\mathfrak{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

Answer for $\left(L_{1}, \ldots, L_{n}\right)$ can then be extracted from this information.

Tuple Pol(C)-separation: Approach (3)

Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

The algorithm uses two hypotheses on \mathbf{L} :

- It has an algebraic structure (given by the NFAs).

Tuple Pol(C)-separation: Approach (3)
Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

The algorithm uses two hypotheses on \mathbf{L} :

- It has an algebraic structure (given by the NFAs).
- It is C -compatible:
\mathcal{C} is finite \Rightarrow exists finest partition of A^{*} into languages of \mathcal{C} :

Tuple Pol(C)-separation: Approach (3)
Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

The algorithm uses two hypotheses on \mathbf{L} :

- It has an algebraic structure (given by the NFAs).
- It is C -compatible:
\mathcal{C} is finite \Rightarrow exists finest partition of A^{*} into languages of \mathcal{C} :

Any $H \in \mathbf{L}$ must be included in a class of this partition.

Tuple Pol(C)-separation: Approach (3)
Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

The algorithm uses two hypotheses on \mathbf{L} :

- It has an algebraic structure (given by the NFAs).
- It is C -compatible:
\mathcal{C} is finite \Rightarrow exists finest partition of A^{*} into languages of \mathcal{C} :

Any $H \in \mathbf{L}$ must be included in a class of this partition.

Tuple $\operatorname{Pol}(\mathcal{C})$-separation: C-compatibility

Any $H \in \mathbf{L}$ must be included in a class of this partition.

We can refine the initial input set to fulfill this condition.

Answer for the original input can be recovered from the refinement.

Least fixpoint computation of $\mathscr{T}^{n}[\mathbf{L}]$

Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.
$\mathcal{T}^{n}[\mathbf{L}]$ is computed by induction on n :

- $\mathcal{T}^{1}[\mathbf{L}] \subseteq \mathbf{L}$ is the set of nonempty languages in \mathbf{L}.

Least fixpoint computation of $\mathscr{T}^{n}[\mathbf{L}]$

Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

$\mathcal{T}^{n}[\mathbf{L}]$ is computed by induction on n :

- $\mathcal{T}^{1}[\mathbf{L}] \subseteq \mathbf{L}$ is the set of nonempty languages in \mathbf{L}.
- For $n \geq 2$, one first computes $\mathfrak{T}^{n-1}[\mathbf{L}]$, and

Least fixpoint computation of $\mathfrak{T}^{n}[\mathbf{L}]$

Given $n \geq 1$, we compute the set $\mathcal{T}^{n}[\mathbf{L}] \subseteq \mathbf{L}^{n}$ of all tuples $\bar{L} \in \mathbf{L}^{n}$ which are not $\operatorname{Pol}(\mathrm{C})$-separable.

$\mathcal{T}^{n}[\mathbf{L}]$ is computed by induction on n :

- $\mathcal{T}^{1}[\mathbf{L}] \subseteq \mathbf{L}$ is the set of nonempty languages in \mathbf{L}.
- For $n \geq 2$, one first computes $\mathfrak{T}^{n-1}[\mathbf{L}]$, and

Least fixpoint

- Computes $\mathfrak{T}^{n}[\mathbf{L}]$ from a subset of trivial tuples
- Adds more with operations until a fixpoint is reached.
- Requires having $\mathfrak{T}^{n-1}[\mathbf{L}]$ in hand.

BPol(C)-separation: Three main steps (3)

Getting rid of Boolean closure

Step 1

$\left(L_{1}, L_{2}\right) B P o l(\mathcal{C})$-separable
iff
$\exists k\left(L_{1}, L_{2}\right)^{k} \operatorname{Pol}(\mathbb{C})$-separable

Solving tuple $\operatorname{Pol}(\mathrm{C})$-separation:
Input: $\left(L_{1}, \ldots, L_{n}\right)$ (regular)
Output: Is $\left(L_{1}, \ldots, L_{n}\right) \operatorname{Pol}(\mathrm{C})$-separable?

Step 3
$B P o l(\mathrm{C})$-separation: Three main steps (3)
Getting rid of Boolean closure

Step 1

(L_{1}, L_{2}) BPol(C)-separable iff
$\exists k\left(L_{1}, L_{2}\right)^{k} \operatorname{Pol}(\mathrm{C})$-separable

Solving tuple $\operatorname{Pol}(\mathcal{C})$-separation:
Input: $\left(L_{1}, \ldots, L_{n}\right)$ (regular)
Output: Is $\left(L_{1}, \ldots, L_{n}\right) \operatorname{Pol}(\mathcal{C})$-separable?

Step 3
Reuse Step 2 as a subprocedure in our $\operatorname{BPol}(\mathrm{C})$ algorithm

BPol(C)-separation - General approach

We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^{2}$ of pairs $(K, L) \in \mathbf{L}^{2}$ which are not $\operatorname{BPol}(\mathrm{C})$-separable.

BPol(C)-separation - General approach
We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^{2}$ of pairs $(K, L) \in \mathbf{L}^{2}$ which are not $\operatorname{BPol}(\mathrm{C})$-separable.

By the previous steps

Given two languages L_{1}, L_{2}, TFAE:

1. $L_{1} B P o l(\mathcal{C})$-separable from L_{2}.
2. There exists $k \geq 1$ s.t. $\left(L_{1}, L_{2}\right)^{k}$ is $\operatorname{Pol}(\mathrm{C})$-separable.

BPol(C)-separation - General approach
We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^{2}$ of pairs $(K, L) \in \mathbf{L}^{2}$ which are not $\operatorname{BPol}(\mathrm{C})$-separable.

By the previous steps
Given two languages L_{1}, L_{2}, TFAE:

1. L_{1} is not $B \operatorname{Pol}(\mathrm{C})$-separable from L_{2}.
2. For all $k \geq 1,\left(L_{1}, L_{2}\right)^{k}$ is not $\operatorname{Pol}(\mathrm{C})$-separable.

BPol(C)-separation - General approach

We continue to work with a set of languages \mathbf{L} with appropriate properties.

We compute the set $\mathcal{A}[\mathbf{L}] \subseteq \mathbf{L}^{2}$ of pairs $(K, L) \in \mathbf{L}^{2}$ which are not $\operatorname{BPol}(\mathrm{C})$-separable.

By the previous steps

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1$, $(K, L)^{k}$ not $\operatorname{Pol}(\mathcal{C})$-separable, i.e. $(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

BPol(e)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

BPol(e)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

$$
\mathbf{T}_{0}=\mathcal{T}^{2}[\mathbf{L}]
$$

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

$$
\mathrm{T}_{0}=\mathrm{T}^{2}[\mathbf{L}]
$$

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

BPol(e)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

$$
\begin{aligned}
& \mathbf{T}_{0}=\mathfrak{T}^{2}[\mathbf{L}] \\
& \text { U। } \\
& \mathbf{T}_{1}
\end{aligned}
$$

Least fixpoint

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

$\mathbf{T}_{n} \quad$ Eventually, a fixpoint is reached, $\mathbf{T}_{n}=\mathbf{T}_{n+1}=\mathcal{A}[\mathbf{L}]$

BPol(C)-separation - Greatest fixpoint

Given two languages $K, L \in \mathbf{L}$, TFAE:

1. $(K, L) \in \mathcal{A}[\mathbf{L}]$.
2. For all $k \geq 1, \quad(K, L)^{k} \in \mathcal{T}^{2 k}[\mathbf{L}]$.

In particular, $\mathcal{A}[\mathbf{L}] \subseteq \mathcal{T}^{2}[\mathbf{L}]$. Greatest fixpoint:
From $\mathfrak{T}^{2}[\mathbf{L}]$, remove elements with an operation until fixpoint.

$$
\mathbf{T}_{0}=\mathfrak{T}^{2}[\mathbf{L}]
$$

Least fixpoint

$\mathbf{T}_{n} \quad$ Eventually, a fixpoint is reached, $\mathbf{T}_{n}=\mathbf{T}_{n+1}=\mathcal{A}[\mathbf{L}]$

Conclusion

Conclusion (1)

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},

〇-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Conclusion (1)

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B \operatorname{Pol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},

〇-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.
Bonus corresponding to enrichment with successor
For any \mathcal{C}, \mathcal{C}-separation decidable $\Rightarrow \mathcal{C}^{+}$-separation decidable.

Conclusion (1)

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},〇-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Bonus corresponding to enrichment with successor

For any \mathcal{C}, \mathcal{C}-separation decidable $\Rightarrow \mathcal{C}^{+}$-separation decidable.

Some words about complexity:

1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).
2. $\operatorname{Pol}(\mathrm{AT})$ and $\operatorname{BPol}(\mathrm{AT})$ are PS pace(-complete).

Conclusion (1)

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(B \operatorname{Pol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},

〇-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Bonus corresponding to enrichment with successor

For any \mathcal{C}, \mathcal{C}-separation decidable $\Rightarrow \mathcal{C}^{+}$-separation decidable.

Some words about complexity:

1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).
2. $\operatorname{Pol}(\mathrm{AT})$ and $\operatorname{BPol}(\mathrm{AT})$ are PS pace(-complete).
3. If the alphabet is fixed, or $|\mathcal{C}|$ is constant,
$\operatorname{Pol}(\mathrm{C})$-separation and $B \operatorname{Pol}(\mathrm{C})$-separation are in PTime

Conclusion (2)

Future work
We have the result,

- For any \mathcal{C},
©-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Conclusion (2)

Future work

We have the result,

- For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.
A nontrivial corollary of the $\operatorname{BPol}(\mathrm{C})$-algorithm is as follows:
- For any \mathcal{C}, C-"something" decidable $\Rightarrow B P o l(\mathcal{C})$-membership decidable.

Conclusion (2)

Future work

We have the result,

- For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.
A nontrivial corollary of the $B P o l(\mathcal{C})$-algorithm is as follows:
- For any \mathcal{C},

C-"something" decidable $\Rightarrow B P o l(\mathcal{C})$-membership decidable. $\mathcal{B} \Sigma_{2}(<)$-"something" seems to be decidable which would yield a membership algorithm for $\mathcal{B} \Sigma_{3}(<)$.

Czerwinski,Martens,Masopust'13
Place,Van Rooijen,Z.'13

Thank You

