Separation and concatenation hierarchies (Part I)

Thomas Place
Joint work with Marc Zeitoun

LaBRI, Bordeaux University

July 14, 2017

Investigating Logics over Words

Main Objective

Descriptive Formalisms

Main Objective

Express Properties
(i.e. define languages)

First-Order Logic $\mathbf{F O}(<)$
or Fragments such as:
$\mathrm{FO}(+1), \Sigma_{i}, \mathcal{B} \Sigma_{i}$
2-Variable FO: $\mathbf{F O}^{2}(<)$

Main Objective

Express Properties
(i.e. define languages)

Objective: For each fragment, understand what it can express.
i.e. What languages belong to the associated class ©?

First-Order Logic over Words $(\mathrm{FO}(<))$

$$
\begin{aligned}
& a b b b c a a a c a \in A^{*} \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified.

First-Order Logic over Words $(\mathrm{FO}(<))$

$$
\begin{aligned}
& a b b b c a a a c a \in A^{*} \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified.
- Two kinds of predicates:

1. Given $a \in A, a(x)$ selects positions x whose label is a.
2. Binary predicate for the (strict) order: $x<y$.

First-Order Logic over Words $(\mathrm{FO}(<))$

$$
\begin{aligned}
& \text { abbbcaaaca } \in A^{*} \\
& 0123456789
\end{aligned}
$$

- A word is a sequence of labeled positions.
- Positions can be quantified.
- Two kinds of predicates:

1. Given $a \in A, a(x)$ selects positions x whose label is a.
2. Binary predicate for the (strict) order: $x<y$.

$$
\forall x(a(x) \Rightarrow \exists y(b(y) \wedge(y<x)))
$$

"for any a in the word, there is a b to its left"

Each sentence defines a language
$\Rightarrow \mathrm{FO}(<)$ defines a class of languages.

We want to understand classes of languages (defined by logic)

Methodology: The membership problem

Given such a class \mathcal{C}, the goal is to solve the associated membership problem:
L a regular language

Does L belong to the class \mathcal{C} ?

Methodology: The membership problem

Given such a class \mathcal{C}, the goal is to solve the associated membership problem:
L a regular language

Does L belong to the class \mathcal{C} ?

There are two stages to the problem:

- Stage 1: get an algorithm that decides it.
- Stage 2: find a generic way to construct a sentence witnessing membership of L in \mathcal{C} when it exists.

Example - McNaughton-Papert-Schützenberger

Given a regular language L, the following properties are equivalent:

- L is definable in $\mathrm{FO}(<)$
- The minimal automaton of L is counter-free
- The syntactic monoid of L is aperiodic

Example - McNaughton-Papert-Schützenberger

Given a regular language L, the following properties are equivalent:

- L is definable in $\mathrm{FO}(<)$
$\} \begin{gathered}\text { semantic } \\ \text { hard to decide }\end{gathered}$
- The minimal automaton of L is counter-free
- The syntactic monoid of L is aperiodic
syntactic \int easy to decide

Example - McNaughton-Papert-Schützenberger

Given a regular language L, the following properties are equivalent:

- L is definable in $\mathrm{FO}(<)$ $\} \begin{gathered}\text { semantic } \\ \text { hard to decide }\end{gathered}$
- The minimal automaton of L is counter-free
- The syntactic monoid of L is aperiodic
syntactic feasy to decide

Why is it interesting ?

1. The theorem itself is an effective description of the class $\mathrm{FO}(<)$.
2. The proofs are constructive: if we have the minimal automaton in hand, we can construct a sentence for L by induction.
\Rightarrow We get normal forms for $\mathrm{FO}(<)$ sentences over words.
Altogether, we learn a lot about $\mathrm{FO}(<)$ from this theorem

Summary - Membership

- Understanding a class $\mathcal{C}=$ solving \mathcal{C}-membership.
- Proof provides a canonical representation of languages in \mathcal{C}.

Summary - Membership

- Understanding a class $\mathcal{C}=$ solving \mathcal{C}-membership.
- Proof provides a canonical representation of languages in \mathcal{C}.
- Successful methodology since the 70s, reproduced
- For other logical classes on words (eg, several restrictions of FO).
- For other structures: infinite words, finite trees.

Summary - Membership

- Understanding a class $\mathcal{C}=$ solving \mathcal{C}-membership.
- Proof provides a canonical representation of languages in \mathcal{C}.
- Successful methodology since the 70s, reproduced
- For other logical classes on words (eg, several restrictions of FO).
- For other structures: infinite words, finite trees.
- Still, the methodology fails for important classes.

The big problem: quantifier alternation

Quantifer Alternation: Classifying Sentences

A simple sentence:

$$
\exists x \exists y \forall z b(x) \wedge b(y) \wedge((x<z<y) \Rightarrow a(z)))
$$

Quantifer Alternation: Classifying Sentences

A simple sentence:

$$
\exists x \exists y \forall z b(x) \wedge b(y) \wedge((x<z<y) \Rightarrow a(z)))
$$

A more involved one:

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \forall x_{7} \exists x_{8} \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)
$$

Quantifer Alternation: Classifying Sentences

A simple sentence:

$$
\exists x \exists y \forall z b(x) \wedge b(y) \wedge((x<z<y) \Rightarrow a(z)))
$$

A more involved one:

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \forall x_{7} \exists x_{8} \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)
$$

Complicated $=$ High Quantifier Alternation

Quantifer Alternation: Classifying Sentences

A simple sentence: $\Sigma_{2}(<)$

$$
\exists x \exists y \forall z b(x) \wedge b(y) \wedge((x<z<y) \Rightarrow a(z)))
$$

A more involved one: $\Sigma_{7}(<)$

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \forall x_{7} \exists x_{8} \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)
$$

Level n : $\Sigma_{n}(<)$ sentence (in prenex normal form)

$$
\underbrace{\exists x_{1}, \ldots, x_{n_{1}} \forall y_{1}, \ldots, y_{n_{2}} \ldots \ldots}_{n \text { blocks (starting with } \exists)} \underbrace{\varphi(\bar{x}, \bar{y}, \ldots)}_{\text {quantifier-free }}
$$

Quantifer Alternation: Classifying Sentences

A simple sentence: $\Sigma_{2}(<)$

$$
\exists x \exists y \forall z b(x) \wedge b(y) \wedge((x<z<y) \Rightarrow a(z)))
$$

A more involved one: $\Sigma_{7}(<)$

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \forall x_{7} \exists x_{8} \varphi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)
$$

Level n : $\Sigma_{n}(<)$ sentence (in prenex normal form)

$$
\underbrace{\exists x_{1}, \ldots, x_{n_{1}} \forall y_{1}, \ldots, y_{n_{2}} \ldots \ldots}_{n \text { blocks (starting with } \exists)} \underbrace{\varphi(\bar{x}, \bar{y}, \ldots)}_{\text {quantifier-free }}
$$

$\Sigma_{n}(<)$ not closed under complement $\Rightarrow \mathcal{B} \Sigma_{n}(<)$ $\mathcal{B} \Sigma_{n}(<)$ sentence $=$ Boolean combination of $\Sigma_{n}(<)$ sentences.

Quantifier Alternation: Membership state of the art

(Schützenberger)' 65
(McNaughton-Papert)'71

Quantifier Alternation: Membership state of the art

How are this results obtained ?

Quantifier Alternation: Membership state of the art

How are this results obtained ?

The previous slides only present a third of the story (at best).

The Separation Problem

Definition

Given a class of languages \mathcal{C} (for example a level in the hierarchy), decide the following problem:
L_{1}, L_{2} two regular languages

Definition

Given a class of languages \mathcal{C} (for example a level in the hierarchy), decide the following problem:
L_{1}, L_{2} two regular languages
Can L_{1} be separated from L_{2} with a language of \mathcal{C} ?

Definition

Given a class of languages \mathcal{C} (for example a level in the hierarchy), decide the following problem:
L_{1}, L_{2} two regular languages
Can L_{1} be separated from L_{2} with a language of \mathcal{C} ?

Definition

Given a class of languages \mathcal{C} (for example a level in the hierarchy), decide the following problem:
L_{1}, L_{2} two regular languages
Can L_{1} be separated from L_{2} with a language of \mathcal{C} ?

Membership can be formally reduced to separation

Definition

Given a class of languages \mathcal{C} (for example a level in the hierarchy), decide the following problem:
L_{1}, L_{2} two regular languages
Can L_{1} be separated from L_{2} with a language of \mathcal{C} ?

Membership can be formally reduced to separation

Motivation for Separation (1)

Negative aspect:
(:) Usually harder than membership.

Motivation for Separation (1)

Negative aspect:
© Usually harder than membership.
Positive aspects:
:) More rewarding with respect to the investigated class.

Motivation for Separation (1)

Negative aspect:

(:) Usually harder than membership.

Positive aspects:

© $)$ More rewarding with respect to the investigated class.
(:) Membership for $\mathcal{C}=$ Techniques applying to languages in \mathcal{C} only. Separation for $\mathcal{C}=$ Techniques applying to all languages.

Membership for \mathcal{C}

Given a language L :

1. Does $L \in \mathcal{C}$?
2. If so, compute a description of L in \mathcal{C}.

Separation for \mathcal{C}

Given two languages L_{1}, L_{2} :

1. Can we approximate L_{1} with some $K \in \mathcal{C}$? (allowed approximations given by L_{2})
2. If so, compute $K \in \mathcal{C}$ realizing this approximation.

Motivation for Separation (2)

All results that we have today for the hierarchy are based on separation (or more general problems):

Motivation for Separation (2)

All results that we have today for the hierarchy are based on separation (or more general problems):

- While harder, separation provides a better and more robust framework for this investigation.
- Moreover, interaction between membership and separation.

Motivation for Separation (2)

All results that we have today for the hierarchy are based on separation (or more general problems):

- While harder, separation provides a better and more robust framework for this investigation.
- Moreover, interaction between membership and separation.

Transfer theorem (P.,Zeitoun)'14

For all $n \geq 1$,
Σ_{n}-separation decidable $\Rightarrow \Sigma_{n+1}$-membership decidable

Important Remark

Separation is harder than membership. The above above does not solve the whole hierarchy.

Transfer theorem: Σ_{n-1}-separation $\Rightarrow \Sigma_{n}$-membership

Notation, for two states $p, q: L_{p, q}=\{w \mid p \xrightarrow{w} q\}$

Forbidden Patterns and Separation

A regular language is definable in $\Sigma_{\mathbf{n}}$ iff its minimal automaton has no pattern:

Transfer theorem: Σ_{n-1}-separation $\Rightarrow \Sigma_{n}$-membership

Notation, for two states $p, q: L_{p, q}=\{w \mid p \xrightarrow{w} q\}$

Forbidden Patterns and Separation

A regular language is definable in $\Sigma_{\mathbf{n}}$ iff its minimal automaton has no pattern:
(p) (q)

Transfer theorem: Σ_{n-1}-separation $\Rightarrow \Sigma_{n}$-membership

Notation, for two states $p, q: L_{p, q}=\{w \mid p \xrightarrow{w} q\}$

Forbidden Patterns and Separation

A regular language is definable in $\Sigma_{\mathbf{n}}$ iff its minimal automaton has no pattern:

Transfer theorem: Σ_{n-1}-separation $\Rightarrow \Sigma_{n}$-membership

Notation, for two states $p, q: L_{p, q}=\{w \mid p \xrightarrow{w} q\}$

Forbidden Patterns and Separation

A regular language is definable in $\Sigma_{\mathbf{n}}$ iff its minimal automaton has no pattern:

where $L_{p, q}$ is not $\Sigma_{\mathbf{n}-1}$-separable from $L_{p, p} \cap L_{q, q}$

Transfer theorem: Σ_{n-1}-separation $\Rightarrow \Sigma_{n}$-membership
Notation, for two states $p, q: L_{p, q}=\{w \mid p \xrightarrow{w} q\}$

Forbidden Patterns and Separation

A regular language is definable in $\Sigma_{\mathbf{n}}$ iff its minimal automaton has no pattern:

where $L_{p, q}$ is not $\Sigma_{\mathbf{n}-\mathbf{1}}$-separable from $L_{p, p} \cap L_{q, q}$

Corollary

Solving $\Sigma_{\mathbf{n}-\mathbf{1}}$-separation yields a solution for $\Sigma_{\mathbf{n}}$-membership.

Limits of this approach

We have the following:
Σ_{n}-separation decidable $\Rightarrow \Sigma_{n+1}$-membership decidable

No similar result with separation on the right side.

Limits of this approach

We have the following:
Σ_{n}-separation decidable $\Rightarrow \Sigma_{n+1}$-membership decidable

No similar result with separation on the right side.
Let us explain why.
Hard part for both membership and separation:
Generic construction of descriptions in \mathcal{C}.
This is also the case for the transfer theorem.

Construction of Σ_{n} sentences
A Σ_{n} sentence is layered: Consider a Σ_{3} sentence

Construction of Σ_{n} sentences
A Σ_{n} sentence is layered: Consider a Σ_{3} sentence

A generic construction should have several phases: one for each layer

Construction of Σ_{n} sentences in the transfer theorem

Starting from a DFA \mathcal{A} satisfying the transfer theorem, one builds a Σ_{n} sentence as follows:

- All languages needed for the layers below Σ_{n-1} are Σ_{n-1}-separators of $L_{p, q}$ from $L_{p, p} \cap L_{q, q}$ for some states p, q of \mathcal{A}.
- One builds the topmost layer $\left(\Sigma_{n}\right)$ from them by induction on \mathcal{A}.

Construction of Σ_{n} sentences in the transfer theorem
Starting from a DFA \mathcal{A} satisfying the transfer theorem, one builds a Σ_{n} sentence as follows:

- All languages needed for the layers below Σ_{n-1} are Σ_{n-1}-separators of $L_{p, q}$ from $L_{p, p} \cap L_{q, q}$ for some states p, q of \mathcal{A}.
- One builds the topmost layer $\left(\Sigma_{n}\right)$ from them by induction on \mathcal{A}.

Key ideas

- We already have the languages of the Σ_{n} layer in hand: they are all recognized by \mathcal{A}.
- The lower layers are built by approximating these languages with Σ_{n-1}-separation.

Construction of Σ_{n} sentences in the transfer theorem Starting from a DFA \mathcal{A} satisfying the transfer theorem, one builds a Σ_{n} sentence as follows:

- All languages needed for the layers below Σ_{n-1} are Σ_{n-1}-separators of $L_{p, q}$ from $L_{p, p} \cap L_{q, q}$ for some states p, q of \mathcal{A}.
- One builds the topmost layer $\left(\Sigma_{n}\right)$ from them by induction on \mathcal{A}.

Key ideas

- We already have the languages of the Σ_{n} layer in hand: they are all recognized by \mathcal{A}.
- The lower layers are built by approximating these languages with Σ_{n-1}-separation.

Separation is different: we do not have the Σ_{n}-layer in hand. \Rightarrow All layers must be considered simultaneously.

Current state of the art: Separation

Current state of the art: Separation

Current state of the art: Separation

We are still missing one third of the story.

Concatenation hierarchies

Star-free languages (1)

McNaughton-Papert'71
Given a regular language L, the following properties are equivalent:

- L may be defined by an $\mathrm{FO}(<)$ sentence.
- L is star-free.

Star-free languages (1)

McNaughton-Papert’71

Given a regular language L, the following properties are equivalent:

- L may be defined by an $\mathrm{FO}(<)$ sentence.
- L is star-free.

Star-free languages

- \emptyset and A^{*} are star-free.
\Rightarrow Corresponds to the $\mathrm{FO}(<)$ sentences \perp and \top.

Star-free languages (1)
McNaughton-Papert'71
Given a regular language L, the following properties are equivalent:

- L may be defined by an $\mathrm{FO}(<)$ sentence.
- L is star-free.

Star-free languages

- \emptyset and A^{*} are star-free.
\Rightarrow Corresponds to the $\mathrm{FO}(<)$ sentences \perp and \top.
- Closed under union, union and complement.
\Rightarrow Corresponds to Boolean connectives in $\mathrm{FO}(<)$.

Star-free languages (1)

McNaughton-Papert’71

Given a regular language L, the following properties are equivalent:

- L may be defined by an $\mathrm{FO}(<)$ sentence.
- L is star-free.

Star-free languages

- \emptyset and A^{*} are star-free.
\Rightarrow Corresponds to the $\mathrm{FO}(<)$ sentences \perp and \top.
- Closed under union, union and complement.
\Rightarrow Corresponds to Boolean connectives in $\mathrm{FO}(<)$.
- Closed under marked concatenation:

$$
\text { Given } a \in A \quad K, L, a \mapsto K a L
$$

\Rightarrow Corresponds to existential quantification in $\mathrm{FO}(<)$.

$$
\exists x a(x) \wedge \varphi_{K}^{<x}(x) \wedge \varphi_{L}^{>x}(x)
$$

Star-free languages (2)

- Going from star-free languages to $\mathrm{FO}(<)$ is easy: Star-free description is a $\mathbf{F O}(<)$ sentence in normal form.

Star-free languages (2)

- Going from star-free languages to $\mathrm{FO}(<)$ is easy:

Star-free description is a $\mathbf{F O}(<)$ sentence in normal form.

- Other direction is less immediate:

More syntactical freedom in $\mathrm{FO}(<)$ sentences.

Star-free languages (2)

- Going from star-free languages to $\mathrm{FO}(<)$ is easy:

Star-free description is a $\mathbf{F O}(<)$ sentence in normal form.

- Other direction is less immediate:

More syntactical freedom in $\mathrm{FO}(<)$ sentences.

However, in generic constructions of $\mathrm{FO}(<)$ sentences, this additional freedom is never used.

For building $\mathrm{FO}(<)$ languages, one always starts from \emptyset and A^{*} using only Boolean operations and marked concatenations.

Star-free languages (2)

- Going from star-free languages to $\mathrm{FO}(<)$ is easy:

Star-free description is a $\mathbf{F O}(<)$ sentence in normal form.

- Other direction is less immediate:

More syntactical freedom in $\mathrm{FO}(<)$ sentences.

However, in generic constructions of $\mathrm{FO}(<)$ sentences, this additional freedom is never used.

For building $\mathrm{FO}(<)$ languages, one always starts from \emptyset and A^{*} using only Boolean operations and marked concatenations.

This is also the case for classes in the quantifier alternation hierarchy of $\mathrm{FO}(<)$.

The Straubing Thérien Hierarchy'81

Classifies the star-free languages into half and full levels:

$$
0 \longrightarrow \frac{1}{2} \longrightarrow \frac{3}{2} \longrightarrow 2 \longrightarrow \frac{5}{2} \longrightarrow 3 \cdots \cdots
$$

The Straubing Thérien Hierarchy'81

Classifies the star-free languages into half and full levels:

$\left\{\emptyset, A^{*}\right\}$

The Straubing Thérien Hierarchy'81

Classifies the star-free languages into half and full levels:

$$
0 \xrightarrow{\mathrm{Pol}} \frac{1}{2} \longrightarrow 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2} \longrightarrow 2 \xrightarrow{\mathrm{Pol}} \frac{5}{2} \longrightarrow 3 \cdots \cdots \cdots
$$

$\left\{\emptyset, A^{*}\right\}$

Polynomial closure
$\operatorname{Pol}(\mathrm{C})$ built by closing the class \mathcal{C} under:

- Union (\cup).
- Intersection (\bigcap).
- Marked concatenation $(K, L, a \mapsto K a L)$.

The Straubing Thérien Hierarchy'81

Classifies the star-free languages into half and full levels:

$$
\underset{\substack{\text { Pol }} \frac{1}{2} \xrightarrow[\text { Bool }]{0} 1}{ } 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2} \xrightarrow[\text { Bool }]{ } 2 \xrightarrow{\mathrm{Pol}} \frac{5}{2} \xrightarrow[\text { Bool }]{ } 3
$$

Polynomial closure
$\operatorname{Pol}(\mathrm{C})$ built by closing the class \mathcal{C} under:

- Union (\bigcup).
- Intersection (\bigcap).
- Marked concatenation $(K, L, a \mapsto K a L)$.

Boolean closure

$\operatorname{Bool}(\mathrm{C})$ built by closing the class \mathcal{C} under:

- Union (U).
- Intersection (\bigcap).
- Complement $\left(L \mapsto A^{*} \backslash L\right)$.

The Straubing Thérien Hierarchy'81

Classifies the star-free languages into half and full levels:

Polynomial closure

$\operatorname{Pol}(\mathrm{C})$ built by closing the class \mathcal{C} under:

- Union (\cup).
- Intersection (\bigcap).
- Marked concatenation $(K, L, a \mapsto K a L)$.

Boolean closure

Bool(C) built by closing the class \mathcal{C} under:

- Union (\bigcup).
- Intersection (\bigcap).
- Complement $\left(L \mapsto A^{*} \backslash L\right)$.

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

Generic template: Concatenation hierarchies

0
Basis:
class \mathcal{C}

\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$

Generic template: Concatenation hierarchies

$$
0 \xrightarrow{\mathrm{Pol}} \frac{1}{2}
$$

Basis:

class \mathcal{C}
\qquad
\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$

Generic template: Concatenation hierarchies

Generic template: Concatenation hierarchies

Basis:
$0 \xrightarrow{\mathrm{Pol}} \frac{1}{2} \xrightarrow[\text { Bool }]{ } 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2}$
class \mathcal{C}

\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$

Generic template: Concatenation hierarchies

Basis:
$0 \xrightarrow{\mathrm{Pol}} \frac{1}{2} \xrightarrow[\text { Bool }]{ } 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2} \xrightarrow[\text { Bool }]{ } 2$
class \mathcal{C}
\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$

Generic template: Concatenation hierarchies

Basis:
class \mathcal{C}
\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$

Generic template: Concatenation hierarchies

Basis:
class \mathcal{C}
\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$

Generic template: Concatenation hierarchies

Basis:
$0 \xrightarrow{\mathrm{Pol}} \frac{1}{2} \xrightarrow[\text { Bool }]{ } 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2} \xrightarrow[\text { Bool }]{ } 2 \xrightarrow{\mathrm{Pol}} \frac{5}{2} \xrightarrow[\text { Bool }]{ } 3 \cdots \cdots$ class \mathcal{C}

\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,
$w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C}$
$L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}$
All results for quantifier alternation can be lifted as generic results for concatenation hierarchies whose basis is finite.

Generic template: Concatenation hierarchies

Basis:
$0 \xrightarrow{\mathrm{Pol}} \frac{1}{2} \xrightarrow[\text { Bool }]{ } 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2} \xrightarrow[\text { Bool }]{ } 2 \xrightarrow{\mathrm{Pol}} \frac{5}{2} \xrightarrow[\text { Bool }]{ } 3 \cdots \cdots$ class \mathcal{C}
\mathcal{C} must be closed under:

- Boolean operations.
- Quotients. For $L \in \mathcal{C}, w \in A^{*}$,

$$
\begin{aligned}
& w^{-1} L \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid w u \in L\right\} \in \mathcal{C} \\
& L w^{-1} \stackrel{\text { def }}{=}\left\{u \in A^{*} \mid u w \in L\right\} \in \mathcal{C}
\end{aligned}
$$

All results for quantifier alternation can be lifted as generic results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of concatenation hierarchies.

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathbf{F O}(\mathcal{C})$ of first-order logic equipped with the following signature:

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathbf{F O}(\mathcal{C})$ of first-order logic equipped with the following signature:

- Label predicates: $a(x), b(x), \ldots$.

For each $L \in \mathcal{C}$, we add four predicates:

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathrm{FO}(\mathcal{C})$ of first-order logic equipped with the following signature:

- Label predicates: $a(x), b(x), \ldots$.

For each $L \in \mathcal{C}$, we add four predicates:

- Infix $I_{L}(x, y)$ (binary):

$$
a_{1} \cdots a_{n} \models I_{L}(i, j) \text { iff } i<j \text { and } a_{i+1} \cdots a_{j-1} \in L
$$

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathbf{F O}(\mathcal{C})$ of first-order logic equipped with the following signature:

- Label predicates: $a(x), b(x), \ldots$.

For each $L \in \mathcal{C}$, we add four predicates:

- Infix $I_{L}(x, y)$ (binary):

$$
a_{1} \cdots a_{n} \models I_{L}(i, j) \text { iff } i<j \text { and } a_{i+1} \cdots a_{j-1} \in L
$$

- Prefix $P_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \vDash P_{L}(i) \text { iff } a_{1} \cdots a_{i-1} \in L
$$

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathrm{FO}(\mathbb{C})$ of first-order logic equipped with the following signature:

- Label predicates: $a(x), b(x), \ldots$.

For each $L \in \mathcal{C}$, we add four predicates:

- Infix $I_{L}(x, y)$ (binary):

$$
a_{1} \cdots a_{n} \models I_{L}(i, j) \text { iff } i<j \text { and } a_{i+1} \cdots a_{j-1} \in L
$$

- Prefix $P_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \mid=P_{L}(i) \text { iff } a_{1} \cdots a_{i-1} \in L
$$

- Suffix $S_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \mid=S_{L}(i) \text { iff } a_{i+1} \cdots a_{n} \in L
$$

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathrm{FO}(\mathbb{C})$ of first-order logic equipped with the following signature:

- Label predicates: $a(x), b(x), \ldots$.

For each $L \in \mathcal{C}$, we add four predicates:

- Infix $I_{L}(x, y)$ (binary):

$$
a_{1} \cdots a_{n} \models I_{L}(i, j) \text { iff } i<j \text { and } a_{i+1} \cdots a_{j-1} \in L
$$

- Prefix $P_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \mid=P_{L}(i) \text { iff } a_{1} \cdots a_{i-1} \in L
$$

- Suffix $S_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \mid=S_{L}(i) \text { iff } a_{i+1} \cdots a_{n} \in L
$$

- Whole word N_{L} (nullary):

$$
a_{1} \cdots a_{n} \models N_{L} \text { iff } a_{1} \cdots a_{n} \in L
$$

The logical connection is generic (1)

Given a basis \mathcal{C}, we define a variant $\mathrm{FO}(\mathbb{C})$ of first-order logic equipped with the following signature:

- Label predicates: $a(x), b(x), \ldots$.

For each $L \in \mathcal{C}$, we add four predicates:

- Infix $I_{L}(x, y)$ (binary):

$$
a_{1} \cdots a_{n} \models I_{L}(i, j) \text { iff } i<j \text { and } a_{i+1} \cdots a_{j-1} \in L
$$

- Prefix $P_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \vDash P_{L}(i) \text { iff } a_{1} \cdots a_{i-1} \in L
$$

- Suffix $S_{L}(x)$ (unary):

$$
a_{1} \cdots a_{n} \models S_{L}(i) \text { iff } a_{i+1} \cdots a_{n} \in L
$$

- Whole word N_{L} (nullary):

$$
a_{1} \cdots a_{n} \models N_{L} \text { iff } a_{1} \cdots a_{n} \in L
$$

The concatenation hierarchy of basis \mathcal{C} corresponds to the quantifier alternation hierarchy within $\mathrm{FO}(\mathcal{C})$.

The logical connection is generic (2)

The concatenation hierarchy of basis \mathcal{C} corresponds to the quantifier alternation hierarchy within $\mathrm{FO}(\mathcal{C})$.

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to \top.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to \top.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The dot-depth hierarchy (Brzozowski,Cohen)'71
Basis $\mathcal{C}=\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$

The logical connection is generic: Examples

The Straubing-Thérien hierarchy
Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to T.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The dot-depth hierarchy (Brzozowski,Cohen)'71
Basis $\mathrm{C}=\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$

- $I_{\varepsilon}(x, y)$ is $x+1=y$.

The logical connection is generic: Examples

The Straubing-Thérien hierarchy
Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to \top.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The dot-depth hierarchy (Brzozowski,Cohen)' 71
Basis $\mathcal{C}=\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$

- $I_{\varepsilon}(x, y)$ is $x+1=y$.
- $P_{\varepsilon}(x)$ and $S_{\varepsilon}(x)$ are $\min (x)$ and $\max (x)$.

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to \top.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The dot-depth hierarchy (Brzozowski,Cohen)' 71
Basis $\mathcal{C}=\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$

- $I_{\varepsilon}(x, y)$ is $x+1=y$.
- $P_{\varepsilon}(x)$ and $S_{\varepsilon}(x)$ are $\min (x)$ and $\max (x)$.
- N_{ε} is ε.

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to \top.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The dot-depth hierarchy (Brzozowski,Cohen)'71

Basis $\mathcal{C}=\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\}$

- $I_{\varepsilon}(x, y)$ is $x+1=y$.
- $P_{\varepsilon}(x)$ and $S_{\varepsilon}(x)$ are $\min (x)$ and $\max (x)$.
- N_{ε} is ε.
- Predicates obtained from A^{+}are expressed from the others.

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis $\mathcal{C}=\left\{\emptyset, A^{*}\right\} \Rightarrow \mathrm{FO}(<)$

- $I_{A^{*}}(x, y)$ is $x<y$.
- $P_{A^{*}}(x), S_{A^{*}}(x), N_{A^{*}}$ are equivalent to \top.
- $I_{\emptyset}(x, y), P_{\emptyset}(x), S_{\emptyset}(x), N_{\emptyset}$ are equivalent to \perp

The dot-depth hierarchy (Brzozowski,Cohen)' 71

Basis $\mathcal{C}=\left\{\emptyset,\{\varepsilon\}, A^{+}, A^{*}\right\} \Rightarrow \mathrm{FO}(<,+1, \min , \max , \varepsilon)$ (Thomas)' 82

- $I_{\varepsilon}(x, y)$ is $x+1=y$.
- $P_{\varepsilon}(x)$ and $S_{\varepsilon}(x)$ are $\min (x)$ and $\max (x)$.
- N_{ε} is ε.
- Predicates obtained from A^{+}are expressed from the others.

Generic separation results

Generic separation results (1)

$$
\underset{\begin{array}{c}
\text { Basis: } \\
\text { class } \mathcal{C}
\end{array}}{0} \frac{\mathrm{Pol}}{2} \xrightarrow[\text { Bool }]{ } 1 \xrightarrow{\mathrm{Pol}} \frac{3}{2} \xrightarrow[\text { Bool }]{ } 2 \xrightarrow{\mathrm{Pol}} \frac{5}{2} \xrightarrow[\text { Bool }]{ } 3 \cdots \cdots \cdots
$$

Generic Separation Results
If \mathcal{C} is finite, then separation is decidable for the following,

Generic separation results (1)

Generic Separation Results

If \mathcal{C} is finite, then separation is decidable for the following,

1. Pol(C).

Generic separation results (1)

Generic Separation Results

If \mathcal{C} is finite, then separation is decidable for the following,

1. $\operatorname{Pol}(\mathrm{C})$.
2. $\operatorname{BPol}(\mathrm{C})($ i.e. $\operatorname{Bool}(\operatorname{Pol}(\mathrm{C})))$.

Generic separation results (1)

Generic Separation Results
If \mathcal{C} is finite, then separation is decidable for the following,

1. $\operatorname{Pol}(\mathrm{C})$.
2. $\operatorname{BPol}(\mathrm{C})($ i.e. $\operatorname{Bool}(\operatorname{Pol}(\mathrm{C})))$.
3. $\operatorname{Pol}(\operatorname{BPol}(\mathrm{C}))$.

Generic separation results (2)

Advantages:

© These results treat many classes.
(:) All we know about separation is captured by three results.
;) We pinpoint the hypotheses which we really need.

Generic separation results (2)

Advantages:

() These results treat many classes.
(:) All we know about separation is captured by three results.
;) We pinpoint the hypotheses which we really need.

Downside:

© Generic proof are harder than specific ones.

Generic separation results (2)

Advantages:

© These results treat many classes.
;) All we know about separation is captured by three results.
;) We pinpoint the hypotheses which we really need.

Downside:

© Generic proof are harder than specific ones.

Wait! The speaker lied! Refund my 53 €!!!!!!

The results for $\mathrm{FO}(<)$ went one full level higher, didn't they ?

The almighty alphabet argument

Logical point of view (hierarchy within $\mathrm{FO}(<)$):

The almighty alphabet argument

Logical point of view (hierarchy within $\mathrm{FO}(<)$):

Languages point of view (Straubing-Thérien hierarchy):

Basis:

$\left\{\emptyset, A^{*}\right\}$

The almighty alphabet argument

Logical point of view (hierarchy within $\mathrm{FO}(<)$):

Languages point of view (Straubing-Thérien hierarchy):

Basis:

$\left\{\emptyset, A^{*}\right\}$

Finite class AT
(Alphabet testable)
Boolean combinations of languages of the form $A^{*} a A^{*}$ for some $a \in A$

The almighty alphabet argument

Logical point of view (hierarchy within $\mathrm{FO}(<)$):

Languages point of view (Straubing-Thérien hierarchy):

The almighty alphabet argument

Logical point of view (hierarchy within $\mathrm{FO}(<)$):

Languages point of view (Straubing-Thérien hierarchy):

Summary

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.

Summary

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.

Summary

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B \operatorname{Pol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.

Summary

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B \operatorname{Pol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C}, \mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Summary

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B \operatorname{Pol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C}, \mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Additional important result:
5. Generic reduction. For any half or full level n :

Transfer of separation

Level n in the dot-depth reduces to level n in the Straubing-Thérien.

Conclusion

Conclusion

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow \operatorname{BPol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Conclusion

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B P o l(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Some words about complexity:

1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).

Conclusion

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B P o l(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Some words about complexity:

1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).
2. $\operatorname{Pol}(\mathrm{AT})$ and $B P o l(\mathrm{AT})$ are PSpace(-complete).

Conclusion

Everything we know is captured by only four generic results:

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B \operatorname{Pol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.
4. For any \mathcal{C},
\mathcal{C}-separation decidable $\Rightarrow \operatorname{Pol}(\mathcal{C})$-membership decidable.

Some words about complexity:

1. Complexity depends on $|\mathcal{C}|$ (tied to the implicit alphabet).
2. $\operatorname{Pol}(\mathrm{AT})$ and $B P o l(A T)$ are PSpace(-complete).
3. If the alphabet is fixed, or $|\mathcal{C}|$ is constant, $\operatorname{Pol}(\mathcal{C})$-separation and $B P o l(\mathcal{C})$-separation are in PTime

What you should know

George Boole
(1815-1864)

What you should know

George Boole (1815-1864)

This guy is evil

We don't understand negation

this picture is misleading

We don't understand negation

this picture is misleading

Only three results

1. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\mathcal{C})$-separation decidable.
2. \mathcal{C} finite $\Rightarrow B \operatorname{Pol}(\mathcal{C})$-separation decidable.
3. \mathcal{C} finite $\Rightarrow \operatorname{Pol}(\operatorname{BPol}(\mathcal{C}))$-separation decidable.

We are only able to handle one negation.

We don't understand negation (2)

Let's consider two other examples
Two-variables first-order logic $\left(\mathrm{FO}^{2}(<)\right)$: plenty of negation Separation is decidable. Operations used to build separators:

- Union.
- Concatenations.

We don't understand negation (2)

Let's consider two other examples
Two-variables first-order logic $\left(\mathrm{FO}^{2}(<)\right)$: plenty of negation Separation is decidable. Operations used to build separators:

- Union.
- Concatenations.

First-order logic $(\mathrm{FO}(<))$: even more negation
Separation still decidable. Operations used to build separators:

- Union.
- Concatenations.
- Kleene star (simulated with negation in special situations)

We don't understand negation (2)

Let's consider two other examples
Two-variables first-order logic $\left(\mathrm{FO}^{2}(<)\right)$: plenty of negation Separation is decidable. Operations used to build separators:

- Union.
- Concatenations.

First-order logic $(\mathrm{FO}(<))$: even more negation
Separation still decidable. Operations used to build separators:

- Union.
- Concatenations.
- Kleene star (simulated with negation in special situations)

There are three operations that we understand: union, concatenation and (to a lesser extent) Kleene star. Complement is evil.

Thank You

