
Separation and concatenation hierarchies (Part I)

Thomas Place
Joint work with Marc Zeitoun

LaBRI, Bordeaux University

July 14, 2017

1 / 38

Investigating Logics over Words

2 / 38

Main Objective

First-Order Logic FO(<)

or Fragments

FO(+1),Σi, BΣi

2-Variable FO: FO2(<)

. . .

First-Order Logic FO(<)

or Fragments such as:

FO(+1),Σi, BΣi

2-Variable FO: FO2(<)

. . .

Descriptive Formalisms

acbacbca

Words
acbacbca

Words

Express Properties
(i.e. define languages)

Objective: For each fragment, understand what it can express.

i.e. What languages belong to the associated class C?

3 / 38

Main Objective

First-Order Logic FO(<)

or Fragments

FO(+1),Σi, BΣi

2-Variable FO: FO2(<)

. . .

First-Order Logic FO(<)

or Fragments such as:

FO(+1),Σi, BΣi

2-Variable FO: FO2(<)

. . .

Descriptive Formalisms

acbacbca

Words
acbacbca

Words

Express Properties
(i.e. define languages)

Objective: For each fragment, understand what it can express.

i.e. What languages belong to the associated class C?

3 / 38

Main Objective

First-Order Logic FO(<)

or Fragments

FO(+1),Σi, BΣi

2-Variable FO: FO2(<)

. . .

First-Order Logic FO(<)

or Fragments such as:

FO(+1),Σi, BΣi

2-Variable FO: FO2(<)

. . .

Descriptive Formalisms

acbacbca

Words
acbacbca

Words

Express Properties
(i.e. define languages)

Objective: For each fragment, understand what it can express.

i.e. What languages belong to the associated class C?

3 / 38

First-Order Logic over Words (FO(<))

a b b b c a a a c a ∈ A∗

0 1 2 3 4 5 6 7 8 9

I A word is a sequence of labeled positions.
I Positions can be quantified.

I Two kinds of predicates:
1. Given a ∈ A, a(x) selects positions x whose label is a.
2. Binary predicate for the (strict) order: x < y.

∀x (a(x)⇒ ∃y (b(y) ∧ (y < x)))
”for any a in the word, there is a b to its left”

Each sentence defines a language
⇒ FO(<) defines a class of languages.

We want to understand classes of languages (defined by logic)

4 / 38

First-Order Logic over Words (FO(<))

a b b b c a a a c a ∈ A∗

0 1 2 3 4 5 6 7 8 9

I A word is a sequence of labeled positions.
I Positions can be quantified.
I Two kinds of predicates:

1. Given a ∈ A, a(x) selects positions x whose label is a.
2. Binary predicate for the (strict) order: x < y.

∀x (a(x)⇒ ∃y (b(y) ∧ (y < x)))
”for any a in the word, there is a b to its left”

Each sentence defines a language
⇒ FO(<) defines a class of languages.

We want to understand classes of languages (defined by logic)

4 / 38

First-Order Logic over Words (FO(<))

a b b b c a a a c a ∈ A∗

0 1 2 3 4 5 6 7 8 9

I A word is a sequence of labeled positions.
I Positions can be quantified.
I Two kinds of predicates:

1. Given a ∈ A, a(x) selects positions x whose label is a.
2. Binary predicate for the (strict) order: x < y.

∀x (a(x)⇒ ∃y (b(y) ∧ (y < x)))
”for any a in the word, there is a b to its left”

Each sentence defines a language
⇒ FO(<) defines a class of languages.

We want to understand classes of languages (defined by logic)

4 / 38

Methodology: The membership problem
Given such a class C, the goal is to solve the associated membership
problem:

L a regular language

a

a

b

b
b

c

c
a

a

c

a

Does L belong to
the class C ?

There are two stages to the problem:

I Stage 1: get an algorithm that decides it.

I Stage 2: find a generic way to construct a sentence witnessing
membership of L in C when it exists.

5 / 38

Methodology: The membership problem
Given such a class C, the goal is to solve the associated membership
problem:

L a regular language

a

a

b

b
b

c

c
a

a

c

a

Does L belong to
the class C ?

There are two stages to the problem:

I Stage 1: get an algorithm that decides it.

I Stage 2: find a generic way to construct a sentence witnessing
membership of L in C when it exists.

5 / 38

Example - McNaughton-Papert-Schützenberger

Given a regular language L, the following properties are equivalent:

• L is definable in FO(<)

• The minimal automaton of L is counter-free

• The syntactic monoid of L is aperiodic

semantic
hard to decide

syntactic
easy to decide

Why is it interesting ?

1. The theorem itself is an effective description of the class FO(<).

2. The proofs are constructive: if we have the minimal automaton in
hand, we can construct a sentence for L by induction.
⇒ We get normal forms for FO(<) sentences over words.

Altogether, we learn a lot about FO(<) from this theorem

6 / 38

Example - McNaughton-Papert-Schützenberger

Given a regular language L, the following properties are equivalent:

• L is definable in FO(<)

• The minimal automaton of L is counter-free

• The syntactic monoid of L is aperiodic

semantic
hard to decide

syntactic
easy to decide

Why is it interesting ?

1. The theorem itself is an effective description of the class FO(<).

2. The proofs are constructive: if we have the minimal automaton in
hand, we can construct a sentence for L by induction.
⇒ We get normal forms for FO(<) sentences over words.

Altogether, we learn a lot about FO(<) from this theorem

6 / 38

Example - McNaughton-Papert-Schützenberger

Given a regular language L, the following properties are equivalent:

• L is definable in FO(<)

• The minimal automaton of L is counter-free

• The syntactic monoid of L is aperiodic

semantic
hard to decide

syntactic
easy to decide

Why is it interesting ?

1. The theorem itself is an effective description of the class FO(<).

2. The proofs are constructive: if we have the minimal automaton in
hand, we can construct a sentence for L by induction.
⇒ We get normal forms for FO(<) sentences over words.

Altogether, we learn a lot about FO(<) from this theorem

6 / 38

Summary - Membership

I Understanding a class C = solving C-membership.

I Proof provides a canonical representation of languages in C.

I Successful methodology since the 70s, reproduced
I For other logical classes on words (eg, several restrictions of FO).
I For other structures: infinite words, finite trees.

I Still, the methodology fails for important classes.

7 / 38

Summary - Membership

I Understanding a class C = solving C-membership.

I Proof provides a canonical representation of languages in C.

I Successful methodology since the 70s, reproduced
I For other logical classes on words (eg, several restrictions of FO).
I For other structures: infinite words, finite trees.

I Still, the methodology fails for important classes.

7 / 38

Summary - Membership

I Understanding a class C = solving C-membership.

I Proof provides a canonical representation of languages in C.

I Successful methodology since the 70s, reproduced
I For other logical classes on words (eg, several restrictions of FO).
I For other structures: infinite words, finite trees.

I Still, the methodology fails for important classes.

7 / 38

The big problem: quantifier alternation

8 / 38

Quantifer Alternation: Classifying Sentences

A simple sentence:

Σ2(<)

∃x∃y∀z b(x) ∧ b(y) ∧ ((x < z < y)⇒ a(z)))

A more involved one:

Σ7(<)

∃x1∀x2∃x3∀x4∃x5∀x6∀x7∃x8 ϕ(x1, x2, x3, x4, x5, x6, x7, x8)

Level n: Σn(<) sentence (in prenex normal form)

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · ϕ(x̄, ȳ, . . .)

n blocks (starting with ∃) quantifier-free

Σn(<) not closed under complement ⇒ BΣn(<)

BΣn(<) sentence = Boolean combination of Σn(<) sentences.

9 / 38

Quantifer Alternation: Classifying Sentences

A simple sentence:

Σ2(<)

∃x∃y∀z b(x) ∧ b(y) ∧ ((x < z < y)⇒ a(z)))

A more involved one:

Σ7(<)

∃x1∀x2∃x3∀x4∃x5∀x6∀x7∃x8 ϕ(x1, x2, x3, x4, x5, x6, x7, x8)

Level n: Σn(<) sentence (in prenex normal form)

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · ϕ(x̄, ȳ, . . .)

n blocks (starting with ∃) quantifier-free

Σn(<) not closed under complement ⇒ BΣn(<)

BΣn(<) sentence = Boolean combination of Σn(<) sentences.

9 / 38

Quantifer Alternation: Classifying Sentences

A simple sentence:

Σ2(<)

∃x∃y∀z b(x) ∧ b(y) ∧ ((x < z < y)⇒ a(z)))

A more involved one:

Σ7(<)

∃x1∀x2∃x3∀x4∃x5∀x6∀x7∃x8 ϕ(x1, x2, x3, x4, x5, x6, x7, x8)

Complicated = High Quantifier Alternation

Level n: Σn(<) sentence (in prenex normal form)

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · ϕ(x̄, ȳ, . . .)

n blocks (starting with ∃) quantifier-free

Σn(<) not closed under complement ⇒ BΣn(<)

BΣn(<) sentence = Boolean combination of Σn(<) sentences.

9 / 38

Quantifer Alternation: Classifying Sentences

A simple sentence: Σ2(<)

∃x∃y∀z b(x) ∧ b(y) ∧ ((x < z < y)⇒ a(z)))

A more involved one: Σ7(<)

∃x1∀x2∃x3∀x4∃x5∀x6∀x7∃x8 ϕ(x1, x2, x3, x4, x5, x6, x7, x8)

Level n: Σn(<) sentence (in prenex normal form)

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · ϕ(x̄, ȳ, . . .)

n blocks (starting with ∃) quantifier-free

Σn(<) not closed under complement ⇒ BΣn(<)

BΣn(<) sentence = Boolean combination of Σn(<) sentences.

9 / 38

Quantifer Alternation: Classifying Sentences

A simple sentence: Σ2(<)

∃x∃y∀z b(x) ∧ b(y) ∧ ((x < z < y)⇒ a(z)))

A more involved one: Σ7(<)

∃x1∀x2∃x3∀x4∃x5∀x6∀x7∃x8 ϕ(x1, x2, x3, x4, x5, x6, x7, x8)

Level n: Σn(<) sentence (in prenex normal form)

∃x1, . . . , xn1∀y1, . . . , yn2 · · · · · · ϕ(x̄, ȳ, . . .)

n blocks (starting with ∃) quantifier-free

Σn(<) not closed under complement ⇒ BΣn(<)

BΣn(<) sentence = Boolean combination of Σn(<) sentences.

9 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

Quantifier Alternation: Membership state of the art

Σ1(<)

Π1(<)

BΣ1(<)

Σ2(<)

Π2(<)

BΣ2(<)

Σ3(<)

Π3(<)

BΣ3(<)

Σ4(<)

Π4(<)

BΣ4(<) FO(<)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(Schützenberger)’65
(McNaughton-Papert)’71

Solved

(Simon)’75

Solved

(Arfi)’87
(Pin, Weil)’95

Solved

(P., Zeitoun)’14

Solved

(P.)’15

SolvedOpen Open

How are this results obtained ?

The previous slides only present a third of the story (at best).

10 / 38

The Separation Problem

11 / 38

Definition

Given a class of languages C (for example a level in the hierarchy),
decide the following problem:

L1, L2 two regular languages

a

a

a

a b b b

a

L1

L2

Can L1 be separated from L2

with a language of C?

L1

L2

A∗

Belongs to CBelongs to C

Membership can be formally

reduced to separation

12 / 38

Definition

Given a class of languages C (for example a level in the hierarchy),
decide the following problem:

L1, L2 two regular languages

a

a

a

a b b b

a

L1

L2

Can L1 be separated from L2

with a language of C?

L1L2

A∗

Belongs to CBelongs to C

Membership can be formally

reduced to separation

12 / 38

Definition

Given a class of languages C (for example a level in the hierarchy),
decide the following problem:

L1, L2 two regular languages

a

a

a

a b b b

a

L1

L2

Can L1 be separated from L2

with a language of C?

L1L2

A∗

Belongs to C

Belongs to C

Membership can be formally

reduced to separation

12 / 38

Definition

Given a class of languages C (for example a level in the hierarchy),
decide the following problem:

L1, L2 two regular languages

a

a

a

a b b b

a

L1

L2

Can L1 be separated from L2

with a language of C?

L2 = A∗ \ L1 L1

L2

A∗

Belongs to CBelongs to C

Membership can be formally

reduced to separation

12 / 38

Definition

Given a class of languages C (for example a level in the hierarchy),
decide the following problem:

L1, L2 two regular languages

a

a

a

a b b b

a

L1

L2

Can L1 be separated from L2

with a language of C?

L2 = A∗ \ L1 L1

L2

A∗

Belongs to C

Belongs to C

Membership can be formally

reduced to separation

12 / 38

Motivation for Separation (1)
Negative aspect:

Usually harder than membership.

Positive aspects:

More rewarding with respect to the investigated class.

Membership for C = Techniques applying to languages in C only.
Separation for C = Techniques applying to all languages.

Membership for C

Given a language L:

1. Does L ∈ C ?

2. If so, compute a description
of L in C.

Separation for C

Given two languages L1, L2:

1. Can we approximate L1

with some K ∈ C ? (allowed
approximations given by L2)

2. If so, compute K ∈ C

realizing this approximation.

13 / 38

Motivation for Separation (1)
Negative aspect:

Usually harder than membership.

Positive aspects:

More rewarding with respect to the investigated class.

Membership for C = Techniques applying to languages in C only.
Separation for C = Techniques applying to all languages.

Membership for C

Given a language L:

1. Does L ∈ C ?

2. If so, compute a description
of L in C.

Separation for C

Given two languages L1, L2:

1. Can we approximate L1

with some K ∈ C ? (allowed
approximations given by L2)

2. If so, compute K ∈ C

realizing this approximation.

13 / 38

Motivation for Separation (1)
Negative aspect:

Usually harder than membership.

Positive aspects:

More rewarding with respect to the investigated class.

Membership for C = Techniques applying to languages in C only.
Separation for C = Techniques applying to all languages.

Membership for C

Given a language L:

1. Does L ∈ C ?

2. If so, compute a description
of L in C.

Separation for C

Given two languages L1, L2:

1. Can we approximate L1

with some K ∈ C ? (allowed
approximations given by L2)

2. If so, compute K ∈ C

realizing this approximation.

13 / 38

Motivation for Separation (2)

All results that we have today for the hierarchy are based on
separation (or more general problems):

I While harder, separation provides a better and more robust
framework for this investigation.

I Moreover, interaction between membership and separation.

Transfer theorem (P.,Zeitoun)’14

For all n ≥ 1,

Σn-separation decidable ⇒ Σn+1-membership decidable

Important Remark

Separation is harder than membership. The above above does not
solve the whole hierarchy.

14 / 38

Motivation for Separation (2)

All results that we have today for the hierarchy are based on
separation (or more general problems):

I While harder, separation provides a better and more robust
framework for this investigation.

I Moreover, interaction between membership and separation.

Transfer theorem (P.,Zeitoun)’14

For all n ≥ 1,

Σn-separation decidable ⇒ Σn+1-membership decidable

Important Remark

Separation is harder than membership. The above above does not
solve the whole hierarchy.

14 / 38

Motivation for Separation (2)

All results that we have today for the hierarchy are based on
separation (or more general problems):

I While harder, separation provides a better and more robust
framework for this investigation.

I Moreover, interaction between membership and separation.

Transfer theorem (P.,Zeitoun)’14

For all n ≥ 1,

Σn-separation decidable ⇒ Σn+1-membership decidable

Important Remark

Separation is harder than membership. The above above does not
solve the whole hierarchy.

14 / 38

Transfer theorem: Σn−1-separation ⇒ Σn-membership

Notation, for two states p, q: Lp,q = {w | p w−−−−→ q}

Forbidden Patterns and Separation

A regular language is definable in Σn iff its minimal automaton has
no pattern:

p q

not final final

w w

where Lp,q is not Σn−1-separable from Lp,p ∩ Lq,q

Corollary

Solving Σn−1-separation yields a solution for Σn-membership.

15 / 38

Transfer theorem: Σn−1-separation ⇒ Σn-membership

Notation, for two states p, q: Lp,q = {w | p w−−−−→ q}

Forbidden Patterns and Separation

A regular language is definable in Σn iff its minimal automaton has
no pattern:

p q

not final final

w w

where Lp,q is not Σn−1-separable from Lp,p ∩ Lq,q

Corollary

Solving Σn−1-separation yields a solution for Σn-membership.

15 / 38

Transfer theorem: Σn−1-separation ⇒ Σn-membership

Notation, for two states p, q: Lp,q = {w | p w−−−−→ q}

Forbidden Patterns and Separation

A regular language is definable in Σn iff its minimal automaton has
no pattern:

p q

not final final

w w

where Lp,q is not Σn−1-separable from Lp,p ∩ Lq,q

Corollary

Solving Σn−1-separation yields a solution for Σn-membership.

15 / 38

Transfer theorem: Σn−1-separation ⇒ Σn-membership

Notation, for two states p, q: Lp,q = {w | p w−−−−→ q}

Forbidden Patterns and Separation

A regular language is definable in Σn iff its minimal automaton has
no pattern:

p q

not final final

w w

where Lp,q is not Σn−1-separable from Lp,p ∩ Lq,q

Corollary

Solving Σn−1-separation yields a solution for Σn-membership.

15 / 38

Transfer theorem: Σn−1-separation ⇒ Σn-membership

Notation, for two states p, q: Lp,q = {w | p w−−−−→ q}

Forbidden Patterns and Separation

A regular language is definable in Σn iff its minimal automaton has
no pattern:

p q

not final final

w w

where Lp,q is not Σn−1-separable from Lp,p ∩ Lq,q

Corollary

Solving Σn−1-separation yields a solution for Σn-membership.

15 / 38

Limits of this approach

We have the following:

Σn-separation decidable ⇒ Σn+1-membership decidable

No similar result with separation on the right side.

Let us explain why.

Hard part for both membership and separation:
Generic construction of descriptions in C.

This is also the case for the transfer theorem.

16 / 38

Limits of this approach

We have the following:

Σn-separation decidable ⇒ Σn+1-membership decidable

No similar result with separation on the right side.

Let us explain why.

Hard part for both membership and separation:
Generic construction of descriptions in C.

This is also the case for the transfer theorem.

16 / 38

Construction of Σn sentences

A Σn sentence is layered: Consider a Σ3 sentence

∃x1

∃x2 ∃x3

∀y1 ∀y2

∀y3

∀y4

∃z1 ∃z2 ∃z3 ∃z4

Σ1 layer

Π2 layer

Σ3 layer

A generic construction should have several phases:
one for each layer

17 / 38

Construction of Σn sentences

A Σn sentence is layered: Consider a Σ3 sentence

∃x1

∃x2 ∃x3

∀y1 ∀y2

∀y3

∀y4

∃z1 ∃z2 ∃z3 ∃z4

Σ1 layer

Π2 layer

Σ3 layer

A generic construction should have several phases:
one for each layer

17 / 38

Construction of Σn sentences in the transfer theorem

Starting from a DFA A satisfying the transfer theorem, one builds a
Σn sentence as follows:

I All languages needed for the layers below Σn−1 are
Σn−1-separators of Lp,q from Lp,p ∩ Lq,q for some states p, q of A.

I One builds the topmost layer (Σn) from them by induction on A.

Key ideas

I We already have the languages of the Σn layer in hand:
they are all recognized by A.

I The lower layers are built by approximating these languages
with Σn−1-separation.

Separation is different: we do not have the Σn-layer in hand.
⇒ All layers must be considered simultaneously.

18 / 38

Construction of Σn sentences in the transfer theorem

Starting from a DFA A satisfying the transfer theorem, one builds a
Σn sentence as follows:

I All languages needed for the layers below Σn−1 are
Σn−1-separators of Lp,q from Lp,p ∩ Lq,q for some states p, q of A.

I One builds the topmost layer (Σn) from them by induction on A.

Key ideas

I We already have the languages of the Σn layer in hand:
they are all recognized by A.

I The lower layers are built by approximating these languages
with Σn−1-separation.

Separation is different: we do not have the Σn-layer in hand.
⇒ All layers must be considered simultaneously.

18 / 38

Construction of Σn sentences in the transfer theorem

Starting from a DFA A satisfying the transfer theorem, one builds a
Σn sentence as follows:

I All languages needed for the layers below Σn−1 are
Σn−1-separators of Lp,q from Lp,p ∩ Lq,q for some states p, q of A.

I One builds the topmost layer (Σn) from them by induction on A.

Key ideas

I We already have the languages of the Σn layer in hand:
they are all recognized by A.

I The lower layers are built by approximating these languages
with Σn−1-separation.

Separation is different: we do not have the Σn-layer in hand.
⇒ All layers must be considered simultaneously.

18 / 38

Current state of the art: Separation
S

ep
a
ra

ti
o
n

M
em

b
er

sh
ip

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

(Schützenberger)’65
(McNaughton-Papert)’71

(Henckell)’88
(P.,Zeitoun)’14

(Simon)’75

(Almeida,Zeitoun)’97
(Czerwinski,Martens,Masopust)’13

(P.,Van Rooijen,Zeitoun)’13

(P.,Zeitoun)’14
(Arfi)’87

(Pin, Weil)’95

(P.,Zeitoun)’14

(P., Zeitoun)’17

(P.)’15

(P.)’15

We are still missing one third of the story.

19 / 38

Current state of the art: Separation
S

ep
a
ra

ti
o
n

M
em

b
er

sh
ip

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

(Schützenberger)’65
(McNaughton-Papert)’71

(Henckell)’88
(P.,Zeitoun)’14

(Simon)’75

(Almeida,Zeitoun)’97
(Czerwinski,Martens,Masopust)’13

(P.,Van Rooijen,Zeitoun)’13

(P.,Zeitoun)’14
(Arfi)’87

(Pin, Weil)’95

(P.,Zeitoun)’14

(P., Zeitoun)’17

(P.)’15

(P.)’15

We are still missing one third of the story.

19 / 38

Current state of the art: Separation
S

ep
a
ra

ti
o
n

M
em

b
er

sh
ip

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

(Schützenberger)’65
(McNaughton-Papert)’71

(Henckell)’88
(P.,Zeitoun)’14

(Simon)’75

(Almeida,Zeitoun)’97
(Czerwinski,Martens,Masopust)’13

(P.,Van Rooijen,Zeitoun)’13

(P.,Zeitoun)’14
(Arfi)’87

(Pin, Weil)’95

(P.,Zeitoun)’14

(P., Zeitoun)’17

(P.)’15

(P.)’15

We are still missing one third of the story.
19 / 38

Concatenation hierarchies

20 / 38

Star-free languages (1)
McNaughton-Papert’71

Given a regular language L, the following properties are equivalent:

I L may be defined by an FO(<) sentence.

I L is star-free.

Star-free languages

I ∅ and A∗ are star-free.
⇒ Corresponds to the FO(<) sentences ⊥ and >.

I Closed under union, union and complement.
⇒ Corresponds to Boolean connectives in FO(<).

I Closed under marked concatenation:

Given a ∈ A K,L, a 7→ KaL

⇒ Corresponds to existential quantification in FO(<).

∃x a(x) ∧ ϕ<x
K (x) ∧ ϕ>x

L (x)

21 / 38

Star-free languages (1)
McNaughton-Papert’71

Given a regular language L, the following properties are equivalent:

I L may be defined by an FO(<) sentence.

I L is star-free.

Star-free languages

I ∅ and A∗ are star-free.
⇒ Corresponds to the FO(<) sentences ⊥ and >.

I Closed under union, union and complement.
⇒ Corresponds to Boolean connectives in FO(<).

I Closed under marked concatenation:

Given a ∈ A K,L, a 7→ KaL

⇒ Corresponds to existential quantification in FO(<).

∃x a(x) ∧ ϕ<x
K (x) ∧ ϕ>x

L (x)

21 / 38

Star-free languages (1)
McNaughton-Papert’71

Given a regular language L, the following properties are equivalent:

I L may be defined by an FO(<) sentence.

I L is star-free.

Star-free languages

I ∅ and A∗ are star-free.
⇒ Corresponds to the FO(<) sentences ⊥ and >.

I Closed under union, union and complement.
⇒ Corresponds to Boolean connectives in FO(<).

I Closed under marked concatenation:

Given a ∈ A K,L, a 7→ KaL

⇒ Corresponds to existential quantification in FO(<).

∃x a(x) ∧ ϕ<x
K (x) ∧ ϕ>x

L (x)

21 / 38

Star-free languages (1)
McNaughton-Papert’71

Given a regular language L, the following properties are equivalent:

I L may be defined by an FO(<) sentence.

I L is star-free.

Star-free languages

I ∅ and A∗ are star-free.
⇒ Corresponds to the FO(<) sentences ⊥ and >.

I Closed under union, union and complement.
⇒ Corresponds to Boolean connectives in FO(<).

I Closed under marked concatenation:

Given a ∈ A K,L, a 7→ KaL

⇒ Corresponds to existential quantification in FO(<).

∃x a(x) ∧ ϕ<x
K (x) ∧ ϕ>x

L (x)
21 / 38

Star-free languages (2)

I Going from star-free languages to FO(<) is easy:

Star-free description is a FO(<) sentence in normal form.

I Other direction is less immediate:

More syntactical freedom in FO(<) sentences.

However, in generic constructions of FO(<) sentences, this additional
freedom is never used.

For building FO(<) languages, one always starts from ∅ and A∗ using
only Boolean operations and marked concatenations.

This is also the case for classes in the quantifier alternation hierarchy
of FO(<).

22 / 38

Star-free languages (2)

I Going from star-free languages to FO(<) is easy:

Star-free description is a FO(<) sentence in normal form.

I Other direction is less immediate:

More syntactical freedom in FO(<) sentences.

However, in generic constructions of FO(<) sentences, this additional
freedom is never used.

For building FO(<) languages, one always starts from ∅ and A∗ using
only Boolean operations and marked concatenations.

This is also the case for classes in the quantifier alternation hierarchy
of FO(<).

22 / 38

Star-free languages (2)

I Going from star-free languages to FO(<) is easy:

Star-free description is a FO(<) sentence in normal form.

I Other direction is less immediate:

More syntactical freedom in FO(<) sentences.

However, in generic constructions of FO(<) sentences, this additional
freedom is never used.

For building FO(<) languages, one always starts from ∅ and A∗ using
only Boolean operations and marked concatenations.

This is also the case for classes in the quantifier alternation hierarchy
of FO(<).

22 / 38

Star-free languages (2)

I Going from star-free languages to FO(<) is easy:

Star-free description is a FO(<) sentence in normal form.

I Other direction is less immediate:

More syntactical freedom in FO(<) sentences.

However, in generic constructions of FO(<) sentences, this additional
freedom is never used.

For building FO(<) languages, one always starts from ∅ and A∗ using
only Boolean operations and marked concatenations.

This is also the case for classes in the quantifier alternation hierarchy
of FO(<).

22 / 38

The Straubing Thérien Hierarchy’81
Classifies the star-free languages into half and full levels:

0

{∅, A∗}

1
2 1 3

2 2 5
2 3

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

((Thomas)’82 (Perrin,Pin)’86)

Pol Pol Pol

Bool Bool Bool

Polynomial closure

Pol(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Marked concatenation
(K,L, a 7→ KaL).

Boolean closure

Bool(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Complement
(L 7→ A∗ \ L).

23 / 38

The Straubing Thérien Hierarchy’81
Classifies the star-free languages into half and full levels:

0

{∅, A∗}

1
2 1 3

2 2 5
2 3

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

((Thomas)’82 (Perrin,Pin)’86)

Pol Pol Pol

Bool Bool Bool

Polynomial closure

Pol(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Marked concatenation
(K,L, a 7→ KaL).

Boolean closure

Bool(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Complement
(L 7→ A∗ \ L).

23 / 38

The Straubing Thérien Hierarchy’81
Classifies the star-free languages into half and full levels:

0

{∅, A∗}

1
2 1 3

2 2 5
2 3

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

((Thomas)’82 (Perrin,Pin)’86)

Pol Pol Pol

Bool Bool Bool

Polynomial closure

Pol(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Marked concatenation
(K,L, a 7→ KaL).

Boolean closure

Bool(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Complement
(L 7→ A∗ \ L).

23 / 38

The Straubing Thérien Hierarchy’81
Classifies the star-free languages into half and full levels:

0

{∅, A∗}

1
2 1 3

2 2 5
2 3

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

((Thomas)’82 (Perrin,Pin)’86)

Pol Pol Pol

Bool Bool Bool

Polynomial closure

Pol(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Marked concatenation
(K,L, a 7→ KaL).

Boolean closure

Bool(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Complement
(L 7→ A∗ \ L).

23 / 38

The Straubing Thérien Hierarchy’81
Classifies the star-free languages into half and full levels:

0

{∅, A∗}

1
2 1 3

2 2 5
2 3

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

((Thomas)’82 (Perrin,Pin)’86)

Pol Pol Pol

Bool Bool Bool

Polynomial closure

Pol(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Marked concatenation
(K,L, a 7→ KaL).

Boolean closure

Bool(C) built by closing the class
C under:

I Union (
⋃

).

I Intersection (
⋂

).

I Complement
(L 7→ A∗ \ L).

23 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol

1
Bool

3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool

3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol

2
Bool

5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool

5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool
5
2

Pol

3
Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

Generic template: Concatenation hierarchies

Previous slide is an example of a generic construction.

0
Basis:
class C

C must be closed under:
• Boolean operations.
• Quotients. For L ∈ C, w ∈ A∗,

w−1L
def
= {u ∈ A∗ | wu ∈ L} ∈ C

Lw−1 def
= {u ∈ A∗ | uw ∈ L} ∈ C

1
2

Pol
1

Bool
3
2

Pol
2

Bool
5
2

Pol
3

Bool

All results for quantifier alternation can be lifted as generic
results for concatenation hierarchies whose basis is finite.

Before we explain how, let us further motivate the introduction of
concatenation hierarchies.

24 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (1)
Given a basis C, we define a variant FO(C) of first-order logic
equipped with the following signature:

I Label predicates: a(x), b(x),

For each L ∈ C, we add four predicates:

I Infix IL(x, y) (binary):

a1 · · · an |= IL(i, j) iff i < j and ai+1 · · · aj−1 ∈ L

I Prefix PL(x) (unary):

a1 · · · an |= PL(i) iff a1 · · · ai−1 ∈ L

I Suffix SL(x) (unary):

a1 · · · an |= SL(i) iff ai+1 · · · an ∈ L

I Whole word NL (nullary):

a1 · · · an |= NL iff a1 · · · an ∈ L

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

25 / 38

The logical connection is generic (2)

The concatenation hierarchy of basis C corresponds to the quantifier
alternation hierarchy within FO(C).

00
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

BΣ0(C) Σ1(C) BΣ1(C) Σ2(C) BΣ2(C) Σ3(C) BΣ3(C)

26 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗}

⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗}

⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗}

⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗}

⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗}

⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗}

⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

The logical connection is generic: Examples

The Straubing-Thérien hierarchy

Basis C = {∅, A∗} ⇒ FO(<)

I IA∗(x, y) is x < y.

I PA∗(x), SA∗(x), NA∗ are equivalent to >.

I I∅(x, y), P∅(x), S∅(x), N∅ are equivalent to ⊥

The dot-depth hierarchy (Brzozowski,Cohen)’71

Basis C = {∅, {ε}, A+, A∗} ⇒ FO(<,+1,min,max, ε) (Thomas)’82

I Iε(x, y) is x + 1 = y.

I Pε(x) and Sε(x) are min(x) and max(x).

I Nε is ε.

I Predicates obtained from A+ are expressed from the others.

27 / 38

Generic separation results

28 / 38

Generic separation results (1)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Generic Separation Results

If C is finite, then separation is decidable for the following,

1. Pol(C).

2. BPol(C) (i.e. Bool(Pol(C))).

3. Pol(BPol(C)).

29 / 38

Generic separation results (1)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Generic Separation Results

If C is finite, then separation is decidable for the following,

1. Pol(C).

2. BPol(C) (i.e. Bool(Pol(C))).

3. Pol(BPol(C)).

29 / 38

Generic separation results (1)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Generic Separation Results

If C is finite, then separation is decidable for the following,

1. Pol(C).

2. BPol(C) (i.e. Bool(Pol(C))).

3. Pol(BPol(C)).

29 / 38

Generic separation results (1)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Generic Separation Results

If C is finite, then separation is decidable for the following,

1. Pol(C).

2. BPol(C) (i.e. Bool(Pol(C))).

3. Pol(BPol(C)).

29 / 38

Generic separation results (2)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Advantages:

These results treat many classes.

All we know about separation is captured by three results.

We pinpoint the hypotheses which we really need.

Downside:

Generic proof are harder than specific ones.

Wait ! The speaker lied ! Refund my 53 e!!!!!!

The results for FO(<) went one full level higher, didn’t they ?

30 / 38

Generic separation results (2)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Advantages:

These results treat many classes.

All we know about separation is captured by three results.

We pinpoint the hypotheses which we really need.

Downside:

Generic proof are harder than specific ones.

Wait ! The speaker lied ! Refund my 53 e!!!!!!

The results for FO(<) went one full level higher, didn’t they ?

30 / 38

Generic separation results (2)

0
Basis:
class C

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Advantages:

These results treat many classes.

All we know about separation is captured by three results.

We pinpoint the hypotheses which we really need.

Downside:

Generic proof are harder than specific ones.

Wait ! The speaker lied ! Refund my 53 e!!!!!!

The results for FO(<) went one full level higher, didn’t they ?

30 / 38

The almighty alphabet argument

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

Logical point of view (hierarchy within FO(<)):

0

Basis:
{∅, A∗}

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Languages point of view (Straubing-Thérien hierarchy):

Finite class AT
(Alphabet testable)

Boolean combinations of languages
of the form A∗aA∗ for some a ∈ A

Pol

(Pin,Straubing)’81

N
e
w

le
v
e
l

0

1
2 1 3

2

31 / 38

The almighty alphabet argument

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

Logical point of view (hierarchy within FO(<)):

0

Basis:
{∅, A∗}

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Languages point of view (Straubing-Thérien hierarchy):

Finite class AT
(Alphabet testable)

Boolean combinations of languages
of the form A∗aA∗ for some a ∈ A

Pol

(Pin,Straubing)’81

N
e
w

le
v
e
l

0

1
2 1 3

2

31 / 38

The almighty alphabet argument

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

Logical point of view (hierarchy within FO(<)):

0

Basis:
{∅, A∗}

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Languages point of view (Straubing-Thérien hierarchy):

Finite class AT
(Alphabet testable)

Boolean combinations of languages
of the form A∗aA∗ for some a ∈ A

Pol

(Pin,Straubing)’81

N
e
w

le
v
e
l

0

1
2 1 3

2

31 / 38

The almighty alphabet argument

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

Logical point of view (hierarchy within FO(<)):

0

Basis:
{∅, A∗}

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Languages point of view (Straubing-Thérien hierarchy):

Finite class AT
(Alphabet testable)

Boolean combinations of languages
of the form A∗aA∗ for some a ∈ A

Pol

(Pin,Straubing)’81

N
e
w

le
v
e
l

0

1
2 1 3

2

31 / 38

The almighty alphabet argument

BΣ0(<) Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<)

Logical point of view (hierarchy within FO(<)):

0

Basis:
{∅, A∗}

1
2 1 3

2 2 5
2 3

Pol Pol Pol

Bool Bool Bool

Languages point of view (Straubing-Thérien hierarchy):

Finite class AT
(Alphabet testable)

Boolean combinations of languages
of the form A∗aA∗ for some a ∈ A

Pol

(Pin,Straubing)’81

N
e
w

le
v
e
l

0

1
2 1 3

2

31 / 38

Summary

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Additional important result:

5. Generic reduction. For any half or full level n:

Transfer of separation

Level n in the dot-depth reduces to level n in the Straubing-Thérien.

32 / 38

Summary

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Additional important result:

5. Generic reduction. For any half or full level n:

Transfer of separation

Level n in the dot-depth reduces to level n in the Straubing-Thérien.

32 / 38

Summary

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Additional important result:

5. Generic reduction. For any half or full level n:

Transfer of separation

Level n in the dot-depth reduces to level n in the Straubing-Thérien.

32 / 38

Summary

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Additional important result:

5. Generic reduction. For any half or full level n:

Transfer of separation

Level n in the dot-depth reduces to level n in the Straubing-Thérien.

32 / 38

Summary

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Additional important result:

5. Generic reduction. For any half or full level n:

Transfer of separation

Level n in the dot-depth reduces to level n in the Straubing-Thérien.

32 / 38

Conclusion

33 / 38

Conclusion

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).

2. Pol(AT) and BPol(AT) are PSpace(-complete).

3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime

34 / 38

Conclusion

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).

2. Pol(AT) and BPol(AT) are PSpace(-complete).

3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime

34 / 38

Conclusion

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).

2. Pol(AT) and BPol(AT) are PSpace(-complete).

3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime

34 / 38

Conclusion

Everything we know is captured by only four generic results:

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

4. For any C,
C-separation decidable ⇒ Pol(C)-membership decidable.

Some words about complexity:

1. Complexity depends on |C| (tied to the implicit alphabet).

2. Pol(AT) and BPol(AT) are PSpace(-complete).

3. If the alphabet is fixed, or |C| is constant,

Pol(C)-separation and BPol(C)-separation are in PTime

34 / 38

What you should know

George Boole
(1815-1864)

This guy is evil

35 / 38

What you should know

George Boole
(1815-1864)

This guy is evil

35 / 38

We don’t understand negation

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

this picture is misleading

Only three results

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

We are only able to handle one negation.

36 / 38

We don’t understand negation

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

this picture is misleading

Only three results

1. C finite ⇒ Pol(C)-separation decidable.

2. C finite ⇒ BPol(C)-separation decidable.

3. C finite ⇒ Pol(BPol(C))-separation decidable.

We are only able to handle one negation.

36 / 38

We don’t understand negation (2)
Let’s consider two other examples

Two-variables first-order logic (FO2(<)): plenty of negation

Separation is decidable. Operations used to build separators:

I Union.

I Concatenations.

First-order logic (FO(<)): even more negation

Separation still decidable. Operations used to build separators:

I Union.

I Concatenations.

I Kleene star (simulated with negation in special situations)

There are three operations that we understand: union, concatenation
and (to a lesser extent) Kleene star. Complement is evil.

37 / 38

We don’t understand negation (2)
Let’s consider two other examples

Two-variables first-order logic (FO2(<)): plenty of negation

Separation is decidable. Operations used to build separators:

I Union.

I Concatenations.

First-order logic (FO(<)): even more negation

Separation still decidable. Operations used to build separators:

I Union.

I Concatenations.

I Kleene star (simulated with negation in special situations)

There are three operations that we understand: union, concatenation
and (to a lesser extent) Kleene star. Complement is evil.

37 / 38

We don’t understand negation (2)
Let’s consider two other examples

Two-variables first-order logic (FO2(<)): plenty of negation

Separation is decidable. Operations used to build separators:

I Union.

I Concatenations.

First-order logic (FO(<)): even more negation

Separation still decidable. Operations used to build separators:

I Union.

I Concatenations.

I Kleene star (simulated with negation in special situations)

There are three operations that we understand: union, concatenation
and (to a lesser extent) Kleene star. Complement is evil.

37 / 38

Σ1(<) BΣ1(<) Σ2(<) BΣ2(<) Σ3(<) BΣ3(<) Σ4(<) FO(<)(((((((

(Schützenberger)’65
(McNaughton-Papert)’71

(Henckell)’88
(P.,Zeitoun)’14

(Simon)’75

(Almeida,Zeitoun)’97
(Czerwinski,Martens,Masopust)’13

(P.,Van Rooijen,Zeitoun)’13

(P.,Zeitoun)’14
(Arfi)’87

(Pin, Weil)’95

(P.,Zeitoun)’14

(P., Zeitoun)’17

(P.)’15

(P.)’15

Thank You
38 / 38

	Introduction
	Concatenation hierarchies
	Conclusion

