Separability of Reachability Sets of Vector Addition Systems

Lorenzo Clemente

Wojciech Czerwiński

Sławomir Lasota

Charles Paperman

General problem

<u>F</u> separability of <u>G</u>

General problem

F separability of G

Given: two sets U and V from family G

General problem

F separability of G

Given: two sets U and V from family G

Question: are U and V separable by some set from family F

• till recently not a lot of interest

- till recently not a lot of interest
- recently many decidability results for F sep. of regular languages for F = languages of FO, Σ_i , Π_i

- till recently not a lot of interest
- recently many decidability results for F sep. of regular languages for F = languages of FO, Σ_i , Π_i
- mostly obtained by algebraic methods

- till recently not a lot of interest
- recently many decidability results for F sep. of regular languages for F = languages of FO, Σ_i , Π_i
- mostly obtained by algebraic methods
- regular separability of CFL is undecidable (Szymanski, Williams '76)

• F sep. of CFL is undecidable for any F closed under boolean combination and containing w Σ^* (Hunt '82)

- F sep. of CFL is undecidable for any F closed under boolean combination and containing w Σ^* (Hunt '82)
- PTL separability of CFL is decidable (Cz. et al. '15)

- F sep. of CFL is undecidable for any F closed under boolean combination and containing w Σ^* (Hunt '82)
- PTL separability of CFL is decidable (Cz. et al. '15)
- regular separability of visibly pushdown languages is undecidable (Kopczyński '15)

understand for which classes regular separability is decidable

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński '15)

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński '15)
- maybe counters?

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński '15)
- maybe counters?
- conjecture: decidable for VAS-languages (open)

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński '15)
- maybe counters?
- conjecture: decidable for VAS-languages (open)
- recently solved for many subclasses

 regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets
- what about recognizable separability of more complicated sets?

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets
- what about recognizable separability of more complicated sets?
- for example VAS reachability sets

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets
- what about recognizable separability of more complicated sets?
- for example VAS reachability sets
- goal now: present technique on a simpler case

initial vector \mathbf{v} in \mathbf{N}^n

initial vector \mathbf{v} in \mathbf{N}^n

set of transitions T in Z^n

initial vector \mathbf{v} in \mathbf{N}^n

set of transitions T in Z^n

move: from u to u+t if u+t in Nⁿ

initial vector \mathbf{v} in \mathbf{N}^n

set of transitions T in Zⁿ

move: from u to u+t if u+t in Nⁿ

reachability set: vectors in Nⁿ reachable from v by a sequence of moves

Given: two Vector Addition Systems with reachability sets $U, V \subseteq N^n$

Given: two Vector Addition Systems with reachability sets $U, V \subseteq N^n$

Question: are U and V separable by modular sets?

Given: two Vector Addition Systems with reachability sets $U, V \subseteq N^n$

Question: are U and V separable by modular sets?

Given: two Vector Addition Systems with reachability sets $U, V \subseteq N^n$

Question: are U and V separable by modular sets?

N = 4

Given: two Vector Addition Systems with reachability sets $U, V \subseteq N^n$

Question: are U and V separable by modular sets?

What is known?
Mayr `81: membership for VAS reachability sets is decidable

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear

linear set = { $v_0 + n_1 v_1 + ... + n_k v_k | n_1, ..., n_k \in N$ }

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear

linear set = { $v_0 + n_1 v_1 + ... + n_k v_k | n_1, ..., n_k \in N$ } semilinear set = finite union of linear sets

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear
- Leroux `09: two VAS reachability sets are separable by a semilinear set iff they are disjoint

linear set = { $v_0 + n_1 v_1 + ... + n_k v_k | n_1, ..., n_k \in N$ } semilinear set = finite union of linear sets

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear
- Leroux `09: two VAS reachability sets are separable by a semilinear set iff they are disjoint
- so separability by semilinear sets is decidable

linear set = { v_0 + n₁ v_1 + ... + n_k v_k | n₁ , ... , n_k \in N} semilinear set = finite union of linear sets

First main result

First main result

Theorem:

Separability of reachability sets of Vector Addition Systems by modular sets is decidable

Lemma:

Lemma:

Lemma:

For reachability sets U,V of VASs t.f.a.e.: I) U and V are not separable by modular sets

Lemma:

For reachability sets U,V of VASs t.f.a.e.: I) U and V are not separable by modular sets

2) there exists two linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets

Lemma:

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
2) there exists two linear sets L_U ⊆ U, L_V ⊆ V such that L_U and L_V are not separable by modular sets

linear set = { $v_0 + n_1 v_1 + ... + n_k v_k | n_1, ..., n_k$ in N}

Lemma:

For reachability sets U,V of VASs t.f.a.e.:

- I) U and V are not separable by modular sets
- 2) there exists two linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets
- 3) there exists two special linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets

linear set = { $v_0 + n_1 v_1 + ... + n_k v_k | n_1, ..., n_k$ in N}

two semiprocedures

two semiprocedures

positive

two semiprocedures

positive

negative

two semiprocedures

negative

enumerates and checks numbers N

two semiprocedures

negative

enumerates and checks numbers N

simple by VASS reachability

two semiprocedures

positive

negative

enumerates and checks numbers N

enumerates special linear sets $L_U \subseteq U, L_V \subseteq V$ and checks whether they are modular separable

simple by VASS reachability

two semiprocedures

positive

negative

enumerates and checks numbers N

simple by VASS reachability

enumerates special linear sets $L_U \subseteq U, L_V \subseteq V$ and checks whether they are modular separable \uparrow simple by linear algebra

Theorem:

Separability of reachability sets of Vector Addition Systems by recognizable sets is decidable

Theorem:

Separability of reachability sets of Vector Addition Systems by recognizable sets is decidable

Theorem:

Separability of reachability sets of Vector Addition Systems by recognizable sets is decidable

N = 4

Theorem:

Separability of reachability sets of Vector Addition Systems by recognizable sets is decidable

only value modulo N matters for numbers bigger than N

For reachability sets U,V of VASs t.f.a.e.: I) U and V are not separable by modular sets

- I) U and V are not separable by modular sets
- 3) there exists two special linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets

- I) U and V are not separable by modular sets
- 3) there exists two special linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets
 - a wqo on VAS-runs

- I) U and V are not separable by modular sets
- 3) there exists two special linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets
 - a wqo on VAS-runs
 - definition of special linear set

For reachability sets U,V of VASs t.f.a.e.:

I) U and V are not separable by modular sets

- 3) there exists two special linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets
 - a wqo on VAS-runs
 - definition of special linear set
 - start from an infinite witness of modular nonseparability and then fold it to a finite object

For reachability sets U,V of VASs t.f.a.e.:

I) U and V are not separable by modular sets

- 3) there exists two special linear sets $L_U \subseteq U, L_V \subseteq V$ such that L_U and L_V are not separable by modular sets
 - a wqo on VAS-runs
 - definition of special linear set
 - start from an infinite witness of modular nonseparability and then fold it to a finite object
 - use some linear algebra
• (X, \leq) is a wqo if for every $x_1, x_2, ... \in X$ there are i < j such that $x_i \leq x_j$

- (X, \leq) is a wqo if for every $x_1, x_2, ... \in X$ there are i < j such that $x_i \leq x_j$
- Dickson: if (X, \leq_X) , (Y, \leq_Y) wqo then $(X \times Y, \leq_{X \times Y})$ also wqo

- (X, \leq) is a wqo if for every $x_1, x_2, ... \in X$ there are i < j such that $x_i \leq x_j$
- Dickson: if (X, \leq_X) , (Y, \leq_Y) wqo then $(X \times Y, \leq_{X \times Y})$ also wqo
- transition (N^d × T × N^d), run sequence of transitions

- (X, \leq) is a wqo if for every $x_1, x_2, ... \in X$ there are i < j such that $x_i \leq x_j$
- Dickson: if (X, \leq_X) , (Y, \leq_Y) wqo then $(X \times Y, \leq_{X \times Y})$ also wqo
- transition (N^d × T × N^d), run sequence of transitions
- Higman: $a_1 \dots a_k \leq v$ if $v \in \Sigma^* b_1 \Sigma^* \dots \Sigma^* b_k \Sigma^*$ for some $a_i \leq_P b_i$, if $\leq_P wqo$ then \leq also wqo

- (X, \leq) is a wqo if for every $x_1, x_2, ... \in X$ there are i < j such that $x_i \leq x_j$
- Dickson: if (X, \leq_X) , (Y, \leq_Y) wqo then $(X \times Y, \leq_{X \times Y})$ also wqo
- transition (N^d × T × N^d), run sequence of transitions
- Higman: $a_1 \dots a_k \leq v$ if $v \in \Sigma^* b_1 \Sigma^* \dots \Sigma^* b_k \Sigma^*$ for some $a_i \leq_P b_i$, if $\leq_P wqo$ then \leq also wqo
- our order \leq : Higman's order for \leq_P being order on transitions intersected with \leq_P on targets

Amalgamation for VAS-runs

Amalgamation for VAS-runs

Let r, r₁, r₂ be runs from s to t, t₁ and t₂ respectively such that $r \leq r_1$ and $r \leq r_2$. Then there is a run r' from s to $t + (t_1 - t) + (t_2 - t)$ such that $r_1 \leq r'$ and $r_2 \leq r'$.

Amalgamation for VAS-runs

Let r, r₁, r₂ be runs from s to t, t₁ and t₂ respectively such that $r \leq r_1$ and $r \leq r_2$. Then there is a run r' from s to $t + (t_1 - t) + (t_2 - t)$ such that $r_1 \leq r'$ and $r_2 \leq r'$.

> Corollary: then there is a run to every $t + n_1(t_1 - t) + ... + n_k(t_k - t)$

Special linear set

Special linear set

For a VAS \vee a \vee -special set is a set of the form

$$\{t + n_i(t_i - t) + ... + n_k(t_k - t) \mid n_i \in N\}$$

for some t, t_i in Reach(\lor) such that $r \leq r_i$ for some runs to t and to t_i , respectively, for all i

If U and V are not modular separable then for every i there there is $u_i \in U, v_i \in V$ such that $u_i \equiv_i v_i$.

If U and V are not modular separable then for every i there there is $u_i \in U, v_i \in V$ such that $u_i \equiv_i v_i$.

an infinite witness of nonseparability: $(u_1, v_1), (u_2, v_2),...$

If U and V are not modular separable then for every i there there is $u_i \in U, v_i \in V$ such that $u_i \equiv_i v_i$.

an infinite witness of nonseparability: $(u_1, v_1), (u_2, v_2),...$

plan: fold it to a finite object

 $(u_{1!}, v_{1!}), (u_{2!}, v_{2!}), (u_{3!}, v_{3!}), ...$ is also fine

 $(u_{1!}, v_{1!}), (u_{2!}, v_{2!}), (u_{3!}, v_{3!}), ...$ is also fine

and any its subsequence also

 $(u_{1!}, v_{1!}), (u_{2!}, v_{2!}), (u_{3!}, v_{3!}), ...$ is also fine

and any its subsequence also

 \leq on runs is a wqo, so we choose an infinite subsequence, which is non decreasing wrt \leq

For every (possibly infinite) set of vectors $S \subseteq Z^d$ there exist finitely many vectors $v_1, v_2, v_3, ..., v_k \in S$, such that $S \subseteq Lin(v_1, v_2, v_3, ..., v_k)$

For every (possibly infinite) set of vectors $S \subseteq Z^d$ there exist finitely many vectors $v_1, v_2, v_3, ..., v_k \in S$, such that $S \subseteq Lin(v_1, v_2, v_3, ..., v_k)$

Let
$$x_i = u_i - u_1$$
, $y_i = v_i - v_1$ and $S_{inf} = \{x_i - y_i \mid i \in N\}$

For every (possibly infinite) set of vectors $S \subseteq Z^d$ there exist finitely many vectors $v_1, v_2, v_3, ..., v_k \in S$, such that $S \subseteq Lin(v_1, v_2, v_3, ..., v_k)$

Let
$$x_i = u_i - u_1$$
, $y_i = v_i - v_1$ and $S_{inf} = \{x_i - y_i \mid i \in N\}$

There is a finite set

$$S_{fin} = \{x_{i1} - y_{i1}, x_{i2} - y_{i2}, ..., x_{ik} - y_{ik}\}$$
such that for every i

$$x_i - y_i = a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$$

$$L_{U} = u_{I} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{I} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$L_{U} = u_{1} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{1} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$0 =_i u_i - v_i = (u_1 + x_i) - (v_1 + y_i) = (u_1 - v_1) + (x_i - y_i)$$

$$L_{U} = u_{1} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{1} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$0 \equiv_{i} u_{i} - v_{i} = (u_{1} + x_{i}) - (v_{1} + y_{i}) = (u_{1} - v_{1}) + (x_{i} - y_{i})$$
$$= (u_{1} - v_{1}) + a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$$

$$L_{U} = u_{1} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{1} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$0 =_{i} u_{i} - v_{i} = (u_{1} + x_{i}) - (v_{1} + y_{i}) = (u_{1} - v_{1}) + (x_{i} - y_{i})$$
$$= (u_{1} - v_{1}) + a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$$
$$= (u_{1} + a_{i1} x_{i1} + ... + a_{ik} x_{ik}) - (v_{1} + a_{i1} y_{i1} + ... + a_{ik} y_{ik})$$

$$L_{U} = u_{1} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{1} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$0 \equiv_{i} u_{i} - v_{i} \equiv (u_{1} + x_{i}) - (v_{1} + y_{i}) \equiv (u_{1} - v_{1}) + (x_{i} - y_{i})$$

= $(u_{1} - v_{1}) + a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$
= $(u_{1} + a_{i1} x_{i1} + ... + a_{ik} x_{ik}) - (v_{1} + a_{i1} y_{i1} + ... + a_{ik} y_{ik})$
= $_{i} (u_{1} + a'_{i1} x_{i1} + ... + a'_{ik} x_{ik}) - (v_{1} + a'_{i1} y_{i1} + ... + a'_{ik} y_{ik})$

$$L_{U} = u_{1} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{1} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$0 \equiv_{i} u_{i} - v_{i} \equiv (u_{1} + x_{i}) - (v_{1} + y_{i}) \equiv (u_{1} - v_{1}) + (x_{i} - y_{i})$$

= $(u_{1} - v_{1}) + a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$
= $(u_{1} + a_{i1} x_{i1} + ... + a_{ik} x_{ik}) - (v_{1} + a_{i1} y_{i1} + ... + a_{ik} y_{ik})$
= $_{i} (u_{1} + a_{i1} x_{i1} + ... + a_{ik} x_{ik}) - (v_{1} + a_{i1} y_{i1} + ... + a_{ik} y_{ik})$
 \square

There is a finite set $S_{fin} = \{x_{i1} - y_{i1}, x_{i2} - y_{i2}, ..., x_{ik} - y_{ik}\}$ such that $x_i - y_i = a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$ for all i

$$L_{U} = u_{1} + LinPos(x_{i1}, x_{i2}, ..., x_{ik})$$
$$L_{V} = v_{1} + LinPos(y_{i1}, y_{i2}, ..., y_{ik})$$

$$0 =_{i} u_{i} - v_{i} = (u_{1} + x_{i}) - (v_{1} + y_{i}) = (u_{1} - v_{1}) + (x_{i} - y_{i})$$

= $(u_{1} - v_{1}) + a_{i1} (x_{i1} - y_{i1}) + ... + a_{ik} (x_{ik} - y_{ik})$
= $(u_{1} + a_{i1} x_{i1} + ... + a_{ik} x_{ik}) - (v_{1} + a_{i1} y_{i1} + ... + a_{ik} y_{ik})$
= $_{i} (u_{1} + a'_{i1} x_{i1} + ... + a'_{ik} x_{ik}) - (v_{1} + a'_{i1} y_{i1} + ... + a'_{ik} y_{ik})$
 \square

Lv

Thank you!