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[ separability of G

Given: two sets U andV from family G

Question: are U andV separable by some
set from family F
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recently many decidability results for F sep. of
regular languages for F = languages of FO, 2, '];

mostly obtained by algebraic methods

regular separability of CFL is undecidable
(Szymanski, Williams '76)
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® [ sep.of CFL is undecidable for any F closed

under boolean combination and containing w2
(Hunt '82)

® PTL separability of CFL is decidable (Cz. et al.’ | 5)

® regular separability of visibly pushdown languages
is undecidable (Kopczynski ’|5)
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Motivation

understand for which classes regular
separability is decidable

extending towards stack is hopeless
(Kopczynski | 5)

maybe counters!
conjecture: decidable for VAS-languages (open)

recently solved for many subclasses
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Motivation

regular separability of Z-VASS-languages
reduces to recognizable separability of
semilinear sets

what about recognizable separability of more
complicated sets?

for example VAS reachability sets

goal now: present technique on a simpler case
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Vector Addition System

initial vector v in NP set of transitions | in Z"

move: from u to u+t
if u+tin N

reachability set: vectors in N" reachable
from v by a sequence of moves
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Given: two Vector Addition Systems with
reachability sets U,V € N"

Question:are U andV separable by
sets!?

N = 4

only value modulo N matters
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What is known!?

Mayr 81: membership for VAS reachability sets is
decidable

VAS reachability sets may not be semilinear

Leroux 09: two VAS reachability sets are
separable by a semilinear set iff they are disjoint

so separability by semilinear sets is decidable

linear set ={vo+ ny vi + ...+ nkvi | ni,...,nk € N}

semilinear set = finite union of linear sets
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Theorem:
Separability of reachability sets of
Vector Addition Systems by sets
is decidable
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Core idea

Lemma:

For reachability sets U,V of VASs t.fa.e.:

) U andV are not separable by sets

2) there exists two linear sets Ly € U, Lv CV such
that Luand Lv are not separable by sets

3) there exists two special linear sets Lu € U, Ly €V such
that Luand Lv are not separable by sets

linear set = {vo + n; vi + ...+ nk vk | ni, ..., nkin N}
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Algorithm

two semiprocedures

positive

enumerates and
checks numbers N

/

simple by VASS reachability

negative

enumerates special linear
sets Luc U, Ly CV

and checks whether they
are separable

\

simple by linear algebra
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Theorem:
Separability of reachability sets of
Vector Addition Systems by
sets is decidable

N = 4
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only value modulo N matters
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Proof of the Lemma

For reachability sets U,V of VASs t.fa.e.:
) U andV are not separable by sets

3) there exists two special linear sets Ly € U, Ly CV such
that Ly and Lv are not separable by sets

® a wqgo on VAS-runs
® definition of special linear set

® start from an infinite witness of modular
nonseparability and then fold it to a finite object

® use some linear algebra
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WQO on VAS-runs

(X, =) is a wqo if for every x|, x2,...e X
there are i < j such that x; = x;

Dickson: if (X, =x), (Y, =v) wqgo then (X XY, <xx,)
also wqgo

transition - (N9 x T x N9), run - sequence of
transitions

Higman:a| ..ax<vifve 2'b; 2"..2 b 2" for
some a; =<p b, if =p wqgo then =also wqo

our order =: Higman'’s order for <p being order
on transitions intersected with =p on targets
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Amalgamation for VAS-runs

Let r, ri, r2 be runs from s to t, t| and t; respectively
such that r = rjand r = .

Then there is a run r’ from s to
t+(t-t)+(t2-t)suchthatri=r andr,=r.

Corollary: then there is a run to
every t + ni(t; - t) + ...+ ni(tk - t)
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Special linear set

For aVASV aV-special set is a set of the form
{t+ni(t) -t) + ...+ n(t - t) | ni e N}

for some t, ti in Reach(V) such that r = rifor some
runs to t and to tj, respectively, for all i
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An infinite withess

If U andV are not modular separable then
for every i there there is uie U,vieV

such that u; =;v;.

an infinite witness of nonseparability:
(ui, vi), (uz, v2),...

plan: fold it to a finite object
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Working on a sequence

(uiy, vir), (uzy, var), (usy, vay), ... is also fine

and any its subsequence also

< on runs is a wgo, so we choose an infinite
subsequence, which is non decreasing wrt =
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An algebraic fact

For every (possibly infinite) set of vectors
S C Z9 there exist finitely many vectors

Vi, V2, V3, ..., Vik € S, such that S C Lin(vy, v2, v3, ..., Vi)

Let xi = ui- uy,yi=vi- viand Sirr = {Xi- yi| i € N}

There is a finite set
Stin = {Xil - Yil, Xi2 = Yi2, ..., Xik = Yik}
such that for every i
Xi = Yi=ail (X - Yil) + ... + aik (Xik - Yik)
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Thank you!



