Separability of Reachability Sets of Vector Addition Systems

Lorenzo Clemente

Wojciech Czerwiński

Sławomir Lasota
Charles Paperman

General problem

F separability of G

General problem

F separability of G

Given: two sets U and V from family G

General problem

F separability of G

Given: two sets U and V from family G

Question: are U and V separable by some set from family F

History of separability

History of separability

- till recently not a lot of interest

History of separability

- till recently not a lot of interest
- recently many decidability results for F sep. of regular languages for $\mathrm{F}=$ languages of $\mathrm{FO}, \Sigma_{\mathrm{i}}, \Pi_{\mathrm{i}}$

History of separability

- till recently not a lot of interest
- recently many decidability results for F sep. of regular languages for $F=$ languages of $\mathrm{FO}, \Sigma_{\mathrm{i}}, \Pi_{\mathrm{i}}$
- mostly obtained by algebraic methods

History of separability

- till recently not a lot of interest
- recently many decidability results for F sep. of regular languages for $F=$ languages of $\mathrm{FO}, \Sigma_{\mathrm{i}}, \Pi_{\mathrm{i}}$
- mostly obtained by algebraic methods
- regular separability of CFL is undecidable (Szymanski,Williams '76)

History of separability

History of separability

- F sep. of CFL is undecidable for any F closed under boolean combination and containing $\mathrm{w} \Sigma^{*}$ (Hunt '82)

History of separability

- F sep. of CFL is undecidable for any F closed under boolean combination and containing $\mathrm{w} \Sigma^{*}$
(Hunt '82)
- PTL separability of CFL is decidable (Cz. et al.' ${ }^{\prime} 5$)

History of separability

- F sep. of CFL is undecidable for any F closed under boolean combination and containing $\mathrm{w} \Sigma^{*}$ (Hunt '82)
- PTL separability of CFL is decidable (Cz. et al.' ${ }^{\prime} 5$)
- regular separability of visibly pushdown languages is undecidable (Kopczyński 'I5)

Motivation

Motivation

- understand for which classes regular separability is decidable

Motivation

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński 'l5)

Motivation

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński 'l5)
- maybe counters?

Motivation

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński 'l5)
- maybe counters?
- conjecture: decidable for VAS-languages (open)

Motivation

- understand for which classes regular separability is decidable
- extending towards stack is hopeless (Kopczyński 'l5)
- maybe counters?
- conjecture: decidable for VAS-languages (open)
- recently solved for many subclasses

Motivation

Motivation

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets

Motivation

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets
- what about recognizable separability of more complicated sets?

Motivation

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets
- what about recognizable separability of more complicated sets?
- for example VAS reachability sets

Motivation

- regular separability of Z-VASS-languages reduces to recognizable separability of semilinear sets
- what about recognizable separability of more complicated sets?
- for example VAS reachability sets
- goal now: present technique on a simpler case

Vector Addition System

Vector Addition System

initial vector v in N^{n}

Vector Addition System

Vector Addition System

initial vector v in N^{n} set of transitions T in Z^{n}

move: from u to $u+t$
if $u+t$ in N^{n}

Vector Addition System

move: from u to $u+t$
if $u+t$ in N^{n}

reachability set: vectors in N^{n} reachable from v by a sequence of moves

Problem

Problem

Given: two Vector Addition Systems with reachability sets $\mathrm{U}, \mathrm{V} \subseteq \mathrm{N}^{\mathrm{n}}$

Problem

Given: two Vector Addition Systems with reachability sets $\mathrm{U}, \mathrm{V} \subseteq \mathrm{N}^{\mathrm{n}}$

Question: are U and V separable by modular sets?

Problem

Given: two Vector Addition Systems with reachability sets $\mathrm{U}, \mathrm{V} \subseteq \mathrm{N}^{\mathrm{n}}$

Problem

Given: two Vector Addition Systems with reachability sets $\mathrm{U}, \mathrm{V} \subseteq \mathrm{N}^{\mathrm{n}}$

Question: are U and V separable by
modular sets?

$$
N=4
$$

Problem

Given: two Vector Addition Systems with reachability sets $\mathrm{U}, \mathrm{V} \subseteq \mathrm{N}^{\mathrm{n}}$

Question: are U and V separable by
modular sets?

$$
N=4
$$

... only value modulo N matters

What is known?

What is known?

- Mayr `81: membership for VAS reachability sets is decidable

What is known?

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear

What is known?

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear
linear set $=\left\{v_{0}+n_{l} v_{l}+\ldots+n_{k} v_{k} \mid n_{l}, \ldots, n_{k} \in N\right\}$

What is known?

- Mayr `81: membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear
linear set $=\left\{v_{0}+n_{l} v_{l}+\ldots+n_{k} v_{k} \mid n_{l}, \ldots, n_{k} \in N\right\}$ semilinear set $=$ finite union of linear sets

What is known?

- Mayr ` 81 : membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear
- Leroux `09: two VAS reachability sets are separable by a semilinear set iff they are disjoint
linear set $=\left\{v_{0}+n_{l} v_{l}+\ldots+n_{k} v_{k} \mid n_{l}, \ldots, n_{k} \in N\right\}$ semilinear set $=$ finite union of linear sets

What is known?

- Mayr ` 81 : membership for VAS reachability sets is decidable
- VAS reachability sets may not be semilinear
- Leroux `09: two VAS reachability sets are separable by a semilinear set iff they are disjoint
- so separability by semilinear sets is decidable
linear set $=\left\{v_{0}+n_{l} v_{l}+\ldots+n_{k} v_{k} \mid n_{l}, \ldots, n_{k} \in N\right\}$ semilinear set $=$ finite union of linear sets

First main result

First main result

Theorem:

Separability of reachability sets of Vector Addition Systems by modular sets is decidable

Core idea

Core idea

Lemma:

Core idea

Lemma:

For reachability sets U, V of VASs t.f.a.e.:

Core idea

Lemma:

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets

Core idea

Lemma:

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
2) there exists two linear sets $L u \subseteq U, L v \subseteq V$ such that Lu and Lv are not separable by modular sets

Core idea

Lemma:

For reachability sets U, V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
2) there exists two linear sets $L u \subseteq U, L v \subseteq V$ such that $L u$ and $L v$ are not separable by modular sets
linear set $=\left\{v_{0}+n_{l} v_{l}+\ldots+n_{k} v_{k} \mid n_{I}, \ldots, n_{k}\right.$ in $\left.N\right\}$

Core idea

Lemma:

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
2) there exists two linear sets $L u \subseteq U, L v \subseteq V$ such that $L u$ and $L v$ are not separable by modular sets
3) there exists two special linear sets $L u \subseteq U, L v \subseteq V$ such that Lu and Lv are not separable by modular sets
linear set $=\left\{v_{0}+n_{l} v_{l}+\ldots+n_{k} v_{k} \mid n_{l}, \ldots, n_{k}\right.$ in $\left.N\right\}$

Algorithm

Algorithm

two semiprocedures

Algorithm

two semiprocedures

positive

Algorithm

two semiprocedures

positive
negative

Algorithm

two semiprocedures

positive

negative
enumerates and checks numbers N

Algorithm

two semiprocedures

positive

negative
enumerates and checks numbers N

simple by VASS reachability

Algorithm

two semiprocedures
positive
enumerates and checks numbers N

simple by VASS reachability
negative
enumerates special linear sets $L u \subseteq U, L v \subseteq V$
and checks whether they are modular separable

Algorithm

two semiprocedures
positive
enumerates and checks numbers N

simple by VASS reachability
negative
enumerates special linear sets $L u \subseteq U, L v \subseteq V$
and checks whether they are modular separable 1
simple by linear algebra

Second main result

Second main result

Theorem:

Separability of reachability sets of
Vector Addition Systems by recognizable sets is decidable

Second main result

Theorem:

Second main result

Theorem:

$$
N=4
$$

Second main result

Theorem:

$$
N=4
$$

only value modulo N matters for numbers bigger than N

Proof of the Lemma

Proof of the Lemma

For reachability sets U,V of VASs t.f.a.e.:

Proof of the Lemma

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets

Proof of the Lemma

For reachability sets U, V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
3) there exists two special linear sets $L u \subseteq U, L v \subseteq V$ such that Lu and Lv are not separable by modular sets

Proof of the Lemma

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
3) there exists two special linear sets $L u \subseteq U, L v \subseteq V$ such that $L u$ and $L v$ are not separable by modular sets

- a wqo on VAS-runs

Proof of the Lemma

For reachability sets U, V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
3) there exists two special linear sets $L u \subseteq U, L v \subseteq V$ such that Lu and Lv are not separable by modular sets

- a wqo on VAS-runs
- definition of special linear set

Proof of the Lemma

For reachability sets U,V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
3) there exists two special linear sets $L u \subseteq U, L v \subseteq V$ such that Lu and Lv are not separable by modular sets

- a wqo on VAS-runs
- definition of special linear set
- start from an infinite witness of modular nonseparability and then fold it to a finite object

Proof of the Lemma

For reachability sets U, V of VASs t.f.a.e.:
I) U and V are not separable by modular sets
3) there exists two special linear sets $L u \subseteq U, L v \subseteq V$ such that $L u$ and $L v$ are not separable by modular sets

- a wqo on VAS-runs
- definition of special linear set
- start from an infinite witness of modular nonseparability and then fold it to a finite object
- use some linear algebra

WQO on VAS-runs

WQO on VAS-runs

- (X, \leq) is a wqo if for every $x_{1}, x_{2}, \ldots \in X$ there are $i<j$ such that $x_{i} \leq x_{j}$

WQO on VAS-runs

- (X, \leq) is a wqo if for every $x_{1}, x_{2}, \ldots \in X$ there are $\mathrm{i}<\mathrm{j}$ such that $\mathrm{x}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{j}}$
- Dickson: if $(X, \leq x)$, (Y, \leq_{Y}) wqo then ($\mathrm{X} \times \mathrm{Y}, \leq_{X \times Y \text {, })}$ also wqo

WQO on VAS-runs

- (X, \leq) is a wqo if for every $x_{1}, x_{2}, \ldots \in X$ there are $\mathrm{i}<\mathrm{j}$ such that $\mathrm{x}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{j}}$
- Dickson: if $(X, \leq x),(Y, \leq y)$ wqo then ($X \times Y, \leq X \times Y$, $)$ also wqo
- transition - $\left(\mathrm{N}^{\mathrm{d}} \times \mathrm{T} \times \mathrm{N}^{\mathrm{d}}\right)$, run - sequence of transitions

WQO on VAS-runs

- (X, \leq) is a wqo if for every $x_{1}, x_{2}, \ldots \in X$ there are $i<j$ such that $x_{i} \leq x_{j}$
- Dickson: if $(X, \leq x),\left(Y, \leq_{Y}\right)$ wqo then ($X \times Y, \leq_{X \times Y}$) also wqo
- transition - $\left(\mathrm{N}^{\mathrm{d}} \times \mathrm{T} \times \mathrm{N}^{\mathrm{d}}\right)$, run - sequence of transitions
- Higman: $a_{।} \ldots a_{k} \leq v$ if $v \in \Sigma^{*} b_{l} \Sigma^{*} \ldots \Sigma^{*} b_{k} \Sigma^{*}$ for some $a_{i} \leq p b_{i}$, if $\leq p w q o$ then \leq also wqo

WQO on VAS-runs

- (X, \leq) is a wqo if for every $x_{1}, x_{2}, \ldots \in X$ there are $i<j$ such that $x_{i} \leq x_{j}$
- Dickson: if $(X, \leq x),(Y, \leq y)$ wqo then ($X \times Y, \leq X \times Y$, $)$ also wqo
- transition - $\left(\mathrm{N}^{\mathrm{d}} \times \mathrm{T} \times \mathrm{N}^{\mathrm{d}}\right)$, run - sequence of transitions
- Higman: $a_{।} \ldots a_{k} \leq v$ if $v \in \Sigma^{*} b_{l} \Sigma^{*} \ldots \Sigma^{*} b_{k} \Sigma^{*}$ for some $a_{i} \leq p b_{i}$, if $\leq p$ wqo then \leq also wqo
- our order \leq : Higman's order for $\leq p$ being order on transitions intersected with $\leq p$ on targets

Amalgamation forVAS-runs

Amalgamation for VAS-runs

Let $r_{,} r_{1}, r_{2}$ be runs from s to t, t_{1} and t_{2} respectively such that $r \leq r_{1}$ and $r \leq r_{2}$.
Then there is a run r^{\prime} from s to $t+\left(t_{1}-t\right)+\left(t_{2}-t\right)$ such that $r_{1} \leq r^{\prime}$ and $r_{2} \leq r^{\prime}$.

Amalgamation for VAS-runs

Let $r_{1} r_{1}, r_{2}$ be runs from s to t, t_{1} and t_{2} respectively such that $r \leq r_{1}$ and $r \leq r_{2}$.
Then there is a run r^{\prime} from s to $t+\left(t_{1}-t\right)+\left(t_{2}-t\right)$ such that $r_{1} \leq r^{\prime}$ and $r_{2} \leq r^{\prime}$.

Corollary: then there is a run to every $\mathrm{t}+\mathrm{n}_{\mathrm{I}}\left(\mathrm{t}_{\mathrm{l}}-\mathrm{t}\right)+\ldots+\mathrm{n}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{k}}-\mathrm{t}\right)$

Special linear set

Special linear set

For a VAS \vee a V-special set is a set of the form

$$
\left\{t+n_{l}\left(\mathrm{t}_{1}-\mathrm{t}\right)+\ldots+\mathrm{n}_{\mathrm{k}}\left(\mathrm{t}_{\mathrm{k}}-\mathrm{t}\right) \mid \mathrm{n}_{\mathrm{i}} \in \mathrm{~N}\right\}
$$

for some t, t_{i} in $\operatorname{Reach}(V)$ such that $r \leq r_{i}$ for some runs to t and to t_{i}, respectively, for all i

An infinite witness

An infinite witness

If U and V are not modular separable then for every i there there is $u_{i} \in U, v_{i} \in V$
such that $u_{i} \equiv_{i} v_{i}$.

An infinite witness

If U and V are not modular separable then for every i there there is $u_{i} \in U, v_{i} \in V$ such that $u_{i} \equiv_{i} v_{i}$.
an infinite witness of nonseparability:

$$
\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots
$$

An infinite witness

If U and V are not modular separable then for every i there there is $u_{i} \in U, v_{i} \in V$ such that $u_{i} \equiv_{i} v_{i}$.
an infinite witness of nonseparability:

$$
\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots
$$

plan: fold it to a finite object

Working on a sequence

Working on a sequence

$\left(u_{1!}, v_{1!}\right),\left(u_{2!}, v_{2!}\right),\left(u_{3!}, v_{3!}\right), \ldots$ is also fine

Working on a sequence

$$
\left(u_{1!}, v_{1!}\right),\left(u_{2!}, v_{2!}\right),\left(u_{3!}, v_{3!}\right), \ldots \text { is also fine }
$$

and any its subsequence also

Working on a sequence

 $\left(u_{1!}, v_{1!}\right),\left(u_{2!}, v_{2!}\right),\left(u_{3!}, v_{3!}\right), \ldots$ is also fine and any its subsequence also\leq on runs is a wqo, so we choose an infinite subsequence, which is non decreasing wrt \leq

An algebraic fact

An algebraic fact

For every (possibly infinite) set of vectors $S \subseteq Z^{d}$ there exist finitely many vectors
$v_{1}, v_{2}, v_{3}, \ldots, v_{k} \in S$, such that $S \subseteq \operatorname{Lin}\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$

An algebraic fact

For every (possibly infinite) set of vectors $S \subseteq Z^{d}$ there exist finitely many vectors $v_{1}, v_{2}, v_{3}, \ldots, v_{k} \in S$, such that $S \subseteq \operatorname{Lin}\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$

$$
\text { Let } x_{i}=u_{i}-u_{l}, y_{i}=v_{i}-v_{l} \text { and } S_{i n f}=\left\{x_{i}-y_{i} \mid i \in N\right\}
$$

An algebraic fact

For every (possibly infinite) set of vectors $S \subseteq Z^{d}$ there exist finitely many vectors
$v_{1}, v_{2}, v_{3}, \ldots, v_{k} \in S$, such that $S \subseteq \operatorname{Lin}\left(v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right)$

$$
\text { Let } x_{i}=u_{i}-u_{l}, y_{i}=v_{i}-v_{l} \text { and } S_{i n f}=\left\{x_{i}-y_{i} \mid i \in N\right\}
$$

There is a finite set

$$
\begin{gathered}
S_{f i n}=\left\{x_{i 1}-y_{i l}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\} \\
\text { such that for every } i \\
x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)
\end{gathered}
$$

Final argument

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{aligned}
& L_{u}=u_{1}+\operatorname{LinPos}\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}\right) \\
& L_{v}=v_{1}+\operatorname{LinPos}\left(y_{i 1}, y_{i 2}, \ldots, y_{i k}\right)
\end{aligned}
$$

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{aligned}
& L_{u}=u_{1}+\operatorname{LinPos}\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}\right) \\
& L_{v}=v_{1}+\operatorname{LinPos}\left(y_{i 1}, y_{i 2}, \ldots, y_{i k}\right)
\end{aligned}
$$

$$
0 \equiv_{i} u_{i}-v_{i}=\left(u_{1}+x_{i}\right)-\left(v_{1}+y_{i}\right)=\left(u_{l}-v_{1}\right)+\left(x_{i}-y_{i}\right)
$$

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{aligned}
& L_{u}=u_{1}+\operatorname{LinPos}\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}\right) \\
& L_{v}=v_{1}+\operatorname{LinPos}\left(y_{i 1}, y_{i 2}, \ldots, y_{i k}\right)
\end{aligned}
$$

$$
\begin{aligned}
0 & \equiv \equiv_{i} u_{i}-v_{i}=\left(u_{l}+x_{i}\right)-\left(v_{l}+y_{i}\right)=\left(u_{l}-v_{l}\right)+\left(x_{i}-y_{i}\right) \\
& =\left(u_{1}-v_{l}\right)+a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)
\end{aligned}
$$

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{gathered}
L_{u}=u_{I}+\operatorname{LinPos}\left(x_{i l}, x_{i 2}, \ldots, x_{i k}\right) \\
L v=v_{I}+\operatorname{LinPos}\left(y_{i l}, y_{i 2}, \ldots, y_{i k}\right) \\
0 \equiv_{i} u_{i}-v_{i}=\left(u_{I}+x_{i}\right)-\left(v_{I}+y_{i}\right)=\left(u_{I}-v_{I}\right)+\left(x_{i}-y_{i}\right) \\
=\left(u_{I}-v_{I}\right)+a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right) \\
=\left(u_{I}+a_{i l} x_{i l}+\ldots+a_{i k} x_{i k}\right)-\left(v_{I}+a_{i l} y_{i l}+\ldots+a_{i k} y_{i k}\right)
\end{gathered}
$$

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{gathered}
L u=u_{1}+\operatorname{LinPos}\left(x_{i l}, x_{i 2}, \ldots, x_{i k}\right) \\
L v=v_{l}+\operatorname{LinPos}\left(y_{i l}, y_{i 2}, \ldots, y_{i k}\right) \\
0 \equiv_{i} u_{i}-v_{i}=\left(u_{l}+x_{i}\right)-\left(v_{l}+y_{i}\right)=\left(u_{l}-v_{l}\right)+\left(x_{i}-y_{i}\right) \\
=\left(u_{l}-v_{l}\right)+a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right) \\
=\left(u_{l}+a_{i l} x_{i l}+\ldots+a_{i k} x_{i k}\right)-\left(v_{l}+a_{i l} y_{i l}+\ldots+a_{i k} y_{i k}\right) \\
\equiv_{i}\left(u_{l}+a_{i l}^{\prime} x_{i l}+\ldots+a_{i k}^{\prime} x_{i k}\right)-\left(v_{l}+a_{i l}^{\prime} y_{i l}+\ldots+a_{i k}^{\prime} y_{i k}\right)
\end{gathered}
$$

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{gathered}
L u=u_{1}+\operatorname{LinPos}\left(x_{i l}, x_{i 2}, \ldots, x_{i k}\right) \\
L v=v_{l}+\operatorname{LinPos}\left(y_{i l}, y_{i 2}, \ldots, y_{i k}\right) \\
0 \equiv_{i} u_{i}-v_{i}=\left(u_{l}+x_{i}\right)-\left(v_{l}+y_{i}\right)=\left(u_{l}-v_{l}\right)+\left(x_{i}-y_{i}\right) \\
=\left(u_{l}-v_{l}\right)+a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right) \\
=\left(u_{l}+a_{i l} x_{i l}+\ldots+a_{i k} x_{i k}\right)-\left(v_{l}+a_{i l} y_{i l}+\ldots+a_{i k} y_{i k}\right) \\
\equiv_{i}\left(u_{l}+a_{i l}^{\prime} x_{i l}+\ldots+a_{i k}^{\prime} x_{i k}\right)-\left(v_{l}+a_{i l}^{\prime} y_{i l}+\ldots+a_{i k}^{\prime} y_{i k}\right)
\end{gathered}
$$

Final argument

There is a finite set $S_{f i n}=\left\{x_{i 1}-y_{i 1}, x_{i 2}-y_{i 2}, \ldots, x_{i k}-y_{i k}\right\}$ such that $x_{i}-y_{i}=a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right)$ for all i

$$
\begin{aligned}
& L_{u}=u_{1}+\operatorname{Lin} \operatorname{Pos}\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}\right) \\
& L_{v}=v_{1}+\operatorname{LinPos}\left(y_{i l}, y_{i 2}, \ldots, y_{i k}\right) \\
& 0 \equiv \equiv_{i} u_{i}-v_{i}=\left(u_{1}+x_{i}\right)-\left(v_{1}+y_{i}\right)=\left(u_{1}-v_{l}\right)+\left(x_{i}-y_{i}\right) \\
& =\left(u_{l}-v_{l}\right)+a_{i l}\left(x_{i l}-y_{i l}\right)+\ldots+a_{i k}\left(x_{i k}-y_{i k}\right) \\
& =\left(u_{l}+a_{i l} x_{i l}+\ldots+a_{i k} x_{i k}\right)-\left(v_{l}+a_{i l} y_{i l}+\ldots+a_{i k} y_{i k}\right) \\
& \equiv_{i}\left(u_{l}+a_{i l}^{\prime} x_{i l}+\ldots+a_{i k}^{\prime} x_{i k}\right)-\left(v_{i}+a_{i l}^{\prime} y_{i l}+\ldots+a_{i k}^{\prime} y_{i k}\right)
\end{aligned}
$$

Thank you!

