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1. Introduction

Optimization problem

Let W ⊂ R
n be a nonempty set and f : W → R a function. We consider the

problem of finding minima of f in W, taking in particular

� W = R
n (unconstrained optimization),

� W = { x ∈ R
n : g1(x) = 0, . . . , gm(x) = 0 }, where g1, . . . , gm are functions

R
n → R

n (equality constraints),

� W = { x ∈ R
n : g1(x) 6 0, . . . , gm(x) 6 0 }, where g1, . . . , gm are functions

R
n → R

n (inequality constraints).

The set W is called a feasible set/region.

Definition 1 A point x0 ∈ W is called a global minimum of f in W if

f(x) > f(x0) for all x ∈ W.

Definition 2 A point x0 ∈ W is called a local minimum of f in W if there

exists ε > 0 such that

f(x) > f(x0) for all x ∈ W ∩ B(x0, ε),

where B(x0, ε) is the ball whose centre is x0 and the radius is ε.

Any global minimum is a local minimum. A minimum is called strict if in the

definitions above there is f(x) > f(x0) for x 6= x0. In a similar way we define global

and local maxima. A point x0 is a (global or local) extremum if it is a minimum

or a maximum.

Minima need not exist, if no point x0 fulfills the definitions. A global minimum

does not exist if infx∈W f(x) = −∞ or infx∈W f(x) = c and f(x) > c for all x ∈ W.

Example. Let f(x) = x cos x. If W = R then infx∈W f(x) = −∞, and there is no

global minimum and an infinite set of local minima. If W = [a, b], where a, b ∈ R,
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then a global minimum exists. If W = (a, b) then minima either exist or not,

depending on the choice of a, b. In general, a continuous function is not

guaranteed to have extrema if the feasible set is not compact, e.g. if it is open.

Existence of minima of a continuous function

Theorem 1 If the set W ∈ R
n is compact and f : W → R is a continuous

function, then f reaches its infimum and supremum in W, i.e., there exist

x0,y0 ∈ W such that

f(x0) 6 f(x) 6 f(y0) for all x ∈ W.

Definition 3 A function f : W → R is called coercive if f(x) → ∞ for ‖x‖ → ∞.

Equivalently,

∀r>0∃s>0∀x∈W ‖x‖ > s ⇒ f(x) > r.

If W is a bounded set, then any function f : W → R is coercive.

Theorem 2 If W ⊂ R
n is a closed set and f : W → R is continuous and

coercive, then there exists a minimum x0 of f in W.

Proof. For a point y ∈ W we define the set Uy = { x ∈ W : f(x) 6 f(y) }. The set

Uy is nonempty and closed, as the function f is continuous and the inequality in

the definition of Uy is nonsharp and W is closed. This set is also bounded: for

r = f(y), from the coercivity of f there exists s > 0 such that if ‖x‖ > s, then

f(x) > r = f(y); hence, x /∈ Uy and Uy ⊂ B(0, s). It follows that Uy is a closed

and bounded set, i.e., it is compact. Therefore there exists a global minimum x0

of f in Uy. Due to f(x) > f(y) > f(x0) for x /∈ Uy, x0 is also a global minimum of f

in W. ✷

Theorem 3 Let W ⊂ R
n be nonempty and let f : W → R be a continuous

function. If there exists y ∈ W such that for any sequence (xn)n ⊂ W such

that

xn → clW \W or ‖xn‖ → ∞

there is lim infn→∞ f(xn) > f(y), then there exists a minimum x0 of the

function f.
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Proof. The set Uy is defined as before. To show that it is closed, we take any

sequence (xn)n ⊂ Uy which converges to x. It suffices to show that x ∈ Uy. From

xn ∈ Uy we have f(xn) 6 f(y) and if x /∈ W, then we have an inconsistency with

the assumption. Hence, x ∈ W. As the function f is continuous in W, there is

f(x) 6 f(y), hence x ∈ Uy. The set Uy is also bounded, which follows from the

assumed implication ‖xn‖ → ∞ ⇒ lim infn→∞ f(xn) > f(y). The proof is

completed just like the proof of the previous theorem. ✷

Local minima of functions of one variable

Let W ⊂ R be an open set.

Theorem 4 (necessary condition of the 1st order) If x0 ∈ W is a local

minimum or maximum of f and f ′(x0) exists, then f ′(x0) = 0.

Proof. Let x0 be a local minimum. For sufficiently small h > 0 there is

f(x0 − h) > f(x0) 6 f(x0 + h) and then

f(x0 − h) − f(x0)

−h
6 0 ⇒ lim

h→0

f(x0 − h) − f(x0)

−h
6 0 ⇒ f ′(x0) 6 0,

f(x0 + h) − f(x0)

+h
> 0 ⇒ lim

h→0

f(x0 + h) − f(x0)

+h
> 0 ⇒ f ′(x0) > 0,

hence, f ′(x0) = 0. ✷

Theorem 5 (necessary condition of the 2nd order) If f : W → R is of

class C2(W) and x0 is a local minimum, then f ′′(x0) > 0.

If the set W is not open, then we cannot use the above theorems for x0 ∈ ∂W. But

the theorem below applies also in this case.

Theorem 6 (sufficient condition of the 2nd order) If f : W → R is of

class C2(W) and f ′(x0) = 0, f ′′(x0) > 0 at a point x0 ∈ W, then f has a strict

local minimum at x0.

Theorem 7 If W ⊂ R is open, f ∈ Ck(W) and

f ′(x0) = f ′′(x0) = · · · = f(k−1)(x0) = 0, f(k)(x0) 6= 0 for x0 ∈ W, then if k is odd,

there is no extremum of f at x0, and if k is even, then there is a local

minimum if f(k)(x0) > 0 and a local maximum if f(k)(x0) < 0.
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Taylor’s formulae

Theorem 8 (Rolle’s theorem) If a function f : [a, b] → R is continuous

in [a, b], differentiable in (a, b) and f(a) = f(b), then there exists a point

x0 ∈ (a, b) such that f ′(x0) = 0.

Proof. If f is constant, then the claim is obvious. Otherwise there exists an

extremum x0 of f in [a, b] other than a and b: there is

f(x0) = supx∈[a,b] f(x) > f(a) or f(x0) = infx∈[a,b] f(x) < f(a). Let x0 be a maximum.

Then f(x) 6 f(x0) for all x ∈ [a, b] and

f(x) − f(x0)

x− x0
> 0 if x < x0,

f(x) − f(x0)

x− x0
6 0 if x > x0.

Hence,

f ′(x0) = lim
xրx0

f(x) − f(x0)

x− x0︸ ︷︷ ︸
>0

= lim
xցx0

f(x) − f(x0)

x− x0︸ ︷︷ ︸
60

,

therefore, f ′(x0) = 0. If x0 is a minimum, the proof is similar. ✷

Theorem 9 (mean value theorem) If a function f : [a, b] → R is continuous

in [a, b] and differentiable in (a, b), then there exists a point x0 ∈ (a, b) such

that

f(b) − f(a) = f ′(x0)(b− a).

Proof. Let g(x)
def
=

(

f(b) − f(a)
)

x− (b− a)f(x). The function g is continuous

in [a, b] and differentiable in (a, b), moreover,

g(a) = f(b)a− f(a)b = g(b).

By Rolle’s theorem, there exists x0 ∈ (a, b) such that g ′(x0) = 0. Hence,

0 = g ′(x0) = f(b) − f(a) − (b− a)f ′(x0).

The proof is completed by rearranging this formula. ✷
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Theorem 10 (Taylor’s formula with the remainder in Peano form) Let

f : [a, b] → R be a function differentiable in [a, b] and twice differentiable at

some point x0 ∈ (a, b). Then for all x ∈ [a, b] there is

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2 + o
(

(x − x0)
2
)

.

Proof. Without loss of generality we assume x0 = 0. Let

R(x)
def
= f(x) − f(0) − f ′(0)x−

f ′′(0)

2
x2.

We need to show that R(x) = o(x2). From the continuity of f ′ we obtain

f(x) − f(0) =

∫ x

0

f ′(y)dy.

The function f ′ is differentiable at 0. Hence, f ′(y) = f ′(0) + f ′′(0)y + r(y), where

r(y) = o(y). This means that

lim
y=0

r(y)

y
= 0,

i.e., for any ε > 0 there exists δ > 0 such that |y| < δ ⇒ |r(y)| < ε|y|.

Now we fix an ε > 0 and the related δ > 0. For |x| < δ we integrate f ′(y):

f(x) − f(0) =

∫ x

0

(

f ′(0) + f ′′(0)y+ r(y)
)

dy = f ′(0)x +
f ′′(0)

2
x2 +

∫ x

0

r(y)dy.

Hence, R(x) =
∫x

0
r(y)dy. Using the estimate |r(y)| < ε|y| for |y| < δ, we obtain

|R(x)| 6

∫ x

0

|r(y)| dy <

∫ x

0

ε|y| dy =
εx2

2
.

Hence,
∣

∣

∣

∣

R(x)

x2

∣

∣

∣

∣

<
ε

2
.

As ε > 0 may be arbitrary, limx→0

∣

∣

R(x)

x2

∣

∣ = 0, i.e., R(x) = o(x2). ✷

Just a little more effort is needed to prove the formula with more terms,

applicable for functions having derivatives up to the order k− 1 in (a, b) and the

k-th order derivative at x0:

f(x) = f(x0) +

k∑

i=1

f(i)(x0)

i!
(x − x0)

i + o
(

(x− x0)
k
)

.
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Theorem 11 (Taylor’s formula with the remainder in Lagrange form) Let

f : [a, b] → R be a function of class Ck−1[a, b] and k times differentiable

in (a, b). For x0 ∈ (a, b) and x ∈ [a, b] there is

f(x) = f(x0) +

k−1∑

i=1

f(i)(x0)

i!
(x − x0)

i +
f(k)(x)

k!
(x− x0)

k,

where x is a point between x0 and x.

Proof. The function h(x)
def
= f(x0) +

∑k−1
i=1

f(i)(x0)

i!
(x− x0)

i is a polynomial of degree

less than k. For x 6= x0 let gx(y)
def
= f(y) − h(y) − zx(y− x0)

k, where zx =
f(x)−h(x)

(x−x0)k
.

It is easy to verify that gx(x0) = g ′
x(x0) = · · · = g

(k−1)
x (x0) = gx(x) = 0. By Rolle’s

theorem, the derivative g ′
x is equal to 0 at some point x1 between x0 and x; note

that the point x0 is a zero of multiplicity k− 1 of g ′
x. Using the induction and

Rolle’s theorem in the similar way, we show the existence of the sequence of

points, x2, . . . , xk such that g
(i)
x (xi) = 0 and each point xi is between x0 and xi−1.

The point x = xk is a zero of g
(k)
x located between x0 and x, i.e.,

0 = g(k)
x (xk) = f(k)(xk) − zxk!.

Hence, zx =
f(k)(xk)

k!
. By substititing this expression and y = x to the definition

of gx, due to gx(x) = 0, we obtain the needed formula. ✷

Global extrema

Theorem 12 Let I ⊂ R be an interval, open or closed at one or both ends, or

even unbounded. Let f : I → R be of class C1(I) and C2(int I). Let x0 ∈ I and

f ′(x0) = 0. If f ′′(x) > 0 for all x ∈ I, then x0 is a global minimum of f. If

f ′′(x) 6 0 for all x ∈ I, then x0 is a global maximum of f. If in addition

f ′′(x0) > 0 or respectively f ′′(x0) < 0, then x0 is a unique (strict) global

minimum or maximum.

Proof. By the Taylor’s formula we have

f(x) = f(x0) +
1

2
f ′′(x)(x − x0)

2,

where x is a point between x0 and x. Hence, the last term of the formula above

determines the inequality between f(x) and f(x0).
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Assume that f ′′(x) > 0 for all x ∈ I and f ′′(x0) > 0. By f ′(x0) = 0 we obtain

f ′(x) = f ′(x) − f ′(x0) =

∫ x

x0

f ′′(y)dy > 0

for x > x0. Similarly we show that f ′(x) 6 0 for x < x0. As f ′′(x0) > 0 and f ′′ is

continuous, it follows that f ′′ is positive in a neighbourhood of x0. Hence, the

integrals are positive, which implies f ′(x) > 0 for x > x0 and f ′(x) < 0 for x < x0.

Thus f is decreasing for x < x0 and increasing for x > x0 and, therefore, x0 is

a strict minimum. The proof for the case of maximum is similar. ✷
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2. Extrema of functions of two or more variables

Let f : W → R, where W ⊂ R
n is an open set. Points of Rn, x = (x1, . . . , xn), are

identified with column matrices, [x1, . . . , xn]
T , but it is convenient to write f(x)

and f(x1, . . . , xn), which denotes the same thing. We use the Euclidean norm,

‖x‖ =
√
xTx =

√

x21 + · · ·+ x2n.

The gradient of f is a row matrix, Df(x) =
[

∂f
∂x1

, . . . , ∂f
∂xn

]

.

The Hessian of f at x ∈ W is the n× n matrix,

D2f(x) =













∂2f
∂x21

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

. . . ∂2f
∂x2∂xn

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2n













Definition 4 The function f is differentiable at x0 ∈ W if there exists a vector

α ∈ R
n such that

f(x) = f(x0) + αT(x − x0) + o(‖x− x0‖), x ∈ W.

The function f is twice differentiable at x0 ∈ W if in addition there exists

a matrix H ∈ R
n×n such that

f(x) = f(x0) + αT(x − x0) +
1

2
(x − x0)

TH(x− x0) + o(‖x − x0‖2), x ∈ W.

If a function is twice differentiable, then there exists a symmetric matrix H

mentioned in the definition above; if a nonsymmetric matrix H satisfies the

formula in this definition, so does the symmetric matrix 1
2
(H+HT ).

Theorem 13 I) If a function f is differentiable at x0, then the gradient Df(x0)

exists and is equal to αT . Conversely, if Df(x) exists in a neighbourhood of x0

and is continuous at x0, then f is differentiable at x0.

II) if the Hessian D2f(x) exists in a neighbourhood of x0 and is continuous at

x0, then f is twice differentiable at x0; the Hessian is then a symmetric

matrix, H = D2f(x0).

2.2

Remark. If the function f is differentiable at a point x, the (real) value of the

product of matrices Df(x)v, where v ∈ R
n, is the directional derivative of the

function f in the direction of the vector v at x. If the function f is twice

differentiable, then vTD2f(x)v is equal to the second order directional derivative

of f in the direction of v.

Remark. To use second order derivatives in practice we need to assume the

continuity of the Hessian.

Remark. A function f whose domain is an open set W ⊂ R
n is said to be of

class C1 (C2) in W if it is continuous in W together with its first (and second)

order derivatives. If the set W is not open, the function is said to be of class C1

(C2) if there exists an extension f̃ of class C1 (C2) of the function f to an open

set W̃ such that W ⊂ W̃. Then we can consider the derivatives of f at the

boundary points of W; if W ⊂ cl(intW), then (due to their continuity) the

derivatives are uniquely determined by the values of f in W.

Lemma 1 Let W ⊂ R
n be an open set. If a function f : W → R is of class C2

and a line segment x0x is contained in W, then

f(x) = f(x0) + Df(x0)(x − x0) +
1

2
(x − x0)

TD2f(x)(x − x0),

where x is an interior point the line segment x0x.

Proof. Apply the Taylor’s formula to the function g(t) = f
(

x0 + t(x − x0)
)

,

t ∈ [0, 1]. ✷

x

y

z

z = f(x, y)

W

Figure 1: Applicability of the Taylor’s formula for a multivariate function
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Definition 5 The set W ⊂ R
n is convex if

λx+ (1− λ)y ∈ W

for all x,y ∈ W, λ ∈ [0, 1].

Corollary 1 If W ⊂ R
n is open and convex and f : W → R is of class C2(W)

then for all x0,x ∈ W there is

f(x) = f(x0) + Df(x0)(x − x0) +
1

2
(x − x0)

TD2f(x)(x − x0),

where x = (1− λ)x0 + λx for some λ ∈ (0, 1).

Proof. As the set W is convex, if x0,x ∈ W, then x0x ⊂ W; the claim follows from

the lemma. ✷

The necessary first order condition

We consider a set W ⊂ R
n with a nonempty interior.

Theorem 14 (necessary 1st order condition) If a function f : W → R is

differentiable at a point x0 ∈ intW and x0 is a local extremum of f, then

Df(x0) = 0T .

Proof. From x0 ∈ intW it follows that the function gi(t) = f(x0 + tei) (where

ei = [0, . . . , 0,
↑
i

1, 0, . . . , 0]T ) is well defined. It has the local extremum at 0.

By the necessary first order condition for functions of one variable there must be

g ′
i(0) = 0, which implies ∂f

∂xi
= 0. As this holds for all i = 1, . . . , n, the gradient

of f is the zero matrix 1× n. ✷

Definition 6 A point x0 ∈ intW is called a critical point of the

function f : W → R if f is differentiable at x0 and Df(x0) = 0T .

2.4

Positive- and negative-definite matrices

Let A ∈ R
n×n be a symmetric matrix, A = [aij], aij = aji. It defines a quadratic

form

F(x) = xTAx =

n∑

i=1

n∑

j=1

aijxixj.

Definition 7 The matrix A or the quadratic form F is

� positive definite if F(x) > 0 for all x ∈ R
n \ {0} (we write A > 0),

� nonnegative definite if F(x) > 0 for all x ∈ R
n (we write A > 0),

� negative definite if F(x) < 0 for all x ∈ R
n \ {0} (we write A < 0),

� nonpositive definite if F(x) 6 0 for all x ∈ R
n (we write A 6 0),

� indefinite if there exist vectors x,y ∈ R
n such that F(x) > 0, F(y) < 0.

At the first glance we can notice that if not all diagonal elements aii are positive

(nonnegative) then the matrix A is not positive-definite (nonnegative-definite)

and if not all diagonal coefficients are negative (nonpositive) then the matrix is

not negative-definite (nonpositive-definite). The basic characteristic of

positive-definite matrices is given by

Theorem 15 (Sylvester’s criterion) Let Ai be a matrix obtained from A by

rejecting its last n− i rows and columns (in particular A1 = [a11], An = A).

I) The matrix A is positive-definite if and only if detAi > 0 for i = 1, . . . , n,

II) The matrix A is nonnegative-definite if and only if detAi > 0 for

i = 1, . . . , n.

A matrix A is negative-definite (nonpositive-definite) if −A is positive-definite

(nonnegative-definite). Another characteristic is related to the algebraic

eigenproblem. From the linear algebra we know that all eigenvalues of a real

symmetric matrix are real numbers; for any such a matrix there exists an

orthogonal basis of Rn whose elements are eigenvectors of this matrix. A positive-,
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nonnegative-, negative- or nonpositive-definite symmetric matrix has respectively

all eigenvalues positive, nonnegative, negative or nonpositive.

Conditions of the second order

Theorem 16 (necessary 2nd order condition) If f is a function of class C2 in

an open set W ⊂ R
n and x0 ∈ W is a local minimum, then the matrix D2f(x0)

is nonnegative-definite. If x0 is a local maximum, then D2f(x0) is

nonpositive-definite.

Proof. Let x0 be a local minimum. Let h ∈ R
n \ {0} and g(t) = f(x0 + th), where

t ∈ R is chosen so as to obtain x0 + th ∈ W. The function g has a local minimum

at 0. As f is of class C2, so is g. By the second order necessary condition for the

univariate case, g ′′(0) > 0. The second order derivative of the composite

function g is

g ′′(0) = hTD2f(x0)h.

As the vector h may be arbitrary, the matrix D2f(x0) is nonnegative-definite. ✷

Theorem 17 (sufficient 2nd order condition) If f is a function of class C2 in

an open set W ⊂ R
n, Df(x0) = 0T and the matrix D2f(x0) is positive-definite

(negative-definite), then x0 is a local minimum (maximum) of f.

Proof. Assume that D2f(x0) > 0. Let α : W → R be the function defined by

α(x) = inf
‖h‖=1

hTD2f(x)h.

The function value α(x) is the minimal eigenvalue of the matrix D2f(x); the

infimum is the minimum taken at the vector h which is a unit eigenvector

corresponding to the minimal eigenvalue of the Hessian. Due to the continuity of

the Hessian of f, the function α is continuous. Hence, there exists a ball B(x0, ε),

ε > 0, such that α(x) > 0 for all x ∈ B(x0, ε).

For a fixed x ∈ B(x0, ε), due to the Taylor’s formula we have

f(x) = f(x0) + Df(x0)(x − x0) +
1

2
(x − x0)

TD2f(x)(x− x0),

2.6

where x is a point of the line segment x0x ⊂ B(x0, ε). The gradient of f vanishes

at x0 and

(x− x0)
TD2f(x)(x − x0) = ‖x− x0‖2

(x− x0)
T

‖x− x0‖
D2f(x)

(x− x0)

‖x− x0‖
> ‖x− x0‖2α(x).

Hence,

f(x) − f(x0) >
1

2
‖x− x0‖2α(x) > 0.

It follows that x0 is a strict local minimum. The proof for a maximum is similar. ✷

Global extrema

Let W be a convex set and f : W → R a function of class C1(W) and C2(intW).

Theorem 18 If x0 ∈ intW is a critical point of f, then

I) If D2f(x) > 0 for all x ∈ intW, then x0 is a global minimum,

II) If D2f(x) 6 0 for all x ∈ intW, then x0 is a global maximum.

If in addition D2f(x0) > 0 or D2f(x0) < 0 respectively, then x0 is a strict

minimum or maximum.

Proof. If x ∈ W, then by convexity of W the entire line segment x0x is contained

in W. By the Taylor’s formula,

f(x) = f(x0) +
1

2
(x− x0)

TD2f(x)(x − x0),

for a point x ∈ x0x. From the inequality D2f(x) > 0 (or D2f(x) 6 0) it follows that

the last term above is nonnegative (or nonpositive), which proves that x0 is

a minimum (or a maximum).

If in addition to (I) we have D2f(x0) > 0, then we can consider the function

g(t) = f
(

x0 + t(x− x0)
)

, t ∈ [0, 1]. Due to the convexity of W, x0 + t(x− x0) ∈ W,

so the function g is well defined. From the assumptions it follows that g ′(0) = 0,

g ′′(0) > 0 and g ′′(t) > 0. Therefore g has a strict global minimum at 0, i.e.

f(x) > f(x0). As the choice of x ∈ W is arbitrary, x0 is a strict global minimum

of f.

The proof for the case of D2f(x0) < 0 holding in addition to (II) is similar. ✷
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3. Convex sets and functions

Lemma 2 The set W ⊂ R
n is convex if and only if for all m > 2 and for all

points x1, . . . ,xm ∈ W and numbers a1, . . . , am > 0, a1 + · · · + am = 1, there is

a1x1 + · · · + amxm ∈ W.

Lemma 3 Let W ⊂ R
n be a convex set with a nonempty interior. Then

I) For any x ∈ W and x0 ∈ intW the line segment x0x \ {x} is contained in the

interior of W:

λx0 + (1 − λ)x ∈ W for all λ ∈ (0, 1].

II) W ⊂ cl(intW)

Proof. Let the points x0 and x satisfy the assumptions. As intW is open, there

exists a ball B(x0, ε) ⊂ intW. The union of all line segments, whose one end point

is x and the other end point is in this ball, is a “cone” with the vertex x and the

base B(x0, ε). This cone is a subset of W and its interior contains the line segment

x0x \ {x}. This completes the proof of (I). (II) follows immediately. ✷

x

x0
B(x0, ε)

W

Figure 2: Illustration of Lemma 2

Theorem 19 (weak separation theorem) Let U,V ⊂ R
n be nonempty convex

sets such that U ∩ V = ∅. There exists a hyperplane separating the sets U

and V, i.e., there exists a nonzero vector a ∈ R
n such that

aTx 6 aTy for all x ∈ U, y ∈ V.

As the mapping x → aTx is continuous in R
n, from the above we obtain

3.2

Corollary 2 Let U,V ⊂ R
n be nonempty convex sets such that intU 6= ∅ and

(intU) ∩ V = ∅. Then there exists a hyperplane separating the sets U and V.

Theorem 20 (strong separation theorem) Let U,V ⊂ R
n be nonempty closed

convex sets, let U be compact and let U ∩ V = ∅. Then there exists

a hyperplane strictly separating the sets U and V, i.e., there exists a nonzero

vector a ∈ R
n such that

sup
x∈U

aTx < inf
y∈V

aTy.

There may be more than one hyperplane described by these theorems; one of

them is the set defined as follows:

{ x ∈ R
n : aTx = α }, α = sup

x∈U
aTx.

Proof of the strong separation theorem. Let d : U× V → R be a function given by

the formula d(x,y) = ‖x− y‖. As the set U is bounded, the function d is

coercive; it may tend to infinity only by taking an appropriate sequence of points

y ∈ V . As the function d is continuous and coercive and its domain U× V is

closed, it takes a minimum at a point (x0,y0) ∈ U× V . As U ∩ V = ∅, there is

a = y0 − x0 6= 0. Below we demonstrate that it is a vector satisfying the claim.

First we show that aTy > aTy0 for all y ∈ V . Let

g(t)
def
=

(

d
(

x0,y0 + t(y− y0)
)

)2

, t ∈ R.

There is

g(t) = ‖y0 − x0‖2 + 2t(y0 − x0)
T (y− y0) + t2(y− y0)

T (y− y0).

This function is differentiable for all t ∈ R and, as the set V is convex, g(0) 6 g(t)

for t ∈ [0, 1]. Hence, g ′(0) > 0, i.e.,

(y0 − x0)
T (y− y0) = aT(y− y0) > 0.

In a similar way we can show that aTx 6 aTx0 for all x ∈ U. ✷

Proof of the weak separation theorem. Consider the set

C = V −U = {y− x : x ∈ U, y ∈ V }. This set is convex and 0 /∈ C. It suffices to

find a nonzero vector a ∈ R
n such that aTx > 0 for all x ∈ C.
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Let Ax
def
= {a ∈ R

n : ‖a‖ = 1, aTx > 0 }. We are going to show that
⋂

x∈C Ax 6= ∅.
Suppose that

⋂

x∈C Ax = ∅. Let Bx = S \Ax, where S is the unit sphere in R
n. The

sets Bx are open subsets of S. If the intersection of all sets Ax, where x ∈ C, is

empty, then the family {Bx : x ∈ C } is an open coverage of S, which is a compact

set. Hence, there exists a finite coverage {Bx1 , . . . , Bxk : x1, . . . ,xk ∈ C } of S. Let

Ĉ
def
= conv{x1, . . . ,xk} =

{ k∑

i=1

λixi : λ1, . . . , λk > 0,

k∑

i=1

λi = 1
}
.

The set Ĉ is convex and closed and it is a subset of C. Hence, 0 /∈ Ĉ. By the

strong separation theorem used to the sets {0} and Ĉ, there exists a nonzero

vector a such that

aTx > 0 for all x ∈ Ĉ.

In particular, aTxi > 0 i.e., a
‖a‖

∈ Axi for i = 1, . . . , k, which contradicts the

supposition that
⋂k

i=1 Axi = ∅. ✷

Convex functions

Definition 8 A function f : W → R, where W ⊂ R
n is convex, is called

� convex, if for all x,y ∈ W and λ ∈ (0, 1) there is

f
(

λx+ (1 − λ)y
)

6 λf(x) + (1− λ)f(y),

� strictly convex, if for all x,y ∈ W and λ ∈ (0, 1) there is

f
(

λx+ (1 − λ)y
)

< λf(x) + (1− λ)f(y),

A function f is (strictly) concave if −f is (strictly) convex.

Theorem 21 If a function f : W → R, where W ⊂ R
n is convex, is

Lebesgue-measurable and such that

f
(x+ y

2

)

6
f(x) + f(y)

2
for all x,y ∈ W,

then f is a convex function.

We shall prove a simpler theorem:

3.4

Theorem 22 If a function f : W → R, where W ⊂ R
n is convex, is continuous

and such that

f
(x+ y

2

)

6
f(x) + f(y)

2
for all x,y ∈ W,

then f is a convex function.

Proof. Using induction with respect to k, we show that the inequality of the

definition of convex functions holds for all λ = p
2k

, where p = 0, 1, . . . , 2k. If k = 1,

then this inequality is satisfied by assumption. Suppose that the inequality is

satisfied for some k > 1. Let p, q ∈ Z, p, q > 0 and p+ q = 2k+1. Suppose that

p 6 q. Then p 6 2k 6 q and we can write

z =
p

2k+1
x+

q

2k+1
y =

1

2

( p

2k
x+

q− 2k

2k
y+ y

)

.

Then,

f(z) 6
1

2
f
( p

2k
x+

q− 2k

2k
y
)

+
1

2
f(y)

6
1

2

p

2k
f(x) +

1

2

q− 2k

2k
f(y) +

1

2
f(y) =

p

2k+1
f(x) +

q

2k+1
f(y).

The first inequality follows from the assumption of the theorem and the second

one from the inductive assumption. If p > q, then it suffices to exchange x and y.

The set of numbers p
2k

, k = 1, 2, . . . and p = 0, . . . , 2k, is dense in the interval [0, 1].

By the continuity of f we obtain the desired inequality for any λ ∈ (0, 1). ✷

Properties of convex functions

Below we assume that W ⊂ R
n is convex.

Definition 9 The epigraph of a function f : W → R is the set

epi(f) = { (x, z) ∈ W × R : z > f(x) }.

Definition 10 The sublevel set or the trench of a function f : W → R is the set

Wα(f) = { x ∈ W : f(x) 6 α }, α ∈ R.
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Theorem 23 (epigraph theorem) A function f is convex if and only if its

epigraph is a convex set.

Theorem 24 If a function f is convex, then its sublevel sets Wα(f) are convex

for all α ∈ R.

Remark. There exist nonconvex functions whose all sublevel sets are convex.

Theorem 25 If a function f is convex, then it is also continuous in intW.

Theorem 26 (supporting hyperplane theorem) If f is a convex function, then

at each point x ∈ intW there exists a supporting hyperplane, i.e., there exists

ξ ∈ R
n such that

f(x) > f(x) + ξT (x− x) for all x ∈ W.

Moreover, if f is strictly convex, then

f(x) > f(x) + ξT (x− x) for all x ∈ W \ {x}.

If f is differentiable at x, then in both cases we can take ξ = Df(x)T .

Proof. The set epi(f) is convex. We apply the weak separation theorem to the sets

U = int epi(f) and V = {(x, f(x))}. There exists a nonzero vector

a = {(ξ, α)} ∈ R
n+1 such that

ξTx+ αy 6 ξTx+ αf(x) for all (x, y) ∈ epi(f).

The inequality above holds for all y > f(x). Hence, α 6 0. It turns out that

α 6= 0. To prove it, suppose that α = 0. Then, for all x ∈ W there is

ξT (x− x) 6 0. As x ∈ intW, we know that there exists an ε > 0 such that

x+ εξ ∈ W. Let x = x+ εξ. Then 0 > ξT(x − x) = εξTξ = ε‖ξ‖2; hence, ξ = 0.

This contradicts the possibility a 6= 0, and thus α < 0.

We can rescale the vector a to obtain α = −1. With that, for all x ∈ W we obtain

ξTx− f(x) 6 ξTx− f(x),

3.6

which may be rewritten as

f(x) > f(x) + ξT (x− x),

which completes the proof of the first claim.

Suppose that f is strictly convex. Let x ∈ intW. By the first claim, there is

f(x) > f(x) + ξT (x− x) for all x ∈ W. Suppose that there exists x ∈ W \ {x} such

that f(x) = f(x) + ξT(x − x). By the strict convexity of f we obtain

f
(x+ x

2

)

<
1

2

(

f(x) + f(x)
)

= f(x) +
1

2

(

f(x) − f(x)
)

= f(x) +
1

2
ξT (x− x).

On the other hand, by the existence of the supporting hyperplane, we obtain

f
(x+ x

2

)

> f(x) + ξT
(x+ x

2
− x

)

= f(x) + ξT x− x

2
.

The two inequalities are inconsistent. Hence, if f is a strictly convex function,

there must be f(x) > f(x) + ξT (x− x) and the second claim is proved.

Suppose that f is differentiable at x. For x ∈ W \ {x} and λ ∈ (0, 1), by convexity

of f we obtain

f(x) − f(x) =
(1− λ)f(x) + λf(x) − f(x)

λ

>
f
(

(1− λ)x + λx
)

− f(x)

λ
=

f
(

x+ λ(x − x)
)

− f(x)

λ
.

With this estimation of the divided difference we go to the limit

f(x) − f(x) > lim
λց0

f
(

(1 − λ)x+ λx
)

− f(x)

λ
= Df(x)(x− x).

The limit exists and is equal to Df(x)(x − x) due to the differentiability of f. If f

is strictly convex, then we can repeat the proof of the second claim with ξT

replaced by Df(x). Then we get the sharp inequality f(x) − f(x) > Df(x)(x − x)

for x 6= x. ✷

Corollary 3 If a function f is convex and differentiable at x ∈ intW, then x is

a global minimum of f if and only if Df(x) = 0T .

Proof. The gradient of a differentiable function at a minimal point must be equal

to 0T ; hence, Df(x) = 0T is a necessary condition. Suppose that it is satisfied.

Then, for any x ∈ W we have

f(x) > f(x) + Df(x)(x − x) = f(x),
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which proves that x is a global minimum. ✷

Properties of convex functions

Theorem 27 Let W ⊂ R
n be a convex set with a nonempty interior. If at each

point x ∈ intW there exists a vector ξ ∈ R
n such that

f(x) > f(x) + ξT (x− x) for all x ∈ W,

then the function f is convex. If the inequality is sharp for x 6= x, then f is

strictly convex.

Proof. Let x ∈ intW, y ∈ W and λ ∈ (0, 1). Denote xλ = λx+ (1− λ)y. We are

going to prove that f(xλ) 6 λf(x) + (1− λ)f(y). By Lemma 3, xλ ∈ intW.

By assumption, there exists ξ ∈ R
n such that

f(x) > f(xλ) + ξT (x− xλ), f(y) > f(xλ) + ξT (y− xλ).

Hence,

λf(x) + (1− λ)f(y) > f(xλ) + ξT
[

λ(x− xλ) + (1− λ)(y − xλ)
]

= f(xλ),

as the terms in the brackets cancel each other out. The convexity of f is proved.

If the assumed inequalities are sharp, then also the inequalities in the calculation

above are sharp and the function f is strictly convex. ✷

Theorem 28 Let W ⊂ R
n be nonempty, open and convex and let f : W → R be

twice differentiable. Then,

I) f is convex if and only if the Hessian D2f(x) is nonnegative-definite for all

x ∈ W,

II) if the Hessian is positive-definite for all x ∈ W, then f is strictly convex

(this is not a necessary condition).

Proof. Suppose that the Hessian is nonnegative-definite for all x ∈ W. Then, by

Corollary 1, for all x,x ∈ W we have

f(x) = f(x) + Df(x)(x − x) +
1

2
(x − x)TD2f(x̃)(x − x),

3.8

where x̃ is a point of the line segment xx. As the Hessian is assumed to be

nonnegative-definite, the last term above is nonnegative. Hence,

f(x) > f(x) + Df(x)(x − x).

This inequality holds for all x,x ∈ W, the function f is convex by Theorem 27.

If the Hessian is positive-definite in W, then for x 6= x the last inequality is sharp,

and the function f is strictly convex.

Now we prove that the convexity of f implies that the Hessian is

nonnegative-definite. Assume that f is convex. Let x ∈ W and h ∈ R
n \ {0} be

fixed. As the set W is open, there exists δ > 0 such that x+ th ∈ W for all

t ∈ (−δ, δ). Let g(t)
def
= f(x+ th). It is a convex and twice differentiable function

of one variable. By Theorem 26,

g(t) > g(0) + g ′(0)t, t ∈ (−δ, δ).

Using the Taylor’s formula with the remainder in Peano form, we obtain

g(t) = g(0) + g ′(0)t+
1

2
g ′′(0)t2 + o(t2), t ∈ (−δ, δ).

The last inequality and the Taylor’s formula give us the following estimation:

1

2
g ′′(0)t2 + o(t2) > 0.

After dividing both sides by t2 we get

1

2
g ′′(0) +

o(t2)

t2
> 0.

With t tending to 0, the second term vanishes, which leaves us g ′′(0) > 0. With

this we return to the function f:

g ′(t) = Df(x+ th)h, g ′′(t) = hTD2f(x+ th)h.

Hence, g ′′(0) = hTD2f(x)h. As the vector h may be arbitrarily chosen, the

Hessian at x is nonnegative-definite. ✷

Subdifferential

We are going to generalise the notion of derivative to non-differentiable convex

functions. Let W ⊂ R
n be a convex set and f : W → R be a convex function.
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Definition 11 A vector ξ ∈ R
n is called the subgradient of the function f at

a point x0 ∈ W, if

f(x) > f(x0) + ξT(x − x0) for all x ∈ W.

The set of all subgradients of f at x0 is called the subdifferential and it is

denoted by ∂f(x0).

Corollary 4 If W ⊂ R
n is a convex set with the nonempty interior, then

f : W → R is a convex function if and only if at each point x ∈ intW there

exists a subgradient, i.e.,

∂f(x) 6= ∅.

Proof. By the supporting hyperplane theorem, the convexity implies the existence

of the gradient at each point of W. By Theorem 27, it is a sufficient condition. ✷

Lemma 4 Let W ⊂ R
n be convex and let f : W → R be a convex function. Then

the subdifferential ∂f(x) is a convex and closed set. If x ∈ intW, then the

subdifferential is also bounded, and thus it is a compact set.

Proof. The proof of convexity and closedness is an exercise. Let x ∈ intW be fixed.

There exists ε > 0 such that the ball B(x, ε) ⊂ intW. For any ξ ∈ ∂f(x) we have

f(x) > f(x) + ξT (x− x) for all x ∈ W.

Therefore,

sup
x∈B(x,ε)

f(x) > f(x) + sup
x∈B(x,ε)

ξT (x− x).

The left hand side does not depend on ξ, and, by continuity of f in intW, it is

finite. The supremum on the right hand side is attended for x = x+ εξ/‖ξ‖, and

it is equal to ε‖ξ‖. Hence,

ε‖ξ‖ 6 sup
x∈B(x,ε)

f(x) − f(x),

which proves that the set ∂f(x) is bounded. ✷

3.10

Definition 12 The directional derivative of a function f at a point x in the

direction d is the limit

f ′(x;d) = lim
λց0

f(x+ λd) − f(x)

λ
.

Definition 13 A divided difference of order 0 of a function f : I ⊂ R → R at

a point ti is the number f[ti] = f(ti). A divided difference of order k > 0 at

different points ti, . . . , ti+k is given by the recursive formula

f[ti, . . . , ti+k] =
f[ti, . . . , ti+k−1] − f[ti+1, . . . , ti+k]

ti − ti+k

.

Lemma 5 I) Divided differences of any order are symmetric functions of the

arguments ti, . . . , ti+k, i.e., f[ti, . . . , ti+k] = f[tσ(i), . . . , tσ(i+k)] for any

permutation σ of the set {i, . . . , i + k}.

II) If f is a convex function, then the first order divided difference f[ti, ti+1] is

a monotone (nondecreasing) function of the arguments ti, ti+1.

Proof. The proof of (I) is an exercise. To prove (II) we notice that

f[x0, x1, x2] = c0f(x0) + c1f(x1) + c2f(x2),

c0 =
1

(x1 − x0)(x2 − x0)
, c1 =

1

(x2 − x1)(x0 − x1)
, c2 =

1

(x0 − x2)(x1 − x2)
.

Assume that x0 < x1 < x2; then, c0, c2 > 0, c1 < 0. Then,

λ =
x1 − x0

x2 − x0
∈ (0, 1), (1− λ) =

x2 − x1

x2 − x0
.

We can check that if f(x1) = (1− λ)f(x0) + λf(x2), then f[x0, x1, x2] = 0; as the

value of a convex function at x1 is less than or equal to this expression, due to

c1 < 0 there is f[x0, x1, x2] > 0.

Now we use the symmetry of the divided differences; we choose the numbers

t0, t1, t2 such that t1 < t2. Then,

0 6 f[t2, t0, t1] =
f[t2, t0] − f[t0, t1]

t2 − t1
=

f[t2, t0] − f[t1, t0]

t2 − t1
=

f[t0, t2] − f[t0, t1]

t2 − t1
.

Hence, if f is convex and t2 > t1, then f[t2, t0] > f[t1, t0] and f[t0, t2] > f[t0, t1]. ✷
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Lemma 6 Let W ⊂ R
n be a convex open set and let f : W → R be a convex

function. Then, for all d ∈ R
n and x ∈ W

I) there exists the directional derivative f ′(x;d),

II) f ′(x;d) = infλ>0
f(x+λd)−f(x)

λ
,

III) f ′(x;d) > −f ′(x; −d).

Proof. Let g(t)
def
= f(x+ td) for t such that x+ td ∈ W. As W is open, the

function g is defined in an interval (−δ, δ). This function is convex. By Lemma 5,

its divided difference is monotone, i.e., for t1, t2 ∈ (−δ, δ) \ {0}, t1 < t2, we have

g(t1) − g(0)

t1
6

g(t2) − g(0)

t2
. (*)

By the monotonicity of the divided difference, there exists the left-side derivative,

g ′(0−), and the right-side derivative, g ′(0+), such that g ′(0−) 6 g ′(0+), and

g ′(0−) = sup
t<0

g(t) − g(0)

t
, g ′(0+) = inf

t>0

g(t) − g(0)

t
.

It suffices to notice that f ′(x;d) = g ′(0+) and f ′(x; −d) = −g ′(0−). ✷

Lemma 7 Let W ⊂ R
n be a convex open set and let f : W → R be a convex

function. Then a vector ξ is a subgradient if and only if

f ′(x;d) > ξTd for all d ∈ R
n.

Proof. Let x ∈ W and ξ ∈ ∂f(x). Then, for λ > 0 and d ∈ R
n such that

x+ λd ∈ W, there is

f(x+ λd) > f(x) + λξTd.

Hence,

f(x+ λd) − f(x)

λ
> ξTd,

i.e., f ′(x;d) > ξTd.

3.12

Now, let ξ ∈ R
n be a vector such that f ′(x;d) > ξTd for all d ∈ R

n. By

Lemma 6(II), for λ > 0 we obtain

f ′(x;d) 6
f(x+ λd) − f(x)

λ
.

Hence,

f(x+ λd) > f(x) + λξTd.

As λ and d may be arbitrary (such that x+ λd ∈ W), the vector ξ is

a subgradient. ✷

Theorem 29 Let f : W → R be a convex function in an open convex

set W ⊂ R
n. For each point x ∈ W and vector d ∈ R

n there is

f ′(x;d) = max
ξ∈∂f(x)

ξTd.

Moreover, the function f is differentiable at x if and only if the

subdifferential ∂f(x) has only one element. This element is Df(x)T .

Proof. By Lemma 7, f ′(x;d) > ξTd for all ξ ∈ ∂f(x). Hence,

f ′(x;d) > max
ξ∈∂f(x)

ξTd.

The opposite inequality may be proved using the weak separation theorem. Let

C1 = { (x, z) ∈ W × R : z > f(x) }

C2 = { (x, z) ∈ W × R : x = x+ λd, z = f(x) + λf ′(x;d), λ > 0 }.

Note that C1 is the interior of the epigraph of f; hence, C1 is a convex set. The set

C2 is a halfline with the origin at (x, f(x)) and the direction (d, f ′(x;d)), which is

also a convex set. This halfline is the graph of a linear approximation of f along

the line segment { x+ λd : λ > 0 } ∩W.

By Lemma 6, f ′(x;d) 6 f(x+λd)−f(x)

λ
, i.e.,

f(x+ λd) > f(x) + λf ′(x;d).

Hence, the sets C1 and C2 are disjoint. By the weak separation theorem, there

exists a nonzero vector (µ, γ) ∈ R
n+1 such that

µTx+ γz > µT(x+ λd) + γ
(

f(x) + λf ′(x;d)
)

, for all (x, z) ∈ C1, λ ∈ [0, L),
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where L = sup{ λ > 0 : x+ λd ∈ W }. The number γ cannot be negative, as the left

hand side might be arbitrarily small (after choosing a large z). Also, γ cannot be

zero, as in that case the inequality µT(x − x) > λµTd would have to hold for

all x ∈ W, and this is possible only with µ = 0. This inconsistency with (µ, γ) 6= 0

proves that γ > 0.

By rescaling the vector (µ, γ), we can assume γ = 1. Then,

µTx+ z > µT (x+ λd) +
(

f(x) + λf ′(x;d)
)

, for all (x, z) ∈ C1, λ ∈ [0, L),

With z tending to f(x) we obtain the following inequality, which holds for all

x ∈ W and λ ∈ [0, L):

µTx+ f(x) > µT(x + λd) +
(

f(x) + λf ′(x;d)
)

(*)

With λ = 0, we obtain

µT(x− x) + f(x) > f(x),

i.e.,

f(x) > f(x) − µT(x − x),

Hence, −µ ∈ ∂f(x). Now, substituting λ > 0 and x = x in (*), we obtain

−µT(λd) > λf ′(x;d),

i.e.,

sup
ξ∈∂f(x)

ξTd > f(x;d).

The proof of the first claim is complete.

To prove the second claim, we notice that the function f is differentiable at x if

and only if there exists α ∈ R
n such that f ′(x;d) = αTd for all d ∈ R

n (then

α = Df(x)T ). Thus, if the set ∂f(x) has only one element, then f is differentiable

at x.

Suppose that f is diferentiable at x. Then, for sufficiently small λ > 0 and d ∈ R
n

(without loss of generality we assume that ‖d‖ = 1), we have

f(x+ λd) = f(x) + λDf(x)d+ o(λ).

By definition of the subgradient, we have

f(x+ λd) > f(x) + λξTd,
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where ξ is a subgradient. By subtracting the sides of the above, we obtain

λ
(

ξT − Df(x)
)

d− o(λ) 6 0.

After dividing both sides of this inequality by λ and passing with λ to 0, we obtain

(

ξT − Df(x)
)

d 6 0.

The substitution d = ± ξ−Df(x)T

‖ξ−Df(x)T‖
yields the equality

ξT = Df(x),

which means that the subdifferential consists of one element. ✷

Theorem 30 Let W ⊂ R
n be an open convex set and f1, f2 : W → R be convex

functions.

I) Let f = f1 + f2. Then, ∂f(x) = ∂f1(x) + ∂f2(x), i.e.,

∂f(x) = ∂f1(x) + ∂f2(x) = {ξ1 + ξ2 : ξ1 ∈ ∂f1(x), ξ2 ∈ ∂f2(x) }.

II) Let f = max(f1, f2). Then,

∂f(x) =






∂f1(x) if f1(x) > f2(x),

conv
(

∂f1(x) ∪ ∂f2(x)
)

if f1(x) = f2(x),

∂f2(x) if f1(x) < f2(x),

where conv
(

∂f1(x)∪ ∂f2(x)
)

is the convex hull of the union ∂f1(x)∪ ∂f2(x), i.e.,

the set of all convex combinations of the subgradients in both subdifferentials.

Proof. (I): Let x ∈ W. Let ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x). Then, for all x ∈ W we

have

f1(x) > f1(x) + ξT
1(x − x),

f2(x) > f2(x) + ξT
2(x − x).

By adding the above inequalities side by side we obtain

f(x) > f(x) + (ξ1 + ξ2)
T (x − x),

i.e., ξ1 + ξ2 ∈ ∂f(x). Hence, ∂f1(x) + ∂f2(x) ⊂ ∂f(x). Suppose that there exists

ξ ∈ ∂f(x) such that ξ /∈ ∂f1(x) + ∂f2(x). By Lemma 4, the subdifferentials ∂f1(x)
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and ∂f2(x) are compact convex sets. Their algebraic sum is, therefore, also

a compact convex set. By the strong separation theorem, applied to the sets {ξ}

and ∂f1(x) + ∂f2(x), there exists µ ∈ R
n, such that

µTξ1 + µTξ2 < µTξ, for all ξ1 ∈ ∂f1(x) and ξ2 ∈ ∂f2(x).

We take ξ1,ξ2 to maximise the left hand side. By Theorem 29,

f ′1(x;µ) + f ′2(x;µ) < ξTµ 6 f ′(x;µ).

On the other hand, by the properties of directional derivatives,

f ′1(x;µ) + f ′2(x;µ) = f ′(x;µ).

This is an inconsistency; a vector ξ with assumed properties cannot exist, which

completes the proof of (I).

Now we prove (II). The form of the subdifferential ∂f in the sets W1 and W2

defined as Wi = { x ∈ W : fi(x) > f3−i(x) } is obvious, which leaves the set

W0 = { x ∈ W : f1(x) = f2(x) } to investigate. Let x ∈ W and f1(x) = f2(x). Denote

A = conv
(

∂f1(x) ∪ ∂f2(x)
)

. For i = 1, 2 and x ∈ W we have

f(x) − f(x) > fi(x) − f(x) = fi(x) − fi(x) > ξT
i (x− x), for all ξi ∈ ∂fi(x).

From the above we obtain ∂f1(x) ∪ ∂f2(x). By convexity of the subdifferential,

A ⊂ ∂f(x). Suppose that there exists ξ ∈ ∂f(x) \A. The set A is convex and

compact. By the strong separation theorem applied to the sets {ξ} and A, there

exists a vector µ ∈ R
n and a constant b such that

µT ξ̃ < b < µTξ for all ξ̃ ∈ A.

In particular, µTξi < b for ξi ∈ ∂fi(x), i = 1, 2. By Theorem 29,

max
{
f ′1(x;µ), f

′
2(x;µ)

}
6 b.

Similarly, b < ξTµ 6 f ′(x;µ); hence,

max
{
f ′1(x;µ), f

′
2(x;µ)

}
< f ′(x;µ). (*)

On the other hand, by definition of the directional derivative, due to

f(x) = f1(x) = f2(x), we obtain the equality

f(x+ λd) − f(x)

λ
= max

{
f1(x+ λd) − f(x)

λ
,
f2(x+ λd) − f(x)

λ

}
, λ > 0.

Passing with λ to 0, we obtain

f ′(x;d) = max
{
f ′1(x;d), f

′
2(x;d)

}
.

With d = µ we obtain an inconsistency with (*). Hence, the set ∂f(x) \A is

empty. ✷
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Theorem 31 Let W ⊂ R
n be an open and convex set, let f : W → R be a convex

function and let A be an n×m matrix. If W̃ = { x ∈ R
m : Ax ∈ W }, then W̃ is

an open convex set and the function F : W̃ → R given by the formula

F(x) = f(Ax) at any point x ∈ W̃ has the subdifferential given by

∂F(x) = AT∂f(Ax).

Proof. Let x ∈ W̃ and let ξ ∈ ∂f(Ax). Then,

f(Ax) > f(Ax) + ξT (Ax−Ax) = f(Ax) + (ATξ)T (x − x),

i.e., ATξ ∈ ∂F(x). Hence, AT∂f(Ax) ⊂ ∂F(Ax). Suppose that there exists

ξ ∈ ∂F(Ax) \AT∂f(Ax). The set AT∂f(Ax) is convex and closed, as the image of

a closed and convex set in a linear transformation. We apply the strong separation

theorem to this set and {ξ}. There exists µ ∈ R
m and b ∈ R such that

µTAT ξ̃ < b < µTξ for all ξ̃ ∈ ∂f(Ax).

By taking the supremum over ξ̃ ∈ ∂f(Ax), and using Theorem 29, we obtain

f ′(Ax;Aµ) 6 b. The right hand side may be estimated by the directional

derivative: µTξ 6 F ′(x;µ). Hence,

f ′(Ax;Aµ) 6 b < F ′(x;µ).

But the directional derivatives satisfy the equality F ′(x;d) = f ′(Ax;Ad) for all

d ∈ R
m. Thus, we have an inconsistency, which proves that ∂F(Ax) \AT∂f(Ax) is

the empty set. ✷
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4. Extrema of convex functions with constraints

We consider a convex function f : W → R defined in a convex set W ⊂ R
n and the

following problem:

{
f(x) → min,

x ∈ W.

A global solution is a feasible point x such that f(x) 6 f(x) for all x ∈ W.

A local solution is a point x ∈ W such that there exists ε > 0 such that

f(x) 6 f(x) for all x ∈ W ∩ B(x, ε), i.e., if the point x is a minimum of f in its

neighbourhood. The local solution is strict if f(x) < f(x) for x 6= x.

Theorem 32 Let the set W ⊂ R
n be convex, and the function f : W → R

n be

convex. If x ∈ W is a local solution of the problem above, then

I) x is a global solution,

II) the set of global solutions is convex,

III) if f is strictly convex, then x is a strict local solution,

IV) if x is a strict local solution, then it is the unique global solution.

We do not assume the differentiability of f.

Proof. (I) is proved by contradiction. Suppose that there exists x∗ ∈ W such that

f(x∗) < f(x). As x is a local solution, f(x) 6 f(x) for all x ∈ W ∩ B(x, ε), for some

ε > 0. By convexity of W, this set contains the line segment xx∗. This line

segment has a nonempty intersection with the ball B(x, ε); there exists λ ∈ (0, 1)

such that λx+ (1− λ)x∗ ∈ B(x, ε). By convexity of f, we obtain

f
(

λx+ (1− λ)x∗
)

6 λf(x) + (1− λ)f(x∗) < f(x),

which contradicts x being a local minimum.

The proofs of (II), (III) and (IV) are left as exercises. ✷

4.2

So far, we have shown that a necessary and sufficient condition for a minimum of

a differentiable convex function in an open set is the zero of the derivative or the

gradient. This result may be generalised to arbitrary convex sets.

Theorem 33 Let the set W ⊂ R
n be convex and the function f : W → R be

convex. If f is differentiable at x ∈ W, then there is the following equivalence:

x is a minimum if and only if Df(x)(x − x) > 0 for all x ∈ W.

Remark. To speak of differentiability of f at a point x, this function must be

defined in a neighbourhood of this point, i.e., in a ball B(x, ε), ε > 0. If x is at the

boundary of W, then we assume that f is defined in W ∪ B(x, ε), though we omit

it in the theorem’s assumptions.

Remark. If x ∈ intW, then the condition in the theorem is equivalent to

Df(x) = 0T .

Proof. Let Df(x)(x−x) > 0 for all x ∈ W. Suppose that there is no minimum at x.

Then, there exists a point x ′ ∈ W such that f(x ′) < f(x). We construct a sequence

xk = (1− 1
k
)x + 1

k
x ′. By convexity of W, this sequence is contained in W. We

consider the directional derivative of f in the direction of the vector x ′ − x:

f ′(x; x ′ − x) = lim
k→∞

f
(

x+ 1
k
(x ′ − x)

)

− f(x)

1/k
= lim

k→∞

f(xk) − f(x)

1/k

6 lim
k→∞

(1− 1
k
)f(x) + 1

k
f(x ′) − f(x)

1/k
= f(x ′) − f(x) < 0.

By the assumption, we have

f ′(x; x ′ − x) = Df(x)(x ′ − x) > 0

This inconsistency proves that x is a minimum of f in W.

Now suppose that x is a solution. Let x ∈ W. The convexity of W implies that

x+ λ(x− x) = (1− λ)x+ λx ∈ W for all λ ∈ [0, 1]. By definition of the derivative,

Df(x)(x− x) = lim
λց0,λ<1

f
(

x+ λ(x− x)
)

− f(x)

λ
.

As x is a minimum, f
(

x+ λ(x− x)
)

> f(x). Hence, Df(x)(x − x) > 0. ✷

Corollary 5 If x ∈ W, where W ⊂ R
n is convex, is a local minimum of a (not

necessarily convex) function f : W → R, differentiable at x, then

Df(x)(x − x) > 0 for all x ∈ W.
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Theorem 34 Let X ⊂ R
n be a convex and open set and f : X → R be a convex

function. Suppose that the feasible set W is a subset of X. Then x ∈ W is

a minimum if and only if there exists ξ ∈ ∂f(x), such that ξT (x− x) > 0 for

all x ∈ W.

Corollary 6 If x ∈ intW, then f has a global minimum at x if and only if

0 ∈ ∂f(x).

Proof. Suppose that there exists ξ ∈ ∂f(x) such that ξT (x− x) > 0 for all x ∈ W.

As ξ is a subgradient, it follows that

f(x) > f(x) + ξT (x− x), x ∈ W.

Now it suffices to use the assumption to notice that f(x) > f(x), i.e., x is

a minimum.

Now suppose that x ∈ W is a minimum. We define two sets:

C1 = { (x, z) ∈ R
n+1 : x ∈ X, z > f(x) − f(x) },

C2 = { (x, z) ∈ R
n+1 : x ∈ W, z 6 0 }.

Both sets are convex and the interior of C1 is nonempty (the interior of C2 may be

empty if the interior of W is empty). From x being a solution it follows that

C1 ∩ C2 = ∅. We use the weak separation theorem: there exists a nonzero vector

(µ, γ) ∈ R
n+1 and a constant b such that

µTx+ γz 6 b, for all x ∈ X, z > f(x) − f(x),

µTx+ γz > b, for all x ∈ W, z 6 0.

Before we proceed, let’s take a look at Figure 3. As we can see, the two sets

“touch” each other at the point (x, 0). The separating hyperplane must therefore

contain this point. It is tangent to the graph of the function x → f(x) − f(x) and

in fact it determines a subgradient of this function, which is also a subgradient of

the function f at x.

Now we prove it analytically. We can write

µT(x− x) + γz 6 b̃, for all x ∈ X, z > f(x) − f(x), (*)

µT(x− x) + γz > b̃, for all x ∈ W, z 6 0, (**)
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C1

C2

︸ ︷︷ ︸
W︸ ︷︷ ︸

X

x

z

z = f(x)

x

(µ, γ)

Figure 3: The sets C1 and C2

where b̃ = b− µTx. We notice that γ cannot be positive, as we can take an

arbitrarily small z in (**), which leads to inconsistency.

Taking x = x and z = 0 in (**), we obtain b̃ 6 0. On the other hand, with x = x,

the inequality (*) turns into γz 6 b̃ for z > 0; hence, b̃ > 0. Therefore, b̃ = 0.

Using this fact we show that γ cannot be zero. From (*), due to X being open, we

would then obtain µ = 0 which contradicts (µ, γ) 6= 0. Thus we proved that

γ < 0. Taking z = f(x) − f(x) in (*), we obtain

µT(x− x) + γ
(

f(x) − f(x)
)

6 0.

After dividing the sides by γ, which is negative, we obtain

µT

γ
(x− x) + f(x) − f(x) > 0,

which proves that ξ = −µ
γ
∈ ∂f(x). Taking z = 0 in (**), we obtain

µT(x − x) > b̃ = 0. After dividing the sides by −γ, we obtain ξT (x− x) > 0, and

the proof is complete. ✷
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Pseudoconvex functions

We introduce a family of functions such that

Df(x) = 0T ⇔ x is a global minimum of f.

Definition 14 Let W ⊂ R
n be convex, open and nonempty and let f : W → R.

The function f is pseudoconvex in W if it is differentiable in W and

Df(x)(y− x) > 0 ⇒ f(y) > f(x) for all x,y ∈ W.

A function f is strictly pseudoconvex in W if

Df(x)(y− x) > 0 ⇒ f(y) > f(x) for all x,y ∈ W, x 6= y.

A function f is pseudoconvex at a point x ∈ W if it is differentiable at x and

Df(x)(y− x) > 0 ⇒ f(y) > f(x) for all y ∈ W.

Similarly is defined a function strictly pseudoconvex at a point x ∈ W.

A function f is (strictly) pseudoconcave if −f is (strictly) pseudoconvex.

pseudoconvex

pseudoconvex

and pseudoconcave

neither pseudoconvex

nor pseudoconcave pseudoconcave

Figure 4: Examples explaining the notion of pseudoconvexity

Remark. Pseudoconvexity at a point is a property of a function related with the

entire set W, even if the differentiability is needed at that point only.
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Remark. A condition equivalent to that in the definition is the following:

f(y) < f(x) ⇒ Df(x)(y− x) < 0.

Lemma 8 Let f : W → R, where W ⊂ R
n is nonempty, open and convex. If f is

(strictly) convex and differentiable in W, then f is (strictly) pseudoconvex.

Proof. Suppose that f is convex. By the supporting hyperplane theorem, for any

x,x ∈ W we have

f(x) > f(x) + Df(x)(x − x).

Thus, if Df(x)(x − x) > 0, then f(x) > f(x) and f is indeed pseudoconvex. The

proof of strict pseudoconvexity of a strictly convex function is similar. ✷

Lemma 9 Let f : W → R, where W ⊂ R
n is nonempty, open and convex.

If a function f is pseudoconvex at x ∈ W, then x is a global minimum of f

if and only if Df(x) = 0T .

Proof. Identical as the proof of Corollary 3. ✷

Lemma 10 Let W ⊂ R
n be convex and let f : W → R be pseudoconvex. Then, x

is a solution of the minimization problem if and only if Df(x)(x − x) > 0 for

all x ∈ W.

Proof. Identical as the proof of Theorem 33. ✷

Finding maxima of convex functions

Definition 15 An extremal point of a convex set W ⊂ R
n is such

a point x ∈ W, which is not an internal point of any line segment contained

in W, i.e., if x = λx1 + (1 − λ)x2, where λ ∈ (0, 1) and x1,x2 ∈ W, then

x1 = x1 = x.

Definition 16 The convex hull of points A = { xi : i ∈ I } is the set of points

being convex combinations of all finite subsets of the set A.
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Equivalently, the convex hull may be defined as the smallest convex set containing

the set A.

Definition 17 The dimension of a convex set U ∈ R
n is the dimension of the

smallest affine subspace A ∈ R
n containing U (affine hull of U), i.e., the set

aff U =
{ k∑

i=1

λixi : x1, . . . ,xk ∈ U
}
.

Remark. Any affine subspace of Rn, subject to a translation, may become a linear

subspace.

Remark. A set U whose dimension is m may be seen as a subset of Rm.

Remark. A convex set U ⊂ R
n has a nonempty interior if and only if its dimension

is n.

Theorem 35 (Krein–Milman, finite-dimensional case) Let U ⊂ R
n be convex

and compact. It is then the convex hull of the set of its extremal points.

Lemma 11 Let U ⊂ R
n be a convex set with a nonempty interior and let

x ∈ ∂U. The point x is an element of a hyperplane such that U is contained

in one of two halfspaces separated by this hyperplane, which we call

a supporting hyperplane.

Proof. By the weak separation theorem applied to intU and V = {x} there exists

a ∈ R
n \ {0} such that aTx 6 aTx for all x ∈ U. The hyperplane sought is

H = { x ∈ R
n : aTx = aTx }.

The set U is contained in the halfspace { x ∈ R
n : aTx 6 aTx }. ✷

First proof of the Krein–Milman theorem. We use induction with respect to the

dimension m of the compact and convex set U. The cases m = 0 (U consists of

a single point) and m = 1 (U is a line segment) are obvious. The induction step is

the following: assume that each convex and compact set of dimension not greater

than m is the convex hull of the set of its extremal points. Let U be a convex and
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compact set of dimension m+ 1. We look at U as a subset of Rm+1. Its interior is

then nonempty. Let x ∈ U.

First, let x ∈ ∂U. By Lemma 11, there exists a supporting hyperplane H of the

set U. The set Ux = U∩H is convex and compact and its dimension is at most m.

By the inductive assumption, x is a convex combination of the extremal points of

Ux. It has to be shown that these points are also extremal points of U. But this is

a consequence of the fact that no extremal point of Ux is in the interior of a line

segment whose both end points are in U.

Let x ∈ intU. We can take an arbitrary line passing through x; its intersection

with U is a line segment whose end points x1, x2 are located on the boundary

of U. Both these points are convex combinations of extremal points of U, and so

is the point x. ✷

Second proof of the Krein–Milman theorem. If U is a subset of R1, then the claim

is trivial. Assume that any convex and compact subset of Rm is the convex hull of

the set of its extremal points. We shall prove the theorem for the subsets of Rm+1.

Let W be the convex hull of the set of extremal points of U. Obviously, W ⊂ U.

Suppose that there exists x ∈ U \W. Then, there exists a ball B(x, ε) disjoint

with W. By the strong separation theorem, there exists a nonzero vector

a ∈ R
m+1 and a number α such that aTx 6 α for x ∈ W and aTx > α. Let

β = supx∈U aTx. As U is compact, β is finite. The hyperplane

P = { x ∈ R
m+1 : aTx = β } does not intersect W, but it has a common point

with U; indeed, PU
def
= P ∩U is nonempty, as U is compact; hence, the supremum β

of aTx is taken at some point x ∈ U. We are going to show that in the set PU

there is an extremal point of U, which is inconsistent with the definition of W.

The set PU is a nonempty, compact and convex set of dimension m. It may be

seen as a subset of Rm; by the inductive assumption it is the convex hull of the set

of its extremal points. Let y be one of extremal points of PU; suppose that y is

a convex combination of some points of U: y = λy1 + (1− λ)y2, y1,y2 ∈ U,

λ ∈ (0, 1). Then, β = aTy = λaTy1 + (1 − λ)aTy2. By definition of β, both terms,

aTy1 and aTy2 must be equal to β; hence, y1,y2 ∈ PU. But y is an extremal

point of PU, therefore, y = y1 = y2 and thus y is an extremal point of U. ✷

Theorem 36 Let f : W → R be a convex and continuous function defined in

a convex and compact set W ⊂ R
n. Then at least one of global solutions of
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the problem

{
f(x) → max,

x ∈ W.

is an extremal point of the set W.

Proof. A continuous function in a compact set achievess its extrema. Therefore,

the problem formulated above has a solution x ∈ W. By Theorem 35, the point x

is a convex combination of a finite number of extremal points of the set W, i.e.,

x = a1x1 + · · · + amxm,

where x1, . . . ,xm are extremal points, a1, . . . , am > 0 and a1 + · · · + am = 1.

By convexity of f we obtain

f(x) 6 a1f(x1) + · · · + amf(xm).

As x is a maximum of f in W, there must be f(x1) = · · · = f(xm). ✷

Definition 18 A set W ⊂ R
n is called a polyhedral set if it is the intersection

of a finite number of halfspaces, i.e.,

W = { x ∈ R
n : pT

i x 6 αi, i = 1, . . . ,m },

where pi ∈ R
n \ {0}, αi ∈ R.

Lemma 12 A polyhedral set is convex and closed.

Proof. Obvious. ✷
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5. Necessary condition of the first order

We consider the optimization problem
{

f(x) → min,

x ∈ W,
(*)

where W ⊂ R
n and f : W → R. Let x be a local solution. We are going to connect

the local geometry of the set W at x with the behaviour of the function f, i.e.,

with directions of descent of its values. By the local geometry we understand the

set of directions at which we can move without leaving the set W.

Definition 19 The cone of tangents T(x) to the set W at x ∈ clW is the set of

vectors d ∈ R
n such that

d = lim
k→∞

λk(xk − x)

for some numbers λk > 0 and points xk ∈ W such that xk → x.

According to the definition the vector d is an element of the cone of tangents T(x)

if it is the limit of a sequence of vectors determined by a sequence of feasible

points (xk)k tending to x. It may formally be described as follows

T(x) =
{
d ∈ R

n : d = λ lim
k→∞

xk − x

‖xk − x‖
for some (xk)k ⊂ W, xk → x, xk 6= x, λ > 0

}
,

which is to be proved as an exercise, as well as the lemma below.

Lemma 13 I) The set T(x) is a cone, i.e., λd ∈ T(x) for all d ∈ T(x) and

λ > 0. In particular, 0 ∈ T(x).

II) If x ∈ intW, then T(x) = R
n.

III) The cone T(x) is closed.

Definition 20 Let f : X → R be differentiable at x ∈ X. The set of

descent directions(or improving directions) of f at x is the set

D(x) = {d ∈ R
n : Df(x)d < 0 }.

5.2

Theorem 37 Let x be a local solution of the problem (*). If f is differentiable

at x, then

D(x) ∩ T(x) = ∅.

Proof. Let d ∈ T(x). Then, d = limk→∞ λk(xk − x) for some sequence of points

(xk)k converging to x and a sequence (λk)k ⊂ (0,∞). As the function f is

differentiable at x, there is

f(xk) = f(x) + Df(x)(xk − x) + o(‖xk − x‖).

As x is a local solution, f(xk) > f(x) for k sufficiently large. Together with the

formula above, we obtain the following estimation:

0 6 f(xk) − f(x) = Df(x)(xk − x) + o(‖xk − x‖)

By multiplying the sides by λk, we obtain

0 6 Df(x)
(

λk(xk − x)
)

+ λko(‖xk − x‖).

A little trick allows us to deal with the remainder; here we go with k to infinity:

0 6 Df(x)
(

λk(xk − x)
)

︸ ︷︷ ︸
→d

+ λk‖xk − x‖
︸ ︷︷ ︸

→‖d‖

o(‖xk − x‖)
‖xk − x‖

︸ ︷︷ ︸
→0

.

We proved that Df(x)d > 0, i.e., d /∈ D(x). ✷

Example. Consider the following problem:
{

x21 + x22 → min,

x1 + x2 > 1.

We denote f(x1, x2) = x21 + x22, W = { x ∈ R
2 : x1 + x2 > 1 }.

We investigate the sets T(x) and D(x) at three points: (1, 1), (1, 0), (1
2
, 1
2
).

The point (1, 1) is located in the interior of W, i.e., T(x) = R
2. The set of descent

directions is

D(x) = {d ∈ R
2 : Df(x)d < 0 } = {d ∈ R

2 : [2, 2]d < 0 }

= { (d1, d2) ∈ R
2 : d1 + d2 < 0 }.

Obviously, the two sets have a nonempty intersection; hence, there is no minimum

at (1, 1).
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The point (1, 0) is located at the boundary of W, and we have

T(x) = {d ∈ R
2 : d1 + d2 > 0 }, D(x) = {d ∈ R

2 : d1 < 0 }.

The intersection of the two sets is nonempty and thus there is no minimum

at (1, 0).

For the point (1
2
, 1
2
) we find the sets

T(x) = {d ∈ R
2 : d1 + d2 > 0 },

D(x) = {d ∈ R
2 : [1, 1]d < 0 } = { (d1, d2) ∈ R

2 : d1 + d2 < 0 }.

Their intersection is empty and thus it is possible (it is still to be verified) that

there is a minimum at (1
2
, 1
2
).

Inequality constraints

Now we consider the problem given in the following form:





f(x) → min,

gi(x) 6 0, i = 1, . . . ,m,

x ∈ X,

(**)

where X ⊂ R
n is an open set and f, g1, . . . , gm : X → R. Here the feasible set is

W = { x ∈ X : g1(x) 6 0, . . . , gm(x) 6 0 }.

The functions g1, . . . , gm are called inequality constraints and the problem (**) is

called the optimization problem with inequality constraints.

We assume that the functions gi are continuous; then the motion around a point x

is restricted by only those functions equal to 0 at x. The others, due to their

continuity, are less than zero in a neighbourhood of x.

Definition 21 The set of active (or binding or tight) constraints at a point x

is the set

I(x) =
{
i ∈ {1, . . . ,m} : gi(x) = 0

}
.

We are going to connect the properties of active constraints at a point x ∈ W with

the local geometry of the set W around x. To do this we introduce the following

definition:

5.4

Definition 22 Let x ∈ W and let the functions gi which describe the

constraints active at x be differentiable at x. The cone of tangents

for active (binding) constraints is the set

Tlin(x) = {d ∈ R
n : Dgi(x)d 6 0 for all i ∈ I(x) }.

The cone of tangents for active constraints is a polyhedral set, i.e., it is convex

and closed.

Lemma 14 If x ∈ W, then T(x) ⊂ Tlin(x).

Proof. The proof is similar to that of Theorem 37. Let d ∈ T(x). Then,

d = limk→∞ λk(xk − x) for some sequence of points (xk)k ⊂ W converging to x and

a sequence of positive numbers λk. Let i ∈ I(x). As gi is differentiable at x, we

have

gi(xk) = gi(x) + Dgi(x)(xk − x) + o(‖xk − x‖).

The i-th constraint is active at x; hence, gi(x) = 0. Obviously, gi(xk) 6 0 due to

xk ∈ W. From the above we have the estimation

0 > gi(xk) − gi(x) = Dgi(x)(xk − x) + o(‖xk − x‖).

We multiply the sides by λk to obtain

0 > Dgi(x)
(

λk(xk − x)
)

+ λko(‖xk − x‖).

The same trick as before gives us

0 > Dgi(x)
(

λk(xk − x)
)

︸ ︷︷ ︸
→d

+ λk‖xk − x‖
︸ ︷︷ ︸

→‖d‖

o(‖xk − x‖)
‖xk − x‖

︸ ︷︷ ︸
→0

.

Here we proved that Dgi(x)d 6 0. This holds for all i ∈ I(x); hence, d ∈ Tlin(x). ✷

Example. Let W = { (x1, x2) ∈ R
2 : x21 + x22 6 1, x2 > 0) }. In the canonical form we

have

W = { (x1, x2) ∈ X = R
2 : x21 + x22 − 1 6 0,−x2 6 0) },

and g1(x1, x2) = x21 + x22 − 1, g2 = −x2. We look at three points of the set W:

(1
2
, 1
2
), (0, 1), (1, 0).
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No constraint is active at the point (1
2
, 1
2
); there is I

(

(1
2
, 1
2
)
)

= ∅ and

T
(

(1
2
, 1
2
)
)

= Tlin

(

(1
2
, 1
2
)
)

= R
2.

At the point (0, 1) we have I
(

(0, 1)
)

= {1}, T
(

(0, 1)
)

= { (d1, d2) ∈ R
2 : d2 6 0 } and

Tlin

(

(0, 1)
)

= {d ∈ R
2 : Dg1(0, 1)d 6 0 } = {d ∈ R

2 : [0, 2]d 6 0 } = T
(

(0, 1)
)

.

At the point (1, 0) there is I
(

(1, 0)
)

= {1, 2},

T
(

(1, 0)
)

= { (d1, d2) ∈ R
2 : d1 6 0, d2 > 0 } and

Tlin

(

(1, 0)
)

= {d ∈ R
2 : Dg1(1, 0)d 6 0, Dg2(1, 0)d 6 0 }

= {d ∈ R
2 : [2, 0]d 6 0, [0,−1]d 6 0 } = T

(

(1, 0)
)

.

Example. The same set W may have another description:

W = { (x1, x2) ∈ R
2 : x21 + x22 − 1 6 0, −x32 6 0 }. The second constraint is now

described by the function g2(x1, x2) = −x32. The cone of tangent directions at (1, 0)

is unchanged, but

Tlin

(

(1, 0)
)

= {d ∈ R
2 : Dg1(1, 0)d 6 0, Dg2(1, 0)d 6 0 }

= {d ∈ R
2 : [2, 0]d 6 0, [0, 0](1, 0)d 6 0 }

= { (d1, d2) ∈ R
2 : d1 6 0 }

and in this case T(x) 6= Tlin(x).

Necessary Kuhn–Tucker conditions

By Lemma 14, T(x) ⊂ Tlin(x). Often, but not always, the two sets are equal. It is

an important property, being the starting point to the entire theory of nonlinear

optimization by Kuhn and Tucker. We begin studying it with the lemma:

Lemma 15 (G. Farkas, 1901) Let A be an m× n real matrix and let d ∈ R
n.

Then exactly one of the two following systems of equations and inequalities

has a solution:

(1)






Ax 6 0,

dTx > 0,

x ∈ R
n

(2)






ATy = d,

y > 0,

y ∈ R
m.
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Proof. First we show that if (2) has a solution, then (1) does not. Let y

satisfy (2). Then, d = ATy. After substituting this to (1) we obtain

{
Ax 6 0,

yTAx > 0.

The first inequality means that each coordinate of the vector Ax is nonpositive.

As the coordinates of y are nonnegative, the scalar product yTAx is not positive.

This is inconsistent with the second inequality above; hence, (1) does not have

a solution.

Now suppose that (2) does not have a solution. Let

V
def
= { x ∈ R

n : x = ATy, y ∈ R
m, y > 0 }.

The set V is a polyhedral set; hence, it is convex and closed. As (2) does not have

a solution, d /∈ V . By the strong separation theorem applied to the sets V

and U = {d}, there exists a vector a ∈ R
n such that

aTd > sup
x∈V

aTx.

Below we show that x = a is a solution of (1). Let α = supx∈V x
Tx. From 0 ∈ V it

follows that α > 0; hence, aTd = dTx > 0. It remains to be proved that Ax 6 0.

Suppose that the i-th coordinate of Ax is positive. By definition of V , for any

y > 0 there is α > xTATy = yTAx. Let yk = kei (i.e., the i-th coordinate of the

vector yk is k and all other coordinates are zero). If the i-th coordinate (Ax)i of

Ax is positive, then,

lim
k→∞

yT
kAx = lim

k→∞
k(Ax)i = ∞,

which is inconsistent with yTAx 6 α for all y > 0. Hence, Ax 6 0. ✷

Remark. If a vector x is a solution of System (1), then for all a > 0 the vector

ax is also a solution; hence, the set of solutions of (1) is either empty or infinite.

On the other hand, if the rows of the matrix A are linearly independent and

System (2) has a solution y, then this solution is unique.

An example is shown in Figure 5. The matrix A is 2× 2, its rows are the vectors

a1 and a2 (they are row matrices 1× 2). For System (1) from the lemma, the

condition Ax 6 0 is equivalent to two inequalities, a1x 6 0 and a2x 6 0. The sets

of vectors x satisfying each of the two inequalities are hatched with dashed lines;

their intersection is the set of vectors x such that Ax 6 0. The set of vectors x
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a1

{ATy : y > 0}

a2

d

a1x 6 0

a2x 6 0

xTd > 0

a1

{ATy : y > 0}

a2

d

a1x 6 0

a2x 6 0

xTd > 0

Figure 5: Farkas’ lemma: on the left side (1) has a solution and on the right side

(2) has a solution

such that dTx > 0, where d is given, is grey. Clearly, (1) has solutions if and only

if the grey area and the doubly hatched area intersect. This is the case in the

picture on the left side. On the right side, System (2) has no solution. To find

a geometric interpretation of (2), we need to see how the set V = {ATy : y > 0 }

looks like. Any vector ATy may be represented as a linear combination

y1a
T
1 + y2a

T
2 , where y = (y1, y1). One can easily notice that the set V is a cone

spanned by the vectors aT
1 and aT

2 ; it is dotted on the picture. Equation ATy = d

has a solution when the vector d is inside the dotted part of the cone. This is the

case in the picture on the right side. On the left side the vector d is outside of the

dotted area, and System (2) does not have a solution.

Theorem 38 (Kuhn–Tucker theorem) Let x be a local solution of the

problem (**). If the functions f and gi, where i ∈ I(x), are differentiable at x

and T(x) = Tlin(x), then there exists µ = (µ1, . . . , µm) ∈ [0,∞)m such that






Df(x) +
∑

i∈I(x)

µiDgi(x) = 0T ,

µigi(x) = 0, i = 1, 2, . . . ,m.

Remark. The second condition is called the complementary slackness condition.

Whenever the constraint gi 6 0 is slack (meaning gi < 0), the constraint

µi > 0 must not be slack (meaning µi = 0) and reverse.

5.8

Remark. Often the system of Kuhn–Tucker equations is written with the sum over

all indices i = 1, . . . ,m:





Df(x) +

m∑

i=1

µiDgi(x) = 0T ,

µigi(x) = 0, i = 1, 2, . . . ,m.

This notation is an abuse, as the functions gi which describe inactive constraints

need not be differentiable at x. On the other hand, the derivatives are multiplied

by µi, equal to 0 for inactive constraints, which is a sort of justification for this

notation.

Remark. The assumptions of the Kuhn–Tucker theorem are obviously satisfied if

x ∈ intW, i.e., I(x) is the empty set. Then we have Df(x) = 0T , µ = 0.

Proof of the Kuhn–Tucker theorem. By Theorem 37 we have D(x) ∩ T(x) = ∅. By

assumption, D(x) ∩ Tlin(x) = ∅, which means that the system

{
Df(x)z < 0,

Dgi(x)z 6 0, i ∈ I(x),

has no solution z ∈ R
n. Let d = −

(

Df(x)
)T

, let k = |I(x)| and let A be the k× n

matrix whose rows are gradients of the active constraints Dgi(x). By the Farkas’

lemma, there exists a vector y ∈ [0,∞)k such that yTA = d, i.e.,

Df(x) + yTA = 0T .

Let µ ∈ [0,∞)m be defined as follows: (µi)i∈I(x) = y and (µi)i /∈I(x) = 0. Then, the

equality above is equivalent to

Df(x) +
∑

i∈I(x)

µiDgi(x) = 0T .

By definition of µ it is obvious that µigi(x) = 0 for all i = 1, . . . ,m. ✷

The assumptions of the Kuhn–Tucker theorem are called the necessary conditions

of the first order. Due to the importance of the vector µ in what follows, we give

it a name:

Definition 23 The vector µ which appears in the necessary first-order

condition is called the vector of Lagrange multipliers.
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6. Regularity conditions and examples

Constraints qualifications

Three conditions defined below are sufficient for the equality T(x) = Tlin(x); we

shall prove it.

Definition 24 At a point x ∈ W ⊂ X

� the linear independence condition is satisfied if the functions gi are

continuous at x for i /∈ I(x) and the vectors Dgi(x) are linearly

independent for i ∈ I(x),

� the affine function condition is satisfied if the functions gi are

continuous at x for i /∈ I(x) and the functions gi are affine for i ∈ I(x),

� the Slater condition is satisfied if the functions gi are continuous at x

for i /∈ I(x), the functions gi are pseudoconvex at x for i ∈ I(x) (i.e.,

Df(x)(y− x) > 0 ⇒ f(y) > f(x)) and there exists a point x∗ ∈ X such

that gi(x
∗) < 0 for i ∈ I(x).

Note that the point x considered in the Slater condition needs not satisfy the

inactive constraints, i.e., it is not required that x ∈ W.

Theorem 39 If the affine function condition is satisfied at x ∈ W, then

T(x) = Tlin(x).

Proof. The set inclusion T(x) ⊂ Tlin(x) follows from Lemma 14. We need to prove

the opposite inclusion. Let d ∈ Tlin(x). We are going to prove the existence of

λ∗ > 0 such that the entire line segment x+ λd, λ ∈ [0, λ∗], is a subset of W.

We can notice that if i /∈ I(x), then gi(x) < 0. As these functions gi are

continuous, there exists λ∗ > 0 such that gi(x + λd) 6 0 for all λ ∈ [0, λ∗]. It

remains to be proved that this inequality is satisfied also for the active constraints.

Let i ∈ I(x). By definition of d, Dgi(x)d 6 0. The active constraint gi is an affine

function equal to 0 at x, i.e., it has the form gi(x) = aT
i (x− x) for some nonzero

vector ai ∈ R
n. There is Dgi(x)d = aT

id. Therefore, for any λ > 0 we have

0 > λaT
id = gi(x+ λd);

6.2

hence,

{ x+ λd : λ ∈ [0, λ∗] } ⊂ W.

It remains to construct appropriate sequences (xk)k ⊂ W, and (λk)k ⊂ (0,∞). Let

xk = x+
λ∗

k
d, λk =

k

λ∗
.

Then, xk ∈ W, xk → x and λk(xk − x) = d for all k, and thus

limk→∞ λk(xk − x) = d. ✷

The proofs of the other two regularity conditions refer to the set

Tint(x)
def
= {d ∈ R

n : Dgi(x)d < 0 for all i ∈ I(x) }.

Note that Tint(x) = ∅ if gi(x) = 0 and Dgi(x) = 0T for some i ∈ {1, . . . ,m}.

Lemma 16 If the functions gi, i ∈ I(x) are differentiable at x ∈ W and the

other constraints gi are continuous, then from d ∈ Tint(x) it follows that

x+ λd ∈ intW for sufficiently small λ > 0.

Proof. If i /∈ I(x), then gi(x) < 0. By the continuity of gi, there is gi(x+ λd) < 0

for all λ sufficiently small, say, λ ∈ (0, λ∗]. If i ∈ I(x), then, by differentiability

of gi at x, we have

lim
λց0

gi(x + λd) − gi(x)

λ
= Dgi(x)d < 0,

because d ∈ Tint(x). This inequality holds also if λ > 0 is arbirarily small.

Therefore,

gi(x + λd) − gi(x)

λ
< 0,

and gi(x+ λd) − gi(x) = gi(x+ λd) < 0. ✷

Lemma 17 Let x ∈ W, let the functions gi, where i ∈ I(x), be differentiable

at x and let the functions gi, where i /∈ I(x) be continuous at x. Then,

I) Tint ⊂ T(x),

II) If Tint(x) 6= ∅, then cl
(

Tint(x)
)

= Tlin(x).
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Proof. (I) follows directly from Lemma 16. To prove (II) we notice that Tint(x) is

the interior of the set Tlin(x). As Tlin(x) is a polyhedral set, it is convex and closed.

The claim follows from Lemma 3. ✷

Theorem 40 If the Slater condition is satisfied at x ∈ W, then T(x) = Tlin(x).

Proof. First we show that Tint(x) 6= ∅. Let x∗ ∈ X such that gi(x
∗) < 0 for i ∈ I(x).

By pseudoconvexity of gi at x we have Dgi(x)(x
∗ − x) < 0 for i ∈ I(x), i.e.,

x∗ − x ∈ Tint(x).

By Lemma 17, cl
(

Tint(x)
)

= Tlin(x). We have also proved that

Tint(x) ⊂ T(x) ⊂ Tlin(x) and that the set T(x) is closed. Hence, T(x) = Tlin(x). ✷

Lemma 18 (P. Gordan, 1873) Let A be an m×n matrix. Then exactly one of

the following two systems,

(1)

{
Ax < 0,

x ∈ R
n,

(2)






ATy = 0,

y > 0, y 6= 0,

y ∈ R
m,

has a solution.

Proof. First we prove that the two systems cannot have solutions at the same

time. Suppose that they have; let x and y satisfy (1) and (2), respectively. As y

satisfies (2), we have yTAx = 0. On the other hand, x satisfies (1), i.e., (Ax)i < 0

for all i = 1, . . . ,m. Knowing that yi > 0 for all i and y 6= 0, we have yTAx < 0.

This inconsistency proves that at least one of the systems does not have a solution.

Now we prove that at least one of the systems has a solution, by proving that

if (1) has no solution, then (2) has at least one. We define the convex sets

U
def
= (−∞, 0)m, V

def
= { z ∈ R

m : z = Ax for some x ∈ R
n }.

The set U is the interior of a cone and V is a linear subspace. If (1) has no

solution, then the two sets are disjoint. By the weak separation theorem, there

exists a nonzero vector a ∈ R
m such that

sup
z∈U

aTz 6 inf
z∈V

aTz.
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We show that a > 0. On the contrary, suppose that one of the coordinates of a,

say, ai < 0. Consider the sequence of vectors zk = −
(

kei +
1
k

∑
j6=i ej

)

. Then,

zk ∈ U and limk→∞ aTzk = ∞, which is an inconsistency, as supz∈U aTz is finite

(we have 0 ∈ V ; hence, infz∈V a
Tz 6 0).

We proved that all coordinates of a are nonnegative. Hence, supz∈U aTz = 0. Let

z = A(−ATa). Then, z ∈ V , i.e., aTz > 0. Therefore,

0 6 aTz = −aTAATa = −‖ATa‖2,

which implies that ‖ATa‖ = 0, i.e., ATa = 0. The vector y = a is, therefore,

a solution of (2). ✷

aT
1

aT
2

aT
3

X

aT
1

aT
2

aT
3

Figure 6: Gordan’s lemma

Figure 6 illustrates the Gordan’s lemma. The matrix A is 3× 2, its transposed

rows are the vectors in R
2. Obviously, in this example they are linearly

dependent. The sets of solutions of the inequalities aix < 0 are the hatched

halfplanes (without the boundaries).

On the left side there exist vectors v ∈ R
2 (e.g., aT

3) such that for all i the number

aiv is positive; hence, the coefficients of the linear combination

aT
1y1 + aT

2y2 + aT
3y3 = 0, if not all equal to 0, must have both signs, i.e., at least

one of them is positive and at least one is negative. Thus, the system (2) has no

solution. The cone X being the intersection of all hatched halfplanes is nonempty;

the vectors x satisfying (1) are elements of this cone.

On the right side we have vectors a1,a2,a3, such that there exists a linear

combination with positive coefficients, which is the zero vector. Therefore, there



6.5

exists a vector y ∈ R
3 satisfying (2). The set X—the intersection of the

appropriate halfplanes—is empty.

Theorem 41 If the linear independence condition is satisfied at a point x ∈ W,

then T(x) = Tlin(x).

Proof. Just as in the case of the Slater condition, it suffices to prove that

Tint(x) 6= ∅. Let A be the matrix whose rows are gradients of active constraints. By

their linear independence, a nonzero vector µ ∈ R
|I(x)| such that ATµ = 0 does not

exist. In other words, System (2) of Lemma 18 has no solution. Hence, System (1)

has a solution, i.e., there exists d ∈ R
n such that Ad < 0, which means that

Dgi(x)d < 0 for all i ∈ I(x).

Hence, d ∈ Tint(x). ✷

Examples

Example. Consider an optimization problem in the set

W = { x ∈ R
2 : x21 + x22 6 1, x1 + 2x2 6 1, x1 − 3x2 6 1 }.

There is X = R
2. The constraints are described by the functions

g1(x1, x2) = x21 + x22 − 1, g2(x1, x2) = x1 + 2x2 − 1, g3(x1, x2) = x1 − 3x2 − 1.

At the point x = (1, 0) all three constraints are active and

Dg1(x) = [2, 0], Dg2(x) = [1, 2], Dg3(x) = [1,−3].

The linear independence condition is not satisfied at x. Also, not all active

constraints are described by affine functions. But all these functions are convex

and differentiable, i.e., they are pseudoconvex. At x = (0, 0) we have

gi(x) = −1 < 0 for i = 1, 2, 3. Thus, the Slater condition is satisfied.

Example (Kuhn, Tucker, 1951). Consider the optimization problem






x1 → min,

x2 6 x31,

x2 > 0.
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The constraints are described by the functions

g1(x1, x2) = −x31 + x2, g2(x1, x2) = −x2.

At each feasible point except (0, 0) the linear independence condition is satisfied.

However, the solution of this problem is x = (0, 0), but

T(x) = { (d1, d2) ∈ R
2 : d1 > 0, d2 = 0 } 6= Tlin(x) = { (d1, d2) ∈ R

2 : d2 = 0 },

as Dg1(x) = [0, 1], Dg2(x) = [0,−1], which implies Dg1(x)d 6 0 ⇒ d2 6 0 and

Dg2(x)d 6 0 ⇒ d2 > 0. On the other hand,

D(x) = { (d1, d2) ∈ R
2 : d1 < 0 },

because Df(x) = [1, 0]; hence, Df(x)d < 0 ⇒ d1 < 0.

For the optimization problem





x2 → min,

x2 6 x31,

x2 > 0,

we still have T(x) 6= Tlin(x). But for this new problem

D(x) = { (d1, d2) ∈ R
2 : d2 < 0 }. It follows that at x = (0, 0)

T(x) ∩D(x) = Tlin(x) ∩D(x) = ∅.

The above condition is sufficient for the claim of the Kuhn–Tucker theorem to

hold.

Example. Let A be a symmetric n× n matrix. Consider the optimization problem





xTAx → max,

‖x‖ 6 1,

x ∈ R
n.

First, we rewrite the problem in the canonical form; note that the constraint is

equivalent to ‖x‖2 = xTx 6 1:






−xTAx → max,

xTx− 1 6 0,

x ∈ R
n.

By W we denote the feasible set. At each point the linear independence condition

and the Slater condition are satisfied. Therefore, the solution of the problem
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satisfies the necessary first order conditions (i.e., the Kuhn–Tucker conditions).

We are looking for all points “under suspicion”.

The Kuhn–Tucker conditions have the form





−2xTA+ 2µxT = 0T ,

µ(xTx− 1) = 0,

µ > 0, x ∈ R
n.

First we check the case xTx− 1 < 0. Then (due to the second equation), µ = 0

and the first equation is equivalent to xTA = 0T or Ax = 0. This equation is

satisfied by all vectors x ∈ kerA such that ‖x‖ < 1. In particular, it has at least

one solution, x = 0.

Then we check xTx− 1 = 0; from the second equation nothing may be said

about µ. However, the first equation takes the form µxT = xTA, or Ax = µx. The

solutions are the unit eigenvectors corresponding to nonnegative eigenvalues µ of

the matrix A. The set of solutions may be empty if all the eigenvalues are

negative. To conclude, the set of points “under suspicion”, i.e., satisfying the

necessary first order condition, is

{ x ∈ R
n : (x ∈ kerA and ‖x‖ < 1) or

(‖x‖ = 1 and x is an eigenvector of A

associated with a nonnegative eigenvalue) }.

At this point we do not have any technique of finding solutions, except for using

the common sense. If x ∈ kerA, then the target function xTAx is equal to 0. For

any eigenvector x the value of the target function is the associated eigenvalue. If

the greatest eigenvalue is positive, then each of its unit eigenvectors is a global

solution. If the matrix A has no positive eigenvalue, then any vector from kerA

whose norm is not greater than 1 is a solution.

Example. Consider the problem





x1 + x2 → min,

x2 > x21,

x2 6 0.

It is easy to notice that the solution is x = (0, 0), which is the only feasible point.

On the other hand, Df = [1, 1], Dg1 = [2x1,−1] and Dg2 = [0, 1]. Therefore, for

any numbers µ1 and µ2, there is

Df(x) + µ1Dg1(x) + µ2Dg2(x) 6= 0,

6.8

i.e., the Kuhn–Tucker conditions are not satisfied. But

T(x) = {0} 6= Tlin(x) = { (d1, d2) ∈ R
2 : d2 = 0 }. Also,

∅ = T(x) ∩D(x) 6= Tlin(x) ∩D(x), as D(x) = { (d1, d2) ∈ R
2 : d1 + d2 < 0 }. As we

can see, the assumptions of the Kuhn–Tucker theorem are not satisfied at x.
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7. Quasi-convex functions and sufficient conditions

Quasi-convexity

Below we extend the class of functions whose maxima are located at the extremal

points of their domains.

Definition 25 Let W ⊂ R
n be a convex set and let f : W → R. The function f is

quasi-convex if for all x,y ∈ W and λ ∈ [0, 1] there is

f
(

λx+ (1− λ)y
)

6 max{f(x), f(y)}.

The function f is quasi-concave if −f is quasi-convex, i.e., if

f
(

λx+ (1− λ)y
)

> min{f(x), f(y)} for all x,y ∈ W, λ ∈ [0, 1].

The function f is quasi-linear if it is both quasi-convex and quasi-concave.

Theorem 42 Let W ⊂ R
n be a convex set and let f : W → R. The function f is

quasi-linear if and only if each sublevel set of this function is convex.

Proof. Suppose that the function f is quasi-convex and let α ∈ R be fixed. Let

x,y ∈ Wα(f). Then, f(x) 6 α and f(y) 6 α. For any λ ∈ (0, 1) we obtain

f
(

λx+ (1− λ)y
)

6 max{f(x), f(y)} 6 α.

Hence, λx+ (1 − λ)y ∈ Wα(f), i.e., Wα(f) is a convex set.

Now suppose that Wα(f) is convex for all α ∈ R. We fix x,y ∈ W and λ ∈ (0, 1).

By assumption, the set Wα(f), where α = max{f(x), f(y)}, is convex. It follows

that λx+ (1 − λ)y ∈ Wα(f); hence,

f
(

λx+ (1− λ)y
)

6 α = max{f(x), f(y)}

and the proof is complete. ✷

Corollary 7 Any convex function is a quasi-convex function.

7.2

Example. The function f(x) = −ex is quasi-convex even if it is strictly concave.

For α > 0 the set Wα(f) = R and if α < 0, then Wα(f) = [ln(−α),∞). All these

sets are convex; hence, by Theorem 42, the function f is quasi-convex. It is also

quasi-concave, i.e., it is quasi-linear.

Example. The function f(x) = x2 is quasi-convex (as it is convex), but it is not

quasi-concave. This may be checked by looking at the sublevel sets of −f: for

α < 0 we have Wα(f) = (−∞,−
√
−α] ∪ [

√
−α,∞), which is not a convex set.

Lemma 19 If a set W ⊂ R
n is convex, then a function f : W → R is

quasi-linear if and only if its restriction to any interval is a monotone

function.

Proof is left as an exercise.

Example. The function f(x) = −e−x2 has the following sublevel sets:

Wα(f) =






∅ if α 6 −1,
[

−
√

− ln(−α),
√

− ln(−α)
]

if α ∈ (−1, 0],

R if α > 0.

All these sets are convex; hence, the function f is quasi-convex.

Example. The function f : [0,∞)2 → R given by the formula f(x1, x2) = −x1x2 is

quasi-convex. Its sublevel sets for α > 0 are trivial, Wα(f) = [0,∞)2, and if α < 0,

then the sublevel sets have a boundary being one branch of a hyperbola. This

function is neither convex nor concave, as its Hessian has the eigenvalues −1 and 1.

Example. Let a,c ∈ R
n and b, d ∈ R. Let D = { x ∈ R

n : cTx+ d > 0 }. Then, the

rational function f : D → R given by

f(x) =
aTx+ b

cTx+ d

is quasi-linear. The proof is left as an exercise.

Theorem 43 Let W ⊂ R
n be a convex set and let f : W → R.

I) If the function f is quasi-convex and differentiable at a point y ∈ W, then

f(x) 6 f(y) ⇒ Df(y)(x− y) 6 0 for all x ∈ W.
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II) Suppose that the function f is differentiable in the entire set W. Then f is

quasi-convex if and only if

f(x) 6 f(y) ⇒ Df(y)(x− y) 6 0 for all x,y ∈ W.

Remark. The implication f(x) 6 f(y) ⇒ Df(y)(x − y) 6 0 is equivalent to

Df(y)(x− y) > 0 ⇒ f(x) > f(y).

If the function f is quasi-linear and f(x) = f(y), then Df(y)(x− y) = 0.

Proof. (I) We fix x,y ∈ W such that f(x) 6 f(y). For any λ ∈ (0, 1) we have

f
(

y+ λ(x− y)
)

= f
(

λx+ (1 − λ)y
)

6 max{f(x), f(y)} = f(y).

Therefore,

f
(

y+ λ(x − y)
)

− f(y)

λ
6 0.

By definition of the directional derivative, we obtain

Df(y)(x− y) = lim
λց0

f
(

y+ λ(x− y)
)

− f(y)

λ
6 0

The proof of (II) is left as a (not very easy) exercise. ✷

Theorem 44 If a function f : W → R defined in a convex set W ⊂ R
n is

pseudoconvex, then it is quasi-convex.

Proof. By assuming that the function f is not quasi-convex we shall get an

inconsistency with its pseudoconvexity. Let x,y ∈ W and λ ∈ (0, 1) such that

f
(

λx+ (1− λ)y
)

> max{f(x), f(y)}.

Let z = λx+ (1− λ)y. By pseudoconvexity, we have

f(x) < f(z) ⇒ Df(z)(x − z) < 0,

f(y) < f(z) ⇒ Df(z)(y − z) < 0.

The vectors x− z and y− z have the same direction, but opposite orientations.

The directional derivatives of f at z cannot be negative in both directions. ✷

7.4

Theorem 45 Let a function f : W → R defined in a convex open set W ⊂ R
n be

quasi-convex and continuous. If the function f is differentiable at

a point x ∈ W and Df(x) 6= 0T , then f is pseudoconvex at x.

Proof. We need to prove that for all y ∈ W the condition Df(x)(y− x) > 0

implies that f(y) > f(x). Let A denote the affine space perpendicular to Df(x)

passing through x. As Df(x) 6= 0T , the dimension of A is n− 1, i.e., A is

a hyperplane in R
n.

We notice that if y ∈ W \A and Df(x)(y− x) > 0, then the directional derivative

is (strictly) positive: Df(x)(y − x) > 0. It follows (see the remark above) that

f(y) > f(x), which is what was to be proved. Now we fix y ∈ W ∩A. As W is

open and A is a hyperplane, there exists a sequence of points (yk)k ⊂ W \A

converging to y and such that Df(x)(yk − x) > 0, i.e., f(yk) > f(x). By continuity

of f we obtain f(y) > f(x). ✷

Finding maxima of quasi-convex functions

Theorem 46 Let f : W → R be a quasi-convex and continuous function defined

in a convex and compact set W ⊂ R
n. Then at least one of the global

solutions of the problem

{
f(x) → max,

x ∈ W

is an extremal point of the set W.

Proof. A convex function reaches its extremal values in a compact set. Therefore,

a solution x exists. By Theorem 35, the point x is either an extremal point or

a convex combination of a finite set of extremal points of W, i.e.,

x = a1x1 + · · · + amxm,

where a1, . . . , am > 0, a1 + · · · + am = 1. By quasi-convexity of f,

f(x) 6 max{f(x1), . . . , f(xm)}.

As the function f at x takes its maximal value in W, the equality f(x) = f(xi) has

to hold for some i ∈ {1, . . . ,m}. ✷
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Sufficient conditions

Below we consider the optimization problem with both non-equality and equality

constraints:





f(x) → min,

gi(x) 6 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l,

x ∈ X,

(*)

where X ⊂ R
n is an open set and f, g1, . . . , gm, h1, . . . , hl : X → R. Thus, the

feasible set is

W = { x ∈ X : g1(x) 6 0, . . . , gm(x) 6 0, h1(x) = · · · = hl(x) = 0 }.

The functions gi are called non-equality constraints, the functions hj are called

equality constraints and the problem above is called an optimization problem

with mixed constraints.

The theorem below describes sufficient conditions for a point satisfying the first

order necessary conditions to be a global solution of (*).

Theorem 47 Let x ∈ W. Assume that

� the functions gi, where i /∈ I(x), are continuous at x, the functions gi,

where i ∈ I(x), are differentiable at x and quasi-convex,

� the functions hj, where j ∈ {1, . . . , l}, are quasi-linear and differentiable

at x,

� the function f is pseudoconvex at x.

If there exists µ ∈ [0,∞)m and λ ∈ R
l which satisfy the following first order

condition:





Df(x) +
∑

i∈I(x)

µiDgi(x) +

l∑

j=1

λjDhj(x) = 0T ,

µigi(x) = 0, i = 1, . . . ,m,

then the point x is a global solution.

7.6

Proof. Let x ∈ W. We multiply the sides of the first equation by x− x:

Df(x)(x− x) +
∑

i∈I(x)

µiDgi(x)(x− x) +

l∑

j=1

λjDhj(x)(x− x) = 0

By Theorem 43, Dhj(x)(x − x) = 0 for all j, as hj(x) = hj(x) = 0. By the same

theorem, also Dgi(x)(x − x) 6 0 for i ∈ I(x), as 0 = gi(x) > gi(x). From the above

we conclude that

Df(x)(x− x) > 0.

By the definition of a pseudoconvex function, f(x) > f(x). As the choice of x ∈ W

was arbitrary, x is a global solution. ✷

Remark. If the assumptions of Theorem 47 are satisfied locally, in

a neighbourhood of x, then x is a local solution.

Remark. By Theorem 45, instead of the pseudoconvexity of f at x, we can assume

its continuity in X, quasi-convexity and the condition Df(x) 6= 0T . It is one of

necessary conditions, given by Arrow and Enthoven in 1961.
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8. A necessary condition for mixed constraints

Below we are going to derive a necessary first-order condition for the optimization

problem given as follows:





f(x) → min,

gi(x) 6 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , l,

x ∈ X,

(*)

where X ⊂ R
n is an open set and f, g1, . . . , gm, h1, . . . , hl : X → R. The set of

feasible points is thus

W = { x ∈ X : g1(x) 6 0, . . . , gm(x) 6 0, h1(x) = · · · = hl(x) = 0 }.

Example. Consider the following problem:





f(x) → min

aTx+ b = 0,

x ∈ R
n,

for some a ∈ R
n and b ∈ R. The equality constraint may be replaced by two

inequality constraints:





f(x) → min

aTx+ b 6 0,

−aTx− b 6 0,

x ∈ R
n,

The constraints are affine functions; hence, the affine function condition is satisfied

at each point. If x is a local solution, then there exists a vector of Lagrange

multipliers µ = [µ1, µ2]
T such that the Kuhn–Tucker conditions are satisfied:






Df(x) + µ1a
T + µ2(−aT) = 0T ,

µ1(a
Tx+ b) = 0,

µ2(−aTx− b) = 0,

µ1, µ2 > 0.

The point x, being a solution, is feasible, i.e., it satisfies the constraints:

aTx+ b = 0. Therefore, the second and third equalities are trivially satisfied. The

conditions above are thus equivalent to
{

Df(x) + (µ1 − µ2)a
T = 0T ,

µ1, µ2 > 0.

8.2

Denote λ = µ1 − µ2. As these two numbers must only be nonnegative, λ ∈ R. As

a result we obtain

Df(x) + λaT = 0T , λ ∈ R,

which is the Kuhn–Tucker condition for equality constraints.

The example above suggests that the theory for inequality constraints, developed

earlier, is also suitable for dealing with equality constraints. Unfortunately, it is

not the case. Affine constraints are very special. If any constraint is not affine and

we split it to a pair of inequality constraints, as above, then neither the linear

independence condition nor the Slater condition is satisfied at any point of the

set W.

Necessary first-order condition

The theory described below is a direct extension of what we have done for the

optimization problems with inequality contraints. We begin with extending the

definition of the set Tlin(x):

Definition 26 Let x ∈ W, let gi, where i ∈ I(x) be functions differentiable at x

and let the functions h1, . . . , hl be differentiable at x. The set

Tlin(x) = {d ∈ R
n : Dgi(x)d 6 0 for i ∈ I(x),Dhj(x)d = 0 for i = 1, . . . , l }

is called the cone of tangents for active (binding) constraints.

Just as in the case of inequality constraints, the cone of tangents for binding

constraints is a polyhedral set, i.e., it is a convex and closed set. However, with at

least one equality constraint the interior of this set is empty.

The necessary condition for the existence of a local solution of the optimization

problem with mixed constraints given below assumes the equality of the cone of

tangents to the set W and the cone of tangents for binding constraints. Later we

show generalised regularity conditions which imply this equality.
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Theorem 48 (Kuhn–Tucker theorem) Let x be a local solution of the

problem (*). If the functions f, gi, i ∈ I(x), hj, j = 1, . . . , l are differentiable at x

and T(x) = Tlin(x), then there exist vectors µ ∈ [0,∞)m and λ ∈ R
l such that






Df(x) +
∑

i∈I(x)

µiDgi(x) +

l∑

j=1

λjhj(x) = 0T ,

µigi(x) = 0, i = 1, . . . ,m.

Proof. By Theorem 37, D(x) ∩ T(x) = ∅. Then, by assumption, D(x) ∩ Tlin(x) = ∅,
which means that there is no solution z of the system






Df(x)z < 0,

Dgi(x)z6 0, i ∈ I(x),

Dhj(x)z6 0, j = 1, . . . , l,

−Dhj(x)z6 0, j = 1, . . . , l.

We use the Farkas’ lemma with d = −Df(x) and with the following matrix A:

A =







Dhj(x), j = 1, . . . , l

−Dhj(x), j = 1, . . . , l

Dgi(x), i ∈ I(x)






.

Hence, there exists y ∈ [0,∞)|I(x)|+2l such that yTA = −Df(x), or

Df(x) + yTA = 0T . (✸)

Let λj = yj − yl+j for j = 1, . . . , l. Let the coordinates of the vector µ ∈ R
m

corresponding to the active constraints be equal to the last |I(x)| coordinates of y

and let the other coordinates of µ be equal to 0. Then, (✸) is equivalent to

Df(x) +
∑

i∈I(x)

µiDgi(x) +

l∑

j=1

λjhj(x) = 0T .

By definition of µ it is obvious that µigi(x) = 0 for all i. ✷

8.4

Regularity constraints

Below three sufficient conditions for the equality T(x) = Tlin(x), called the

regularity conditions, are defined.

Definition 27 At a point x ∈ W

� the linear independence condition is satisfied if the functions gi, where

i /∈ I(x), are continuous at x and all the other inequality and equality

constraints are continuously differentiable in a neighbourhood of x and

the vectors Dgi(x) for i ∈ I(x) and Dhj for j = 1, . . . , l are linearly

independent,

� the affine function condition is satisfied if the functions gi(x) for

i ∈ I(x) and hj for j = 1, . . . , l are affine, while gi, for i /∈ I(x), are

continuous at x,

� the Slater condition is satisfied if

—the functions gi, i ∈ I(x) are pseudoconvex at x,

—the functions gi, i /∈ I(x) are continuous at x,

—the functions hj, j = 1, . . . , l, are affine,

—there exists x∗ ∈ X such that gi(x
∗) < 0 for i ∈ I(x) and hj(x

∗) = 0

for l = 1, . . . , l.

Theorem 49 If the affine function condition is satisfied at a point x ∈ W, then

T(x) = Tlin(x).

Proof. Just as in the last example, we change the affine equality constraints into

pairs of affine inequality constraints. The claim follows from Theorem 39. ✷

Theorem 50 If the Slater condition is satisfied at a point x ∈ W, then

T(x) = Tlin(x).

Proof. The functions hj, for j = 1, . . . , l, have the form

hj(y) = aT
j y+ bj, aj ∈ R

n, bj ∈ R.
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We introduce the generalisation of set Tint(x) for mixed constraints:

Tint(x) = {d ∈ R
n : Dgi(x)d < 0 for i ∈ I(x), Dhj(x)d = 0 for j = 1, . . . , l }.

(1) We prove that Tint(x) 6= ∅. We take x from the Slater condition. By

pseudoconvexity of gi, we have

Dgi(x)(x − x) < 0, i ∈ I(x).

For all j we also have

aT
j (x− x) = aT

j x+ bj − aT
j x− bj = hj(x) − hj(x) = 0.

Hence, (x − x) ∈ Tint(x).

(2) We prove that Tint(x) ⊂ T(x). We choose any d ∈ Tint(x). It suffices to show

that there exists a line segment contained in W whose one end is x and whose

direction is d. Let y(λ) = x+ λd. As the inactive constraints are continuous

functions, there exists ε > 0 such that gi

(

y(λ)
)

6 0 for λ ∈ [0, ε] and i /∈ I(x).

From d ∈ Tint(x) it follows also that hj

(

y(λ)
)

= 0 for j = 1, . . . , l (because hj are

affine functions). And as the functions gi, where i ∈ I(x), are differentiable at x

and d ∈ Tint(x), it follows that

lim
λց0

gi

(

y(λ)
)

− gi(x)

λ
= Dgi(x)d < 0.

Hence, gi

(

y(λ)
)

− gi(x) < 0 for λ small enough.

(3) We prove that cl Tint(x) = Tlin(x). The sets Tint(x) and Tlin(x) are contained in

the affine subspace H determined by the affine equality constraints. Therefore,

there exists an affine mapping P, such that the image of the subspace H is R
n ′

,

where n ′ = dimH (if the vectors aj are linearly independent, then n ′ = n− l).

The mapping P restricted to H is a one-to-one function. The topologies of H

and R
n ′

are, therefore, identical, which means that it suffices to prove this claim

for the images T ′
int(x) and T ′

lin(x) of the sets Tint(x) and Tlin(x) under the

mapping P. We notice that T ′
int(x) is open in R

n ′

and nonempty. It is also the

interior of T ′
lin(x). By Lemma 17 we have T ′

int(x) = T ′
lin(x).

(4) The proof that T(x) ⊂ Tlin(x) is identical to the proof of Lemma 14.

(5) It suffices to recall that T(x) is a closed set. Therefore,

cl Tint(x) ⊂ T(x) ⊂ Tlin(x) = cl Tint(x). ✷

8.6

Before tackling the third regularity condition, we recall the implicit function

theorem, which we need to describe the cone of tangents to a surface determined

by equality constraints.

Theorem 51 (implicit function theorem) Let f : X → R
n, where X ⊂ R

n+m is an

open set, be a function of class Ck. Assume that f(x,y) = 0, where x ∈ R
n,

y ∈ R
m, (x,y) ∈ X. By Ax we denote the matrix of partial derivatives of f

with respect to the first n variables at (x,y): Ax ∈ R
n×n, (Ax)ij =

∂fi
∂uj

(x,y).

If the matrix Ax is nonsingular, then there exists an open set W ⊂ R
m, whose

element is y, and a function g : W → R
n of class Ck, such that g(y) = x and

(

g(y),y
)

∈ X and f
(

g(y),y
)

= 0 for all y ∈ W. Moreover,

Dg(y) = −(Ax)
−1Ay, where the matrix Ay ∈ R

n×m consists of the derivatives

of f at (x,y) with respect to the last m variables: (Ay)ij =
∂fi

∂un+j
(x,y).

We consider the surface S described by a system of m∗ equations:

S = { x ∈ X : ci(x) = 0, i = 1, . . . ,m∗ },

where X is an open set. By TS(x) we denote the cone of tangents to S at a point

x ∈ S.

Theorem 52 Let k > 1. Assume that the functions c1, . . . , cm∗, are of class Ck

in a neighbourhood of x and assume that their gradients Dci(x) for

i = 1, . . . ,m∗ are linearly independent. Then,

TS(x) = TS
lin(x)

def
= {d ∈ R

n : Dci(x)d = 0, i = 1, . . . ,m∗ }.

Moreover, for any d ∈ TS(x) there exists an ε > 0 and a parametric

curve y : (−ε, ε) → S of class Ck such that y(0) = x and y ′(0) = d.

Proof. First we show that TS(x) ⊂ TS
lin(x). Let d ∈ TS(x). Then,

d = limk→∞ λk(xk − x) for some sequences (xk)k ⊂ S, xk 6= x, and (λk)k ⊂ (0,∞).

By definition of the directional derivative, for each i = 1, . . . ,m∗ we obtain

ci(xk)︸ ︷︷ ︸
=0

= ci(x)︸ ︷︷ ︸
=0

+Dci(x) λk(xk − x)
︸ ︷︷ ︸

→d

+ λk‖xk − x‖
︸ ︷︷ ︸

→‖d‖

o(‖xk − x‖)
‖xk − x‖

︸ ︷︷ ︸
→0

,

i.e., Dci(x)d = 0. Hence, d ∈ TS
lin(x).
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It remains to be proved that TS
lin(x) ⊂ TS(x), which is more difficult. We fix

d ∈ TS
lin(x). We are going to construct a curve located on S and passing through x,

whose derivative at x is d. We denote c(x) =
(

c1(x), . . . , cm∗(x)
)

and we define

the function Φ : Rm∗ × R → R
m∗

by the formula

Φ(u, t) = c
(

x+ td+ (Dc(x))Tu
)

.

We can see that Φ(0, 0) = 0. By DuΦ we denote the matrix of partial derivatives

with respect to the coordinates of the vector u: DuΦ =
(

∂Φi

∂uj

)

i,j=1,...,m∗
. At the

point (0, 0) we have DuΦ(0, 0) = Dc(x)
(

Dc(x)
)T

. Recall that due to the

assumption, the matrix Dc(x) is of full rank (equal to m∗), i.e., DuΦ(0, 0) is

nonsingular. By the implicit function theorem, there exists ε > 0 and a function

u : (−ε, ε) → R
m∗

of class Ck such that Φ
(

u(t), t
)

= 0 and u(0) = 0. Let

y(t) = x+ td+
(

Dc(x)
)T
u(t).

This curve, according to the construction, is located on the surface S, as

c
(

y(t)
)

= Φ
(

u(t), t
)

= 0 for t ∈ (−ε, ε) and y(0) = x. The derivative of the

composition of functions c ◦ y is

d

dt
c
(

y(t)
)

= Dc
(

y(t)
)(

d+ (Dc(x))Tu ′(t)
)

,

and at t = 0 we have

d

dt
c
(

y(t)
)

∣

∣

∣

t=0
= Dc

(

y(0)
)(

d+ (Dc(x))Tu ′(0)
)

.

On the other hand, we know that c
(

y(t)
)

= 0, i.e., the derivative above is equal

to 0: Dc
(

y(0)
)(

d+ (Dc(x))Tu ′(0)
)

= 0. But we have chosen d ∈ TS
lin(x), which in

our notation means that Dc(x)d = 0. Hence, Dc(x)
(

Dc(x)
)T
u ′(0) = 0. As the

rank of the matrix Dc(x) is equal to m∗, we obtain u ′(0) = 0. To complete the

proof we compute the derivative of y:

y ′(t) = d+
(

Dx(x)
)T
u ′(t),

and the above, for t = 0, gives us y ′(0) = d. This equality allows us to conclude

that d ∈ TS(x). ✷

Remark. The theorem above establishes a well known fact about spaces tangent to

manifolds. From its assumptions it follows that S locally (in a neighbourhood

of x) is a differential manifold of class Ck. The tangent space at x is defined as the

set of vectors being derivatives (at x) of curves contained in this manifold and

passing through x (which is equivalent to the definition of T(x)). The equality
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Tlin(x) = T(x) means that the tangent space is the kernel of the linear mapping

Dc(x).

Theorem 52 will often be used in what follows; it is the main tool used in the

proof of the sufficient second-order condition. Using this theorem, we can easily

prove the equality T(x) = Tlin(x) assuming that the linear independence condition

is satisfied:

Theorem 53 If the linear independence condition is satisfied at a point x ∈ W,

then T(x) = Tlin(x).

Proof. Let d ∈ Tlin(x). Let Î(x) = { i ∈ I(x) : Dgi(x)d = 0 }. We define the surface

S = { x ∈ X : ck(x) = 0, where ck = gi if i ∈ I(x) or ck = hj, j = 1, . . . , l }.

Then,

TS(x) = {d ∈ R
n : Dgi(x)d = 0, i ∈ Î(x), Dhj(x)d = 0, j = 1, . . . , l }.

By Theorem 52, there exists a curve y : (−ε, ε) → R
n such that y(0) = x,

y ′(0) = d and gi

(

y(t)
)

= 0, i ∈ Î(x), hj

(

y(t)
)

= 0, j = 1, . . . , l. For i ∈ I(x) \ Î(x)

let ĝi(t) = gi

(

y(t)
)

, t ∈ (−ε, ε). Then, ĝ ′
i(0) = Dgi(x)d < 0, i.e., there exists

εi > 0 such that ĝi(t) < 0 for t ∈ [0, εi). For i /∈ I(x), by continuity of gi, there is

gi

(

y(t)
)

< 0 in a neighbourhood of 0. Therefore, there exists ε > 0 such that

y(t) ∈ W for t ∈ [0, ε). Hence, trivially, d ∈ T(x).

The proof of the set inclusion T(x) ⊂ Tlin(x) is identical to the proof of Lemma 14.

✷
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9. Second-order conditions

We consider the optimization problem with mixed constraints. We assume that at

a point x ∈ W there is T(x) = Tlin(x) and the first-order necessary condition is

satisfied, i.e., there exist vectors µ ∈ [0,∞)m and λ ∈ R
l such that






Df(x) +
∑

i∈I(x)

µiDgi(x) +

l∑

j=1

λjDhj(x) = 0T ,

µigi(x) = 0, i = 1, . . . ,m.

Definition 28 The Lagrange function is the function given by the formula

L(x,µ,λ) = f(x) +
∑

i∈I(x)

µigi(x) +

l∑

j=1

λjhj(x)

The first-order condition may be written in a shorter form
{

DxL(x,µ,λ) = 0T ,

µigi(x) = 0, i = 1, . . . ,m,

where Dx denotes the derivative with respect to x.

Definition 29 The set

I∗(x) = { i ∈ I(x) : µi > 0 }

is called the set of strongly binding inequality constraints. The set

I0(x) = I(x) \ I∗(x)

is called the set of weakly binding inequality constraints.

Theorem 54 (necessary second-order condition) Suppose that x is a local

solution of the problem with mixed constraints and the linear independence

condition is satisfied at x. Let µ and λ be vectors of Lagrange multipliers of

the first-order condition. If the functions f, gi for i ∈ I(x) and h1, . . . , hl are

twice differentiable in a neighbourhood of x, then

dTD2
xL(x,µ,λ)d > 0

for all d ∈ R
n such that

Dgi(x)d = 0, i ∈ I(x),

Dhj(x)d = 0, j = 1, . . . , l.

9.2

Proof. Let d ∈ R
n be a vector satisfying the conditions given above. By

Theorem 52 there exists ε > 0 and a parametric curve y : (−ε, ε) → R
n of class C2

having the following properties: y(0) = x, y ′(0) = d and for t ∈ (−ε, ε) there is

hj

(

y(t)
)

= 0, j = 1, . . . , l and gi

(

y(t)
)

= 0, i ∈ I(x). Hence, the function

F(t)
def
= L

(

y(t),µ,λ
)

is equal to f
(

y(t)
)

for t ∈ (−ε, ε). The continuity of the

inactive constraints allows us to conclude that y(t) ∈ W for t in a neighbourhood

of 0. Hence, F has a local minimum at 0, as y(0) is a local minimum of f in W.

From the assumptions it follows that F is of class C2. The existence of its

minimum at 0 implies that F ′′(0) > 0, i.e.,

0 6 dTD2
xL(x,µ,λ)d+ DxL(x,µ,λ)y

′′(0).

The above completes the proof, as at the point x the necessary conditions are

satisfied, in particular

DxL(x,µ,λ) = 0T . ✷

Theorem 54 may be generalised as follows:

Theorem 55 If the assumptions of Theorem 54 are satisfied, then the

inequality

dTD2
xL(x,µ,λ)d > 0

is satisfied for all d ∈ R
n such that

Dgi(x)d = 0, i ∈ I∗(x),

Dgi(x)d 6 0, i ∈ I0(x),

Dhj(x)d = 0, j = 1, . . . , l.

The next theorem describes a sufficient condition for a local solution. Note that if

this condition is satisfied then the solution is strict. This leaves us a “grey zone”,

where the necessary condition is satisfied, but the sufficient condition is not, just

like in the case of unconstrained optimization.

Theorem 56 (sufficient second-order condition) Suppose that the first-order

necessary condition is satisfied at a point x ∈ W and the functions gi for

i ∈ I∗(x) and h1 . . . , hl are twice differentiable at x. If

dTD2
xL(x,µ,λ)d > 0
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for all d ∈ R
n \ {0} such that

Dgi(x)d = 0, i ∈ I∗(x),

Dgi(x)d 6 0, i ∈ I0(x), (⊗)

Dhj(x)d = 0, j = 1, . . . , l,

then the point x is a strict local solution.

Note that no regularity condition is assumed in this theorem.

Proof. The proof is done by contradiction. Suppose that x is not a strict local

minimum. Then, there exists a sequence of feasible points, (xk)k ∈ W, convergent

to x and such that xk 6= x and f(xk) 6 f(x) for all k. Let

dk =
xk − x

‖xk − x‖ and sk = ‖xk − x‖.

Then, xk = x+ skdk. As ‖dk‖ = 1 for all k, there exists a subsequence (dkp)p

convergent to a unit vector d. To simplify the notation, assume that the original

sequence (dk)k converges to d. It is obvious that limk→∞ sk = 0.

In what follows we are going to prove two properties of the vector d:

(a) dTD2
xL(x,µ,λ)d 6 0 and (b), the vector d satisfies the conditions (⊗). Which

contradicts the assumptions.

(a) By definition of the second order derivative,

L(x,µ,λ) = L(x,µ,λ) + DxL(x,µ,λ)(x − x) +

1

2
(x − x)TD2

xL(x,µ,λ)(x − x) + o(‖x− x‖)

From f(xk) 6 f(x), gi(xk) 6 gi(x) for i ∈ I(x) and h(xk) = h(x) = 0 it follows that

L(xk,µ,λ) 6 L(x,µ,λ). From the first-order condition it follows that

DxL(x,µ,λ) = 0T . Hence,

(x− x)TD2
xL(x,µ,λ)(x − x) + o(‖x− x‖) 6 0.

To the above we substitute xk = x+ skdk and we obtain

s2kd
T
kD

2
xL(x,µ,λ)dk + o(s2k‖dk‖2) 6 0.

After dividing both sides of the above by s2k and recalling that ‖dk‖ = 1 we obtain

dT
kD

2
xL(x,µ,λ)dk +

o(s2k)

s2k
6 0.

9.4

With k tending to ∞ the second term above tends to 0 and dk tends to d; hence,

dTD2
xL(x,µ,λ)d 6 0.

(b) is proved in a similar way. For a function f differentiable at x we have

f(xk) = f(x) + Df(x)(xk − x) + o(‖xk − x‖).

With f(xk) 6 f(x) it follows that

Df(x)(xk − x) + o(‖xk − x‖) 6 0.

Using again xk = x+ skdk we obtain

Df(x)dk +
o(sk)

sk
6 0.

At the limit for k → ∞ we obtain Df(x)d 6 0. Taking into account that

gi(xk) 6 gi(x) = 0 for i ∈ I(x) and proceeding as previously, we obtain

Dgi(x)d 6 0, i ∈ I(x). Similarly we prove that Dhj(x)d = 0 for j = 1, . . . , l.

We multiply the first equation of the necessary condition by d:

Df(x)d+
∑

i∈I(x)

µiDgi(x)d+

l∑

j=1

λjDhj(x)d = 0.

All terms of the sum above are less than or equal to 0. As their sun is 0, all of

them must be zero. In particular,

Df(x)d = 0, and Dgi(x)d = 0, i ∈ I∗(x).

Thus we proved that the vector d satisfies the conditions (⊗). ✷

A general procedure for optimization problems with mixed constraints is the

following:

Step 1. We are looking for candidates for solutions, which form two sets:

A1 = { x ∈ X : no regularity condition is satisfied at x },

A2 = { x ∈ X : a regularity condition

and the necessary first-order condition are satisfied at x }.

Step 2. We check, whether the assumptions of Theorem 47, i.e., sufficient

first-order conditions, are satisfied at each point of the sets A1 and A2. If they are,

then we obtain global solutions.
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The steps that follow should be done if we have not found any global solution or

we need to find all global solutions or we need to find all local solutions. We

remove all global solutions from the sets A1 and A2; the sets of remaining points

we denote by A ′
1 and A ′

2.

Step 3. From A ′
2 we exclude all points not satisfying the necessary condition of the

second order, thus obtaining the set A ′′
2 .

Step 4. At each point of A ′
1 ∪A ′′

2 we check the sufficient condition of the second

order. The points satisfying it are local solutions.

Step 5. The analysis of the other points of A ′
1 ∪A ′′

2 must be done using other

methods.

Example. Below is a detailed description of the analysis, step by step, of the

following problem:






(x1 − 1)2 + x22 → min,

2kx1 − x22 6 0,

x = (x1, x2) ∈ R
2,

where k > 0 is a parameter.

We notice that at each point, where the constraint is active, the linear

independence condition is satisfied: the gradient of the constraint function

is [2k, 2x2] 6= 0T . Hence, A1 = ∅.

The Lagrange function for this problem is

L(x1, x2;µ) = (x1 − 1)2 + x22 + µ(2kx1 − x22).

The first-order necessary condition is thus






[2(x1 − 1), 2x2] + µ[2k,−2x2] = [0, 0],

µ(2kx1 − x22) = 0,

µ > 0.

Is it possible that µ = 0? By the first equation we obtain 2(x1 − 1) = 0, 2x2 = 0,

i.e., x1 = 1, x2 = 0. This is not a feasible point for any parameter k > 0. Therefore

µ must be positive and the necessary first-order condition may be satisfied only at

the boundary of the feasible set, where 2kx1 − x22 = 0.

9.6

Again, by the first equation,

{
x1 − 1+ µk = 0,

x2 − µx2 = 0.

There is either µ2 = 1 or x2 = 0. If x2 = 0, then due to the constraint we have

x1 = 0. The point (0, 0) together with the Lagrange multiplier µ = 1/k satisfies

the first-order necessary constraint.

Now we consider µ = 1. Then, from x1 − 1− µk = 0 we obtain x1 = 1− k. If

k > 1, then x1 < 0 and no point with such a first coordinate is feasible. If k = 1,

then we get the point (0, 0) and for k ∈ (0, 1) we have two points:

x1 = 1− k, x2 = ±
√

2k(1− k).

We conclude that A1 = ∅ and

A2 = {(0, 0)} if k > 1,

A2 =
{
(0, 0),

(

1− k,
√

2k(1− k)
)

,
(

1− k,−
√

2k(k− 1)
)}

if 0 < k < 1.

The function g1(x1, x2) = 2kx1 − x22 is not quasi-convex, so we cannot use

Theorem 47 describing a sufficient first-order condition. Thus we have A ′
2 = A2.

Now we pass to Step 3. We check the sufficient second-order condition for points

of A ′
2. We take a look at the point (0, 0); with this point we have the Lagrange

multiplier µ = 1/k. The gradient and the Hessian of the Lagrange function are

DxL(x1, x2; 1/k) = [2(x1 − 1) + 2, 2x2(1 − 1/k)]

D2
xL(x1, x2; 1/k) =

[

2 0

0 2(1− 1/k)

]

As the theorem states, it suffices to check if

dT

[

2 0

0 2(1− 1/k)

]

d > 0

for all vectors d ∈ R
2 \ {0} such that Dg1(0, 0)d = [2k, 0]d = 0, i.e., the vectors

with the coordinate d1 = 0. The last inequality is (1− 1/k)d2
2 > 0; it is satisfied if

k > 1. Thus, if k > 1 it may be a local solution. If k < 1, then the inequality is

not satisfied and there is no solution at (0, 0).
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Now we assume that 0 < k < 1 and we consider the other two points. In both

cases µ = 1. Then we have

DxL(x1, x2; 1/k) = [2(x1 − 1) + 2k, 0]

D2
xL(x1, x2; 1/k) =

[

2 0

0 0

]

The Hessian is nonnegative-definite; hence, the necessary second-order condition

is satisfied at both points. Thus, we have

A ′′
2 = {(0, 0)} if k > 1,

A ′′
2 =

{(
1− k,

√

2k(1− k)
)

,
(

1− k,−
√

2k(k− 1)
)}

if 0 < k < 1.

Now we check the sufficient second-order condition. If k > 1 the Hessian is

positive-definite and by Theorem 56 there is a strict local minimum at (0, 0). We

cannot make this conclusion if k = 1.

We assume 0 < k < 1 and we analyse the point x = (1− k,
√

2k(k− 1)). We need

to check the assumptions of Theorem 56:

dT

[

2 0

0 0

]

d = 2d2
1 > 0

for d ∈ R
2 \ {0} such that [2k,−2

√

2k(1− k)]d = 0, i.e., d1 =
1
k

√

2k(1− k)d2. If

d 6= 0, then d1 6= 0 and at the point x the sufficient condition of the second order

is satisfied: this point is a strict local solution. Similarly we prove that the point

(1− k,−
√

2k(k− 1)) is also a strict local solution.

It remains to analyse the case k = 1. Though the point (0, 0) is a global minimum,

we have not managed to prove it using the Kuhn–Tucker theory. On the other

hand, it is easy to do it in an elementary way.
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10. Dual problems

Described below are so-called dual problems, i.e., another view at optimization

problems with inequality constraints. In contrast to the Kuhn–Tucker approach,

the dual setting does not assume differentiability of the target function f nor of

the constraint functions gi. Moreover, with suitable assumptions, the solution of

the original problem may easily be obtained from the solution of the dual

problem. Solving the dual problem is finding the maximum of a concave target

function in the nonnegative octant. As we shall see, the concavity may lead to

a good convergence of numerical optimization algorithms. The simplicity of the

feasible set is another feature contributing to the simplicity of implementation and

to speed of numerical algorithms. Sometimes the dual problem is easier to solve

analytically; examples will be given.

Sufficient condition

Definition 30 Let A, B be arbitrary sets and let h : A× B → R be a function.

The point (x,µ) ∈ A× B is called a saddle point of the function h if

h(x,µ) 6 h(x,µ) 6 h(x,µ) for all x ∈ A, µ ∈ B.

Example. The simplest example is the “centre of the saddle”, A = B = R,

h(x, µ) = x2 − µ2. The function h has the saddle point at (0, 0), which is the

minimum with respect to x and the maximum with respect to µ.

It turns out that the global solution of the following problem:





f(x) → min,

gi(x) 6 0, i = 1, . . . ,m,

x ∈ X,

(*)

is related to the saddle point of the Lagrange function defined for this problem.

Recall that W denotes the feasible set, i.e.,

W = { x ∈ X : gi(x) 6 0, i = 1, . . . ,m }.

Theorem 57 If (x,µ) ∈ W × [0,∞)m is a saddle point of the Lagrange function

L(x,µ) = f(x) +

m∑

i=0

µigi(x)

10.2

in the set W × [0,∞)m, i.e.,

L(x,µ) 6 L(x,µ) 6 L(x,µ) for all x ∈ W, µ ∈ [0,∞)m,

then x is a global solution of the problem (*) and µigi(x) = 0 for i = 1, . . . ,m.

Proof. First we prove that µigi(x) = 0 for i = 1, . . . ,m. The inequality

L(x,µ) 6 L(x,µ) may be expanded as follows:

f(x) +

m∑

i=1

µigi(x) 6 f(x) +

m∑

i=1

µigi(x).

Hence, for all µ ∈ [0,∞)m we have

m∑

i=1

µigi(x) 6

m∑

i=1

µigi(x).

By substituting µ = 1
2
µ, we obtain

m∑

i=1

µigi(x) > 0.

The point x is feasible, i.e., gi(x) 6 0 for all i. Taking into acount that all

coordinates of µ are nonnegative, we conclude that
∑m

i=1 µigi(x) = 0 and each

term is nonnegative. From the above it follows directly that µigi(x) = 0 for all i.

Now we use the second inequality, L(x,µ) 6 L(x,µ) for all x ∈ W, to prove that x

is a global solution. We expand the inequality:

f(x) +

m∑

i=1

µigi(x) 6 f(x) +

m∑

i=1

µigi(x).

Earlier we have proved that µigi(x) = 0 for all i. Due to x ∈ W, there is

µigi(x) 6 0. Hence,

f(x) 6 f(x) for all x ∈ W. ✷

Remarks.

� We do not assume that X is open, also the functions f and gi do not have to

be continuous.

� The feasible set does not have to be convex.
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� No regularity conditions are necessary.

� The theorem does not offer any methods of searching the saddle point. It

might be found using the necessary first-order conditions, and then

Theorem 57 may be used as the sufficient condition.

� Theorem 57 is the base for the dual approach and despite the previous

remark it is useful in the development of numerical optimization algorithms.

Necessary condition for convex programming

Now we assume that the set X ⊂ R
n is convex and the functions f and gi,

i = 1, . . . ,m, are convex. For such an optimization problem the saddle point of

the Lagrange function is a necessary condition for the global solution. We begin

the analysis with the simpler case, where all functions are differentiable, and later

we prove the theorem which does not assume differentiability. As it was

mentioned before, the lack of the requirement of differentiability distinguishes the

saddle point method from the Kuhn–Tucker method.

Lemma 20 Suppose that the set X in the convex programming problem is open

and the functions f, g1, . . . , gm are differentiable at a point x. If x is a local

solution of the problem (*) and one of the regularity conditions: linear

independence, affine function or Slater condition, is satisfied, then there

exists µ ∈ [0,∞)m, such that (x,µ) is a saddle point of the Lagrange function

in the set X× [0,∞)m.

Proof. By the Kuhn–Tucker theorem (Theorem 38), there exists a vector of

Lagrange multipliers µ ∈ [0,∞)m such that the first-order condition is satisfied

(the assumptions of this theorem are satisfied due to regularity of x and

Theorems 39–41). The function

L(x,µ) = f(x) +

m∑

i=1

µigi(x),

being the linear combination of convex functions with nonegative coefficients, is

convex. Therefore,

L(x,µ) > L(x,µ) + DxL(x,µ)(x− x).

10.4

By the Kuhn–Tucker theorem,

DxL(x,µ) = Df(x) +

m∑

i=1

µiDgi(x) = 0T ,

i.e., DxL(x,µ)(x − x) = 0. Hence, L(x,µ) > L(x,µ).

To prove the inequality L(x,µ) > L(x,µ), we notice that

m∑

i=1

µigi(x) 6 0 =

m∑

i=1

µigi(x),

because µi > 0 and gi(x) 6 0. The last equality is the claim of Theorem 38. ✷

Remark. By Theorem 47, each point satisfying the first-order condition is a global

solution of the convex programming problem. Therefore, we do not need to

distinguish global and local solutions.

Theorem 58 Let x ∈ X be a global solution of the convex programming

problem (*) and let there exist a point x∗ ∈ X such that gi(x
∗) < 0 for all

i = 1, . . . ,m. Then, there exists µ ∈ [0,∞)m such that (x,µ) is a saddle point

of the Lagrange function in the space X× [0,∞)m, i.e.,

L(x,µ) 6 L(x,µ) 6 L(x,µ) for all x ∈ X and µ ∈ [0,∞)m.

Moreover, µigi(x) = 0 for i = 1, . . . ,m.

Remark. In Theorems 57 and 58 the saddle point of the Lagrange function is

considered in different spaces. In the second theorem the space is wider, as the

first variable goes through the entire set X, not just the feasible set W. Now we

obtain the equivalence of the existence of a solution at the saddle point of the

Lagrange function and the existence of the global solution of the convex

programming problem.

Proof. Like in the proof of the necessary first-order condition (Theorem 38), the

crucial role is played by the separation theorem. It will indicate the Lagrange

multiplier vector µ.

Denote g(x) =
(

g1(x), . . . , gm(x)
)

. We define the following subsets of Rm+1:

A = {y = (y0,y) ∈ R× R
n : y0 > f(x), y > g(x), x ∈ X },

B = {y = (y0,y) ∈ R× R
n : y0 = f(x), y = g(x), x ∈ X },

C = {y = (y0,y) ∈ R× R
n : y0 < f(x), y < 0 }.
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The “inequality between vectors” notation is to be understood as the inequality

between their corresponding coordinates.

The set C is the Cartesian product of the interval (−∞, f(x)] and the cone {y < 0}.

Obviously, this set is convex. As x is the minimum of f, there is B ∩ C = ∅. The

set B is not convex; therefore we cannot use the separation theorem for the sets B

and C. A remedy is to take the set A, whose subset is B. Suppose that there

exists y = (y0,y) ∈ A ∩ C. It follows that there exists x ′ ∈ X such that

y0 > f(x ′), y > g(x ′), y0 < f(x), y < 0.

From the inequalities above we conclude that f(x ′) < f(x) and g(x ′) < 0. Thus, x ′

is a feasible point at which the value of f is less than f(x). It contradicts x being

a solution.

Example. Before proceeding with the proof, we can take a look at the sets A, B, C

for the following problem:





−x → min,

x2 − 1 6 0,

x ∈ X = R.

Its solution is x = 1. There is only one constraint, and thus the sets are subsets

of R2. As we can see in Figure 7, the part of the set B for y0 6 0 is a part of the

boundary of A, and the rest of it (for y0 > 0) is located in the interior of A.

y0

y

(−1, 0)

(0,−1)

A

B = {(y0, y
2
0 − 1)}C

Figure 7: The sets A, B, C in the example

Back to the proof. The convexity of C is already established. The convexity of A

may be proved directly. Let y ′,y ′′ ∈ A and λ ∈ (0, 1). Then, there exist points

x ′,x ′′ ∈ X such that

y ′
0 > f(x ′), y ′

> g(x ′), y ′′
0 > f(x ′′), y ′′

> g(x ′′).
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Let x = λx ′ + (1− λ)x ′′. By convexity of X, x ∈ X. We also have

λy ′
0 + (1− λ)y ′′

0 > λf(x ′) + (1− λ)f(x ′′) > f
(

λx ′ + (1− λ)x ′′
)

= f(x).

The first inequality above results from the assumed properties of x ′, x ′′, and the

second inequality is a consequence of the convexity of f. In a similar way, using

the convexity of the components of g, we show that

λy ′ + (1− λ)y ′′
> g(x).

Hence, y = λy ′ + (1 − λ)y ′′ ∈ A, as with the point x defined above,

y0 > f(x), y > g(x).

By the weak separation theorem, there exists a nonzero vector µ̃ ∈ R
m+1 such that

µ̃Ty > µ̃Tz, for all y ∈ A, z ∈ C.

From supz∈C µ̃
Tz < ∞ it follows that µ̃ > 0. Due to the continuity of linear

functions, we can take z from the closure of C:

µ̃Ty > µ̃Tz, for all y ∈ A, z ∈ clC.

Hence, for z =
(

f(x),0
)

we have

µ̃0y0 +

m∑

i=1

µ̃iyi > µ̃0f(x) for all (y0,y) ∈ A. (⊗)

In particular, this inequality holds for y0 = f(x) and y = g(x), where x ∈ X:

µ̃0f(x) +

m∑

i=1

µ̃igi(x) > µ̃0f(x).

Now we prove that µ̃0 6= 0, which together with the observation µ̃ > 0 implies

µ̃0 > 0. The proof is done by contradiction. Suppose that µ̃0 = 0. Then, by the

last inequality, we have

m∑

i=1

µ̃igi(x) > 0 for all (y0,y) ∈ A.

In particular, the above holds for the point x∗ from the assumptions of the

theorem. However, at this point we have gi(x
∗) < 0 for i = 1, . . . ,m. Together

with the fact that µ̃ > 0 this implies µ̃1 = · · · = µ̃m = 0. It follows that µ̃ = 0, and

this is inconsistent with the choice of µ̃ based on the separation theorem.
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As we now know, µ̃0 > 0. We define

µ =
( µ̃1

µ̃0

, . . . ,
µ̃m

µ̃0

)

.

Obviously, µ ∈ [0,∞)m. As x, being a solution, is a feasible point, there is

gi(x) 6 0 for i = 1, . . . ,m and
∑m

i=1 µigi(x) 6 0. We add this sum to the

right-hand side of the inequality (⊗) divided by µ̃0:

f(x) +

m∑

i=1

µigi(x) > f(x) +

m∑

i=1

µigi(x) for all x ∈ X.

In other words,

L(x,µ) > L(x,µ) for all x ∈ X.

It remains to prove the other inequality of the saddle point. By taking x = x and

dividing both sides of (⊗) by µ̃0, we obtain
∑m

i=1 µigi(x) > 0. On the other hand,

the point x is feasible, i.e., gi(x) 6 0. Recalling that µ > 0, we conclude that each

term of this sum is nonpositive. Hence, we obtain

µigi(x) = 0, i = 1, . . . ,m.

For any other µ we have
∑m

i=1 µigi(x) = 0, i.e.,

m∑

i=1

µigi(x) 6

m∑

i=1

µigi(x) for all µ ∈ [0,∞)m.

This is equivalent to

L(x,µ) 6 L(x,µ) for all µ ∈ [0,∞)m. ✷

Primal and dual problems

The theory of saddle points leads to formulating primal and dual problems.

Consider the optimization problem (*) and its Lagrange function L(x,µ). We

define the function LP : W → (−∞,∞]:

LP(x) = sup
µ∈[0,∞)m

L(x,µ).

As we can notice,

LP(x) =

{
f(x) if g(x) 6 0,

∞ else.
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Therefore the problem (*) may be rewritten in what seems to be a simpler form

LP(x) → min, x ∈ X.

Alas, the problem above reduces to the original problem, so it does not give any

“added value”, but soon it will. Before we reveal this value, we define another

function, LD(µ) : [0,∞)m → [−∞,∞):

LD(µ) = inf
x∈X

L(x,µ).

Remarks. (1) for any x ∈ X and µ ∈ [0,∞)m there is LP(x) > L(x,µ) > LD(µ).

(2) If (x,µ) is a saddle point of the Lagrange function in X× [0,∞)m, then

LP(x) = LD(µ).

If (x,µ) is a saddle point, then L(x,µ) 6 L(x,µ). In view of the first remark above

it gives us L(x,µ) = LD(µ). Similarly we prove the equality L(x,µ) = LP(x). These

observations lead us in the right direction. We are going to use the functions LP

and LD in the search of saddle points.

Definition 31 The primal problem is the optimization problem

LP(x) → min, x ∈ X.

Its dual problem is the optimization problem

LD(µ) → max, µ ∈ [0,∞)m.

By the properties mentioned in the last remark, the value of the target function of

the primal problem at the solution is greater than or equal to the value of the

target function of the dual problem at the solution:

inf
x∈X

LP(x) > sup
µ∈[0,∞)m

LD(µ).

Moreover, the solution of the dual problem gives us an estimation from below of

the function f.

Lemma 21 (weak duality theorem) For any feasible point x ∈ W and any

vector µ ∈ [0,∞)m there is

f(x) > LD(µ).

Hence,

f(x) > sup
µ∈[0,∞)m

LD(µ).
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Proof. We have

f(x) > L(x,µ) > LD(µ).

The first inequality holds for x ∈ W because gi(x) 6 0 for all i. The second

inequality is a consequence of Remark (1) above. ✷

Definition 32 The duality gap is the difference between the values of target

functions at the solutions of the primal and dual problem:

inf
x∈X

LP(x) − sup
µ∈[0,∞)m

LD(µ).

The saddle point condition written in terms of the primal and dual functions is

the following: (x,µ) is a saddle point if

LP(x) = L(x,µ) = LD(µ).

In other words, if the Lagrange function has a saddle point, then the duality gap is

zero. This is the case if, for example, the assumptions of Theorem 58 are satisfied.

X

x1

x2

LP(x1) = ∞

LP(x2) = f(x2)

∞

z

0 y

G

A

B
LD(µ)

(y, z)

M(y)

z+ µy = α
z+ µy = α

y = g(x), z = f(x)

G =
{ (

g(x), f(x)
)

: x ∈ X
}

M(y) = min{ f(x) : g(x) 6 y }

Figure 8: A scheme of solutions of a primal and dual problem

Figure 8 shows the solution of a primal and dual problem of an optimization

problem with only one inequality constraint; m = 1. The set G is the set of pairs

10.10

of values
(

f(x), g(x)
)

for x ∈ X. The lines z+ µy = α show the values of the

Lagrange function L(x, µ) = f(x) + µg(x). From the definition of the primal

function LP it follows that LP(x) = f(x) if g(x) 6 0, as supµ>0{α : α = z+ µy } is

taken for µ = 0. This is the case of the point x2. If g(x) > 0, then LP(x) = +∞.

This is the case of the point x1. The dual function LD(µ) may be found by

considering the lines z+ µy = α, looking for infx∈X α with a fixed µ. It may be

seen in the picture that the minimum is taken for the line tangent to the

boundary of the area G and the value of this function is the intersection point of

the line with the line y = 0. One can also see that the line which yields the

greatest value of LD is the line z+ µy = α whose inclination (tangent of the angle

between the y axis and the line) is −µ, tangent to the boundary of G at the

point (y, z). This point coresponds to the solution of the primal problem, because

z = infx∈X,g(x)60 f(x).

Theorem 59 (strong duality theorem) Let X be a nonempty convex subset

of Rn and let the functions f and gi, i = 1, . . . ,m, be convex in X. Assume in

addition that there exists a point x∗ ∈ X such that gi(x
∗) < 0 for all i. Then,

inf
x∈X

LP(x) = sup
µ∈[0,∞)m

LD(µ).

If infx∈X LP(x) is finite, then supµ∈[0,∞)m LD(µ) is taken at a point µ such that

µ > 0. If infx∈X LP(x) is taken at a point x, then µigi(x) = 0 for i = 1, . . . ,m.

Proof. Let γ = infx∈X LP(x). If γ = −∞, then (by Lemma 21)

supµ∈[0,∞)m LD(µ) = −∞ and the claim is true. Now assume that γ > −∞.

From the proof of Theorem 58 applied to the sets

A = {y = (y0,y) ∈ R× R
n : y0 > f(x), y > g(x), x ∈ X },

C = {y = (y0,y) ∈ R× R
n : y0 < f(x), y < 0 },

we conclude that

f(x) +

m∑

i=1

µigi(x) > γ for all x ∈ X. (⊕)

As a consequence, we obtain

LD(µ) = inf
x∈X

(

f(x) +

m∑

i=1

µigi(x)
)

> γ.
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From the remark made before Definition 31 it follows that

γ = inf
x∈X

LP(x) > sup
µ∈[0,∞)m

LD(µ) = LD(µ) > γ.

Hence, LD(µ) = γ and µ is a solution of the dual problem.

If infx∈X LP(x) is taken at a point x, then due to the definition of LP we have

LP(x) = f(x). The point x is a solution of the primal problem; there is gi(x) 6 0

for i = 1, . . . ,m and f(x) = γ. By substituting x = x in the inequality (⊕), we get∑
i µigi(x) > 0. Because µi > 0 and gi(x) 6 0, the equality µigi(x) = 0 for

i = 1, . . . ,m follows. ✷

The following algorithm of solving the optimization problem (*) using dual

methods may be proposed:

1. Solve the dual problem. The solution gives a lower bound for the solution of

the primal problem, due to Lemma 21.

2. Suppose that there exists a finite solution µ ∈ [0,∞)m of the dual problem

and a point x ∈ X such that LD(µ) = LP(x). If x is a feasible point and

f(x) = LD(µ), then (x,µ) is a saddle point of the Lagrange function and by

Theorem 57 the point x is a solution of the problem (*).

Let’s explain the conditions in the second step. From LD(µ) = L(x,µ) it follows

that L(x,µ) 6 L(x,µ) for all x ∈ X. This is the second inequality of the saddle

point. To verify the first inequality, recall that LP(x) = f(x) for any feasible

point x and infx∈X LP(x) > LD(µ) for all µ ∈ [0,∞)m. In the second step we

assume that f(x) = LD(µ), which implies that

LP(x) = f(x) = LD(µ)

and, thus, (x,µ) is indeed a saddle point.
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11. Sensitivity theory

So far, the Lagrange multipliers seemed to be just a technical trick useful in

finding solutions of optimization problems with constraints. Below we show that

they represent costs of changing the constraints. The equality and inequality

constraints are dealt with separately.

Equality constraints

Consider a problem with equality constraints:





f(x) → min,

hj(x) = 0, j = 1, . . . , l,

x ∈ X,

(*)

where X ⊂ R
n is an open set and f, h1, . . . , hl : X → R. To simplify the notation,

we denote h(x) =
(

h1(x), . . . , hl(x)
)

. Now we introduce a perturbation:





f(x) → min,

h(x) = z,

x ∈ X,

(**)

where z ∈ R
l.

Theorem 60 Let x be a solution of the problem (*) and let λ be the

corresponding vector of Lagrange multipliers. Assume that the functions

f, h1, . . . , hl are of class C2 in a neighbourhood of x, the gradients of the

constraint functions are linearly independent and

dTD2
xL(x,λ)d > 0 (⊙)

for all nonzero vectors d ∈ R
n such that Dhj(x)d = 0, j = 1, . . . , l. Then, there

exists a neighbourhood Õ of the point 0 ∈ R
l and a function x : Õ → X of

class C1 such that x(0) = x and x(z) is a strict local solution of the modified

problem (**). Moreover,

D(f ◦ x)(0) = −λ
T
.

Proof. By Theorem 48, the point x is a solution of the system of equations
{

DxL(x,λ) = 0T ,

h(x) = 0,
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where

DxL(x,λ) = Df(x) + λ
T
Dh(x) = Df(x) +

l∑

j=1

λjDhj(x).

After adding the perturbation z to the right-hand side of the second equality we

are going to show that there exists a solution being a function of class C1 of the

perturbation. Consider the system
{

DxL(x,λ) = 0T ,

h(x) = z,

with unknown λ and x. We define the function G : Rn ×R
l ×R

l → R
n ×R

l by the

formula

G(x,λ, z) =

[

(

DxL(x,λ)
)T

h(x) − z

]

.

The modified system may be rewritten as G(x,λ, z) = 0.

We know that G(x,λ,0) = 0. Using the implicit function theorem, we weave the

first two variables as functions of the third one. To do that, we consider the

matrix of derivatives of G (the blocks 0 and −I are l× l):

DG(x,λ,0) =

[

D2L(x,λ)
(

Dh(x)
)T

0

Dh(x) 0 −I

]

.

The linear independence of the gradients of the constraints implies that the

submatrix

DG(x,λ,0) =

[

D2L(x,λ)
(

Dh(x)
)T

Dh(x) 0

]

.

is nonsingular (proof is an exercise). The assumptions of the implicit function

theorem (Theorem 51) are, therefore, satisfied and there exists a neighbourhood O

of the point 0 ∈ R
l and functions x : O → X and λ : O → R

l of class C1 such that

for all z ∈ O there is G
(

x(z),λ(z)
)

= 0, i.e.,

DxL
(

x(z),λ(z)
)

= 0T , h
(

x(z)
)

= z.

Using the fact that the functions D2
xL, Dh, x, λ are continuous and the

inequality (⊙) is satisfied for the original problem, we conclude that there exists

a (possibly smaller) neighbourhood Õ of 0 ∈ R
l such that

dTD2
xL
(

x(z),λ(z)
)

d > 0
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for all z ∈ Õ and nonzero vectors d ∈ R
n such that Dhj

(

x(z)
)

d = 0, j = 1, . . . , l.

The key to this result is that (⊙) is a sharp inequality. By Theorem 56 the point

x(z) is therefore a strict solution of the modified problem (**). Recall that x is

a function of class C1. Hence, we can define the derivative of the composition

D(f ◦ x)(0) = Df(x)Dx(0).

To complete the proof we need two observations. First, after multiplying the sides

of the necessary condition for the original problem,

Df(x) + λ
T
Dh(x) = 0T

by Dx(0) we obtain

Df(x)Dx(0) + λ
T
Dh(x)Dx(0) = 0T .

Second, by differentiating h
(

x(z)
)

with respect to z, at z = 0 we obtain the

following derivative: D(h ◦ z)(0) = Dh(x)Dx(0) = I. The equation above may,

therefore, be simplified to the following:

Df(x)Dx(0) + λ
T
= 0T .

The claim follows immediately. ✷

Theorem 60 may be understood as follows: a small change of the j-th constraint

from 0 to ε causes the change of the local minimum of f by −λjε+ o(ε) ≈ −λjε.

Inequality constraints

We use a different approach for inequality constraints. We focus on a convex

optimization problem:






f(x) → min,

gi(x) 6 0, i = 1, . . . ,m,

x ∈ X,

(*
*
*)

where X ⊂ R
n is a convex set and the functions f, g1, . . . , gn : X → R are convex.

To simplify the notation we denote g(x) =
(

g1(x), . . . , gm(x)
)

. The problem may

be rewritten as





f(x) → min,

g(x) 6 0,

x ∈ X,
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Consider the modified problem





f(x) → min,

g(x) 6 z,

x ∈ X,

Definition 33 Let DM denote the set of vectors z ∈ R
m such that the feasible

set for the modified problem, Wz = { x ∈ X : g(z) 6 z }, is nonempty. The

function

M(z) = inf
x∈X,g(x)6z

f(x),

defined for all z ∈ DM, is called the perturbation function and the set DM is

called the perturbation function domain.

Note that M(z) < ∞ for all z ∈ DM, but it is possible that M(z) = −∞.

The graph of the perturbation function in Figure 8 is the curve M(y); as we can

see it is a convex function. Note that this function is well defined between the

points A = (yA, zA) and B = (yB, zB), because there exists x ∈ X such that
(

g(x), f(x)
)

∈ G, and then y = g(x) is an element of the domain of the

function M(y). If y < yA, then the feasible set is empty and such points y are

outside the domain of the perturbation function. For y > yB the perturbation

function is a constant.

Theorem 61 1. The set DM is convex.

2. The function M : DM → R ∪ {−∞} is convex.

3. If there exists a point x∗ ∈ X such that g(x∗) < 0, then intDM 6= ∅ and

0 ∈ intDM.

Proof. From the convexity of each component of g it follows that

g(x1) 6 z1, g(x2) 6 z2 ⇒

g
(

λx1 + (1 − λ)x2

)

6 λz1 + (1− λ)z2 for all λ ∈ [0, 1] (⊗)

(the inequalities are to be understood componentwise). This observation will be

used a number of times in the proof below.
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(1) Let z1, z2 ∈ DM and let λ ∈ (0, 1). There exist x1,x2 ∈ X such that g(x1) 6 z1

and g(x2) 6 z2. From (⊗) we obtain g
(

λx1 + (1− λ)x2

)

6 λz1 + (1 − λ)z2; hence,

λz1 + (1 − λ)z2 ∈ DM.

(2) Let z1, z2 ∈ DM and let λ ∈ (0, 1). Then,

λM(z1) + (1− λ)M(z2) = inf
x1∈X,g(x1)6z1

(

λf(x1)
)

+ inf
x2∈X,g(x2)6z2

(

(1− λ)f(x1)
)

= inf
x1 ∈ X, g(x1) 6 z1
x2 ∈ X, g(x2) 6 z2

(

λf(x1) + (1− λ)f(x2)
)

> inf
x1 ∈ X, g(x1) 6 z1
x2 ∈ X, g(x2) 6 z2

f
(

λx1 + (1 − λ)x2

)

> inf
x∈X,g(x)6λz1+(1−λ)z2

f(x).

The first inequality above is a consequence of the convexity of f and the second is

obtained from (⊗), which implies the following:

{ λx1 + (1 − λ)x2 : x1,x2 ∈ X, g(x1) 6 z1, g(x2) 6 z2 } ⊂
{ x ∈ X : g(x) 6 λz1 + (1− λ)z2 }.

(3) We need to prove that the feasible set Wz is nonempty for any z from some

neighbourhood of 0 ∈ R
m. By assumption, there exists x∗ ∈ X such that

gi(x
∗) < 0 for i = 1, . . . ,m. Let a = min{−g1(x

∗), . . . ,−gm(x
∗)}. Then, for

all z ∈ [−a, a]m we have x∗ ∈ Wz; hence, [−a, a]m ⊂ DM. ✷

Remark. (1) If Mz = −∞ for some z ∈ DM, then by convexity of M for

any z ∈ DM and λ ∈ (0, 1) we have M
(

λz+ (1− λ)z
)

= −∞.

(2) As a consequence, if M(z) = −∞ for some z ∈ DM, then M(z) = −∞ for all

z ∈ intDM.

(3) Moreover, if there exists z ∈ intDM such that M(z) > −∞, then M(z) > −∞
for all z ∈ DM.

Theorem 62 If in a problem of convex optimization there exists a point x∗ ∈ X

such that gi(x
∗) < 0 for i = 1, . . . ,m and M(0) > −∞, then M(z) > −∞ for all

z ∈ DM and there exists a vector µ ∈ [0,∞)m which determines a supporting

hyperplane of M:

M(z) > M(0) − µTz, z ∈ DM.
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Proof. By Theorem 61, M is a convex function and 0 ∈ intDM. Hence, by

Remark (3) above, we have M(z) > −∞ for all z ∈ DM. The existence of the

supporting plane is a consequence of the supporting plane theorem (Theorem 26):

M(z) > M(0) − µTz, z ∈ DM,

for some µ ∈ R
m. We have to prove that all coordinates of µ are nonnegative. On

the contrary, suppose that µi < 0 for some i ∈ {1, . . . ,m}. As 0 ∈ intDM, if

a number a is sufficiently small, the point z = aei is an element of DM. Due to µi

being negative, we obtain

M(z) > M(0) − µia > M(0).

On the other hand, W0 ⊂ Wz (due to z > 0, i.e., M(z) 6 M(0). This

inconsistency proves that µ ∈ [0,∞)m. ✷

The vector µ is called the sensitivity vector for the problem (*
*
*). By Theorem 26,

if the function M is differentiable at 0, then µ = −
(

DM(0)
)T

. Therefore, µ

denotes the speed and the direction of changes of the minimal value of f caused by

a perturbation of constraints, just like in the case of equality constraints discussed

earlier.

Now we take a look at the relation of the sensitivity vector with the saddle point

and the first-order condition. Note that the connection of the saddle point and

the sensitivity vector does not assume the convexity of the optimization problem.

Theorem 63 1. If (x,µ) is a saddle point of the Lagrange function in the

set X× [0,∞)m, then µ is a sensitivity vector (i.e., it determines

a supporting plane). This claim does not assume convexity of the

problem.

2. Suppose that the functions f, g1, . . . , gm are differentiable at x and

convex. If the first-order condition is satisfied at x with a Lagrange

multipliers vector µ ∈ [0,∞)m, then µ is the sensitivity vector.

Proof. (1) Let Lz(x,µ) denote the Lagrange function for a modified problem.

Then,

Lz(x,µ) = f(x) +

m∑

i=1

µi

(

gi(x) − zi
)

= L(x,µ) − µTz.
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The point (x,µ) is a saddle point; hence,

M(0) = L(x,µ) = inf
x∈X

L(x,µ).

Therefore,

M(0) = inf
x∈X

L(x,µ) = inf
x∈X

(

Lz(x,µ) + µTz
)

= inf
x∈X

Lz(x,µ) + µTz. (⊗)

Note that for any x ∈ Wz and µ ∈ [0,∞)m we have f(x) > Lz(x,µ); in particular,

M(z) = inf
x∈Wz

f(x) > inf
x∈Wz

Lz(x,µ) > inf
x∈X

Lz(x,µ).

By substituting the above to (⊗), we obtain

M(0) 6 M(z) + µTz.

(2) By Lemma 20, the point (x,µ) is a saddle point of the Lagrange function. The

claim may thus be obtained from the first claim. ✷
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12. Introduction to numerical methods of optimization

So far, we studied the theory of optimization problems; more precisely, we proved

theorems which enable finding candidates for solutions and recognising solutions

among the candidates. Unfortunately, in most cases we need to solve systems of

nonlinear equations. In practice, these systems may not have solutions possible to

describe by algebraic formulae (and also the systems may be too large to be dealt

with analytically). What may be done in such cases, is using numerical methods,

which can find approximations of solutions with given accuracy. Some of those

methods are described below. Many algorithms do not look for points satisfying

the first-order necessary conditions; instead, they construct, step by step,

sequences of points convergent to solutions. It does not mean that Lagrange

multipliers and dual methods are useless in numerical computations. On the

contrary, the classical approach with equality constraints uses extensively

Lagrange multipliers, even if below we survey other methods.

Definition 34 An iterative process is a four-tuple (Q, I,Ω, h), where Q is a set,

I ⊂ Q, Ω ⊂ Q and h : Q → Q is a mapping in the set Q, which is an identity

mapping of the subset Ω. This four-tuple represents a computation process;

I is the set of initial data, Ω is the set of solutions and the function h

describes the computation. Given an initial point x ∈ I, the process generates

the sequence

x0 = x, xk+1 = h(xk), k = 0, 1, . . .

The iterative process terminates after n steps if xn ∈ Ω (in accordance to the

definition of h, as in that case xn+1 = xn ∈ Ω). An algorithm is an iterative

process which terminates after a finite number of steps.

In optimization we are interested in using algorithms to solve problems which

have solutions. The algorithms ought to have the following properties:

1. Correctness of the algorithm, i.e., the property that for any admissible initial

point x ∈ I we get the correct result. For our purposes we assume that this

property ensures the convergence of the sequence to a solution.

2. Stop property, which involves a condition for the iterative process to

terminate. This condition is satisfied when an element of the sequence of

points is in the set Ω, which means that it is an accurate enough

approximation of the solution.
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3. Effectiveness, related with the rate of convergence of the sequence to the

solution.

General properties of optimization algorithms

Before discussing the algorithms we formulate the problem:
{

f(x) → min,

x ∈ X ⊂ R
n.

Remark. For the algorithm to work it is necessary to provide procedures

computing at given points xk the function values f(xk) and sometimes its

derivatives, Df(xk), D2f(xk) etc. The evaluation of the function f and its

derivatives is not a part of the algorithm; it is assumed that those procedures

compute their results with some required accuracy. Sometimes they are seen as an

“oracle” yielding the function values.

Definition 35 Let x∗ be a solution of an optimization problem and let

f∗ = f(x∗). The stop criteria using an absolute tolerance at a level ε > 0 may

be the following:

1. |f(xk) − f∗| 6 ε,

2. ‖xk − x∗‖ 6 ε,

3. ‖Df(xk)‖ 6 ε,

4. |f(xk+1) − f(xk)| 6 ε,

5. ‖xk+1 − xk‖ 6 ε.

We can also use the stop criteria with a relative tolerance at a level ε > 0:

1. |f(xk) − f∗|/|f∗| 6 ε,

2. ‖xk − x∗‖/‖x∗‖ 6 ε,

3. |f(xk+1) − f(xk)|/|f(xk)| 6 ε,

4. ‖xk+1 − xk‖/‖xk‖ 6 ε.
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In both cases the first two criteria are the most natural, but they are the least

practical, as we do not know the point x∗ nor the minimal function value f∗. In

practice we use the other criteria, even if they do not guarantee the termination of

the process close to the actual solution of the problem.

Definition 36 The greatest number p such that the inequality

‖xk+1 − x∗‖ 6 c‖xk − x∗‖p

is satisfied for all k > K (with some K ∈ N), where c > 0 is a constant, is

called the exponent of convergence of the algorithm.

Remark. This definition is not easy to use in practice, because we do not know x∗

(but it is useful in theoretical analysis of algorithms). The exponent of

convergence may be measured a posteriori using the approximate criterion; p is

the greatest number such that

lim sup
k→∞

‖xk+1 − xk‖
‖xk − xk−1‖p

< ∞.

Note that a numerical computation does not produce the infinite sequence

(xk)k∈N, but only its finite initial subsequence.

Optimization of strictly quasi-convex functions

Definition 37 Let W ⊂ R
n be a convex set. A function f : W → R is

strictly quasi-convex if for any x,y ∈ W, x 6= y, and λ ∈ (0, 1) there is

f
(

λx+ (1− λ)y
)

< max{f(x), f(y)}.

Lemma 22 1. A strictly quasi-convex function has at most one minimum

(local and global).

2. A strictly convex function is strictly quasi-convex.

3. A function defined on a line or on an open interval is strictly

quasi-convex if it is strictly increasing, strictly decreasing, or there

exists a point x in its domain such that this function is strictly

decreasing for x < x and strictly increasing for x > x.
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Proof is left as an exercise.

The strict quasi-convexity is a property making it possible to find a minimum in

a closed interval without using derivatives. The main observation is made in the

following lemma:

Lemma 23 Let f : [a, b] → R be a strictly quasi-convex function and let

a 6 x 6 y 6 b.

1. If f(x) > f(y), then f(z) > f(y) for all z ∈ [a, x).

2. If f(x) 6 f(y), then f(z) > f(x) for all z ∈ (y, b].

Proof. We prove the claim (1) by contradiction. Suppose that there exists

z ∈ [a, x) such that f(z) 6 f(y). Then, by quasi-convexity of f, it follows that

f(x) < max{f(z), f(y)} = f(y), which is inconsistent with the assumption that

f(x) > f(y). The claim (2) is proved in a similar way. ✷

Based on Lemma 23, we can construct many algorithms finding minima of strictly

quasi-convex functions of one variable. First we take a look at the

dichotomic subdivision algorithm. Its idea is quite simple: to find the minimum of

a strictly quasi-convex function f : [a, b] → R, we choose two points, λ < µ, in the

interior of the interval [a, b]. By Lemma 23, we notice that if f(λ) < f(µ), then

the interval with the minimum of f may be restricted to [a, µ] and if f(λ) > f(µ),

then the interval may be restricted fo [λ, b]. The best strategy of choosing the two

points is to obtain the next interval as short as possible. We do not know

a priori, at which of the two points the function f takes a greater value.

Therefore, to obtain the fastest convergence we should take into account the worst

case and minimise the greater of the two numbers µ− a, b− λ. This minimum is

obtained with µ = λ = (a+ b)/2. As this solution does not yield two different

points, we choose a small εk > 0 and we take λ = (a+ b)/2− εk and

µ = (a + b)/2 + εk. The algorithm is the following:

Preparation: choose ε1 ∈
(

0, (a+ b)/2
)

. Take x1 = a, y1 = b.

k-th step, repeated in a loop:

1. Compute λk = (xk + yk)/2 − εk and µk = (xk + yk)/2+ εk.
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2. If f(λk) < f(µk), then take xk+1 = xk and yk+1 = µk.

3. If f(λ) > f(µk), then take xk+1 = λk and yk+1 = yk.

4. Take εk+1 = εk/2.

Stop condition: yk+1 − xk+1 6 2ε, where ε > 0 is the required accuracy (we can

take the solution x̃ = (xk+1 + yk+1)/2).

If a minimum x of f exists in [a, b] (which may not be the case if f is not

continuous), then, by Lemma 23, this minimum is located in the interval [xk, yk]

for all k. With k → ∞ the lengths of these intervals tend to 0; note that

0 < εk < (yk−1 − xk−1)/2 for all k. Hence, both sequences, (xk)k and (yk)k,

converge to the solution x. This proves that the algorithm is correct.

If the iterations are terminated after the k-th step, then the approximation error

of the exact solution by the midpoint x̃ of the interval [xk+1, yk+1] is bounded by

the half of length of this interval, which justifies the choice of the stop criterion.

We can prove that the lengths of the intervals [xk, yk] are bounded by elements of

a geometric sequence; there is

yk+1 − xk+1 6 (b− a)ck,

where c = 1
2
+ ε1

b−a
. The exponent of convergence is p = 1; the convergence with

such an exponent is called linear.

The dichotomic subdivision algorithm has to compute two function values in each

step. The golden ratio algorithm computes just one function value in each step.

The choice of points λk, µk in the interval [xk, yk] is done as follows:

yk − λk = µk − xk; hence, λk = τxk + (1− τ)yk, µk = (1− τ)xk + τyk,

where τ ∈ (0, 1) is such that

λk = (1− τ)xk + τµk and µk = τλk + (1− τ)yk.

The above determines the number τ; there is

λk = τxk + (1− τ)yk = (1− τ)xk + τµk = (1− τ)xk + τ
(

(1− τ)xk + τyk

)

= τxk + yk − τyk = xk − τ2xk + τ2yk.

The last equality must hold for any xk, yk; hence,

τxk = xk − τ2xk, yk − τyk = τ2yk,

i.e., (τ2 + τ− 1)xk = (τ2 + τ− 1)yk = 0.
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The positive zero of the polynomial p(τ) = τ2 + τ− 1 is τ = (
√
5− 1)/2 ≈ 0.618;

this number describes the golden ratio proportion. The golden ratio algorithm is

the following:

Preparation: Take x1 = a, y1 = b, λ1 = τx1 + (1 − τ)y1, µ1 = (1 − τ)x1 + τy1 and

compute f(λ1) and f(µ1).

k-th step, repeated in a loop:

1. If f(λk) < f(µk), then take xk+1 = xk, yk+1 = µk, λk+1 = τxk + (1− τ)yk,

µk+1 = λk and compute f(λk+1).

2. If f(λk) > f(µk), then take yk+1 = yk, xk+1 = λk, µk+1 = (1− τ)xk + τyk,

λk+1 = µk and compute f(µk+1).

Stop condition: yk+1 − xk+1 6 2ε, where ε > 0 is the required accuracy.

The convergence of the sequences (xk)k, (yk)k to the minimum x is slower than

that of the sequences from the dichotomic subdivision algorithm; there is

yk+1 − xk+1 = (b− a)τk.

However, due to the twice lower computational cost of one iteration, the golden

ratio algorithm achieves the same accuracy of the result in a shorter time.

The slightly more complicated Fibonacci algorithm guarantees finding the

minimum with the assumed accuracy after evaluating the function at the minimal

number of points sufficient to minimise any strictly quasi-convex function.

Remark. (1) One can prove that the golden ratio algorithm may need to evaluate

the function at most at one point more than the Fibonacci algorithm.

(2) There exist algorithms working faster for functions f having some properties in

addition to the strict quasi-convexity, like differentiablility. For example, having

a procedure of computing the derivative, we can use the secant method to find the

zero of f ′; if f ′′ satisfies the Lipschitz condition, then the exponent of convergence

is p = 1+ τ ≈ 1.618.

The Fibonacci sequence is defined as follows:

F0 = F1 = 1,

Fk+1 = Fk + Fk−1, k = 1, 2, 3, . . .



12.7

To use this algorithm we fix a priori the number of iterations, which is related

with the desired accuracy in the way explained later. The numbers λk and µk are

obtained from the formulae





λk = xk +
Fn−k−1

Fn−k+1

(yk − xk),

µk = xk +
Fn−k

Fn−k+1

(yk − xk),

k = 1, . . . , n− 1.

If f(λk) > f(µk), then we take xk+1 = λk and yk+1 = yk. The rules written above

produce

λk+1 = xk+1 +
Fn−k−2

Fn−k

(yk+1 − xk+1)

= xk +
Fn−k−1

Fn−k+1

(yk − xk) +
Fn−k−2

Fn−k

(

yk − xk −
Fn−k−1

Fn−k+1

(yk − xk)

)

= xk +

(

Fn−k−1

Fn−k+1

+
Fn−k−2

Fn−k

−
Fn−k−2

Fn−k

Fn−k−1

Fn−k+1

)

(yk − xk)

= xk +
Fn−k−1Fn−k + Fn−k−2Fn−k+1 − Fn−k−2Fn−k−1

Fn−k+1Fn−k

(yk − xk)

= xk +
Fn−k−1Fn−k + Fn−k−2Fn−k

Fn−k+1Fn−k

(yk − xk)

= xk +
Fn−k

Fn−k+1

(yk − xk) = µk.

If f(λk) < f(µk), then we take xk+1 = xk and yk+1 = µk. A similar calculation

proves that in this case

µk+1 = λk,

which means that in both cases we choose only one point in the interval [xk, yk] at

which the function value has not yet been computed.

Suppose that we need to find the minimum in the interval [a, b] with the accuracy

not worse than some ε > 0. The number of steps is n− 1, where n is the smallest

number such that Fn > (b− a)/ε. Note that λn−1 = µn−1 =
1
2
(xn−1 + yn−1); the

point obtained in last step is the midpoint of the interval [xn−1, yn−1], whose

length is less than or equal to F2ε.

The Fibonacci algorithm is the following:

Preparation: Find the smallest n such that Fn > (b− a)/ε;

take x1 = a, y1 = b, λ1 =
(

Fn−1x1 + (Fn − Fn−1)y1

)

/Fn,

µ1 =
(

(Fn − Fn−1)x1 + Fn−1y1

)

/Fn and compute f(λ1) and f(µ1).
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k-th step, repeated in a loop for k = 1, . . . , n− 2:

1. If f(λk) < f(µk), then take xk+1 = xk, yk+1 = µk, µk+1 = λk,

λk+1 =
(

Fn−kxk + (Fn−k+1 − Fn−k)yk

)

/Fn−k+1 and compute f(λk+1).

2. If f(λk) > f(µk), then take yk+1 = yk, xk+1 = λk, λk+1 = µk,

µk+1 =
(

(Fn−k+1 − Fn−k)xk + Fn−kyk

)

/Fn−k+1 and compute f(µk+1).

The last step: If f(λn−1) < f(µn−1), then take x̃ = λn−1, else take x̃ = µn−1. The

point x̃ is an approximation of the minimum with the required accuracy.

dichotomic, ε1 = 0.05(b− a), m = 14

x

golden ratio, m = 11

x

Fibonacci, m = 10

x

Figure 9: Three algorithms in action

An example is shown in Figure 9; the interval [a, b] = [0, 1] and the assumed

accuracy is 0.01. Below the x axis of each graph the subsequent intervals [xk, yk]

are drawn; m is the number of points at which the function value was computed.
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13. Algorithms for unconstrained optimization

Now we take a look at multidimensional optimization methods for problems

without constraints. We assume that the target function f : Rn → R is of class C1

and its minimum is to be found. All methods considered here are based on the

following scheme: beginning at a point x1, which we believe to be close enough to

the solution, we construct a sequence of points x1,x2, . . . so as to obtain

f(xk+1) < f(xk) for all k. We expect to find a minimum of f in this way. However,

it may turn out that the concentration points of the sequence (xk)k are not

solutions. We survey various methods of constructing sequences (xk)k, paying

attention to their convergence. All results described below apply also to functions

defined in open subsets of Rn. Descent methods will play first fiddle in

optimization problems with constraints, considered later.

We consider the problem

{
f(x) → min,

x ∈ R
n.

Descent methods are algorithms constructing consecutive points according to the

formula

xk+1 = xk + αkdk,

where αk > 0 and the vector dk has a descent direction, i.e.,

Df(xk)dk < 0 if Df(xk) 6= 0T ,

dk = 0 if Df(xk) = 0T .

With dk 6= 0 and αk sufficiently small we have f(xk+1) < f(xk. We might expect

the sequence (xk)k to converge to a minimum. But without additional information

about the problem we have no guarantee of finding a global minimum. We are

going to look for methods of making the sequence converge to a local minimum.

Steepest descent methods

The steepest descent methods take the vectors dk parallel to
(

Df(xk)
)T

. The idea

is simple:

Preparation: Choose an initial point x1.
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k-th step:

1. Choose αk,

2. Take xk+1 = xk − αk

(

Df(xk)
)T

.

Stop condition: ‖Df(xk+1)‖ 6 ε.

It remains to select rules of choosing αk. The rules below will also be used with

any vectors dk having descent directions, not necessarily −
(

Df(xk)
)T

.

� Exact minimization rule: choose αk such that

f(xk + αkdk) = min
α>0

f(xk + αdk).

� Limited minimization rule: with a fixed A > 0 choose αk such that

f(xk + αkdk) = min
α∈[0,A]

f(xk + αdk).

� Armijo rule: with fixed s > 0, β, σ ∈ (0, 1) we take αk = βmks, where mk is

the smallest integer m such that

f(xk) − f(xk + βmsdk) > −σβmsDf(xk)dk.

According to this rule, the following inequality holds:

f(xk) − f(xk + βm−1sdk) < −σβm−1sDf(xk)dk.

The constant s is called a stride, β controls the rate of decreasing or

increasing the stride (the smaller it is, the faster the stride changes) and

σ influences the choice of αk as follows: the smaller it is, the smaller mk

satisfies the conditions above, resulting in the greater value of αk.

In the steepest descent methods, where dk = −
(

Df(xk)
)T

, the choice of mk is

slightly simpler due to Df(xk)dk = −‖Df(xk)‖2: mk is the smallest integer m

such that

f(xk) − f
(

xk − βms
(

Df(xk)
)T)

> σβms‖Df(xk)‖2. (*)

Figure 10 shows the idea of the Armijo rule, which is easy to implement. We

assume that Df(xk) 6= 0T . Starting from the point y = xk − s
(

Df(xk)
)T

we check

the condition (*). If it does not hold, then we check the points xk − sβ
(

Df(xk)
)T

,
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y

y = f(xk) + αDf(xk)dk

y = f(xk) + σαDf(xk)dk

y = f(xk + αdk)

β2s βs s α

Figure 10: The Armijo rule in action; σ = 0.8, β = 0.7, xk+1 = xk + β2sdk

xk − sβ2
(

Df(xk)
)T

etc. If (*) is satisfied with m = 0, corresponding to the point y,

we try the points xk − sβ−1
(

Df(xk)
)T

, xk − sβ−2
(

Df(xk)
)T

etc. After a finite

number of steps we find the number m satisfying (*) such that m− 1 does not

satisfy this condition.

The exact minimization rule is well defined if the minimum on the right-hand side

exists. The interval in which the minimum is to be found is unbounded; hence,

the exact minimization rule does not have to be well defined. Later we show

assumptions that guarantee its correctness. Restricting the interval to [0,A] has

two advantages: first, the problem always has a solution, as we minimise

a continuous function in a compact set. Second, we can use faster methods of

searching minima.

Both rules, exact and limited, find steps such that f(xk+1) 6 f(xk); the proof of

this fact is an exercise. By Inequality (*), also the Armijo rule produces such

steps. There are, however, two questions. Is the stop criterion correct? Does the

sequence (xk)k converge to a minimum?

Below we prove that any concentration point of the sequence (xk) obtained by the

steepest descent method is a critical point, i.e., it is a zero of the gradient of f.

Such a point does not have to be a local minimum. However, if the function f is

pseudoconvex, then we can be sure that it is a minimum, moreover, a global

minimum.

Theorem 64 Let (xk)k be a sequence of points obtained using the steepest

descent method, with any of the three rules described above. Then, any

concentration point of this sequence is a critical point.
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Proof. Let x be a concentration point and let (xkn)n be a subsequence convergent

to x. The proof is done by contradiction; we suppose that Df(x) 6= 0T .

The main idea for the first two rules (exact and limited) is to show the existence

of a constant γ > 0 such that with n big enough, i.e., with xkn close enough to x,

there is

f(xkn+1) 6 f(xkn) − γ,

which means that it is possible to decrease the value of f in the step kn at least

by γ. Bearing in mind that the sequence
(

f(xk)
)

k
is decreasing, we have

f(xkn+1
) 6 f(xkn+1) 6 f(xkn) − γ.

By passing with n to ∞ and using the fact that x is a concentration point and f is

continuous, we obtain the inconsistency with the inequality γ > 0.

Therefore we need to prove the existence of γ > 0. The derivative of f is

continuous by assumption; hence, there exists a neighbourhood V of x such that

‖Df(x) − Df(y)‖
‖Df(x)‖ 6

1

2
for all x,y ∈ V . (**)

The main observation to justify the inequality above is that in a neighbourhood

of x the norm of gradient of f is strictly separated from 0.

Let δ > 0 be such that B(x, 2δ) ⊂ V and δ 6 A infx∈V ‖Df(x)‖, where A is the

constant of the definition of the limited minimization rule (from (**), we conclude

that infx∈V ‖Df(x)‖ > 0). For a point x ∈ B(x, δ), the point x− δ
‖Df(x)‖

(

Df(x)
)T

is

an element of B(x, 2δ) and, therefore, also of V . Moreover, with the limited

minimization rule we have

δ

‖Df(x)‖ 6
A infx∈V ‖Df(x)‖

‖Df(x)‖ 6 A,

i.e., δ
‖Df(x)‖

∈ [0,A]. By the mean value theorem,

f(x) − f
(

x−
δ

‖Df(x)‖
(

Df(x)
)T
)

= Df(θ)
( δ

‖Df(x)‖
(

Df(x)
)T
)

=
δ

‖Df(x)‖Df(θ)
(

Df(x)
)T
,

where θ is an intermediate point; hence, it is an element of V . Now we focus on

the product of the gradients:

Df(θ)
(

Df(x)
)T

=
(

Df(x) + Df(θ) − Df(x)
)(

Df(x)
)T

= ‖Df(x)‖2 +
(

Df(θ) − Df(x)
)(

Df(x)
)T

> ‖Df(x)‖2 − ‖Df(θ) − Df(x)‖‖Df(x)‖.
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We substitute this estimation to the previous formula:

f(x) − f
(

x−
δ

‖Df(x)‖
(

Df(x)
)T
)

> δ‖Df(x)‖− δ‖Df(θ) − Df(x)‖

= δ‖Df(x)‖
(

1−
‖Df(θ) − Df(x)‖

‖Df(x)‖
)

>
δ

2
‖Df(x)‖;

the last inequality follows from (**). The estimation above is true for

all x ∈ B(x, δ); in particular for all xkn with n big enough we have

f(xkn) − f(xkn+1) > f(xkn) − f
(

xkn −
δ

‖Df(xkn)‖
(

Df(xkn)
)T
)

>
δ

2
‖Df(xkn)‖.

Therefore, we can take

γ =
δ

2
inf

x∈B(x,δ)
‖Df(x)‖.

For the steepest descent method with the Armijo rule we have

f(xk) − f(xk+1) > σαk‖Df(xk)‖2,

which implies that the sequence
(

f(xk)
)

k
is monotonically decreasing, i.e., it is

either convergent, or it diverges to −∞. Due to f(xkn) → f(x) there is

f(xk) − f(xk+1) → 0. It follows that also αk‖Df(xk)‖2 → 0. Due to

Df(xkn) → Df(x) 6= 0T , there must be αk → 0.

On the other hand, the numbers αk in the Armijo rule are chosen in the optimal

way, i.e.,

f(xk) − f
(

xk − αk/β
(

Df(xk)
)T)

< σαk/β‖Df(xk)‖2.

By applying the intermediate value theorem to the left-hand side of this

inequality, we get

f(xk) − f
(

xk − αk/β
(

Df(xk)
)T)

= Df
(

xk − α̃k/β
(

Df(xkn)
)T)

αk/β
(

Df(xkn)
)T
.

Therefore, the previous inequality takes the form

Df
(

xk − α̃k/β
(

Df(xk)
)T)(

Df(xk)
)T

< σ‖Df(xk)‖2

Taking the subsequence (xkn)n, we obtain

Df
(

xkn − α̃kn/β
(

Df(xkn)
)T)(

Df(xkn)
)T

< σ‖Df(xkn)‖2

13.6

If we pass with this inequality to the limit, then we see that α̃kn ∈ [0, αkn ];

α̃kn → 0 because αkn → 0. The last inequality at the limit gives us

‖Df(x)‖2 6 σ‖Df(x)‖2, i.e., (1− σ)‖Df(x)‖2 6 0. But 1− σ ∈ (0, 1), which gives us

an inconsistency with the supposition that Df(x) 6= 0T . ✷

It turns out that slightly stronger assumptions ensure that Df(xk) → 0T for the

entire sequence obtained by the steepest descent method, not just a subsequence

convergent to the concentration point.

Lemma 24 Let f be a function of class C1 bounded from below. Let (xk)k be

a sequence of points obtained by a steepert descent method. If there exists

a constant c > 0 (independent of k) such that

f(xk + αkdk) < f(xk) − c‖Df(xk)‖2, k = 1, 2, . . . , (***)

then either there exists a number K such that Df(xK) = 0T , or the sequence
(

Df(xk)
)

k
converges to 0T .

Proof. Suppose that there exists an infinite sequence (xk)k obtained by a steepest

descent method (i.e., a number K as described, does not exist). By (***), the

sequence
(

f(xk)
)

k
is monotonically decreasing. Being bounded from below, this

sequence is convergent; hence, f(xk) − f(xk+1) → 0. Due to (*
*
*), we have

f(xk) − f(xk+1) > c‖Df(xk)‖2,
therefore, ‖Df(xk)‖ → 0. ✷

Theorem 65 Let f be a function bounded from below and let its gradient

satisfy the Lipschitz condition with a constant L in a sublevel set S = Wf(x1)(f)

for some x1. Let (xk)k be a sequence obtained using the steepest descent

method with the exact rule (which is correct if the set S is compact), limited

rule with A > 1
2L

or the Armijo rule. Then, either there exists a number K

such that Df(xK) = 0T , or the sequence
(

Df(xk)
)

k
converges to 0T .

Proof. The proof is done by showing that the assumptions of the theorem imply

the assumptions of Lemma 24.

At first we consider the Armijo rule. Let αk = sβmk be the step chosen by this

rule in the k-th step. Then,

f(xk + αkdk) 6 f(xk) + σαkDf(xk)dk. (⊕)
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The number αk has been chosen in the optimal way, i.e., with the lowest power

of β to satisfy the last inequalty. Therefore, for an even lower power of β we have

f(xk + β−1αkdk) > f(xk) + σαkDf(xk)dk. (⊗)

Due to Df(xk)dk < 0 and xk ∈ S, using (⊕) we obtain xk+1 ∈ S. By the

intermediate value theorem, we obtain

f(xk+1) − f(xk) = f(xk + αkdk) − f(xk) = αkDf(x̃k)dk,

where x̃k is a point of the line segment xkxk+1. This line segment is a subset of S;

in particular, x̃k ∈ S. Taking into account that dk = −
(

Df(xk)
)T

, we have

f(xk+1) − f(xk) = αDf(x̃k)dk = −αk

(

Df(xk) − Df(xk) + Df(x̃k)
)(

Df(x̃k)
)T

= −αk‖Df(xk)‖2 + αk

(

Df(xk) − Df(x̃k)
)(

Df(xk)
)T

6 −αk‖Df(xk)‖2 + αk‖Df(xk) − Df(x̃k)‖‖Df(xk)‖.

There is xk ∈ S and also x̃k ∈ S for all k. From the Lipschitz condition satisfied by

the gradient of f it follows that

‖Df(xk) − Df(x̃k)‖ 6 L‖xk − x̃k‖ 6 L‖xk − xk+1‖ = Lαk‖Df(xk)‖.

After substituting this estimation to the previous inequality, we obtain

f(xk+1) − f(xk) 6 −αk‖Df(xk)‖2(1− αkL).

It follows from the above that (⊕) is satisfied if 1− αkL > σ. Let mσ be such

a number that 1− sβmσL > σ > 1− sβmσ−1. It follows that

σsβmσ >
σ(1− σ)β

L
.

On the other hand, mσ does not have to be optimal, satisfying (⊕) and (⊗).

However, the Armijo rule guarantees that mk 6 mσ, because mk is the smallest

number such that (⊕) is satisfied. Hence,

σsβmk > σsβmσ >
σ(1− σ)β

L
.

After substituting the above to (⊕) and using the fact that dk has the steepest

descent direction, we obtain the following inequality:

f(xk − αkdk) − f(xk) 6 −σsβmk‖Df(xk)‖2 6 −σsβmσ‖Df(xk)‖2

< −
σ(1− σ)β

L
‖Df(xk)‖2,
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i.e., the inequality (*
*
*) of Lemma 24.

With the exact minimization rule, we assume that it is well-defined in each step,

i.e., there exists a finite number αk > 0 to minimise f(xk + αdk) for α > 0.

A calculation similar to that in the proof for the Armijo rule yields the estimation

f(xk+1) − f(xk) 6 −αk‖Df(xk)‖2(1− αkL). (
**
**)

The right-hand side of this inequality is minimal for αk =
1
2L

. From that we obtain

f(xk+1) − f(xk) 6 −
1

4L
‖Df(xk)‖2,

i.e., the inequality (***) from Lemma 24.

The proof for the restricted minimization rule is similar to the above. We need to

assume that the interval [0,A] in which we search for αk contains the point 1
2L

to

minimise (****). ✷

Theorem 65 justifies correctness of the steepest descent methods, but it does not

refer to the rate of their convergence. After further strengthtening its

assumptions, we can prove that the convergence is at least linear and the stop

criterion is correct.

We define the set S = { x ∈ R
n : f(x) 6 f(x1) }, where x1 is the initial point. By

m(x) and M(x) we denote respectively the smallest and the greatest eigenvalue of

the Hessian matrix of f at x.

Lemma 25 Suppose that the set S is convex and compact and the function f is

twice continuously differentiable in S. Let m = infx∈S m(x) > 0. Then the

point x being the limit of the sequence (xk)k obtained by a steepest descent

method is in S. It is the minimum of f in S and for all x ∈ S there is

‖x− x‖ 6
1

m
‖Df(x)‖, f(x) − f(x) 6

1

m
‖Df(x)‖2.

Proof. Due to m = infx∈Sm(x) > 0, the Hessian D2f(x) is positive-definite at all

points of S and it follows that f is a convex function in S.

The set S is compact; the function f is bounded from below and its gradient

satisfies the Lipschitz condition. By Theorem 65, Df(xk) → 0, i.e., x ∈ S. The

critical point of a convex function is its minimum.
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The Taylor formula for x ∈ S gives us

f(x) = f(x) +
1

2
(x − x)TD2(x̃)(x − x),

f(x) = f(x) + Df(x)(x − x) +
1

2
(x − x)TD2(x̂)(x − x).

After substituting the first equality to the second, we obtain

Df(x)(x− x) + (x− x)T
D2f(x̂) − D2f(x̃)

2
(x− x) = 0.

We can, therefore, estimate

Df(x)(x− x) = (x− x)T
D2f(x̂) − D2f(x̃)

2
(x− x) > m‖x− x‖2,

and then

‖Df(x)‖‖x− x‖ > (x− x)T
D2f(x̂) − D2f(x̃)

2
(x− x) > m‖x− x‖2.

After dividing the sides of the last inequality by m‖x− x‖, we obtain

‖x− x‖ 6
1

m
‖Df(x)‖.

Using the Taylor formula again, due to the convexity of f in S, we obtain

f(x) = f(x) + Df(x)(x − x) +
1

2
(x − x)TD2f(x̂)(x − x) > f(x) + Df(x)(x − x).

Hence,

f(x) − f(x) 6 Df(x)(x − x),

i.e.,

f(x) − f(x) = |f(x) − f(x)| 6 ‖Df(x)‖‖x− x‖ 6
1

m
‖Df(x)‖2. ✷

Lemma 26 Let S be convex and compact. Let f be of class C2 in s and

m = infx∈S m(x). Denote M = supx∈S M(x). Then, M < +∞ and the sequence

(xk)k obtained with the steepest descent method with the exact minimization

rule there is

f(xk+1) − f(x) 6
(

1−
m

2M

)

(

f(xk) − f(x)
)

.

With the restricted minimization rule there is

f(xk+1) − f(x) 6
(

1−mγ+
mMγ2

2

)

(

f(xk) − f(x)
)

,

where γ = min{ 1
M
, A}.
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Proof. Consider the exact rule. By the Taylor formula, for δ > 0, we have

f
(

xk − δ
(

Df(xk)
)T
)

6 f(xk) + Df(xk)
(

−δ
(

Df(xk)
)T
)

+ δ2
M

2
‖Df(xk)‖2

= f(xk) − δ‖Df(xk)‖2 + δ2
M

2
‖Df(xk)‖2. (⊙)

The minimum of the right-hand side is taken at δ = 1
M

. Recall that xk+1 is the

minimum for α > 0:

f(xk+1) = inf
α>0

f
(

xk − α
(

Df(xk)
)T
)

.

Therefore,

f(xk+1) 6 f
(

xk −
1

M

(

Df(xk)
)T
)

6 f(xk) −
1

2M
‖Df(xk)‖2.

Now we subtract f(x) from both sides and we apply the inequality

‖Df(xk)‖2 > m
(

f(xk) − f(x)
)

, being a consequence of Lemma 25:

f(xk+1) − f(x) 6 f(xk) − f(x) −
m

2M

(

f(xk) − f(x)
)

.

A simple calculation yields the claim.

Now we consider the restricted rule. The point xk+1 is the minimum for

α ∈ [0,A). The minimum on the right-hand side of (⊙) is obtained with δ = γ.

The rest of the proof is identical to the proof for the exact rule. ✷

The above considerations may be concluded as follows: by Lemma 25, the stop

condition based on the norm of the gradient of f is correct; it gives us estimations

of the approximation error of x by xk+1 as well as the approximation error of the

minimal function value f(x) by f(xk+1). Note that “the more convex” is the

function f in a neighbourhood of x, i.e., the greater is m, the sharper is the

dependency between the norm of the gradient and the distance between xk+1

and x. Lemma 26 suggests that the convergence is fastest if the function f behaves

similarly in all directions, i.e., the eigenvalues of the Hessian matrix are close to

each other. Then, the quotient m
M

is great (close to 1), which decreases the

contraction factor 1− m
2M

. Thus, the steepest descent algorithm works best for

functions such that their corresponding numbers m and M are of the same order

of magnitude.

The correctness of the stop criterion for the Armijo rule still holds, as Lemma 25

does not depend on the step length. Lemma 26 for this case has to be modified;

however, the (at least) linear rate of convergence remains.
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What is the advantage of the Armijo rule? It is simple to implement, as it does not

need methods of searching minima of functions of one variable. The actual rate of

convergence depends on the parameters s, β, δ. Alas, there is no general rule of

choosing these parameters—user’s experience and intuition must be employed.

Newton’s method

The descent methods described above choose the directions for the next point

based on the Taylor expansion up to the first-order term:

f(x+ d) ≈ f(x) + Df(x)d.

The Newton method uses the expansion up to the second-order term of the

function f : Rn → R; assume that it is twice differentiable. Then, we use the

approximation

f(x+ d) ≈ f(x) + Df(x)d+
1

2
dTD2f(x)d.

Instead of finding a minimum of f, we minimise the expression on the right-hand

side above. For this to make sense we have to assume that the Hessian matrix

D2(x) is positive-definite. With f(x) fixed, the problem reduces to the following:
{

h(d) = 1
2
dTD2f(x)d+ Df(x)d → min,

d ∈ R
n.

As the Hessian is, by assumption, positive-definite, the problem above has the

unique solution

d = −
(

D2f(x)
)−1(

Df(x)
)T
.

Note that if the gradient of f at x is zero, then d = 0 and we shall not leave the

critical point. The Newton algorithm is

Preparation: Choose the initial point x1 and the parameter ε > 0.

k-th step: Take xk+1 = xk + dk, where D2f(xk)dk = −
(

Df(xk)
)T

.

Stop condition: ‖Df(xk+1)‖ 6 ε.

There are a number of doubts about this algorithm. It is not clear whether the

sequence (xk)k is convergent; moreover, it is easy to find a regular function, having

a minimum, for which the method generates a divergent (unbounded) sequence.

The theorem below describes a sufficient condition for the convergence.
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Theorem 66 Let f be a function of class C3 in a neighbourhood of a local

minimum x and let the Hessian D2f(x) be positive-definite. Then, there exists

δ > 0 and c > 0 such that for any xk ∈ B(x, δ) there is

‖xk+1 − x‖ 6 c‖xk − x‖2.

Proof. The continuity of D2f implies the existence of δ > 0 such that for

x ∈ B(x, δ) the norms of D2f(x) and
(

D2f(x)
)−1

are bounded and greater than

some r > 0.

Expanding the gradient of f at xk, we get

(

Df(xk + h)
)T

=
(

Df(xk)
)T

+ D2f(xk)h+O(‖h‖2).

Substituting to the above h = −hk = −(xk − x), we obtain

(

Df(xk)
)T

− D2f(xk)hk +O(‖hk‖2) =
(

Df(x)
)T

= 0.

Let xk ∈ B(x, δ). Multiplying the sides of the above by
(

D2f(xk)
)−1

, we obtain

0 =
(

D2f(x)
)−1(

Df(xk)
)T

− hk +O(‖hk‖2 = −dk − hk +O(‖hk‖2) (*)

There is

−dk − hk = xk − xk+1 − (xk − x) = −(xk+1 − x) = −hk+1.

Therefore, by (*), there exists a constant c > 0 such that

‖hk+1‖ 6 c‖hk‖2;

hence, the rate of convergence is quadratic.

If xk ∈ B(x, α
c
), where α ∈ (0, 1) and α

c
6 δ, then the last inequality gives us also

‖hk+1‖ 6 c
α

c
‖hk‖ = α‖hk‖,

which means that the sequence of vectors (hk)k, being differences of the points xk

and the solution x tends to 0. ✷

Remark. (1) If the point xk is distant from the solution x, then the Hessian

D2f(xk) does not have to be positive-definite.

(2) If the Hessian is positive-definite at xk, then the vector dk constructed in the

k-th step has a descent direction for the function f:

Df(xk)dk = −Df(xk)
(

D2f(xk)
−1)

)−1(

Df(xk)
)T

< 0.
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(3) Even if the Hessian is positive-definite at xk, there is no guarantee that

f(xk+1) < f(xk), because there is no minimization along the line having the descent

direction. The length of the vector dk may simply be too big.

(4) A drawback of the Newton method is that it may converge to a critical point

being a local maximum or a saddle point (this may be the case if the Hessian is

not positive-definite). The assumption of pseudoconvexity of f guarantees that the

critical point is a minimum.

A remedy to the above may be minimization along the Levenberg–Marquardt

trajectory. The system of linear equations D2f(xk)d = −
(

Df(xk)
)T

may be

replaced by the following:

(

D2f(xk) + νI
)

d = −
(

Df(xk)
)T
,

where ν is a parameter and I is the identity matrix. We can define a function of

one variable,

g(ν)
def
= f

(

xk −
(

D2f(xk) + νI
)−1(

Df(xk)
)T
)

.

Then, we can chose ν so as to minimise the function g; the point xk+1 is then the

argument of f corresponding to that ν. Note that if ν = 0, then the point xk+1 is

the one obtained with the Newton method. The eigenvalues of the matrix
(

D2f(xk) + νI
)

are the eigenvalues of D2f(xk) increased by ν; hence, there exists ν0

such that the matrix
(

D2f(xk) + νI
)

is positive-definite for all ν > ν0.

The Levenberg–Marquardt trajectory is the parametric curve made of the points

xk −
(

D2f(xk) + νI
)−1(

Df(xk)
)T

, where ν > ν0. Note that by increasing ν we

obtain the vectors −
(

D2f(xk) + νI
)−1(

Df(xk)
)T

whose directions tend to the

direction of −Df(xk), i.e., to the steepest descent direction, and their lengths tend

to 0. Therefore, if the gradient of f at xk is nonzero, we have a guarantee of

finding on the Levenberg–Marquardt trajectory a point xk+1 such that

f(xk+1) < f(xk). Minimization along Levenberg–Marquardt trajectories may also

produce a divergent sequence of points or a sequence convergent to a saddle point.

Another drawback of the Newton method are the difficulty of finding a good initial

point x1 and the parameter ε for the stop condition. The Levenberg–Marquardt

approach makes the choice of initial points considerably easier.

If the dimension n of the problem is large, each iteration, involving the

computation of n2 coefficients of the Hessian and solving a system of n equations,

is costly.
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Conjugate directions and conjugate gradient methods

Definition 38 Let H be a symmetric and positive-definite n× n matrix.

Nonzero vectors d1, . . . ,dn are called conjugate with respect to the matrix H if

dT
iHdj = 0, i, j ∈ {1, . . . , n}, i 6= j.

Note that if the vectors d1, . . . ,dn are conjugate with respect to a matrix, then

they are linearly independent.

Consider a quadratic function f(x) = 1
2
xTHx+ bTx+ c with a symmetric and

positive-definite matrix H. The minimum of this function may be found using

a conjugate directions method: subsequent points approximating the minimum

are searched in the directions of vectors conjugate with respect to the matrix H.

The algorithm is the following:

Preparation: Choose the initial point x1.

k-th step:

1. Choose the vector dk.

2. Take xk+1 = xk + tkdk, where tk is chosen by the exact minimization

rule, tk = arg min{ f(xk + tdk) : t > 0 }

Stop condition: ‖Df(xk+1)‖ = 0.

Theorem 67 A conjugate directions method with the exact minimization rule

finds the minimum of a quadratic function f(x) = 1
2
xTHx+ bTx+ c with

a positive-definite matrix H after at most n steps.

Proof. Denote gk = Df(xk). It is easy to notice that

gk+1dk = 0, k = 1, . . . , n− 1.

To this end, consider the function h(t) = f(xk + tdk); it has the minimum at tk,

therefore h ′(tk) = 0. On the other hand, h ′(t) = D(xk + tdk)dk and

h ′(tk) = gk+1dk.
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For the quadratic function f we obtain

gk+1 − gk = Df(xk+1) − Df(xk) =
(

Hxk+1

)T
−
(

Hxk

)T
= tkd

T
kH.

Using this equality we prove by induction that

gk+1dj = 0, k = 1, . . . , n− 1, j = 1 . . . , k. (✷)

For k = 1 it is already proved. Suppose that gkdj = 0 for j = 1, . . . , k − 1. Then,

for j = 1, . . . , k − 1

gk+1dj = (gk + tkd
T
kH)dj = gkdj + tkd

T
kHdj = 0

because gkdj = 0 due to the inductive assumption and dT
kHdj = 0 because the

vectors dk and dj are conjugate with respect to H. Also, the equality gk+1dk is

already proved, which completes the proof of (✷).

By (✷), the derivatives of the function f at xk+1 in the directions of d1, . . . ,dk are

zero; hence,

Df(xk+1)d = 0, d ∈ lin{d1, . . . ,dk}.

Let

Kk = xk+1 + lin{d1, . . . ,dk} = x1 + lin{d1, . . . ,dk}.

Let F = f|Kk
. The function F is convex, because f is convex and Kk is a convex set.

All directional derivatives equal to 0 is a sufficient condition for a minimum of

a convex function. Therefore,

xk+1 = arg min{ F(x) : x ∈ Kk } = arg min
{
f(x) : x ∈ x1 + lin{d1, . . . ,dk}

}
.

To complete the proof we notice that Kn = R
n. ✷

The method analysed in the last theorem is very effective, as we can find the

minimum in at most n steps. Its drawback is the necessity of finding the entire set

of conjugate vectors of the matrix H (these may be the eigenvectors of H). The

conujgate gradient method described below finds conjugate vectors in consecutive

steps of the algorithm. This method is also known as the

Fletcher–Reeves algorithm.

Preparation: Choose the initial point x1.

13.16

1-st step: Take d1 = −gT
1 (the vector with the steepest descent direction) and

x2 = x1 + t1d1, t1 = arg min{f(x1 + td1)}.

k-th step, k > 1: (we already know the vectors d1, . . . ,dk−1)

1. Take

βk−1 =
gkg

T
k

gk−1g
T
k−1

, dk = −gT
k + βkdk−1.

2. Take xk+1 = xk + tkdk, where tk = arg min{f(xk + tdk)}.

Stop condition: ‖Df(xk+1)‖ = 0.

Theorem 68 The Fletcher–Reeves algorithm with the exact minimization rule

applied to a quadratic function f : Rn → R with a positive Hessian matrix H

constructs vectors d1,d2, . . . conjugate with respect to the matrix H.

Moreover, for i 6 m = max{ i : gi 6= 0T } there is

gig
T
j = 0, j = 1, . . . , i− 1, (⊕)

and

gidi = −gig
T
i . (⊗)

Proof. If m = 0, then the initial point is the solution and there is nothing to

prove. Let m > 1. The proof is done by the induction with respect to i.

If i = 1, then we only need to prove that gidi = −gig
T
i , which is obvious due to

d1 = −gT
1 .

Suppose that the vectors d1, . . . ,di are conjugate with respect to H and the

equalities (⊕) and (⊗) are satisfied for some i < m. From the proof of Theorem 67

we know that for a quadratic function f

gi+1 − gi = tid
T
iH. (⊖)

Using this and gi+1di = 0, we obtain

0 = gi+1di = gidi + tid
T
iHdi.
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From the above we obtain

ti = −
gidi

dT
iHdi

=
gig

T
i

dT
iHdi

; (⊙)

the last equality is based on the inductive assumption.

For j < i, by the inductive assumption and Step 2 of the algorithm we have

gi+1g
T
j = gig

T
j + tid

T
iHgj = gig

T
j + tid

T
iH(dj − βj−1dj−1)

= gig
T
j − tid

T
iHdj + tiβj−1d

T
iHdj−1 = 0,

because the first term of the last sum is 0 by the inductive assumption

(equality (⊕)) and the other two terms are 0 because the vectors di, dj and dj−1

are conjugate with respect to H.

A similar calculation with i = j, using the inductive assumption and (⊙) gives us

gi+1g
T
i = gig

T
i − tid

T
iHdi + tiβi−1d

T
iHdi−1 = gig

T
i −

gig
T
i

dT
iHdi

dT
iHdi = 0.

We proved that gi+1g
T
j = 0 for j = 1, . . . , i, which is the inductive step of the proof

of (⊕).

It remains to be proved that the vectors d1, . . . ,dm are conjugate with respect

to H. Using (⊖) and the formula for di+1 we obtain

dT
i+1Hdj = −gi+1Hdj + βid

T
iHdj = −

1

tj
gi+1(gj − gj+1) + βid

T
iHdj

= −
1

tj
gi+1g

T
j+1 + βid

T
iHdj.

For j < i we obtain at once dT
i+1Hdj = 0, because, by inductive assumption,

gi+1g
T
j+1 = 0 and dT

iHdj = 0.

For j = i, using the formulae for ti and βi, we obtain

dT
i+1Hdj = −

1

tj
gi+1g

T
j+1 +

gi+1g
T
i+1

gig
T
i

dT
iHdj

= −
1

tj
gi+1g

T
j+1 +

gi+1g
T
i+1

gig
T
i

gig
T
i

ti
= 0.

We proved that

dT
i+1Hdj = 0, j = 1, . . . , i.
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The last thing to be proved is the equality (⊗). Using the formula for di+1

and (✷), we obtain

gi+1di+1 = gi+1(−gT
i+1 + βidi) = −gi+1g

T
i+1 + βigi+1di = −gi+1g

T
i+1.

This completes the entire inductive step. ✷

The conjugate gradient method is a powerful method of solving systems of linear

equations with a symmetric and positive-definite n× n matrix, where n is large.

It is most often used to solve systems with millions of unknown variables obtained

by discretization of partial differential equations, which is beyond the scope of this

lecture. The idea is to find the minimum of the quadratic function 1
2
xTAx− bTx,

whose gradient is xTA− bT ; clearly, at the minimum x the gradient is zero, i.e.,

Ax = b. It turns out that the points obtained in consecutive iterations initially

approach the solution, but the rounding errors (always present if floating point

arithmetic is used) destroy the convergence; from a certain step the distance

between the consecutive points and the solution may (rapidly) increase.

Therefore, for huge systems of equations the conjugate gradient method is used as

an iterative method: the computations are broken after m iterations, where m is

much smaller than n.

If f is not a quadratic function, then the Fletcher–Reeves conjugate gradient

method has to be modified. Even without rounding errors we cannot expect the

method to find the minimal point of a function of n variables after n iterations.

Therefore the stop condition has to be based on a test, e.g., comparing the length

of the gradient with some tolerance threshold:

Preparation: Choose the initial point x1 and the parameter ε > 0.

1-st step: Take d1 = −gT
1 (the vector with the steepest descent direction) and

x2 = x1 + t1d1, t1 = arg min{f(x1 + td1)}.

k-th step, k > 1: (we already know the vectors d1, . . . ,dk−1)

1. Take

βk−1 =
gkg

T
k

gk−1g
T
k−1

, dk = −gT
k + βkdk−1.

2. Take xk+1 = xk + tkdk, where tk = arg min{ f(xk + tdk) : t > 0 }.

Stop condition: ‖Df(xk+1)‖ 6 ε.



13.19

Note that making more than n iterations makes no sense for a quadratic

function f. Therefore many implementations of the method make a “reset” every

m iterations, where m 6 n; the vector dk after the reset is −gT
k, i.e., it has the

steepest descent direction.

In general, the choice of βk−1 as above does not guarantee the vector dk to have

a descent direction, which is why the formula for βk−1 is subject to various

modifications. A modification often giving better results than the original

Fletcher–Reeves method is the following:

βk−1 =
gk(gk − gk−1)

T

gk−1g
T
k−1

.

If f is a quadratic function, then gkg
T
k−1 = 0, and so this formula is equivalent to

the original one.

Example. Figure 11 shows level sets of the Rosenbrock “banana valley” function,

f(x, y) = (x − 1)2 + 100(x2 − y)2,

whose unique minimum is x = (1, 1). This function is known as troublesome in

numerical optimization, which is why it is one of popular, or even classical tests

for various algorithms. The initial point x1 = (−0.5, 0.5) was taken for three

algorithms discussed above.

The steepest descent method with restricted minimization rule with A = 0.5

yields the sequence of points shown in figure (a); note the very slow convergence

to the minimum; the first 150 points have been plotted. One can see that

improving the accuracy of computing minima in the steepest descent directions

does not accelerate the convergence.

Figure (b) shows the sequence constructed with the Newton method augmented

with minimization along Levenberg–Marquardt trajectories; three such trajectories

were necessary, and the method has dealt with the problem pretty well.

In Figure (c) we can see the sequence constructed using the modified

Fletcher–Reeves method, with reset every 2 iterations. After the initial quick

progress the algorithm got stuck at a considerable distance from the minimal

point.
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a)

b) c)

Figure 11: Searching the minimum of the Rosenbrock function
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14. Algorithms for optimization with constraints

Now we focus on numerical methods for optimization problems with inequality

constraints. We shal see problems arising when the steepest descent methods and

their naive modifications are used and we shall see a more efective, though more

complicated approach.

The problem considered here is





f(x) → min,

gi(x) 6 0, i = 1, . . . ,m,

x ∈ R
n,

where f, g1, . . . , gm : Rn → R. Thus, the feasible set is

W = { x ∈ R
n : g1(x) 6 0, . . . , gm(x) 6 0 }.

In our considerations we use the notion of feasible directions, defined as follows:

F(x) = {d ∈ R
n : d 6= 0 and there exists λ∗ > 0

such that x+ λd ∈ W for all λ ∈ [0, λ∗] }.

Zoutendijk algorithm for affine constraints

Consider a simple modification of the steepest descent method. If a point x is in

the interior of W, then we can move in the steepest descent direction until we hit

the boundary. If the point is already at the boundary, then it is natural to choose

a direction of the possibly steep descent being feasible. Such a direction is called

a feasible descent direction at the point x; a vector d having such a direction

satisfies the inequality Df(x)d < 0.

It turns out that if the constraint functions are affine, then this idea works quite

well; it is named the Zoutendijk algorithm. Recall that problems with affine

constraints are simpler than the general case. This simplicity makes it possible to

extend the analysis to problems with mixed affine constraints, i.e.,





f(x) → min,

Ax 6 b,

Qx = a,

x ∈ R
n.

(*)

Here A is an m× n matrix, Q is l× n, b ∈ R
m, a ∈ R

l. The following lemma

characterises the set of feasible descent directions. Its proof is left as an exercise.
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Lemma 27 Let x be a feasible point for the problem (*). Assume that the

matrix A and the vector b may be divided into blocks A1, A2 and b1, b2 such

that Ax 6 b is the conjunction of A1x = b1, A2x < b2 (depending on the set

of active constraints at x, this may require renumbering of the constraints).

The vector d ∈ R
n has a feasible direction at x if A1d 6 0 and Qd = 0. If in

addition Df(x)d < 0, then d has a feasible descent direction.

How to choose the best descent direction at x? It would be the simplest to solve

the problem

Df(x)d → min, d ∈ F(x), ‖d‖ 6 1. (**)

The restriction for the norm of d is indispensable. Without it, for any vector d

having a feasible descent direction there is limλ→∞ Df(x)λd = −∞ and the

problem above has no solution.

Using the block A1 of the matrix A as in Lemma 27, we can rewrite the

problem (**) in the form






Df(x)d → min,

A1d 6 0,

Qd = 0,

dTd 6 1.

Note that the only nonlinear part above is the norm restriction. In practice,

without loss of the algorithm quality it is replaced by linear restrictions, which

make it possible to use fast methods of linear optimization (e.g. the simplex

algorithm). The most popular replacements for the Euclidean norm ‖d‖2 are

� the maximum norm, ‖d‖∞ = maxj|dj|, which gives us

−1 6 dj 6 1, j = 1, . . . , n,

� the first norm, ‖d‖1 =
∑

j |dj|; in this case we have the inequalities

{ ∑n
j=1 ηj 6 1,

−ηj 6 dj 6 ηj, j = 1, . . . , n,

where η1, . . . , ηn are new, auxiliary variables.
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Below we consider the algorithm with the maximum norm restriction:





Df(x)d → min,

A1d 6 0,

Qd = 0,

−1 6 dj 6 1, j = 1, . . . , n.

The algorithm is the following:

Preparation: Choose the initial point x1.

k-th step:

1. Given a point xk, find the blocks A1, A2 of the matrix A and the blocks

b1, b2 of b so as to obtain A1x = b1 and A2x < b2 (like in Lemma 27).

2. Choose the vector dk by solving the problem





Df(xk)d → min,

A1d 6 0,

Qd = 0,

−1 6 dj 6 1, j = 1, . . . , n.

(***)

3. If Df(xk)dk = 0, then stop, as the point xk satisfies the necessary

first-order condition. Else continue.

4. Take αk = arg minα∈[0,Ak]
f(xk + αdk), where Ak is the greatest number

such that the line segment xk,xk +Akdk is contained in the feasible

set W.

5. Take xk+1 = xk + αkdk.

Let’s take a look at the choice of the vector dk. The vector dk = 0 satisfies all

restrictions, therefore the minimal value of the function Df(xk)dk is less than or

equal to 0.

Lemma 28 The necessary first-order condition is satisfied at xk if and only if

the solution dk of (***) satisfies the equality Df(xk)dk = 0

Proof. Recall that the necessary first-order condition for the problem (*) is

satisfied at xk if and only if there exist vectors µ ∈ [0,∞)m1 and λ ∈ R
l such that

Df(xk) + µTA1 + λTQ = 0T ,
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where the m1 × n matrix A1 corresponds to the constraints active at xk.

By the Farkas lemma (Lemma 15), if this system has a solution, then the system






Df(xk)d < 0,

A1d 6 0,

Qd = 0

(****)

is inconsistent. Due to the observation that d = 0 is a solution of the system

above with the inequality Df(xk)d < 0 replaced by the equality Df(xk)d = 0, the

right implication is proved.

To prove the left implication, we notice that if Df(xk)d = 0, then dk does not

satisy (****). Using again the Farkas lemma we notice that the necessary first-order

condition is then satisfied. ✷

Zoutendijk algorithm for nonlinear constraints

One can wonder if the Zoutendijk algorithm works just as well for nonlinear

constraints:

Preparation: Choose the initial point x1.

k-th step:

1. Given a point xk, choose the vector dk by solving the problem

Df(xk)d → min, d ∈ F(xk), ‖d‖ 6 1.

2. If Df(xk)dk = 0, then stop, as the point xk satisfies the necessary

first-order condition. Else continue.

3. Take αk = arg minα∈[0,Ak]
f(xk + αdk), where Ak is the greatest number

such that the line segment xk,xk +Akdk is contained in the feasible

set W.

4. Take xk+1 = xk + αkdk.

Figure 12 shows the steepest descent methods used to find the minimum of the

function f(x1, x2) = −2x1 − x2 in two different sets; the minimal point is denoted

by x. In the case (a) the minimum is found in the second step. If the set W is not

convex, as in the case (b), the algorithm may go to a dead end. This is, alas,
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Df(x1) x1

x2

x3 = x

Df(x1) x1

x2

x3 x

Figure 12: Steepest descent method for two different feasible sets

Df(x1) x1

x2

Figure 13: Failure of the descent method in a convex feasible set

a property of all descent algorithms. Therefore, we have to require that the

feasible set be convex. Does it suffice? No. In Figure 13 we can see that the

algorithm may fail even with a convex feasible set. The steepest descent direction

cannot be found, because the set of feasible descent directions F(x2) is not closed.

It is easy to find a way out: we need to choose such a vector dk that the descent is

steep and also a long part (line segment) of the halfline having the direction of dk

be contained in the set W. We still pursue the simplicity, i.e., linearity, of the

optimization problem posed in order to choose dk. The solution is prompted by

the following lemma:

Lemma 29 Let x be a feasible point. If the functions f and gi for i ∈ I(x) are

differentiable at x and the functions gi for i /∈ I(x) are continuous, then any

vector d such that Df(x)d < 0 and Dgi(x)d < 0 for i ∈ I(x) has a feasible

descent direction.

Proof. First we prove that d has a feasible direction, i.e., for a sufficiently small

λ > 0 there is x+ λd ∈ W. For i /∈ I(x), due to the continuity of gi we have
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gi(x + λd) < 0. For i ∈ I(x) we have

gi(x + λd) = gi(x) + λDgi(x)d+ o(λd).

There is gi(x) = 0, Dgi(x) < 0 and o(λd) → 0 for λ → 0; hence, gi(x+ λd) < 0 for

all sufficiently small positive λ.

The vector d has a feasible direction. By the asumptions of the lemma it has also

a descent direction. There is

f(x+ λd) = f(x) + λDf(x)d+ o(λd).

Hence, for λ sufficiently small there is f(x+ λd) < f(x). ✷

Lemma 29 gives us only a sufficient condition. There are optimization problems

with inequality constraints such that one of feasible descent directions does not

satisfy the lemma’s assumptions.

Choosing a vector d ∈ R
n such that Df(x)d < 0 and Dgi(x)d < 0 for i ∈ I(x) may

be done by solving the following problem:
{

max{Df(x)d, Dgi(x)d, i ∈ I(x) }− → min,

−1 6 dj 6 1, j = 1, . . . , n.

The target function above is tough to implement; we can reduce its minimization

to the much simpler linear optimization problem





η → min,

Df(x)d 6 η,

Dgi(x)d 6 η, i ∈ I(x),

−1 6 dj 6 1, j = 1, . . . , n.

(⊗)

Here the optimization is done with respect to two variables: d ∈ R
n and η ∈ R.

Note that η 6 0, because the pair (d, η) = (0, 0) satisfiest the constraints above. If

the target function has a negative value, then by Lemma 29 the vector d has

a feasible descent direction. If η = 0 is a solution and the linear independence

condition is satisfied by the constraints, then the necessary first-order condition is

satisfied at x. The inverse implication is also true.

Lemma 30 If the linear independence condition is satisfied by the constraints

at a feasible point x and η = 0 is the solution of the problem (⊗), then the

necessary first-order condition is satisfied at x. Also, if the first-order

condition is satisfied at x, then η = 0 is the solution of (⊗) (here the

regularity of constraints at x needs not be assumed).
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Proof. If η = 0 is the solution, then the system Ad < 0, where A is the matrix

whose rows are gradients of f and gi, i ∈ I(x), has no solution. By Gordan’s

lemma (Lemma 18), there exists y > 0, y 6= 0 such that ATy = 0. Let

y =
(

µ̂0, µ̂i, i ∈ I(x)
)

and let µ̂i = 0 for i /∈ I(x). The equality ATy = 0 may be

rewritten as follows:

µ̂0Df(x) +
∑

i∈I(x)

µ̂iDgi(x) = 0T .

From the assumption of linear independence of gradients of the active constraints

we conclude that µ̂0 6= 0. Taking µi = µ̂i/µ̂0 for i = 1, . . . ,m, we obtain the

Lagrange multipliers for the necessary first-order condition.

To prove the inverse implication we notice that if the necessary first-order

condition is satisfied at x, then the vector y =
(

1, µi, i ∈ I(x)
)

satisfies the

following: y > 0, y 6= 0 and ATy = 0. By Lemma 18, there is no d ∈ R
n such that

Ad < 0. Then, η = 0 is the solution of (⊗). ✷

The complete Zoutendijk algorithm for nonlinear problems with nonlinear

constraints is the following:

Preparation: Choose the initial point x1.

k-th step:

1. Given a point xk, choose the vector dk by solving the problem





η → min,

Df(xk)d 6 η,

Dgi(xk)d 6 η, i ∈ I(xk),

−1 6 dj 6 1, j = 1, . . . , n.

2. If η = 0, then stop, as the point xk satisfies the necessary first-order

condition. Else continue.

3. Take αk = arg minα∈[0,Ak]
f(xk + αdk), where Ak is the greatest number

such that the line segment xk,xk +Akdk is contained in the set W.

4. Take xk+1 = xk + αkdk.

Example. Consider the problem





2x21 + 2x22 − 2x1x2 − 4x1 − 6x2 → min,

x1 + 5x2 6 5,

2x21 − x2 6 0,

x1 > 0, x2 > 0.
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The Zoutendijk algorithm with the initial point x1 = (0, 0.75) generates the

following sequence of points:

x2 = (0.2803, 0.5477),

x3 = (0.5555, 0.8889),

x4 = (0.6479, 0.8397),

x5 = (0.6302, 0.8740).

As we can see, this sequence shows considerable oscillations in the feasible set, see

Figure 14. This is a typical behaviour of descent methods for problems with

constraints.

x1

x2

x1

x2

x3

x4

x5

Figure 14: Oscillations of the sequence generated by the Zoutendijk algorithm

x1

x2

x1

x2

x3

x4

x5

Figure 15: Convergence to a point not being a solution

The Zoutendijk algorithm may fail even for rather simple problems. Consider
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searching the minimum of the linear function f(x1, x2) = −2x1 − x2 in the set

shown in Figure 15; the minimum is at x = (1, 1). Beginning at x1 = (−1, 0), we

obtain a sequence of points converging to (1, 0); thus, the algorithm will not

approach the solution x. Moreover, the value of f at (1, 0) is −2, while f(x) = −3.

However, a slight modification may improve the Zoutendijk algorithm.

Topkis–Veinott modification

In 1967 Topkis and Veinott suggested a modification of the method of choosing dk

in the Zoutendijk algorithm:





η → min,

Df(xk)d 6 η,

Dgi(xk)d 6 η− gi(xk), i = 1, . . . ,m,

−1 6 dj 6 1, j = 1, . . . , n.

(⊕)

The inequalities imposed for gradients of constraints include all constraints; for

active constraints, i ∈ I(xk), we have gi(xk) = 0 and thus the conditions have not

been changed. For inactive constraints, gi(x) < 0 and the right-hand sides of the

inequalities are greater than η. If the value of gi at xk is great, then the inequality

is almost irrelevant. If the value of gi is close to 0, i.e., the constraint is “almost

active”, then the corresponding inequality has a significant influence on the choice

of dk. Moreover, in the implementation this modification helps finding the active

constraints, as due to the inexact representation of real numbers (the floating

point representation), we usually cannot obtain gi(x) = 0.

The theorem, which characterises the effectiveness of this modification is given

without proof:

Theorem 69 Assume that f, g1, . . . , gm are of class C1. If the sequence (xk)k

constructed by the Zoutendijk algorithm with the Topkis–Veinott modification

has a concentration point x, at which the linear independence regularity

condition is satisfied, then the necessary first-order condition is satisfied at x.

Conclusion

The numerical methods described above make it possible to approximate points

satisfying the necessary first-order condition. Then, Theorem 47 may be used to

guarantee the optimality of those points. In particular, if the constraints are

linear, it suffices to assume pseudoconvexity of the function f. Note that similar
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assumptions were needed for problems without constraints. The assumption

about convexity is a natural and often necessary condition for the numerical

methods to work well.


