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1. Introduction
Optimization problem

Let W C R" be a nonempty set and f: W — R a function. We consider the
problem of finding minima of f in W, taking in particular

e W =R" (unconstrained optimization),

e W={xeR": gi(x)=0,...,gn(x) =0}, where gj,..., gn are functions
R™ — R" (equality constraints),

e W={xeR": g1(x) <0,...,gn(x) <0}, where gy,..., gy are functions
R™ — R" (inequality constraints).

The set W is called a feasible set/region.

Definition 1 A point xo € W 1s called a global minimum of f in W f

f(x) > f(xo) forallx e W.

Definition 2 A point xo € W 1s called a local minimum of f in W if there
exists € > 0 such that

f(x) > f(xo) for allx € WNB(xo,¢),

where B(xy, €) is the ball whose centre is x, and the radius is €.

Any global minimum is a local minimum. A minimum is called strict if in the
definitions above there is f(x) > f(xo) for x # X¢. In a similar way we define global
and local maxima. A point X, is a (global or local) extremum if it is a minimum
or a maximum.

Minima need not exist, if no point x, fulfills the definitions. A global minimum
does not exist if infycy f(x) = —oo or infycw f(x) = ¢ and f(x) > ¢ for all x € W.

Example. Let f(x) = xcosx. If W = R then inf,cyw f(x) = —o0, and there is no
global minimum and an infinite set of local minima. If W = [a, b], where a,b € R,
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then a global minimum exists. If W = (a,b) then minima either exist or not,
depending on the choice of a,b. In general, a continuous function is not
guaranteed to have extrema if the feasible set is not compact, e.g. if it is open.

Existence of minima of a continuous function

Theorem 1 If the set W € R" is compact and f: W — R is a continuous
function, then f reaches its infimum and supremum in W, t.e., there exist
Xo, Yo € W such that

f(xo) < f(x) < f(yo) forallx e W.

Definition 3 A function f: W — R is called coercive if f(x) — oo for ||x|| = oo.
Equivalently,

VisoTssoVxew [|X|| >s = f(x) > .

If W is a bounded set, then any function f: W — R is coercive.

Theorem 2 If W C R" is a closed set and f: W — R is continuous and
coercive, then there exists a minmimum xo of f in W.

Proof. For a point y € W we define the set Uy ={x € W: f(x) < f(y) }. The set
U, is nonempty and closed, as the function f is continuous and the inequality in
the definition of U, is nonsharp and W is closed. This set is also bounded: for

r = f(y), from the coercivity of f there exists s > 0 such that if ||x|| > s, then

f(x) > r = f(y); hence, x ¢ U, and U, C B(0,s). It follows that U, is a closed
and bounded set, i.e., it is compact. Therefore there exists a global minimum X,
of f in Uy. Due to f(x) > f(y) > f(xo) for x ¢ Uy, X is also a global minimum of f
inW. O

Theorem 3 Let W C R" be nonempty and let f: W — R be a continuous
function. If there exists y € W such that for any sequence (X,)n, C W such
that

Xn 2 cAWA\W  or |x,| — oo

there is liminf, ., f(x,) > f(y), then there exists a mintmum x, of the
function f.
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Proof. The set U, is defined as before. To show that it is closed, we take any
sequence (x,)n C U, which converges to X. It suffices to show that X € U,. From
xn € Uy we have f(x,) < f(y) and if X ¢ W, then we have an inconsistency with
the assumption. Hence, X € W. As the function f is continuous in W, there is
f(x) < f(y), hence X € Uy. The set U, is also bounded, which follows from the
assumed implication ||x,|| — co = lminf, .. f(x,) > f(y). The proof is
completed just like the proof of the previous theorem. O

Local minima of functions of one variable

Let W C R be an open set.

Theorem 4 (necessary condition of the 1st order) If xo € W s a local
minimum or mazimum of T and f'(x,) ezists, then f'(xy) = 0.

Proof. Let xy be a local minimum. For sufficiently small h > 0 there is
f(xo —h) = f(x0) < f(xo + h) and then
f(xo —h) — f(x0) <0 = lim f(xo —h) —f(x0)
—h h—0 —h
f(xo +h) — f(xo) . f(xo+h)—f(xo)
SIS S SN RS i
+h 20 = jn +h
hence, f'(xo) =0. O

< 0 = fl(xO) < 0)

z 0 = f/(Xo) = O)

Theorem 5 (necessary condition of the 2nd order) If f: W — R is of
class C2(W) and xq is a local minimum, then f"(xo) > 0.

If the set W is not open, then we cannot use the above theorems for x, € OW. But
the theorem below applies also in this case.

Theorem 6 (sufficient condition of the 2nd order) If f: W — R is of
class C2(W) and f'(xo) =0, f"(xo) > 0 at a point xo € W, then f has a strict
local minimum at xg.

Theorem 7 If W C R is open, f € C¥(W) and

f/(x) = " (x0) = - - = f* V(o) =0, f¥(x0) # 0 for xo € W, then if k is odd,
there 1s no extremum of f at xo, and if k ts even, then there is a local
manimum if ¥ (xo) > 0 and a local mazimum if £ (xy) < 0.
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Taylor’s formulae

Theorem 8 (Rolle’s theorem) If a function f: [a,b] — R ts continuous
in [a,b], differentiable in (a,b) and f(a) = f(b), then there exists a point
X0 € (a,b) such that f'(xy) = 0.

Proof. If f is constant, then the claim is obvious. Otherwise there exists an
extremum X, of f in [a, b] other than a and b: there is

f(x0) = suPye(qp F(X) > fa) or f(xg) = infyefqp f(x) < f(a). Let xo be a maximum.
Then f(x) < f(xo) for all x € [a,b] and

f(x) — f fx)—f
=100 3 gy gy, TOZI0O) i,
X — %o X —Xo
Hence,
. f(x)—f . fx)—f
f'(xo):hmM:hmM
X %o X —Xg XNxo X — X
—
>0 <0

therefore, f'(xo) = 0. If x¢ is a minimum, the proof is similar. O

Theorem 9 (mean value theorem) If a function f: [a,b] — R s continuous
wn [a,b] and differentiable in (a,b), then there exists a point xo € (a,b) such
that

f(b) — f(a) =f'(x0)(b — a).

Proof. Let g(x) & (f(b) — f(a))x — (b — a)f(x). The function g is continuous

in [a,b] and differentiable in (a,b), moreover,
g(a) = f(bJa—f(a)b = g(b).

By Rolle’s theorem, there exists x, € (a,b) such that g’(xo) = 0. Hence,
0 =g'(x0) = f(b) —f(a) — (b —a)f'(x).

The proof is completed by rearranging this formula. O
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Theorem 10 (Taylor’s formula with the remainder in Peano form) Let
f: [a,b] — R be a function differentiable in [a,b] and twice differentiable at
some point xo € (a,b). Then for all x € [a,b] there is

"(x0)

f(x) = flxo) +f'(x0) (x = %0) + —5

(x —x0)* + o((x —x0)?).

Proof. Without loss of generality we assume xy = 0. Let
f//(o) 5
> X
We need to show that R(x) = o(x?). From the continuity of f’ we obtain

R(x) % £(x) — £(0) — £/(0)x

X

fx) — £(0) = j £/(y) dy.

The function f’ is differentiable at 0. Hence, f'(y) = f'(0) + f”(0)y + r(y), where
r(y) = o(y). This means that

lim Ly) =0,
y=0 Yy

i.e., for any € > 0 there exists 6 > 0 such that [y| < d = [r(y)| < elyl.

Now we fix an ¢ > 0 and the related § > 0. For [x| < & we integrate f'(y):

f(x) —f(0) = J (f'(0) + f"(0)y + r(y)) dy = f'(0)x + f émxz +J r(y) dy.

0 0

Hence, R(x) = fgr(y) dy. Using the estimate |r(y)| < ely| for [y| < 8, we obtain

X X EXZ
RO < | Irty)ldy < | efylay = -
0 0 2
Hence,
R(x) €
x2 2"

As ¢ > 0 may be arbitrary, limxéo|%| =0,ie., R(x) =0(x?). O

Just a little more effort is needed to prove the formula with more terms,
applicable for functions having derivatives up to the order k — 1 in (a,b) and the
k-th order derivative at x,:

f(x) = f(xo) + Z ,XO (x —xo) + o((x — x0)¥).
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Theorem 11 (Taylor’s formula with the remainder in Lagrange form) Let
f: [a,b] = R be a function of class C¥'[a,b] and k times differentiable
in (a,b). Forxy € (a,b) and x € [a,b] there is

k—1 f(l]

fx) = flxo) + Y

i=1

£ (%

00) (g4 P50
1!

where X 1s a point between xy and X.

Proof. The function h(x) & f(xo) + Zl‘; f“]i(IXoJ (x —xo)" is a polynomial of degree

less than k. For x # xo let gy(y) o fy) —h(y) — z«(y — xo)*, where z, = ffi):x:)[:]
It is easy to verify that gy(xo) = gi(x0) =+ = gikq)(xo) = gx(x) = 0. By Rolle’s

theorem, the derivative g, is equal to 0 at some point x; between x, and x; note
that the point X, is a zero of multiplicity k — 1 of g}. Using the induction and
Rolle’s theorem in the similar way, we show the existence of the sequence of
points, x2,..., %, such that g,(f) (xi) = 0 and each point x; is between xy and x;_;.

The point X = x is a zero of gik) located between x, and x, i.e.,

0= gfj‘)(xk) = M (x) — zk!.

£k)
Hence, z, = k[,x")

of gy, due to g«(x) = 0, we obtain the needed formula. O

. By substititing this expression and y = x to the definition

Global extrema

Theorem 12 Let I C R be an interval, open or closed at one or both ends, or
even unbounded. Let f: I — R be of class C'(I) and C*(int1). Let x, € I and
f'(xo) = 0. If f”(x) > 0 for all x € 1, then xq is a global minimum of f. If
f’(x) <0 for all x € I, then xo is a global mazimum of f. If in addition
f"(x0) > 0 or respectively f"(xo) < 0, then xo is a unique (strict) global
MINIMUM or MaTImum.

Proof. By the Taylor’s formula we have

1) = ) + 510 x %0

where X is a point between x, and x. Hence, the last term of the formula above
determines the inequality between f(x) and f(xo).
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Assume that ”(x) > 0 for all x € T and f”(xo) > 0. By f'(x0) = 0 we obtain

X
i) = (0 = F0w) = | #ly)dy >0

X0
for x > x¢. Similarly we show that f'(x) < 0 for x < xo. As f”(x0) > 0 and " is
continuous, it follows that f” is positive in a neighbourhood of xy. Hence, the
integrals are positive, which implies f'(x) > 0 for x > x¢ and f'(x) < 0 for x < Xo.
Thus f is decreasing for x < x( and increasing for x > x¢ and, therefore, x, is
a strict minimum. The proof for the case of maximum is similar. O
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2. BExtrema of functions of two or more variables

Let f: W — R, where W C R" is an open set. Points of R", x = (x1,...,Xn), are
identified with column matrices, [xi,...,%n]", but it is convenient to write f(x)
and f(x1,...,Xn), which denotes the same thing. We use the Euclidean norm,

x| = VxTx = /%3 +--- +x2.

The gradient of f is a row matrix, Df(x) = [ .2 2.

0x1) ") Oxn

The Hessian of f at x € W is the n x n matrix,

%f d2f 2f
ax% Ox10x2 """ Ox10xn
% f 2f % f
sz(x) _ Ox20%7 ax3 STt Ox20xn
2%f a2f ?2f
Oxn0xq Oxndxy *°° oxZ

Definition 4 The function f is differentiable at xo € W if there ezists a vector
x € R" such that

f(x) = f(xo0) + &’ (x —x0) + o([x = xol)), x € W.

The function f 1s twice differentiable at Xy € W 1f in addition there exists
a matriz H € R™™ such that

f(x) = f(xo) + T (x —%o) + %(X —x0)TH(x — %) + o(|[x —x0||*), x€W.

If a function is twice differentiable, then there exists a symmetric matrix H
mentioned in the definition above; if a nonsymmetric matrix H satisfies the
formula in this definition, so does the symmetric matrix %(H +H.

Theorem 13 I) If a function f is differentiable at xo, then the gradient Df(x,)
exists and is equal to «'. Conversely, if Df(x) exists in a neighbourhood of X,
and is continuous at X, then f is differentiable at x,.

II) if the Hessian D?*f(x) ezists in a neighbourhood of xo and is continuous at
Xo, then f 1s twice differentiable at x,; the Hessian is then a symmetric
matriz, H = D*f(x).

2.2

Remark. If the function f is differentiable at a point x, the (real) value of the
product of matrices Df(x)v, where v € R", is the directional derivative of the
function f in the direction of the vector v at x. If the function f is twice
differentiable, then v'D?f(x)v is equal to the second order directional derivative
of f in the direction of v.

Remark. To use second order derivatives tn practice we need to assume the
continuity of the Hessian.

Remark. A function f whose domain is an open set W C R" is said to be of
class C' (C2) in W if it is continuous in W together with its first (and second)
order derivatives. If the set W is not open, the function is said to be of class C'
(C?) if there exists an extension f of class C' (C?) of the function f to an open
set W such that W € W. Then we can consider the derivatives of f at the
boundary points of W; if W C cl(int W), then (due to their continuity) the
derivatives are uniquely determined by the values of f in W.

Lemma 1 Let W C R" be an open set. If a function f: W — R is of class C?
and a line segment Xox 15 contatned in W, then

1) = Flxe) + Dflxa) (¢ — o) + 3(x —xo) D) (x — x0),

where X 1s an intertor point the line segment XpX.

Proof. Apply the Taylor’s formula to the function g(t) = f(xo +t(x — xo)),
te[0,1]. O

Figure 1: Applicability of the Taylor’s formula for a multivariate function
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Definition 5 The set W C R" is convez if
X+ (T—ANyew
for allx,y e W, A € [0,1].
Corollary 1 If W C R" is open and convez and f: W — R is of class C2(W)
then for all xo,x € W there 1s
f(x) = f(xo) + Df(xo) (x —%o) + %(X —%o) 'D*(X) (x —%o),

where X = (1 — A)xo + Ax for some A € (0,1).

Proof. As the set W is convex, if x5, x € W, then Xox C W; the claim follows from
the lemma. O

The necessary first order condition

We consider a set W C R"™ with a nonempty interior.

Theorem 14 (necessary 1st order condition) If a function f: W — R is
differentiable at a point xy € int W and x, is a local extremum of f, then
Df(x,) =0".

Proof. From %, € int W it follows that the function g;(t) = f(x, + te;) (where
ei=1[0,...,0,1,0,...,0]") is well defined. It has the local extremum at 0.
T

i
By the necessary first order condition for functions of one variable there must be
g{(0) = 0, which implies aa—:l = 0. As this holds for all i = 1,...,n, the gradient
of f is the zero matrix 1 x n. O

Definition 6 A point Xy € int W is called a critical point of the
function f: W — R if f is differentiable at xo and Df(x,) =0'.

2.4

Positive- and negative-definite matrices

Let A € R™" be a symmetric matrix, A = [a;], aj = a;;. It defines a quadratic
form

non
F(X) = XTAX = Z Z Qi XiX .

i=1 j=1
Definition 7 The matriz A or the quadratic form F 1s
e positwe definite if F(x) > 0 for all x € R"\ {0} (we write A >0),

e nonnegative definite if F(x) > 0 for all x € R" (we write A >0),

e negatwe definite if F(x) < 0 for all x € R™\ {0} (we write A <0),

e nonpositive definite if F(x) < 0 for all x € R™ (we write A <0),

e indefinite if there exist vectors x,y € R" such that F(x) > 0, F(y) < 0.

At the first glance we can notice that if not all diagonal elements a;; are positive
(nonnegative) then the matrix A is not positive-definite (nonnegative-definite)
and if not all diagonal coefficients are negative (nonpositive) then the matrix is
not negative-definite (nonpositive-definite). The basic characteristic of
positive-definite matrices is given by

Theorem 15 (Sylvester’s criterion) Let A; be a matriz obtained from A by
rejecting its last n — i rows and columns (in particular Ay = [an], A, = A).

I) The matriz A is positive-definite if and only if det A; >0 fori=1,...,n,

II) The matriz A is nonnegative-definite if and only if det A; > 0 for
i=1,...,n.

A matrix A is negative-definite (nonpositive-definite) if —A is positive-definite
(nonnegative-definite). Another characteristic is related to the algebraic
eigenproblem. From the linear algebra we know that all eigenvalues of a real
symmetric matrix are real numbers; for any such a matrix there exists an
orthogonal basis of R" whose elements are eigenvectors of this matrix. A positive-,
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nonnegative-, negative- or nonpositive-definite symmetric matrix has respectively
all eigenvalues positive, nonnegative, negative or nonpositive.

Conditions of the second order

Theorem 16 (necessary 2nd order condition) If f is a function of class C? in
an open set W C R™ and xo € W is a local minimum, then the matriz D*f(x,)
is nonnegative-definite. If xo is a local mazimum, then D*f(xo) s
nonpositive-definite.

Proof. Let X be a local minimum. Let h € R™\ {0} and g(t) = f(xo + th), where
t € R is chosen so as to obtain x, 4+ th € W. The function g has a local minimum
at 0. As f is of class C?, so is g. By the second order necessary condition for the
univariate case, g”(0) > 0. The second order derivative of the composite

function g is

g”(0) = h"D?*f(x,)h.
As the vector h may be arbitrary, the matrix D?f(x,) is nonnegative-definite. O
Theorem 17 (sufficient 2nd order condition) If f is a function of class C* in

an open set W C R", Df(xy) = 0" and the matriz D*f(x,) is positive-definite
(negative-definite), then x, is a local minimum (mazimum) of f.

Proof. Assume that D?f(xo) > 0. Let «: W — R be the function defined by

afx) = inf h'D*f(x)h.
The function value o¢(x) is the minimal eigenvalue of the matrix D?f(x); the
infimum is the minimum taken at the vector h which is a unit eigenvector
corresponding to the minimal eigenvalue of the Hessian. Due to the continuity of
the Hessian of f, the function « is continuous. Hence, there exists a ball B(xy, €),
€ > 0, such that «(x) > 0 for all x € B(xy, €).

For a fixed x € B(xy, ¢), due to the Taylor’s formula we have

1) = Flx0) + Do) (x — x0) + 3 —x0) DA(R)(x — x0),

2.6

where X is a point of the line segment Xox C B(xo, €¢). The gradient of f vanishes
at xo and

(x —xo)"
[ —xoll

(x —xo)

D*f(x)
lIx — x|

> [lx — %o (X).

(x —%0)TD*(X) (x —%0) = [Ix — %o
Hence,
1 _
f(x) — f(xo) > ZHX—Xonoc(x) > 0.

It follows that x, is a strict local minimum. The proof for a maximum is similar. O
Global extrema

Let W be a convex set and f: W — R a function of class C'(W) and C2(int W).

Theorem 18 If xy € int W 1s a critical point of f, then
I) If D*f(x) > 0 for all x € int W, then xq is a global minimum,
II) If D*f(x) < 0 for all x € int W, then x, is a global mazimum.

If in addition D*f(xo) > 0 or D*f(xy) < O respectively, then x, is a strict
minimum or mazimum.

Proof. If x € W, then by convexity of W the entire line segment XX is contained
in W. By the Taylor’s formula,

f(x) = f(xo) + %(x —%0) "D (%) (x — o),

for a point X € Xpx. From the inequality D*f(x) > 0 (or D*f(X) < 0) it follows that
the last term above is nonnegative (or nonpositive), which proves that x, is
a minimum (or a maximum).

If in addition to (I) we have D?*f(x,) > 0, then we can consider the function

g(t) = f(xo +t(x fxo)), t € [0,1]. Due to the convexity of W, x, + t(x — %) € W,
so the function g is well defined. From the assumptions it follows that g’(0) =0,
g”(0) > 0 and g”(t) > 0. Therefore g has a strict global minimum at 0, i.e.

f(x) > f(xo). As the choice of x € W is arbitrary, X, is a strict global minimum

of f.

The proof for the case of D*f(x,) < 0 holding in addition to (II) is similar. O
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3. Convex sets and functions

Lemma 2 The set W C R"™ is convez if and only if for all m > 2 and for all
points Xi,...,Xm € W and numbers ai,...,an, =20, a; +---+ a,, =1, there is

Xy + -+ apXm € W

Lemma 3 Let W C R" be a convez set with a nonempty interior. Then

I) For any x € W and x, € int W the line segment Xox \ {x} is contained in the
interior of W:

Mo+ (1—=A)x e W forall A e (0,1].

II) W C cl(int W)

Proof. Let the points x, and x satisfy the assumptions. As int W is open, there
exists a ball B(xo, ¢) C int W. The union of all line segments, whose one end point
is x and the other end point is in this ball, is a “cone” with the vertex x and the
base B(xy, €). This cone is a subset of W and its interior contains the line segment
xox \ {x}. This completes the proof of (I). (II) follows immediately. O

p
//" \
/ N
iy \
/B (%0, €) \
‘ |
| )
\ 4
\ d
x W

Figure 2: Illustration of Lemma 2

Theorem 19 (weak separation theorem) Let U,V C R" be nonempty convez
sets such that UNV = (). There ezists a hyperplane separating the sets U
and V, i.e., there exists a nonzero vector a € R" such that

a'x<a'y forallxelU,yeV.

As the mapping x — a'x is continuous in R"™, from the above we obtain

3.2

Corollary 2 Let U,V C R™ be nonempty convez sets such that int U # () and
(it W NV =0. Then there ezists a hyperplane separating the sets U and V.

Theorem 20 (strong separation theorem) Let U,V C R"™ be nonempty closed
convez sets, let U be compact and let UNV = (). Then there ezxists

a hyperplane strictly separating the sets U and V, t.e., there exists a nonzero
vector a € R" such that

sup a'x < inf a'y.
xel yev

There may be more than one hyperplane described by these theorems; one of
them is the set defined as follows:

{(xeR":a'x=a), a=supa'x.
xelu

Proof of the strong separation theorem. Let d: U x V — R be a function given by
the formula d(x,y) = ||x — y||. As the set U is bounded, the function d is
coercive; it may tend to infinity only by taking an appropriate sequence of points
Yy € V. As the function d is continuous and coercive and its domain U x V is
closed, it takes a minimum at a point (x¢,Yo) € U x V. As UNV =0, there is

a =Yy — X # 0. Below we demonstrate that it is a vector satisfying the claim.

First we show that a'y > a'yo for ally € V. Let

2
g(t) & <d(Xano + 1ty —yo))) , teR.
There is
g(t) = [lyo — xol* + 2t(yo — x0)" (Y — Yo) + t*(y — Yo) " (y — yo)-

This function is differentiable for all t € R and, as the set V is convex, g(0) < g(t)
for t € [0,1]. Hence, g’(0) >0, i.e.,

(Yo—x0) (y —yo) =a'(y —yo) >0.

In a similar way we can show that a’™ < a™x, for all x € U. O

Proof of the weak separation theorem. Consider the set
C=V—-U={y—x:xe U, yeV} This set is convex and 0 ¢ C. It suffices to
find a nonzero vector a € R" such that a™ > 0 for all x € C.
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def

Let Ay ={aeR": |la|=1, a’™x > 0}. We are going to show that .- Ay # 0.
Suppose that (.. Ax = 0. Let By =S\ A, where S is the unit sphere in R". The
sets By are open subsets of S. If the intersection of all sets Ay, where x € C, is
empty, then the family { By: x € C} is an open coverage of S, which is a compact
set. Hence, there exists a finite coverage {By,,...,Bx,: X1,...,Xx € C} of S. Let

k k
échOIIV{XH...,Xk}: {Z?\ixi: A],...,Ak 20, Z}\1 =1 }
i=1 i=1

The set C is convex and closed and it is a subset of C. Hence, 0 ¢ o By the
strong separation theorem used to the sets {0} and ¢ , there exists a nonzero
vector a such that

a'x>0 forallxe C.

In particular, a'™x; > 0 i.e., ﬁ € Ay, for i =1,...,k, which contradicts the

supposition that (), A, = 0. O

Convex functions

Definition 8 A function f: W — R, where W C R" 1s convez, is called
e convez, if for all x,y € W and A € (0,1) there is

F(AX+ (1 =A)y) <Af(x)+ (1= N)f(y),

o strictly convez, if for allx,y € W and A € (0,1) there is
f(Ax + (1= A)y) < Af(x) + (1 —A)f(y),

A function f is (strictly) concave if —f is (strictly) convez.

Theorem 21 If a function f: W — R, where W C R" is convez, is
Lebesgue-measurable and such that

f("+y> T oy ew,

2 2

then f 1s a convez function.

We shall prove a simpler theorem:

3.4

Theorem 22 If a function f: W — R, where W C R" is convez, is continuous
and such that

f<x—0—y) < f(x) + f(y)

7 7 for allx,y e W,

then f is a convez function.

Proof. Using induction with respect to k, we show that the inequality of the
definition of convex functions holds for all A = %, where p =0, 1,... 2K Ifk=1,
then this inequality is satisfied by assumption. Suppose that the inequality is
satisfied for some k > 1. Let p,q € Z, p,q > 0 and p + q = 2**'. Suppose that

p < . Then p < 2* < q and we can write

k

P q Trp. q9-2
2= it gy =5 (gt Ty ).
Then,
1./p  q—2¢ 1
< —f( £ L —
f(Z)\zf(ZkX+ 7% y)+2f(y)
1 1q—2% 1
< S0+ 5 I+ 5 T(Y) = S f(X) + 0 ().

The first inequality follows from the assumption of the theorem and the second
one from the inductive assumption. If p > q, then it suffices to exchange x and y.

The set of numbers %, k=1,2,... and p =0,...,2%, is dense in the interval [0, 1].

By the continuity of f we obtain the desired inequality for any A € (0,1). O
Properties of convex functions

Below we assume that W C R" is convex.

Definition 9 The epigraph of a function f: W — R 1s the set

epi(f) ={(x,z) e W x R:z > f(x) }.

Definition 10 The sublevel set or the trench of a function f: W — R s the set

W.(f) ={x e W: f(x) < a}, acR.
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Theorem 23 (epigraph theorem) A function f is convez if and only if its
epigraph 1s a convez set.

Theorem 24 If a function f is convez, then its sublevel sets W, (f) are convez
for all « € R.

Remark. There exist nonconvex functions whose all sublevel sets are convex.

Theorem 25 If a function f is convex, then it is also continuous in int W.

Theorem 26 (supporting hyperplane theorem) If f is a convex function, then
at each point X € int W there exists a supporting hyperplane, i.e., there exists
& c R" such that

f(x) > f(xX) + & (x —X) forallx e W.
Moreover, if f is strictly convez, then
f(x) > f(X) + &7 (x —X) for allx € W\ {X}.

If f is differentiable at X, then in both cases we can take & = Df(X)".

Proof. The set epi(f) is convex. We apply the weak separation theorem to the sets
U = intepi(f) and V = {(X, f(X))}. There exists a nonzero vector
a={(&, «)} € R™' such that

E'x 4+ ay < X+ af(X) for all (x,y) € epi(f).

The inequality above holds for all y > f(x). Hence, o < 0. It turns out that

« # 0. To prove it, suppose that « = 0. Then, for all x € W there is

£T(x —X) < 0. As X € int W, we know that there exists an ¢ > 0 such that
X+eEe€W. Let x =X+ ¢& Then 0> £T(x —X) = e&£TE = ¢||&||%; hence, & = 0.
This contradicts the possibility a # 0, and thus « < 0.

We can rescale the vector a to obtain o« = —1. With that, for all x € W we obtain

E'x —f(x) < £'x —f(X),

3.6

which may be rewritten as
f(x) = f(x) + & (x —X),
which completes the proof of the first claim.
Suppose that f is strictly convex. Let X € int W. By the first claim, there is

f(x) > f(X) + £T(x —X) for all x € W. Suppose that there exists x € W \ {X} such
that f(x) = f(X) + £"(x —X). By the strict convexity of f we obtain

f<*—+ *) < L0 + 1) = £ + %(f(x) —f(X)) = f(x) + %aT(x —X).

2 2
On the other hand, by the existence of the supporting hyperplane, we obtain
()5 (55 ) =

The two inequalities are inconsistent. Hence, if f is a strictly convex function,
there must be f(x) > f(X) + &'(x — X) and the second claim is proved.

Suppose that f is differentiable at X. For x € W\ {X} and A € (0, 1), by convexity
of f we obtain
(T —=N)f(x) + Af(x) — f(x)
A
f(T=AX+2Ax) —f(X) f(X+A(x—%)) —f(X)

f(x) —f(x) =
> =
A A
With this estimation of the divided difference we go to the limit
f((T—A)x+Ax) — f(x
fx) — £(7) > lim | (0 T AR+ M) — F(R)
A0 A

The limit exists and is equal to Df(X)(x —X) due to the differentiability of f. If f
is strictly convex, then we can repeat the proof of the second claim with &7
replaced by Df(x). Then we get the sharp inequality f(x) — f(X) > Df(X)(x — %)
for x #x. O

— DF(%)(x —X).

Corollary 3 If a function f is conver and differentiable at X € int W, then X is
a global minimum of f if and only if Df(X) = 0.

Proof. The gradient of a differentiable function at a minimal point must be equal
to OT; hence, Df(x) = 0" is a necessary condition. Suppose that it is satisfied.
Then, for any x € W we have

f(x) > f(x) + Df(x)(x —Xx) = f(X),



3.7

which proves that X is a global minimum. O

Properties of convex functions

Theorem 27 Let W C R"™ be a convez set with a nonempty interior. If at each
point X € int W there exists a vector & € R™ such that

f(x) > f(X) + &7 (x —X) for allx € W,

then the function f is convez. If the inequality s sharp for x #Xx, then f s
strictly convez.

Proof. Let x € int W, y € W and A € (0,1). Denote x), = Ax + (1 —A)y. We are
going to prove that f(x,) < Af(x) + (1 —A)f(y). By Lemma 3, x, € int W.
By assumption, there exists & € R" such that

f(x) = fx) +E (x—x), fly) = flxa)+ &y —x).
Hence,
M)+ (1T=A)f(y) = f0a) + ET A —x) + (1 =Ny —x0)] = f(xn),

as the terms in the brackets cancel each other out. The convexity of f is proved.
If the assumed inequalities are sharp, then also the inequalities in the calculation
above are sharp and the function f is strictly convex. O

Theorem 28 Let W C R" be nonempty, open and convez and let f: W — R be
twice differentiable. Then,

I) f is convez if and only if the Hessian D*f(x) is nonnegative-definite for all
xeW,

II) if the Hesstan is positive-definite for all x € W, then f is strictly convez
(this is not a necessary condition).

Proof. Suppose that the Hessian is nonnegative-definite for all x € W. Then, by
Corollary 1, for all X,x € W we have

f(x) = f(x) + Df(x)(x — %) + %(x —X)"D*(%) (x — %),

3.8

where X is a point of the line segment Xx. As the Hessian is assumed to be
nonnegative-definite, the last term above is nonnegative. Hence,

f(x) > f(x) + Df(x)(x —X).

This inequality holds for all X,x € W, the function f is convex by Theorem 27.

If the Hessian is positive-definite in W, then for x # X the last inequality is sharp,
and the function f is strictly convex.

Now we prove that the convexity of f implies that the Hessian is
nonnegative-definite. Assume that f is convex. Let X € W and h € R™\ {0} be

fixed. As the set W is open, there exists & > 0 such that X + th € W for all

t e (—5,5). Let g(t) et f(X + th). It is a convex and twice differentiable function

of one variable. By Theorem 26,
g(t) > g(0)+g'(0)t, te(=59).

Using the Taylor’s formula with the remainder in Peano form, we obtain
g(t) =g(0)+g'(0)t + %g”(O)t2 +o(th), te(=5,9).

The last inequality and the Taylor’s formula give us the following estimation:
%g”(O)t2 +o(t?) > 0.

After dividing both sides by t*> we get

With t tending to 0, the second term vanishes, which leaves us g”(0) > 0. With
this we return to the function f:

g'(t) =Df(x +th)h, g”(t) = h"D*f(x + th)h.

Hence, g”(0) = h'D?*f(X)h. As the vector h may be arbitrarily chosen, the
Hessian at X is nonnegative-definite. O

Subdifferential

We are going to generalise the notion of derivative to non-differentiable convex
functions. Let W C R" be a convex set and f: W — R be a convex function.
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Definition 11 A vector & € R™ s called the subgradient of the function f at
a point xg € W, of

f(x) > f(xo) + &T(x —xo) for all x € W.

The set of all subgradients of f at xy is called the subdifferential and it is
denoted by 0f(x,).

Corollary 4 If W C R™ is a convez set with the nonempty intertor, then
f: W — R s a convez function if and only if at each point x € int W there
exists a subgradient, i.e.,

of(x) # 0.

Proof. By the supporting hyperplane theorem, the convexity implies the existence
of the gradient at each point of W. By Theorem 27, it is a sufficient condition. O

Lemma 4 Let W C R" be convez and let f: W — R be a convez function. Then
the subdifferential 0f(x) 1s a convex and closed set. If x € int W, then the
subdifferential is also bounded, and thus it is a compact set.

Proof. The proof of convexity and closedness is an exercise. Let X € int W be fixed.
There exists ¢ > 0 such that the ball B(X, ¢) C int W. For any & € 0f(Xx) we have

f(x) > f(X) + £ (x —x) for all x € W.
Therefore,

sup f(x) > f(X)+ sup &'(x —X).
xXEB(X,¢) xEB(X,¢)

The left hand side does not depend on &, and, by continuity of f in int W, it is
finite. The supremum on the right hand side is attended for x =X + €&/||&||, and
it is equal to ¢||&||. Hence,

ellEl < sup f(x)—f(x),

xXEB(X,¢)

which proves that the set 0f(Xx) is bounded. O

3.10

Definition 12 The directional derwative of a function f at a point X in the
direction d s the limit
(x+Ad) —f(x)

f
(<. o
f(x’d)f%lgé A

Definition 13 A divided difference of order O of a function f: IC R — R at
a point t; is the number f[t;] = f(t;). A divided difference of order k >0 at

different points ti,...,tix s given by the recursive formula
f[ti, o )ti+k} _ f[ti) ) ti+k—1} - f[tiH) oo »ti+k} )
ti—tix

Lemma 5 I) Divided differences of any order are symmetric functions of the
arguments ti, ..., tuy, t.e., flt, ..., tiad = flteq), . - - topn] for any
permutation o of the set {i,...,1+ k}.

II) If f s a convez function, then the first order divided difference f[ti, ti11] s
a monotone (nondecreasing) function of the arguments ti, ti;;.

Proof. The proof of (I) is an exercise. To prove (II) we notice that

flxo, X1, %2l = cof(x0) + c1f(x1) + c2f(x2),
1 1 1

o= (%1 — x0) (x2 — %0)’ a= (x2 —x1) (%0 — x1)’ 2= (X0 —%2) (%1 — %2)

Assume that xo < x; < x2; then, co,c; > 0, ¢; < 0. Then,

X1 — Xo X2 — X1

A 6(0)])) (1_}\)7

X2 — X X2 —Xo

We can check that if f(x;) = (1 — A)f(xo) + Af(x2), then fxo, x1,%2] = 0; as the
value of a convex function at x; is less than or equal to this expression, due to
¢1 < 0 there is fxo, x1,%2] > 0.

Now we use the symmetry of the divided differences; we choose the numbers
to, t1,t2 such that t; < t,. Then,

0 < flty, to, 1] = flta, to] — flto, t1] _ flta, to] — flts, to] _ flto, to] — f[toﬂ]]‘
tz*h tz*t] tzftl

Hence, if f is convex and t, > t;, then f[t,, to] > f[t, to] and f[ty, t2] > flto, t;]. O
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Lemma 6 Let W C R" be a convez open set and let f: W — R be a conver
function. Then, for alld € R" and x e W

I) there exists the directional derivative f'(X;d),

II) £'(%;d) = infy.o TR

) f'(x;d) > —f'(%;,—d).

Proof. Let g(t) &t f(x 4+ td) for t such that x +td € W. As W is open, the

function g is defined in an interval (—9,8). This function is convex. By Lemma 5,
its divided difference is monotone, i.e., for t;,t, € (—9,8) \ {0}, t; < t,, we have

1 2

By the monotonicity of the divided difference, there exists the left-side derivative,
g’(07), and the right-side derivative, g’(0*), such that g’(07) < g’(0*), and

§/(07) = sup g(t) — 9(0)) g'(0%) = inf 9(t) —g(0)

t<0 t t>0 t

It suffices to notice that f'(x;d) = ¢’(0") and f'(x;—d) = —¢’(07). O

Lemma 7 Let W C R"™ be a convez open set and let f: W — R be a conver
function. Then a vector & s a subgradient if and only if

f'(x;d) > £'d  for all d € R™.

Proof. Let X € W and & € 0f(x). Then, for A > 0 and d € R" such that
X + Ad € W, there is

f(X+Ad) > f(X) + A&'d.

Hence,

3.12

Now, let & € R™ be a vector such that f/(X;d) > £'d for all d € R". By
Lemma 6(II), for A > 0 we obtain

f'(x;d) < w

Hence,
f(X+Ad) = f(x) + \&'d.

As A and d may be arbitrary (such that X +Ad € W), the vector & is
a subgradient. O

Theorem 29 Let f: W — R be a convez function in an open conver
set W C R". For each point X € W and vector d € R™ there is

f'(%;d) = max &'d.
£cof(x)

Moreover, the function f is differentiable at X if and only if the
subdifferential 9f(X) has only one element. This element is Df(X)".

Proof. By Lemma 7, f/(X;d) > &'d for all & € 9f(X). Hence,

f'(%;d) > max &'d.
£€0f(X)

The opposite inequality may be proved using the weak separation theorem. Let

Ci={(xz) e WxR:z>f(x)}

C={(xz) e WxR:x=X+Ad, z=f(X) + Mf'(x;d), A > 0}.
Note that C; is the interior of the epigraph of f; hence, C; is a convex set. The set
C; is a halfline with the origin at (X, f(x)) and the direction (d, f’(Xx;d)), which is

also a convex set. This halfline is the graph of a linear approximation of f along
the line segment {Xx + Ad: A > 0}N'W.

By Lemma 6, f'(x;d) < w, ie.,
f(x +Ad) > f(x) + Af'(x;d).

Hence, the sets C; and C; are disjoint. By the weak separation theorem, there
exists a nonzero vector (u,y) € R™' such that

u'x +yz > p'(x +Ad) + v (f(x) + AMf'(x;d)), for all (x,z) € Cy, A € [0,L),
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where L = sup{A > 0: X+ Ad € W}. The number vy cannot be negative, as the left
hand side might be arbitrarily small (after choosing a large z). Also, y cannot be
zero, as in that case the inequality u'(x —X) > Au"d would have to hold for

all x € W, and this is possible only with u = 0. This inconsistency with (u,vy) # 0
proves that y > 0.

By rescaling the vector (u,7vy), we can assume y = 1. Then,

u'x +z > p'(x+Ad) + (f(%) + Af'(x;d)), for all (x,z) € Cy, A € [0,L1),

With z tending to f(x) we obtain the following inequality, which holds for all
x € Wand A € [0,L):

uix 4+ f(x) > u'(x +Ad) + (f(x) +Af'(x;d)) *)
With A =0, we obtain
u'(x —%) +f(x) > (%),
ie.,
f(x) = f(x) — ' (x — %),
Hence, —p € 0f(X). Now, substituting A > 0 and x =X in (*), we obtain
—p"(Ad) = M'(x; d),
ie.,

sup &£'d > f(x;d).
£€0f(X)

The proof of the first claim is complete.
To prove the second claim, we notice that the function f is differentiable at X if
and only if there exists o« € R™ such that f'(X;d) = «'d for all d € R" (then

o = Df(X)"). Thus, if the set 0f(X) has only one element, then f is differentiable
at x.

Suppose that f is diferentiable at X. Then, for sufficiently small A > 0 and d € R"
(without loss of generality we assume that ||d|| = 1), we have

f(x + Ad) = f(x) + ADf(X)d + o(A).
By definition of the subgradient, we have

f(Xx+Ad) > f(x) +A&'d,
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where & is a subgradient. By subtracting the sides of the above, we obtain
A(E"—Df(x))d —o(A) < 0.
After dividing both sides of this inequality by A and passing with A to 0, we obtain
(£T —Df(x))d < 0.
. . —Df(x)" . .
The substitution d = i% yields the equality

&' = Df(x),

which means that the subdifferential consists of one element. O

Theorem 30 Let W C R" be an open convez set and f1,f2: W — R be convez
functions.

I) Let f = f1 4+ f,. Then, 6f(x) S aﬁ (X) + afz(X), i.e.,

of(x) = of (x) + 0f2(x) ={ & + &;: & € 0f;(x), &, € 0f,(x) }.

II) Let f = max(f,f;). Then,

ofy (x) if f1(x) > fa2(x),
0f(x) = ¢ conv (3f1(x) UdF(x)) of f1(x) = fa(x),
0f,(x) if f1(x) < fa(x),

where conv (6f1 (x)U afz(x)) 1is the convez hull of the union 0f;(x) U 0f,(x), i.e.,
the set of all convex combinations of the subgradients in both subdifferentials.

Proof. (I): Let X € W. Let &; € 0f;(X) and &, € 0f,(Xx). Then, for all x € W we
have

)+ & (x —X),

* =
=
x|

fi(x) >
fa(x) >

By adding the above inequalities side by side we obtain
f(x) > f(X) + (& + &) (x — %),

ie., & + &, € 0f(x). Hence, 0f;(X) + 0f,(X) C 0f(Xx). Suppose that there exists
& € 0f(x) such that & ¢ 0f;(x) + 0f2(X). By Lemma 4, the subdifferentials 0f;(X)
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and 0f,(X) are compact convex sets. Their algebraic sum is, therefore, also
a compact convex set. By the strong separation theorem, applied to the sets {&}
and 0f;(X) + 0f,(X), there exists u € R", such that

we +u'e <ulg, forall & e 0fi (%) and &, € 3f,(X).
We take &7, &, to maximise the left hand side. By Theorem 29,
1 0) + fo(u) < £Tp < /(X p).
On the other hand, by the properties of directional derivatives,
f106 1) + f(Xu) = /(X u).

This is an inconsistency; a vector & with assumed properties cannot exist, which
completes the proof of (I).

Now we prove (II). The form of the subdifferential 0f in the sets W and W,
defined as W; = {x € W: fi(x) > f3_i(x) } is obvious, which leaves the set

W, ={x € W: f1(x) = f2(x) } to investigate. Let X € W and f;(X) = f,(x). Denote
A = conv (3f;(x) U df;(x)). For i =1,2 and x € W we have

f(x) — f(X) > fi(x) — f(X) = fi(x) — f;(X) > &{ (x —%), for all & € fi(X).

From the above we obtain 0f;(X) U 0f,(X). By convexity of the subdifferential,
A C 0f(x). Suppose that there exists & € 0f(x) \ A. The set A is convex and
compact. By the strong separation theorem applied to the sets {&} and A, there
exists a vector u € R"™ and a constant b such that

nWE<b<u'e foralécA.
In particular, u'&; < b for &; € 0fi(x), i = 1,2. By Theorem 29,
max{f{(x;n), f5(x;u)} <b.
Similarly, b < £Tu < /(X; u); hence,
max{f](%; ), f3 (X 1)} < /(% ). *)

On the other hand, by definition of the directional derivative, due to
f(x) = f1(x) = f2(X), we obtain the equality

f(x +Ad) — f(x) :max{ﬁ(i—l—)\d)—f(f) fzb_c—i-)\d)—f()_c)} A0,

A A ’ A
Passing with A to 0, we obtain
f'(x;d) = max{f](x;d), f3(x;d) }.

With d = p we obtain an inconsistency with (*). Hence, the set 9f(x) \ A is
empty. O
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Theorem 31 Let W C R"™ be an open and convez set, let f: W — R be a convez
function and let A be an n x m matriz. If W ={x € R™: Ax € W}, then W is
an open convex set and the function F: WS R gwen by the formula

F(x) = f(Ax) at any point x € W has the subdifferential given by

OF(x) = ATOf(Ax).

Proof. Let X € W and let & € 9f(AX). Then,
f(Ax) > f(AX) 4+ £T(Ax — AX) = f(AX) + (ATE)T(x — %),

ie., ATE € OF(x). Hence, ATOf(AX) C dF(AX). Suppose that there exists

£ € OF(AX) \ ATOf(AX). The set ATof(AX) is convex and closed, as the image of
a closed and convex set in a linear transformation. We apply the strong separation
theorem to this set and {&}. There exists p € R™ and b € R such that

WATE <b< g forall £ € Of(AX).

By taking the supremum over £c 0f(AX), and using Theorem 29, we obtain
f'(AX; An) < b. The right hand side may be estimated by the directional
derivative: n'& < F/(x;u). Hence,

(A% An) <b < F'(X5u).

But the directional derivatives satisfy the equality F'(x;d) = f'(AX; Ad) for all
d € R™. Thus, we have an inconsistency, which proves that dF(AX) \ ATof(AX) is
the empty set. O
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4. Bxtrema of convex functions with constraints

We consider a convex function f: W — R defined in a convex set W C R" and the
following problem:

f(x) — min,
x eW.

A global solution is a feasible point X such that f(x) < f(x) for all x € W.

A local solution is a point X € W such that there exists ¢ > 0 such that

f(x) < f(x) for all x e WNB(X, ¢), i.e., if the point X is a minimum of f in its
neighbourhood. The local solution is strict if f(X) < f(x) for x #X.

Theorem 32 Let the set W C R" be convez, and the function f: W — R" be
convez. If x € W 1s a local solution of the problem above, then

I) X is a global solution,
II) the set of global solutions is convez,
III) if f 1s strictly convez, then X is a strict local solution,

IV) if X is a strict local solution, then it is the unique global solution.

We do not assume the differentiability of f.

Proof. (I) is proved by contradiction. Suppose that there exists x* € W such that
f(x*) < f(X). As X is a local solution, f(x) < f(x) for all x € W N B(X, ¢), for some
e > 0. By convexity of W, this set contains the line segment Xx*. This line

segment has a nonempty intersection with the ball B(X, ¢); there exists A € (0, 1)
such that Ax + (1 —A)x* € B(X, ¢). By convexity of f, we obtain

fAX + (1= A)x*) < M(X) + (1= Nf(x") < f(X),

which contradicts X being a local minimum.

The proofs of (II), (III) and (IV) are left as exercises. O

4.2

So far, we have shown that a necessary and sufficient condition for a minimum of
a differentiable convex function in an open set is the zero of the derivative or the
gradient. This result may be generalised to arbitrary convex sets.

Theorem 33 Let the set W C R™ be convex and the function f: W — R be
convez. If f is differentiable at x € W, then there is the following equivalence:
X 15 a mimimum if and only if Df(X)(x —X) > 0 for allx € W.

Remark. To speak of differentiability of f at a point X, this function must be
defined in a neighbourhood of this point, i.e., in a ball B(X, ¢), ¢ > 0. If X is at the
boundary of W, then we assume that f is defined in W U B(X, ¢), though we omit
it in the theorem’s assumptions.

Remark. If X € int W, then the condition in the theorem is equivalent to
Df(x)=0".

Proof. Let Df(Xx)(x —X) > 0 for all x € W. Suppose that there is no minimum at X.
Then, there exists a point x’ € W such that f(x’) < f(x). We construct a sequence
xe = (1— %)7_6 + %x’ . By convexity of W, this sequence is contained in W. We
consider the directional derivative of f in the direction of the vector x’ —X:

L, - o
Flax’—x) = lim e ;(xka)) — lim w
— (% 1 N el
< lim (1= D) + ¢ f(x") — f(X) ) 1) <.

k—o0 ]/k

By the assumption, we have
f'(x;x' —x) = Df(x)(x' —%x) > 0
This inconsistency proves that X is a minimum of f in W.
Now suppose that X is a solution. Let x € W. The convexity of W implies that
X+Ax—%X)=(1—A)Xx+Ax € W for all A € [0,1]. By definition of the derivative,

e

As X is a minimum, (X + A(x —X)) > f(X). Hence, Df(X)(x —X) > 0. O

Corollary 5 If x € W, where W C R" is convez, is a local minimum of a (not
necessarily convez) function f: W — R, differentiable at X, then
Df(X)(x —X) >0 for allx €¢ W.
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Theorem 34 Let X C R" be a convez and open set and f: X — R be a convez
function. Suppose that the feasible set W is a subset of X. Thenx € W 1s
a mintmum if and only if there exists & € 0f(X), such that £T(x —X) > 0 for
allx e W.

Corollary 6 If x € int W, then f has a global minimum at X if and only if
0 € of(x).

Proof. Suppose that there exists & € 0f(x) such that £"(x —X) > 0 for all x € W.
As & is a subgradient, it follows that

flx) > fX)+ & (x—%), xeW.

Now it suffices to use the assumption to notice that f(x) > f(x), i.e., X is
a minimum.

Now suppose that X € W is a minimum. We define two sets:

Cr={(x,z) e R":x € X, z> f(x) — f(X) },
Co={(x,z) eR"":x e W, z< 0}

Both sets are convex and the interior of C; is nonempty (the interior of C, may be
empty if the interior of W is empty). From X being a solution it follows that

Ci1 N Cy = (. We use the weak separation theorem: there exists a nonzero vector
(1,y) € R™' and a constant b such that

, forall x € X, z > f(x) — f(x),
, forallx e W, z<0.

ux+vyz

b
ux+vyz>b

VoA

Before we proceed, let’s take a look at Figure 3. As we can see, the two sets
“touch” each other at the point (X,0). The separating hyperplane must therefore
contain this point. It is tangent to the graph of the function x — f(x) — f(X) and
in fact it determines a subgradient of this function, which is also a subgradient of
the function f at x.

Now we prove it analytically. We can write
<b

u(x—%x)+yz<b, forallxeX, z>f(x)—f(X), (*)
Wx—%)+yz>b, forallxeW, z<0, **)
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iz

G
z = f(x)
X X
G
(ny)
| S —
w
X

Figure 3: The sets C; and C;

where b =b — u'x. We notice that y cannot be positive, as we can take an
arbitrarily small z in (**), which leads to inconsistency.

Taking x =X and z = 0 in (**), we obtain b < 0. On the other hand, with x =X,
the inequality (*) turns into yz < b for z > 0; hence, b > 0. Therefore, b = 0.
Using this fact we show that y cannot be zero. From (*), due to X being open, we
would then obtain u = 0 which contradicts (u,y) # 0. Thus we proved that

v < 0. Taking z = f(x) — f(X) in (*), we obtain

u'(x —X) +v(f(x) — f(X)) <0.
After dividing the sides by vy, which is negative, we obtain

u’
7(x—%) + f(x) — f(x) > 0,

which proves that & = —5 € 0f(x). Taking z =0 in (**), we obtain

u'(x —X) > b = 0. After dividing the sides by —y, we obtain &"(x —X) > 0, and
the proof is complete. O
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Pseudoconvex functions
We introduce a family of functions such that

Df(x) =0" & X is a global minimum of f.

Definition 14 Let W C R" be convez, open and nonempty and let f: W — R.
The function f s pseudoconvez in W if it is differentiable in W and

Df(x)(y—x) =0 = f(y)=>f(x) for allx,y e W.

A function f s strictly pseudoconver in W if

Df(x)(y—x) >0 = f(y)>f(x) forallx,y e W, x #y.

A function f 1s pseudoconvez at a point x € W if it is differentiable at X and

DfxX)(y—x) =0 = f(y)=>f(x) forally e W.

Similarly is defined a function strictly pseudoconvez at a pointx € W.

A function f s (strictly) pseudoconcave if —f is (strictly) pseudoconvez.

pseudoconvex

pseudoconvex and pseudoconcave

neither pseudoconvex

nor pseudoconcave pseudoconcave

Figure 4: Examples explaining the notion of pseudoconvexity

Remark. Pseudoconvexity at a point is a property of a function related with the
entire set W, even if the differentiability is needed at that point only.
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Remark. A condition equivalent to that in the definition is the following:

fly) <f(x) = Df(x)(y—x)<0.

Lemma 8 Let f: W — R, where W C R" s nonempty, open and convez. If f is
(strictly) convez and differentiable in W, then f is (strictly) pseudoconvez.

Proof. Suppose that f is convex. By the supporting hyperplane theorem, for any
X,x € W we have

f(x) > (%) + Df(%)(x — X).

Thus, if Df(X)(x —X) > 0, then f(x) > f(X) and f is indeed pseudoconvex. The
proof of strict pseudoconvexity of a strictly convex function is similar. O

Lemma 9 Let f: W — R, where W C R" s nonempty, open and convez.
If a function f is pseudoconvez at x € W, then X s a global minimum of f
if and only if Df(x) =07.

Proof. Identical as the proof of Corollary 3. O

Lemma 10 Let W C R"™ be convez and let f: W — R be pseudoconver. Then, X
is a solution of the minimization problem if and only if Df(X)(x —X) > 0 for
allx e W.

Proof. Identical as the proof of Theorem 33. O

Finding maxima of convex functions

Definition 15 An eztremal point of a conver set W C R" is such

a point X € W, which s not an internal point of any line segment contained
m W, ie., if X =Ax; + (1 —A)x,, where A € (0,1) and x1,x; € W, then

X1 =X =X.

Definition 16 The convez hull of points A ={x;: 1 € 1} is the set of points
being convex combinations of all finite subsets of the set A.
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Equivalently, the convex hull may be defined as the smallest convex set containing
the set A.

Definition 17 The dimension of a convez set U € R™ is the dimension of the
smallest affine subspace A € R™ containing U (affine hull of U), i.e., the set

k
aﬂU:{ZAixi:xh...,xkEU}.
i=1

Remark. Any affine subspace of R", subject to a translation, may become a linear
subspace.

Remark. A set U whose dimension is m may be seen as a subset of R™.

Remark. A convex set U C R™ has a nonempty interior if and only if its dimension
is n.

Theorem 35 (Krein—Milman, finite-dimensional case) Let U C R™ be convez
and compact. It is then the convezr hull of the set of its extremal points.

Lemma 11 Let U C R™ be a convez set with a nonempty interior and let

X € OU. The point X s an element of a hyperplane such that U s contained
n one of two halfspaces separated by this hyperplane, which we call

a supporting hyperplane.

Proof. By the weak separation theorem applied to int U and V = {xX} there exists
a € R™\ {0} such that a™ < a™ for all x € U. The hyperplane sought is

H={xeR": a'x=a"x}.
The set U is contained in the halfspace {x € R": a'x < a'x}. O

First proof of the Krein—Milman theorem. We use induction with respect to the
dimension m of the compact and convex set U. The cases m = 0 (U consists of

a single point) and m =1 (U is a line segment) are obvious. The induction step is
the following: assume that each convex and compact set of dimension not greater
than m is the convex hull of the set of its extremal points. Let U be a convex and
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compact set of dimension m + 1. We look at U as a subset of R™"'. Its interior is
then nonempty. Let X € U.

First, let X € 0U. By Lemma 11, there exists a supporting hyperplane H of the
set U. The set Uy = UNH is convex and compact and its dimension is at most m.
By the inductive assumption, X is a convex combination of the extremal points of
Usz. It has to be shown that these points are also extremal points of U. But this is
a consequence of the fact that no extremal point of Uz is in the interior of a line
segment whose both end points are in U.

Let X € int U. We can take an arbitrary line passing through X; its intersection
with U is a line segment whose end points X1, X, are located on the boundary

of U. Both these points are convex combinations of extremal points of U, and so
is the point X. O

Second proof of the Krein-Milman theorem. If U is a subset of R', then the claim

is trivial. Assume that any convex and compact subset of R™ is the convex hull of
the set of its extremal points. We shall prove the theorem for the subsets of R™"'.
Let W be the convex hull of the set of extremal points of U. Obviously, W C U.
Suppose that there exists X € U\ W. Then, there exists a ball B(X, ¢) disjoint
with W. By the strong separation theorem, there exists a nonzero vector

a € R™' and a number o« such that a™ < o for x € W and a™% > «. Let

B =sup,cy a'x. As U is compact, B is finite. The hyperplane

P ={x e R™': a"x = 3} does not intersect W, but it has a common point

with U; indeed, Py “pnuis nonempty, as U is compact; hence, the supremum
of a'x is taken at some point x € U. We are going to show that in the set Py
there is an extremal point of U, which is inconsistent with the definition of W.
The set Py is a nonempty, compact and convex set of dimension m. It may be
seen as a subset of R™; by the inductive assumption it is the convex hull of the set
of its extremal points. Let Y be one of extremal points of Py ; suppose that y is

a convex combination of some points of U: gy = Ay; + (1 —A)yz, Y1,y € U,

A€ (0,1). Then, B = a"y =Aa"y; + (1 —A)a’y,. By definition of B, both terms,
a'y; and a’y, must be equal to B; hence, yi,y, € Py. But J is an extremal
point of Py, therefore, y = y; =y, and thus y is an extremal point of U. O

Theorem 36 Let f: W — R be a convexr and continuous function defined in
a convez and compact set W C R". Then at least one of global solutions of
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the problem

f(x) — max,
x e W.

1s an extremal point of the set W.

Proof. A continuous function in a compact set achievess its extrema. Therefore,
the problem formulated above has a solution X € W. By Theorem 35, the point X
is a convex combination of a finite number of extremal points of the set W, i.e.,

X=ax + -+ AnXm,

where xq,...,X, are extremal points, a;,...,a, >0and a1 +---+a,, = 1.
By convexity of f we obtain

f(X) < arf(xq) + - 4+ anf(xm).
As X is a maximum of f in W, there must be f(x;) = -+ = f(x;,). O
Definition 18 A set W C R" is called a polyhedral set if it is the intersection
of a finite number of halfspaces, i.e.,

W={xeR" pix<a,i=1,...,m},

where p; € R"\ {0}, o; € R.
Lemma 12 A polyhedral set is convez and closed.

Proof. Obvious. O
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5. Necessary condition of the first order

We consider the optimization problem

f(x) — min, %)
xeW,

where W C R" and f: W — R. Let X be a local solution. We are going to connect
the local geometry of the set W at X with the behaviour of the function f, i.e.,
with directions of descent of its values. By the local geometry we understand the
set of directions at which we can move without leaving the set W.

Definition 19 The cone of tangents T(X) to the set W at X € clW 1s the set of
vectors d € R" such that

d = lim )\k(xk — 7_6)
k—o0

for some numbers Ay > 0 and points x, € W such that x, — X.

According to the definition the vector d is an element of the cone of tangents T(x)
if it is the limit of a sequence of vectors determined by a sequence of feasible
points (xy)x tending to X. It may formally be described as follows

T(X) = {deR“: d=lim "X
k=00 || Xy — X||

for some (X )k CW, X = X, X X, A > 0},

which is to be proved as an exercise, as well as the lemma below.

Lemma 13 I) The set T(X) is a cone, i.e., Add € T(X) for all d € T(X) and
A > 0. In particular, 0 € T(X).

II) If X € int W, then T(X) = R".

III) The cone T(X) is closed.

Definition 20 Let f: X — R be differentiable at X € X. The set of
descent directions(or improving directions) of f at X is the set

D(x) ={d e R": Df(x)d < 0}.
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Theorem 37 Let X be a local solution of the problem (*). If f is differentiable
at X, then

D(x)NT(x) = 0.

Proof. Let d € T(x). Then, d = limy_,,, Ax(xx — X) for some sequence of points
(xy)x converging to X and a sequence (Ay)x C (0,00). As the function f is
differentiable at X, there is

f(xx) = f(X) + Df(X) (xx — %) + o(||xx — X]||).

As X is a local solution, f(xy) > f(x) for k sufficiently large. Together with the
formula above, we obtain the following estimation:

0 < f(xi) — f(x) = Df(x) (xi — ) + o([[xk — X]|)
By multiplying the sides by Ay, we obtain
0 < DF(X) (Ax(xi — X)) + Avo(|[xi — X|).

A little trick allows us to deal with the remainder; here we go with k to infinity:

- - —y olllxxk—%
0< Df(X) (Ak(xk *X)) +)\k‘|xk *XH M
— —— X
—d —llafl ~

We proved that Df(x)d > 0, i.e., d ¢ D(x). O

Example. Consider the following problem:

x} 4+ x3 — min,
x1+x 2> 1.

We denote f(x;,%) =X} +x3, W={x e R*:x; +x, > 1}.
We investigate the sets T(X) and D(xX) at three points: (1,1), (1,0), (%, %).
The point (1,1) is located in the interior of W, i.e., T(X) = R?. The set of descent

directions is
DX)={deR*:Df(X)d<0}={deR?* [2,21d < 0}
={(dy,d;) e R*: d; +d, <0}.

Obviously, the two sets have a nonempty intersection; hence, there is no minimum
at (1,1).
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The point (1,0) is located at the boundary of W, and we have
Tx)={deR*: di+d, >0}, DX ={deR*d <0}

The intersection of the two sets is nonempty and thus there is no minimum
at (1,0).

For the point (,1) we find the sets

Tx)={deR* d;+d; >0},
DX)={deR* [1,1ld<0}={(d,dy) e R*: d; + d, < 0}.

Their intersection is empty and thus it is posstble (it is still to be verified) that
there is a minimum at (3, }).
Inequality constraints

Now we consider the problem given in the following form:

f(x) — min,
gi(x) <0, i=1,...,m, **)
x € X,

where X C R" is an open set and f, gj,...,gm: X — R. Here the feasible set is

W={xeX:gi(x) <0,...,gn(x) <0}

The functions g,. .., gn are called inequality constraints and the problem (**) is
called the optimization problem with inequality constraints.

We assume that the functions g; are continuous; then the motion around a point X
is restricted by only those functions equal to 0 at X. The others, due to their
continuity, are less than zero in a neighbourhood of x.

Definition 21 The set of active (or binding or tight) constraints at a point X

15 the set

%) ={ie{l,...,m}: gi(x) =0}

We are going to connect the properties of active constraints at a point X € W with
the local geometry of the set W around X. To do this we introduce the following
definition:

54

Definition 22 Let x € W and let the functions g; which describe the
constraints active at X be differentiable at X. The cone of tangents
for active (binding) constraints is the set

Tin(X) ={d € R": Dg;(x)d < 0 for alliec I(x)}.

The cone of tangents for active constraints is a polyhedral set, i.e., it is convex
and closed.

Lemma 14 Ifx € W, then T(X) C Tjin(X).

Proof. The proof is similar to that of Theorem 37. Let d € T(X). Then,

d = limy .o, Ax(xx — X) for some sequence of points (xi)x C W converging to X and
a sequence of positive numbers Ay. Let i € I(X). As g; is differentiable at X, we
have

gi(xi) = gi(X) + Dgi(X) (xi —X) 4 o(|[xk — X])).

The i-th constraint is active at X; hence, gi(x) = 0. Obviously, gi(xy) < 0 due to
Xk € W. From the above we have the estimation

0 > gi(x) — gi(x) = Dgi(x) (xk — %) + o(||xx —X]|).
We multiply the sides by Ay to obtain
0 = Dgi(X) (Mc(xx — X)) + Aco([lx — X[)).

The same trick as before gives us

_ — —_, O([|X X
0> DgL(X) ()\k(xk *X)) +)\k||xk *XH (” k — ”)
—_— —— [ —X]
—d —ldll ~

Here we proved that Dg;(X)d < 0. This holds for all i € I(X); hence, d € Tj,(X). O

Example. Let W = { (x1,x;) € R%: x} +x3 < 1, x; > 0) ). In the canonical form we
have

W={(x1,%) EX=R:x{+x—1<0,—x,<0)},

and g;(x1,x2) =x¥ +x3 — 1, g2 = —x,. We look at three points of the set W:
(5,3), (0,1), (1,0).
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No constraint is active at the point (%, %); there is I((%, %)) = and
T((%) %)) = Tlin((%) %)) = RZ'

At the point (0,1) we have I((0,1)) = {1}, T((0,1)) ={(d;,d>) € R*: d, <0} and

Tin((0,1)) ={d € R*: Dg;(0,1)d < 0} ={d € R*: [0,2]d < 0} =T((0,1)).

At the point (1,0) there is I((LO)) ={1,2},
T(“)O)) :{(dhdl) S RZ: di < O) d > O} and

Tlin((lyo)) :{d € Rz: Dg](]ao)d < Ov D92(1)O)d < O}
={d e R [2,00d <0, [0,~1]d <0} =T((1,0)).

Example. The same set W may have another description:

W ={(x1,x;) € R*: x3 +%3 — 1 <0, —x3 < 0}. The second constraint is now
described by the function g,(x1,%2) = —x3. The cone of tangent directions at (1,0)
is unchanged, but

Tia((1,0)) ={d € R*: Dg;(1,0)d < 0, Dg,(1,0)d < 0}
={d e R*: [2,01d <0, [0,0](1,0)d < 0}
={(dy,d) e R*: d; <0}

and in this case T(X) # Tyn(X).
Necessary Kuhn—Tucker conditions

By Lemma 14, T(x) C Ty, (x). Often, but not always, the two sets are equal. It is
an important property, being the starting point to the entire theory of nonlinear
optimization by Kuhn and Tucker. We begin studying it with the lemma:

Lemma 15 (G. Farkas, 1901) Let A be an m X n real matriz and let d € R™.
Then ezactly one of the two following systems of equations and inequalities
has a solution:

AXSO, ATy :da
(1) d'x>0, (2)4 y=0,
x € R" y e R™
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Proof. First we show that if (2) has a solution, then (1) does not. Let y
satisfy (2). Then, d = ATy. After substituting this to (1) we obtain

Ax <0,
yTAx > 0.

The first inequality means that each coordinate of the vector Ax is nonpositive.
As the coordinates of y are nonnegative, the scalar product y'Ax is not positive.
This is inconsistent with the second inequality above; hence, (1) does not have

a solution.

Now suppose that (2) does not have a solution. Let

VE(xeRx=ATy,yeR™ y >0}
The set V is a polyhedral set; hence, it is convex and closed. As (2) does not have
a solution, d ¢ V. By the strong separation theorem applied to the sets V
and U = {d}, there exists a vector a € R" such that

a'd > supax.
xevV

Below we show that X = a is a solution of (1). Let a = sup,., X' x. From 0 € V it
follows that o > 0; hence, a'd = d"x > 0. It remains to be proved that Ax < 0.
Suppose that the i-th coordinate of AX is positive. By definition of V, for any
y > 0 there is « > X'ATy = yTAX. Let y, = ke; (i.e., the i-th coordinate of the
vector Yy is k and all other coordinates are zero). If the i-th coordinate (AX); of
AX is positive, then,

lim yLAX = lim k(AX); = oo,
k—o0 k—o0

which is inconsistent with y"AX < « for all y > 0. Hence, AX < 0. O

Remark. If a vector x is a solution of System (1), then for all a > 0 the vector
ax is also a solution; hence, the set of solutions of (1) is either empty or infinite.
On the other hand, if the rows of the matrix A are linearly independent and
System (2) has a solution y, then this solution is unique.

An example is shown in Figure 5. The matrix A is 2 x 2, its rows are the vectors
a; and a, (they are row matrices 1 x 2). For System (1) from the lemma, the
condition Ax < 0 is equivalent to two inequalities, a;x < 0 and a,x < 0. The sets
of vectors x satisfying each of the two inequalities are hatched with dashed lines;
their intersection is the set of vectors x such that Ax < 0. The set of vectors x
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Figure 5: Farkas’ lemma: on the left side (1) has a solution and on the right side
(2) has a solution

such that d"x > 0, where d is given, is grey. Clearly, (1) has solutions if and only
if the grey area and the doubly hatched area intersect. This is the case in the
picture on the left side. On the right side, System (2) has no solution. To find

a geometric interpretation of (2), we need to see how the set V={ATy:y > 0}
looks like. Any vector ATy may be represented as a linear combination

y1al +y,al, where y = (y1,y1). One can easily notice that the set V is a cone
spanned by the vectors a] and al; it is dotted on the picture. Equation ATy =d
has a solution when the vector d is inside the dotted part of the cone. This is the
case in the picture on the right side. On the left side the vector d is outside of the
dotted area, and System (2) does not have a solution.

Theorem 38 (Kuhn—Tucker theorem) Let X be a local solution of the
problem (**). If the functions f and gi, where i € I(X), are differentiable at X
and T(X) = Tyu(X), then there exists p = (Wy..., 1n) € [0,00)™ such that

Df(X) + » wDgi(x) =0,
i€l(x)

wgi(x) =0, i=1,2,...,m.

Remark. The second condition is called the complementary slackness condition.
Whenever the constraint g; < 0 is slack (meaning g; < 0), the constraint
W = 0 must not be slack (meaning pw; =0) and reverse.
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Remark. Often the system of Kuhn—Tucker equations is written with the sum over
all indices i =1,...,m:

m

Df(X) + ) wDgi(x) =0,
i=1

wgi(x) =0, i=1,2,...,m.

This notation is an abuse, as the functions g; which describe inactive constraints
need not be differentiable at X. On the other hand, the derivatives are multiplied
by wi, equal to O for inactive constraints, which is a sort of justification for this
notation.

Remark. The assumptions of the Kuhn—-Tucker theorem are obviously satisfied if
X € int W, ie., I(X) is the empty set. Then we have Df(X) =0', u = 0.

Proof of the Kuhn—Tucker theorem. By Theorem 37 we have D(X) N T(X) = (. By
assumption, D(X) N Ty, (X) = 0, which means that the system

Df(x)z < 0,
Dgt(i)z g Oy i S I(f))

has no solution z € R™. Let d = f(Df(Tc))T, let k = |I(X)| and let A be the k x n
matrix whose rows are gradients of the active constraints Dg;(x). By the Farkas’
lemma, there exists a vector y € [0, 00)* such that y'A =d, i.e.,

Df(x) +y"A=0".

Let pu € [0,00)™ be defined as follows: ()ieix) =Y and (pi)igix) = 0. Then, the
equality above is equivalent to

Df(x) + Z niDgi(x) = 0'.
)

iel(x

By definition of p it is obvious that pigi(x) =0 foralli=1,...,m. O

The assumptions of the Kuhn-Tucker theorem are called the necessary conditions

of the first order. Due to the importance of the vector pu in what follows, we give
it a name:

Definition 23 The vector u which appears in the necessary first-order
condition 1s called the vector of Lagrange multipliers.
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6. Regularity conditions and examples
Constraints qualifications

Three conditions defined below are sufficient for the equality T(X) = Ty, (X); we
shall prove it.

Definition 24 At a pointx € W C X

e the linear independence condition is satisfied if the functions g; are
continuous at X for i ¢ 1(x) and the vectors Dgi(X) are linearly

independent for i € [(X),

e the affine function condition is satisfied if the functions g; are
continuous at X for i ¢ I(x) and the functions g; are affine for i € I(x),

o the Slater condition is satisfied if the functions gi are continuous atx
fori¢ 1(x), the functions g; are pseudoconvez at X for i€ I(X) (ue.,
Df(x)(y —x) = 0= f(y) > f(X)) and there ezists a point x* € X such
that gi(x*) < 0 forie I(x).

Note that the point x considered in the Slater condition needs not satisfy the
inactive constraints, i.e., it is not required that x € W.

Theorem 39 If the affine function condition is satisfied at X € W, then
T(X) = Tin(X).

Proof. The set inclusion T(x) C Ty, (X) follows from Lemma 14. We need to prove
the opposite inclusion. Let d € Ty, (x). We are going to prove the existence of
A* > 0 such that the entire line segment X + Ad, A € [0,A*], is a subset of W.

We can notice that if i ¢ [(X), then gi(X) < 0. As these functions g; are
continuous, there exists A* > 0 such that g;(x + Ad) < 0 for all A € [0, *]. It
remains to be proved that this inequality is satisfied also for the active constraints.
Let 1 € I(x). By definition of d, Dgi(x)d < 0. The active constraint g; is an affine
function equal to 0 at X, i.e., it has the form gi(x) = al (x —%) for some nonzero
vector a; € R™. There is Dg;(X)d = ald. Therefore, for any A > 0 we have

0> Aald = gi(x + Ad);

6.2

hence,
{X+Ad: A€ [0,A"]} Cc W
It remains to construct appropriate sequences (xi ) C W, and (Ay)x C (0,00). Let

A* k
Xy =X+ —d, Ak:;-

Then, x, € W, x — X and A (x, —X) = d for all k, and thus
limk*}w }\k(xk — 7_() =d. O

The proofs of the other two regularity conditions refer to the set
Tt (%) & {d € R™: Dgi(x)d < 0 for all i € I(x) }.

Note that Ty (X) = 0 if gi(x) = 0 and Dg;(x) = 0" for some i € {1,...,m}.

Lemma 16 If the functions gi, 1 € I(X) are differentiable at X € W and the
other constraints g; are continuous, then from d € Ty (X) it follows that
X+ Ad € int W for sufficiently small A > 0.

Proof. If i ¢ 1(x), then g;(X) < 0. By the continuity of g;, there is g;(x + Ad) < 0
for all A sufficiently small, say, A € (0,A*]. If i € I(x), then, by differentiability
of g; at X, we have
Jigg 91X T Ad) — (%)
A0 A

=Dgi(x)d < 0,
because d € T (X). This inequality holds also if A > 0 is arbirarily small.
Therefore,
gi(x +Ad) — gi(x)
A
and gi(x +Ad) — gi(x) = gi(X +Ad) < 0. O

<0,

Lemma 17 Let X € W, let the functions gi, where i € I(X), be differentiable
at X and let the functions g;, where i ¢ 1(X) be continuous at X. Then,

I) Tint C T()_();

II) If Tine (%) # 0, then cl (Tiae(X)) = Tiin(%).
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Proof. (I) follows directly from Lemma 16. To prove (II) we notice that Ty (X) is
the interior of the set Ty, (X). As Ty, (X) is a polyhedral set, it is convex and closed.
The claim follows from Lemma 3. O

Theorem 40 If the Slater condition is satisfied at x € W, then T(X) = Ty (X).

Proof. First we show that Ty (X) # 0. Let x* € X such that g;(x*) < 0 for i € I(x).
By pseudoconvexity of g; at X we have Dg;(X)(x* —X) < 0 for i € I(x), i.e.,
x*—x € Tint(i).

By Lemma 17, cl (Tit(X)) = Tyn(X). We have also proved that
Tint(X) C T(X) C Tyn(X) and that the set T(X) is closed. Hence, T(X) = Ty (X). O

Lemma 18 (P. Gordan, 1873) Let A be an m x n matriz. Then ezactly one of
the following two systems,

ATy =0,

Ax <0
(U{xeRn’ (2)S y=0,y#0,
) m
y eR™,

has a solution.

Proof. First we prove that the two systems cannot have solutions at the same
time. Suppose that they have; let x and y satisfy (1) and (2), respectively. As y
satisfies (2), we have y"Ax = 0. On the other hand, x satisfies (1), i.e., (Ax); <0
for alli=1,...,m. Knowing that y; > 0 for all i and y # O, we have y"Ax < 0.
This inconsistency proves that at least one of the systems does not have a solution.

Now we prove that at least one of the systems has a solution, by proving that
if (1) has no solution, then (2) has at least one. We define the convex sets

u (—o0,0)™, Vdéf{z € R™: z = Ax for some x € R" }.
The set U is the interior of a cone and V is a linear subspace. If (1) has no
solution, then the two sets are disjoint. By the weak separation theorem, there
exists a nonzero vector a € R™ such that

supa'z < inf a'z.
zel zeV
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We show that a > 0. On the contrary, suppose that one of the coordinates of a,
say, a; < 0. Consider the sequence of vectors z = — (ke + 1 > ;4 €;). Then,

z € U and limy_,o @'z = 0o, which is an inconsistency, as SUp,cy a'z is finite
(we have O € V; hence, inf,cy a’z < 0).

We proved that all coordinates of a are nonnegative. Hence, sup,., a'z = 0. Let
z=A(—A"Ta). Then, z € V, i.e., a'z > 0. Therefore,
0<a'z=—-a'AATa=—||ATqal?

which implies that ||ATa| =0, i.e., ATa = 0. The vector y = a is, therefore,
a solution of (2). O

Figure 6: Gordan’s lemma

Figure 6 illustrates the Gordan’s lemma. The matrix A is 3 x 2, its transposed
rows are the vectors in R%. Obviously, in this example they are linearly
dependent. The sets of solutions of the inequalities a;x < 0 are the hatched
halfplanes (without the boundaries).

On the left side there exist vectors v € R? (e.g., a}) such that for all i the number
;v is positive; hence, the coefficients of the linear combination

aly: + alyz + aly; = 0, if not all equal to 0, must have both signs, i.e., at least
one of them is positive and at least one is negative. Thus, the system (2) has no
solution. The cone X being the intersection of all hatched halfplanes is nonempty;
the vectors x satisfying (1) are elements of this cone.

On the right side we have vectors a;, a;, as, such that there exists a linear
combination with positive coefficients, which is the zero vector. Therefore, there
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exists a vector y € R’ satisfying (2). The set X—the intersection of the
appropriate halfplanes—is empty.

Theorem 41 If the linear independence condition s satisfied at a pointx € W,
then T(i) = Thn(i).

Proof. Just as in the case of the Slater condition, it suffices to prove that

Tint (X) # 0. Let A be the matrix whose rows are gradients of active constraints. By
their linear independence, a nonzero vector u € R'"™! such that ATu = 0 does not
exist. In other words, System (2) of Lemma 18 has no solution. Hence, System (1)
has a solution, i.e., there exists d € R™ such that Ad < 0, which means that

Dgi(x)d < 0 for all i € I(x).

Hence, d € Tiy(Xx). O
Examples

Example. Consider an optimization problem in the set

W={xeRzzxf+x§ <hLxi+2% <1, x—3x <1
There is X = R%. The constraints are described by the functions

gilxnx2) =xi+x3—1, @xn,x) =x1+2x—1, g3(x1,x2) =x1 —3x2— 1.
At the point X = (1,0) all three constraints are active and

Dgi(x) = [2,0], Dgy(x) =01,2], Dgs(x)=10,-3.

The linear independence condition is not satisfied at X. Also, not all active
constraints are described by affine functions. But all these functions are convex
and differentiable, i.e., they are pseudoconvex. At x = (0,0) we have

gi(x) = —1< 0 for i =1,2,3. Thus, the Slater condition is satisfied.

Example (Kuhn, Tucker, 1951). Consider the optimization problem

X — min,
3

X2 < X7y

X2 Z 0.

6.6

The constraints are described by the functions
gi(x1, %) ==X + %2,  Ga(x1,%2) = —xa.

At each feasible point except (0,0) the linear independence condition is satisfied.
However, the solution of this problem is X = (0,0), but

T(X) ={(di,d2) €R*: dy >0, dy =0} # Tiw(X) = {(ds, d2) € R*: d; = 0},

as Dg;(x) = [0, 1], Dgy(x) = [0, —1], which implies Dg;(x)d < 0= d; < 0 and
Dg,(x)d < 0= d; > 0. On the other hand,

DX) ={(d;,dy) e R?*: d; <0},

because Df(x) = [1,0]; hence, Df(x)d < 0 = d; < 0.

For the optimization problem

X; — min,
3

X2 < X7y

x2 2= 0,

we still have T(X) # Tya(X). But for this new problem
D(X) ={(di,d,) € R*: d, < 0}. Tt follows that at X = (0,0)

T(x) ND(x) = Tim(x) N D(X) = 0.

The above condition is sufficient for the claim of the Kuhn—Tucker theorem to
hold.

Example. Let A be a symmetric n x n matrix. Consider the optimization problem

x"Ax — max,
lx[l <1,
x € R™

First, we rewrite the problem in the canonical form; note that the constraint is
equivalent to ||x||? =x"x < 1:

—x"Ax — max,
x'x —1<0,
x € R™

By W we denote the feasible set. At each point the linear independence condition
and the Slater condition are satisfied. Therefore, the solution of the problem
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satisfies the necessary first order conditions (i.e., the Kuhn—Tucker conditions).
We are looking for all points “under suspicion”.

The Kuhn—Tucker conditions have the form

—2xTA +2ux" =07,
r(x'™x —1) =0,
p>0, xeR™

First we check the case x'x — 1 < 0. Then (due to the second equation), u =0
and the first equation is equivalent to x'A = 07 or Ax = 0. This equation is
satisfled by all vectors x € ker A such that ||x|| < 1. In particular, it has at least
one solution, x = 0.

Then we check x'x — 1 = 0; from the second equation nothing may be said

about . However, the first equation takes the form ux" =xTA, or Ax = ux. The
solutions are the unit eigenvectors corresponding to nonnegative eigenvalues p of
the matrix A. The set of solutions may be empty if all the eigenvalues are
negative. To conclude, the set of points “under suspicion”, i.e., satisfying the
necessary first order condition, is

{x eR™: (x € ker A and ||x|| < 1) or
(x|l =1 and x is an eigenvector of A

associated with a nonnegative eigenvalue) }.

At this point we do not have any technique of finding solutions, except for using
the common sense. If x € ker A, then the target function x"Ax is equal to 0. For
any eigenvector x the value of the target function is the associated eigenvalue. If
the greatest eigenvalue is positive, then each of its unit eigenvectors is a global
solution. If the matrix A has no positive eigenvalue, then any vector from ker A
whose norm is not greater than 1 is a solution.

Example. Consider the problem

X1 + X2 — min,
2

X2 2 X7,

X2 < 0.

It is easy to notice that the solution is X = (0,0), which is the only feasible point.
On the other hand, Df = [1,1], Dg; = [2xq,—1] and Dg, = [0, 1]. Therefore, for
any numbers 1y and py, there is

Df(x) 4+ wDgi (x) 4+ waDga (%) # 0,

6.8

i.e., the Kuhn—Tucker conditions are not satisfied. But

T(X) = {0} # Tin(X) ={(ds,d2) € R*: d; = 0}. Also,

P =TE) NDX) # Tuw(X)ND(X), as D(X) ={(dy,d;) € R?: dy +d, < 0}. As we
can see, the assumptions of the Kuhn—Tucker theorem are not satisfied at x.
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7. Quasi-convex functions and sufficient conditions
Quasi-convexity

Below we extend the class of functions whose maxima are located at the extremal
points of their domains.

Definition 25 Let W C R" be a convez set and let f: W — R. The function f is
quasi-convez if for all x,y € W and A € [0, 1] there is

f(Ax + (1 —A)y) < max{f(x), f(y)}
The function f 1s quasi-concave if —f is quasi-convez, t.e., if
f(Ax + (1 —A)y) > min{f(x), f(y)} for allx,y € W, A€ [0,1].

The function f is quasi-linear if it 1s both quasi-convez and quasi-concave.

Theorem 42 Let W C R" be a convez set and let f: W — R. The function f is
quast-linear if and only if each sublevel set of this function is convez.

Proof. Suppose that the function f is quasi-convex and let « € R be fixed. Let
X,y € W, (f). Then, f(x) < « and f(y) < «. For any A € (0,1) we obtain

f(Ax + (1 = A)y) < max{f(x), f(y)} < o

Hence, Ax + (1 — A)y € W, (f), i.e., W,(f) is a convex set.

Now suppose that W, (f) is convex for all « € R. We fix x,y € W and A € (0,1).
By assumption, the set W, (f), where o = max{f(x), f(y)}, is convex. It follows
that Ax + (1 — A)y € W,(f); hence,

f(Ax + (1 =A)y) < o = max{f(x), f(y)}

and the proof is complete. O

Corollary 7 Any convez function is a quasi-convezr function.

7.2

Example. The function f(x) = —e* is quasi-convex even if it is strictly concave.
For o > 0 the set W, (f) =R and if « < 0, then W, (f) = [In(—a), c0). All these
sets are convex; hence, by Theorem 42, the function f is quasi-convex. It is also
quasi-concave, i.e., it is quasi-linear.

Example. The function f(x) = x? is quasi-convex (as it is convex), but it is not
quasi-concave. This may be checked by looking at the sublevel sets of —f: for
o < 0 we have W, (f) = (—oo, —v/—a] U [\/—«, 00), which is not a convex set.

Lemma 19 If a set W C R" is convez, then a function f: W — R is
quast-linear if and only if its restriction to any interval is a monotone
function.

Proof is left as an exercise.

Example. The function f(x) = —e has the following sublevel sets:

0 if o <1,
W, (f) = [f\/f In(—a), /= ln(—oc)] if e (—1,0],
R if o> 0.

All these sets are convex; hence, the function f is quasi-convex.

Example. The function f: [0,00)?> — R given by the formula f(x;,x;) = —xx; is
quasi-convex. Its sublevel sets for o > 0 are trivial, W,(f) = [0, 00)?, and if & < 0,
then the sublevel sets have a boundary being one branch of a hyperbola. This
function is neither convex nor concave, as its Hessian has the eigenvalues —1 and 1.

Example. Let a,c € R" and b,d € R. Let D ={x € R": ¢"x +d > 0}. Then, the
rational function f: D — R given by
a'™x+b
f(x) =
() c'x+d

is quasi-linear. The proof is left as an exercise.

Theorem 43 Let W C R™ be a convez set and let f: W — R.

I) If the function f is quasi-convezr and differentiable at a point y € W, then

f(x) < f(y) = Df(y)(x —y) <0 for allx € W.
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IT) Suppose that the function f is differentiable in the entire set W. Then f is
quast-convezx if and only if

f(x) < f(y) = Df(y)(x —y) <0 for all x,y e W.

Remark. The implication f(x) < f(y) = Df(y)(x —y) < 0 is equivalent to
Df(y)(x —y) > 0= f(x) > f(y).

If the function f is quasi-linear and f(x) = f(y), then Df(y)(x —y) =0.

Proof. (I) We fix x,y € W such that f(x) < f(y). For any A € (0,1) we have
fy +Ax —y)) = f(Ax+ (1 = A)y) < max{f(x), f(y)} = f(y).
Therefore,

fly+Ax—1y)) —f(y)
)

<0.
By definition of the directional derivative, we obtain

f Alx — —_f
Di(y)(x— y) = lim (y +Alx Ay)) (1)

<0

The proof of (II) is left as a (not very easy) exercise. O

Theorem 44 If a function f: W — R defined in a convex set W C R" is
pseudoconvez, then it 1s quasi-convez.

Proof. By assuming that the function f is not quasi-convex we shall get an
inconsistency with its pseudoconvexity. Let x,y € W and A € (0, 1) such that

f(Ax + (1 —A)y) > max{f(x), f(y)}.
Let z = Ax + (1 — A)y. By pseudoconvexity, we have

f(x) < f(z) = Df(z)(x — z) <0,
f(y) < f(z) = Df(z)(y —z) < 0.

The vectors x — z and Yy — z have the same direction, but opposite orientations.
The directional derivatives of f at z cannot be negative in both directions. O

7.4

Theorem 45 Let a function f: W — R defined in a convezr open set W C R" be
quasi-convez and continuous. If the function f is differentiable at
a point X € W and Df(x) # 07, then f is pseudoconvez at X.

Proof. We need to prove that for all y € W the condition Df(x)(y —X) > 0
implies that f(y) > f(Xx). Let A denote the affine space perpendicular to Df(x)
passing through X. As Df(X) # 07, the dimension of A ism — 1, i.e., A is

a hyperplane in R".

We notice that if y € W\ A and Df(X)(y —X) > 0, then the directional derivative
is (strictly) positive: Df(X)(y —x) > 0. It follows (see the remark above) that
f(y) > f(x), which is what was to be proved. Now we fix y € WNA. As W is
open and A is a hyperplane, there exists a sequence of points (yy)x C W\ A
converging to y and such that Df(x)(yx —x) > 0, i.e., f(yx) > f(X). By continuity
of f we obtain f(y) > f(x). O

Finding maxima of quasi-convex functions

Theorem 46 Let f: W — R be a quasi-convex and continuous function defined
i a conver and compact set W C R". Then at least one of the global
solutions of the problem

f(x) — max,
xeW

1s an extremal point of the set W.

Proof. A convex function reaches its extremal values in a compact set. Therefore,
a solution X exists. By Theorem 35, the point X is either an extremal point or
a convex combination of a finite set of extremal points of W, i.e.,

X=ax;+---+ AmXm,
where a;,...,an, >0, a; + -+ + a,, = 1. By quasi-convexity of f,
fb_() < max{f()q )) ey f("m)}-

As the function f at X takes its maximal value in W, the equality f(X) = f(x;) has
to hold for some i € {1,...,m}. O
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Sufficient conditions

Below we consider the optimization problem with both non-equality and equality

constraints:
f(x) — min,
gi(x) <0, i=1,...,m, (%)
hq(x) =0,j=1,...,1
x € X,
where X C R" is an open set and f, gy,...,gm, h1y..., hi: X = R. Thus, the

feasible set is
W:{XGX: 91(") <O) ey gm(x) gov h](X) ::hl(x):O}

The functions g; are called non-equality constraints, the functions h; are called
equality constraints and the problem above is called an optimization problem
with mixed constraints.

The theorem below describes sufficient conditions for a point satisfying the first
order necessary conditions to be a global solution of (*).

Theorem 47 Let x € W. Assume that

e the functions gi, where i ¢ I(X), are continuous at X, the functions g,
where i € 1(X), are differentiable at X and quasi-convez,

o the functions h;, where j € {1,...,1}, are quasi-linear and differentiable
at X,

e the function f is pseudoconvez at X.

If there ezists u € [0,00)™ and A € R" which satisfy the following first order
condition:

1
Df(X) + » wDgi(X) + Y ADh;(x) =0,

iel(x) =1
wgi(x) =0, i=1,...,m,

then the point X is a global solution.

7.6

Proof. Let x € W. We multiply the sides of the first equation by x —x:

!
Df(X)(x —X) + »_ wDgi(X)(x —%) + Y ADh(%)(x —%) =0
iel(x) j=1
By Theorem 43, Dh;(x)(x —X) = 0 for all j, as hj(x) = h;(x) = 0. By the same
theorem, also Dg;(X)(x —X) < 0 for 1 € I(x), as 0 = gi(X) > gi(x). From the above
we conclude that

Df(x)(x —x) > 0.

By the definition of a pseudoconvex function, f(x) > f(x). As the choice of x € W
was arbitrary, X is a global solution. O

Remark. If the assumptions of Theorem 47 are satisfied locally, in
a neighbourhood of X, then X is a local solution.

Remark. By Theorem 45, instead of the pseudoconvexity of f at X, we can assume
its continuity in X, quasi-convexity and the condition Df(X) # 0'. It is one of
necessary conditions, given by Arrow and Enthoven in 1961.
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8. A necessary condition for mixed constraints
Below we are going to derive a necessary first-order condition for the optimization
problem given as follows:

f(x) — min,
gi(x) <0, i=1,...,m

*
h'j(x):())j:]v“'ala ()
x € X,

where X C R" is an open set and f, g1,...,gm, N1y..., : X — R. The set of

feasible points is thus

W={xeX:gi(x) <0, ..., gn(x) <0, hy(x)=---=h(x) =0}

Example. Consider the following problem:

f(x) — min
a'x+b=0,
x € R",

for some a € R" and b € R. The equality constraint may be replaced by two
inequality constraints:

f(x) — min
ax+b <0,
—a'x—-b <0,
x € R",

The constraints are affine functions; hence, the affine function condition is satisfied
at each point. If X is a local solution, then there exists a vector of Lagrange
multipliers u = [, 1y such that the Kuhn—Tucker conditions are satisfied:

Df(X) + ma’ + w(—a’) =07,

w(a+b) =0,
w(—a'x —b) =0,
w1, 2 = 0.

The point X, being a solution, is feasible, i.e., it satisfies the constraints:
a'x + b = 0. Therefore, the second and third equalities are trivially satisfied. The
conditions above are thus equivalent to

Df(X) + (i — u)a’ =07,
i, 2 = 0.

8.2

Denote A = p; — . As these two numbers must only be nonnegative, A € R. As
a result we obtain

Df(x)+Aa’' =0", AeR,

which is the Kuhn—Tucker condition for equality constraints.

The example above suggests that the theory for inequality constraints, developed
earlier, is also suitable for dealing with equality constraints. Unfortunately, it is
not the case. Affine constraints are very special. If any constraint is not affine and
we split it to a pair of inequality constraints, as above, then neither the linear
independence condition nor the Slater condition is satisfied at any point of the
set W.

Necessary first-order condition

The theory described below is a direct extension of what we have done for the
optimization problems with inequality contraints. We begin with extending the
definition of the set Ty, (X):

Definition 26 Let x € W, let g;, where i € 1(X) be functions differentiable at X
and let the functions hy,...,h be differentiable at X. The set

Tin(X) ={d € R": Dgi(x)d < 0 foriec I(x),Dhj(x)d =0 fori=1,...,1}

15 called the cone of tangents for active (binding) constraints.

Just as in the case of inequality constraints, the cone of tangents for binding
constraints is a polyhedral set, i.e., it is a convex and closed set. However, with at
least one equality constraint the interior of this set is empty.

The necessary condition for the existence of a local solution of the optimization

problem with mixed constraints given below assumes the equality of the cone of
tangents to the set W and the cone of tangents for binding constraints. Later we
show generalised regularity conditions which imply this equality.
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Theorem 48 (Kuhn—Tucker theorem) Let X be a local solution of the

problem (*). If the functions f, g;,1 € I(x), h;,j = 1,...,1 are differentiable at X
and T(X) = Ty, (X), then there exist vectors u € [0,00)™ and A € R' such that

X) + Z wDg: (X +Z7\h,

iel(x

Higi(x) =0, 171,--->

Proof. By Theorem 37, D(X) N

T(X) = 0. Then, by assumption, D(X) N Ty, (X) = 0,

which means that there is no solution z of the system

)l)
L

We use the Farkas’ lemma with d = —Df(X) and with the following matrix A:

Df(x)z <0,
Dgi(%)z <0, i € I(x),
Dhi(x)z<0,j =1,.
—Dh(X)z <0, j =1,
Dhi(x), j=1,...
A=| -Dhx), j=1,...

Dgi(x), ielx)
Hence, there exists y € [0, 00)1*
Df(x) +y'A=0".

Let Ay =yj—yy forj=1,...,

1

b

—

¥I+2 such that y'A = —Df(x), or

(©)

1. Let the coordinates of the vector p € R™

corresponding to the active constraints be equal to the last |I(X)| coordinates of y
and let the other coordinates of u be equal to 0. Then, (<) is equivalent to

iel(x

1
X) + Z wDgi(X) + Y Ajhy(x) =
j=1

By definition of u it is obvious that pigi(x) =0 for all 1. O

8.4

Regularity constraints

Below three sufficient conditions for the equality T(Xx) = Ty, (X), called the
regularity conditions, are defined.

Definition 27 At a pointx € W

e the linear independence condition is satisfied if the functions g;, where
i ¢ 1(x), are continuous at X and all the other inequality and equality
constraints are continuously differentiable in a neighbourhood of x and
the vectors Dg;(x) for i € I(X) and Dh; forj=1,...,1 are linearly
independent,

e the affine function condition s satisfied if the functions gi(X) for
iel(x) and hj forj=1,...,1 are affine, while gi, for i ¢ 1(x), are
continuous at X,

e the Slater condition is satisfied if
—the functions gi, i € I(X) are pseudoconvez at X,
—the functions gi, i ¢ I(X) are continuous at X,
—the functions hj, j =1,...,1, are affine,
—there exists x* € X such that gi(x*) < 0 for i€ I(X) and h;(x*) =
forl=1,...,L

Theorem 49 If the affine function condition is satisfied at a point x € W, then
T(x) = Tun(X).

Proof. Just as in the last example, we change the affine equality constraints into
pairs of affine inequality constraints. The claim follows from Theorem 39. O

Theorem 50 If the Slater condition s satisfied at a point X € W, then
T(x) = Tun(X).

Proof. The functions h;, for j = 1,...,1, have the form

h,(y):a]Tyan], (leRn, bjER.
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We introduce the generalisation of set Ty (X) for mixed constraints:

Tint(X) ={d € R": Dgi(x)d < 0 for i € I(x),Dhj(x)d =0 for j =1,...,1}

(1) We prove that T (X) # (). We take x from the Slater condition. By
pseudoconvexity of gi, we have

Dgi(x)(x —x) <0, iel(x).
For all j we also have
aj (x —X) = a/x + b; — a/x — b; = hj(x) — h;(x) = 0.

Hence, (x —X) € Tint(X).

(2) We prove that T (X) C T(x). We choose any d € Tiys(X). It suffices to show
that there exists a line segment contained in W whose one end is X and whose
direction is d. Let y(A) =X + Ad. As the inactive constraints are continuous
functions, there exists ¢ > 0 such that gl(y()\)) < O0for A €[0,¢] and i ¢ I(X).
From d € Ty (X) it follows also that hj( ) =0forj=1,...,1 (because h; are
affine functions). And as the functions g;, where i € I(x), are differentiable at X
and d € Ty (X), it follows that

lim gi(yA) — gi(®)

) X = Dgl(x)d < 0.

Hence, gi(y(A)) — gi(X) < 0 for A small enough.

(3) We prove that cl Tipt(X) = Tyn(X). The sets Tipt(X) and Tyn(X) are contained in
the affine subspace H determined by the affine equality constraints. Therefore,
there exists an affine mapping P, such that the image of the subspace H is R“/,
where n’ = dim H (if the vectors a; are linearly independent, then n’ =n —1).
The mapping P restricted to H is a one-to-one function. The topologies of H
and R are, therefore, identical, which means that it suffices to prove this claim
for the images T, ,(X) and T}, (X) of the sets Tip(X) and Ty, (X) under the

mapping P. We notice that T, ,(X) is open in R" and nonempty. It is also the
interior of T

in(X). By Lemma 17 we have T/, (X) = T/, (X).
(4) The proof that T(X) C T, (X) is identical to the proof of Lemma 14.

(5) It suffices to recall that T(X) is a closed set. Therefore,

clTing (%) C T(X) C Tyn(X) = cl Tig(X). O
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Before tackling the third regularity condition, we recall the implicit function
theorem, which we need to describe the cone of tangents to a surface determined
by equality constraints.

Theorem 51 (implicit function theorem) Let f: X — R", where X C R™™ is an
open set, be a function of class C*. Assume that f(X,y) = 0, where X € R",

y € R™, (X,y) € X. By A, we denote the matriz of partial derivatives of f
with respect to the first n variables at (X,7): Ay € R™", (Ay)y = g—f{‘i(i,ﬁ).

If the matriz Ay is nonsingular, then there exists an open set W C R™, whose
element is J, and a function g: W — R" of class C*, such that g(y) =X and
(9(y),y) € X and £(g(y),y) =0 for all y € W. Moreover,

Dg(y) = —(Ax)'Ay, where the matriz Ay € R™™ consists of the derivatives
of f at (X,y) with respect to the last m vamables (Ay)y = (x y).

We consider the surface S described by a system of m* equations:
S={xeX:icx)=0,i=1,...,m"}

where X is an open set. By T°(X) we denote the cone of tangents to S at a point
X e S.

Theorem 52 Let k > 1. Assume that the functions ci,...,Cn~, are of class C*
in a neighbourhood of X and assume that their gradzents Dci(x) for
i=1,...,m" are linearly independent. Then,

TSx) =TS, (%) €{deR": De;(x)d =0,i=1,...,m"}.

Moreover, for any d € T5(X) there exists an ¢ > 0 and a parametric
curve Y: (—e,e) — S of class C* such that y(0) =X and y'(0) = d.

Proof. First we show that T5(X) C T3, (x). Let d € T5(x). Then,

d = lim_,, A (X — X) for some sequences (xy)x C S, X #X, and (A C (0, 00).

By definition of the directional derivative, for each i =1,..., m* we obtain
_ _ _ _,o(|lxk—%
€] = (%) +Des (%) Mt — %) + A — ) 2= XD,
=0 =0 —d Sl -
I

i.e., Dci(x)d = 0. Hence, d € TS, (X).
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5.(%) C T5(x), which is more difficult. We fix

de Tlm( X). We are going to construct a curve located on S and passing through X,
whose derivative at X is d. We denote c(x) = (c1 (X)y.enyCms (x)) and we define
the function ®@: R™ x R — R™ by the formula

It remains to be proved that TS (X

®(u,t) = c(x+td + (De(x))u).

We can see that ®(0,0) = 0. By D,® we denote the matrix of partial derivatives
with respect to the coordinates of the vector u: D, ® = (a'b")ij:] e At the

oy
point (0,0) we have D, ®(0,0) = Dc(x) (Dc(i))T, Recall that due to the
assumption, the matrix De(X) is of full rank (equal to m*), i.e., D, ®(0,0) is
nonsingular. By the implicit function theorem, there exists ¢ > 0 and a function
u: (—e,e) = R™ of class C* such that @ (u(t),t) =0 and u(0) = 0. Let

y(t) =% +td + (De(X)) u(t).

This curve, according to the construction, is located on the surface S, as
c(y(t)) = @(u(t),t) =0 for t € (—¢,¢) and y(0) =X. The derivative of the
composition of functions coy is

L e(yv) = De(y(v) (d-+ (De(x)w'(1),

and at t = 0 we have

= De(y(0)) (d + (De(x)'w/(0).

t=0

&C(y(t))

On the other hand, we know that c(y(t)) =0, i.e., the derivative above is equal

to 0: De(y(0)) (d + (De(X))"u/(0)) = 0. But we have chosen d € T, (X), which in
our notation means that Dc(X)d = 0. Hence, De(X)(De(x )) u/(0) =0. As the
rank of the matrix De¢(X) is equal to m*, we obtain u’(0) = 0. To complete the

proof we compute the derivative of y:
y'(t) = d+ (Dx(%)) "w'(1),

and the above, for t =0, gives us y’(0) = d. This equality allows us to conclude
that d € T5(x). O

Remark. The theorem above establishes a well known fact about spaces tangent to
manifolds. From its assumptions it follows that S locally (in a neighbourhood
of X) is a differential manifold of class C*. The tangent space at X is defined as the
set of vectors being derivatives (at X) of curves contained in this manifold and
passing through X (which is equivalent to the definition of T(x)). The equality
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Tin(X) = T(X) means that the tangent space is the kernel of the linear mapping
Dc(x).

Theorem 52 will often be used in what follows; it is the main tool used in the
proof of the sufficient second-order condition. Using this theorem, we can easily
prove the equality T(X) = Tj;,(X) assuming that the linear independence condition
is satisfied:

Theorem 53 If the linear independence condition is satisfied at a point x € W,
then T(X) = Tia(X).

Proof. Let d € Ty (X). Let T(x) = {i € I(x): Dgi(x)d = 0}. We define the surface
S={xeX:cx(x) =0, wherecy =g;ifiel(X)orck =h;,j=1,...,l}
Then,

T(x) ={d € R": Dgi(x)d =0, i € I(X), Dhj(X)d =0,j =1,...,1}

By Theorem 52, there exists a curve y (—e,€) — R" such that y(0) =

y'(0) =d and gi(y(t)) =0, i€ I(%), hj(y(t)) =0,j=1,...,L Forie I(x)\1(x)
let §i(t) = gi(y(1)), t € (—¢,¢). Then, §/(0) = Dgi(x)d < 0, i.e., there exists

& > 0 such that Gi(t) < 0 for t € [0,¢;). For i ¢ I(X), by continuity of g;, there is
gi (y(t)) < 0 in a neighbourhood of 0. Therefore, there exists € > 0 such that
y(t) € Wfor t € [0,€). Hence, trivially, d € T(x).

The proof of the set inclusion T(X) C Ty, (X) is identical to the proof of Lemma 14.
O
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9. Second-order conditions

We consider the optimization problem with mixed constraints. We assume that at

a point X € W there is T(x) = Ty, (X) and the first-order necessary condition is
satisfied, i.e., there exist vectors p € [0,00)™ and A € R' such that

1
Df(X) + > wDgi(X)+ Y ADh(x)=0",

iel(x) =1
mgi(i) :0, i= 1,...,m.

Definition 28 The Lagrange function s the function given by the formula

L
Lix, 1y A) = f(x) + Z Higi(x) + Z Ajhy(x)
j=1

iel(x)

The first-order condition may be written in a shorter form

DyL(x,u,A) = OT)
P"Lgib_‘)zo) i=1,...,m,

where D, denotes the derivative with respect to x.

Definition 29 The set
I'x)={ielx): >0}
15 called the set of strongly binding tnequality constraints. The set

PE) =I1X\I'[X)

1s called the set of weakly binding inequality constraints.

Theorem 54 (necessary second-order condition) Suppose that X is a local
solution of the problem with mized constraints and the linear independence
condition is satisfied at X. Let u and A be vectors of Lagrange multipliers of
the first-order condition. If the functions f, g; for i € I(xX) and hy,...,h are
twice differentiable in a neighbourhood of X, then

d"DL(x, u,A)d > 0
for all d € R™ such that

Dgl(i)d =0, 1ielfx),
Dh(®)d =0, j=1,...,L

9.2

Proof. Let d € R"™ be a vector satisfying the conditions given above. By

Theorem 52 there exists ¢ > 0 and a parametric curve y: (—¢,¢) — R" of class C?
having the following properties: y(0) =%, y’(0) = d and for t € (—¢, ¢) there is
hi(y(t)) =0,j=1,...,land gi(y(t)) =0, i € I(X). Hence, the function

F(t) & L(y(t),m,A) is equal to f(y(t)) for t € (—e, ). The continuity of the
inactive constraints allows us to conclude that y(t) € W for t in a neighbourhood
of 0. Hence, F has a local minimum at 0, as y(0) is a local minimum of f in W.
From the assumptions it follows that F is of class C2. The existence of its
minimum at O implies that F”(0) > 0, i.e.,

0 < d"DZL(X, 1, A)d + DiL(X, 1, A)y" (0).

The above completes the proof, as at the point X the necessary conditions are
satisfied, in particular

D,L(XuA)=0". O
Theorem 54 may be generalised as follows:

Theorem 55 If the assumptions of Theorem 54 are satisfied, then the
mnequality

d"D2L(x, u,A)d > 0

is satisfied for all d € R™ such that

Dgi(x)d =0, ieI'(x),
Dgi(i)d < O) ie Io(i)a
Dh(x)d=0, j=1,...,L

The next theorem describes a sufficient condition for a local solution. Note that if
this condition is satisfied then the solution is strict. This leaves us a “grey zone”,
where the necessary condition is satisfied, but the sufficient condition is not, just
like in the case of unconstrained optimization.

Theorem 56 (sufficient second-order condition) Suppose that the first-order
necessary condition is satisfied at a point X € W and the functions g; for
ieI*(X) and hy ..., are twice differentiable at X. If

d'D2L(x, u,A)d > 0
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for all d € R™\ {0} such that
Dgl(%)d = Oa ie I*(Y))
Dgi(})d <0, iel’(x), (®)
Dhj(x)d=0, j=1,...,1

then the point X is a strict local solution.

Note that no regularity condition is assumed in this theorem.

Proof. The proof is done by contradiction. Suppose that X is not a strict local
minimum. Then, there exists a sequence of feasible points, (x;)x € W, convergent
to X and such that x; # X and f(x,) < f(x) for all k. Let

Xk —X

dy=——
[ =X

and sp =[xk —X||.

Then, x; =X+ sidi. As ||dy|| =1 for all k, there exists a subsequence (dy, )
convergent to a unit vector d. To simplify the notation, assume that the original
sequence (dy )y converges to d. It is obvious that limy_,., s = 0.

In what follows we are going to prove two properties of the vector d:
(a) d"D2L(x, n,A)d < 0 and (b), the vector d satisfies the conditions (®). Which
contradicts the assumptions.
(a) By definition of the second order derivative,
L(x, 1y A) = L(X, 1y A) + DiL(%, 11, A) (x — %) +
1
5 (¢ =X)TDL(%, 1, A) (x —X) + o([x —X])
From f(xy) < f(X), gi(xx) < gi(X) for i € I(X) and h(xy) = h(x) = 0 it follows that

L(xy, 1ty A) < L(X, 1, A). From the first-order condition it follows that
DyL(X, u,A) = 0T. Hence,

(x —X)"DL(%, 1, A)(x — %) + o(|[x — X||) < 0.
To the above we substitute x; =X + s dx and we obtain
s2dID2L(X, u, A)dy + o(s2[ di|?) < O.

After dividing both sides of the above by s and recalling that ||dy|| = 1 we obtain

o(s})
2

Sk
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With k tending to co the second term above tends to 0 and dy tends to d; hence,
d"DIL(%, u,A)d < 0.

(b) is proved in a similar way. For a function f differentiable at X we have
f(xic) = £(X) + Df(X) (x —X) + o([[xic —X]]).

With f(xy) < f(Xx) it follows that
Df(X) (xx —X) + o(||xx —X||) < 0.

Using again x, = X + sydy we obtain

o(sk)
Sk
At the limit for k — oo we obtain Df(x)d < 0. Taking into account that
gi(xx) < gi(x) =0 for i € I(X) and proceeding as previously, we obtain
Dgi(x)d <0, i € I(x). Similarly we prove that Dh;(x)d =0 forj =1,...,1.

Df(x)d + <0.

We multiply the first equation of the necessary condition by d:

1
Df(X)d+ » wDgi(X)d+ Y ADhj(x)d =0.

iel(x) j=1

All terms of the sum above are less than or equal to 0. As their sun is 0, all of
them must be zero. In particular,

Df(x)d =0, and Dgi(x)d =0, i€ I'(x).
Thus we proved that the vector d satisfies the conditions (®). O
A general procedure for optimization problems with mixed constraints is the
following:
Step 1. We are looking for candidates for solutions, which form two sets:

A ={x € X: no regularity condition is satisfied at x },
A; ={x € X: a regularity condition

and the necessary first-order condition are satisfied at x }.

Step 2. We check, whether the assumptions of Theorem 47, i.e., sufficient
first-order conditions, are satisfied at each point of the sets A; and A,. If they are,
then we obtain global solutions.



9.5

The steps that follow should be done if we have not found any global solution or
we need to find all global solutions or we need to find all local solutions. We
remove all global solutions from the sets A; and A;; the sets of remaining points
we denote by A} and AJ.

Step 3. From A} we exclude all points not satisfying the necessary condition of the
second order, thus obtaining the set Aj.

Step 4. At each point of Aj U A) we check the sufficient condition of the second
order. The points satisfying it are local solutions.

Step 5. The analysis of the other points of A{ U A must be done using other
methods.

Example. Below is a detailed description of the analysis, step by step, of the
following problem:

(1 — 1)? + %3 — min,
2kx; —x3 < 0,
x = (x1,%) € R?,

where k > 0 is a parameter.

We notice that at each point, where the constraint is active, the linear
independence condition is satisfied: the gradient of the constraint function
is [2k,2x;] # OT. Hence, A; = 0.

The Lagrange function for this problem is
Ly xa 1) = (31 = 1)% 453 + u(2kxg = x3).
The first-order necessary condition is thus

[2(x7 — 1), 2x5] + ul2k, —2x;] = [0, 0],
1(2kxy — X%) =0,
n=>0.

Is it possible that p = 0? By the first equation we obtain 2(x; — 1) =0, 2x, =0,
i.e.,, x1 =1, x = 0. This is not a feasible point for any parameter k > 0. Therefore
p must be positive and the necessary first-order condition may be satisfied only at
the boundary of the feasible set, where 2kx; — x3 = 0.
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Again, by the first equation,

x;—1+pk=0,
X, — uxy; = 0.

There is either u; =1 or x; = 0. If x, = 0, then due to the constraint we have
x; = 0. The point (0,0) together with the Lagrange multiplier p = 1/k satisfies
the first-order necessary constraint.

Now we consider n = 1. Then, from x; — 1 — pk = 0 we obtain x; =1 —k. If
k > 1, then x; < 0 and no point with such a first coordinate is feasible. If k =1,
then we get the point (0,0) and for k € (0,1) we have two points:

X1:1—k, X, ==+ 2k(1—k)

We conclude that A; =0 and

Ay ={(0,0)} ifk=1,

A; = {(0,0), (1=, /2k(1—K)), (1 =k, —/2k(k— 1))} if0<k<1.

The function g (x1,%2) = 2kx; — X3 is not quasi-convex, so we cannot use
Theorem 47 describing a sufficient first-order condition. Thus we have A} = A,.

Now we pass to Step 3. We check the sufficient second-order condition for points
of Aj. We take a look at the point (0,0); with this point we have the Lagrange
multiplier @ = 1/k. The gradient and the Hessian of the Lagrange function are

DyL(x1,%x2;1/k) = 2(x1 — 1) + 2, 2x,(1 — 1/k)]

DiL(x1,%x2;1/K) = [é 2(1 *0‘/]‘) }

As the theorem states, it suffices to check if

2 o
dT{o 2(1—1/k)]d20

for all vectors d € R*\ {0} such that Dg;(0,0)d = [2k,0]d = 0, i.e., the vectors
with the coordinate d; = 0. The last inequality is (1 —1/k)d} > 0; it is satisfied if
k > 1. Thus, if k > 1 it may be a local solution. If k < 1, then the inequality is
not satisfied and there is no solution at (0,0).
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Now we assume that 0 < k < 1 and we consider the other two points. In both
cases L = 1. Then we have

DyL(x1,%2;1/K) = [2(x1 — 1) + 2Kk, 0]

20
DiL(x1, x31/K) = [0 0}

The Hessian is nonnegative-definite; hence, the necessary second-order condition
is satisfied at both points. Thus, we have

AY ={(0,0)} ifk>1,

A ={(1 =¥ V2K(T=X)), (1 =k, —/2k(k—1))} if0<k<1.

Now we check the sufficient second-order condition. If k > 1 the Hessian is
positive-definite and by Theorem 56 there is a strict local minimum at (0,0). We
cannot make this conclusion if k = 1.

We assume 0 < k < 1 and we analyse the point X = (1 —k, v/2k(k — 1)). We need
to check the assumptions of Theorem 56:

20

dT
00

}dzzdbo

for d € R?\ {0} such that [2k, —2+/2k(1 —k)ld =0, i.e., d; = %\/Zkﬂ —k)dy. If
d # 0, then d; # 0 and at the point X the sufficient condition of the second order
is satisfied: this point is a strict local solution. Similarly we prove that the point

(1 —k,—+/2k(k — 1)) is also a strict local solution.

It remains to analyse the case k = 1. Though the point (0,0) is a global minimum,
we have not managed to prove it using the Kuhn—Tucker theory. On the other
hand, it is easy to do it in an elementary way.
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10. Dual problems

Described below are so-called dual problems, i.e., another view at optimization
problems with inequality constraints. In contrast to the Kuhn—Tucker approach,
the dual setting does not assume differentiability of the target function f nor of
the constraint functions g;. Moreover, with suitable assumptions, the solution of
the original problem may easily be obtained from the solution of the dual
problem. Solving the dual problem is finding the maximum of a concave target
function in the nonnegative octant. As we shall see, the concavity may lead to

a good convergence of numerical optimization algorithms. The simplicity of the
feasible set is another feature contributing to the simplicity of implementation and
to speed of numerical algorithms. Sometimes the dual problem is easier to solve
analytically; examples will be given.

Sufficient condition

Definition 30 Let A, B be arbitrary sets and let h: A x B — R be a function.
The point (X, 1) € A X B s called a saddle point of the function h if

h(x,u) <h(X,u) <h(x,@) foralixeA, ueB.

Example. The simplest example is the “centre of the saddle”, A =B =R,
h(x, u) = x> — p2. The function h has the saddle point at (0,0), which is the
minimum with respect to x and the maximum with respect to .

It turns out that the global solution of the following problem:

f(x) — min,
gi(x)<0,i=1,...,m, *)
x € X,

is related to the saddle point of the Lagrange function defined for this problem.
Recall that W denotes the feasible set, i.e.,

W={xeX:g(x)<0,i=1,...,m}L

Theorem 57 If (x,t) € W x [0,00)™ is a saddle point of the Lagrange function

Lix,p) = f(x) + ) wigi(x)
i=0
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in the set W x [0,00)™, i.e.,
L(x,n) <L(x,m) < L(x,) for allx € W, p € [0,00)™,

then X is a global solution of the problem (*) and mgi(X) =0 fori=1,...,m.

Proof. First we prove that 11;gi(X) =0 for i = 1,...,m. The inequality
L(x,u) < L(x, ) may be expanded as follows:

%)+ ) wgilX) < f(x) + ) moi(X).
i=1 i=1

Hence, for all pu € [0,00)™ we have

m

D wei®) <) mai(x).
i=1 i=1

By substituting u = %ﬁ, we obtain
m
> maix) > 0.
i=1

The point X is feasible, i.e., gi(x) < 0 for all i. Taking into acount that all
coordinates of [I are nonnegative, we conclude that > [", [;g:(X) = 0 and each
term is nonnegative. From the above it follows directly that 1;gi(x) = 0 for all i.

Now we use the second inequality, L(X,t) < L(x, ) for all x € W, to prove that X
is a global solution. We expand the inequality:

(%) + ) mailX) < f(x)+ ) mgilx).
i=1 i=1
Earlier we have proved that ir;gi(x) = 0 for all i. Due to x € W, there is
Tgi(x) < 0. Hence,

f(x) <f(x) forallxeW. O

Remarks.

e We do not assume that X is open, also the functions f and g; do not have to
be continuous.

e The feasible set does not have to be convex.
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e No regularity conditions are necessary.

e The theorem does not offer any methods of searching the saddle point. It
might be found using the necessary first-order conditions, and then
Theorem 57 may be used as the sufficient condition.

e Theorem 57 is the base for the dual approach and despite the previous
remark it is useful in the development of numerical optimization algorithms.

Necessary condition for convex programming

Now we assume that the set X C R" is convex and the functions f and gy,
i=1,...,m, are convex. For such an optimization problem the saddle point of
the Lagrange function is a necessary condition for the global solution. We begin
the analysis with the simpler case, where all functions are differentiable, and later
we prove the theorem which does not assume differentiability. As it was
mentioned before, the lack of the requirement of differentiability distinguishes the
saddle point method from the Kuhn—Tucker method.

Lemma 20 Suppose that the set X in the convex programmaing problem is open
and the functions f,qgi,...,gm are differentiable at a point X. IfX is a local
solution of the problem (*) and one of the regularity conditions: linear
independence, affine function or Slater condition, is satisfied, then there
exists o € [0,00)™, such that (X, ) ts a saddle point of the Lagrange function
in the set X x [0, 00)™.

Proof. By the Kuhn—Tucker theorem (Theorem 38), there exists a vector of
Lagrange multipliers it € [0, 00)™ such that the first-order condition is satisfied
(the assumptions of this theorem are satisfied due to regularity of X and
Theorems 39-41). The function

Lx,u) = f(x) + Z Wigi(x),
i=1

being the linear combination of convex functions with nonegative coefficients, is
convex. Therefore,

L(x,m) > L(X, 1) + DxL(x, 1) (x —%).
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By the Kuhn-Tucker theorem,
D,L(X, ) = Df(x) + )_1Dgi(x) =0/,
i
ie., DyL(x, ) (x —x) = 0. Hence, L(x, ) > L(x, ).

To prove the inequality L(X, ) > L(X, u), we notice that
Z mgi(x) <0= ) mai(x),
i=1 i=

1
because w; > 0 and g;(X) < 0. The last equality is the claim of Theorem 38. O

Remark. By Theorem 47, each point satisfying the first-order condition is a global
solution of the convex programming problem. Therefore, we do not need to
distinguish global and local solutions.

Theorem 58 Let X € X be a global solution of the convez programming
problem (*) and let there exist a point x* € X such that gi(x*) < 0 for all
i=1,...,m. Then, there exists it € [0,00)™ such that (X, ) s a saddle point
of the Lagrange function in the space X x [0,00)™, 1.e.,

Lix,u) <L(x,m) < L(x,x) forallxeX and pu € [0,00)™.

Moreover, ;gi(xX) =0 fori=1,...,m.

Remark. In Theorems 57 and 58 the saddle point of the Lagrange function is
considered in different spaces. In the second theorem the space is wider, as the
first variable goes through the entire set X, not just the feasible set W. Now we
obtain the equivalence of the existence of a solution at the saddle point of the
Lagrange function and the existence of the global solution of the convex
programming problem.

Proof. Like in the proof of the necessary first-order condition (Theorem 38), the
crucial role is played by the separation theorem. It will indicate the Lagrange
multiplier vector .

Denote g(x) = (gi(x),...,gm(x)). We define the following subsets of R™"':

ERxR"yo = f(x),y > g(x), x € X},
JeR X R™: yo =f(x), y =g(x), x € X},

:(UO) )
=(yo,Yy) ER xR :yp < f(X),y<O0}

A={ y
B={ y
C={
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The “inequality between vectors” notation is to be understood as the inequality
between their corresponding coordinates.

The set C is the Cartesian product of the interval (—oo, f(X)] and the cone {y < 0}.
Obviously, this set is convex. As X is the minimum of f, there is BN C = (). The
set B is not convex; therefore we cannot use the separation theorem for the sets B
and C. A remedy is to take the set A, whose subset is B. Suppose that there
exists Y = (yo,y) € AN C. It follows that there exists x’ € X such that

Yo 2 f(x/)) y 2 g(xl)v Yo < f()?), y < O

From the inequalities above we conclude that f(x’) < f(X) and g(x’) < 0. Thus, x’
is a feasible point at which the value of f is less than f(x). It contradicts X being
a solution.

Example. Before proceeding with the proof, we can take a look at the sets A, B, C
for the following problem:

—Xx — min,

x2—1<0,

xeX=R.
Its solution is X = 1. There is only one constraint, and thus the sets are subsets

of R?. As we can see in Figure 7, the part of the set B for yo < 0 is a part of the
boundary of A, and the rest of it (for yo, > 0) is located in the interior of A.

Y

(=1,0)

Yo

¢ B = {(yo, 13— 1))
(0,-1)

Figure 7: The sets A, B, C in the example

Back to the proof. The convexity of C is already established. The convexity of A

may be proved directly. Let J',J” € A and A € (0,1). Then, there exist points
x',x" € X such that

/

Yo = f(x'), y' > gx’), yo="fx"), y" > gx").

10.6

Let x = Ax' + (1 —A)x”. By convexity of X, x € X. We also have
Ays 4 (T—=Nyg = Af(x) + (1 = A)f(x") = (A" + (1 = A)x") = f(x).

The first inequality above results from the assumed properties of x’, x”, and the
second inequality is a consequence of the convexity of f. In a similar way, using
the convexity of the components of g, we show that

Ay + (0 =ANy” > gx).

Hence, § =AY’ + (1 —A)§” € A, as with the point x defined above,

By the weak separation theorem, there exists a nonzero vector fi € R™"' such that
i'y>i'z, forallyecA,zeC.

From supz ¢ [t'Z < oo it follows that fi > 0. Due to the continuity of linear
functions, we can take Z from the closure of C:

i'y>ii'z, forallyeA,zeclC.
Hence, for Z = (f(x),0) we have
fioyo + Z fliys > fiof(x) for all (yo,y) € A. (®)
i=1

In particular, this inequality holds for yo = f(x) and y = g(x), where x € X:

flof(x) + ) flugi(x) > fof(X).
i=1

Now we prove that fiy # 0, which together with the observation fi > 0 implies
fip > 0. The proof is done by contradiction. Suppose that {iy = 0. Then, by the
last inequality, we have

Z figi(x) = 0 for all (yo,y) € A.
i1

In particular, the above holds for the point x* from the assumptions of the
theorem. However, at this point we have g;(x*) < 0 for i =1,..., m. Together
with the fact that fi > O this implies {i; = --- = fi,, = 0. It follows that [t =0, and
this is inconsistent with the choice of fi based on the separation theorem.
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As we now know, iy > 0. We define
_ (R flm
u= (~—],,~—)
Ho Ho
Obviously, it € [0,00)™. As X, being a solution, is a feasible point, there is
gi(X)<Ofori=1,...,mand } ", 1;gi(X) < 0. We add this sum to the
right-hand side of the inequality (®) divided by fiy:

f(x)+ ) Wgi(x) > f(X)+ ) mai(x) forallxeX.
i=1 i=1

In other words,

L(x,u) > L(x,n) forall x € X.

It remains to prove the other inequality of the saddle point. By taking x = X and
dividing both sides of (®) by {io, we obtain } ", {L;gi(X) > 0. On the other hand,
the point X is feasible, i.e., gi(X) < 0. Recalling that @ > 0, we conclude that each
term of this sum is nonpositive. Hence, we obtain

Egl(i)zo, i:1,...,m.

For any other p we have ) ", j;gi(X) =0, ie.,
D wgix) <) Wgi(x) for all p € [0,00)™
i=1 i1

This is equivalent to

L(x,u) <L(x,n) forall ue [0,00)™ O

Primal and dual problems

The theory of saddle points leads to formulating primal and dual problems.
Consider the optimization problem (*) and its Lagrange function L(x, u). We
define the function Lp: W — (—o0, ool:

Lp(x) = sup L(x,u).

pe(0,00)™

As we can notice,

L) = { f(x) if g(x) <0,

oo else.
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Therefore the problem (*) may be rewritten in what seems to be a simpler form
Lp(x) =@ min, x e X.

Alas, the problem above reduces to the original problem, so it does not give any
“added value”, but soon it will. Before we reveal this value, we define another
function, Lp(u): [0,00)™ — [—o00, 00):

Lp(u) = inf L(x, u).
xeX

Remarks. (1) for any x € X and p € [0,00)™ there is Lp(x) > L(x, 1) > Lp(p).
(2) If (x, ) is a saddle point of the Lagrange function in X x [0, 00)™, then
Lp(x) = Lp(H).

If (x, 1) is a saddle point, then L(X, ) < L(x, ). In view of the first remark above
it gives us L(x, t) = Lp(@). Similarly we prove the equality L(X, ) = Lp(X). These
observations lead us in the right direction. We are going to use the functions Lp
and Lp in the search of saddle points.

Definition 31 The primal problem is the optimization problem

Lp(x) @ min, xeX.
Its dual problem s the optimization problem

Lp(pn) —» max, pe0,00)™.

By the properties mentioned in the last remark, the value of the target function of
the primal problem at the solution is greater than or equal to the value of the
target function of the dual problem at the solution:

inf [p(x) > sup Lp(p).
xeX ne0o0)™

Moreover, the solution of the dual problem gives us an estimation from below of
the function f.

Lemma 21 (weak duality theorem) For any feasible point x € W and any

vector pu € [0,00)™ there is
f(x) > Lp(p)-
Hence,

f(x) > sup Lp(w).
pef0,00)™
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Proof. We have

f(x) = L(x, 1) > Lo(u).

The first inequality holds for x € W because gi(x) < 0 for all i. The second
inequality is a consequence of Remark (1) above. O

Definition 32 The duality gap s the difference between the values of target
functions at the solutions of the primal and dual problem:

infLp(x)— sup Lp(p).

xexX pel0,00)™

The saddle point condition written in terms of the primal and dual functions is
the following: (X, 1) is a saddle point if

Lp(x) = L(x, 1) = Lo(k).

In other words, if the Lagrange function has a saddle point, then the duality gap is
zero. This is the case if, for example, the assumptions of Theorem 58 are satisfied.

<y

Figure 8: A scheme of solutions of a primal and dual problem

Figure 8 shows the solution of a primal and dual problem of an optimization
problem with only one inequality constraint; m = 1. The set G is the set of pairs

10.10

of values (f(x), g(x)) for x € X. The lines z + py = « show the values of the
Lagrange function L(x, ) = f(x) 4+ pg(x). From the definition of the primal
function Lp it follows that Lp(x) = f(x) if g(x) < 0, as sup,,o{ : x =z + py} is
taken for p = 0. This is the case of the point x;. If g(x) > 0, then Lp(x) = +oo0.
This is the case of the point x;. The dual function Lp(u) may be found by
considering the lines z + py = «, looking for infycx & with a fixed p. It may be
seen in the picture that the minimum is taken for the line tangent to the
boundary of the area G and the value of this function is the intersection point of
the line with the line y = 0. One can also see that the line which yields the
greatest value of Lp is the line z 4+ iy = & whose inclination (tangent of the angle
between the y axis and the line) is —J1, tangent to the boundary of G at the
point (Y,z). This point coresponds to the solution of the primal problem, because
Z = infyex gxy<o F(X).

Theorem 59 (strong duality theorem) Let X be a nonempty convexr subset

of R™ and let the functions f and gi, i=1,...,m, be convez in X. Assume in
addition that there exists a point x* € X such that gi(x*) < 0 for alli. Then,

inf Ip(x) = sup Lp(u).

xeX pel0,00)™

If infyex Lp(x) 4s finite, then sup,cpym Lo(1) is taken at a point w such that
> 0. Ifinfiex Lp(x) is taken at a point X, then @;gi(X) =0 fori=1,...,m

Proof. Let v = infyex Lp(x). If Yy = —o0, then (by Lemma 21)
SUD,c(0,00)m Lp(u) = —oo and the claim is true. Now assume that y > —oo.

From the proof of Theorem 58 applied to the sets

{Y=o,y) e RxR":yo > f(x), y > g(x), x € X},
{y=(yo )eRxR“yo<f(><)y<0},

we conclude that
x) + Zﬁigi(x) >y forallx e X. (®)

As a consequence, we obtain

Lp () = mf( +Zu191 ) =y
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From the remark made before Definition 31 it follows that

y=inflp(x) > sup Lp(u)=1Lp(mw >vy.
xeX nel0,00)™

Hence, Lp(t) =y and [ is a solution of the dual problem.

If inf,x Lp(x) is taken at a point X, then due to the definition of Lp we have
Lp(x) = f(X). The point X is a solution of the primal problem; there is g;(x) < 0
for i=1,...,m and f(X) =y. By substituting x =X in the inequality (®), we get
> . mgi(x) > 0. Because p; > 0 and gi(X) < 0, the equality fr;gi(X) = 0 for
i=1,...,m follows. O

The following algorithm of solving the optimization problem (*) using dual
methods may be proposed:

1. Solve the dual problem. The solution gives a lower bound for the solution of
the primal problem, due to Lemma 21.

2. Suppose that there exists a finite solution 1 € [0, 00)™ of the dual problem
and a point X € X such that Lp () = Lp(X). If X is a feasible point and
f(x) = Lp(m), then (X, ) is a saddle point of the Lagrange function and by
Theorem 57 the point X is a solution of the problem (*).

Let’s explain the conditions in the second step. From Lp(i) = L(X, 1) it follows
that L(x, ) < L(x, ) for all x € X. This is the second inequality of the saddle
point. To verify the first inequality, recall that Lp(x) = f(x) for any feasible
point x and infycx Lp(x) = Lp(u) for all u € [0,00)™. In the second step we
assume that f(X) = Lp(t), which implies that

Lp(x) = f(X) = Lp(1)

and, thus, (X, ) is indeed a saddle point.



11. Sensitivity theory

So far, the Lagrange multipliers seemed to be just a technical trick useful in
finding solutions of optimization problems with constraints. Below we show that
they represent costs of changing the constraints. The equality and inequality
constraints are dealt with separately.

Equality constraints

Consider a problem with equality constraints:

f(x) — min,
}‘j(x):())j:]v---ala (*)
x € X,

where X C R" is an open set and f, hy,..., h: X — R. To simplify the notation,
we denote h(x) = (h1 (x)y...y g (x)). Now we introduce a perturbation:

f(x) — min,
h(x) =z, (**)
x € X,

where z € R%.

Theorem 60 Let X be a solution of the problem (*) and let A be the
corresponding vector of Lagrange multipliers. Assume that the functions
f,hi,...,hy are of class C* in a neighbourhood of X, the gradients of the
constraint functions are linearly independent and

d'D2L(X,A)d > 0 (®)

for all nonzero vectors d € R" such that Dh;(x)d =0, j =1,...,1. Then, there
exists a neighbourhood 0 of the point 0 € R' and a function x: 0-X of
class C' such that x(0) =X and x(z) is a strict local solution of the modified
problem (**). Moreover,

D(fox)(0) = —A'.

Proof. By Theorem 48, the point X is a solution of the system of equations

DxL(iyx) = OT»
h(x) =0,

where
1
DyL(%,A) = Df(X) + A Dh(%) = Df(%) + }_A;Dh;(%).
j=1

After adding the perturbation z to the right-hand side of the second equality we
are going to show that there exists a solution being a function of class C' of the
perturbation. Consider the system

DyL(x,A) =0T,
h(x) = z,

with unknown A and x. We define the function G: R™ x R' x R' — R" x R' by the
formula

G(x, A\, z) =

(DyL(x,A))"
hix)—z |’

The modified system may be rewritten as G(x,A,z) = 0.
We know that G(X,A,0) = 0. Using the implicit function theorem, we weave the

first two variables as functions of the third one. To do that, we consider the
matrix of derivatives of G (the blocks 0 and —I are 1 x 1):

DG(X, A, 0) =

DL(%,A) (Dh(x))' 0
Dh(x) 0 =0

The linear independence of the gradients of the constraints implies that the
submatrix

DG(x,A,0) =

D’L(X,A) (Dh(x))'
Dh(x) 0 )

is nonsingular (proof is an exercise). The assumptions of the implicit function

theorem (Theorem 51) are, therefore, satisfied and there exists a neighbourhood O

of the point 0 € R' and functions x: O — X and A: O — R! of class C' such that
for all z € O there is G(x(z),A(z)) =0, ie,,

DiL(x(z),A(z)) =07, h(x(z)) =z.

Using the fact that the functions D2L, Dh, x, A are continuous and the
inequality (©) is satisfied for the original problem, we conclude that there exists
a (possibly smaller) neighbourhood O of 0 € R' such that

d'DiL(x(z),A(z))d >0
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for all z € O and nonzero vectors d € R" such that Dh;(x(z))d =0,j =1,...,L
The key to this result is that (©®) is a sharp inequality. By Theorem 56 the point
x(z) is therefore a strict solution of the modified problem (**). Recall that x is
a function of class C'. Hence, we can define the derivative of the composition

D(f 0 x)(0) = Df(%)Dx(0).

To complete the proof we need two observations. First, after multiplying the sides
of the necessary condition for the original problem,

Df(X) + A Dh(x) = 07
by Dx(0) we obtain
Df(%)Dx(0) + A Dh(x)Dx(0) = 0".

Second, by differentiating h(x(z)) with respect to z, at z = 0 we obtain the
following derivative: D(h o z)(0) = Dh(x)Dx(0) = I. The equation above may,
therefore, be simplified to the following:

Df(%)Dx(0) + A' = 0.

The claim follows immediately. O

Theorem 60 may be understood as follows: a small change of the j-th constraint
from 0 to ¢ causes the change of the local minimum of f by —Xje +o(e) = —Xje.

Inequality constraints

We use a different approach for inequality constraints. We focus on a convex
optimization problem:

f(x) — min,
gi(x) go) i:],...,m) (***)
x € X,

where X C R" is a convex set and the functions f, gy,...,gn: X — R are convex.

To simplify the notation we denote g(x) = (g1(x),...,gn(x)). The problem may
be rewritten as

f(x) — min,
g(x) <0,
x € X,

Consider the modified problem

f(x) — min,
g(x) < z,
x € X,

Definition 33 Let Dy denote the set of vectors z € R™ such that the feasible
set for the modified problem, W, = {x € X: g(z) < z}, is nonempty. The
function
M(z) = inf f(x),
xeX, g(x)<z
defined for all z € Dy, is called the perturbation function and the set Dy is
called the perturbation function domain.

Note that M(z) < oo for all z € Dy, but it is possible that M(z) = —o0.

The graph of the perturbation function in Figure 8 is the curve M(y); as we can
see it is a convex function. Note that this function is well defined between the
points A = (ya,za) and B = (yg, z5), because there exists x € X such that

(g(x), f(x)) € G, and then y = g(x) is an element of the domain of the

function M(y). If y < ya, then the feasible set is empty and such points y are
outside the domain of the perturbation function. For y > yg the perturbation
function is a constant.

Theorem 61 1. The set Dy, 1s convex.
2. The function M: Dy — RU{—o0} is convez.

3. If there exists a point x* € X such that g(x*) < 0, then int Dy # 0 and
0 €int Dy.

Proof. From the convexity of each component of g it follows that

gxi) <z, gx2) <z2 =
g(Ax1+ (1 =A)x2) <Azy+ (1 —A)z; forall A€ [0,1] (®)

(the inequalities are to be understood componentwise). This observation will be
used a number of times in the proof below.



(1) Let 21,2, € Dy and let A € (0,1). There exist x;,%; € X such that g(x;) < z;
and g(x;) < z;. From (®) we obtain g(Ax; + (1 —A)x2) < Azy + (1 — A)zy; hence,
Az1+ (1 —=A)z; € Dm.

(2) Let z1,2z; € Dy and let A € (0,1). Then,

AM(z1) + (1 =AM(zy) = inf  (Af(xq))+ _inf (1 =N)f(x))
x1€X, g(x1)<z1 x2€X, g(x2)<z2
= inf (Mf(x1) + (1 = A)f(x2))
x1 €X,g(x1) <z
x2 €X,9g(x2) <22
inf (A% + (1 —A)x)
x1eX,gx1) <z
x2 €X,9g(x2) <22

> inf f(x).
xeX, g(x)<Az1+(1-A)z,

WV

The first inequality above is a consequence of the convexity of f and the second is
obtained from (®), which implies the following:

(A + (1T =Ax2:x, % € X, g(xi) <21, g(x2) <221 C
{xeX:g(x) <Az; + (1 =Nz }.

(3) We need to prove that the feasible set W, is nonempty for any z from some
neighbourhood of 0 € R™. By assumption, there exists x* € X such that

gi(x*) <O0fori=1,...,m. Let a = min{—g;(x*),...,—gm(x*)}. Then, for

all z € [—a, a]™ we have x* € W; hence, [—a,a]™ C Dy. O

Remark. (1) If Mz = —oo for some Z € Dy, then by convexity of M for

any z € Dy and A € (0,1) we have M(AZ + (1 — A)z) = —oo.

(2) As a consequence, if M(Z) = —oo for some z € Dy, then M(z) = —oo for all
z €int Dy.

(3) Moreover, if there exists Z € int Dy such that M(Z) > —oo, then M(z) > —c0
for all z € Dy.

Theorem 62 If in a problem of convex optimization there exists a point x* € X
such that gi(x*) <0 fori=1,...,m and M(0) > —o0, then M(z) > —oco for all
z € Dy and there ezists a vector p € [0,00)™ which determines a supporting
hyperplane of M.

M(z) > M(0) —u"z, zeDp.

Proof. By Theorem 61, M is a convex function and O € int Dy,. Hence, by
Remark (3) above, we have M(z) > —oo for all z € Dy. The existence of the
supporting plane is a consequence of the supporting plane theorem (Theorem 26):

M(Z) 2 M(O) - HTZ) ze DM)

for some nu € R™. We have to prove that all coordinates of u are nonnegative. On
the contrary, suppose that yu; < 0 for some i € {1,...,m}. As 0 € int Dy, if

a number a is sufficiently small, the point Z = ae; is an element of Dy,. Due to w;
being negative, we obtain

M(z) = M(0) — wa > M(0).

On the other hand, W, C W; (due to Z > 0, i.e., M(Z) < M(0). This
inconsistency proves that u € [0,00)™. O

The vector p is called the sensitivity vector for the problem (%¥). By Theorem 26,
if the function M is differentiable at O, then u = —(DM(O))T. Therefore, p
denotes the speed and the direction of changes of the minimal value of f caused by
a perturbation of constraints, just like in the case of equality constraints discussed
earlier.

Now we take a look at the relation of the sensitivity vector with the saddle point
and the first-order condition. Note that the connection of the saddle point and
the sensitivity vector does not assume the convexity of the optimization problem.

Theorem 63 1. If (X, 1) is a saddle point of the Lagrange function in the
set X x [0,00)™, then 1 is a sensitivity vector (i.e., it determines
a supporting plane). This claim does not assume convezity of the
problem.

2. Suppose that the functions f,gi,...,gm are differentiable at X and
convez. If the first-order condition s satisfied at X with a Lagrange
multipliers vector i € [0,00)™, then W is the sensitivity vector.

Proof. (1) Let L,(x, 1) denote the Lagrange function for a modified problem.
Then,

m

L(x, ) = f(x) + Y wi(gux) —z) = Lix,u) — p'z.

i=1



The point (X, ) is a saddle point; hence,
M(0) = L(x, 1) = inf L(x, ).
Therefore,
M(0) = inf Lx, ) = inf (L.(x, ) + '2) = inf L.(x, &) + &' (®)
Note that for any x € W, and p € [0,00)™ we have f(x) > L,(x, u); in particular,
M(z) = xggz f(x) > xle% L.(x, ) > inf L.(x, ).

By substituting the above to (®), we obtain

M(0) < M(z)+T'z.

(2) By Lemma 20, the point (X, ) is a saddle point of the Lagrange function. The
claim may thus be obtained from the first claim. O
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12. Introduction to numerical methods of optimization

So far, we studied the theory of optimization problems; more precisely, we proved
theorems which enable finding candidates for solutions and recognising solutions
among the candidates. Unfortunately, in most cases we need to solve systems of
nonlinear equations. In practice, these systems may not have solutions possible to
describe by algebraic formulae (and also the systems may be too large to be dealt
with analytically). What may be done in such cases, is using numerical methods,
which can find approximations of solutions with given accuracy. Some of those
methods are described below. Many algorithms do not look for points satisfying
the first-order necessary conditions; instead, they construct, step by step,
sequences of points convergent to solutions. It does not mean that Lagrange
multipliers and dual methods are useless in numerical computations. On the
contrary, the classical approach with equality constraints uses extensively
Lagrange multipliers, even if below we survey other methods.

Definition 34 An iterative process is a four-tuple (Q,1,Q,h), where Q is a set,
ICcQ,QcQ andh: Q= Q s a mapping n the set Q, which is an identity
mapping of the subset ). This four-tuple represents a computation process;

I is the set of tnitial data, QO s the set of solutions and the function h
describes the computation. Gien an initial point x € I, the process generates
the sequence

Xy = X, X1 = h(xx), k=0,1,...

The iterative process terminates after n steps if X, € Q (in accordance to the
definition of h, as in that case X1 =X, € Q). An algorithm is an iterative
process which terminates after a finite number of steps.

In optimization we are interested in using algorithms to solve problems which
have solutions. The algorithms ought to have the following properties:

1. Correctness of the algorithm, i.e., the property that for any admissible initial
point x € [ we get the correct result. For our purposes we assume that this
property ensures the convergence of the sequence to a solution.

2. Stop property, which involves a condition for the iterative process to
terminate. This condition is satisfied when an element of the sequence of
points is in the set O, which means that it is an accurate enough
approximation of the solution.
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3. Effectiveness, related with the rate of convergence of the sequence to the
solution.

General properties of optimization algorithms

Before discussing the algorithms we formulate the problem:

{ f(x) — min,

x e X CR"

Remark. For the algorithm to work it is necessary to provide procedures
computing at given points xy the function values f(xy) and sometimes its
derivatives, Df(xy), D*f(xy) etc. The evaluation of the function f and its
derivatives is not a part of the algorithm; it is assumed that those procedures
compute their results with some required accuracy. Sometimes they are seen as an
“oracle” yielding the function values.

Definition 35 Let x* be a solution of an optimization problem and let
f* = f(x*). The stop criteria using an absolute tolerance at a level ¢ > 0 may
be the following:

1 f(x) — I < g,

2. |x —x*|| <,

3. |IDf(xd | < e,

4 [f(xien) — x| < g,

5 X — x| < e

We can also use the stop criteria with a relative tolerance at a level ¢ > 0:

1. [f(x) — £/1F] < e,
2. [ —x*|/IIx*| < e,
3. f(x) — fFxa)l/If(xa)l < &,

4+ I =xdl/ Il < e
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In both cases the first two criteria are the most natural, but they are the least
practical, as we do not know the point x* nor the minimal function value f*. In
practice we use the other criteria, even if they do not guarantee the termination of
the process close to the actual solution of the problem.

Definition 36 The greatest number p such that the inequality
i = x| < el — 7|7

is satisfied for all k > K (with some K € N), where ¢ > 0 is a constant, is
called the exponent of convergence of the algorithm.

Remark. This definition is not easy to use in practice, because we do not know x*
(but it is useful in theoretical analysis of algorithms). The exponent of
convergence may be measured a posterior: using the approximate criterion; p is
the greatest number such that

1imsup ka+| 7Xk||
koo |1Xk — Xk—1]|P

Note that a numerical computation does not produce the infinite sequence
(xx)xen, but only its finite initial subsequence.

Optimization of strictly quasi-convex functions

Definition 37 Let W C R" be a convez set. A function f: W — R 1s
strictly quasi-convez if for any x,y € W, x £y, and A € (0,1) there is

f(Ax + (1 —A)y) < max{f(x), f(y)}.

Lemma 22 1. A strictly quasi-convez function has at most one minimum
(local and global).

2. A strictly convez function s strictly quast-convez.

3. A function defined on a line or on an open interval is strictly
quast-convezx if 1t is strictly increasing, strictly decreasing, or there
exists a point X in its domain such that this function is strictly
decreasing for x < X and strictly tncreasing for x > X.
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Proof is left as an exercise.

The strict quasi-convexity is a property making it possible to find a minimum in
a closed interval without using derivatives. The main observation is made in the
following lemma:

Lemma 23 Let f: [a,b] — R be a strictly quasi-convez function and let
as<x<y<b.

1. If f(x) = f(y), then f(z) > f(y) for all z € [a,x).

2. If f(x) < f(y), then f(z) > f(x) for all z € (y,b].

Proof. We prove the claim (1) by contradiction. Suppose that there exists

z € [a,x) such that f(z) < f(y). Then, by quasi-convexity of f, it follows that
f(x) < max{f(z), f(y)} = f(y), which is inconsistent with the assumption that
f(x) = f(y). The claim (2) is proved in a similar way. O

Based on Lemma 23, we can construct many algorithms finding minima of strictly
quasi-convex functions of one variable. First we take a look at the

dichotomic subdivision algorithm. Its idea is quite simple: to find the minimum of
a strictly quasi-convex function f: [a,b] — R, we choose two points, A < u, in the
interior of the interval [a,b]. By Lemma 23, we notice that if f(A) < f(p), then
the interval with the minimum of f may be restricted to [a, u] and if f(A) > f(u),
then the interval may be restricted fo [A, b]. The best strategy of choosing the two
points is to obtain the next interval as short as possible. We do not know

a priort, at which of the two points the function f takes a greater value.
Therefore, to obtain the fastest convergence we should take into account the worst
case and minimise the greater of the two numbers u — a, b —A. This minimum is
obtained with @ =A = (a + b)/2. As this solution does not yield two different
points, we choose a small ¢, > 0 and we take A = (a + b)/2 — ¢, and
n=(a+b)/2+ e The algorithm is the following:

Preparation: choose ¢; € (0, (a+ b)/Z). Take x; = a,y; =Db.

k-th step, repeated in a loop:

1. Compute Ay = (xx +Yx)/2 — &, and pwy = (xx +Yx)/2 + k.
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2. If f(A) < (), then take xi 1 = x¢ and yyi1 = .
3. If f(A) > f(), then take xiq = Ay and Y1 = Yx-
4. Take €11 = €/2.

Stop condition: yyi1 — X1 < 2¢, where € > 0 is the required accuracy (we can
take the solution X = (i1 + Yiy1)/2).

If a minimum X of f exists in [a, b] (which may not be the case if f is not
continuous), then, by Lemma 23, this minimum is located in the interval [xy, yi]
for all k. With k — oo the lengths of these intervals tend to 0; note that

0 < & < (Yk—1 — x¢—1)/2 for all k. Hence, both sequences, (xi)x and (yi)x,
converge to the solution X. This proves that the algorithm is correct.

If the iterations are terminated after the k-th step, then the approximation error
of the exact solution by the midpoint X of the interval [xy,1,Yi.1] is bounded by
the half of length of this interval, which justifies the choice of the stop criterion.

We can prove that the lengths of the intervals [xy,yyx] are bounded by elements of
a geometric sequence; there is

Yier1 — X1 < (b —a)c,
where ¢ = % + 7= The exponent of convergence is p = 1; the convergence with

such an exponent is called linear.

The dichotomic subdivision algorithm has to compute two function values in each
step. The golden ratio algorithm computes just one function value in each step.

The choice of points Ay, i in the interval [xy,yi] is done as follows:

Yx — Ak = Wk — Xk hence, Ay = ¢ + (1 — T)yx, e = (1 — T)xx¢ + Ty,
where T € (0,1) is such that

A= (T—1)x+Tve and e = A+ (1 — Tyse.
The above determines the number T; there is

A=+ (1= Dy = (1= Oxi + e = (1 — i + (1 — T + 1Y)
= T + Yk — TYk = Xk — TXk + TYk-

The last equality must hold for any xy, yx; hence,

TX = Xk —szk, Yk — TYx = szk»
ie, (P+t—Txe= (P +71— TNy =0.
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The positive zero of the polynomial p(t) =2+ 1—1is 7= (v/5—1)/2 ~ 0.618;
this number describes the golden ratio proportion. The golden ratio algorithm is
the following:

Preparation: Take x; = a, y;1 =b, Ay =™ + (1 = T)ys, w1 = (1 — T)x; + Y7 and
compute f(A;) and f(u;).

k-th step, repeated in a loop:

1. If f(?\k) < f(l—tk), then take xi 1 = xx, Yi+1 = Mk, A1 = Txx + ('] — T)Uk,
W1 = A, and compute f(Ayiq).

2. If f(Ax) = (), then take Yisr = Yi, X1 = Ak, Mt = (1 — T)xk + TYx,
A1 = Wi and compute f(pi1).

Stop condition: Y1 — X1 < 2¢, where € > 0 is the required accuracy.

The convergence of the sequences (xy)x, (Yx)x to the minimum X is slower than
that of the sequences from the dichotomic subdivision algorithm; there is

Y1 — Xip1 = (b— a)Tk-

However, due to the twice lower computational cost of one iteration, the golden
ratio algorithm achieves the same accuracy of the result in a shorter time.

The slightly more complicated Fibonacci algorithm guarantees finding the
minimum with the assumed accuracy after evaluating the function at the minimal

number of points sufficient to minimise any strictly quasi-convex function.

Remark. (1) One can prove that the golden ratio algorithm may need to evaluate

the function at most at one point more than the Fibonacci algorithm.

(2) There exist algorithms working faster for functions f having some properties in
addition to the strict quasi-convexity, like differentiablility. For example, having

a procedure of computing the derivative, we can use the secant method to find the
zero of f'; if f” satisfies the Lipschitz condition, then the exponent of convergence
isp=1+1~1.618.

The Fibonacci sequence is defined as follows:

FOIF] :1,
Feor =Fe+Fgy, k=1,23,...
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To use this algorithm we fix a prior: the number of iterations, which is related
with the desired accuracy in the way explained later. The numbers Ay and py are
obtained from the formulae

| SN
A =Xk + Fik‘(yk — Xk,

ok k=1,...,n—1,

M = X +

If f(Ax) = (), then we take xi1 = A and Y1 = yi. The rules written above
produce

Frxo
Aert = Xi1 + 2

E Ykl — Xia1)
n—k

| S Frow | S
=Xk + k](yk_xk)+ kz(Uk—Xk— k](yk_xk))
Fn7k+l ank

Foxt |, Fava FoxoaFoa )
=Xk + + — (Yx — xx)
¢ ( Fn7k+l ank ank Fn7k+1 Y ¢

=+ ankfl ank + ankszn7k+1 - anklenfkf1 (yk _ Xk)

ank+l ank
Fok1Fnox + Fooe 2Pk
Fn7k+1 ank

=xx+ (Y —xx)

ank

=xx+ (Yx — %) = k.

Fn7k+1
If f(Ax) < f(py), then we take xi1 = xi and Yy = k. A similar calculation
proves that in this case

Wit = Ay

which means that in both cases we choose only one point in the interval [xy,yy] at
which the function value has not yet been computed.

Suppose that we need to find the minimum in the interval [a, b] with the accuracy
not worse than some ¢ > 0. The number of steps is n — 1, where n is the smallest
number such that F, > (b — a)/e. Note that A\, 1 = w1 = %(an + Yn_1); the
point obtained in last step is the midpoint of the interval [x,_1,yn_1], whose
length is less than or equal to Fe.

The Fibonacci algorithm is the following:

Preparation: Find the smallest n such that F,, > (b —a)/¢;
take x; = a, Yy = b, Ay = (Faixy + (Fa — Fut)ys) /Fn,
= ((Fn — Fo1)x1 + Fujy1)/Fr and compute f(A;) and f(u).
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k-th step, repeated in a loop for k=1,...,n—2:

1. If (M) < f), then take xii1 = Xi, Y1 = My i1 = Ax,

A1 = (Fnooxic + (Faoiest — Faoi) k) /Faier and compute f(Asq).
2. If f(A) = f(p), then take yiy1 = Y, X1 = M, M1 = i,

i1 = ((Faoisr — Fao) Xk + FaciUx) /Faisr and compute f(puq).

The last step: If f(A,_1) < f(in_1), then take X = A1, else take X = p,_1. The
point X is an approximation of the minimum with the required accuracy.

dichotomic, ¢; = 0.05(b — a), m = 14

T
golden ratio, m =11

\FW | .
Fibonacci, m =10

\'\WT‘/ .

Figure 9: Three algorithms in action

An example is shown in Figure 9; the interval [a,b] = [0, 1] and the assumed
accuracy is 0.01. Below the x axis of each graph the subsequent intervals [xy, yil
are drawn; m is the number of points at which the function value was computed.
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13. Algorithms for unconstrained optimization

Now we take a look at multidimensional optimization methods for problems
without constraints. We assume that the target function f: R™ — R is of class C'
and its minimum is to be found. All methods considered here are based on the
following scheme: beginning at a point x;, which we believe to be close enough to
the solution, we construct a sequence of points x1,X3,... so as to obtain

f(xkp1) < f(xy) for all k. We expect to find a minimum of f in this way. However,
it may turn out that the concentration points of the sequence (x; )i are not
solutions. We survey various methods of constructing sequences (xy )y, paying
attention to their convergence. All results described below apply also to functions
defined in open subsets of R". Descent methods will play first fiddle in
optimization problems with constraints, considered later.

We consider the problem

f(x) — min,
x € R™.

Descent methods are algorithms constructing consecutive points according to the
formula

X1 = X + oudy,
where o > 0 and the vector dy has a descent direction, i.e.,

Df(xk)dk <0 if Df(xk) 7& OT,
dy =0 if Df(x) =0".

With dy # 0 and oy sufficiently small we have f(xy,1) < f(xx. We might expect
the sequence (xy )y to converge to a minimum. But without additional information
about the problem we have no guarantee of finding a global minimum. We are
going to look for methods of making the sequence converge to a local minimum.

Steepest descent methods

The steepest descent methods take the vectors dy parallel to (Df(xk))T. The idea
is simple:

Preparation: Choose an initial point x;.
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k-th step:

1. Choose o,
2. Take Xkr1 = X — X (Df(xk))T

Stop condition: |Df(xy.1)| < €.

It remains to select rules of choosing . The rules below will also be used with
any vectors dy having descent directions, not necessarily —(Df(xk))T.

e BExact minimization rule: choose oy such that

f(Xk -+ O(kdk] = min f[Xk -+ (Xdk)
a=0

e Limited minimization rule: with a fixed A > 0 choose oy such that
f(Xk + ockdk) = min f(xk + Oédk).
«€el0,A]
e Armijo rule: with fixed s > 0, B, 0 € (0,1) we take o = B™ks, where my is
the smallest integer m such that
f(xi) — f(xi + B"sdi) = —oB™sDf(xy ) dy.
According to this rule, the following inequality holds:
f(xk) — f(Xk + ﬁmilsdk) < —O'ﬁmi]SDf(Xk)dk.

The constant s is called a stride, 3 controls the rate of decreasing or
increasing the stride (the smaller it is, the faster the stride changes) and
o influences the choice of oy as follows: the smaller it is, the smaller m;
satisfies the conditions above, resulting in the greater value of o.

In the steepest descent methods, where dy = —(Df(xk))T, the choice of my is
slightly simpler due to Df(x;)d, = —||Df(x;)||*: my is the smallest integer m
such that

f(x) — f(xi — B™s(DF(x)) ") = 0B™s || DF(xi) |12 (*)

Figure 10 shows the idea of the Armijo rule, which is easy to implement. We
assume that Df(x,) # O'. Starting from the point y = x; — s(Df(xk))T we check

the condition (*). If it does not hold, then we check the points x, — sf3 (Df(xk))T,
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= f(Xk) + O'(XDf(Xk)dk

B?s Bs \ o

y = f(Xk) + (XDf(Xk)dk

Figure 10: The Armijo rule in action; 0 = 0.8, B = 0.7, X311 = i + B2sdy

X — B2 (Df(xk))T etc. If (*) is satisfied with m = 0, corresponding to the point y,
we try the points x; — sp (Df(xk))T, X —sp? (Df(xk))T etc. After a finite
number of steps we find the number m satisfying (*) such that m — 1 does not
satisfy this condition.

The exact minimization rule is well defined if the minimum on the right-hand side
exists. The interval in which the minimum is to be found is unbounded; hence,
the exact minimization rule does not have to be well defined. Later we show
assumptions that guarantee its correctness. Restricting the interval to [0, A] has
two advantages: first, the problem always has a solution, as we minimise

a continuous function in a compact set. Second, we can use faster methods of
searching minima.

Both rules, exact and limited, find steps such that f(x, 1) < f(xx); the proof of
this fact is an exercise. By Inequality (*), also the Armijo rule produces such
steps. There are, however, two questions. Is the stop criterion correct? Does the
sequence (Xy )y converge to a minimum?

Below we prove that any concentration point of the sequence (x;) obtained by the
steepest descent method is a critical point, i.e., it is a zero of the gradient of f.
Such a point does not have to be a local minimum. However, if the function f is
pseudoconvex, then we can be sure that it is a minimum, moreover, a global
minimum.

Theorem 64 Let (xi)x be a sequence of points obtained using the steepest
descent method, with any of the three rules described above. Then, any
concentration point of this sequence is a critical point.
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Proof. Let X be a concentration point and let (xy, ). be a subsequence convergent
to X. The proof is done by contradiction; we suppose that Df(x) # 0T.

The main idea for the first two rules (exact and limited) is to show the existence
of a constant y > 0 such that with n big enough, i.e., with x;_ close enough to X,
there is

(X, 11) < f(Xk) — Y,y

which means that it is possible to decrease the value of f in the step k,, at least
by y. Bearing in mind that the sequence (f(xy)), is decreasing, we have

flxk,,,) < flxpe) < flxg,) —v.

By passing with n to co and using the fact that X is a concentration point and f is
continuous, we obtain the inconsistency with the inequality y > 0.

Therefore we need to prove the existence of y > 0. The derivative of f is
continuous by assumption; hence, there exists a neighbourhood V of X such that
[[Df(x Wyl _1
2 - forall V. *x
||Df ” 5 forallx,ye (**)
The main observation to justify the inequality above is that in a neighbourhood
of X the norm of gradient of f is strictly separated from 0.

Let & > 0 be such that B(X,25) C V and § < Ainfycy ||Df(x)|, where A is the
constant of the definition of the limited minimization rule (from (**) we conclude
that inf,cy | Df(x)|| > 0). For a point x € B(X, 8), the point x — ”Df 7 (Df(x ))

an element of B(X,258) and, therefore, also of V. Moreover, with the 11m1ted
minimization rule we have

5 Ainfyey [ Df(x)]]
<A
HDf ) IDF(x) || '
ie., HDf e [0,A]. By the mean value theorem,
T T
f(x)—f(x ”Df H(Df(x)) ) — Df(0) (HDH H( X)) )
5
f(0)(Df(x)
EEEY || (Dfx),

where 0 is an intermediate point; hence, it is an element of V. Now we focus on
the product of the gradients:

Df(0)(Df(x))" = (Df(x) + Df(8) — Df(x)) (Df(x))"
— |Df(x)||* + (Df(8) — Df(x)) (Df(x))"
> |Df(x)[|* — [IDf(8) — Df ()| Df (x)]|.
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We substitute this estimation to the previous formula:

5
x) — f(x - Torea7 O x))") > 8|Df(x)]| - 5[ DF(8) — Df )|
Df(0 5
= 8[|Df(x H< w>/§”[)f(x)”;

the last inequality follows from (**). The estimation above is true for
all x € B(x, 0); in particular for all x;, with n big enough we have

5

5
TDree T (P0) ") = S, )l

(%) — F(xan11) = i) — f(xk“ —
Therefore, we can take

inf ||Df(x)].

_5
Y=3 XEB(X,5)

For the steepest descent method with the Armijo rule we have
f(xi) — f(xa1) = oo DF(xi) ||,

which implies that the sequence (f(xk))k is monotonically decreasing, i.e., it is
either convergent, or it diverges to —oo. Due to f(xy, ) — f(X) there is

f(xi) — f(xip1) — 0. It follows that also oy ||Df(xi)|> — 0. Due to

Df(xy, ) — Df(x) # 07, there must be oy — 0.

On the other hand, the numbers & in the Armijo rule are chosen in the optimal
way, i.e.,

f(xi) — (% — ou/B (Df(xi)) ") < ooa/B|DF (x|

By applying the intermediate value theorem to the left-hand side of this
inequality, we get

f(xi) — f(x — o/ (Df(XkJ)T) = Df (xx — &u/P (Df(xku))T) ou/B (Df(xkn))T-
Therefore, the previous inequality takes the form

Df (x — &/ (DF(xi) ) (DF(x)) " < o[ DFGxi) |1
Taking the subsequence (xy,)n, We obtain

Df (xx, — 6k, /B(Df(xi,)) ') (DF(xi,)) " < 0| Df (i) |1
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If we pass with this inequality to the limit, then we see that &, € [0, &, ];

&, — 0 because &, — 0. The last inequality at the limit gives us

IDf(X)])? < o] Df(X)||%, i.e., (1 —0)||Df(x)||> < 0. But 1— 0o € (0,1), which gives us
an inconsistency with the supp051t10n that Df(x) #0". O

It turns out that slightly stronger assumptions ensure that Df(x;) — 0T for the
entire sequence obtained by the steepest descent method, not just a subsequence
convergent to the concentration point.

Lemma 24 Let f be a function of class C' bounded from below. Let (xy)x be
a sequence of points obtained by a steepert descent method. If there exists
a constant ¢ > 0 (independent of k) such that

f(xk+ (xkdk) < f(xk) 7CHDf(Xk)HZ» k= ],2,..., (***)

then either there ezists a number K such that Df(xx) = 07, or the sequence
(Df(x)), converges to 0.

Proof. Suppose that there exists an infinite sequence (xy ) obtained by a steepest
descent method (i.e., a number K as described, does not exist). By (*¥), the
sequence (f(xk))k is monotonically decreasing. Being bounded from below, this
sequence is convergent; hence, f(xy) — f(xx1) — 0. Due to (¥¥), we have

f(xi) — f(xa1) > || DF(x) |1

therefore, ||[Df(xy)| — 0. O

Theorem 65 Let f be a function bounded from below and let its gradient
satisfy the Lipschitz condition with a constant L in a sublevel set S = Wyy,(f)
for some xy. Let (xy)x be a sequence obtained using the steepest descent
method with the ezact rule (which is correct if the set S is compact), limited
rule with A > z]_L or the Armyjo rule. Then, either there ezxists a number K

such that Df(xx) = 0, or the sequence (Df(xy)), converges to 0.

Proof. The proof is done by showing that the assumptions of the theorem imply
the assumptions of Lemma 24.

At first we consider the Armijo rule. Let &, = sf3™ be the step chosen by this
rule in the k-th step. Then,

f(Xk + O(kdk) < f(Xk) + GO(kDf(Xk)dk. (@)
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The number oy has been chosen in the optimal way, i.e., with the lowest power
of 3 to satisfy the last inequalty. Therefore, for an even lower power of 3 we have

f(Xk + [371 (Xkdk) > f(Xk) + O'O(kDf(Xk)dk. (®)

Due to Df(xy)dyx < 0 and x € S, using (@) we obtain xy,; € S. By the
intermediate value theorem, we obtain

f(Xie1) — fxi) = flx 4+ oedi) — F(xi) = o Df(Xy ) di,

where Xy is a point of the line segment XXy, ;. This line segment is a subset of S;
in particular, Xy € S. Taking into account that di = —(Df (xk))T, we have

f(xa1) — f(x1) = aDf(Xi)di = —ou (DF(x) — Df(xi) + Df () (Df(ik))T
— — o || DF(xi)||> + o6 (DF (i) — Df (%)) (D (xi)) '
< —ou[DF ) | + oue| DF (xi) — DF(Ri) ||| DF (x|

There is x € S and also X, € S for all k. From the Lipschitz condition satisfied by
the gradient of f it follows that

HDf(Xk] — Df(ik)H < I—ka — *k” < I—ka — Xk+1 || = LOCkHDf(Xk)H
After substituting this estimation to the previous inequality, we obtain
f(xii1) — Fxi) < —ow[DF(xi) [17(1 — o).

It follows from the above that (&) is satisfied if T — axL > 0. Let m, be such
a number that 1 —sp™L > o > 1 —sp™ . It follows that

o(l1—0)p

Mg >
osf T

On the other hand, m, does not have to be optimal, satisfying (¢) and (®).
However, the Armijo rule guarantees that m, < m,, because my is the smallest
number such that () is satisfied. Hence,

o(1—0o)p

osp™ > osp™ > T

After substituting the above to (#) and using the fact that dy has the steepest
descent direction, we obtain the following inequality:

fxx — oady) — f(xi) < —0osB™[DF (x> < —osp™ || Df(xi) |2

<2128 pr e,
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i.e., the inequality (%) of Lemma 24.

With the exact minimization rule, we assume that it is well-defined in each step,
i.e., there exists a finite number oy > 0 to minimise f(xy + ady) for o« > 0.
A calculation similar to that in the proof for the Armijo rule yields the estimation

f(xi1) — f(xi) < —ou|DF(xi)]|*(1 — o). (3%)

The right-hand side of this inequality is minimal for o, = 21T From that we obtain

1
f(xie1) — fxi) < 7H||Df[xk)|\2,

i.e., the inequality (**) from Lemma 24.

The proof for the restricted minimization rule is similar to the above. We need to
assume that the interval [0, A] in which we search for oy contains the point ;—L to
minimise (}}). O

Theorem 65 justifies correctness of the steepest descent methods, but it does not
refer to the rate of their convergence. After further strengthtening its
assumptions, we can prove that the convergence is at least linear and the stop
criterion is correct.

We define the set S = {x € R": f(x) < f(xy) }, where x; is the initial point. By
m(x) and M(x) we denote respectively the smallest and the greatest eigenvalue of
the Hessian matrix of f at x.

Lemma 25 Suppose that the set S is convex and compact and the function f is
twice continuously differentiable in S. Let m = inf,cs m(x) > 0. Then the
point X being the limit of the sequence (X ). obtained by a steepest descent
method is in S. It is the minimum of f in S and for all x € S there s

1 1
Il = XI| < —[IDF), - FOx) — (%) < —[[DFG)].

Proof. Due to m = infyes m(x) > 0, the Hessian D?*f(x) is positive-definite at all
points of S and it follows that f is a convex function in S.

The set S is compact; the function f is bounded from below and its gradient
satisfies the Lipschitz condition. By Theorem 65, Df(xy) — 0, i.e., X € S. The
critical point of a convex function is its minimum.
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The Taylor formula for x € S gives us
1

f(x) = f(%) + 5 (x — %) 'D*(%) (x - X),

f(x) = f(x) + Df(x)(x —x) + %(7_( —x)"D*(R)(x — x).

After substituting the first equality to the second, we obtain

+D(R) — D(%)

Df(x)(x —x) + (x —X) 3

(x —%) =0.

We can, therefore, estimate
; DH(R) — D*f(%)

Df(x)(x —X) = (x — X) 5

(x —%) = m|x —x|?,

and then

DH(R) — D*f(%)
2

After dividing the sides of the last inequality by m|[x —X||, we obtain

IDFX)|[Ix = %] > (x —%) (x —%) = m|x —X%|*

_ 1
[x =X < —[IDf(x)].
m
Using the Taylor formula again, due to the convexity of f in S, we obtain
1

f(x) = f(x) + Df(x)(x —x) + z()? —x)D*(R) (X —x) > f(x) + Df(x) (X —x).
Hence,

f(x) — f(x) < Df(x)(x — %),
ie.,

F(x) = (%) = £60) — () < [DFx)x ~ ] < - [DA. o

Lemma 26 Let S be convex and compact. Let f be of class C? in s and

m = infyes m(x). Denote M = sup,.s M(x). Then, M < 400 and the sequence
(xx)x obtained with the steepest descent method with the eract minimization
rule there is

1) = (%) < (1= 300 ) () — (%)

Whath the restricted minimaization rule there is

mMy?
2

1) = £(%) < (1= my + 222 ) (f) — (%),

where y = min{;;, A}.
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Proof. Consider the exact rule. By the Taylor formula, for 6 > 0, we have
M
f(xk - 6(Df(xk])T> < f(xi) + Df(x) (—5(Df(xk))T) + 88 IDF ()|
M
= f(x) = SIIDF () |* + 857 [ DF (x| (®)

The minimum of the right-hand side is taken at 6 = ﬁ Recall that xy; is the
minimum for « > 0:

f(xk+1) = (ixggf(xk — oc(Df(xk))T).
Therefore,

1) < £~ 2 (DA ) < o) — 31 DO

Now we subtract f(X) from both sides and we apply the inequality
[Df(xi)[|* = m(f(xx) — f(X)), being a consequence of Lemma 25:

f(xie1) — F(X) < Flx) — F(X) — = () — F(%)).

- 2M

A simple calculation yields the claim.

Now we consider the restricted rule. The point X, is the minimum for
« € [0,A). The minimum on the right-hand side of (®) is obtained with 5 =y.
The rest of the proof is identical to the proof for the exact rule. O

The above considerations may be concluded as follows: by Lemma 25, the stop
condition based on the norm of the gradient of f is correct; it gives us estimations
of the approximation error of X by X1 as well as the approximation error of the
minimal function value f(X) by f(xy.1). Note that “the more convex” is the
function f in a neighbourhood of X, i.e., the greater is m, the sharper is the
dependency between the norm of the gradient and the distance between x4

and X. Lemma 26 suggests that the convergence is fastest if the function f behaves
similarly in all directions, i.e., the eigenvalues of the Hessian matrix are close to
each other. Then, the quotient {; is great (close to 1), which decreases the
contraction factor 1 — 55z. Thus, the steepest descent algorithm works best for
functions such that their corresponding numbers m and M are of the same order
of magnitude.

The correctness of the stop criterion for the Armijo rule still holds, as Lemma 25
does not depend on the step length. Lemma 26 for this case has to be modified;
however, the (at least) linear rate of convergence remains.
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What is the advantage of the Armijo rule? It is simple to implement, as it does not
need methods of searching minima of functions of one variable. The actual rate of
convergence depends on the parameters s, 3,8. Alas, there is no general rule of
choosing these parameters—user’s experience and intuition must be employed.

Newton’s method

The descent methods described above choose the directions for the next point
based on the Taylor expansion up to the first-order term:

f(x + d) = f(x) + Df(x)d.

The Newton method uses the expansion up to the second-order term of the
function f: R™ — R; assume that it is twice differentiable. Then, we use the
approximation

f(x + d) = f(x) + Df(x)d + %dTsz(x)d.

Instead of finding a minimum of f, we minimise the expression on the right-hand
side above. For this to make sense we have to assume that the Hessian matrix
D?(x) is positive-definite. With f(x) fixed, the problem reduces to the following:

h(d) = }d"D*f(x)d + Df(x)d — min,
d e R™.

As the Hessian is, by assumption, positive-definite, the problem above has the
unique solution

d=—(D*(x)) ' (Df(x))".

Note that if the gradient of f at x is zero, then d = 0 and we shall not leave the
critical point. The Newton algorithm is

Preparation: Choose the initial point x; and the parameter ¢ > 0.
k-th step: Take Xy.1 = Xx + di, where D*f(xy)dy = —(Df(xk))TA

Stop condition: ||Df(xy.1)| < €.

There are a number of doubts about this algorithm. It is not clear whether the
sequence (Xy )y is convergent; moreover, it is easy to find a regular function, having
a minimum, for which the method generates a divergent (unbounded) sequence.
The theorem below describes a sufficient condition for the convergence.
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Theorem 66 Let f be a function of class C* in a neighbourhood of a local
minimum X and let the Hessian D*f(X) be positive-definite. Then, there exists
d >0 and c > 0 such that for any xx € B(X, d) there is

X1 — X < cflxic —%]|

Proof. The continuity of D*f implies the existence of & > 0 such that for
x € B(X, 5) the norms of D?f(x) and (sz(x))q are bounded and greater than
some T > 0.
Expanding the gradient of f at xy, we get
(Df(xic + )" = (Df(xi)) " + D*f(x)h + O(|[h[).
Substituting to the above h = —h; = —(x, — X), we obtain
(Df(x)) " — D2f(xa) T, + O[Tl )) = (DF(x))" = 0.
Let x; € B(X,8). Multiplying the sides of the above by (D*f (xk))q, we obtain
0= (D*(x))" (Df(xi)) " — T+ O [he|* = i — hyc+ O *)
There is
—d — e =% — X1 — (X —X) = — (X1 —X) = —hyy.
Therefore, by (*), there exists a constant ¢ > 0 such that
M| < e[ el

hence, the rate of convergence is quadratic.

If x, € B(X, %), where a € (0,1) and ¢ < b, then the last inequality gives us also
o«
Mol < el = exffuell,

which means that the sequence of vectors (hy)y, being differences of the points xy
and the solution X tends to 0. O

Remark. (1) If the point x; is distant from the solution X, then the Hessian
D?f(x) does not have to be positive-definite.

(2) If the Hessian is positive-definite at xy, then the vector dy constructed in the
k-th step has a descent direction for the function f:

f(xy = — 2 Xx) - Df(xy < 0.
Df(xi)di = —Df () (D*f(x) ") ' (Df(x))" < 0
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(3) Even if the Hessian is positive-definite at xy, there is no guarantee that

f(xxi1) < f(xy), because there is no minimization along the line having the descent
direction. The length of the vector d,, may simply be too big.

(4) A drawback of the Newton method is that it may converge to a critical point
being a local maximum or a saddle point (this may be the case if the Hessian is
not positive-definite). The assumption of pseudoconvexity of f guarantees that the
critical point is a minimum.

A remedy to the above may be minimization along the Levenberg—Marquardt
trajectory. The system of linear equations D?*f(x,)d = —(Df(xk))T may be

replaced by the following:
(D*(xi) + v1)d = —(Df(x)) ",

where v is a parameter and I is the identity matrix. We can define a function of
one variable,

g(v) & f(xk — (D¥(xi) +vI) (Df(xk))T).
Then, we can chose v so as to minimise the function g; the point xy; is then the
argument of f corresponding to that v. Note that if v =0, then the point X, is
the one obtained with the Newton method. The eigenvalues of the matrix
(sz(xk) + VI) are the eigenvalues of D?f(x,) increased by v; hence, there exists v,
such that the matrix (sz(xk) + VI) is positive-definite for all v > v,.

The Levenberg-Marquardt trajectory is the parametric curve made of the points
X — (D*f(xi) + VI)fl (Df(xk))T, where v > vo. Note that by increasing v we
obtain the vectors —(D*f(x) + VI)_] (Df(xk))T whose directions tend to the
direction of —Df(xy), i.e., to the steepest descent direction, and their lengths tend
to 0. Therefore, if the gradient of f at xy is nonzero, we have a guarantee of
finding on the Levenberg—Marquardt trajectory a point X1 such that

f(xx1) < f(x). Minimization along Levenberg—Marquardt trajectories may also
produce a divergent sequence of points or a sequence convergent to a saddle point.

Another drawback of the Newton method are the difficulty of finding a good initial
point x; and the parameter ¢ for the stop condition. The Levenberg—Marquardt
approach makes the choice of initial points considerably easier.

If the dimension n of the problem is large, each iteration, involving the
computation of n? coefficients of the Hessian and solving a system of n equations,
is costly.

13.14

Conjugate directions and conjugate gradient methods

Definition 38 Let H be a symmetric and positive-definite n X n matriz.
Nonzero vectors d;,...,d, are called conjugate with respect to the matriz H if

d{Hd; =0, i,je{l,...,n}, i#].

Note that if the vectors d;, ..., d, are conjugate with respect to a matrix, then
they are linearly independent.

Consider a quadratic function f(x) = %XTHX +b™x + ¢ with a symmetric and
positive-definite matrix H. The minimum of this function may be found using
a conjugate directions method: subsequent points approximating the minimum
are searched in the directions of vectors conjugate with respect to the matrix H.
The algorithm is the following:

Preparation: Choose the initial point x;.

k-th step:
1. Choose the vector d,.

2. Take xy.1 = Xy + tidy, where ty is chosen by the exact minimization
rule, t, = argmin{ f(xy +tdy): t >0}

Stop condition: ||Df(xy.1)| = 0.

Theorem 67 A conjugate directions method with the exact minimization rule
finds the minimum of a quadratic function f(x) = ;x"Hx + b'x + ¢ with
a positive-definite matriz H after at most n steps.

Proof. Denote gy = Df(xy). It is easy to notice that
gk+]dk:O, k:],,n*1

To this end, consider the function h(t) = f(x;, + tdy); it has the minimum at t,
therefore h/(t,) = 0. On the other hand, h/(t) = D(xy + tdy)dy and
h'(t) = gis1 di.
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For the quadratic function f we obtain
T T
gx+1 — gk = Df(xy 1) — Df(xy) = (HXkH) — (ka) = tkle.
Using this equality we prove by induction that
gk+]dj:O, k:1,...,n—1,j:1...,k. (\:\)

For k =1 it is already proved. Suppose that gid; =0 for j =1,...,k —1. Then,
forj=1,...,k—1

gii1dj = (gi + tid{H)dj = gid; + td{Hd; = 0

because grd; = 0 due to the inductive assumption and d{Hd]- = 0 because the
vectors dy and d; are conjugate with respect to H. Also, the equality gi,idy is
already proved, which completes the proof of (O).

By (0O), the derivatives of the function f at Xy in the directions of d,,...,dy are
zero; hence,

Df(x:1)d =0, d € lin{ds,...,dd).
Let
Ky = Xk4+1 + ].iIl{d], ceey dk} =X1+ ].iIl{d], ey dk}

Let F = flx,. The function F is convex, because f is convex and Ky is a convex set.
All directional derivatives equal to O is a sufficient condition for a minimum of
a convex function. Therefore,

Xys1 = argmin{ F(x): x € Ky} = argmin{ f(x): x € xy +lin{d;,..., di} }.

To complete the proof we notice that K, =R". O

The method analysed in the last theorem is very effective, as we can find the
minimum in at most n steps. Its drawback is the necessity of finding the entire set
of conjugate vectors of the matrix H (these may be the eigenvectors of H). The
conujgate gradient method described below finds conjugate vectors in consecutive
steps of the algorithm. This method is also known as the

Fletcher—Reeves algorithm.

Preparation: Choose the initial point x;.
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1-st step: Take d; = —g] (the vector with the steepest descent direction) and

x; =x1 +t1dy, t; = argmin{f(x; + td;)}.

k-th step, k > 1: (we already know the vectors dy,...,dy 1)
1. Take
gxgx
Pr = %) dy = *9{ + Brdi—1.
9x-19x

2. Take X1 = Xx + tdy, where t, = arg min{f(x; + tdy)}.
Stop condition: ||Df(xy.1)| = 0.
Theorem 68 The Fletcher—Reeves algorithm with the ezact minimization rule
applied to a quadratic function f: R™ — R with a positive Hessian matriz H

constructs vectors di, d,,... conjugate with respect to the matriz H.
Moreover, for i < m =max{i: g; # 0"} there is

gig;r:O) j=1..,1-1 (@)

and

gidi = —gig;. (®)

Proof. If m =0, then the initial point is the solution and there is nothing to
prove. Let m > 1. The proof is done by the induction with respect to i.

If i =1, then we only need to prove that gid; = —g;g!, which is obvious due to
d] = 791T
Suppose that the vectors d;,..., d; are conjugate with respect to H and the

equalities (@) and (®) are satisfied for some i < m. From the proof of Theorem 67
we know that for a quadratic function f

git1 —gi = tidiTH- (&)
Using this and gi;1di = 0, we obtain

0= gpr]di = gidi + tidiTHdi.
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From the above we obtain

idi i9{
9 _ 99 . (®)

ti:_ - )
dTHd, _ d'Hd,

the last equality is based on the inductive assumption.

For j < 1, by the inductive assumption and Step 2 of the algorithm we have

9i19] = 0ig] + tid{Hg; = gig] + tid{H(d; — Bj-1d;-1)
= gig9] — tid{Hd; + t:;Bj_1d{Hd;;, =0,
because the first term of the last sum is O by the inductive assumption

(equality (®)) and the other two terms are 0 because the vectors di, d; and d;_;
are conjugate with respect to H.

A similar calculation with i = j, using the inductive assumption and (®) gives us

o7
919! = g:9] — tidHd; + tiBi1dlHdi s = gig] — 19 d[Hd; =o0.

We proved that giﬂng =0 for j =1,...,1, which is the inductive step of the proof

of (&).

It remains to be proved that the vectors di,..., d,, are conjugate with respect
to H. Using (©) and the formula for d;;; we obtain

1
d{,Hd; = —gi1Hd; + Bid{Hd; = *;gm(gj — gj+1) + Bid{ Hd,
j

1
= *;9#19]‘11 + Bid{Hd;.
)

For j < i we obtain at once d{,,

9i119],; =0 and d{Hd; = 0.

Hd; = 0, because, by inductive assumption,

For j =1, using the formulae for t; and (3;, we obtain

al Hd: = —lg‘ﬂg-T L+ giLgiT“d_THd,
) ti j+ ggT i )

i+1
191

9i19in 997 _
gi9{ . .

P
= 91954 +
j

We proved that

dl Hd; =0, j=1,...,i

i+1
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The last thing to be proved is the equality (®). Using the formula for d;,;
and (O), we obtain

gir1dinr = gin1(—9{ + Bidi) = —gi19L + Bigi1di = —Gir10{,1-

This completes the entire inductive step. O

The conjugate gradient method is a powerful method of solving systems of linear
equations with a symmetric and positive-definite n x n matrix, where n is large.
It is most often used to solve systems with millions of unknown variables obtained
by discretization of partial differential equations, which is beyond the scope of this
lecture. The idea is to find the minimum of the quadratic function %xTAx —b'x,
whose gradient is x'A — b"; clearly, at the minimum X the gradient is zero, i.e.,
AX =b. It turns out that the points obtained in consecutive iterations initially
approach the solution, but the rounding errors (always present if floating point
arithmetic is used) destroy the convergence; from a certain step the distance
between the consecutive points and the solution may (rapidly) increase.
Therefore, for huge systems of equations the conjugate gradient method is used as
an iterative method: the computations are broken after m iterations, where m is
much smaller than n.

If f is not a quadratic function, then the Fletcher—Reeves conjugate gradient
method has to be modified. Even without rounding errors we cannot expect the
method to find the minimal point of a function of n variables after n iterations.
Therefore the stop condition has to be based on a test, e.g., comparing the length
of the gradient with some tolerance threshold:

Preparation: Choose the initial point x; and the parameter ¢ > 0.
1-st step: Take d; = —g] (the vector with the steepest descent direction) and

X2 =X1+14H d], t) = arg min{f()q + td, )}

k-th step, k > 1: (we already know the vectors d;,...,dy_1)
1. Take
9x9k
Br_1 = —1;, dy = —91 + Brdi—1.
919k

2. Take X1 = Xy + tdy, where t, = argmin{ f(x; +tdy): t >0}

Stop condition: |Df(xy41)] < €.
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Note that making more than n iterations makes no sense for a quadratic
function f. Therefore many implementations of the method make a “reset” every
m iterations, where m < n; the vector dy after the reset is —gJ, i.e., it has the
steepest descent direction.

In general, the choice of 3x_; as above does not guarantee the vector d, to have
a descent direction, which is why the formula for y_; is subject to various
modifications. A modification often giving better results than the original
Fletcher—Reeves method is the following:

Bt — gr(gx —gi 1)’
9k-105
If f is a quadratic function, then gyg{ ; = 0, and so this formula is equivalent to

the original one.

Example. Figure 11 shows level sets of the Rosenbrock “banana valley” function,
fx,y) = (x = 1) +100(x* —y)?,

whose unique minimum is X = (1,1). This function is known as troublesome in
numerical optimization, which is why it is one of popular, or even classical tests
for various algorithms. The initial point x; = (—0.5,0.5) was taken for three
algorithms discussed above.

The steepest descent method with restricted minimization rule with A = 0.5
yields the sequence of points shown in figure (a); note the very slow convergence
to the minimum; the first 150 points have been plotted. One can see that
improving the accuracy of computing minima in the steepest descent directions
does not accelerate the convergence.

Figure (b) shows the sequence constructed with the Newton method augmented
with minimization along Levenberg—Marquardt trajectories; three such trajectories
were necessary, and the method has dealt with the problem pretty well.

In Figure (c) we can see the sequence constructed using the modified
Fletcher—Reeves method, with reset every 2 iterations. After the initial quick
progress the algorithm got stuck at a considerable distance from the minimal
point.

13.20
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Figure 11: Searching the minimum of the Rosenbrock function
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14. Algorithms for optimization with constraints

Now we focus on numerical methods for optimization problems with inequality
constraints. We shal see problems arising when the steepest descent methods and
their naive modifications are used and we shall see a more efective, though more
complicated approach.

The problem considered here is

f(x) — min,
gi(x)gov i=1,...,m,
x € R",
where f, g1,...,gm: R" — R. Thus, the feasible set is

W={xeR" g(x) <0,...,gm(x) <O0L
In our considerations we use the notion of feasible directions, defined as follows:

F(x) ={d € R": d # 0 and there exists A* > 0
such that x + Ad € W for all A € [0,A*] }.

Zoutendijk algorithm for affine constraints

Consider a simple modification of the steepest descent method. If a point x is in
the interior of W, then we can move in the steepest descent direction until we hit
the boundary. If the point is already at the boundary, then it is natural to choose
a direction of the possibly steep descent being feasible. Such a direction is called
a feasible descent direction at the point x; a vector d having such a direction
satisfies the inequality Df(x)d < 0.

It turns out that if the constraint functions are affine, then this idea works quite
well; it is named the Zoutendijk algorithm. Recall that problems with affine

constraints are simpler than the general case. This simplicity makes it possible to
extend the analysis to problems with mixed affine constraints, i.e.,

f(x) — min,

Here A is an m x n matrix, Qislxn,beR™ a € R'. The following lemma
characterises the set of feasible descent directions. Its proof is left as an exercise.
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Lemma 27 Let x be a feasible point for the problem (*). Assume that the
matriz A and the vector b may be divided into blocks A;, A, and by, b, such
that Ax < b is the conjunction of Aix = by, Ayx < by (depending on the set
of active constraints at x, this may require renumbering of the constraints).
The vector d € R" has a feastble direction at x if A;d < 0 and Qd =0. Ifin
addition Df(x)d < 0, then d has a feasible descent direction.

How to choose the best descent direction at x? It would be the simplest to solve
the problem

Df(x)d — min, deF(x), |ld]|<T. (*%)

The restriction for the norm of d is indispensable. Without it, for any vector d
having a feasible descent direction there is limy_,., Df(x)Ad = —oo and the
problem above has no solution.

Using the block A; of the matrix A as in Lemma 27, we can rewrite the
problem (**) in the form

Df(x)d — min,
A:;d <0,
Qd =0,
a'd <1.

Note that the only nonlinear part above is the norm restriction. In practice,
without loss of the algorithm quality it is replaced by linear restrictions, which
make it possible to use fast methods of linear optimization (e.g. the simplex
algorithm). The most popular replacements for the Euclidean norm | d||; are

e the maximum norm, ||d||., = max;|d;|, which gives us

e the first norm, ||d|s = }_;|d;l; in this case we have the inequalities
Z?:] Tl]' < 1a
_njgdjgnja j=1...,m

where 1,...,M, are new, auxiliary variables.
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Below we consider the algorithm with the maximum norm restriction:

Df(x)d — min,

A1d <0,

Qd =0,

-1<d <1, j=1,...,n.

The algorithm is the following;:

Preparation: Choose the initial point x;.

k-th step:
1. Given a point x;, find the blocks A;, A; of the matrix A and the blocks
by, b, of b so as to obtain A;x = by and A,x < b; (like in Lemma 27).
2. Choose the vector dy by solving the problem
Df(x,)d — min,
A1d <0,
Qd =0,
—1 ]gl, ):],,Tl

N

3. If Df(xy)dyx = 0, then stop, as the point x; satisfies the necessary
first-order condition. Else continue.

4. Take oy = argmin ¢ 5, f(xx + ady), where Ay is the greatest number
such that the line segment x,, X, + Axdy is contained in the feasible
set W.

5. Take Xk+1 = Xk + ockdk.

Let’s take a look at the choice of the vector di. The vector d, = O satisfies all
restrictions, therefore the minimal value of the function Df(x;)dy is less than or
equal to 0.

Lemma 28 The necessary first-order condition is satisfied at xy if and only if
the solution dy of (*¥) satisfies the equality Df(xy)dy =0

Proof. Recall that the necessary first-order condition for the problem (*) is
satisfied at xy if and only if there exist vectors p € [0,00)™ and A € R' such that

Df(x) + u'A; +ATQ =07,
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where the m; x n matrix A; corresponds to the constraints active at xy.

By the Farkas lemma (Lemma 15), if this system has a solution, then the system

Df(x)d < 0,
Ard <0, ()
Qd=0

is inconsistent. Due to the observation that d = 0 is a solution of the system
above with the inequality Df(x;)d < 0 replaced by the equality Df(x,)d = 0, the
right implication is proved.

To prove the left implication, we notice that if Df(xy)d = 0, then dy does not
satisy (¥¥). Using again the Farkas lemma we notice that the necessary first-order
condition is then satisfied. O

Zoutendijk algorithm for nonlinear constraints

One can wonder if the Zoutendijk algorithm works just as well for nonlinear
constraints:

Preparation: Choose the initial point x;.

k-th step:

1. Given a point xy, choose the vector dy by solving the problem
Df(xy)d —» min, d € F(xy), |d|l <T.

2. If Df(xy)dy = 0, then stop, as the point x, satisfies the necessary
first-order condition. Else continue.

3. Take oy = argmin, ¢ 4, f(xi + ady), where Ay is the greatest number
such that the line segment x;, %y + Axdy is contained in the feasible
set W.

4. Take Xk+1 = Xk + Oékdk.

Figure 12 shows the steepest descent methods used to find the minimum of the
function f(x1,%;) = —2x; — x; in two different sets; the minimal point is denoted
by X. In the case (a) the minimum is found in the second step. If the set W is not
convex, as in the case (b), the algorithm may go to a dead end. This is, alas,
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Figure 12: Steepest descent method for two different feasible sets
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Figure 13: Failure of the descent method in a convex feasible set

a property of all descent algorithms. Therefore, we have to require that the
feasible set be convex. Does it suffice? No. In Figure 13 we can see that the
algorithm may fail even with a convex feasible set. The steepest descent direction
cannot be found, because the set of feasible descent directions F(x;) is not closed.
It is easy to find a way out: we need to choose such a vector d, that the descent is
steep and also a long part (line segment) of the halfline having the direction of dy
be contained in the set W. We still pursue the simplicity, i.e., linearity, of the
optimization problem posed in order to choose di. The solution is prompted by
the following lemma:

Lemma 29 Let x be a feasible point. If the functions f and g; for i € 1(x) are
differentiable at x and the functions g; for i ¢ I(x) are continuous, then any
vector d such that Df(x)d < 0 and Dgi(x)d < 0 for i € I(x) has a feasible
descent direction.

Proof. First we prove that d has a feasible direction, i.e., for a sufficiently small
A > 0 there is x + Ad € W. For i ¢ I(x), due to the continuity of g; we have
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gi(x + Ad) < 0. For i € I(x) we have
gi(x + Ad) = gi(x) + ADgi(x)d + o(Ad).
There is gi(x) =0, Dgi(x) < 0 and o(Ad) — 0 for A — 0; hence, gi(x +Ad) < O for
all sufficiently small positive A.
The vector d has a feasible direction. By the asumptions of the lemma it has also
a descent direction. There is
f(x +Ad) = f(x) + ADf(x)d + o(Ad).
Hence, for A sufficiently small there is f(x + Ad) < f(x). O
Lemma 29 gives us only a sufficient condition. There are optimization problems

with inequality constraints such that one of feasible descent directions does not
satisfy the lemma’s assumptions.

Choosing a vector d € R"™ such that Df(x)d < 0 and Dg;(x)d < 0 for i € I(x) may
be done by solving the following problem:

max{ Df(x)d, Dgi(x)d, i € I(x) }— — min,
-1<d <1, j=1,...,n

The target function above is tough to implement; we can reduce its minimization
to the much simpler linear optimization problem

T — min,

Df(x)d <, (@)
Dgl(x)d < n, i€ I(X))

-1<d4 <1, j=1,...,n

Here the optimization is done with respect to two variables: d € R™ and n € R.
Note that 11 < 0, because the pair (d,n) = (0,0) satisfiest the constraints above. If
the target function has a negative value, then by Lemma 29 the vector d has

a feasible descent direction. If 1 =0 is a solution and the linear independence
condition is satisfied by the constraints, then the necessary first-order condition is
satisfied at x. The inverse implication is also true.

Lemma 30 If the linear independence condition is satisfied by the constraints
at a feasible point x and n =0 is the solution of the problem (®), then the
necessary first-order condition is satisfied at x. Also, if the first-order
condition is satisfied at x, then n =0 is the solution of (®) (here the
regularity of constraints at x needs not be assumed).



14.7

Proof. If n = 0 is the solution, then the system Ad < 0, where A is the matrix
whose rows are gradients of f and g;, i € I(x), has no solution. By Gordan'’s
lemma (Lemma 18), there exists y > 0, y # 0 such that ATy = 0. Let
y = (flo, i, € I(x)) and let {t; =0 for i ¢ I(x). The equality A’y = 0 may be
rewritten as follows:
foDf(x) + >  uDgi(x) =0".

i€l(x)
From the assumption of linear independence of gradients of the active constraints
we conclude that {iy # 0. Taking w; = {i;/{ip for i = 1,..., m, we obtain the
Lagrange multipliers for the necessary first-order condition.

To prove the inverse implication we notice that if the necessary first-order
condition is satisfied at x, then the vector y = (1, ui,i € I(x)) satisfies the
following: y > 0, y # 0 and ATy = 0. By Lemma 18, there is no d € R" such that
Ad < 0. Then, n = 0 is the solution of (®). O

The complete Zoutendijk algorithm for nonlinear problems with nonlinear
constraints is the following:

Preparation: Choose the initial point x;.

k-th step:
1. Given a point xy, choose the vector dy by solving the problem
1 — min,
Df(xk)d < n,
Dgi(x)d <m, 1€ I(x),
-1<4 <1, j=1,...,n
2. If n =0, then stop, as the point x; satisfies the necessary first-order
condition. Else continue.
3. Take oy = argmin, g a, f(xy + ady), where Ay is the greatest number
such that the line segment x;, X, + Aydy is contained in the set W.

4. Take Xk+1 = Xk + (Xkdk.

Example. Consider the problem

22 4+ 2x3 — 2x1% — 4x1 — 6% — min,
X1 +5%; < 5,

2% — % <0,

X1 = O, Xy = 0.
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The Zoutendijk algorithm with the initial point x; = (0,0.75) generates the
following sequence of points:
x; = (0.2803,0.5477),
x3 = (0.5555,0.8889),
x4 = (0.6479,0.8397)
x5 = (0.6302,0.8740).

)

As we can see, this sequence shows considerable oscillations in the feasible set, see
Figure 14. This is a typical behaviour of descent methods for problems with
constraints.

X2

X3 X5

X.
X1 4

X2

X1

Figure 14: Oscillations of the sequence generated by the Zoutendijk algorithm

X2

/X
X4
X3

X2

Figure 15: Convergence to a point not being a solution

The Zoutendijk algorithm may fail even for rather simple problems. Consider
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searching the minimum of the linear function f(x,x;) = —2x; — x; in the set
shown in Figure 15; the minimum is at X = (1,1). Beginning at x; = (—1,0), we
obtain a sequence of points converging to (1,0); thus, the algorithm will not
approach the solution X. Moreover, the value of f at (1,0) is —2, while f(x) = —3.
However, a slight modification may improve the Zoutendijk algorithm.

Topkis—Veinott modification

In 1967 Topkis and Veinott suggested a modification of the method of choosing dy
in the Zoutendijk algorithm:

T — min,

Df(xk)dgna

Dgi(xk)d <n—gi(x), i=1,...,m,
-1<d4 <1, j=1,...,n

(®)

The inequalities imposed for gradients of constraints include all constraints; for
active constraints, i € I(xy), we have g;(xx) = 0 and thus the conditions have not
been changed. For inactive constraints, gi;(x) < 0 and the right-hand sides of the
inequalities are greater than 1. If the value of g; at xy is great, then the inequality
is almost irrelevant. If the value of g; is close to 0, i.e., the constraint is “almost
active”, then the corresponding inequality has a significant influence on the choice
of dy. Moreover, in the implementation this modification helps finding the active
constraints, as due to the inexact representation of real numbers (the floating
point representation), we usually cannot obtain g;(x) = 0.

The theorem, which characterises the effectiveness of this modification is given
without proof:

Theorem 69 Assume that f,gi,...,gm are of class C'. If the sequence (xi)x
constructed by the Zoutendyk algorithm with the Topkis—Veinott modification
has a concentration point x, at which the linear independence regularity
condition s satisfied, then the necessary first-order condition is satisfied at x.

Conclusion

The numerical methods described above make it possible to approximate points
satisfying the necessary first-order condition. Then, Theorem 47 may be used to
guarantee the optimality of those points. In particular, if the constraints are

linear, it suffices to assume pseudoconvexity of the function f. Note that similar
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assumptions were needed for problems without constraints. The assumption
about convexity is a natural and often necessary condition for the numerical
methods to work well.



