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Abstract9

We view languages of words over a product alphabet A×B as relations between words over A and10

words over B. This leads to the notion of regular relations — relations given by a regular language.11

We ask when it is possible to find regular uniformisations of regular relations. The answer depends12

on the structure or shape of the underlying model: it is true e.g. for ω-words, while false for words13

over Z or for infinite trees.14

In this paper we focus on countable orders. Our main result characterises, which countable15

linear orders D have the property that every regular relation between words over D has a regular16

uniformisation. As it turns out, the only obstacle for uniformisability is the one displayed in the17

case of Z — non-trivial automorphisms of the given structure. Thus, we show that either all regular18

relations over D have regular uniformisations, or there is a non-trivial automorphism of D and even19

the simple relation of choice cannot be uniformised. Moreover, this dichotomy is effective.20
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67:2 Regular choice functions and uniformisations for countable domains

1 Introduction29

There are many ways of interpreting the simple mathematical operation of projection30

ΠX : X × Y → X. From the computer scientist’s perspective, we often use the intuition of31

guessing that leads to the notion of non-determinism: the projection ΠX(R) of a relation32

R ⊆ X × Y is the set of the elements x ∈ X which admit at least one witness y ∈ Y such33

that (x, y) ∈ R. In many cases this operation greatly increases the expressive power of the34

considered machines (e.g. in the case of recursively enumerable sets), while in other cases35

it does not (e.g. in the case of the class PSPACE). Also, the famous P ?= NP problem asks36

about the strength of projection.37

One of the ways of dealing with the complexity of that operation is to provide a constructive38

way of finding the witnesses y. This concept is formalised by the notion of a uniformisation:39

F ⊆ R is a uniformisation of R if ΠX(F ) = ΠX(R) and for each x ∈ ΠX(F ) there is40

a unique y ∈ Y such that (x, y) ∈ F — thus, F is the graph of a partial function. It is41

known that in certain cases, if a relation admits a definable uniformisation then its projection42

is also definable (e.g. when definable = Borel). This is one of the many reasons motivating43

the question of uniformisation: which definable relations admit definable uniformisations?44

In this paper we work with the automata-theoretic notion of definability i.e. definability45

in Monadic Second-Order logic (MSO) or equivalently: being a regular language. To speak46

about relations between structures over two alphabets A and B; we encode them as languages47

over the product alphabet A×B. In this context, the coarsest question of uniformisation48

is well-understood: all regular relations admit regular uniformisations in the cases of finite49

and infinite words as well as finite trees [11, 7, 10]; while the celebrated result of Gurevich50

and Shelah [6, 1] shows that there are some regular relations over infinite trees that have no51

regular uniformisation. From this perspective, the case of countable linear orders seems to52

be simple, because already over bi-infinite words (words over Z) the relation “choose a single53

position” has no regular uniformisation.54

While some regular relations over specific structures (e.g. infinite trees) do not have55

regular uniformisations, some others may have. Thus, when working with a specific relation56

(possibly coming from some specification) or a specific shape of structures (e.g. countable57

words of certain fixed domain), one would like to ask the question of uniformisation for this58

particular case.59

The aim of this paper is to approach this more fine-grained question of uniformisation in60

one of the simplest non-trivial cases: given a representation of a countable linear order D,61

decide if all regular relations between words of that domain admit regular uniformisations.62

Thus, the answer for D = {0, . . . , 9} or D = ω should be YES, while the answer for D = Z63

should be NO. Our hope is that understanding well the obstacles for uniformisability in this64

case will later be useful in understanding the case of infinite trees — one can easily interpret65

every countable linear order as a set of vertices in a tree.66

Our main result states, that for representable domains D, the problem if all regular67

relations over D have regular uniformisations is decidable. As it turns out, this question is68

equivalent to the question whether there is a regular choice function over D, which in turn is69

equivalent to the fact that D has no non-trivial automorphisms. This implies that the only70

obstacle for uniformisability over countable domains is the one present in Z — automorphisms71

of the structure.72

This work is a part of a bigger project aiming at the questions of uniformisation. In partic-73

ular, the recent paper [4] provides an effective characterisation, that given a regular relation74

between bi-infinite words (i.e. words over Z), decides if that particular relation has a regular75
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uniformisation. In the present paper we answer a coarser question, asking about all relations76

over a specific domain. These questions do not seem to be inter-reducible.77

2 Background knowledge78

An alphabet A is a finite non-empty set, and a domain D is a totally ordered set. In this79

paper are of particular interest countable domains (in the sense finite or of the cardinality80

of the set \ of natural numbers). An element x ∈ D is called a position of D. A subset81

X ⊆ D is called convex if for every three positions x < y < z of D, if x, z ∈ X then also82

y ∈ X. Given two subsets X,Y ⊆ D, we write X < Y if for every pair x ∈ X and y ∈ Y we83

have x < y. Notice that X < Y implies that X ∩ Y = ∅. If two sets X, Y are known to be84

disjoint, then we emphasise this fact by denoting their union as X t Y . Given two positions85

x, z ∈ D, by [x, z] we denote the convex set {y ∈ D | x ≤ y ≤ z}.86

A word w over some alphabet A (or, more generally, over a set) is a function from87

a domain, denoted Dom(w), to A. For a position x ∈ D, the value w(x) ∈ A is called the88

label of x. The set of words over A with a domain D is denoted AD and the set of all words89

over A for all countable domains is denoted A◦. A language over A is any subset of A◦ or90

any subset of AD for a fixed domain D. Given a word w ∈ AD and a non-empty convex91

subset X ⊆ D, by w�X ∈ AX we denote the restriction of w to the domain X. Moreover, we92

will sometimes work with the singleton alphabet {�} and identify any word w ∈ {�}◦ with its93

domain D = Dom(w).94

To deal with alphabets which are the products of two sets, we use the following special95

notation: if a ∈ A and b ∈ B, then
(
a
b

)
is the product letter in A × B; and if w, σ are96

words over the same domain D and over A and B respectively, then
(
w
σ

)
denotes the word97

in (A×B)D such that for all s ∈ D,
(
w
σ

)
(s) =

(w(s)
σ(s)

)
.98

Let D1 and D2 be two domains, an isomorphism from D1 to D2 (or between D1 and99

D2) is a bijective function ι which preserves the order, meaning that for all x < y ∈ D1,100

ι(x) < ι(y). If w1 and w2 are two words over A, then an isomorphism from w1 to w2 (or101

between w1 and w2) is an isomorphism ι from Dom(w1) to Dom(w2) which additionally102

preserves the labels: for all x ∈ Dom(w1), w1(x) = w2(ι(x)). Two words or domains are said103

isomorphic to each other if there exists an isomorphism between them. Isomorphic words104

and domains will be sometimes identified in this paper. An automorphism of a word w (resp.105

of a domain D) is an isomorphism from w (resp. D) to itself. An automorphism is called106

non-trivial if it is not the identity function.107

A word whose domain is finite is called a finite word. The set of all finite non-empty108

words over A is denoted A+ and A∗ def= A+ ∪ {ε} contains additionally the empty word ε.109

A word whose domain is isomorphic to the set ω = {0, 1, 2 . . . } of natural numbers is called110

an ω-word. Another important domain in the paper is the set ω? = {. . . ,−3,−2,−1}.111

Up to isomorphism, there exists a unique word w over A whose domain is countable and112

without borders (i.e. without maximal nor minimal elements), and which is densely labelled113

in the following sense: for all x < z ∈ Dom(w) and a ∈ A, there exists y ∈ Dom(w) such114

that x < y < z and w(y) = a. We call this word the perfect shuffle of A, and denote it Aη.115

We often identify Dom(Aη) with Q, Q being, up to isomorphism, the only countable and116

dense domain without borders.117

If (wi)i∈I is an indexed family of words, I itself being a domain, then by
∑
i∈I wi we118

denote the concatenation of the wi’s, defined as being the word w of domain
⊔
i∈I{〈i, xi〉 |119

xi ∈ Dom(wi)}, defined by w(〈i, xi〉) = wi(xi) for each i ∈ I and xi ∈ Dom(wi). The120

domain
⊔
i∈I{〈i, xi〉 | xi ∈ Dom(wi)} is totally ordered by 〈i, xi〉 ≤ 〈j, yj〉 if i < j, or i = j121
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67:4 Regular choice functions and uniformisations for countable domains

and xi ≤ yi in Dom(wi).122

We have special notations for some particular cases: w0 · w1 if I = {0, 1}, and wω (resp.123

wω
?) if I = ω (resp. ω?) and all the wi’s are isomorphic to w. We write wZ for wω? · wω.124

Similarly, we write wn in the case I = {0, . . . , n−1} and all the wi’s are isomorphic to w.125

Finally, if w0, . . . , wn−1 are words over A then {wi | i ∈ n}η denotes the word
∑
q∈Q wu(q),126

where u = {0, . . . , n− 1}η, obtained as the perfect shuffle of the words wi.127

A word w ∈ A◦ is called finitary (some literature also uses the term regular) if it can be128

constructed from single letters using a finite number of applications of the operations ·, (.)ω,129

(.)ω? , and (.)η, see Section 4. It is easy to see that only countably many words are finitary.130

As we identify words over the single-letter alphabet {�} with their domains, it also makes131

sense to say that a domain is finitary. Notice that a non-finitary word may however have a132

finitary domain: it is for example the case of the non-finitary word
∑
i∈ω a

ib, whose domain133

is ω. An example of a non-finitary domain is the countable ordinal ωω, where here we treat134

the operation (.)ω in the ordinal-theoretic sense.135

◦-semigroups136

Similarly as semigroups provide an algebraic framework to recognise regular languages of finite137

words [8], ◦-semigroups [2] allow to recognise languages of countable words. A ◦-semigroup138

is a pair 〈S, π〉 where S is a non-empty set and π is a function from S◦ to S, which satisfies139

the following property of generalised associativity: for every family of words (wi)i∈I ⊆ S◦,140

indexed by a countable domain I, we have141

π

(∑
i∈I

π(wi)
)

= π

(∑
i∈I

wi

)
, (1)142

where the left-hand side sum ranges over single letter words π(wi); and the right-hand side143

sum is just the concatenation of all the words wi. We often identify a ◦-semigroup 〈S, π〉144

with its set S.145

To make a representation of a ◦-semigroup finite, one uses a concept of a ◦-algebra — a146

quintuple 〈S, ·, (.)τ , (.)τ?

, (.)κ〉, where 〈S, ·〉 is a semigroup, (.)τ and (.)τ? are unary operations147

over S, and (.)κ : Pfin
+ (S)→ S is called a shuffle operation, that assigns elements of S to all148

finite non-empty subsets of S. We additionally require the above operations to satisfy certain149

axioms, see [2, Definition 2]. Again, we often identity the ◦-algebra with the set S itself.150

Each ◦-semigroup induces a ◦-algebra by defining s · t = π(st), sτ = π(sω), sτ? = π(sω?),151

and Pκ = π(P η), where s is treated as a single-letter word and st is a two-letter word.152

One of the main results of [2], Theorem 11, states that every finite ◦-algebra is induced by153

a unique ◦-semigroup — in other words, there is a unique way to define a product operation154

π : S◦ → S in a way satisfying (1) that is additionally consistent with the above equations.155

Notice that the operation πΣ
(
(wi)i∈I

) def=
∑
i∈I wi itself satisfies (1), and therefore 〈A◦, πΣ〉156

is a ◦-semigroup, which is called the free ◦-semigroup on A. It induces the free ◦-algebra157

〈A◦, ·, (.)ω, (.)ω?

, (.)η〉.158

A homomorphism is a function between two algebraic structures that preserves all159

their operations. We say that a language L of countable words over A is recognised by160

a ◦-semigroup 〈S, π〉 if there exists a homomorphism h from 〈A◦, πΣ〉 to 〈S, π〉 such that161

L = h−1(H) for some H ⊆ S (or equivalently such that L = h−1(h(L))).162

A language L ⊆ A◦ is regular if it is recognised by some finite ◦-semigroup. For a fixed163

domain D, a language L ⊆ AD is called regular over the domain D if L = AD ∩ L′ for some164

regular language L′ ⊆ A◦.165



V. Michielini and M. Skrzypczak 67:5

The following fact is an important consequence of the correspondence between ◦-semig-166

roups and ◦-algebras. It implies that finitary words are distinctive for regular languages.167

I Proposition 1 ([2, Theorem 13]). If L 6= ∅ is regular then L contains a finitary word.168

Monadic Second Order Logic169

One of the classical ways of characterising general regular languages is expressed in terms of170

logical definability. In this exposition we follow the ideas and notation from [5, Section 12].171

Monadic Second-Order logic (MSO) is an extension of First-Order logic [3] by additional172

monadic quantifiers ∃X. ψ(X) and ∀X. ψ(X) that range over subsets of the domain. In this173

work we are interested in words, treated as logical structures. Thus, given a word w ∈ A◦174

with some domain D = Dom(w), we treat it as a relational structure with universe D, binary175

relation ≤ representing the order on D, and unary predicates a ∈ A, such that a(x) if and176

only if w(x) = a. This way it makes sense to ask if a given MSO sentence ϕ holds or is177

satisfied over a word w. The language of a formula ϕ over an alphabet A, denoted L(ϕ) ⊆ A◦,178

is the set of all words satisfying ϕ.179

One can easily encode a formula ϕ(X0, . . . , Xn−1) over an alphabet A with free variables180

X0, . . . , Xn−1 as a sentence ϕ over the alphabet A× {0, 1}n, whose symbols should be seen181

as characteristic functions of the parameters X0, . . . , Xn−1 (we can treat each first-order182

variable as a second-order variable evaluated in a singleton set).183

I Remark 2. If w1 and w2 are two isomorphic words and ϕ is an MSO-sentence, then184

w1 ∈ L(ϕ) if and only if w2 ∈ L(ϕ).185

I Theorem 3 ([2, Theorems 28 and 31]). A language L ⊆ A◦ is regular if and only if there186

exists an MSO-sentence ϕ such that L(ϕ) = L. Moreover, there exist effective translations187

between: a finite ◦-algebra recognising L and an MSO-sentence whose language is L.188

Uniformisation and choice189

Given two sets X and Y , a relation R ⊆ X × Y is functional if for every x in the projection190

ΠX(R) of R onto X, there exists a unique y ∈ Y such that (x, y) ∈ R. We say that F ⊆ X×Y191

is a uniformisation of R ⊆ X × Y if F ⊆ R; ΠX(F ) = ΠX(R); and F is functional. Thus,192

a uniformisation is a way of choosing a single witness y ∈ Y for each x ∈ ΠX(R) in such193

a way that (x, y) ∈ R.194

Fix two alphabets A and B. We say that a relation R ⊆ A◦ × B◦ is synchronised if195

for each (w, σ) ∈ R we have Dom(w) = Dom(σ). Each synchronised relation R can be196

identified with a language LR = {
(
w
σ

)
| (w, σ) ∈ R} ⊆ (A×B)◦ over the product alphabet197

A×B. A synchronised relation is regular if so is the language LR. Analogously, a relation198

R ⊆ AD ×BD is regular over a domain D if LR is a regular language over D.199

The crucial question of this paper asks, which regular relations R ⊆ A◦ × B◦ admit200

uniformisations F ⊆ R which are also regular. In other words, we seek for a regular (or201

MSO-definable) way to pick, for each word w ∈ ΠA◦(R), a single word σ ∈ BDom(w) such202

that (w, σ) ∈ R.203

One of the simplest instances of the uniformisation question is the one when R is the204

membership relation: both alphabets A and B are {0, 1}, and the relation R requires205

that the letter
(

1
1
)
appears exactly once, while the letter

(
0
1
)
does not appear at all. In206

other words, R corresponds to the language LR = L(ϕmember) ⊆
(
{0, 1}2

)◦ of the formula207

ϕmember(X, y) ≡ y ∈ X. To find a regular uniformisation of R boils down to define a regular208

MFCS 2020



67:6 Regular choice functions and uniformisations for countable domains

choice function: a regular relation that selects a single element y from every non-empty set209

X ⊆ Dom(w) of positions of a given word w.210

Classical results [11, 7, 10] show that regular relations always admit regular uniformisations211

in the following two cases.212

I Theorem 4. Every regular relation between finite words R ⊆ A+ × B+, or ω-words213

R ⊆ Aω ×Bω effectively admits a regular uniformisation.214

However, over the domain Z there does not even exist any regular choice function. Indeed,215

the domain admits automorphisms y 7→ y+n for each n ∈ Z, and therefore all the positions216

look the same and we cannot define in a regular way a unique position for the full domain Z.217

The above observations motivate the following question: given a domain D, decide if218

all regular relations over the domain D admit regular uniformisations over D. If it is the219

case then we say that D has the regular uniformisation property, or, more simply, the220

uniformisation property.221

3 Main result222

The main result of this work provides an effective characterisation for the question when223

a given finitary domain D has the uniformisation property.224

I Theorem 5. Let D be a finitary domain. The following conditions are equivalent:225

i) D admits a regular choice function;226

ii) D has the uniformisation property;227

iii) D does not admit a non-trivial automorphism;228

iv) D does not have any convex subset isomorphic to IZ, i.e. Z consecutive copies of I,229

generally denoted I × Z in the literature, for any non-empty domain I.230

Moreover, Items i) and ii) are effective: given a representation of D one can either compute231

a choice function and a procedure for constructing regular uniformisations; or return NO232

meaning that the above conditions fail for D.233

The above statement is expressed in terms of a given finitary domain D and relations234

over it. However, the presented techniques apply equally well to a given finitary word235

w ∈ A◦ and regular relations R ⊆ BD × CD definable over w — such a relation is given236

by a regular language LR over the domain D and the alphabet A × B × C, by R =237

{(u, σ) ∈ BDom(w)×CDom(w) |
(w
u
σ

)
∈ LR}. In that case, the regular relations over the word238

w = aω
? · bω do admit regular uniformisations, because w does not have any non-trivial239

automorphism. On the other hand, the word w = (ab)Z from Figure 1 below admits many240

non-trivial automorphisms and therefore violates the above conditions. For the sake of241

notational simplicity, most of the proof is given in terms of domains D, i.e. words over {�}.242

We would like to emphasise that the above result does not hold for non-finitary finitary243

domains. A counterexample is the domain D = ωω (again (.)ω here is treated in the244

ordinal-theoretic sense): it is an ordinal and therefore satisfies Items i, iii, and iv, but it does245

not have the regular uniformisation property, as it was proved by Lifsches and Shelah in [7].246

Certain implications of the above theorem are straightforward. A regular choice function is247

a special case of a uniformisation question, so Item ii) implies Item i). Also, Items iii) and iv)248

are easily equivalent, because if ι : D → D is an automorphism such that ι(x0) 6= x0 then249

the set {ιk(x0) | k ∈ Z} is order-isomorphic to Z. Moreover, any non-trivial automorphism250

can be used to disprove the existence of a regular choice function, so Item i) implies iii).251
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Therefore, the only missing part of the proof is the implication iii)⇒ ii) and the effectiveness252

of these constructions.253

The following remark follows from the fact that for every finite set A, the word Aη is254

isomorphic to
(
Aη
)Z. In the particular case of A being the singleton alphabet {�}, it boils255

down to the fact that Q is isomorphic to Q× Z, i.e. Z copies of Q.256

I Remark 6. If the construction of D in the ◦-algebra 〈{�}◦, ·, (.)ω, (.)ω?

, (.)η〉 involves any257

application of the operation (.)η then necessarily D does not satisfy Item iv).258

Therefore, for the rest of the construction we can assume that D is scattered, i.e. it is259

constructed from the symbol � using only the operations ·, (.)ω, and (.)ω? in {�}◦.260

The proof of the implication iii) ⇒ ii) is based on a concept of tree decompositions261

of D. Such a tree decomposition is an MSO-definable object that represents a possible262

way how to obtain D as an evaluation of a fixed term in
〈
{�}◦, ·, (.)ω, (.)ω?〉. Proposition 8263

shows that there is a bijection between tree decompositions of D and automorphisms of D.264

Therefore, under the assumption of Item iii), there is a unique tree decomposition of D265

that corresponds to the identity automorphism of D. Based on that decomposition, one can266

effectively construct regular uniformisation of any given regular relation over the domain D.267

Additionally, due to MSO definability of tree decompositions (see Proposition 10 below),268

there exists a fixed MSO sentence ψunique that expresses that a given domain D admits269

exactly one tree decomposition. Therefore, Item iii) holds if and only if D satisfies ψunique,270

which can be effectively checked.271

4 Trees and terms272

This section introduces the concepts of ranked trees that represent the way how a finitary273

scattered word w ∈ A◦ is obtained from single letters via the operations ·, (.)ω, and (.)ω? .274

These concepts are later used to define tree decompositions.275

A ranked set is a finite set of ranked symbols, where each ranked symbol ` has its arity276

ar(`) ⊆ Z — a (possibly empty) convex set of integers. If ar(`) = ∅ then we call ` nullary; if277

ar(`) = {0} then ` is unary; and if ar(`) = {0, 1} then ` is binary.278

A ranked tree over a fixed ranked set is defined inductively: if ` is a ranked symbol279

and (ti)i∈I for I = ar(`) is a family of ranked trees indexed by the arity of ` then there280

exists a ranked tree that is denoted `[(ti)i∈I ]. We use the following notations for the tree281

`[(ti)i∈ar(`)]: `[ ] when ` is nullary; `[t0] when ` is unary; and `[t0, t1] when ` is binary.282

Each ranked tree t = `[(ti)i∈I ] can be seen as a structure consisting of the set of283

nodes nodes(t) (formally elements of Z∗ — finite sequences of integers), defined inductively:284

nodes(t) = {ε} ∪
⋃
i∈I{iv | v ∈ nodes(ti)}. The node v = ε is called the root of t; the nodes285

iv for i ∈ I are called children of v; and v is the father of each of its children iv. A leaf is286

a node that has no children — it must be labelled by a nullary symbol. By leafs(t) we denote287

the set of all leafs of t.288

Each node v of t indicates a subtree of t: ε indicates t and a node of the form iv indicates289

the subtree of ti indicated by v. The transitive reflexive closure of the father-child relation is290

the prefix order � on nodes(t) ⊆ Z∗. Additionally, the set of nodes of t is ordered by the291

lexicographic order ≤lex in Z∗.292

We will work with two ranked sets for each fixed alphabet A. The first, corresponds to293

the operations of a ◦-algebra: A t {(·), (×ω), (×ω?)}, where each symbol a ∈ A is nullary, (·)294

is binary, and (×ω), (×ω?) are unary. A ranked tree over this ranked set is called a term.295

Notice that the arities of this ranked set are finite and therefore each term is a finite object.296
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(·)τ =

(×ω?) (×ω)

(·) (·)v

a b a b

(+)t =

(Σω?) (Σω)

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

(+)

a b

w = word(t)

Figure 1 A term τ = (·)
[
(×ω?)

[
(·)[a[ ], b[ ]

]
, (×ω)

[
(·)[a[ ], b[ ]

]]
, the tree t = tree(τ), and the word

w = word(t). Additionally, for v being the left (·) node of τ , the condensation Cv of w from the
canonical tree decomposition Ξ0 is marked by dashed intervals, its pieces are sub-words ab produced
by the (×ω?) sub-term.

Our second ranked set represents actual decompositions of a given countable word over297

an alphabet A. Its symbols are A t {(+), (Σω), (Σω?)}, where again each symbol a ∈ A is298

nullary, (+) is binary, ar((Σω)) = ω, and ar((Σω?)) = ω? — the arity of the last two symbols is299

infinite. A ranked tree over this ranked set is called a condensation tree (see [2, Definition 7]).300

The operations of a ◦-algebra provide a natural way of obtaining a condensation301

tree (denoted tree(τ)) from a term τ , that is defined inductively: tree
(
a[ ]
)
is a[ ] (for302

a ∈ A); tree
(
(·)[τ0, τ1]

)
is (+)[tree(τ0), tree(τ1)]; tree

(
(×ω)[τ0]

)
is (Σω)[(tree(τ0))i∈ω]; and303

tree
(
(×ω?)[τ0]

)
is (Σω?)[(tree(τ0))i∈ω? ].304

For an example of the above construction, see Figure 1. Notice that each node v of tree(τ)305

is obtained from a particular node of τ : the a[ ] node is obtained from the respective a[ ] node306

in τ , similarly (+) is obtained from (·), (Σω) from (×ω), and (Σω?) from (×ω?).307

Given a condensation tree t, by word(t) we denote the word whose domain is leafs(t)308

ordered by ≤lex and labelled as follows: consider a position v ∈ leafs(t) of word(t), v has to309

indicate a subtree of t of the form a[ ] with a ∈ A, then v is labelled by a in word(t).310

The above definitions are constructed in such a way, that for each term τ , the word w311

obtained by evaluating τ in the free ◦-algebra is isomorphic with the word word(tree(τ)),312

which we simply write word(τ). This allows us to formally define finitary words as those of313

the form word(τ) for a term τ .314

I Remark 7. Given: a finitary word w = word(τ) (represented as a term τ); a finite ◦-algebra315

S (represented explicitly by tables of its operations) and a homomorphism h : A◦ → S316

(represented by the values h(s) ∈ S for a ∈ A); one can effectively compute the value317

h(w) ∈ S. In particular, for every regular language L ⊆ A◦ (given either by a homomorphism318

to a finite ◦-algebra or by an MSO sentence and using [2, Theorem 27]), the membership319

problem word(τ) ∈ L with input τ is decidable.320

Tree decompositions321

Fix a term τ and consider a word w ∈ A◦. In this section we define a concept of a tree322

decomposition with shape τ of w. Intuitively, such a tree decomposition (if it exists) provides323

a way of aligning w with leafs(tree(τ)), i.e. encodes an isomorphism between w and word(τ).324

This construction follows some ideas from [2, Section 5], using the concept of condensations.325
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A condensation1 C on a word w is an equivalence relation on a non-empty subset of Dom(w)326

(which is denoted Dom(C)) such that every equivalence class of C is a convex set, i.e. if327

x < y < z, x and z belong to Dom(C), and (x, z) ∈ C then y also belongs to Dom(C) and328

(x, y), (y, z) ∈ C. An equivalence class K of C is called a piece of C.329

A tree decomposition with shape τ is a family Ξ = (Cv)v∈nodes(τ) of condensations on w330

indexed by the nodes of τ , that additionally satisfies the following conditions. First, if v is331

a node of τ that is not a leaf and (vi)i∈I are the children of v (in fact I equals {0} or {0, 1})332

then333

Dom(Cv) =
⊔
i∈I

Dom(Cvi
); (2)334

the union taken above must be disjoint; and for each i ∈ I each piece of Cvi
must be contained335

in a single piece of Cv. Moreover, the following inductive conditions must hold.336

1. If v ∈ nodes(τ) is the root of τ then Dom(Cv) = Dom(w) and Cv has a single piece337

consisting of the whole domain Dom(w), i.e. Cv = Dom(w)2 is the full relation.338

2. If v ∈ nodes(τ) is a binary node labelled by (·) with two children v0 ≤lex v1 then for every339

piece K of Cv we have that:340

for each i ∈ {0, 1}, there is a single piece Ki of Cvi that is contained in K,341

and K0 < K1 with K0 tK1 = K.342

3. If v ∈ nodes(τ) is a unary node labelled by (×ω) with a single child v0 then for every343

piece K of Cv we have that:344

the set of pieces of Cv0 that are contained in K is of the form {Kn | n ∈ N}, with345

K0 < K1 < K2 < . . . and
⊔
n∈NKn = K.346

4. If v ∈ nodes(τ) is a unary node labelled by (×ω?) with a single child v0 then for every347

piece K of Cv we have that:348

the set of pieces of Cv0 that are contained in K is of the form {K−n | n ∈ N \ {0}},349

with350

· · · < K−3 < K−2 < K−1 and
⊔
n∈N\{0}K−n = K.351

5. If v ∈ nodes(τ) is a leaf of τ labelled by a ∈ A then every piece of Cv must be352

a singleton {x} such that w(x) = a.353

Our aim now is the following proposition.354

I Proposition 8. Fix a term τ and a word w ∈ A◦. There exists a bijection Ξ 7→ ι(Ξ)355

between tree decompositions Ξ with shape τ of w and isomorphisms ι(Ξ) : w → word(τ).356

Before moving to its proof, we argue that tree decompositions with shape τ of a word w357

can be represented in MSO over w.358

Representing tree decompositions in MSO359

We begin by providing a representation in MSO over a word w of condensations C. First, if360

X ⊆ D is any set, then it induces a symmetric relation x ∼X y on positions x, y ∈ D, such361

that for x ≤ y we have x ∼X y if [x, y] ⊆ D and either [x, y] ⊆ X or [x, y] ∩X = ∅. It is362

easy to check that for each set X, the above relation is a condensation, see [2, Lemma 34].363

Now, a condensation C can be represented as a pair of sets (D,X) such that D = Dom(C);364

X ⊆ D; and x, y ∈ D are in the same piece of C if and only if x ∼X y.365

1 For technical reasons we consider condensations with arbitrary domains — possibly different than the
whole domain of a given word.
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I Lemma 9 ([2, Lemma 34]). Every condensation C admits a representation (D,X) as366

above. Each pair (D,X) with X ⊆ D 6= ∅ represents some condensation.367

Notice that two pairs (D,X) and (D′, X ′) represent the same condensation if and only if368

D = D′ and for every pair x, y ∈ D we have x ∼X y ⇔ x ∼X′ y, (3)369

which provides an MSO definition of equality of condensations based on their representations.370

I Proposition 10. Take a term τ . There exists an MSO formula ψTD(τ)
(
(Dv, Xv)v∈nodes(τ)

)
371

that holds over a word w and sets
(
Dv, Xv

)
v∈nodes(τ) if and only if for every v ∈ nodes(τ)372

the pair (Dv, Xv) represents a condensation Cv and these condensations (Cv)v∈nodes(τ) form373

a tree decomposition with shape τ of w.374

The construction of this formula mostly follows literally the requirements above. Item 3375

(and symmetrically Item 4) is expressed by guessing a set Y containing one element from376

each piece Kn and requiring that Y is of order type ω.377

A condensation C of a word w is formally a subset of Dom(w)2. This means that if378

ι : Dom(w) → Dom(w′) is an isomorphism between two words, then ι(C) def= {(ι(x), ι(y)) |379

(x, y) ∈ C} is a condensation of w′. Moreover, if (D,X) represents C then (ι(D), ι(X))380

represents ι(C). Therefore, Remark 2 and Proposition 10 imply the following corollary.381

I Corollary 11. If ι : Dom(w) → Dom(w′) is an isomorphism and Ξ = (Cv)v∈nodes(τ) is382

a tree decomposition with shape τ of w then
(
ι(Cv)

)
v∈nodes(τ) is a tree decomposition with383

shape τ of w′.384

From tree decompositions to isomorphisms385

We will now show how to define an isomorphism ι(Ξ) based on a tree decomposition Ξ.386

I Lemma 12. Let Ξ = (Cv)v∈nodes(τ) be a tree decomposition with shape τ of a word w.387

Consider a node v ∈ nodes(τ) of τ that indicates a sub-term τ ′. Let K be a piece of Cv.388

Then there exists an isomorphism ι(Ξ)v,K between w�K and word(τ ′).389

This lemma is proved by induction. For v being a leaf of tree(τ) each piece of Cv is390

a singleton, so the isomorphism is obvious. For other v one constructs ι(Ξ)v,K by merging391

the isomorphisms ι(Ξ)v′,K′ for v′ being the children of v in tree(τ). By ι(Ξ) we denote the392

above isomorphism for the root ε of τ , i.e. ι(Ξ) def= ι(Ξ)ε,Dom(w).393

I Lemma 13. If Ξ = (Cv)v∈nodes(τ) and Ξ′ = (C ′v)v∈nodes(τ) are two distinct tree decompos-394

itions of a word w, both with shape τ , then the isomorphisms ι(Ξ) and ι(Ξ′) are distinct.395

This proof is a simple analysis of the definition of ι(Ξ).396

From isomorphisms to tree decompositions397

Now we provide the opposite transformation: from an isomorphism to a tree decomposition.398

I Lemma 14. There exists a canonical tree decomposition Ξ0 with shape τ of the word399

word(τ). Moreover, ι(Ξ0) = idDom(w).400

This tree decomposition is defined as follows. Take v ∈ nodes(τ) and recall that each401

node of tree(τ) is obtained from a unique node of τ , in the sense of the definition on page 8.402

For a pair of leaves x, y of tree(τ) we let (x, y) ∈ Cv if u′ � x and u′ � y for some403

u′ ∈ nodes(tree(τ)) that is obtained from v. It is easy to check that there is at most one such404

u′ as above and Cv defined that way is in fact an equivalence relation and ι(Ξ0) = idDom(w).405
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I Lemma 15. Fix a term τ and let ι0 be an isomorphism between a word w ∈ A◦ and406

word(τ). Then there exists a tree decomposition Ξ with shape τ of w such that ι(Ξ) = ι0.407

Proof. Let Ξ0 = (Cv)v∈nodes(τ) be the canonical tree decomposition of word(τ). Define408

Ξ =
(
ι−1
0 (Cv)

)
v∈nodes(τ). By Corollary 11 we know that Ξ is a tree decomposition of w. We409

claim that ι(Ξ) = ι0. By the construction in Lemma 12, we know that ι(Ξ) = ι0 ◦ ι(Ξ0) and410

the latter equals idDom(word(τ)). Thus, ι(Ξ) = ι0. J411

This concludes the proof of Proposition 8: the function Ξ 7→ ι(Ξ) is an injection by412

Lemma 13 and it is a surjection by Lemma 15.413

I Proposition 16. Item iii) of Theorem 5 is decidable for a finitary domain D given by414

a term τ over the singleton alphabet {�}.415

Proof. Assume that a term τ is given. Compute the MSO formula ψTD(τ)(Cv)v∈nodes(τ)416

from Proposition 10. Let ϕ express that there exists a unique tuple (Cv)v∈nodes(τ) satisfying417

ψTD(τ)(Cv)v∈nodes(τ) — we represent condensations Cv using pairs (Dv, Xv) as in Lemma 9418

and use (3) to test them for equality. Apply Remark 7 to test if D def= word(τ) satisfies ϕ.419

Proposition 8 implies that it is the case if and only if Item iii) of Theorem 5 holds. J420

I Corollary 17. If a domain D is finitary then the language of all words w such that Dom(w)421

is isomorphic to D is regular.422

5 Uniformisations based on tree decompositions423

In this section we show how to use a fixed tree decomposition Ξ of a given finitary domain D424

to uniformise every regular relation over D. By Proposition 8, Item iii) of Theorem 5 implies425

the existence of a unique such tree decomposition Ξ, which implies Item ii) of Theorem 5.426

Fix a finitary domain D = word(τ) for a term τ over the alphabet {�}. Let Ξ =427

(Cv)v∈nodes(τ) be a fixed tree decomposition of D, represented in MSO by (Dv, Xv)v∈nodes(τ).428

Consider a regular synchronised relation R ⊆ A◦ × B◦ that is identified with a regular429

language LR ⊆ (A×B)◦. Our aim is to construct, using Ξ, a regular uniformisation of R430

over D.431

Let h : (A × B)◦ → S recognising the language LR with LR = h−1(H). Apply the432

construction from [2, Lemma 29] to compute the powerset ◦-algebra P(S) with the powerset433

homomorphism P(h) : A◦ → P(S), defined on the letters a ∈ A by P(h)(a) =
{
h
((

a
b

))
| b ∈434

B
}
. The construction of P(S) is designed in such a way that for every word w ∈ A◦ we have435

P(h)(w) =
{
h
((

w
σ

))
| σ ∈ BDom(w)} and u ∈ ΠA◦(R)⇐⇒ P(h)(u) ∩H 6= ∅. (4)436

437

Notice that if σ, σ′ ∈ BD are two words such that for every position v ∈ D we have438

h
((w(v)

σ(v)
))

= h
(( w(v)

σ′(v)
))

then (w, σ) ∈ R⇔ (w, σ′) ∈ R. Thus, to uniformise R it is enough439

to choose, given a word w ∈ A◦, for each position v ∈ D a type sv ∈ S in such a way that440

sv ∈ P(h)(w(v)) and π
(
(sv)v∈D

)
∈ H. This is summarised in the following lemma.441

I Lemma 18. If for every s ∈ S there exists a regular uniformisation over D of the following442

relation denoted Rs443 {
(w, σ) ∈ P(S)◦ × S◦ | π(σ) = s ∧Dom(w) = Dom(σ) ∧ ∀v ∈ Dom(w). σ(v) ∈ w(v)

}
444

then R also admits a regular uniformisation over D.445
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When the ◦-algebra S is minimal in a certain sense and one restricts in P(S) to the range446

of P(h) then the reciprocal of the above lemma is also true but we do not use this fact here.447

From now on we work with the relations Rs’s. First notice that these relations are regular448

themselves: the requirement that π(σ) = s falls into the definition of a regular language,449

while the condition that ∀v ∈ Dom(w). σ(v) ∈ w(v) is essentially an MSO sentence.450

The existence of the fixed tree condensation Ξ of the domain D provides an automorphism451

between D and leafs(tree(τ)). Therefore, up to Ξ, we can treat w as a word over leafs(tree(τ)).452

Also, by (4) it is enough to construct a regular uniformisation of Rs for each s ∈ S separately.453

We will now sketch an inductive construction of a uniformisation of Rs over D based on454

the structure of tree(τ) using the concept of evaluation trees. Later we will argue, that this455

construction can be performed in MSO over w based purely on Ξ.456

I Definition 19 ([2, Definition 7]). Let h : A◦ → S be a homomorphism into a ◦-monoid, τ457

be a term over the alphabet {�}, and D = word(τ). Consider a word w ∈ AD. An evaluation458

tree of w is a labelling λ of the nodes of the condensation tree tree(τ) by elements of S,459

defined inductively by:460

λ
(
v
)

= h(w(v)), where v is a leaf of tree(τ) (indicating a subtree of the form �[ ]),461

λ
(
(+)[t0, t1]

)
= π

(
λ(t0)λ(t1)

)
= λ(t0) · λ(t1),462

λ
(
(Σω)[(ti)i∈ω]

)
= π

(
λ(t0)λ(t1) . . .

)
,463

λ
(
(Σω?)[(ti)i∈ω∗ ]

)
= π

(
. . . λ(t−3)λ(t−2)λ(t−1)

)
.464

Equivalently, one can say that λ(v) is given by h(w(v)) in the leaves of tree(τ) and if v is465

not a leaf and has children (vi)i∈I then λ(v) = π
(
λ(vi)i∈I

)
.466

Notice that although D is finitary, w ∈ AD might not be finitary — this explains why we467

need to use the operation π instead of (.)ω and (.)ω? . The above definition guarantees the468

following invariant for a node v of tree(τ) and X = {u ∈ leafs(tree(τ)) | v � u}469

λ(v) = h
(
w�X

)
. (5)470

In particular, λ(ε) = h(w) and each word has a unique evaluation tree.471

Uniformisation472

Consider any element s ∈ S and apply Theorem 4 to obtain regular uniformisations of Rs over473

the domains {0, 1}, ω, and ω?. Denote these uniformisations F2,s, Fω,s, and Fω?,s. We will474

use these uniformisations to choose types in the nodes of tree(τ), producing a uniformisation475

Fs0 of Rs0 over D.476

Recall that D = leafs(tree(τ)) and let w ∈ P(S)D and σ ∈ SD. Let λ be the unique eval-477

uation tree of
(
w
σ

)
in the ◦-semigroup P(S)× S with respect to the identity homomorphism.478

Let (w, σ) ∈ Fs0 if the following conditions hold. First, for every v ∈ D we must have479

σ(v) ∈ w(v). Second, for v = ε (i.e. the root of tree(τ)) we must have λ(v) = (T, s) with480

s = s0. Finally, consider any node v ∈ nodes(tree(τ)) that is not a leaf, let λ(v) = (T, s), and481

assume that (vi)i∈I are the children of v in tree(τ). Let
(
w′

σ′

)
=
(
λ(vi)

)
i∈I be the word over482

P(S)× S obtained by taking the λ-values of the children of v. Then we must have that if v483

is labelled by (+) (resp. (×ω) or (×ω?)), then (w′, σ′) belongs to F2,s (resp. Fω,s or Fω?,s).484

I Lemma 20. For every s0 ∈ S the relation Fs0 is a uniformisation over D of Rs0 .485

A proof of this lemma is based on induction over tree(τ) and repetitive usage of the fact486

that the relations F2,s, Fω,s, and Fω?,s are uniformised.487
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I Lemma 21. For each s ∈ S the relation Fs is regular with parameter Ξ: there exists488

an MSO-formula ψFs

(
(Dv, Xv)v∈nodes(τ)

)
over the alphabet P(S)×S which holds over a given489

word
(
w
σ

)
with parameters (Dv, Xv)v∈nodes(τ) if and only if (Dv, Xv)v∈nodes(τ) represents490

a tree decomposition Ξ with shape τ of w and (w, σ) ∈ Fs where the relation Fs is defined as491

above based on Ξ.492

The construction is based on the fact that the tree decomposition Ξ provides a way to493

MSO-encode the structure of tree(τ) over the given word w. This makes the definition of Fs494

definable in MSO over (w, σ).495

This concludes the proof of the implication iii)⇒ ii) of Theorem 5: if there is a unique496

automorphism of w then there is a unique tree decomposition Ξ0 of w that can be fixed in497

MSO using the formula ψTD(τ) from Proposition 10.498

6 Conclusions499

The main result of this work shows that in the case of countable domains, the only obstacle500

for regular uniformisations are non-trivial automorphisms. This provides a very clean picture:501

given a domain D, either all regular relations over D have regular uniformisations, or already502

the simple relation of choice over D has no regular uniformisation because the domain D503

admits shifts (non-trivial automorphisms).504

The techniques involved in the proof of this result are based mainly on the tools developed505

in [2] to study the algebraic structure of regular languages of countable words. However, one506

needs to carefully merge tools coming from logic and algebra to actually construct regular507

uniformisations under the assumption of lack of shifts. This is achieved by showing that in508

the considered setup, one can encode evaluation trees from [2] within MSO. That approach509

differs from the one taken in [2] when moving from algebra to logic, because there the shape510

of the domain of the word is unknown.511

A possible next step on our way of understanding uniformisability is to generalise the512

present result with that of [4]: given a particular relation R over countable words, decide if513

R admits a regular uniformisation. To achieve that, one should understand how to merge514

the techniques of [4] that analyse the case of words over Z; with the above results clarifying515

the situation under the assumption of “no interval of the form I × Z”.516
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A Axioms of ◦-algebras541

A ◦-algebra is a quintuple 〈S, ·, (.)τ , (.)τ?

, (.)κ〉 where:542

· is an associative binary operation: for all s1, s2, s3 ∈ S we have (s1 ·s2) ·s3 = s1 · (s2 ·s3);543

(.)τ is a function from S to itself, such that for all s, s1, s2 ∈ S, (s1 · s2)τ = s1 · (s2 · s1)τ ,544

and for every natural number n ≥ 1, (sn)τ = sτ , sn being the n-times product s · s · · · s;545

(.)τ? is a function from S to itself, such that for all s, s1, s2 ∈ S, (s1 ·s2)τ? = (s2 ·s1)τ? ·s2,546

and for ever natural number n ≥ 1, (sn)τ? = sτ
? ,547

(.)κ is a function from P(S) \ {∅} to S, such that for all non-empty K ⊆ S and s ∈ K548

we have Kκ = Kκ · Kκ = Kκ · s · Kκ = (Kκ)τ = (Kκ · s)τ = (Kκ)τ? = (s · Kκ)τ?

549

and for all K ′ ⊆ K, K ′′ ⊆
⋃
s1,s2∈K{K

κ, s1 ·Kκ,Kκ · s2, s1 ·Kκ · s2} not both empty,550

Kκ = (K ′ ∪K ′′)κ.551

B Equivalence of Items iii) and iv)552

Consider a finitary domain D. Our aim is to prove the equivalence between the last two553

conditions of Theorem 5. To simplify the argument, we will work with their negations:554

¬iii) D admits a non-trivial automorphism;555

¬iv) D has a convex subset of the form I × Z, for I a domain.556

First, we show the direction ¬iii) to ¬iv). Let us suppose that D admits a non-trivial557

automorphism ι. Let x0 ∈ D be a position such that ι(x0) 6= x0. Without loss of generality558

we can assume that x0 < ι(x0). For x ∈ D define ι0(x) = x, ιk+1(x) = ι
(
ιk(x)

)
, and559

ιk−1(x) = ι−1(ιk(x)
)
. For k ∈ Z put xk = ιk(x0). We call the sequence xk the orbit of x0.560

We know that for all k ∈ Z, xk < xk+1. Put Ik =
[
xk, ι(xk+1)

)
and P =

⋃
k∈Z Ik. Clearly,561

ι is an isomorphism between Ik and Ik+1. Therefore, P is isomorphic to I0 × Z. Moreover,562

directly from the definition P is convex. This shows that ¬iv) holds.563

Now assume that D admits a convex subset P isomorphic to I × Z, with I nonempty.564

Let ι be an isomorphism between P to I × Z. Define κ : D → D as follows:565

κ(x) = x for x /∈ P ;566

κ(x) = x′ for x ∈ P , ι(x) = (y, k), and x′ = ι−1(y, k+1).567

It is now easy to check that κ is a bijection and it preserves the order. Thus, κ is a non-trivial568

automorphism of D.569

C Implication from Item i) to iii)570

In this short section we prove the implication i)⇒ iii): if D admits a regular choice function571

then D has no non-trivial automorphism.572

Assume for the sake of contradiction that ϕ(X, y) is an MSO formula that realises573

a regular choice function, i.e. for every non-empty set X0 ⊆ D, there exists a unique element574

y0 ∈ X0 such that D satisfies ϕ(X0, y0). Let ι : D → D be a non-trivial automorphism of575

D. Take x0 ∈ D such that ι(x0) 6= x0 and let (xk)k∈Z be the orbit of x0, as defined in576

Appendix B.577

Consider X0 = {xk | k ∈ Z}. Let y0 ∈ X0 be the unique position such that D satisfies578

ϕ(X0, y0). However, by Remark 2 we know that D also satisfies ϕ
(
ι(X0), ι(y0)

)
, where579

ι(X0) = X0 by the construction but ι(y0) 6= y0. Contradiction to the uniqueness of y0.580
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D Proof of Proposition 10581

I Proposition 10. Take a term τ . There exists an MSO formula ψTD(τ)
(
(Dv, Xv)v∈nodes(τ)

)
582

that holds over a word w and sets
(
Dv, Xv

)
v∈nodes(τ) if and only if for every v ∈ nodes(τ)583

the pair (Dv, Xv) represents a condensation Cv and these condensations (Cv)v∈nodes(τ) form584

a tree decomposition with shape τ of w.585

We begin by formalising the representations of condensations in MSO.586

CONVEX(D) def= ∀x < y < z. x, z ∈ D → y ∈ D587

CONDENSATION(D,X) def= X ⊆ D 6= ∅588

EQUIV(D,X, x, z) def=
(
∀y. x ≤ y ≤ z → y ∈ D

)
∧589 ((

∀y. x ≤ y ≤ z → y ∈ X
)
∨
(
∀y. x ≤ y ≤ z → y /∈ X

))
590

PIECE(D,X,K) def= ∅ 6= K ⊆ D ∧ ∀x, y ∈ K. EQUIV(D,X, x, y)∧591

∀x ∈ K. ∀y ∈ D. EQUIV(D,X, x, y)→ y ∈ K592

EQUAL(D,X,D′, X ′) def= CONDENSATION(D,X) ∧ CONDENSATION(D′, X ′)∧593

D = D′∧594

∀x, y ∈ D. EQUIV(D,X, x, y)↔ EQUIV(D′, X ′, x, y)595
596

From that moment on, we will write in our formulae simply C for a pair (D,X), Dom(C)597

for D, and C = C ′ for EQUAL(C,C ′).598

Using the above formulae, most of the requirements from the definition of a tree decom-599

position can be directly expressed in MSO. The only less clear part are Items 3 and 4.600

By the symmetry let us focus on Item 3. Instead of speaking about the sequence of pieces601

(Kn)n∈N, we can say that there exists set Y that satisfies the following conditions. The idea602

is that Y contains one point from each piece Kn.603

For every x ∈ K there exists a unique piece K ′ of Cv0 that contains x and is contained604

in K. Moreover, K ′ ∩ Y is a singleton.605

Y is well-founded (every subset of Y has a minimal element).606

The ordinal type of Y is ω: Y has no maximal element but every strict initial segment607

of Y has a maximal element.608

The above requirements guarantee that the family {K ′ ⊆ K | K ′ is a piece of Cv0} is ordered609

by < into an ω-chain. Therefore, these requirements express Item 3.610

E Proof of Lemma 12611

I Lemma 12. Let Ξ = (Cv)v∈nodes(τ) be a tree decomposition with shape τ of a word w.612

Consider a node v ∈ nodes(τ) of τ that indicates a sub-term τ ′. Let K be a piece of Cv.613

Then there exists an isomorphism ι(Ξ)v,K between w�K and word(τ ′).614

Proof. The proof of this fact is inductive on the structure of τ . For v being a leaf of τ the615

thesis is immediate from Item 5.616

Consider the case that τ ′ = (·)[τ0, τ1], where the sub-terms τ0 and τ1 are indicated by617

the children v0 and v1 of v. Let K be any piece of Cv. Then Item 2 together with (2) imply618

that K = K0 t K1 with K0 < K1, where K0 is a piece of Cv0 and K1 is a piece of Cv1 .619

The inductive assumption guarantees that for i = 0, 1 there exists an isomorphism ι(Ξ)vi,Ki
620
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between w�Ki
and word(tree(τi)). Then ι(Ξ)v,K

def= ι(Ξ)v0,K0 t ι(Ξ)v1,K1 is an isomorphism621

between w�K and word(tree(τ ′)), because tree(τ ′) = (+)
[
tree(τ0), tree(τ1)

]
.622

The cases of (×ω) and (×ω?) nodes are entirely analogous to the case of (·). J623

F Proof of Lemma 13624

I Lemma 13. If Ξ = (Cv)v∈nodes(τ) and Ξ′ = (C ′v)v∈nodes(τ) are two distinct tree decompos-625

itions of a word w, both with shape τ , then the isomorphisms ι(Ξ) and ι(Ξ′) are distinct.626

Proof. Let v be a �-minimal node of τ such that (Cv) 6= (C ′v). Notice that v is not the root627

of τ by Item 1 and let v̄ be the father of v in τ . By minimality of v we know that Cv̄ = C ′v̄.628

Let K be any piece of Cv̄ such that (K2 ∩ Cv) 6= (K2 ∩ C ′v) — such a piece exists by (2)629

and the fact that every member of Dom(Cv̄) belongs to some piece of Cv̄.630

Consider the first case that v̄ is labelled by (·) in τ . Item 2 implies that K contains631

a single piece K0 of Cv and K contains a single piece K ′0 of C ′v. Thus, K0 6= K ′0 and the632

isomorphisms ι(Ξ)v,K0 and ι(Ξ′)v,K′0 must differ on some position of word(tree(τ ′)), for633

the sub-term τ ′ indicated by v in τ . By the construction, this difference witnesses that634

ι(Ξ) 6= ι(Ξ′).635

Again, the cases when v̄ is labelled by (×ω) or (×ω?) are analogous. J636

G Proof of Lemma 14637

I Lemma 14. There exists a canonical tree decomposition Ξ0 with shape τ of the word638

word(τ). Moreover, ι(Ξ0) = idDom(w).639

Proof. First, let us define certain sets of nodes of tree(τ) that will be then used to define640

the tree decomposition Ξ0. Recall that each node of tree(τ) is obtained from a unique node641

of τ , in the sense of the definition on page 8. Let Xv be the set of nodes of tree(τ) that are642

obtained from a node v ∈ nodes(τ). Notice that the elements of Xv are pairwise incomparable643

with respect to �.644

Consider v ∈ nodes(τ) and let Cv contain a pair (u0, u1) of leaves of tree(τ) if u′ � u0 and645

u′ � u1 for some u′ ∈ Xv. Notice that since Xv is an anti-chain w.r.t. �, the node u′ above646

is uniquely determined. Therefore, Cv defined that way is in fact an equivalence relation647

with Dom(Cv) = {u ∈ leafs(tree(τ)) | ∃u′ ∈ Xv. u
′ � u} and the equivalence classes of Cv648

are convex. We claim that Ξ0
def=
(
Cv)v∈nodes(τ) is the claimed canonical tree decomposition649

of word(tree(τ)).650

First, Equation (2) holds in an obvious way from the construction. Moreover, the unions651

taken there are disjoint because the members of each set Xv are �-incomparable. Items 1652

to 5 follow from the following observation: a set K ⊆ leafs(tree(τ)) is a piece of Cv if and653

only if there exists u′ ∈ Xv such that K = {u ∈ leafs(tree(τ)) | u′ � u}.654

It remains to notice that the above construction guarantees that ι(Ξ0) = idDom(w). J655

H Proof of Lemma 18656

Recall that R ⊆ A◦×B◦ is a relation and h : (A×B)◦ → S recognises the language LR with657

LR = h−1(H). By P(S) we denote the powerset ◦-semigroup of S.658

I Lemma 18. If for every s ∈ S there exists a regular uniformisation over D of the following659

relation denoted Rs660 {
(w, σ) ∈ P(S)◦ × S◦ | π(σ) = s ∧Dom(w) = Dom(σ) ∧ ∀v ∈ Dom(w). σ(v) ∈ w(v)

}
661
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then R also admits a regular uniformisation over D.662

Proof. For each set T ∈ P(S) such that T ∩H 6= ∅ fix a single element sT ∈ T ∩H. Also,663

for each s ∈ S and a ∈ A such that h
((

a
b

))
= s for some b ∈ B fix a single letter bs,a such664

that h
(( a

bs,a

))
= s.665

Fix regular relations Fs that uniformise Rs over D for each s ∈ S. Consider a relation F666

that contains a pair (w, σ) over the domain D if the following conditions holds. First, for667

every position x ∈ Dom(σ) and a = w(x), b = σ(x) with h
((

a
b

))
= s we must have b = bs,a668

— the letters of σ are the chosen ones for the respective values h
((

a
b

))
∈ S. Moreover, let669

T = P(h)(w). We require that T ∩H 6= ∅ and let s = sT be the chosen member of T ∩H.670

Then, for w′ defined as w′(x) = P(h)(w(x)), and σ′(x) = h
((w(x)

σ(x)
)
(both with domain D)671

we must have (w′, σ′) ∈ Fs.672

By the choice of s = sT ∈ T ∩H we know that whenever (w, σ) ∈ F for F defined above673

then (w, σ) ∈ R, because h(
(
w
σ

)
) = sT ∈ H. Additionally, if w ∈ ΠA◦(R) then by (4) we674

know that P(h)(w) ∩H 6= ∅ so it is possible to choose s = sT for T = P(h)(w). Then one675

can define w′ as above and choose a unique σ′ ∈ SDom(w) based on the uniformisation Fs.676

By further using the letters bs,a one obtains a word σ such that (w, σ) ∈ F , which implies677

that ΠA◦(F ) = ΠA◦(R). Therefore, it is enough to check that F is functional, but it follows678

directly from the definition of F and functionality of Fs. J679

I Proof of Lemma 20680

I Lemma 20. For every s0 ∈ S the relation Fs0 is a uniformisation over D of Rs0 .681

Proof. Consider a pair of words (w, σ) ∈ Fs0 . First notice that (5) together with the second682

requirement on (w, σ) guarantee that π(σ) = s0. Therefore, (w, σ) ∈ Rs0 . This implies that683

Fs0 ⊆ Rs0 .684

Now consider two pairs (w, σ), (w, σ′) ∈ Fs0 . We need to show that σ = σ′, i.e. the685

relation Fs0 is uniformised. Let λ and λ′ be the two evaluation trees. Notice that their686

values agree in the roots, because λ(ε) = (P(π)(w), s0) = λ′(ε). Moreover, the fact that the687

relations F2,s, Fω,s, and Fω?,s are uniformised implies that if λ(v) = λ′(v) then their values688

agree also in the children of v. Thus, λ agrees with λ′ in the leaves of tree(τ), which implies689

that σ = σ′.690

It remains to see that if w ∈ ΠP(S)D (Rs0) then there exists at least one σ ∈ SD such that691

(w, σ) ∈ Fs0 . Let λ0 be the evaluation tree of w in P(S) w.r.t. the identity homomorphism.692

We will now inductively extend λ0 to a labelling λ of nodes(tree(τ)) by P(S)× S. First, put693

λ(ε) = (λ0(ε), s0). Now proceed inductively, labelling children of each node of tree(τ) in the694

unique way to satisfy the conditions about F2,s, Fω,s, and Fω?,s — uniqueness of this choice695

follows from the fact that these relations are uniformisations of Rs. Take v ∈ leafs(tree(τ))696

and let σ(v) = s where λ(v) = (T, s). It is easy to check that λ is the evaluation tree of
(
w
σ

)
697

and its structure implies that (w, σ) ∈ Fs0 . J698

J Proof of Lemma 21699

I Lemma 21. For each s ∈ S the relation Fs is regular with parameter Ξ: there exists700

an MSO-formula ψFs

(
(Dv, Xv)v∈nodes(τ)

)
over the alphabet P(S)×S which holds over a given701

word
(
w
σ

)
with parameters (Dv, Xv)v∈nodes(τ) if and only if (Dv, Xv)v∈nodes(τ) represents702

a tree decomposition Ξ with shape τ of w and (w, σ) ∈ Fs where the relation Fs is defined as703

above based on Ξ.704
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Proof. Fix an element s ∈ S and assume that a tree decomposition Ξ = (Cv)v∈nodes(τ)705

represented by (Dv, Xv)v∈nodes(τ) is given. Clearly ψFs
can use the formula ψTD(τ) from706

Proposition 10 to check that Ξ is in fact a tree decomposition.707

For each v ∈ nodes(τ) guess a set Yv that contains a single member from each piece of708

Cv. The actual position of these members will not play any role, they will be used only to709

represent the nodes of tree(τ). Notice that there is a bijection between Yv and the set of710

nodes of tree(τ) that are obtained from v, moreover this bijection preserves the order ≤ on711

Yv into the order ≤ on nodes(tree(τ)). For x ∈ Yv by x̂ we will denote the respective node712

of tree(τ) (this node depends on v).713

Consider v′ that is a father of v in τ and take two positions x ∈ Yv′ and y ∈ Yv. Notice714

that x̂ is a father of ŷ in tree(τ) if and only if the unique piece K of Cv′ that contains x715

contains also y. As this property is MSO-definable, so is the notion of children in tree(τ).716

Consider as an example τ = (×ω)
[
� [ ]
]
with two nodes v0 ≺ v1 (v0 is the root and v1717

is the leaf inducing the sub-term �[ ]). Then Yv1 contains all the positions of word(tree(τ))718

and Yv0 contains some (in fact arbitrary) position of that word. This example shows that719

unfortunately we cannot make the sets Yv pairwise disjoint.720

Our aim now is to show how to encode an evaluation tree λ as a labelling of the sets721

(Yv)v∈nodes(τ). First, we can use a standard approach of representing a function f : X 7→ E722

with a finite set E by a family of disjoint sets
(
f−1({e})

)
e∈E with

⋃
e∈E f

−1({e}) = X. This723

allows us to quantify in MSO over functions f : X 7→ E for various finite sets E.724

We will say that (λv)v∈nodes(τ) represents an evaluation tree λ if for every v ∈ nodes(τ)725

the labelling λv is a function from Yv to P(S) × S and these labellings equal λ via the726

bijection mentioned above. Notice that again, as the sets Yv are not disjoint, the labellings727

λv need to be represented separately. However, as nodes(τ) is a fixed finite set, it is possible728

to represent all of them at once in an MSO formula. Now it is easy to see that the conditions729

of Definition 19 are easily MSO-definable over a representation (λv)v∈nodes(τ) — the only730

demanding part is the evaluation π
(
λ(t0)λ(t1) . . .

)
but for that it is enough to use Ramsey731

decompositions, as in the case of Wilke algebras, see e.g. [9].732

Once we know how to represent in MSO the evaluation tree λ, the rest of the definition733

of Fs is readily definable in MSO, using the regularity of F2,s, Fω,s, and Fω?,s. Thus, Fs is734

a regular relation.735

Additionally observe that the construction of the formula defining Fs is effective for736

a given s ∈ S and Ξ. J737
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